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ABSTRACT OF THE DISSERTATION

Effective and Efficient Representation Learning for Graph Structures

by

Ting Chen

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2019

Professor Yizhou Sun, Chair

Graph structures are a powerful abstraction of many real-world data, such as human inter-

actions and information networks. Despite the powerful abstraction, graphs are challenging

to model due to the high-dimensional, irregular and heterogeneous characteristics of many

real-world graph data. An essential problem arose is how to effectively and efficiently learn

the representation for objects in graphs.

In this thesis, both the effectiveness as well as efficiency aspects of the graph representa-

tion learning problem are addressed. Specifically, we start by proposing an effective approach

for learning heterogeneous graph embedding in an unsupervised setting. Then this is gen-

eralized to semi-supervised scenario where label guidance is leveraged. The effective graph

representation learning models are followed by efficient techniques, where we propose effi-

cient sampling strategies to improve the training efficiency for content-rich graph embedding

models. Finally, to reduce storage and memory cost of the embedding table used in various

models, we introduce a framework based on KD code, which can compress the embedding

table in an end-to-end fashion. We conduct extensive experiments on various real-world tasks

on graph data (e.g. anomaly detection, recommendation and text classifications), and the

empirical results validate both effectiveness as well as efficiency of our proposed algorithms.
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CHAPTER 1

Introduction

1.1 Overview

Many real world data can be organized in graph structures. Examples include human so-

cial interactions [ZLT13], computer system activities [CTS16b], academic bibliographic net-

works [CS17], recommender systems [CHS17], and so on. The graph structures can be seen

as an abstraction of these concrete problems where the common problems can be expressed

more concisely. These common problems on graphs include but are not limited to (1) node

prediction, which aims to predict some attributes of the nodes (e.g. the genres of a movie,

or the academic field of a published paper), (2) edge prediction, which aims to predict some

attributes of the edges (that could as well include their existence, e.g. the possibility of be-

friending behavior between two users), and (3) sub-structure prediction, which differs from

the previous ones in that it aims to predict attributes of higher order objects that include

multiple nodes and edges (e.g. the functionality of some chemical compound).

While the graph structures are ubiquitous, it is challenging to model these structures

as they exhibit special characteristics that distinct from regular and continuous structures.

These characteristics are described as follows.

• The first characteristic is that graphs are discrete and usually high-dimensional. There

is no intrinsic similarity among discrete objects, such as nodes, edges and substructures,

which make them hard to compare. The discreteness could make gradient-based opti-

mization difficult when we want to directly take gradient w.r.t. the structures. Nodes

could be described by their neighbors and non-neighbors, which makes the nodes as

well as higher order objects in graphs high dimensional. The high dimensionality makes

1



it even more challenging to model graph data efficiently.

• Another characteristic is that many graph structures are irregular and long-tail. Unlike

sequence or grids whose structures are quite regular and simple, many real graphs are

irregular. The connections among nodes can be established in almost arbitrary ways,

thus the complexity of structures can increase dramatically, especially considering the

phenomenon of isomorphism [Ull76]. While most nodes in such graphs have a small

number of neighbors, others could have large number of neighbors [BA99].

• Finally, many real world graphs are heterogeneous [SHY11] where nodes/edges contain

attributes and belong to different types. While common graphs in mathematical ab-

straction consist of just nodes and edges, real world graphs have attributes attached,

which could be as simple as some numerical values, or as complicated as some text,

image or video content [CSS17]. These attributes express rich semantics, as they can

constrain the forming of structures, or carry important information pertains prediction.

To address the above mentioned challenges in modeling graph structures. Many attempts

have been made. One essential problem in these attempts is how we should represent the

structures, from a single node to higher order sub-graphs. A trivial solution is to just treat

each node as a discrete symbol/object as it originally is. When we have multiple nodes, we

can represent each node as an one-hot vector, a vectorized identifier for them. This approach

does not leverage graph structures, so there is no distance measure between nodes, making

it unsuitable for modeling graph data.

An improvement is to leverage adjacency matrix among node objects and extract the simi-

larity metric from it (via approaches like shortest path, random walk, and meta-path[SHY11]).

These approaches directly work with high-dimensional data, which makes them very com-

putational expensive and hard to generalize. Furthermore, the global and compositional

structures are hard to be captured by these approaches.

Recent years have seen a growing number of approaches leveraging distributed represen-

tation of symbols [MSC13, PSM14, PAS14]. These methods aim to learn low-dimensional
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vector representation of high dimensional neighbor features, such that most semantic regu-

larities can be captured. Despite the success, many of the proposed approaches are limited

to homogeneous graphs where only nodes and edges without attributes are considered, thus

it is difficult for them to deal with heterogeneous graphs.

This thesis builds upon the distributed representation learning of graph structures with

emphasize on the representation learning problem for heterogeneous graphs. Overall, it

consists of two major parts: effectiveness and efficiency for the graph representation learning.

1.2 Effective Graph Representation Learning

The first major part is how to learn representations that can effectively capture the underly-

ing semantics presented in heterogeneous graphs. A common desiderata for good represen-

tations is that they are able to “explain” the observed (graph) data. For example, for a good

representation of given node, it should capture the regularity exists in its linking behaviors,

such as the existence of its neighbors, as well as non-neighbors, in the graph.

To learn representations that capture regularities, some prediction-based tasks can be

designed, such as predicting the neighbor and non-neighbor of a node. Such tasks usually do

not need to involve the supervised labels, which leads to an unsupervised learning setting.

For example, they can be designed to model the likelihood of the data samples, mimicking a

density estimation problem [CTS16b]. This is demonstrated in the Chapter 2 of the thesis,

where we propose an unsupervised learning mechanism for heterogeneous categorical event

network.

Given a surrogate prediction task, representations that explain observations accurately

can be considered as positive, or useful. Note that this comes with some risks as well,

due to the phenomenon of over-fitting: with high model complexity (e.g. large number of

parameters in a neural net), the model could achieve near zero training loss on a given

finite training set, but the learned representations do not generalize to unseen test set. A

better generalization could be achieved by adding more training data, adopting a model

architecture with better inductive bias, or applying regularization losses.
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Beyond the unsupervised setting where no supervised label is given at the time of training,

there are times when we do have a targeted task with access to limited amount of labeled

data. In such cases, an unsupervised training may be weaker, since it does not directly

utilize the task supervision. To leverage both limited supervision signal as well as much rich

regularities resided in unlabeled data, we can adopt a semi-supervised approach [CS17]. This

is demonstrate in Chapter 3, where we address the representation learning for the author

prediction problem in a simulated double blind review setting.

To further capture the heterogeneity of the graphs, we leverage the concept of meta-

path [SHY11], on which we can define neighborhood. This is different from traditional

approaches where the neighborhood in a graph is treated uniformly. Furthermore, the su-

pervised signal not only can guide the representation learning directly, but also guide the

selection of the meta-paths, which indirectly shape the final representations.

1.3 Efficient Graph Representation Learning

The other major part is how we can efficiently learn these presentations and serve them

at inference inference time. An effective approach can only be practically effective when

it is efficient. And the efficiency include storage and run-time memory cost, training time,

and inference latency. In this thesis, the training time as well as storage cost for graph

representation learning are discussed.

On the training side, neighbor prediction based graph representation learning usually

faces a large output space as the number of potential neighbors are large. To efficiently deal

with this problem during the training, a negative sampling based algorithm is commonly

used, where we consider all positive examples, but only a randomly sampled sub-set of

negative examples. However, when dealing with heterogeneous graphs where nodes contain

content information that requires sophisticated processing (such as recurrent nets), the naive

negative sampling based training could be inefficient [CSS17]. To address this problem,

several novel sampling strategies are proposed in Chapter 4 which could significantly reduce

the training time by an order of magnitude.
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On the inference side, a smaller/compact model is usually preferred, especially on small

mobile devices. However, representation models (include but are not limited to graph em-

bedding) are usually associated with an embedding table [CMS18], whose size is linear to

the number of nodes/objects. This could bring high storage and memory cost, especially

when the number of nodes in a graph is large, e.g. millions or billions. Not only this em-

bedding table could be very large, it is also very redundant due to two reasons: (1) number

of observations follows long-tail distribution, and (2) the objects in a graph are formed with

compositionality. In order to reduce the model bits at the same time leverage the composi-

tionality, in Chapter 5 we propose K-way D-dimensional codes to learn a much more compact

embedding table in an end-to-end fashion.

1.4 Organization of Chapters and Relations with Published Pa-

pers

This thesis is organized as follows.

Chapter 2 (originated from this paper [CTS16b]) introduces an effective unsupervised

embedding method for heterogeneous graphs. To capture the regularity, we directly model

the likelihood in the event space with an novel embedding framework. We extract the

heterogeneous graph from event data in a computer system and network, and demonstrate

the effectiveness of our approach on automatically detection the abnormal events without

labeled data.

Chapter 3 (originated from this paper [CS17]) introduces an effective semi-supervised

embedding method for heterogeneous graphs. The meta-paths are adopted to define neigh-

borhood in heterogeneous graph, and supervised signal is used as guidance for their selection.

We extract the heterogeneous graph from academic bibliographic data and demonstrate the

effectiveness of our approach on the application of author identification in a simulated double

blind peer-review process.

Chapter 4 (originated from this paper [CSS17]) introduces an efficient sampling strategies
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for learning node representations with content information. To demonstrate the gained

efficiency, we conduct experiments on recommender system where user-item interactions are

considered, and items are associated with text information.

Chapter 5 (originated from this paper [CMS18]) introduces an efficient encoding scheme

to reduce the size of embedding table across methods with node/object embedding. Instead

of linear number of free parameters, the quantity in the proposed method can be reduced to

logarithmic (when fixing the inferred codes). Our method can also be applied beyond graph

structures as long as symbol embedding table is presented. We demonstrate the effectiveness

of the proposed approaches on several applications, from language modeling to graph-based

node classification.

Final conclusion is drawn at the end of the thesis. Furthermore, supplementary materials

and references are included in the end of the thesis.
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CHAPTER 2

Unsupervised Graph Embedding for Heterogeneous

Categorical Events

In this chapter, we introduce an embedding-based method for unsupervised anomaly detec-

tion in heterogeneous categorical events.

Anomaly detection plays an important role in modern data-driven security applications,

such as detecting suspicious access to a socket from a process. In many cases, such events can

be described as a collection of categorical values that are considered as entities of different

types, which we call heterogeneous categorical events. Due to the lack of intrinsic distance

measures among entities, and the exponentially large event space, most existing work re-

lies heavily on heuristics to calculate abnormal scores for events. Different from previous

work, we propose a principled and unified probabilistic model APE (Anomaly detection via

Probabilistic pairwise interaction and Entity embedding) that directly models the likelihood

of events. In this model, we embed entities into a common latent space using their observed

co-occurrence in different events. More specifically, we first model the compatibility of each

pair of entities according to their embeddings. Then we utilize the weighted pairwise in-

teractions of different entity types to define the event probability. Using Noise-Contrastive

Estimation with “context-dependent” noise distribution, our model can be learned efficiently

regardless of the large event space. Experimental results on real enterprise surveillance data

show that our methods can accurately detect abnormal events compared to other state-of-

the-art abnormal detection techniques.
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2.1 Overview

With increasing amount of data collected from everywhere, such as computer systems, trans-

action activities, social networks, it becomes more and more important for people to un-

derstand the underlying regularity of the data, and to spot the unexpected or abnormal

instances [CBK09]. Centered around this goal, anomaly detection plays a very important

role in many security related applications, such as securing enterprise network by detecting

abnormal connectivities, and so on.

However, the problem has not been satisfyingly addressed yet. Many traditional anomaly

detection methods focus on either numerical data or supervised settings [CBK09]. When

it comes to unsupervised anomaly detection in heterogeneous categorical events data, i.e.,

events containing a collection of categorical values that are considered as entities of different

types, there is less existing work [DS07, DSN08, TSE08, ATV12].

The heterogeneous categorical event data are ubiquitous, such as events of process inter-

actions in computer systems, where each data point is an event that involves heterogeneous

types of attributes/entities: time, user, source process, destination process, and so on. In

order to detect abnormal events that deviate from the regular patterns, a common approach

is to build a model that can capture the underlying factors/regularities of data. However,

events with multiple heterogeneous entities are difficult to model in a systematic and unified

framework due to two major challenges: (1) the lack of intrinsic distance measures among

entities and events, and (2) the exponentially large event space.

Consider that in real computer systems, given two users with ids of 1 and 10, we almost

know nothing about their distance/similarity without other information. In addition to

the lack of intrinsic distance measure, the exponentially large event space is also an issue.

For example, a heterogeneous categorical event, in real systems, can involve more than ten

types of entities. If each entity type has more than one hundred possible choices of entities

the overall event space will be as large as 10010, which is prohibitively large and makes it

challenging to model regularities.

Due to these two difficulties, most existing work relies heavily on heuristics to quantify
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the normal/abnormal scores for events [DS07, DSN08, TSE08, ATV12]. However, a more

systematic and accurate model is in demand as the vastly emerging of big complicated data

in important applications.

To tackle the aforementioned challenges, we propose a probabilistic model that directly

models the event likelihood. We first embed entities into a common latent space where

distance among entities can be naturally defined. Then to access the compatibility of entities

in the event, we quantify their pairwise interactions by the dot product of the embedding

vectors. Finally the weighted sum of interactions is used to define the probability of the

event.

Compared to traditional methods, the proposed method has several advantages: (1) by

modeling the likelihood of event based on entity embeddings, the proposed model can pro-

duce normal/abnormal score in a principled and unified framework; (2) by modeling weighted

pairwise interaction instead of all possible interactions, the model is less susceptible to over-

fitting, and can provide better interpretability; and (3) the proposed model can be learned

efficiently by Noise-Contrastive Estimation with “context-dependent” noise distribution re-

gardless of large event space. Empirical studies on real-world enterprise surveillance data

show that by applying our method we can detect unknown abnormal events accurately.

2.2 Problem Statement

Here we introduce some notations and define the problem.

Heterogeneous Categorical Event. A heterogeneous categorical event e = (a1, · · · , am)

is a record contains m different categorical attributes, and the i-th attribute value ai denotes

an entity from the type Ai. In the computer process interaction network, an event is a record

involving entities of types such as the user, time1, source/destination process and folder. In

the following, we will call it event for short.

By treating the categorical attributes of an event as entities/nodes, we can also view

1Although time is continuous value, it can be chunked into segments of different granularities, such as
day and hour, which then can be viewed as entities.
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categorical events as a heterogeneous network of multiple node types [SH12]. In the computer

process interaction example, the network schema is shown in Figure 2.1, where event acts as

a super node connecting other nodes of different types.

Event

D

S

D S

Figure 2.1: The heterogeneous network view of categorical events. Node types include event,

user, day, hour, source/destination process and folder.

Problem: abnormal event detection. Given a set of training eventsD = {e1, · · · , en},

by assuming that most events in D are normal, the problem is to learn a model M , so that

when a new event en+1 comes, the model M can accurately predict whether the event is

abnormal or not.

2.3 The Proposed Model

In this section, we introduce the motivation and technical details about the proposed model.

2.3.1 Motivations

We directly model the event likelihood as it indicates how likely an event should occur

according to the data. An event with unusual low likelihood is naturally abnormal. To

achieve this, we need to deal with the two main challenges as mentioned before: (1) the lack

of intrinsic distance measures among entities and events, and (2) the exponentially large
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event space.

To overcome the lack of intrinsic distance measures among entities, we embed entities

into a common latent space where their semantic can be preserved. More specifically, each

entity, such as a user, or a process in computer systems, is represented as a d-dimensional

vector and will be automatically learned from the data. In the embedding space, the distance

of entities can be naturally computed by distance/similarity measures in the space, such as

Euclidean distances, vector dot product, and so on. Compared with other distance/similarity

metrics defined on sets, such as Jaccard similarity, the embedding method is more flexible

and it has nice property such as transitivity [ZWC15].

To alleviate the large event space issue and enable efficient model learning, we come up

with two strategies: (1) at the model level, instead of modeling all possible interactions among

entities, we only consider pairwise interaction that reflects the strength of co-occurrences of

entities [Ren10]; and (2) at the learning level, we propose using noise-contrastive estimation

[GH10] with “context-dependent” noise distribution.

The pairwise interaction is intuitive/interpretable, efficient to compute, and less suscep-

tible to over-fitting. Consider the following anomaly example we may encounter in real

scenarios:

• A maintenance program is usually triggered at midnight, but suddenly it is trigged

during the day.

• A user usually connect to servers with low privilege, but suddenly it tries to access

some server with high privilege.

In these examples, abnormal behaviors occur as a result of the unusual pairwise inter-

action among entities (process and time in the first example, and user and machine in the

second example).
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2.3.2 The Probabilistic Model for Event

We model the probability of a single event e = {a1, · · · , am} in event space Ω using the

following parametric form:

Pθ(e) =

exp

(
Sθ(e)

)
∑

e′∈Ω exp

(
Sθ(e′)

) (2.1)

Where θ is the set of parameters, Sθ(e) is the scoring function for a given event e that

quantifies its normality. We instantiate the scoring function by pairwise interactions among

embedded entities:

Sθ(e) =
∑

i,j:1≤i<j≤m

wij(vai · vaj) (2.2)

Where vai is the embedding vector for entity ai, and the dot product between a pair of

entity embeddings vai and vaj encodes the compatibility of two entities co-occur in a single

event. wij is the weight for pairwise interaction between entity types Ai and Aj, and it

is non-negative constrained, i.e. ∀i, j, wij ≥ 0. Different pairs of entity types can have

different importances, interaction among some pairs of entity types are very regular and

important, e.g. user and machine, while others may be less regular and important, e.g. day

and hour. Using wij, the model can automatically learn the importances of different pairwise

interactions. Finally θ = {w, v} denotes all parameters used in the model.

Our model APE, which is abbreviated for Anomaly detection via Probabilistic pairwise

interaction and Entity embedding, is summarized in Figure 2.2.

The learning problem is to optimize the following maximum likelihood objective over

events in the training data D:

arg max
θ

∑
e∈D

logPθ(e) (2.3)

To solve the optimization problem, the major challenge is that the denominator in Eq.
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Figure 2.2: The framework of proposed method.

2.1 sums over all possible event configurations, which is prohibitively large (O(expm)). To

address this challenging issue, we propose using Noise Contrastive Estimation.

2.3.3 Learning via Noise-Contrastive Estimation

Noise-Contrastive Estimation (NCE) has been introduced in [GH10] for density estimation,

and applied to estimate language model [MT12], and word embedding [MK13, MCC13,

MSC13]. The basic idea of NCE is to reduce the problem of density estimation to binary

classification, which is to discriminate samples from data distribution Pd(e) and some artifi-

cial known noise distribution Pn(e) (the selection of Pn will be explained later). In another

word, the samples fed to the APE model can come from real training data set or being

generated artificially, and the model is trained to classify them a posteriori.

Assuming generated noise/negative samples are k times more frequent than observed

data samples, the posterior probability of an event e came from data distribution is P (D =

1|e, θ)2 = Pθ(e)/(Pθ(e) + kPn(e)). To fit the objective in Eq. 2.3, we maximize the expecta-

2Since we want to fit the model distribution to data distribution, we use Pθ in place of Pd.
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tion of logP (D|e, θ) under the mixture of data and noise/negative samples [GH10, MT12].

This leads to the following new objective function:

J(θ) =Ee∼Pd

[
log

Pθ(e)

Pθ(e) + kPn(e)

]
+

kEe∼Pn

[
log

kPn(e)

Pθ(e) + kPn(e)

] (2.4)

However, in this new objective function, the model distribution Pθ(e) is still too expensive

to evaluate. NCE sidesteps this difficulty by avoiding explicit normalization and treating

normalization constant as a parameter. This leads to Pθ(e) = Pθ0(e) exp(c), where θ =

{θ0, c}, and c is the original log-partition function as a single parameter, and is learned to

normalize the whole distribution. Now we can re-write the event probability function in Eq.

2.1 as follows:

Pθ(e) = exp

( ∑
i,j:1≤i<j≤m

wij(vai · vaj) + c

)
(2.5)

To optimize the objective E.q. 2.4 given the training data D, we replace Pd with P̃d (the

empirical data distribution), and since the APE model is differentiable, stochastic gradient

descent is used: for each observed training event e, first sample k noise/negative samples

{e′} according to the known noise distribution Pn, and then update parameters according

to the gradients of the following objective function (which is derived from Eq. 2.4 on given

e, {e′} samples):

log σ

(
logPθ(e)− log kPn(e)

)
+∑

e′

log σ

(
− logPθ(e

′) + log kPn(e′)

) (2.6)

Here σ(x) = 1/(1 + exp(−x)) is the sigmoid function.

The complexity of our algorithm is O(Nkm2d), where N is the number of total observed

events it is trained on, k is number of negative examples drawn for each observed event, m
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is the number of entity type, and d is the embedding dimension. The complexity indicates

that the APE model can be learned efficiently regardless of the O(expm) large event space.

2.3.4 “Context-Dependent” Noise Distribution

To apply NCE, as shown in Eq. 2.6, we need to draw negative samples from some known

noise distribution Pn. Intuitively, the noise distribution should be close to the data distri-

bution, otherwise the discriminating task would be too easy and the model cannot learn

much structure from the data [GH10]. Note that, different from previous work (such as lan-

guage modeling or word embedding [MT12, MCC13]) that utilizes NCE, where each negative

sample only involves one word/entity. Each event, in our case, involves multiple entities of

different types.

One straight-forward choice of noise distribution is “context-independent” noise distribu-

tion, where a negative event is drawn independently and does not depend on the observed

event. One can sample a negative event according to some factorized distribution on event

space, i.e. P factorized
n (e) = pA1(a1) · · · pAi

(ai). Here pAi
(ai) is the probability of choosing

entity ai of the type Ai, which can be specified uniformly or computed by counting unigram

in data. In this work we stick to unigram as it is reported better [MT12, MCC13].

Although the “context-independent” noise distribution is easy to evaluate. Due to the

large event space, this noise distribution would be very different from data distribution,

which will lead to poor model learning.

Here we propose a new “context-dependent” noise distribution where negative sampling is

dependent on its context (i.e. the observed event). The procedure is, for each observed event

e, we first uniformly sample an entity type Ai, and then sample a new entity a′i ∼ pAi
(a′i) to

replace ai and form a new negative sample e′. As we only modify one entity in the observed

event, the noise distribution will be close to data distribution, thus can lead to better model

learning. However, by utilizing the new “context-dependent” noise generation, it becomes

very hard to compute the exact noise probability Pn(e). Therefore, we use an approximation

instead as follows.
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For a given observed “context” event e, we define the “context-dependent” noise distri-

bution for sampled event e′ as P c
n(e′|e). Since e′ is sampled by randomly replacing one of

the entity ai with a′i of the same Ai type, the conditional probability P c
n(e′|e) = PAi

(a′i)/m

(here we assume Ai is chosen uniformly). Considering the large event space, it is unlikely

that event e′ is generated from observed events other than e, so we can approximate the

noise distribution with Pn(e′) ≈ P c
n(e′|e)Pd(e). Furthermore, as Pd(e) is usually small for

most events, we simply set it to some constant l, which leads to the final noise distribution

term (which is used in E.q. 2.6):

log kPn(e′) ≈ logPAi
(a′i) + z,

where z = log kl/m is a constant term. Although we do not know the exact value of z, we let

z = 0 when plugging the approximated log kPn(e′) into Eq. 2.6. We find that ignoring z will

only lead to a constant shift of learned parameter c. Since c is just the global normalization

term, it will not affect the relative normal/abnormal scores of different events.

To compute Pn(e) for an observed event e, since we do not know which entity is replaced

as in the negative event case, we will use the expectation as follows:

log kPn(e) ≈
∑
i

1

m
logPAi

(ai) + z.

And again the z will be ignored when plugging into Eq. 2.6.

2.4 Experiments

In this section, we evaluate the proposed method using real surveillance data collected in an

enterprise system during a two-week period.

2.4.1 Data Sets

One of the main application scenarios of anomaly detection is to detect abnormal activity in

surveillance data collected from computer systems. Hence, in our experiments, a two-week

period of activity data of an enterprise computer system is used. The collected surveillance
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Table 2.1: Entity types in data sets.

Data Types of entity and their arities

P2P day (7), hour (24), uid (361), src proc

(778), dst proc (1752), src folder (255), dst

folder (415)

P2I day (7), hour (24), src ip (59), dst ip (184),

dst port (283), proc (91), proc folder (70),

uid (162), connect type (3)

data include two types of events, which are viewed as two separate data sets.

P2P. Process to process event data set. Each event of this type contains the system

activity of a process interacting with another process, the time and user id of the event are

also recorded. P2P events are among the most important system activities since modern

operating systems are based on processes.

P2I. Process to Internet Socket event data set. Each event of this type contains the

system activity of a process sending or receiving Internet connections to/from other machine

at destination ports, the time and user id of the event are recorded as well. We only consider

the P2I events among the enterprise system since we focus on inside enterprise activities.

The entity types and their number of entities for both data sets are summarized in Table

2.1.

We do not have the ground-truth labels for collected events, however, it is assumed

that majority of events are normal. In order to evaluate anomaly detection task, similar

to [DS07, DSN08, ATV12], we create some artificial anomalies, and ask the algorithms to

detect them. The artificial anomaly events are generated as follows: for each event in the test

data, we select c of its entities (we consider c = {1, 2, 3} in following experiments), randomly

replace them with other entities of the same type, and make sure the new generated events do

not occur in both training and test data sets, so that they can be considered more abnormal

than observed events.
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Table 2.2: Statistics of the collected two-week events.

Data # week 1 # week 2 # week 2 new

P2P 95,434 107,619 53,478 (49.69%)

P2I 1,316,357 1,330,376 498,029 (37.44%)

We split the two-week data into two of one-weeks. The events in the first week are used

as training set3, and new events that only appeared in the second week are used as test sets.

The statistics of observed events are summarized in Table 2.2.

2.4.2 Comparing Methods and Settings

We compare the following state-of-the-art methods for abnormal event detection.

Condition. This method is proposed in [DS07]. For each test event, it computes the

conditional scores for all pairs of dependent and mutually exclusive subsets having up to

k attributes, and combine the scores with a heuristic algorithm. The conditional score is

calculated based on statistics of events in the training set, and reflect dependencies between

two given attribute sets of an event.

CompreX. This method is proposed in [ATV12]. It utilizes a compression technique to

encode training data and learns a set of code tables that summarize patterns. When a new

event comes, it first encodes it using existing code tables, and then the number of bits used

in encoding is treated as abnormal score for the event.

APE. This is the proposed method. Noted that we use the negative of its likelihood

output as the abnormal score.

APE (no weight). This method is the same as APE, except that instead of learning wij,

we simply set ∀i, j, wij = 1, i.e. it is APE without automatic weights learning on pairwise

interactions. All types of interactions are weighted equally.

For the (hyper-)parameter settings, we use part of the training data as validation set

3With randomly selected portion as validation set for selection of hyper-parameters.
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Table 2.3: Performance of abnormal event detection. Values left to slash are AUC of ROC,

and ones on the right are average precision. The last two rows (∗ marked) are averaged over

3 smaller (1%) test samples due to long runtime of CompreX.

P2P P2I

Models c=1 c=2 c=3 c=1 c=2 c=3

Condition 0.6296 / 0.6777 0.6795 / 0.7321 0.7137 / 0.7672 0.7733 / 0.7127 0.8300 / 0.7688 0.8699 / 0.8165

APE (no weight) 0.8797 / 0.8404 0.9377 / 0.9072 0.9688 / 0.9449 0.8912 / 0.8784 0.9412 / 0.9398 0.9665 / 0.9671

APE 0.8995 / 0.8845 0.9540 / 0.9378 0.9779 / 0.9639 0.9267 / 0.9383 0.9669 / 0.9717 0.9838 / 0.9861

CompreX∗ 0.8230 / 0.7683 0.8208 / 0.7566 0.8390 / 0.7978 0.7749 / 0.8391 0.7834 / 0.8525 0.7832 / 0.8497

APE∗ 0.9003 / 0.8892 0.9589 / 0.9394 0.9732 / 0.9616 0.9291 / 0.9411 0.9656 / 0.9729 0.9829 / 0.9854

to tune (hyper-)parameters. For Condition, we set k = 1, α = 1, β = 0.5. For CompreX,

we adopt their implementation, and since it is parameter free, we do not need to tune

any parameters. For both APE and APE (no weight), the following setting is used: the

embedding is randomly initialized, and dimension is set to 10; for each observed training

event, we draw 3 negative samples for each of the entity type, which accounts for a total of

3m negative samples per training instance; we also use a mini-batch of size 128 for speed up

stochastic gradient descent, and 5-10 epochs are general enough for convergence.

2.4.3 Evaluation Metrics

Since all methods listed above produce abnormal scores instead of binary labels, and there

is no fixed threshold, thus metrics for binary labels such as accuracy are not suitable for

measuring the performance. Similar to [DS07, ATV12], we adopt ROC curves (Receiver

Operating Characteristic curves) and PRC (Precision Recall curves) for evaluation. Both

of these two curves reflect the quality of predicted scores according to their true labels at

different threshold levels. A detailed discussion about the two metrics can be found in

[DG06]. To get a quantitative measurements, the AUC (area under curve) of both ROC and

PRC are utilized.
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2.4.4 Results for Abnormal Event Detection

Table 2.3 shows the AUC of ROC and PRC of different methods on P2P and P2I data sets.

Note the last two rows in Table 2.3 are mean scores averaged over three sampled smaller

test sets, due to the slowness of CompreX at test time (which can takes hundreds of hours

to finish on the half million sized P2I events). Figure 2.3 shows both ROC curves and PR

curves for all methods using test set with entity replacement c = 1 (for c = 2, 3, results are

similar thus not shown).

From the results we can see, on different c number of entity replacement, our method

consistently outperforms both Condition and CompreX significantly. When comparing APE

with APE (no weight), we see that by considering weights and learning them automatically,

the detection results can be further improved.

The learned weight matrix W for P2P and P2I events can be found in Figure 2.4 and 2.5,

respectively. The matrix is upper-triangulated since the pairwise interaction is symmetric

and model only among different type of entities. From the weights, we can see the importance

of different types of interactions in the data sets. For example, in P2P events, the weight for

interaction between day and hour is insignificant; while the weight for interaction between

source process and destination process is large, indicating they are highly dependent and

capture the regularity of P2P events.

Table 2.4 shows some detected abnormal events (we only highlight the pairs of entities

that have the particular low comparability score). In the first event, the interaction between

process bash and its folder is irregular and results in small likelihood; in the second event,

the abnormality is caused by a main user (who usually active during the work hour) involved

in the event on 1 a.m.; in the third example, the process ssh connects to an unexpected port

80 and thus raising the alarm.

2.4.5 Results for Different Noise Distributions

Table 2.5 shows performances under different choices of noise distribution. Results shown

are collected from test set with c = 1 (for c = 2, 3, the results are similar thus not shown),
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(a) P2P abnormal event detection.
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Figure 2.3: Receiver operating characteristic curves and precision recall curves for abnormal

event detections.

Table 2.4: Detected abnormal events examples.

Data Abnormal event

P2P ..., src proc: bash, src folder: /home/, ...

P2P ..., uid: 9 (some main user), hour: 1, ...

P2I ..., proc: ssh, dst port: 80, ...
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Figure 2.5: Pairwise weights learned for P2I events.

and using the same number of training events.

First we compare the “context-independent” noise distribution (first row) and the pro-

posed “context-dependent” noise distribution (third row), clearly the “context-dependent”

one performs significantly better. This confirms that by using the proposed “context-

dependent” noise distribution, the APE model can learn much more effectively given the

same amount of resources.

We also compare the importance of the approximated noise probability term log kPn(e)

in Eq. 2.6. Simply ignore the term by setting it to zero (second row) (as similarity used in
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Figure 2.6: Performance versus number of negative samples drawn per entity type.

[MCC13, MSC13]) results in much worse performances compared to our proposed approxi-

mated one.

Table 2.5: Average precision under different choice of noise distributions.

Noise distribution P2P P2I

Context-independent 0.8463 0.7534

Context-dependent, log kPn(e) = 0 0.8176 0.7868

Context-dependent, log kPn(e) = appx 0.8845 0.9383

Figure 2.6 shows the detection performance versus the number of negative samples drawn

per entity type. As we can see, it only requires a reasonable number of negative samples to

learn well, though adding more negative samples may marginally improve performances.

2.4.6 A Case Study for Entity Embedding

In order to see if the learned embedding is meaningful, we use t-sne [MH08] to find 2d coor-

dinates of the original entity embeddings. Figure 2.7 shows the embedding of users in P2P

data. We color each user according to the user type. We find that, in the embedding space,

similar types of users are clustered together, indicating they play the same role [CTS16a];
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Figure 2.7: User embeddings.
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and in particular, root users are grouped together and far away from other types of users,

reflecting that root users behave very different from other users. Figure 2.8 shows the em-

bedding of hours in P2I data. Although not knowing a priori, the APE model clearly learns

the separations of working hours and non-working hours.

Knowing the types of users and differences among hours can be important for detecting

abnormal events. The entity embedding learned by the APE model suggests it can distinguish

the semantics/similarities of different entities, thus can help better detect anomalies.

2.5 Related Work

2.5.1 Anomaly Detection

There are many literatures for anomaly detection, a good summary of the anomaly detection

methods can be found in [CBK09]. However, most of those work focuses on either numerical

data type or supervised settings.

As for unsupervised categorical anomaly detection, recent work includes [DS07, DSN08,

ATV12]. Most of these methods try to model the regular patterns behind data, and produce

abnormal score of data according to some heuristics, such as the compression bits for an

event [ATV12].

There is some work on applying graph mining methods for anomaly detection in graph

[TSE08, ATK14]. However, our setting is different in the sense that, as shown in Section

2.2, when treating categorical events as a network, it is a heterogeneous network [SH13].

There is also some work on anomaly detection for heterogeneous data [RWZ09, DMS10],

However, most of them are not suitable for event data due to the lack of distance measure

among data points. For example, [DMS10] uses LCS to measure distance between two

sequences, but will not work for two events.
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2.5.2 Embedding Methods

Embedding methods are widely studied in graph/network setting [BN01, TQW15a]. And

more recently, there is some work [BDV03, MCC13, MSC13] on natural language processing,

which tries to embed words into some high dimensional space.

Our work also explores the embedding methods, however, there are some fundamen-

tal differences between our method and other embedding methods. Firstly, many of those

embedding methods aim to embed pairwise interactions, but they only consider one type

of entities. For pairwise interaction of different types of entities, we provide a weighted

scheme for distinguishing their importance. Secondly, existing embedding methods cannot

be directly applied to predicting abnormal score.

There is some work [ABG09] applying graph embedding methods for anomaly detection

in numerical data where the distance among data points are easy to compute. However, as

far as we know, embedding methods have not explored in anomaly detection applications on

categorical event data.

2.6 Summary

In this chapter, we tackle a challenging problem of anomaly detection on heterogeneous

categorical event data. Different from previous work that heavily relies on heuristics, we

propose a principled and unified model APE that directly learns the likelihood of events.

The model is instantiated by weighted pairwise interactions among entities that are quantified

based on entity embeddings. Using Noise-Contrastive Estimation with “context-dependent”

noise distribution, our model can be learned efficiently regardless of the exponentially large

event space. Experimental results on real enterprise surveillance data show that our method

can accurately detect abnormal events compared to other state-of-the-art abnormal detection

techniques.

As for the future work, it is interesting to consider the temporal correlations among mul-

tiple events instead of treating them independently, as many intrusions/attacks can involve
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a series of events.
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CHAPTER 3

Semi-supervised Heterogeneous Graph Embedding

with Meta-Path Augmentation

In this chapter, we introduce a semi-supervised approach that combines meta-path aug-

mented unsupervised graph embedding and supervised guidance that help adjust node em-

bedding as well as meta-path selection.

We study the problem of author identification under double-blind review setting, which

is to identify potential authors given information of an anonymized paper. Different from

existing approaches that rely heavily on feature engineering, we propose to use network

embedding approach to address the problem, which can automatically represent nodes into

lower dimensional feature vectors. However, there are two major limitations in recent studies

on network embedding: (1) they are usually general-purpose embedding methods, which

are independent of the specific tasks; and (2) most of these approaches can only deal with

homogeneous networks, where the heterogeneity of the network is ignored. Hence, challenges

faced here are two folds: (1) how to embed the network under the guidance of the author

identification task, and (2) how to select the best type of information due to the heterogeneity

of the network.

To address the challenges, we propose a task-guided and path-augmented heterogeneous

network embedding model. In our model, nodes are first embedded as vectors in latent

feature space. Embeddings are then shared and jointly trained according to task-specific

and network-general objectives. We extend the existing unsupervised network embedding

to incorporate meta paths in heterogeneous networks, and select paths according to the

specific task. The guidance from author identification task for network embedding is provided
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Figure 3.1: Illustration of author identification problem.

both explicitly in joint training and implicitly during meta path selection. Our experiments

demonstrate that by using path-augmented network embedding with task guidance, our

model can obtain significantly better accuracy at identifying the true authors comparing to

existing methods.

3.1 Overview

Heterogeneous networks are ubiquitous. Examples include bibliographic networks [SBG11,

SHA12], movie recommendation networks [YRS14] and many online social networks contain-

ing information of heterogeneous types [SZL15]. Different from their homogeneous counter-

parts, heterogeneous networks contain multiple types of nodes and/or links. For example,

in bibliographic networks, node types include paper, author and more; link types include

author-write-paper, paper-contain-keyword and so on. Due to the fast emerging of such

data, the problem of mining heterogeneous network has gained a lot of attention in the past

few years [SH12, SZL15].

In this work, we are interested in the problem of mining heterogeneous bibliographic

network [SH12]. To be more specific, we consider the problem of author identification un-

der double-blind review setting [HP03], on which many peer review conferences/journals

are based. Authors of the paper under double-blind review are not visible to reviewers, i.e.

the paper is anonymized, and only content/attributes of the paper (such as title, venue,
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text information, and references) are visible to reviewers. However, in some cases authors

of the paper can still be unveiled by the content and references provided. Affected by the

phenomenon, questions exist about whether or not double-blind review process is really effec-

tive. In fact, WSDM this year also conducts an experiment trying to answer this question.

Here we ponder on this issue by formulating the author identification problem that aims

at designing a model to automatically identify potential authors of an anonymized paper.

Instead of dealing with full text directly, we treat the information of an anonymized paper

as nodes in bibliographic network, such as keyword nodes, venue nodes, and reference nodes.

An illustration of the problem can be found in Figure 3.1. Other than serving as a study

for existing reviewing system, the problem has broader implications for general information

retrieval and recommender system, where the model is asked to match queried document

with certain target, such as reviewer recommendation [VGE99, SHA12].

To tackle the author identification problem, as well as many other network mining prob-

lems, good representations of data are very important, as demonstrated by many previous

work [MSC13, MCC13, PAS14, TQW15b, CTS16b]. Unlike traditional supervised learning,

dense vectorized representations [MSC13, MCC13] are not directly available in networked

data [TQW15b]. Hence, many traditional methods under network settings heavily rely on

problem specific feature engineering [LSL13, LLD13, ZLW13, ESS13, Zha13].

Although feature engineering can incorporate prior knowledge of the problem and network

structure, usually it is time-consuming, problem specific (thus not transferable), and the

extracted features may be too simple for complicated data sets [Ben09]. Several network

embedding methods [PAS14, TQW15b, TQM15] have been proposed to automatically learn

feature representations for networked data. A key idea behind network embedding is learning

to map nodes into vector space, such that the proximities among nodes can be preserved.

Similar nodes (in terms of connectivity, or other properties) are expected to be placed near

each other in the vector space.

Unfortunately, most existing embedding methods produce general-purpose embeddings

that are independent of tasks, and they are usually designed for homogeneous networks

[PAS14, TQW15b]. When it comes to author identification problem under the heteroge-
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neous networks, existing embedding methods cannot be applied directly. There are two

unique challenges brought by this problem: (1) how to embed the network under the guid-

ance of author identification task, so that embeddings learned are more suitable for this task

compared to general network embedding. And (2) how to select the best type of informa-

tion due to the heterogeneity of the network. As shown in previous work [SHY11, SH12],

proximity in heterogeneous networks is richer than homogeneous counterparts, the semantic

of a connection between two nodes is likely to be dependent on the type of connection they

form.

To address the above mentioned challenges, we propose a task-guided and path-augmented

network embedding method. In our model, nodes are first embedded as vectors. Then the

embeddings are shared and jointly trained according both task-specific and network-general

objectives: (1) the author identification task objective where embeddings are used in a

specifically designed model to score possible authors for a given paper, and (2) the general

heterogeneous network embedding objective where embeddings are used to predict neigh-

bors of a node. By combing both objectives, the learned network can preserve network

structures/proximities, as well as be beneficial to the author identification task. To better

utilize the heterogeneous network structure, we extend the existing unsupervised network

embedding to incorporate meta paths derived from heterogeneous networks, and select use-

ful paths according to the author identification task. Compared to traditional network

embedding [PAS14, TQW15b, TQM15], our method uses the author identification task as

an explicit guidance to influence network embedding by joint learning, and also as an im-

plicit guidance to select meta paths, based on which the network embedding is performed.

It is worth mentioning that although our model is originally targeted for the author iden-

tification problem, it can also be extended to other task-oriented embedding problems in

heterogeneous networks.

The contributions of our work can be summarized as follows.

• We propose a task-guided and path-augmented heterogeneous network embedding

framework, which can be applied to author identification problem under double-blind
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review setting and many other tasks.

• We demonstrate the effectiveness of task guidance for network embedding when a

specific task is of interest; and also show the usefulness of meta-path selection in

heterogeneous network embedding.

• Our learning algorithm is efficient, parallelizable, and experimental results show that

our model can achieve much better results than existing feature based methods.

3.2 Preliminaries

In this section, we first introduce the concept of heterogeneous networks and meta paths,

and then introduce the embedding representation of nodes. Finally, a formal definition of

the author identification problem is given.

3.2.1 Heterogeneous Networks

Definition 1 (Heterogeneous Networks) A heterogeneous network [SH12] is defined as

a network with multiple types of nodes and/or multiple types of links. It can be denoted as

G = (V , E), where V is a set of nodes and E is a set of links. A heterogeneous network is

also associated with a node type mapping function fv : V → O, which maps the node to a

predefined node type, and a link type mapping function fe : E → R, which maps the link to

a predefined link type. It is worthing noting that a link type automatically defines the node

types of its two ends.

The bibliographic network can be seen as a heterogeneous network [SH12]. It is centered

by paper, the information of a paper can be represented as its neighboring nodes. The node

types N in the network include paper, author, keyword, venue and year, and the set of link

typesR include author-write-paper, paper-contain-keyword, and so on. The network schema

is shown in Figure 3.2.

Definition 2 (Meta path) A meta path [SHY11] is a path defined on the network

schema TG = (O,L) and is denoted in the form of o1
l1−→ o2

l2−→ · · · lm−→ om+1, which represents
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Figure 3.2: Network schema of the heterogeneous bibliographic network. Each node denotes

a node type, and each link denotes a link type.

a compositional relations between two given types. For each of the meta path r, we can

define an adjacency matrix M (r), with cardinality equal to the number of nodes, to denote

the connectivity of nodes under that meta path. If there are multiple meta paths considered

for a given network G, we use a set of adjacency matrices {M (r)} to represent it.

Examples of meta paths defined in network schema Figure 3.2 include paper → keyword

← paper, and paper → year ← paper. From these two examples, it is easy to see that in a

heterogeneous network, even compare two nodes of the same type (e.g. paper), going from

different paths can lead to different semantic meanings.

3.2.2 Embedding Representation of Nodes

The networked data is usually high-dimensional and sparse, as there can be many nodes

but the links are usually sparse [AB02]. This brings challenges to represent nodes in the

network. For example, given two users, it is hard to calculate their similarity or distance

directly. To obtain a better data representation, embedding methods are widely adopted

[PAS14, TQW15b, TQM15], where nodes in the network are mapped into some common

latent feature space. With embedding, we can measure similarity/distance between two

nodes directly based on arithmetic operations, like dot product, of their embedding vectors.
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Through the paper, we use a matrix U to represent the embedding table for nodes. The

size of the matrix is N × D, where N is total number of nodes (including all node types,

such as authors, keywords, and so on), and D is the number of dimensions. So the feature

vector for node n is denoted as un, which is a D-dimensional vector.

3.2.3 Author Identification Problem

We formalize the author identification problem using bibliographic networks with network

schema shown in Figure 3.2. For each paper p, we represent its neighbors in the given

network G as Xp = {X(1)
p , X

(2)
p , · · · , X(T )

p }, where X
(t)
p is a set of neighbor nodes in t-th node

type. The node types include keyword, reference, venue, and year in our task. And we use

Ap to denote the set of true authors of the paper p.

Author Identification Problem. Given a set of papers represented as (X,A) where

X = {Xp}, A = {Ap}, the goal is to learn a model to rank potential authors for every

anonymized paper p based on information in Xp, such that its top ranked authors are in

Ap
1.

3.3 Proposed Model

In this section, we introduce the proposed model in details. The model is composed of

two major components: (1) author identification based on task-specific embedding, and (2)

path-augmented general network embedding. We first introduce them separately and then

combine them into a single unified framework, where the meta paths are selected according

to the author identification task.

1Here it is posed as a ranking problem since each paper may have different number of authors and it is
unknown beforehand.
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3.3.1 Task-Specific Embedding for Author Identification

In this subsection, we propose a supervised embedding-based model that can rank the poten-

tial authors given the information of a paper (such as keywords, references, and venue). Our

model first maps each node into latent feature space, and then gradually builds the feature

representation for the anonymized paper based on its observed neighbors in the network.

Finally the aggregated paper representation is used to score the potential author.

There are two stages of aggregation to build up the feature representation for a paper p

based on node embeddings. In the first stage, it builds a feature vector for each of the t-th

node type by averaging node embeddings in X
(t)
p , which is:

V (t)
p =

∑
n∈X(t)

p

un/|X(t)
p | (3.1)

where V
(t)
p is the feature representation of t-th node type (e.g. keyword node type), and un

is the n-th node embedding (e.g. keyword node).

In the second stage, it builds feature vector for the paper p using a weighted combination

of feature vectors of different node types:

Vp =
∑
t

wtV
(t)
p (3.2)

Now the anonymized paper p is represented by this feature vector Vp, and can be used

to score potential authors (which are also embedding vectors) by taking their dot product.

The score between a pair of paper and author is defined as follows:

f(p, a) = uTa Vp = uTa

(∑
t

wtV
(t)
p

)
= uTa

(∑
t

wt
∑
n∈X(t)

p

un/|X(t)
p |
) (3.3)

The computational flow is summarized in Figure 3.3. Note that the final densely-

connected layer has no bias term, and thus its weight matrix can be seen as author node

embeddings. The final layer output (green dots) is the score vector for the candidate authors.
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Figure 3.3: Task-specific embedding architecture for author identification.

To learn the parameters U and w, we use stochastic gradient descent (SGD) [Bot10]

based on a hinge loss ranking objective. For each triple (p, a, a′), where a is one of the true

author for paper p, and a′ is not the author of paper p, the hinge loss is defined as:

max

(
0, f(p, a′)− f(p, a) + ξ

)
(3.4)

where ξ is a positive number usually referred as margin [BUG13]. A loss penalty will incur

if the score of positive pair f(p, a) is not at least ξ larger than the score of f(p, a′).

To sample a triple (p, a, a′) used in SGD, we randomly select a paper p from Xp and one of

its author a from Ap, then sample a negative author from the pre-defined noise distribution

a′ ∼ P author
n (a′), such as discrete distribution based on author degree (with a similar idea of

unigram distribution in word2vec [MSC13, MCC13]).

3.3.2 Path-Augmented General Heterogeneous Network Embedding

In this subsection, we propose a path-augmented general network embedding model to exploit

the rich information in heterogeneous networks.

Most of existing network embedding techniques [PAS14, TQW15b, TQM15] are based

on the idea that, embeddings of nodes can be learned by neighbor prediction, which is to
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predict the neighborhood given a node, i.e. the linking probability P (j|i) from node i to

node j. For existing network embedding methods, the observed neighborhood of a node is

usually defined by original network [TQW15b, TQM15] or by random walk on the original

network [PAS14].

In heterogeneous network, one can easily enrich the semantic of neighbors by considering

different types of meta paths [SHY11]. As shown in [SHY11], different meta paths encode

different semantic of links. For example, connections between two authors can encode mul-

tiple similarities: (1) they are interested in the same topic, or (2) they are associated with

the same affiliation. And clearly these two types of connections indicate different semantics.

Inspired by the phenomenon, we generalize existing network embedding techniques [TQM15]

to incorporate different meta paths, and propose the path-augmented network embedding.

In path augmented network embedding, instead of using original adjacency matrices

{E(l)} where l is an original link type or one-hop meta path (such as author→write→paper),

we consider more meta paths (such as author→write→paper→contain→keyword) and use

meta path-augmented adjacency matrices {M (r)} for network embedding, where each M (r)

indicates network connectivity under a specific meta path r. Here we normalize each M (r),

such that ∀r,
∑

i,jM
(r)
i,j = 1, so that the learned embedding will not be dominated by some

meta paths with large raw weights. Since there can be infinite many potential meta paths

(including original link types), when considered for network embedding, one has to select a

limited number of useful meta paths. The selection of meta paths will be discussed in next

sub-section, and we assume a collection of meta paths are selected for now.

To learn embeddings that preserve proximities among nodes induced by meta paths, we

follow the neighbor prediction framework, and model the conditional neighbor distribution

of nodes. In heterogeneous networks, there can be multiple types of paths starting from a

node i, so the neighbor distribution of the node will be conditioned on both the node i and

the given path type r, which is defined as follows:

P (j|i; r) =
exp(uTi uj)∑

j′∈DST (r) exp(uTi uj′)
(3.5)

where ui is the embedding of node i, and DST (r) denotes the set of all possible nodes that
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are in the destination side of path r.

In real networks, the number of nodes in DST (r) can be very large (e.g. millions of

papers), so the evaluation of Eq. 3.5 can be prohibitively expensive. Inspired by [MSC13,

MCC13], we apply negative sampling and form the following approximation term:

log P̂ (j|i; r) ≈ log σ(uTi uj + br)+

k∑
l=1

Ej′∼P r
n(j′)[log σ(−uTi uj′ − br)]

(3.6)

where j′ is the negative node sampled from a pre-defined noise distribution P r
n(j′) for path r

2, and a total of k negative nodes are sampled for each positive node i. Furthermore, a bias

term br is added to adjust densities of different paths.

To learn the parameters U and b, we adopt stochastic gradient descent (SGD) with the

goal of maximizing the likelihood function. The training procedure is given as follows. We

first sample a path r uniformly, and then randomly sample a link (i, j) according to their

weights in M (r). The set of negative nodes {j′} used in Eq. 3.6 are also sampled according

to some pre-defined P r
n(j′), such as “smoothed” node degree distribution under specific edge

type [MSC13, MCC13]. Finally the parameters U, b are updated according to their gradients,

such that approximated sample log-likelihood log P̂ (j|i; r) can be maximized.

3.3.3 The Combined Model

The task-specific embedding sub-model and path-augmented general embedding sub-model

capture different perspectives of a network. The former focuses more on the direct informa-

tion related to the specific task, while the latter can better explore more global and diverse

information in the heterogeneous information network. This motivates us to model them in

a single unified framework.

The two sub-models are combined in two levels as follows.

• A joint objective is formed by combining both task-specific and network-general ob-

2The noise distribution only returns nodes of the same type as specified by end-point of path r.
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jectives, and joint learning is performed. Here the task serves as an explicit guidance

for network embedding.

• The meta paths used in network-general embedding are selected according to the author

identification task. Here the task provides an implicit guidance for network embedding

as it helps select meta paths.

3.3.3.1 Joint Objective - An Explicit Guidance

The joint objective function is defined as a weighted linear combination of the two sub-models

with a regularization term on the embedding, where the embedding vectors are shared in

both sub-models:

L =(1− ω)Ltask−specific + ωLnetwork−general + Ω(M)

=(1− ω)E(p,a,a′)

[
max

(
0, f(p, a′)− f(p, a) + ξ

)]
+ ωE(r,i,j)

[
− log P̂ (j|i; r)

]
+ λ

∑
i

‖ui‖2
2

(3.7)

where ω ∈ [0, 1] is the trade-off factor for task-specific and network-general components.

When w = 1, only network-general embedding is used; and when w = 0, only supervised

embedding is used. A regularization term is added to avoid over-fitting.

To optimize the objective in Eq. 3.7, we utilize Asynchronous Stochastic Gradient De-

scent (ASGD), where samples are randomly drawn and training is performed in parallel

[MSC13]. The challenge here is that we have two different tasks that learn from two dif-

ferent data sources. To solve this problem, we design a sampling based task scheduler.

Basically, for each worker, it first draws a task according to ω, and then draws samples for

the selected task and update the parameters according to the samples. In order to reduce

the task sampling overhead, the selected task will be trained on a mini-batch of data samples

instead of on a single sample.

The learning algorithm is summarized in Algorithm 1.

Complexity. Firstly, the algorithm can be run in parallel using multiple CPUs thanks to

asynchronous SGD. Secondly, the algorithm is efficient, as for each iteration of each thread,
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Algorithm 1 Learning Framework

Input: Training data X,A and path-augmented adjacency matrices {M (r)}.

Output: Parameters U,w, b

1: while not converged do

2: for each thread do

3: Sample one of the two tasks ∼ Bern(ω)

4: if the taks is network-general embedding then

5: sample a mini-batch of (r, i, j) triplets

6: sample negative nodes {j′}

7: update parameters U,w according to their gradients

8: else // the task is author identification

9: sample a mini-batch of (p, a, a′) triplets

10: update parameters U, b according to their gradients

11: end if

12: end for

13: end while

there are two major components: (1) both edge and negative node sampling only take

constant time with alias table [Wal77], and (2) gradient update is linear w.r.t. the number

of links and number of embedding dimensions. Thirdly, with mini-batch of reasonable size,

the overhead in switching tasks is ignorable.

3.3.3.2 Meta Path Selection - An Implicit Guidance

So far we have assumed that path-augmented adjacency matrices {M (r)} are already pro-

vided. Now we discuss how we can select a set of meta paths that can further enhance the

performance of the author prediction task.

The potential meta paths induced from the heterogeneous network G can be infinite, but

not every one is relevant and useful for the specific task of interest. So we utilize the author

identification task as a guidance to help select the meta paths that can best help the task
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at hand.

The path selection problem can be formulated as: given a set of pre-defined candidate

paths R = {r1, r2, · · · , rL}, we want to select a subset of paths Rselected ⊆ R, such that

certain utility can be maximized. Since our final goal is the author identification task, we

define the utility to be the generalization performance (on validation data set) of the task.

It is worth noting the problem is neither differentiable nor continuous. And the total

number of combinations are exponential to the number of candidate paths. So we employ

following two steps to select relevant paths in a greedy fashion.

1 Single path performance. We first run the joint learning with network embedding based

on a single path at a time, and then run the experiments for all candidate paths.

2 Greedy additive path selection. We sort paths according to their performance (from

good to poor) obtained from Step 1 above, and gradually add paths into the selected

pool. Experiments are run for each additive combination of paths, and the path com-

bination with best performance is selected.

We need to run experiments (at most) 2N times, where N means the number of candidate

paths. Since every experiment takes about 10 minutes in our case (even with millions of

nodes and hundreds of millions of links), such selection scheme is affordable and can avoid

exponential number of combinations.

3.4 Experiments

In this section, we compare the proposed model with baselines, and also evaluate several

variants of the proposed model. Case studies are also provided.

3.4.1 Data

The AMiner citation network [TZY08] is used throughout our experiments. To prepare for

the evaluation, we split all papers into training set and test set according to their publication
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Table 3.1: Node statistics

Paper Author keyword Venue Year

Train 1,562,139 1,003,836 402,687 7,528 60

Test 33,644 62,030 41,626 868 2

Table 3.2: Length-1 link statistics

P-A P-P P-V P-W P-Y

Train 4,554,740 6,122,252 1,562,139 12,817,479 1,562,139

Test 96,434 388,030 235,508 287,885 235,508

time. Papers published before 2014 are treated as training set, and papers published in 2014

and 2015 are treated as test set.

Based on the training papers, a heterogeneous bibliographic network is extracted. We first

extract all papers which contain information about its title, authors, references, venue from

the dataset. Then we extract keywords by combining unigram and key phrases extracted

using method proposed in [LSW15]. The schema of the network is the same as in Figure 3.2.

The extracted network contains millions of nodes and tens of millions of links. The

detailed statistics of nodes and links for both training and test set can be found in Table 3.1

and 3.2, respectively.

Meta paths augmentation. Other than the length-1 paths presented in the original

network, we also consider various of length-2 meta paths as candidate paths for general

heterogeneous network embedding. Although other path similarity measures [SHY11] can

be explored, for simplicity, we set weights of a path by the number of path instances. For

example, if Tom attended KDD Twice and Jack attended KDD three times, then the path

of Tom - KDD - Jack will have a weight of six. The augmented network by adding new meta

paths has hundreds of millions of links, much more than the original network. Many of the

candidate paths are not symmetric and may contain different information at both sides, so

we consider them in both directions. Finally, the detailed statistics of the length-2 paths are
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Figure 3.4: Distributions of numbers of authors, references and keywords.

Table 3.3: Length-2 link statistics

A-P-A A-P-P A-P-V A-P-W A-P-Y P-P-V P-P-W V-P-W W-P-W Y-P-W

17,205,758 18,308,110 4,554,740 38,251,803 4,554,740 3,674,632 27,200,144 12,817,479 118,497,737 12,817,479

presented in Table 3.3.

To better understand statistics of the network,, Figure 3.4 shows three different types

of degree distributions for papers. As can be seen from the figure, most papers contain

quite sparse information of authors, references and keywords: medium 3 authors, 1 reference

(many are missing in the data set), and 8 keywords. And this lack of information makes the

problem of automatic author identification even harder.

3.4.2 Baselines and Experimental Settings

We mainly consider two types of baselines: (1) the traditional feature-based methods, and

(2) the variations of network embedding methods.

• Supervised feature-based baselines. As widely used in similar author identifi-

cation/disambiguation problems [LSL13, LLD13, ZLW13, ESS13, Zha13], this thread

of methods first extract features for each pair of training data, and then applies su-

pervised learning algorithm to learn some ranking/classification functions. Following

them, we extract 20+ related features for each pair of paper and author in the training

set (details can be found in appendix). Since the original network only contains true

paper-author pairs, in order to get the negative samples, for each paper-author pair
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we sampled 10 negative pairs by randomly replacing the authors. For the supervised

algorithm, we consider Logistic Regression (LR), Support Vector Machines (SVM),

Random Forests (RF), and LambdaMART 3. For all these methods, we use grid

search to find their best hyper-parameters, such as regularization penalty, maximum

depth of trees, and so on.

• Task-specific embedding. This method is introduced in Section 3.3.1. The embed-

dings of nodes are learned solely based on task-specific embedding architecture.

• Network-general embedding. This method is introduced in Section 3.3.2. The

embeddings of nodes are learned solely based on general heterogeneous network em-

bedding, and then the learned embeddings are used to score the author in the same

way as in task-specific author identification framework. Since it is not directly com-

bined with author identification task, it cannot perform path selection specific for the

task. By default, the paths used for embedding are from original network, i.e. length-1

paths. With length-1 paths, this method is in the same form of PTE [TQM15].

• Pre-training + Task-specific embedding. Pre-training has been found useful

to improve neural network based supervised learning [EBC10]. So instead of training

task-specific author identification from randomly initialized embedding vectors, we first

pre-train the embedding of nodes using network-general embedding, and then initialize

the supervised embedding training with the pre-trained embedding vectors.

• Proposed combined model. This is our proposed method, which combines both

task-specific embedding and meta-path selection-based network-general embedding.

Candidate authors. There are more than one million authors in the training data, so

the total number of candidate authors for each paper is very large. The supervised feature-

based baselines cannot scale up to such large amount of candidate set, as it is both very time

consuming and storage intensive to extract and store features for all candidate paper-author

3for LR, SVM, RF, we use scikit learn implementation, and for LambdaMART, we use XGboost
implementation.
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pairs (which amounts to more than 1017 pairs). Hence, we conduct comparisons mainly

based on a sub-sampled author candidate set, where we randomly sample a set of negative

authors, combined with the true authors of the paper to form a candidate set of total 100

authors. For completeness, we also provide both quantitative and qualitative comparisons

of different embedding methods on the whole candidate set of a million authors.

3.4.3 Evaluation Metrics

Since the author identification problem is posed as a ranking problem and usually only top

returned results are of interest, we adopt two commonly used ranking metrics: Mean Average

Precision at k (MAP@k) and Recall at k (Recall@k).

MAP@K reflects the accuracy of top ranked authors by a model, and can be computed

as mean of AP@K for each papers in the test set. The formula for computing AP@K of a

single paper is given as follows.

AP@K =
K∑
k=1

P (k)/min(L,K) (3.8)

where P (k) is the precision at cut-off k in the return list. L is the total number of true

authors for this test paper.

The Recall@K shows the ratio of true authors being retrieved in the top k return results,

and can be computed according to:

Recall@K =
# of true authors at top K

# of total true authors
(3.9)

3.4.4 Meta-Path Selection Results

We first report experimental results for path selection since the selected paths are used in

the joint training of our model. The candidate paths that we consider are all length-1 and

length-2 paths presented in Table 3.2 and 3.3, 15 paths in total. As introduced in section

3.3.3.2, a greedy algorithm involving two stages has been used for path selection: (1) single

path performance evaluation, and (2) additive path selection.
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Figure 3.5: Path selection under task guidance. Path names are shorten. X2Y denotes

length-2 path; X1Y denotes length-1 path.

Figure 3.5a shows the results of single path performance, i.e., the performance when only

a single meta-path is used in network-general embedding. Each dot in the plot indicates the

performance of author prediction task for the validation dataset. The horizontal line indicates

the performance of task-specific only embedding model. Note that paths are sorted according

to their performance, and only paths that can help improve the author identification task

are shown in the figure.

Figure 3.5b shows the results of additive path selection, which demonstrate the perfor-

mance of the combined model when meta-paths are added gradually. Each bar in the graph

shows performance of the joint model based on specific additive selection of paths. Each

single path is added to the network-general embedding sequentially according to their rank

in the single path performance experiments. For example, the third bar with label “+P1A”

includes three paths: A-P-P, A-P-W, and P-A.

We observe the author identification performance grow first during the first several ad-

ditive selection of paths, and then it starts to decrease as we add more paths. This suggests

that first several paths are most relevant and helpful, and the latter ones can be less relevant,

noisy, and thus they are harmful to use in network-general embedding. It also verifies our

hypothesis that heterogeneous network embedding based on different meta paths will lead

to different embeddings. Finally we select the first three paths A-P-P, A-P-W, and P-A in
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Figure 3.6: Ranking results for author nodes of different degrees.

joint learning of the proposed model.

To further investigate the impact of using different meta paths on learning embeddings

for the prediction task, we consider several types of paths: (1) the original length-1 network

paths presented by network schema in Figure 3.2, (2) the augmented paths by combining all

length-1 and length-2 paths, and (3) the selected paths by our procedure.

Table 3.4 shows the results of different embedding models trained based on pre-given

meta paths. We observe that by adding all length-2 paths, the results actually become

worse, which might be due to the irrelevant or noisy paths. However, this does not mean

that consider augmented paths are unnecessary. Using the greedy selected paths (A-P-P,

A-P-W, and P-A) from both length-1 and length-2 paths, the performance of all models

can be improved, which again demonstrate the path selection can play an important role in

learning task-related embeddings.
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3.4.5 Performance Comparison with Baselines

Table 3.5 shows the performance comparison between baselines and the proposed method.

For both pre-train and network-general model, they do not have access to the task-specific

path selection, so original length-1 network paths are used.

Our method significantly outperforms all baselines, including both supervised feature-

based baselines and variants of embedding methods. To our surprise, the task-specific em-

bedding model performs quite badly without pre-trained embedding vectors, significantly

lower than other methods. We conjecture this is due to overfitting, and can be largely

alleviated by pre-training or joint learning with unsupervised network-general embedding.

To further examine the superior performance of our method compared with traditional

methods, we group the papers by its medium author degrees4, and report the results on

each groups. Figure 3.6 shows that our method outperforms baseline methods in almost all

groups of papers, but most significantly in those papers that have less frequent authors. This

suggests that our method can better understand authors with fewer links. For traditional

feature based methods, it is very difficult to extract useful information/feature for them,

but our model can still utilize propagation between authors and learn useful embeddings for

them.

Whole author candidate set. To test in real-world author prediction setting, we also

conduct evaluation on the whole candidate set including a million of authors for variants

of embedding methods. We only compare embedding methods as supervised feature based

methods cannot scale up to whole candidate set. The results are shown in Figure 3.7. Due

to the use of large candidate set, and thus longer evaluation time, we randomly sample 1000

test papers for a single experiment, and results are averaged over 10 experiments. We observe

that, among variants of embedding methods, the combined method consistently outperforms

other two variants.

4The author degree is calculated based on the number of papers he/she has published in training data.
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Table 3.4: Comparison of performance under different network paths (each entry is MAP@3

/ Recall@3).

Network-general Pre-train + Task Combined

length-1 0.7563 / 0.7105 0.7722 / 0.7234 0.759 / 0.7133

length-(1+2) 0.7225 / 0.6847 0.7489 / 0.7082 0.7385 / 0.6973

Selected 0.7898 / 0.7379 0.7914 / 0.7413 0.8113 / 0.7548

Table 3.5: Author identification performance comparison.

Models MAP@3 MAP@10 Recall@3 Recall@10

LR 0.7289 0.7321 0.6721 0.8209

SVM 0.7332 0.7365 0.6748 0.8267

RF 0.7509 0.7543 0.6921 0.8381

LambdaMart 0.7511 0.7420 0.6869 0.8026

Task-specific 0.6876 0.7088 0.6523 0.8298

Pre-train+Task. 0.7722 0.7962 0.7234 0.9014

Network-general 0.7563 0.7817 0.7105 0.8903

Combined 0.8113 0.8309 0.7548 0.9215

3.4.6 Case Studies

We show two types of case studies to demonstrate the performance differences between our

proposed method and variants of embedding methods. The first type of case study shows

the ranking of authors given some terms, which is used to see if the learned embedding

nodes make sense. And the second type of case study shows the ranking of authors given

information of anonymized paper, which is our original task.

Table 3.6 shows the ranking of authors given the term “variational inference”. We find

from the results, the returned authors of combined methods are most reasonable (i.e., most

likely to be the authors of the queried keyword), followed by general network embedding.

And the task-specific embedding model itself sometimes give less reasonable results.
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Figure 3.7: Performance comparison on whole million authors candidate set.

Table 3.7 shows the ranked authors of some selected papers. Since the information

provided for a paper is quite limited (keywords and limited references), and the number of

whole candidate author set is more than one million, many of the true authors may not be

presented in the top list. However, our combined method can predict true authors more

accurately than other methods. Also, we find that most of the top authors in the returned

list are related to the paper’s topic and true authors, so it is sensible to consider them as

potential authors of the paper.

3.4.7 Parameter Study and Efficiency Test

We study the hyper-parameters ω, which is the trade-off term for combing task-specific

embedding and network-general embedding. The result is shown in Figure 3.8a. As we can

see that the best performance is obtained when we use ω = 0.8, at which both objectives

are combined most appropriately.

Our model can be trained very efficiently with multi-core parallelization. All our ex-

periments are conducted in a desktop with 4 core i7-5860k CPU and 64G memory. The

experiments with embedding methods can be finished in about 10 minutes. To conduct a

quantitatively experiment, we compare the times of training speed-up versus the number

of threads used in Figure 3.8b. It is almost linear speed-up for the first several number of

50



Table 3.6: Top ranked authors by models for queried keyword “variational inference”

Task-specific Network-general Combined

Chong Wang Yee Whye Teh Michael I. Jordan

Qiang Liu Mohammad E. Khan Yee Whye Teh

Sheng Gao Edward Challis Zoubin Ghahramani

Song Li Ruslan Salakhutdinov John William Paisley

Donglai Zhu Michael I. Jordan David M. Blei

Neil D. Lawrence Zoubin Ghahramani Max Welling

Sotirios Chatzis Matthias Seeger Alexander T. Ihler

Si Wu David B. Dunson Eric P. Xing

Huan Wang Dae Il Kim Ryan Prescott Adams

Weimin Liu Pradeep D. Ravikumar Thomas L. Griffiths

threads, since our desktop CPU has only 4 cores (with hyper-threading), there are some

overhead when the number of threads is more than 4.

3.5 Discussion

Although there is a severe lack of information about papers (e.g. the medium number of

references per paper is 1, only keywords are used, and so on), our embedding based algorithm

can still identify true authors with reasonable accuracy at top ranks, even with a million of

candidate authors. We believe the model can be further improved by utilizing more complete

information, and incorporating with more advanced text understanding techniques. For now

and near future, a human expert can still be much more accurate at identifying the authors

of a paper that he/she may be very familiar with, but algorithms may do a much better job

when a paper is in some less familiar domains.

An interesting observation from both Figure 3.6 and Table 3.7 is that, authors with higher

number of past publications are easier for the algorithm to predict, while the authors with

few publication records are substantially harder. This suggests that highly-visible authors
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Table 3.7: Top ranked authors for queried paper

(a) “Active learning for networked data based on non-progressive diffusion model”

Ground-truth Task-specific Network-general Combined

Z. Yang L. Yu J. Leskovec J. Tang

J. Tang Y. Gao A. Ahmed H. Liu

B. Xu J. Wang L. Getoor Y. Guo

C. Xing H. Liu S.-D. Lin X. Shi

Y. Gao D. Chakrabarti W. Fan

Z. Wang P. Melville B. Zhang

Z. Zhang T. Eliassi-Rad S.-D. Lin

J. Zhu G. Lebanon H. Zha

Y. Ye Y. Sun L. H. Ungar

R. Pan L. H. Ungar C. Wang

(b) “CatchSync: catching sync. behavior in large directed graphs”

Ground-truth Task-specific Network-general Combined

M. Jiang H. Wang L. Akoglu C. Faloutsos

P. Cui H. Tong T. Eliassi-Rad A. Gionis

A. Beutel C. Faloutsos U. Kang L. Akoglu

C. Faloutsos D. Chakrabarti H. Tong J. Kleinberg

S. Yang H. Yang D. Chakrabarti J. Leskovec

G. Konidaris A. Gionis D. Chakrabarti

I. Stanton X. Yan A. X. Zheng

C. Wang C. Faloutsos T. Eliassi-Rad

Y. Yang J. Leskovec U. Kang

S. Kale C. Tsourakakis H. Tong

may be easier to detect, while relatively junior researchers are harder to be identified. From

this perspective, we think the double-blind review system is still helpful and in someway

protects junior researchers.
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Figure 3.8: (a) Choice of different combining factor between network-specific and network-

general objectives. (b) Times of speed up versus the number of threads used.

3.6 Related Work

Many work has been devoted to mining heterogeneous networks in the past few years [SH12,

SHY11, SNH13, SZL15]. To study such networks with multiple types of nodes and/or links,

meta paths are proposed and studied [SH12, SHY11, SNH13, SZL15]. Many existing work

on mining heterogeneous networks rely on feature engineering [SBG11, SHA12], while we

adopt embedding methods for automatic feature learning.

Network embedding also attracts lots of attentions in recent years [PAS14, TQW15b,

TQM15, CHT15, CTS16b]. Many of these methods are technically inspired by word embed-

ding [MSC13, MCC13]. Different from traditional graph embedding methods [YXZ07], such

as multi-dimensional scaling [CC00], IsoMap [TDL00], LLE [RS00], Laplacian Eigenmap

[BN01], the network embeddings are more scalable and shown better performance [PAS14,

TQW15b]. Some existing network embedding methods are based on homogeneous network

[PAS14, TQW15b], while others are based on heterogeneous networks [TQM15, CHT15].

Our work extends existing embedding methods by leveraging meta paths in heterogeneous

networks, and use supervised task to guide the selection of meta paths.

The problem of author identification has been briefly studied before [HP03]. And we also

notice KDD Cup 2013 has similar author identification/disambiguation problem [LSL13,
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LLD13, ZLW13, ESS13, Zha13], where participants are asked to predict which paper is truly

written by some author. However, different from the KDD Cup, our setting is different from

them in the sense that (1) existing authors are unknown in our double-blind setting, and

(2) we consider the reference of the paper, which is one of the most important sources of

information. Similar problems in social and information networks are also studied, such as

collaboration prediction [SBG11, SHA12]. The major difference between those work and

ours is the methodology, their methods are mostly based on heavy feature engineering, while

ours adopt automatic feature learning.

3.7 Summary

In this chapter, we study the problem of author identification under double-blind review

setting, which is posed as author ranking problem under heterogeneous networks. To (1)

embed network under the guidance of author identification task, and (2) better exploit het-

erogeneous networks with multiple types of nodes and links, we propose a task-guided and

path-augmented heterogeneous network embedding model. In our model, nodes are first em-

bedded as vectors in latent feature space. Embeddings are then shared and jointly trained

by both task-specific and network-general objectives. We extend the existing unsupervised

network embedding to incorporate meta paths in heterogeneous networks, and select paths

according to the author identification task. The guidance is provided for learning network

embedding, both explicitly in a joint objective and implicitly in path selection. Our experi-

ments demonstrate the usefulness of meta paths in heterogeneous network embedding, and

show that by combining both tasks, our model can obtain significantly better accuracy at

identifying the true authors comparing to existing methods.

Some potential future work includes (1) author set prediction, where the interactions

between authors will be considered in the prediction task, and (2) deeper analysis on text,

given the full text of papers is given.
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CHAPTER 4

Sampling Strategies for Neural Collaborative Filtering

on Content-Rich Networks

In this chapter, we introduces efficient sampling strategies for learning representation on

content-rich graphs.

Recent advances in neural networks have inspired people to design hybrid recommen-

dation algorithms that can incorporate both (1) user-item interaction information and (2)

content information including image, audio, and text. Despite their promising results, neu-

ral network-based recommendation algorithms pose extensive computational costs, making

it challenging to scale and improve upon. In this chapter, we propose a general neural

network-based recommendation framework, which subsumes several existing state-of-the-

art recommendation algorithms, and address the efficiency issue by investigating sampling

strategies in the stochastic gradient descent training for the framework. We tackle this issue

by first establishing a connection between the loss functions and the user-item interaction

bipartite graph, where the loss function terms are defined on links while major computa-

tion burdens are located at nodes. We call this type of loss functions “graph-based” loss

functions, for which varied mini-batch sampling strategies can have different computational

costs. Based on the insight, three novel sampling strategies are proposed, which can signifi-

cantly improve the training efficiency of the proposed framework (up to ×30 times speedup

in our experiments), as well as improving the recommendation performance. Theoretical

analysis is also provided for both the computational cost and the convergence. We believe

the study of sampling strategies have further implications on general graph-based loss func-

tions, and would also enable more research under the neural network-based recommendation

framework.
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4.1 Overview

Collaborative Filtering (CF) has been one of the most effective methods in recommender

systems, and methods like matrix factorization [Kor08, KBV09, SM11] are widely adopted.

However, one of its limitation is the dealing of “cold-start” problem, where there are few or no

observed interactions for new users or items, such as in news recommendation. To overcome

this problem, hybrid methods are proposed to incorporate side information [Ren10, CZL12,

SG08], or item content information [WB11, GCB14] into the recommendation algorithm.

Although these methods can deal with side information to some extent, they are not effective

for extracting features in complicated data, such as image, audio and text. On the contrary,

deep neural networks have been shown very powerful at extracting complicated features from

those data automatically [KSH12, Kim14]. Hence, it is natural to combine deep learning

with traditional collaborative filtering for recommendation tasks, as seen in recent studies

[WWY15, BBM16, ZTD16, CHS17].

In this work, we generalize several state-of-the-art neural network-based recommendation

algorithms [ODS13, BBM16, CHS17], and propose a more general framework that combines

both collaborative filtering and deep neural networks in a unified fashion. The framework

inherits the best of two worlds: (1) the power of collaborative filtering at capturing user

preference via their interaction with items, and (2) that of deep neural networks at automat-

ically extracting high-level features from content data. However, it also comes with a price.

Traditional CF methods, such as sparse matrix factorization [SM11, Kor08], are usually fast

to train, while the deep neural networks in general are much more computationally expen-

sive [KSH12]. Combining these two models in a new recommendation framework can easily

increase computational cost by hundreds of times, thus require a new design of the training

algorithm to make it more efficient.

We tackle the computational challenges by first establishing a connection between the

loss functions and the user-item interaction bipartite graph. We realize the key issue when

combining the CF and deep neural networks are in: the loss function terms are defined over

the links, and thus sampling is on links for the stochastic gradient training, while the main
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computational burdens are located at nodes (e.g., Convolutional Neural Network compu-

tation for image of an item). For this type of loss functions, varied mini-batch sampling

strategies can lead to different computational costs, depending on how many node compu-

tations are required in a mini-batch. The existing stochastic sampling techniques, such as

IID sampling, are inefficient, as they do not take into account the node computations that

can be potentially shared across links/data points.

Inspired by the connection established, we propose three novel sampling strategies for the

general framework that can take coupled computation costs across user-item interactions into

consideration. The first strategy is Stratified Sampling, which try to amortize costly node

computation by partitioning the links into different groups based on nodes (called stratum),

and sample links based on these groups. The second strategy is Negative Sharing, which

is based on the observation that interaction/link computation is fast, so once a mini-batch

of user-item tuples are sampled, we share the nodes for more links by creating additional

negative links between nodes in the same batch. Both strategies have their pros and cons, and

to keep their advantages while avoid their weakness, we form the third strategy by combining

the above two strategies. Theoretical analysis of computational cost and convergence is also

provided.

Our contributions can be summarized as follows.

• We propose a general hybrid recommendation framework (Neural Network-based Col-

laborative Filtering) combining CF and content-based methods with deep neural net-

works, which generalize several state-of-the-art approaches.

• We establish a connection between the loss functions and the user-item interaction

graph, based on which, we propose sampling strategies that can significantly improve

training efficiency (up to ×30 times faster in our experiments) as well as the recom-

mendation performance of the proposed framework.

• We provide both theoretical analysis and empirical experiments to demonstrate the

superiority of the proposed methods.
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4.2 A General Framework for Neural Network-based Collabora-

tive Filtering

In this section, we propose a general framework for neural network-based Collaborative

Filtering that incorporates both interaction and content information.

4.2.1 Text Recommendation Problem

In this work, we use the text recommendation task [WB11, WWY15, BBM16, CHS17] as an

illustrative application for the proposed framework. However, the proposed framework can

be applied to more scenarios such as music and video recommendations.

We use xu and xv to denote features of user u and item v, respectively. In text recom-

mendation setting, we set xu to one-hot vector indicating u’s user id (i.e. a binary vector

with only one at the u-th position)1, and xv as the text sequence, i.e. xv = (w1, w2, · · · , wt).

A response matrix R̃ is used to denote the historical interactions between users and articles,

where r̃uv indicates interaction between a user u and an article v, such as “click-or-not” and

“like-or-not”. Furthermore, we consider R̃ as implicit feedback in this work, which means

only positive interactions are provided, and non-interactions are treated as negative feedback

implicitly.

Given user/item features {xu}, {xv} and their historical interaction R̃, the goal is to learn

a model which can rank new articles for an existing user u based on this user’s interests and

an article’s text content.

4.2.2 Functional Embedding

In most of existing matrix factorization techniques [Kor08, KBV09, SM11], each user/item

ID is associated with a latent vector u or v (i.e., embedding), which can be considered

as a simple linear transformation from the one-hot vector represented by their IDs, i.e.

1Other user profile features can be included, if available.
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Figure 4.1: The functional embedding framework.

uu = f(xu) = WTxu (W is the embedding/weight matrix). Although simple, this direct

association of user/item ID with representation make it less flexible and unable to incorporate

features such as text and image.

In order to effectively incorporate user and item features such as content information, it

has been proposed to replace embedding vectors u or v with functions such as decision trees

[ZYZ11] and some specific neural networks [BBM16, CHS17]. Generalizing the existing work,

we propose to replace the original embedding vectors u and v with general differentiable

functions f(·) ∈ Rd and g(·) ∈ Rd that take user/item features xu,xv as their inputs.

Since the user/item embeddings are the output vectors of functions, we call this approach

Functional Embedding. After embeddings are computed, a score function r(u, v) can be

defined based on these embeddings for a user/item pair (u, v), such as vector dot product

r(u, v) = f(xu)
Tg(xv) (used in this work), or a general neural network. The model framework

is shown in Figure 4.1. It is easy to see that our framework is very general, as it does not

explicitly specify the feature extraction functions, as long as the functions are differentiable.

In practice, these function can be specified with neural networks such as CNN or RNN, for

extracting high-level information from image, audio, or text sequence. When there are no

features associated, it degenerates to conventional matrix factorization where user/item IDs

are used as their features.
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Table 4.1: Examples of loss functions for recommendation.

Pointwise loss

SG-loss [MSC13]: -
∑

(u,v)∈D

(
log σ(fTu gv) + λEv′∼Pn log σ(−fTu gv′)

)
MSE-loss [ODS13]:

∑
(u,v)∈D

(
(r̃+
uv − fTu gv)

2 + λEv′∼Pn(r̃−uv′ − fTu gv′)
2

)
Pairwise loss

Log-loss [RFG09]: -
∑

(u,v)∈D Ev′∼Pn log σ

(
γ(fTu gv − fTu gv′)

)
Hinge-loss [WKS08]:

∑
(u,v)∈D Ev′∼Pn max

(
fTu gv′ − fTu gv + γ, 0

)

For simplicity, we will denote the output of f(xu) and g(xv) by fu and gv, which are the

embedding vectors for user u and item v.

4.2.3 Loss Functions for Implicit Feedback

In many real-world applications, users only provide positive signals according to their pref-

erences, while negative signals are usually implicit. This is usually referred as “implicit

feedback” [PZC08, HKV08, RFG09]. In this work, we consider two types of loss func-

tions that can handle recommendation tasks with implicit feedback, namely, pointwise loss

functions and pairwise loss functions. Pointwise loss functions have been applied to such

problems in many existing work. In [ODS13, WWY15, BBM16], mean square loss (MSE)

has been applied where “negative terms” are weighted less. And skip-gram (SG) loss has

been successfully utilized to learn robust word embedding [MSC13].

These two loss functions are summarized in Table 4.1. Note that we use a weighted

expectation term over all negative samples, which can be approximated with small number

of samples. We can also abstract the pointwise loss functions into the following form:

Lpointwise = Eu∼Pd(u)

[
Ev∼Pd(v|u)c

+
uvL+(u, v|θ)

+ Ev′∼Pn(v′)c
−
uv′L

−(u, v′|θ)
] (4.1)

where Pd is (empirical) data distribution, Pn is user-defined negative data distribution, c is

user defined weights for the different user-item pairs, θ denotes the set of all parameters,
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L+(u, v|θ) denotes the loss function on a single positive pair (u, v), and L−(u, v|θ) denotes

the loss on a single negative pair. Generally speaking, given a user u, pointwise loss function

encourages her score with positive items {v}, and discourage her score with negative items

{v′}.

When it comes to ranking problem as commonly seen in implicit feedback setting, some

have argued that the pairwise loss would be advantageous [RFG09, WKS08], as pairwise loss

encourages ranking of positive items above negative items for the given user. Different from

pointwise counterparts, pairwise loss functions are defined on a triplet of (u, v, v′), where v is

a positive item and v′ is a negative item to the user u. Table 4.1 also gives two instances of

such loss functions used in existing papers [RFG09, WKS08] (with γ being the pre-defined

“margin” parameter). We can also abstract pairwise loss functions by the following form:

Lpairwise = Eu∼Pd(u)Ev∼Pd(v|u)Ev′∼Pn(v′)cuvv′L(u, v, v′|θ) (4.2)

where the notations are similarly defined as in Eq. 4.1 and L(u, v, v′|θ) denotes the loss

function on the triplet (u, v, v′).

4.2.4 Stochastic Gradient Descent Training and Computational Challenges

To train the model, we use stochastic gradient descent based algorithms [Bot10, KB14], which

are widely used for training matrix factorization and neural networks. The main flow of the

training algorithm is summarized in Algorithm 2. By adopting the functional embedding

with (deep) neural networks, we can increase the power of the model, but it also comes with

a cost. Figure 4.2 shows the training time (for CiteULike data) with different item functions

g(·), namely linear embedding taking item id as feature (equivalent to conventional MF),

CNN-based content embedding, and RNN/LSTM-based content embedding. We see orders

of magnitude increase of training time for the latter two embedding functions, which may

create barriers to adopt models under this framework.

Breaking down the computation cost of the framework, there are three major parts

2Draw a mini-batch of user-item triplets (u, v, v′) if a pairwise loss function is adopted.
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Algorithm 2 Standard model training procedure

while not converged do

// mini-batch sampling

draw a mini-batch of user-item tuples (u, v)2

// forward pass

compute f(xu), g(xv) and their interaction fTu gv

compute the loss function L

// backward pass

compute gradients and apply SGD updates

end while

of computational cost. The first part is the user based computation (denoted by tf time

units per user), which includes forward computation of user function f(xu), and backward

computation of the function output w.r.t. its parameters. The second part is the item

based computation (denoted by tg time units per item), which similarly includes forward

computation of item function g(xv), as well as the back computation. The third part is

the computation for interaction function (denoted by ti time units per interaction). The

total computational cost for a mini-batch is then tf × # of users + tg × # of items + ti ×

# of interactions, with some other minor operations which we assume ignorable. In the text

recommendation application, user IDs are used as user features (which can be seen as linear

layer on top of the one-hot inputs), (deep) neural networks are used for text sequences,

vector dot product is used as interaction function, thus the dominant computational cost is

tg (orders of magnitude larger than tf and ti). In other words, we assume tg � tf , ti in this

work.

4.3 Mini-Batch Sampling Strategies For Efficient Model Training

In this section, we propose and discuss different sampling strategies that can improve the

efficiency of the model training.
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Figure 4.2: Model training time per epoch with different types of item functions (in log-scale).

4.3.1 Computational Cost in a Graph View

Before the discussion of different sampling strategies, we motivate our readers by first making

a connection between the loss functions and the bipartite graph of user-item interactions. In

the loss functions laid out before, we observed that each loss function term in Eq. 4.1, namely,

L(u, v), involves a pair of user and item, which corresponds to a link in their interaction

graph. And two types of links corresponding to two types of loss terms in the loss functions,

i.e., positive links/terms and negative links/terms. Similar analysis holds for pairwise loss in

Eq. 4.2, though there are slight differences as each single loss function corresponds to a pair

of links with opposite signs on the graph. We can also establish a correspondence between

user/item functions and nodes in the graph, i.e., f(u) to user node u and g(v) to item node

v. The connection is illustrated in Figure 4.3. Since the loss functions are defined over the

links, we name them “graph-based” loss functions to emphasize the connection.

The key observation for graph-based loss functions is that: the loss functions are defined

over links, but the major computational burden are located at nodes (due to the use of costly

g(·) function). Since each node is associated with multiple links, which are corresponding

to multiple loss function terms, the computational costs of loss functions over links are

coupled (as they may share the same nodes) when using mini-batch based SGD. Hence,

varied sampling strategies yield different computational costs. For example, when we put

links connected to the same node together in a mini-batch, the computational cost can
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Figure 4.3: The bipartite interaction graph for pointwise loss functions, where loss functions

are defined over links. The pairwise loss functions are defined over pairs of links.

(a) Negative (b) Stratified (c) Negative Sharing (d) Stratified with N.S.

Figure 4.4: Illustration of four different sampling strategies. 4.4b-4.4d are the proposed

sampling strategies. Red lines denote positive links/interactions, and black lines denote

negative links/interactions.

be lowered as there are fewer g(·) to compute3. This is in great contrast to conventional

optimization problems, where each loss function term dose not couple with others in terms

of computation cost.

3This holds for both forward and backward computation. For the latter, the gradient from different links
can be aggregated before back-propagating to g(·).
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4.3.2 Existing Mini-Batch Sampling Strategies

In standard SGD sampler, (positive) data samples are drawn uniformly at random for gra-

dient computation. Due to the appearance of negative samples, we draw negative samples

from some predefined probability distribution, i.e. (u′, v′) ∼ Pn(u′, v′). We call this approach

“IID Sampling”, since each positive link is dependently and identical distributed, and the

same holds for negative links (with a different distribution).

Many existing algorithms with graph-based loss functions [MSC13, TQW15b, BBM16]

adopt the “Negative Sampling” strategy, in which k negative samples are drawn whenever

a positive example is drawn. The negative samples are sampled based on the positive ones

by replacing the items in the positive samples. This is illustrated in Algorithm 3 and Figure

4.4a.

Algorithm 3 Negative Sampling [MCC13, TQW15b, BBM16]

Require: number of positive links in a mini-batch b, number of negative links per positive

one: k

draw b positive links uniformly at random

for each of b positive links do

draw k negative links by replacing true item v with v′ ∝ Pn(v′)

end for

The IID Sampling strategy dose not take into account the property of graph-based loss

functions, since samples are completely independent of each other. Hence, the computational

cost in a single mini-batch cannot be amortized across different samples, leading to very

extensive computations with (deep) neural networks. The Negative Sampling does not really

help, since the item function computation cost tg is the dominant one. To be more specific,

consider a mini-batch with b(1 + k) links sampled by IID Sampling or Negative Sampling,

we have to conduct item based g(·) computation b(1 + k) times, since items in a mini-batch

are likely to be non-overlapping with sufficient large item sets.
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Algorithm 4 Stratified Sampling (by Items)

Require: number of positive links in a mini-batch: b, number of positive links per stratum:

s, number of negative links per positive one: k

repeat

draw an item v ∝ Pd(v)

draw s positive users {u} of v uniformly at random

draw k × s negative users {u′} ∝ Pd(u
′)

until a mini-batch of b positive links are sampled

4.3.3 The Proposed Sampling Strategies

4.3.3.1 Stratified Sampling (by Items)

Motivated by the connection between the loss functions and the bipartite interaction graph

as shown in Figure 4.3, we propose to sample links that share nodes, in particular those

with high computational cost (i.e. tg for item function g(·) in our case). By doing so, the

computational cost within a mini-batch can be amortized, since fewer costly functions are

computed (in both forward and backward propagations).

In order to achieve this, we (conceptually) partition the links, which correspond to loss

function terms, into strata. A stratum in the strata is a set of links on the bipartite graph

sharing the same source or destination node. Instead of drawing links directly for training,

we will first draw stratum and then draw both positive and negative links. Since we want

each stratum to share the same item, we can directly draw an item and then sample its links.

The details are given in Algorithm 4 and illustrated in Figure 4.4b.

Compared to Negative Sampling in Algorithm 3, there are several differences: (1) Strati-

fied Sampling can be based on either item or user, but in the negative sampling only negative

items are drawn; and (2) each node in stratified sampling can be associated with more than

1 positive link (i.e., s > 1, which can help improve the speedup as shown below), while in

negative sampling each node is only associated with one positive link.

Now we consider its speedup for a mini-batch including b positive links/interactions and
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bk negative ones, which contains b(1 + k) users and b/s items. The Stratified Sampling (by

Items) only requires b/s computations of g(·) functions, while the Negative Sampling requires

b(1 + k) computations. Assuming tg � tf , ti, i.e. the computation cost is dominated by the

item function g(·), the Stratified Sampling (by Items) can provide s(1 + k) times speedup

in a mini-batch. With s = 4, k = 10 as used in some of our experiments, it yields to ×40

speedup optimally. However, it is worth pointing out that item-based Stratified Sampling

cannot be applied to pairwise loss functions, which compare preferences over items based on

a given user.

4.3.3.2 Negative Sharing

The idea of Negative Sharing is inspired from a different aspect of the connection between

the loss functions and the bipartite interaction graph. Since ti � tg, i.e. the computational

cost of interaction function (dot product) is ignorable compared to that of item function,

when a mini-batch of users and items are sampled, increasing the number of interactions

among them may not result in a significant increase of computational cost. This can be

achieved by creating a complete bipartite graph for a mini-batch by adding negative links

between all non-interaction pairs between users and items. Using this strategy, we can draw

NO negative links at all!

More specifically, consider the IID Sampling, when b positive links are sampled, there

will be b users and b items involved (assuming the sizes of user set and item set are much

larger than b). Note that, there are b(b − 1) non-interactions in the mini-batch, which are

not considered in IID Sampling or Negative Sampling, instead they draw additional negative

samples. Since the main computational cost of training is on the node computation and the

node set is fixed given the batch of b positive links, we can share the nodes for negative

links without increasing much of computational burdens. Based on this idea, Algorithm 5

summarizes an extremely simple sampling procedure, and it is illustrated in Figure 4.4c.

Since Negative Sharing avoids sampling k negative links, it only contains b items while in

Negative Sampling contains b(1+k) items. So it can provide (1+k) times speedup compared
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Algorithm 5 Negative Sharing

Require: number of positive links in a mini-batch: b

draw b positive user-item pairs {(u, v)} uniformly at random

construct negative pairs by connecting non-linked users and items in the batch

to Negative Sampling (assuming tg � tf , ti, and total interaction cost is still insignificant).

Given the batch size b is usually larger than k (e.g., b = 512, k = 20 in our experiments),

much more negative links (e.g. 512 × 511) will also be considered, this is helpful for both

faster convergence and better performance, which is shown in our experiments. However, as

the number of negative samples increases, the performance and the convergence will not be

improved linearly. diminishing return is expected.

4.3.3.3 Stratified Sampling with Negative Sharing

The two strategies above can both reduce the computational cost by smarter sampling of

the mini-batch. However, they both have weakness: Stratified Sampling cannot deal with

pairwise loss and it is still dependent on the number of negative examples k, and Negative

Sharing introduces a lot of negative samples which may be unnecessary due to diminishing

return.

The good news is, the two sampling strategies are proposed from different perspectives,

and combining them together can preserve their advantages while avoid their weakness.

This leads to the Stratified Sampling with Negative Sharing, which can be applied to both

pointwise and pairwise loss functions, and it can have flexible ratio between positive and

negative samples (i.e. more positive links given the same negative links compared to Negative

Sharing). To do so, basically we sample positive links according to Stratified Sampling, and

then sample/create negative links by treating non-interactions as negative links. The details

are given in Algorithm 6 and illustrated in Figure 4.4d.

Computationally, Stratified Sampling with Negative Sharing only involve b/s item nodes

in a mini-batch, so it can provide the same s(1+k) times speedup over Negative Sampling as

Stratified Sampling (by Items) does, but it will utilize much more negative links compared
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Algorithm 6 Stratified Sampling with Negative Sharing

Require: number of positive links in a mini-batch: b, number of positive links per stratum:

s

repeat

draw an item v ∝ Pd(v)

draw s positive users of item v uniformly at random

until a mini-batch of b/s items are sampled

construct negative pairs by connecting non-linked users and items in the batch

to Negative Sampling. For example, in our experiments with b = 512, s = 4, we have 127

negative links per positive one, much larger than k = 10 in Negative Sampling, and only

requires 1/4 times of g(·) computations compared to Negative Sharing.

Table 4.2: Computational cost analysis for a batch of b positive links. We use vec to denote

vector multiplication, and mat to denote matrix multiplication. Since tg � tf , ti in practice,

the theoretical speedup per iteration can be approximated by comparing the number of tg

computation, which is colored red below. The number of iterations to reach a referenced loss

is related to the number of negative links in each mini-batch.

Sampling # pos. links # neg. links # tf # tg # ti pointwise pairwise

IID [Bot10] b bk b(1 + k) b(1 + k) b(1 + k) vec X ×

Negative [MCC13, TQW15b, BBM16] b bk b b(1 + k) b(1 + k) vec X X

Stratified (by Items) b bk b(1 + k) b
s

b(1 + k) vec X ×

Negative Sharing b b(b− 1) b b b× b mat X X

Stratified with N.S. b
b(b−1)

s
b b

s
b× b

s
mat X X

4.3.3.4 Implementation Details

When the negative/noise distribution Pn is not unigram4, we need to adjust the loss function

in order to make sure the stochastic gradient is unbiased. For pointwise loss, each of the

negative term is adjusted by multiplying a weight of Pn(v′)
Pd(v′)

; for pairwise loss, each term based

on a triplet of (u, v, v′) is adjusted by multiplying a weight of Pn(v′)
Pd(v′)

where v′ is the sampled

negative item.

4Unigram means proportional to item frequency, such as node degree in user-item interaction graph.
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Instead of sampling, we prefer to use shuffling as much as we can, which produces un-

biased samples while yielding zero variance. This can be a useful trick for achieving better

performance when the number of drawn samples are not large enough for each loss terms.

For IID and Negative Sampling, this can be easily done for positive links by simply shuffling

them. As for the Stratified Sampling (w./wo. Negative Sharing), instead of shuffling the

positive links directly, we shuffle the randomly formed strata (where each stratum contains

roughly a single item)5. All other necessary sampling operations required are sampling from

discrete distributions, which can be done in O(1) with Alias method.

In Negative Sharing (w./wo. Stratified Sampling), We can compute the user-item in-

teractions with more efficient operator, i.e. replacing the vector dot product between each

pair of (f ,g) with matrix multiplication between (F,G), where F = [fu1 , · · · , fun ], G =

[gv1 , · · · ,gvm ]. Since matrix multiplication is higher in BLAS level than vector multiplica-

tion [JSL16], even we increase the number of interactions, with medium matrix size (e.g.

1000× 1000) it does not affect the computational cost much in practice.

4.3.4 Computational Cost and Convergence Analysis

Here we provide a summary for the computational cost for different sampling strategies

discussed above, and also analyze their convergences. Two aspects that can lead to speedup

are analyzed: (1) the computational cost for a mini-batch, i.e. per iteration, and (2) the

number of iterations required to reach some referenced loss.

4.3.4.1 Computational Cost

To fairly compare different sampling strategies, we fix the same number of positive links in

each of the mini-batch, which correspond to the positive terms in the loss function. Table 4.2

shows the computational cost of different sampling strategies for a given mini-batch. Since

tg � tf , ti in practice, we approximate the theoretical speedup per iteration by comparing

5This can be done by first shuffling users associated with each item, and then concatenating all links
according to items in random order, random strata is then formed by segmenting the list.
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the number of tg computation. We can see that the proposed sampling strategies can provide

(1+k), by Negative Sharing, or s(1+k), by Stratified Sampling (w./w.o. Negative Sharing),

times speedup for each iteration compared to IID Sampling or Negative Sampling. As for

the number of iterations to reach a reference loss, it is related to number of negative samples

utilized, which is analyzed below.

4.3.4.2 Convergence Analysis

We want to make sure the SGD training under the proposed sampling strategies can converge

correctly. The necessary condition for this to hold is the stochastic gradient estimator has

to be unbiased, which leads us to the following lemma.

Lemma 1. (unbiased stochastic gradient) Under sampling Algorithm 3, 4, 5, and 6, we have

EB[∇LB(θt)] = ∇L(θt). In other words, the stochastic mini-batch gradient equals to true

gradient in expectation.

This holds for both pointwise loss and pairwise loss. It is guaranteed since we draw

samples stochastically and re-weight certain samples accordingly. The detailed proof can be

found in the supplementary material.

Given this lemma, we can further analyze the convergence behavior of the proposed

sampling behaviors. Due to the highly non-linear and non-convex functions composed by

(deep) neural networks, the convergence rate is usually difficult to analyze. So we show the

SGD with the proposed sampling strategies follow a local convergence bound (similar to

[GL13, RHS16]).

Proposition 1. (local convergence) Suppose L has σ-bounded gradient; let ηt = η = c/
√
T

where c =
√

2(L(θ0)−L(θ∗)
Lσ2 , and θ∗ is the minimizer to L. Then, the following holds for the

proposed sampling strategies given in Algorithm 3, 4, 5, 6

min
0≤t≤T−1

E[‖∇L(θt)‖2] ≤
√

2(L(θ0)− L(θ∗))

T
σ

The detailed proof is also given in the supplementary material.
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Furthermore, utilizing more negative links in each mini-batch can lower the expected

stochastic gradient variance. As shown in [ZZ14, ZZ15], the reduction of variance can lead

to faster convergence. This suggests that Negative Sharing (w./wo. Stratified Sampling) has

better convergence than the Stratified Sampling (by Items).

4.4 Experiments

4.4.1 Data Sets

Two real-world text recommendation data sets are used for the experiments. The first data

set CiteULike, collected from CiteULike.org, is provided in [WB11]. The CiteULike data

set contains users bookmarking papers, where each paper is associated with a title and an

abstract. The second data set is a random subset of Yahoo! News data set 6, which contains

users clicking on news presented at Yahoo!. There are 5,551 users and 16,980 items, and

total of 204,986 positive interactions in CiteULike data. As for Yahoo! News data, there are

10,000 users, 58,579 items and 515,503 interactions.

Following [CHS17], we select a portion (20%) of items to form the pool of test items. All

user interactions with those test items are held-out during training, only the remaining user-

item interactions are used as training data, which simulates the scenarios for recommending

newly-emerged text articles.

4.4.2 Experimental Settings

The main purpose of experiments is to compare the efficiency and effectiveness of our pro-

posed sampling strategies against existing ones. So we mainly compare Stratified Sampling,

Negative Sharing, and Stratified Sampling with Negative Sharing, against IID sampling

and Negative Sampling. It is worth noting that several existing state-of-the-art models

[ODS13, BBM16, CHS17] are special cases of our framework (e.g. using MSE-loss/Log-loss

with CNN or RNN), so they are compared to other loss functions under our framework.

6https://webscope.sandbox.yahoo.com/catalog.php?datatype=r&did=75
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Evaluation Metrics For recommendation performance, we follow [WWY15, BBM16] and

use recall@M. As pointed out in [WWY15], the precision is not a suitable performance

measure since non interactions may be due to (1) the user is not interested in the item, or

(2) the user does not pay attention to its existence. More specifically, for each user, we rank

candidate test items based on the predicted scores, and then compute recall@M based on

the list. Finally the recall@M is averaged over all users.

As for the computational cost, we mainly measure it in three dimensions: the training

time for each iteration (or epoch equivalently, since batch size is fixed for all methods), the

number of iterations needed to reach a referenced loss, and the total amount of computation

time needed to reach the same loss. In our experiments, we use the smallest loss obtained

by IID sampling in the maximum 30 epochs as referenced loss. Noted that all time measure

mentioned here is in Wall Time.

Parameter Settings The key parameters are tuned with validation set, while others are

simply set to reasonable values. We adopt Adam [KB14] as the stochastic optimizer. We use

the same batch size b = 512 for all sampling strategies, we use the number of positive link

per sampled stratum s = 4, learning rate is set to 0.001 for MSE-loss, and 0.01 for others. γ

is set to 0.1 for Hinge-loss, and 10 for others. λ is set to 8 for MSE-loss, and 128 for others.

We set number of negative examples k = 10 for convolutional neural networks, and k = 5 for

RNN/LSTM due to the GPU memory limit. All experiments are run with Titan X GPUs.

We use unigram noise/negative distribution.

For CNN, we adopt the structure similar in [Kim14], and use 50 filters with filter size

of 3. Regularization is added using both weight decay on user embedding and dropout on

item embedding. For RNN, we use LSTM [HS97] with 50 hidden units. For both models,

the dimensions of user and word embedding are set to 50. Early stop is utilized, and the

experiments are run to maximum 30 epochs.
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Table 4.3: Comparisons of speedup for different sampling strategies against IID Sampling:

per iteration, # of iteration, and total speedup.

CiteULike News

Model Sampling Per it. # of it. Total Per it. # of it. Total

CNN

Negative 1.02 1.00 1.02 1.03 1.03 1.06

Stratified 8.83 0.97 8.56 6.40 0.97 6.20

N.S. 8.42 2.31 19.50 6.54 2.21 14.45

Strat. w. N.S. 15.53 1.87 29.12 11.49 2.17 24.98

LSTM

Negative 0.99 0.96 0.95 1.0 1.25 1.25

Stratified 3.1 0.77 2.38 3.12 1.03 3.22

N.S. 2.87 2.45 7.03 2.78 4.14 11.5

Strat. w. N.S. 3.4 2.22 7.57 3.13 3.32 10.41

4.4.3 Speedup Under Different Sampling Strategies

Table 4.3 breaks down the speedup into (1) speedup for training on a given mini-batch, (2)

number of iterations (to reach referenced cost) speedup, and (3) the total speedup, which

is product of the first two. Different strategies are compared against IID Sampling. It is

shown that Negative Sampling has similar computational cost as IID Sampling, which fits our

projection. All three proposed sampling strategies can significantly reduce the computation

cost within a mini-batch. Moreover, the Negative Sharing and Stratified Sampling with

Negative Sharing can further improve the convergence w.r.t. the number of iterations, which

demonstrates the benefit of using larger number of negative examples.

Figure 4.5 and 4.6 shows the convergence curves of both loss and test performance for

different sampling strategies (with CNN + SG-loss). In both figures, we measure progress

every epoch, which is equivalent to a fixed number of iterations since all methods have the

same batch size b. In both figures, we can observe mainly two types of convergences behavior.
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Figure 4.5: Training loss curves (all methods have the same number of b positive samples in

a mini-batch)

Firstly, in terms of number of iterations, Negative Sharing (w./wo. Stratified Sampling)

converge fastest, which attributes to the number of negative samples used. Secondly, in

terms of wall time, Negative Sharing (w./wo. Stratified Sampling) and Stratified Sampling

(by Items) are all significantly faster than baseline sampling strategies, i.e. IID Sampling

and Neagtive Sampling. It is also interesting to see that that overfitting occurs earlier as

convergence speeds up, which does no harm as early stopping can be used.

For Stratified Sampling (w./wo. negative sharing), the number of positive links per

stratum s can also play a role to improve speedup as we analyzed before. As shown in Figure

4.7, the convergence time as well as recommendation performance can both be improved with

a reasonable s, such as 4 or 8 in our case.
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Figure 4.6: Test performance/recall curves (all methods have the same number of b positive

samples in a mini-batch).

4.4.4 Recommendation Performance Under Different Sampling Strategies

It is shown in above experiments that the proposed sampling strategies are significantly

faster than the baselines. But we would also like to further access the recommendation

performance by adopting the proposed strategies.

Table 4.4 compares the proposed sampling strategies with CNN/RNN models and four

loss functions (both pointwise and pairwise). We can see that IID Sampling, Negative Sam-

pling and Stratified Sampling (by Items) have similar recommendation performances, which

is expected since they all utilize same amount of negative links. For Negative Sharing and

Stratified Sampling with Negative Sharing, since there are much more negative samples

utilized, their performances are significantly better. We also observe that the current rec-

ommendation models based on MSE-loss [ODS13, BBM16] can be improved by others such
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Figure 4.7: The number of positive links per stratum s VS loss and performance.

as SG-loss and pairwise loss functions [CHS17].

To further investigate the superior performance brought by Negative Sharing. We study

the number of negative examples k and the convergence performance. Figure 4.8 shows the

test performance against various k. As shown in the figure, we observe a clear diminishing

return in the improvement of performance. However, the performance seems still increasing

even we use 20 negative examples, which explains why our proposed method with negative

sharing can result in better performance.

4.5 Related Work

Collaborative filtering [KBV09] has been one of the most effective methods in recommender

systems, and methods like matrix factorization [Kor08, SM11] are widely adopted. While

many papers focus on the explicit feedback setting such as rating prediction, implicit feed-
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Table 4.4: Recall@50 for different sampling strategies under different models and losses.

CiteULike News

Model Sampling SG-loss MSE-loss Hinge-loss Log-loss SG-loss MSE-loss Hinge-loss Log-loss

CNN

IID 0.4746 0.4437 - - 0.1091 0.0929 - -

Negative 0.4725 0.4408 0.4729 0.4796 0.1083 0.0956 0.1013 0.1009

Stratified 0.4761 0.4394 - - 0.1090 0.0913 - -

Negative Sharing 0.4866 0.4423 0.4794 0.4769 0.1131 0.0968 0.0909 0.0932

Stratified with N.S. 0.4890 0.4535 0.4790 0.4884 0.1196 0.1043 0.1059 0.1100

LSTM

IID 0.4479 0.4718 - - 0.0971 0.0998 - -

Negative 0.4371 0.4668 0.4321 0.4540 0.0977 0.0977 0.0718 0.0711

Stratified 0.4344 0.4685 - - 0.0966 0.0996 - -

Negative Sharing 0.4629 0.4839 0.4605 0.4674 0.1121 0.0982 0.0806 0.0862

Stratified with N.S. 0.4742 0.4877 0.4703 0.4730 0.1051 0.1098 0.1017 0.1002
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Figure 4.8: The number of negatives VS performances.

back is found in many real-world scenarios and studied by many papers as well [PZC08,

HKV08, RFG09]. Although collaborative filtering techniques are powerful, they suffer from

the so-called “cold-start” problem since side/content information is not well leveraged.

To address the issue and improve performance, hybrid methods are proposed to incorpo-

rate side information [SG08, Ren10, ZYZ11, CZL12, CS17], as well as content information

[WB11, GCB14, WWY15, CHS17].

Deep Neural Networks (DNNs) have been showing extraordinary abilities to extract high-

level features from raw data, such as video, audio, and text [CWB11, Kim14, ZZL15]. Com-

pared to traditional feature detectors, such as SIFT and n-grams, DNNs and other embedding
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methods [TQW15b, CTS16b, CS17] can automatically extract better features that produce

higher performance in various tasks. To leverage the extraordinary feature extraction or

content understanding abilities of DNNs for recommender systems, recent efforts are made

in combining collaborative filtering and neural networks [ODS13, WWY15, BBM16, CHS17].

[WWY15] adopts autoencoder for extracting item-side text information for article recom-

mendation, [BBM16] adopts RNN/GRU to better understand the text content. [CHS17]

proposes to use CNN and pairwise loss functions, and also incorporate unsupervised text

embedding. The general functional embedding framework in this work subsumes existing

models [ODS13, BBM16, CHS17].

Stochastic Gradient Descent [Bot10] and its variants [KB14] have been widely adopted

in training machine learning models, including neural networks. Samples are drawn uni-

formly at random (IID) so that the stochastic gradient vector equals to the true gradient

in expectation. In the setting where negative examples are overwhelming, such as in word

embedding (e.g., Word2Vec [MSC13]) and network embedding (e.g., LINE [TQW15b]) tasks,

negative sampling is utilized. Recent efforts have been made to improve SGD convergence

by (1) reducing the variance of stochastic gradient estimator, or (2) distributing the training

over multiple workers. Several sampling techniques, such as stratified sampling [ZZ14] and

importance sampling [ZZ15] are proposed to achieve the variance reduction. Different from

their work, we improve sampling strategies in SGD by reducing the computational cost of a

mini-batch while preserving, or even increasing, the number of data points in the mini-batch.

Sampling techniques are also studied in [GNH11, ZCJ13] to distribute the computation of

matrix factorization, their objectives in sampling strategy design are reducing the parame-

ter overlapping and cache miss. We also find that the idea of sharing negative examples is

exploited to speed up word embedding training in [JSL16].

4.6 Discussions

While it is discussed under content-based collaborative filtering problem in this work, the

study of sampling strategies for “graph-based” loss functions have further implications. The
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IID sampling strategy is simple and popular for SGD-based training, since the loss function

terms usually do not share the common computations. So no matter how a mini-batch is

formed, it almost bears the same amount of computation. This assumption is shattered by

models that are defined under graph structure, with applications in social and knowledge

graph mining [BUG13], image caption ranking [LP16], and so on. For those scenarios, we

believe better sampling strategies can result in much faster training than that with IID

sampling.

We would also like to point out limitations of our work. The first one is the setting of

implicit feedback. When the problem is posed under explicit feedback, Negative Sharing can

be less effective since the constructed negative samples may not overlap with the explicit

negative ones. The second one is the assumption of efficient computation for interaction

functions. When we use neural networks as interaction functions, we may need to consider

constructing negative samples more wisely for Negative Sharing as it will also come with a

noticeable cost.

4.7 Conclusions and Future Work

In this chapter, we propose a hybrid recommendation framework, combining conventional

collaborative filtering with (deep) neural networks. The framework generalizes several ex-

isting state-of-the-art recommendation models, and embody potentially more powerful ones.

To overcome the high computational cost brought by combining “cheap” CF with “expen-

sive” NN, we first establish the connection between the loss functions and the user-item

interaction bipartite graph, and then point out the computational costs can vary with dif-

ferent sampling strategies. Based on this insight, we propose three novel sampling strategies

that can significantly improve the training efficiency of the proposed framework, as well as

the recommendation performance.

In the future, there are some promising directions. Firstly, based on the efficient sampling

techniques of this chapter, we can more efficiently study different neural networks and aux-

iliary information for building hybrid recommendation models. Secondly, we can also study
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the effects of negative sampling distributions and its affect on the design of more efficient

sampling strategies. Lastly but not least, it would also be interesting to apply our sampling

strategies in a distributed training environments where multi-GPUs and multi-machines are

considered.
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CHAPTER 5

Learning KD Codes for Compact Embedding

Representations

In this chapter, we introduces K-way D-dimensional discrete codes for compressing the widely

used embedding table in an end-to-end fashion.

Conventional embedding methods directly associate each symbol with a continuous em-

bedding vector, which is equivalent to applying a linear transformation based on a “one-hot”

encoding of the discrete symbols. Despite its simplicity, such approach yields the number of

parameters that grows linearly with the vocabulary size and can lead to overfitting. In this

work, we propose a much more compact K-way D-dimensional discrete encoding scheme to

replace the “one-hot” encoding. In the proposed “KD encoding”, each symbol is represented

by a D-dimensional code with a cardinality of K, and the final symbol embedding vector

is generated by composing the code embedding vectors. To end-to-end learn semantically

meaningful codes, we derive a relaxed discrete optimization approach based on stochastic

gradient descent, which can be generally applied to any differentiable computational graph

with an embedding layer. In our experiments with various applications from natural lan-

guage processing to graph convolutional networks, the total size of the embedding layer can

be reduced up to 98% while achieving similar or better performance.

5.1 Overview

Embedding methods, such as word embedding [MSC13, PSM14], have become pillars in many

applications when learning from discrete structures. The examples include language model-

ing [KJS16], machine translation [SHB15], text classification [ZZL15], knowledge graph and
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social network modeling [BUG13, CS17], and many others [KW16, CTS16b]. The objective

of the embedding module in neural networks is to represent a discrete symbol, such as a word

or an entity, with some continuous embedding vector v ∈ Rd. This seems to be a trivial

problem, at the first glance, in which we can directly associate each symbol with a learnable

embedding vector, as is done in existing work. To retrieve the embedding vector of a specific

symbol, an embedding table lookup operation can be performed. This is equivalent to the

following: first we encode each symbol with an “one-hot” encoding vector b ∈ [0, 1]N where∑
j bj = 1 (N is the total number of symbols), and then generate the embedding vector v

by simply multiplying the “one-hot” vector b with the embedding matrix W ∈ RN×d, i.e.

v = W Tb.

Despite the simplicity of this “one-hot” encoding based embedding approach, it has sev-

eral issues. The major issue is that the number of parameters grows linearly with the number

of symbols. This becomes very challenging when we have millions or billions of entities in the

database, or when there are lots of symbols with only a few observations (e.g. Zipf’s law).

There also exists redundancy in the O(N) parameterization, considering that many symbols

are actually similar to each other. This over-parameterization can further lead to overfitting;

and it also requires a lot of memory, which prevents the model from being deployed to mobile

devices. Another issue is purely from the code space utilization perspective, where we find

“one-hot” encoding is extremely inefficient. Its code space utilization rate is almost zero

as N/2N → 0 when N → ∞, while N dimensional discrete coding system can effectively

represent 2N symbols.

To address these issues, we propose a novel and much more compact coding scheme that

replaces the “one-hot” encoding. In the proposed approach, we use a K-way D-dimensional

code to represent each symbol, where each code has D dimensions, and each dimension has a

cardinality of K. For example, a concept of cat may be encoded as (5-1-3-7), and a concept

of dog may be encoded as (5-1-3-9). The code allocation for each symbol is based on data

and specific tasks such that the codes can capture semantics of symbols, and similar codes

should reflect similar meanings. While we mainly focus on the encoding of symbols in this

work, the learned discrete codes can have larger applications, such as information retrieval.
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We dub the proposed encoding scheme as “KD encoding”.

The KD code system is much more compact than its “one-hot” counterpart. To represent

a set of symbols of size N , the “KD encoding” only requires KD ≥ N . Increasing K or D

by a small amount, we can easily achieve KD � N , in which case it will still be much more

compact and keep D = O( logN
logK

). Consider K = 2, the utilization rate of “KD encoding” is

N/2D, which is 2N−D times more compact than its “one-hot” counterpart1.

The compactness of the code can be translated into compactness of the parametrization.

Dropping the giant embedding matrix W ∈ RN×d that stores symbol embeddings and lever-

aging semantic similarities between symbols, the symbol embedding vector is generated by

composing much fewer code embedding vectors. This can be achieved as follows: first we

embed each “KD code” into a sequence of code embedding vectors in RD×d′ , and then apply

embedding transformation function f(·) to generate the final symbol embedding. By adopt-

ing the new approach, we can reduce the number of embedding parameters from O(Nd) to

O( K
logK

d′ logN + C), where d′ is the code embedding size, and C is the number of neural

network parameters.

Due to the the discreteness of the code allocation problem, it is very challenging to learn

the meaningful discrete codes that can exploit the similarities among symbols according to

a target task in an end-to-end fashion. A compromise is to learn the code given a trained

embedding matrix, and then fix the code during the stage of task-specific training. While

this has been shown working relatively well in previous work [CMS17, SN17], it produces

a sub-optimal solution, and requires a multi-stage procedure that is hard to tune. In this

work, we derive a relaxed discrete optimization approach based on stochastic gradient descent

(SGD), and propose two guided methods to assist the end-to-end code learning. To validate

our idea, we conduct experiments on three different tasks from natural language processing

to graph convolutional networks for semi-supervised node classification. We achieve 95% of

embedding model size reduction in the language modeling task and 98% in text classification

with similar or better performance.

1Assuming we have vocabulary size N = 10, 000 and the dimensionality D = 100, it is 29900 times more
efficient.
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5.2 The K-way D-dimensional Discrete Encoding Framework

In this section, we introduce the “KD encoding” framework in details.

5.2.1 Problem Formulation

Symbols are represented with a vocabulary V = {s1, s2, · · · , sN} where si corresponds to

the i-th symbol. Here we aim to learn a transformation function that maps a symbol si to

a continuous embedding vector vi, i.e. T : V → Rd. In the case of conventional embedding

method, T is a linear transformation of “one-hot” code of a symbol.

To measure the fitness of T , we consider a differentiable computational graph G that

takes discrete symbols as input x and outputs the predictions y, such as text classification

model based on word embeddings. We also assume a task-specific loss function L(x,y) is

given. The task-oriented learning of T is to learn T such that L(x,y) is minimized, i.e.

T = arg minT L(x,y|T ,Θ) where Θ are task-specific parameters.

5.2.2 The “KD Encoding” Framework

In the proposed framework, each symbol is associated with a K-way D-dimensional discrete

code. We denote the discrete code for the i-th symbol as ci = (c1
i , c

2
i , · · · , cDi ) ∈ BD, where

B is the set of code bits with cardinality K. To connect symbols with discrete codes, a code

allocation function φ(·) : V → BD is used. The learning of this mapping function will be

introduced later, and once fixed it can be stored as a hash table for fast lookup. Since a

discrete code ci has D dimensions, we do not directly use embedding lookup to find the

symbol embedding as used in “one-hot” encoding. Instead, we want to learn an adaptive

code composition function that takes a discrete code and generates a continuous embedding

vector, i.e. f : BD → Rd. The details of f will be introduced in the next subsection. In sum,

the “KD encoding” framework we have T = f ◦ φ with a “KD code” allocation function φ

and a composition function f as illustrated in Figure 5.1(a) and 5.1(b).

In order to uniquely identify every symbol, we only need to set KD = N , as we can
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Figure 5.1: (a) The conventional symbol embedding based on “one-hot” encoding. (b) The

proposed KD encoding scheme. (c) and (d) are examples of embedding transformation func-

tions by DNN and RNN used in the “KD encoding” when generating the symbol embedding

from its code.

assign a unique code to each symbol in this case. When this holds, the code space is fully

utilized, and none of the symbol can change its code without affecting other symbols. We

call this type of code system compact code. The optimization problem for compact code

can be very difficult, and usually requires approximated combinatorial algorithms such as

graph matching [LQY16]. Realizing the difficulties in optimization, we propose to adopt the

redundant code system, where KD � N , namely, there are a lot of “empty” codes with no

symbol associated. Changing the code of one symbol may not affect other symbols under

this scheme, since the random collision probability can be very small 2, which makes it easier

to optimize. The redundant code can be achieved by slightly increasing the size of K or D

thanks to the exponential nature of their relations to N . Therefore, in both compact code

or redundant code, it only requires D = O( logN
logK

).

5.2.3 Discrete Code Embedding

As mentioned above, given learned φ(·) and the i-th symbol si, we can retrieve its code via

a code lookup, i.e. ci = φ(si). In order to generate the composite embedding vector vi, we

adopt an adaptive code composition function vi = f(ci). To do so, we first embed the code

2For example, we can set K = 100, D = 10 for a billion symbols, in a random code assignment, the
probability of the NO collision at all is 99.5%.
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ci to a sequence of code embedding vectors (W1
c1
i
,W2

c2
i
, · · · ,WD

cDi
), and then apply another

transformation v = fe(W1
c1
i
,W2

c2
i
, · · · ,WD

cDi
; θe) to generate v. Here Wj ∈ RK×d′ is the

code embedding matrix for the j-th code dimension, and fe is the embedding transformation

function that maps the code embedding vectors to the symbol embedding vector. The choice

of fe is very flexible and varies from task to task. In this work, we consider two types of

embedding transformation functions.

The first one is based on a linear transformation:

vi = H

(∑
j

Wj

cji

)T
,

where H ∈ Rd×d′ is a transformation matrix for matching the dimensions. While this is

simple and efficient, due to its linear nature, the capacity of the generated symbol embedding

may be limited when the size of K,D or the code embedding dimension d′ is small.

Another type of embedding transformation functions are nonlinear, and here we introduce

one that is based on a recurrent neural network, LSTM [HS97], in particular. That is, we

have (h1, · · · , hj) = LSTM(W1
c1 , · · · ,Wj

cj
) (see supplementary for details).

The final symbol embedding can be computed by summing over LSTM outputs at all

code dimensions (and using a linear layer to match dimension if d 6= d′), i.e. v = H(
∑

j hj)
T .

Figure 5.1(c) and 5.1(d) illustrate the above two embedding transformation functions.

5.2.4 Analysis of the Proposed “KD Encoding”

To measure the parameter and model size reduction, we first introduce two definitions as

follows.

Definition 1. (Embedding parameters) The embedding parameters are the parameters θ that

are used in code composition function f . Specifically, it includes code embedding matrices

{W}, as well as other parameters θe used in the embedding transformation function fe.

It is worth noting that we do not explicitly include the code as embedding parameters.

This is due to the fact that we do not count “one-hot” codes as parameters. Also in some
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cases the codes are not adaptively learned, such as hashed from symbols [SHW17]. However,

when we export the model to embedded devices, the storage of discrete codes does occupy

space. Hence, we introduce another concept below to take it into consideration as well.

Definition 2. (Embedding layer’s size) The embedding layer’s size is the number of bits used

to store both embedding parameters as well as the discrete codes.

Lemma 1. The number of embedding parameters used in KD encoding is O( K
logK

d′ logN +

C), where C is the number of parameters of neural nets.

The proof is given in the supplementary material.

For the analysis of the embedding layer’s size under “KD encoding”, we assume that 32-

bits floating point number is used. The total bits used by the “KD encoding” is ND log2K+

32(KDd′ +C) consisting both code size as well as the size of embedding parameters. Com-

paring to the total model size by conventional full embedding, which is 32N(1 + d), it can

still be a huge saving of model space, especially when N, d are large.

Here we provide a theoretical connection between the proposed “KD encoding” and the

SVD or low-rank factorization of the embedding matrix. We consider the scenario where the

composition function f is a linear function with no hidden layer, that is vi = (
∑

jW
j

cji
)T .

Proposition 1. A linear composition function f with no hidden layer is equivalent to a

sparse binary low-rank factorization of the embedding matrix.

The proof is also provided in the supplementary material. But the overall idea is that

the “KD code” mimics an 1-out-of-K selection within each of the D groups.

The computation overhead brought by linear composition is very small compared to

the downstream neural network computation (without hidden layer in linear composition

function, we only need to sum up D vectors). However, the expressiveness of the linear

factorization is limited by the number of bases or rank of the factorization, which is deter-

mined by K and D. And the use of non-linear composition function can largely increase

the expressiveness of the composite embedding matrix and may be an appealing alternative,

this is shown by the proposition 2 in supplementary.
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5.3 End-to-End Learning of the Discrete Code

In this section, we propose methods for learning task-specific “KD codes”.

5.3.1 Continuous Relaxation for Discrete Code Learning

As mentioned before, we want to learn the symbol-to-embedding-vector mapping function,

T , to minimize the target task loss, i.e. T = arg minT L(x,y|T ,Θ). This includes optimiz-

ing both code allocation function φ(·) and code composition function f(·). While f(·) is

differentiable w.r.t. its parameters θ, φ(·) is very challenging to learn due to the discreteness

and non-differentiability of the codes.

Specifically, we are interested in solving the following optimization problem,

min
{c},θ,Θ

∑
i

L
(
xi,yi|fe

(
W1

c1
i
,W2

c2
i
, · · · ,WD

cDi

)
,Θ

)
(5.1)

where fe is the embedding transformation function mapping code embedding to the symbol

embedding, θ = {W , θe} contains code embeddings and the composition parameters, and Θ

denotes other task-specific parameters.

We assume the above loss function is differentiable w.r.t. to the continuous parameters

including embedding parameters θ and other task-specific parameters Θ, so they can be op-

timized by following standard stochastic gradient descent and its variants [KB14]. However,

each ci is a discrete code, it cannot be directly optimized via SGD as other parameters.

In order to adopt gradient based approach to simplify the learning of discrete codes in an

end-to-end fashion, we derive a continuous relaxation of the discrete code to approximate

the gradient effectively.

We start by making the observation that each code ci can be seen as a concatenation

of D “one-hot” vectors, i.e. ci = (o1
i ,o

2
i , · · · ,oDi ), where ∀j,oji ∈ [0, 1]K and

∑
k o

jk
i = 1,

where ojki is the k-th component of oji . To make it differentiable, we relax the oi from a

“one-hot” vector to a continuous relaxed vector ôi by applying tempering Softmax :

ojki ≈ ô
jk
i =

exp(πjki /τ)∑
k′ exp(πjk

′

i /τ)
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Figure 5.2: The effects of temperature τ on output probability of Softmax and its entropy

(when K = 2). As τ decreases, the probabilistic output approximates step function when

K = 2, and generally “one-hot” vector when K > 2.

Where τ is a temperature term, as τ → 0, this approximation becomes exact (except for the

case of ties). We show this approximation effects for K = 2 with y = 1/(1 + exp(−x/τ))

in Figure 5.2a. Similar techniques have been introduced in Gumbel-Softmax trick [JGP16,

MMT16].

Since ôi is continuous (given τ is not approaching 0), instead of learning the discrete code

assignment directly, we learn ôi as an approximation to oi. To do so, we can adjust the code

logits πi using SGD and gradually decrease the temperature τ during the training. Since

the indexing operator for retrieval of code embedding vectors, i.e. Wj

cji
, is non-differentiable,

to generate the embedding vector for j-th code dimension, we instead use an affine transfor-

mation operator, i.e. (Wj)T ôji , which enables the gradient to flow backwards normally.

It is easy to see that control of temperature τ can be important. When τ is too large,

the output ôi is close to uniform, which is too far away from the desired “one-hot” vector

oi. When τ is too small, the slight differences between different logits πji and πj
′

i will

be largely magnified. Also, the gradient vanishes when the Softmax output approaches

“one-hot” vector, i.e. when it is too confident. A “right” schedule of temperature can

thus be crucial. While we can handcraft a good schedule of temperature, we also observe

that the temperature τ is closely related to the entropy of the output probabilistic vector,
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as shown in Figure 5.2b, where a same set of random logits can produce probabilities of

different entropies when τ varies. This motivates us to implicitly control the temperature via

regularizing the entropy of the model. To do so, we add the following entropy regularization

term: H = −
∑

i,j,k ô
jk
i log ôjk. A large penalty for this regularization term encourages a

small entropy for the relaxed codes, i.e. a more spiky distribution.

Up to this point, we still use the continuous relaxation ôi to approximate oi during the

training. In inference, we will only use discrete codes. The discrepancy of the continuous

and discrete codes used in training and inference is undesirable. To close the gap, we take

inspiration from Straight-Through Estimator [BLC13]. In the forward pass, instead of using

the relaxed tempering Softmax output ôi, which is likely a smooth continuous vector, we

take its arg max and turn it into a “one-hot” vector as follows, which recovers a discrete

code.

oji = one hot

(
arg max

k
ôjki

)
≈ Softmax

(
πji
τ

)
, τ → 0

We interpret the use of straight-through estimator as using different temperatures during the

forward and backward pass. In forward pass, τ → 0 is used, for which we simply apply the

arg max operator. In the backward pass (to compute the gradient), it pretends that a larger

τ was used. Compared to using the same temperature in both passes, this always outputs

“one-hot” discrete code oji , which closes the previous gap between training and inference.

The training procedure is summarized in Algorithm 7, in which the stop gradient op-

erator will prevent the gradient from back-propagating through it.

5.3.2 Code Learning with Guidances

It is not surprising the optimization problem is more challenging for learning discrete codes

than learning conventional continuous embedding vectors, due to the discreteness of the

problem (which can be NP-hard). This could lead to a suboptimal solution where discrete

codes are not as competitive. Therefore, we propose to use guidances from the continuous

embedding vectors to mitigate the problem. The basic idea is that instead of adjusting codes

according to noisy gradients from the end task as shown above, we also require the composite
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Algorithm 7 An epoch of code learning via Straight-through Estimator with Tempering

Softmax.

Parameters: code logits {πi}, code embedding matrices {Wj}, transformation parameters θe,

and other task specific parameters Θ.

for i← 1 to N do

for j ← 1 to D do

ôji = Softmax(πji /τ)

oji = one hot(arg maxk ô
jk
i )

oji = stop gradient(oji − ô
j
i ) + ôji

end for

A step of SGD on πi, {Wj}, θe,Θ to reduce L
(
xi,yi,fe

(
(o1
i )
TW1, · · · , (oDi )TWD; θe

)
,Θ

)
end for

embedding vectors from codes to mimic continuous embedding vectors, which can be either

jointly trained (online distillation guidance), or pre-trained (pre-train distillation guidance).

The continuous embedding can provide better signals for both code learning as well as the

rest parts of the neural network, improve the training subsequently.

Online Distillation Guidance (ODG). A good learning progress in code allocation

function φ(·) can be important for the rest of the neural network to learn. For example, it

is hard to imagine we can train a good model based on “KD codes” if we have φ(“table”) =

φ(“cat”). However, the learning of the φ(·) also depends on the rest of network to provide

good signals.

Based on the observation, we propose to associate a regular continuous embedding vector

ui with each symbol during the training, and we want the “KD encoding” function T (·) to

mimic the continuous embedding vectors, while both of them are simultaneously optimized

for the end task. More specifically, during the training, instead of using the embedding

vector generated from the code, i.e. f(ci), we use a dropout average of them, i.e.

vi = m� ui + (1−m)� f(ci).

Here m is a Bernoulli random variable for selecting between the regular embedding vector
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Figure 5.3: Online Distillation Guidance. Dashed lines denotes regularization, doted line in

the middle denotes sharing of transformation function.

or the KD embedding vector. When m is turned on with a relatively high probability (e.g.

0.7), even if f(ci) is difficult to learn, ui can still be learned to assist the improvement of

the task-specific parameters Θ, which in turn helps code learning. During the inference, we

only use f(ci) as output embedding. This choice can lead to a gap between training and

generalization errors. Hence, we add a regularization loss λ‖ui−f(ci)‖2 during the training

that encourages the match between ui and f(ci)
3.

Pre-trained Distillation Guidance (PDG). It is important to close the gap between

training and inference in the online distillation guidance process, unfortunately this can still

be difficult. Alternatively, we can also adopt pre-trained continuous embedding vectors as

guidance. Instead of training the continuous embedding vectors alongside the discrete codes,

we utilize a pre-trained continuous embedding matrix U produced from the same model with

conventional continuous embedding vectors. During the end-to-end training of the codes (as

well as other parameters), we ask the composite embedding vector vi generated by “KD

encoding” to mimic the the given embedding vector ui by minimizing the l2 distance.

Furthermore, we can build an auto-encoder of the pre-trained continuous embedding

vectors, and use both continuous embedding vectors as well as the code logits as guidances.

In the encoding pass, a transformation function g(·) is used to map ui to the code logits πi.

3Here we use stop gradient(ui) to prevent embedding vectors u being dragged to f(ci) as it has too much
freedom.
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In its decoding pass, it utilizes the same transformation function f(·) that is used in “KD

encoding” to reconstruct ui. The loss function for the auto-encoders is

Lauto−encoder =
∑
i

‖f(g(ui); τ)− ui‖2

To follow the guidance of the pre-trained embedding matrix U , we ask the code logits πi

and composite symbol embedding vi = f(πi; τ) 4 to mimic the ones in the auto-encoder as

follows

Ldistillation =
∑
i

α‖f(πi; τ)− ui‖2 + β‖πi − g(ui)‖2

During the training, both Lauto−encoder and Ldistillation will be added to the task-specific loss

function to train jointly. The method is illustrated in the Figure 5.3.

Here we also make a distinction between pre-trained distillation guidance (PDG) and

pre-training of codes. Firstly, PDG can learn codes end-to-end to optimize the task’s loss,

while the pre-trained codes will be fixed during the task learning. Secondly, the PDG

training procedure is much easier, especially for the tuning of discrete code learning, while

pre-training of codes requires three stages and is unfriendly for parameter tuning.

5.4 Experiments

In this section, we conduct experiments to validate the proposed approach. Since the pro-

posed “KD Encoding” can be applied to various tasks and applications with embedding

layers involved. We choose three important tasks for evaluation, they are (1) language

modeling, (2) text classification, and (3) graph convolutional networks for semi-supervised

node classification. For the detailed descriptions of these tasks and other applications of our

method, we refer readers to the supplementary material.

For the language modeling task, we test on the widely used English Penn Treebank

[MMS93] dataset, which contains 1M words with vocabulary size of 10K. The training/validation/test

split is provided by convention according to [MKB10]. Since we only focus on the embedding

4Here we overload the function f(ci) by considering that code ci can be turned into “one-hot” oi, and
oi ≈ Softmax(πi/τ).
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layer, we simply adopt a previous state-of-the-art model [ZSV14], in which they provide three

different variants of LSTMs [HS97] of different sizes: The larger model has word embedding

size and LSTM hidden size of 1500, while the number is 650 and 200 for the medium and

small models. By default, we use K = 32, D = 32 and pre-trained distillation guidance for

the proposed method, and linear embedding transformation function with 1 hidden layer of

300 hidden units.

For the text classification task, we utilize five different datasets from [ZZL15], namely

Yahoo! news, AG’s news, DBpedia, Yelp review polarity ratings as well Yelp review full-

scale ratings 5. We adopt network architecture used in FastText [JGB16b, JGB16a], where a

SoftMax is stacked on top of the averaged word embedding vectors of the text. For simplicity,

we only use unigram word information but not sub-words or bi-grams, as used in their work.

The word embedding dimension is chosen to be 300 as it yields a good balance between size

and performance. By default, we use K = 32, D = 32 for the proposed method, and linear

transformation with no hidden layer. That is to add code embedding vectors together to

generate symbol embedding vector, and the dimension of code embedding is the same as

word embedding.

For the application with graph convolutional networks, we follow the same setting and

hyper-parameters as in [KW16]. Three datasets are used for comparison, namely Cora,

Citeseer, Pubmed. Since both the number of symbols (1433, 3703, and 500 respectively) as

well as its embedding dimension (16) are small, the compressible space is actually quite small.

Nevertheless, we perform the proposed method with K = 64, D = 8 for Cora and Citeseer,

and K = 32, D = 4 for Pubmed. Again, a linear embedding transformation function is used

with one hidden layer of size 16. We do not use guidances for text classification and graph

node classification tasks since the direct optimization is already satisfying enough.

We mainly compare the proposed “KD encoding” approach with the conventional con-

tinuous (full) embedding counterpart, and also compare with low-rank factorization [SKS13]

with different compression ratios. The results for three tasks are shown in Table 5.1, 5.2, 5.3,

5YahooAnswers has 477K unique words and 131M tokens, and Yelp has 268K unique words and 94M
tokens. More details available in [ZZL15].
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Table 5.1: Language modeling (PTB). Compared with Conventional full embedding, and

low-rank (denoted with Lr) with different compression rates.

Model Full Lr(5X) Lr(10X) Ours

Perplexity

Small 114.53 134.01 134.89 107.77

Medi. 83.38 84.84 85.53 83.11

Large 78.71 81.23 81.85 77.72

# of emb.

params.

(M)

Small 2.00 0.40 0.19 0.37

Medi. 6.50 1.30 0.65 0.50

Large 15.00 2.99 1.50 0.76

# of bits

(M)

Small 64.00 12.73 6.20 13.39

Medi. 208.00 41.58 20.79 17.75

Large 480.00 95.68 47.84 26.00

respectively. In these tables, three types of metrics are shown: (1) the performance metric,

perplexity for language modeling and accuracy for the others, (2) the number of embedding

parameters θ used in f , and (3) the total embedding layer’s size includes θ as well as the

codes. From these tables, we observe that the proposed “KD encoding” with end-to-end

code learning perform similarly, or even better in many cases, while consistently saving more

than 90% of embeding parameter and model size, 98% in the text classification case. In

order to achieve similar level of compression, we note that low-rank factorization baseline

will reduce the performance significantly.

We further compare with broader baselines on language modeling tasks (with medium

sized language model for convenience): (1) directly using first 10 chars of a word as its

code (padding when necessary), (2) training aware quantization [JKC17], and (3) product

quantization [JDS11, JGB16a]. The results are shown in Table 5.4. We can see that our

methods significantly outperform these baselines, in terms of both PPL as well as model size

(bits) reduction.

In the following, we scrutinize different components of the proposed model based on PTB

language modeling. To start with, we test various code learning methods, and demonstrate
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Table 5.2: Text classification. Lr denotes low-rank.

Model Full Lr(10X) Lr(20X) Ours

Accuracy

Yahoo! 0.698 0.695 0.691 0.695

AG N. 0.914 0.914 0.915 0.916

Yelp P. 0.932 0.924 0.923 0.931

Yelp F. 0.592 0.578 0.573 0.590

DBpedia 0.977 0.977 0.979 0.980

# of emb.

params.

(M)

Yahoo! 143.26 13.857 6.690 0.308

AG N. 20.797 2.019 0.975 0.308

Yelp P. 74.022 7.164 3.459 0.308

Yelp F. 80.524 7.793 3.762 0.308

DBpedia 183.76 17.772 8.580 0.308

# of bits

(G)

Yahoo! 4.584 0.443 0.214 0.086

AG N. 0.665 0.065 0.031 0.021

Yelp P. 2.369 0.229 0.111 0.049

Yelp F. 2.577 0.249 0.120 0.053

DBpedia 5.880 0.569 0.275 0.108

the impact of training with guidance. The results are shown in Table 5.5. First, we note

that both random codes as well as pre-trained codes are suboptimal, which is understandable

as they are not (fully) adaptive to the target tasks. Then, we see that end-to-end training

without guidance suffers serious performance loss, especially when the task specific networks

increase its complexity (with larger hidden size and use of dropout). Finally, by adopting the

proposed continuous guidances (especially distillation guidance), the performance loss can be

overcame. We further vary the size of K or D and see how they affect the performance. As

shown in Figure 5.4a and 5.4b, small K or D may harm the performance (even though that

KD � N is satisfied), which suggests that the redundant code can be easier to learn. The

size of D seems to have higher impact on the performance compared to K. Also, when D

is small, non-linear encoder such as RNN performs much better than the linear counterpart,
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Table 5.3: Graph Convolutional Networks. Lr denotes low-rank.

Dataset Full Lr(2X) Lr(4X) Ours

Accuracy

Cora 0.814 0.789 0.767 0.823

Citese. 0.721 0.710 0.685 0.723

Pubm. 0.795 0.773 0.780 0.797

# of emb.

params.

(K)

Cora 22.93 10.14 5.8 8.22

Citese. 59.25 26.03 14.88 8.22

Pubm. 8.00 3.61 2.06 2.69

# of bits

(M)

Cora 0.73 0.32 0.19 0.33

Citese. 1.90 0.83 0.48 0.44

Pubm. 0.26 0.12 0.07 0.10

4 8 16 32 64
D

4
8

16
32

64
K

124.2 99.0 87.9 81.9 78.6

103.8 90.0 82.8 80.0 78.0

94.7 85.7 80.6 78.4 77.5

89.0 82.3 79.5 77.8 77.5

85.0 81.0 78.2 77.7 78.4 75

90

105

120

135

(a) Linear instantiation.

4 8 16 32 64
D

4
8

16
32

64
K

109.7 88.3 81.3 79.2 78.7

91.8 83.1 80.0 78.8 78.9

84.9 81.5 79.2 78.3 78.3

83.4 79.9 78.7 78.6 78.5

82.7 79.7 78.7 78.7 79.3 75

90

105

120

135

(b) RNN instantiation.

Figure 5.4: The effects of various K and D under different instantiation of embedding trans-

formation function f(·).

which verifies our Proposition 2. To examine the learned codes, we apply our method on the

pre-trained embedding vectors from Glove [PSM14], which has better coverage and quality.

We force the model to assign multiple words to the same code by setting K = 6, D = 4 (code

space is 1296) for vocabulary size of 10K. Table 5.6 show a snippet of the learned codes,

which shows that semantically similar words are assigned to the same or close-by discrete

codes.
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Table 5.4: Comparisons with more baselines in Language Modeling (Medium sized model).

Methods PPL Bits saved

Char-as-codes 108.14 96%

Scalar quantization (8 bits) 84.06 75%

Scalar quantization (6 bits) 87.73 81%

Scalar quantization (4 bits) 92.86 88%

Product quantization(64x325) 84.03 88%

Product quantization(128x325) 83.71 85%

Product quantization(256x325) 83.66 81%

Ours 83.11 92%

Table 5.5: Comparisons of different code learning methods.

Small Medium Large

Full embedding 114.53 83.38 78.71

Random code 115.79 104.12 98.38

Pre-trained code 107.95 84.92 80.69

Ours (no guidance) 108.50 89.03 86.41

Ours (ODG) 108.19 85.50 83.00

Ours (PDG) 107.77 83.11 77.72

5.5 Related Work

The idea of using more efficient coding system traces to information theory, such as er-

ror correction code [Ham50], and Hoffman code [Huf52]. However, in most embedding

techniques such as word embedding [MSC13, PSM14], entity embedding [CTS16b, CS17],

“one-hot” encoding is used along with a usually large embedding matrix. Recent work

[KJS16, SHB15, ZZL15] explores character or sub-word based embedding model instead of

the word embedding model and show some promising results. [SHW17] proposes using hash

functions to automatically map texts to pre-defined bases with a smaller vocabulary size,
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Table 5.6: Learned codes for 10K Glove embeddings (K=6, D=4).

Code Words

3-1-0-3 up when over into time back off set left open

half behind quickly starts

3-1-0-4 week tuesday wednesday monday thursday fri-

day sunday saturday

3-1-0-5 by were after before while past ago close soon

recently continued meanwhile

3-1-1-1 year month months record fall annual target

cuts

according to which vectors are composed. However, in their cases, the chars, sub-words

and hash functions are fixed and given a priori dependent on language, thus may have few

semantic meanings attached and may not be available for other type of data. In contrast,

we learn the code assignment function from data and tasks, and our method is language

independent.

The compression of neural networks [HMD15, HPT15, CWT15] has become more and

more important in order to deploy large networks to small mobile devices. Our work can be

seen as a way to compress the embedding layer in neural networks. Most existing network

compression techniques focus on dense/convolutional layers that are shared/amortized by all

data instances, while one data instance only utilizes a fraction of embedding layer weights

associated with the given symbols. To compress these types of weights, some efforts have

been made, such as product quantization [JDS11, JGB16a, Zha, ZQT15, BL14]. Compared

to their methods, our framework is more general. Many of these methods can be seen as

a special case of “KD encoding” using a linear embedding transformation function without

hidden layer. Also, under our framework, both the codes and the transformation functions

can be learned jointly by minimizing task-specific losses.

Our work is also related to LightRNN [LQY16], which can be seen as a special case of

our proposed KD code with K =
√
N and D = 2. Due to the use of a more compact code,
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its code learning is harder and more expensive. This work is an extension of our previous

workshop paper [CMS17] with guided end-to-end code learning. In parallel to [CMS17],

[SN17] explores similar ideas with linear composition functions and pre-trained codes.

5.6 Conclusions

In this chapter, we propose a novel K-way D-dimensional discrete encoding scheme to replace

the “one-hot” encoding, which significantly improves the efficiency of the parameterization

of models with embedding layers. To learn semantically meaningful codes, we derive a

relaxed discrete optimization technique based on SGD enabling end-to-end code learning.

We demonstrate the effectiveness of our work with applications in language modeling, text

classification and graph convolutional networks.
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CHAPTER 6

Conclusion

In this thesis, we discuss the effective and efficient representation learning approaches for

graph structures. In particular, several framework and algorithms are developed to achieve

these goals:

• An unsupervised embedding learning framework and learning algorithm based on Noise-

Contrastive Estimation is proposed to learn regularity in heterogeneous event data.

This technique not only learns meaningful representation but also enables anomaly

detection in computer system logs without human labels.

• A semi-supervised and meta-path based network embedding framework is proposed.

To deal with heterogeneous graphs, meta-path is adopted to define prediction neigh-

borhood. This model could also leverage the supervised signal to guide the embedding

learning as well as the meta-path selection. We demonstrate its effectiveness on author-

identification tasks where the algorithm is asked to predict authors in a simulated

double-blinded peer review setting.

• Efficient negative sampling strategies are proposed to enable large scale training of

content-rich graph embeddings where nodes are associated with texts or other content.

This technique is shown to mitigate the cold-start problem and empower the neural

collaborative filtering that integrates information from both user behavior and content

of (especially newly-emerged) item.

• A compact K-way D-dimensional discrete encoding framework is proposed to largely

reduce the embedding table which is commonly used in representation learning. Our
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method is able to achieve more than 98% of bits removal while maintaining the same

performance in several text related tasks.
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APPENDIX A

Supplementary Materials for Author Identification

A.1 Feature Engineering for traditional supervised models

For the traditional supervised models, we consider both author features and paper-author

paired features for ranking authors given a paper. What follows we first show the author

features we utilized.

• Total number of papers

• Number of distinct venues

• Number of distinct years

There are four types of paper-author paired features being utilized, as shown below.

Paper references related

• Number of references being cited by the author before

• Ratio of references being cited by the author before

• Number of author’s citations in the references

• Ratio of author’s citations in the references

• Number of references written by the author

• Ratio of references written by the author

• Ratio of author’s papers in the references

104



Paper words related

• Number of shared word

• Number of unique shared word

• Ratio of shared words

• Ratio of unique shared words

Paper venue related

• Whether the author attend the venue before

• Number of times the author attend the venue before

• Ratio of times the author attend the venue before

Paper year related

• Number of papers author published in the last 3 years

• Ratio of papers author published in the last 3 years

A.2 Derivation of Task-specific Embedding for Author Identifica-

tion

The gradients of the parameters in Task-specific Embedding model are calculated as follows.

∇un =
wt

|X(t)
p |

(
∇f(p,a)ua +∇f(p,a′)ua′

)
∇ua = ∇f(p,a)

∑
t

wt
∑
n∈X(t)

p

un/|X(t)
p |

∇ua′
= ∇f(p,a′)

∑
t

wt
∑
n∈X(t)

p

un/|X(t)
p |

(A.1)
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∇wt =

(
∇f(p,a)ua +∇f(p,a′)ua′

)T( ∑
n∈X(t)

p

un/|X(t)
p |
)

(A.2)

where

∇f(p,a) = δ(f(p, a′)− f(p, a) + ε)

∇f(p,a′) = −δ(f(p, a′)− f(p, a) + ε)

where δ(x) is an indicator function, which is set one if and only if x is greater than 0.

The learning algorithm is illustrated in Algorithm 8.

Algorithm 8 Task-specific embedding for author identification

Input: paper information X, and true author set A

Output: parameters U , w

1: while not converged do

2: for each thread do

3: sample a triple (p, a, a′)

4: update U,w according to Eq. A.1, A.2

5: end for

6: end while

A.3 Derivation of Path-augmented General Heterogeneous Net-

work Embedding

The gradient of the parameters in Path-augmented General Heterogeneous Network Embed-

ding model can be calculated as follows.

∇ui = (1− σ(uTi uj + br))uj − σ(uTi uj′ + br)uj′

∇uj = (1− σ(uTi uj + br))ui

∇uj′
= −σ(uTi uj′ + br)ui

(A.3)

∇br = (1− σ(uTi uj + br))−
∑
j′

σ(uTi uj′ + br) (A.4)

The learning algorithm of the model is summarized in the Algorithm 9.

106



Algorithm 9 Path-augmented general heterogeneous network embedding

Input: paths adjacency matrices {M} derived from the heterogeneous network G.

Output: parameters U, b

1: while not converged do

2: for each thread do

3: sample a triple (r, i, j)

4: sample negative nodes {j′}

5: update U, b according to Eq. A.3, A.4

6: end for

7: end while
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APPENDIX B

Supplementary Materials for Sampling Strategies

B.1 Proofs

Here we give the proofs for both the lemma and the proposition introduced in the main

paper. For brevity, throughout we assume by default the loss function L is the pointwise

loss of Eq. (1) in the main paper. Proofs are only given for the pointwise loss, but it can be

similarly derived for the pairwise loss. We start by first introducing some definitions.

Definition 1. A function f is L-smooth if there is a constant L such that

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖

Such an assumption is very common in the analysis of first-order methods. In the fol-

lowing proof, we assume any loss functions L is L-smooth.

Property 1. (Quadratic Upper Bound) A L-smooth function f has the following property

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
‖y − x‖2

Definition 2. We say a function f has a σ-bounded gradient if ‖∇fi(θ)‖2 ≤ σ for all i ∈ [n]

and any θ ∈ Rd.

For each training iteration, we first sample a mini-batch of links (denoted by B) of both

positive links (B+) and negative links (B−), according to the sampling algorithm (one of

the Algorithm 2, 3, 4, 5), and then the stochastic gradient is computed and applied to the

parameters as follows:

θt+1 = θt − ηt
m

∑
(u,v)∈B+

t

c+
uv∇L+(θ|u, v)− ηt

n

∑
(u,v)∈B−t

c−uv∇L−(θ|u, v) (B.1)
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Here we use L+(θ|u, v) to denote the gradient of loss function L+(θ) given a pair of (u, v).

And m, n are the number of positive and negative links in the batch B, respectively.

Lemma 2. (unbiased stochastic gradient) Under sampling Algorithm 2, 3, 4, 5, we have

EB[∇LB(θt)] = ∇L(θt). In other words, the stochastic mini-batch gradient equals to true

gradient in expectation.

Proof. Below we prove this lemma for each for the sampling Algorithm. For completeness, we

also show the proof for Uniform Sampling as follows. The main idea is show the expectation

of stochastic gradient computed in a randomly formed mini-batch equal to the true gradient

of objective in Eq. 4.1.

IID Sampling The positive links in the batch B are i.i.d. samples from Pd(u, v) (i.e.

drawn uniformly at random from all positive links), and the negative links in B are i.i.d.

samples from Pd(u)Pn(v), thus we have

EB[∇LB(θt)]

=
1

m

m∑
i=1

E(u,v)∼Pd(u,v)[c
+
uv∇L+(θ|u, v)] +

1

n

n∑
i=1

E(u,v)∼Pd(u)Pn(v′)[c
−
uv′∇L

−(θ|u, v′)]

=Eu∼Pd(u)

[
Ev∼Pd(v|u)[c

+
uv∇L+(θ|u, v)] + Ev′∼Pn(v′)[c

−
uv′∇L

−(θ|u, v′)]
]

=∇L(θt)

(B.2)

The first equality is due to the definition of sampling procedure, the second equality is due

to the definition of expectation, and the final equality is due to the definition of pointwise

loss function in Eq. 4.1.

Negative Sampling In Negative Sampling, we have batch B consists of i.i.d. samples

of m positive links, and conditioning on each positive link, k negative links are sampled by

replacing items in the same i.i.d. manner. Positive links are sampled from Pd(u, v), and
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negative items are sampled from Pn(v′), thus we have

EB[∇LB(θt)]

=
1

m

m∑
i=1

E(u,v)∼Pd(u,v)
1

k

k∑
j=1

Ev′∼Pn(v′)[c
+
uv∇L+(θ|u, v) + c−uv′∇L

−(θ|u, v′)]

=Eu∼Pd(u)

[
Ev∼Pd(v|u)[c

+
uv∇L+(θ|u, v)] + Ev′∼Pn(v′)[c

−
uv∇L−(θ|u, v′)]

]
=∇L(θt)

(B.3)

The first equality is due to the definition of sampling procedure, and the second equality is

due to the properties of joint probability distribution and expectation.

Stratified Sampling (by Items) In Stratified Sampling (by Items), a batch B consists

of links samples drawn in two steps: (1) draw an item v ∼ Pd(v), and (2) draw positive users

u ∼ Pd(u|v) and negative users u′ ∼ Pd(u) respectively. Additionally, negative terms are

also re-weighted, thus we have

EB[∇LB(θt)]

=Ev∼Pd(v)

[
1

m

m∑
i=1

Eu∼Pd(u|v)[c
+
uv∇L+(θ|u, v)] +

1

n

n∑
i=1

Eu∼Pd(u)[c
−
uv

Pn(v)

Pd(v)
∇L−(θ|u, v)]

]
=E(u,v)∼Pd(u,v)[c

+
uv∇L+(θ|u, v)] + E(u,v)∼Pd(u)Pd(v)[c

−
uv

Pn(v)

Pd(v)
∇L−(θ|u, v)]

=E(u,v)∼Pd(u,v)[c
+
uv∇L+(θ|u, v)] + E(u,v)∼Pd(u)Pn(v)[c

−
uv∇L−(θ|u, v)]

=Eu∼Pd(u)

[
Ev∼Pd(v|u)[c

+
uv∇L+(θ|u, v)] + Ev′∼Pn(v′)[c

−
uv∇L−(θ|u, v′)]

]
=∇L(θt)

(B.4)

The first equality is due to the definition of sampling procedure, and the second, the third and

the forth equality is due to the properties of joint probability distribution and expectation.

Negative Sharing In Negative Sharing, we only draw positive links uniformly at random

(i.e. (u, v) ∼ Pd(u, v)), while constructing negative links from sharing the items in the batch.

So the batch B we use for computing gradient consists of both m positive links and m(m−1)

negative links.
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Although we do not draw negative links directly, we can still calculate their probability

according to the probability distribution from which we draw the positive links. So a pair

of constructed negative link in the batch is drawn from (u, v) ∼ Pd(u, v) = Pd(v)Pd(u|v).

Additionally, negative terms are also re-weighted, we have

EB[∇LB(θt)]

=
1

m

m∑
i=1

E(u,v)∼Pd(u,v)[c
+
uv∇L+(θ|u, v)] +

1

m(m− 1)

m(m−1)∑
j=1

E(u,v)∼Pd(u,v)[c
−
uv

Pn(v)

Pd(v)
∇L−(θ|u, v)]

=Eu∼Pd(u)

[
Ev∼Pd(v|u)[c

+
uv∇L+(θ|u, v)] + Ev′∼Pn(v′)[c

−
uv′∇L

−(θ|u, v′)]
]

=∇L(θt)

(B.5)

The first equality is due to the definition of sampling procedure, and the second equality is

due to the properties of joint probability distribution and expectation.

Stratified Sampling with Negative Sharing Under this setting, we follow a two-step

sampling procedure: (1) draw an item v ∼ Pd(v), and (2) draw positive users u ∼ Pd(u|v).

Negative links are constructed from independently drawn items in the same batch. So the

batch B consists of m positive links and n negative links.

We can use the same method as in Negative Sharing to calculate the probability of

sampled negative links, which is also (u, v) ∼ Pd(u, v). Again, negative terms are re-weighted,

thus we have

EB[∇LB(θt)]

=
1

m

m∑
i=1

Ev∼Pd(v),u∼Pd(u|v)[c
+
uv∇L+(θ|u, v)] +

1

n

n∑
j=1

E(u,v)∼Pd(u,v)[c
−
uv

Pn(v)

Pd(v)
∇L−(θ|u, v)]

=E(u,v)∼Pd(u,v)[c
+
uv∇L+(θ|u, v)] + E(u,v′)∼Pd(u)Pn(v′)[c

−
uv′∇L

−(θ|u, v′)]

=Eu∼Pd(u)

[
Ev∼Pd(v|u)[c

+
uv∇L+(θ|u, v)] + Ev′∼Pn(v′)[c

−
uv′∇L

−(θ|u, v′)]
]

=∇L(θt)

(B.6)

The first equality is due to the definition of sampling procedure, and the second, third and

fourth equality is due to the properties of joint probability distribution and expectation.
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Proposition 2. Suppose L has σ-bounded gradient; let ηt = η = c/
√
T where c =

√
2(L(θ0)−L(θ∗)

Lσ2 ,

and θ∗ is the minimizer to L. Then, the following holds for the sampling strategies given in

Algorithm 2, 3, 4, 5

min
0≤t≤T−1

E[‖∇L(θt)‖2] ≤
√

2(L(θ0)− L(θ∗))

T
σ

Proof. With the property of L-smooth function L, we have

E[L(θt+1)] ≤ E[L(θt) + 〈∇L(θt), θt+1 − θt〉+
L

2
‖θt+1 − θt‖2] (B.7)

By applying the stochastic update equation, lemma 2, i.e. EB[∇LB(θt)] = ∇L(θt), we

have

E[〈∇L(θt), θt+1 − θt〉+
L

2
‖θt+1 − θt‖2]

≤ηtE[‖∇L(θt)‖2] +
Lη2

t

2
E[‖∇LB(θt)‖2]

(B.8)

Combining results in Eq. B.7 and B.8, with assumption that the function L is σ-bounded,

we have

E[L(θt+1)] ≤ E[L(θt)] + ηtE[‖∇L(θt)‖2] +
Lη2

t

2b
σ2

Rearranging the above equation we obtain

E[‖∇L(θt)‖2] ≤ 1

ηt
E[L(θt − L(θt+1)] +

Lηt
2b

σ2 (B.9)

By summing Eq. B.9 from t = 0 to T − 1 and setting η = c/
√
T , we have

min
t

E[‖∇L(θt)‖2] ≤ 1

T

T−1∑
0

E[‖L(θt)‖2]

≤ 1

c
√
T

(L(θ0)− L(θ∗)) +
Lc

2
√
T
σ2

(B.10)

By setting

c =

√
2(L(θ0)− L(θ∗))

Lσ2

We obtain the desired result.

112



B.2 Vector Dot Product Versus Matrix multiplication

Here we provide some empirical evidence for the computation time difference of replacing

vector dot product with matrix multiplication. Since vector dot product can be batched by

element-wise matrix multiplication followed by summing over each row. We compare two

operations between two square matrices of size n: (1) element-wise matrix multiplication, and

(2) matrix multiplication. A straightforward implementation of the former has algorithmic

complexity of O(n2), while the latter has O(n3). However, modern computation devices such

as GPUs are better optimized for the latter, so when the matrix size is relatively small, their

computation time can be quite similar. This is demonstrated in Figure B.1. In our choice

of batch size and embedding dimension, n� 1000, so the computation time is comparable.

Furthermore, ti � tg, so even several times increase would also be ignorable.

Figure B.1: The computation time ratio between matrix multiplication and element-wise

matrix multiplication for different square matrix sizes.

B.3 Functional Embedding Versus Functional Regularization

In this work we propose a functional embedding framework, in which the embedding of a

user/item is obtained by some function such as neural networks. We notice another approach

is to penalize the distance between user/item embedding and the function output (instead of

equate them directly as in functional embedding), which we refer as functional regularization,
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and it is used in [WWY15]. More specifically, functional regularization emits following form

of loss function:

L(hu,hv) + λ‖hu − f(xu)‖2

Here we point out its main issue, which does not appear in Functional Embedding. In

order to equate the two embedding vectors, we need to increase λ. However, setting large

λ will slow down the training progress under coordinate descent. The gradient w.r.t. hu is

∇huL(hu,hv) + λ
2
(hu− f(xu)), so when λ is large, ht+1

u → f t(xu), which means hu cannot be

effectively updated by interaction information.

114



APPENDIX C

Supplementary Materials for KD codes

C.1 Proofs of Lemmas and Propositions

Lemma 2. The number of embedding parameters used in KD encoding is O( K
logK

d′ logN +

C), where C is the number of parameters of neural nets.

Proof. As mentioned, the embedding parameters include code embedding matrix {W} and

embedding transformation function θe. There are O( K
logK

logN) code embedding vectors

with d′ dimensions. As for the number of parameters in embedding transformation function

such as neural networks (LSTM) C that is in O(d′2), it can be treated as a constant to the

number of symbols since d′ is independent of N , provided that there are certain structures

presented in the symbol embeddings. For example, if we assume all the symbol embeddings

are within ε-ball of a finite number of centroids in d-dimensional space, it should only require

a constant C to achieve ε-distance error bound, regardless of the vocabulary size, since the

neural networks just have to memorize the finite centroids.

.

Proposition 2. A linear composition function f with no hidden layer is equivalent to a

sparse binary low-rank factorization of the embedding matrix.

Proof sketch. First consider when K = 2, and the composed embedding matrix can

be written as U = BC, where B is the binary code for each symbol, and C is the code

embedding matrix. This is a low rank factorization of the embedding matrix with binary

code B. When we increase K, by representing a choice of K as one-hot vector of size K,
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we still have U = BC with additional constraints in B that it is a concatenation of D one-

hot vector. Due to the one-hot constraint, each row in B will be sparse as only 1/K ratio

of entries are non-zero, thus corresponds to a sparse binary low-rank factorization of the

embedding matrix.

As the linear composition with no hidden layer can be limited in some cases as the

expressiveness of the function highly relies on the number of bases or rank of the factorization.

Hence, the non-linear composition may be more appealing in some cases.

Proposition 3. Given the same dimensionality of the “KD code”, i.e. K, D, and code

embedding dimension d′, the non-linear embedding transformation functions can reconstruct

the embedding matrix with higher rank than the linear counterpart.

Proof sketch. As shown above, in the linear case, we approximate the embedding by

a low-rank factorization, U = BC. The rank will be constrained by the dimensionality of

binary matrix B, i.e. KD. However, if we consider a nonlinear transformation function f ,

we will have U = f(B,C). As long as that no two rows in B and no two columns in C are

the same, i.e. every data point has its quite code and every code has its unique embedding

vector, then the non-linear function f , such as a neural network with enough capacity, can

approximate a matrix U that has much higher rank, even full rank, than KD.

C.2 The LSTM Code Embedding Transformation Function

Here we present more details on the LSTM code embedding transformation function. As-

suming the code embedding dimension is the same as the LSTM hidden dimension, the
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formulation is given as follows.

tj = σ(Wj
cj

+ hj−1Ut + bt)

ij = σ(Wj
cj

+ hj−1Ui + bi)

oj = σ(Wj
cj

+ hj−1Ut + bt)

mj = tj ◦mj−1 + ij ◦ tanh(Wj
cj

+ Umhj−1 + bm)

hj = oj ◦ tanh(mj),

where σ(·) and tanh(·) are, respectively, standard sigmoid and tanh activation functions.

Please note that the symbol index i is ignored for simplicity.

C.3 Examples and Applications

Our proposed task-specific end-to-end learned “KD Encoding” can be applied to any problem

involving learning embeddings to reduce model size and increase efficiency. In the following,

we list some typical examples and applications, for which detailed descriptions can be found

in the supplementary material.

Language Modeling Language modeling is a fundamental problem in NLP, and it can

be formulated as predicting the probability over a sequence of words. Models based on

recurrent neural networks (RNN) with word embedding [MKB10, KJS16] achieve state-of-

the-art results, so on which we will base our experiments. A RNN language model estimates

the probability distribution of a sequence of words by modeling the conditional probability

of each word given its preceding words,

P (w0, ..., wN) = P (w0)
N∏
i=1

P (wi|w0, ..., wi−1), (C.1)

where wi is the i-th word in a vocabulary, and the conditional probability P (wi|w0, ..., wi?1)

can be naturally modeled by a softmax output at the i-th time step of the RNN. The RNN

parameters and the word embeddings are model parameters of the language model.
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Text Classification Text classification is another important problem in NLP with many

different applications. In this problem, given a training set of documents with each containing

a number of words and its target label, we learn the embedding representation of each word

and a binary or multi-class classifier with a logistic or softmax output, predicting the labels of

test documents with the same vocabulary as in the training set. To test the “KD Encoding”

of word embedding on several typical text classification applications, we use several different

types of datasets: Yahoo answer and AG news represent topic prediction, Yelp Polarity and

Yelp Full represent sentiment analysis, while DBpedia represents ontology classification.

Graph Convolutional Networks for Semi-Supervised Node Classification In [KW16],

graph convolutional networks (GCN) are proposed for semi-supervised node classification on

undirected graphs. In GCN, the matrix based on standard graph adjacency matrix with

added self connections after normalization, Â, is used to approximate spectral graph convo-

lutions. As a result, ReLU(ÂXW ) defines a non-linear convolutional feature transformation

on node embedding matrix X with a projection matrix W and non-linear activation func-

tion ReLU . This layer-wise transformation can be repeated to build a deep network before

making predictions using the final output layer. Minimizing a task-specific loss function, the

network weights W s and the node embedding matrix X are learned simultaneously using

standard back-propagation. A simple GCN with one hidden layer takes the following form:

Z = f(X,A) = softmax(ÂReLU(ÂXW0)W1), (C.2)

where W0 and W1 are network weights, and softmax is performed in a row-wise manner.

When the labels of only a subset of nodes are given, this framework is readily extended for

graph-based semi-supervised node classification by minimizing the following loss function,

L = −
L∑
l=1

F∑
f=1

Ylf lnZlf , (C.3)

where L is the number of labeled graph nodes, F is the total number of classes of the

graph nodes, and Y is a binary label matrix with each row summing to 1. We apply our

proposed KD code learning to graph node embeddings in the above GCN framework for

semi-supervised node classification.
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Figure C.1: The perplexity on PTB as a function of different code embedding dimensions

as well as the embedding transformation functions.

Hashing The learned discrete code can also be seen as a data-dependent hashing for fast

data retrieval. In this paper, we also perform some case studies evaluating the effectiveness

of our learned KD code as hash code.

C.4 Additional Experimental Results

We also test the effects of different code embedding dimensions, and the result is presented

in Figure C.1. We found that linear encoder requires larger code embedding dimensionality,

while the non-linear encoder can work well with related small ones. This again verifies the

proposition 2.

Table C.1 shows the effectiveness of variants of the tricks in continuous relaxation based

optimization. We can clearly see that the positive impacts of temperature scheduling, and/or

entropy regularization, as well as the auto-encoding. However, here the really big perfor-

mance jump is brought by using the proposed distillation guidance.
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Table C.1: Effectiveness of different optimization tricks. Here, CR=Continuous Relaxation

using softmax, STE=straight-through estimation, CDG=continuous distillation guidance.

Variants PPL

CR 90.61

CR + STE 90.15

CR + STE + temperature scheduling 89.55

CR + STE + entropy reg 89.03

CR + STE + entropy reg + PDG (w/o autoencod.) 83.71

CR + STE + entropy reg + PDG (w/ autoencod.) 83.11

C.5 Notations

For clarity, Table 1 provides explanations to major notations used in our paper.
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Table C.2: Notations

Notations Explanation

c Codes.

o One-hot representations of the code.

ô Continuously relaxed o.

π code logits for computing ô.

W Code embedding matrix.

T The transformation from symbol to the embedding , T = f ◦ φ.

φ The transformation from symbol to code.

f The code transformation function maps code to embedding. It has

parameters θ = {W , θe}

fe The embedding transformation function maps code embedding vec-

tors to a symbol embedding vector.

v The composite symbol embedding vector.

Θ The task-specific (non-embedding) parameters.

U Pre-trained symbol embedding matrix.

u Pre-trained symbol embedding vector.

d Symbol embedding dimensionality.

d′ Code embedding dimensionality.
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