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ABSTRACT
This paper describes current work on framing the model pre-
dictive control (MPC) of cyber-physical systems as synthesis
from signal temporal logic (STL) specifications. We provide
a case study using a simplified power grid model with un-
certain demand and generation; the model-predictive control
problem here is that of the ancillary service power flow from
the buildings. We show how various relevant constraints can
be captured using STL formulas, and incorporated into an
MPC framework. We also provide preliminary simulation
results to illustrate the promise of the proposed approach.

Keywords
formal synthesis, timed logics, model predictive control

1. INTRODUCTION
Temporal logics provide a rigorous, precise and unambigu-

ous formalism for specifying and verifying desired behaviors
of systems. In particular, they have lent themselves to algo-
rithms for verification and synthesis of discrete supervisory
controllers that satisfy the specified properties. These dis-
crete controllers have successfully be employed in the con-
struction of hybrid controllers for cyber-physical systems in
various domains, including robotics [4] and aircraft power
system design [9]. However, for physical systems that re-
quire constraints not just on the order of events, but also on
the temporal distance between them, simulation and testing
is still the method of choice for validating properties and
establishing guarantees; the exact exhaustive verification of
such systems is in general undecidable [1]. Signal Temporal
Logic (STL) [7] was originally developed in order to specify
and monitor the expected behavior of such physical systems,
including temporal constraints between events. STL allows
the specification of properties of dense-time, real-valued sig-
nals, and the automatic generation of monitors for testing
these properties of individual simulation traces. It has since
been applied to the analysis of several types of continuous
and hybrid systems, including dynamical systems and analog
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circuits, where the continuous variables represent quantities
like currents and voltages in the circuit.

Model Predictive Control (MPC) is based on iterative, fi-
nite horizon, discrete time optimization of a model of the
plant. At any given time t the current plant state is ob-
served, and an optimal control strategy computed for some
finite time horizon in the future, [t, t + N ]. An online cal-
culation is used to explore possible future state trajectories
originating from the current state, finding an optimal control
strategy until time t+N . Only the first step of the computed
optimal control strategy is implemented; the plant state is
then sampled again, and new calculations are performed on a
horizon of N starting from the new current state. While the
global optimality of this sort of “receding horizon” approach
is not ensured, it tends to do well in practice In addition
to reducing computational complexity, it improves the sys-
tem robustness with respect to exogenous disturbances and
modeling uncertainties [8].

In this work, we frame the MPC problem as an instance
of synthesis from STL specifications. We would like to be
able to specify a desired global specification, and decom-
pose it into STL specifications over each time horizon, such
that synthesizing a controller fulfilling these specifications
at each horizon results in satisfaction of the global speci-
fication. For synthesis, we build on the recent success of
encodings of Linear Temporal Logic (LTL) specifications as
mixed integer-linear constraints [10], based on linear encod-
ings for bounded LTL model checking [2]. We extend this
encoding to STL, and incorporate the resulting constraints
into the optimization problem at each finite horizon of the
MPC computation.

As a case study, we consider the simplified model of a
smart building-level micro-grid with uncertain demand and
generation presented in [5]. We build on the hierarchical con-
trol framework introduced in [6], in which model predictive
control is implemented on top of the existing state-of-the-art
Automatic Generation Control (AGC), in order to exploit
the demand-side flexibility of a commercial building and pro-
vide fast frequency regulation services to the power grid. We
then show how the MPC scheme for controlling the ancil-
lary service power flow from such buildings can be framed
in terms of synthesis from a Signal Temporal Logic (STL)
specification. Preliminary simulation results illustrate the
effectiveness of the proposed methodology for grid frequency
regulation.
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2. PROBLEM
We consider a general model of a discrete-time continuous

system of the form

xt+1 = f(xt, ut) (1)

where t = 0, 1, . . . are the time indices, x ∈ X ⊆ (Rnc ×
{0, 1}nl) are the continuous and binary/logical states, u ∈
U ⊆ (Rmc×{0, 1}ml) are the (continuous and logical) control
inputs, and x0 ∈ X is the initial state. A run x = x0x1x2...
is an infinite sequence of its states, where xt ∈ X is the state
of the system at index t, and for each t = 0, 1, ..., there exists
a control input ut ∈ U such that xt+1 = f(xt, ut). Given an
initial state x0 and a control input sequence u = u0u1u2...,
the resulting run x = x(x0,u) of a system modeled by (1)
is unique. Restricting to finite sequences, given a con-
trol input sequence uN = u0u1u2...uN , we let the resulting
horizon-N run be xN = x(x0,uN ) = x0x1x2...xN . We also
introduce the notion of a generic cost function J(x,u) that
maps finite and infinite runs to R ∪∞.

For this work, we assume that STL formulas are provided
in negation normal form, so all negations appear in front of
predicates. An STL formula can always be rewritten as a
negation normal form formula of size linear in the original
size. STL formulas are thus defined recursively as:

ϕ ::= μ | ¬μ | ϕ ∧ ψ | ϕ ∨ ψ | �[a,b] ψ | ϕ U[a,b] ψ

where μ is a predicate of the form μ : μ(x) > 0. Additionally,
we define �[a,b] ϕ = � U[a,b] ϕ.
The validity of a formula ϕ with respect to signal x at

time t is defined inductively as follows:

(x, t) |= μ ⇔ μ(x(t)) > 0
(x, t) |= ¬μ ⇔ ¬((x, t) |= μ)
(x, t) |= ϕ ∧ ψ ⇔ (x, t) |= ϕ ∧ (x, t) |= ψ
(x, t) |= ϕ ∨ ψ ⇔ (x, t) |= ϕ ∨ (x, t) |= ψ
(x, t) |= �[a,b] ψ ⇔ ∀t′ ∈ [t+ a, t+ b], (x, t′) |= ψ
(x, t) |= ϕ U[a,b] ψ ⇔ ∃t′ ∈ [t+ a, t+ b] s.t. (x, t′) |= ψ

∧∀t′′ ∈ [t, t′], (x, t′′) |= ϕ.

A run x = x0x1x2... satisfies ϕ, denoted by x |= ϕ, if
(x, 0) |= ϕ.

We now formally state the STL controller synthesis prob-
lem.

Problem 1. Given a system of the form (1), an initial
state x0 and an STL formula ϕ, compute a control input
sequence u such that x(x0,u) |= ϕ.

We propose to solve Problem 1 using a Model Predictive
Control formulation, i.e., at each step t, ut is defined as the
first input of the sequence solving

argmin
uN

J(xN (xt,uN ),uN (t)) s.t. xN (xt,uN (t)) |= ϕt, (2)

where ϕt is an STL property such that if (x, t) |= ϕt for
all t, then x |= ϕ. We add STL constraints to a traditional
MPC problem formulation. To do so, first, we represent
the system trajectory over the MPC prediction horizon as a
finite sequence of states satisfying the model dynamics (1).
Then we encode the formula ϕt with a set of Mixed Integer
Linear Program (MILP) constraints, as defined in Section 3.

3. MILP FORMULATION
Given a formula ϕ, we introduce a variable Pϕt , whose

value is tied to a set of mixed integer-linear constraints re-
quired for the satisfaction of ϕ at position t in the state
sequence. In other words, Pϕt has an associated set of MILP
constraints such that Pϕt = 1 if and only if ϕ holds at po-
sition t. We recursively generate the MILP constraints cor-
responding to Pϕ0 – the value of this variable determines
whether to not a formula ϕ holds in the initial state.

3.1 Predicates
The predicates are represented by constraints on the sys-

tem state variables. For each predicate μ ∈ P , we introduce
binary variables zμt ∈ {0, 1} for time indices t = 0, 1, ..., N .
We enforce that zμt = 1 if and only if μ(xt) > 0. This is
achieved with the following constraints (which employ the
“big M”method from operations research):

μ(xt) ≤ Mtz
μ
t + εt

−μ(xt) ≤ Mt(1− zμt )− εt

where Mt are sufficiently large positive numbers, and εt are
sufficiently small positive numbers that serve to bound μ(xt)
away from 0. Note that zt = 1 if and only if μ(xt) > 0.

3.2 Boolean operations on MILP variables
Here we follow the example of [10] when encoding nega-

tion, conjunction and disjunction of variables using mixed
integer-linear constraints. As described in Section 3.1, each
predicate μ has an associated binary variable zμt which equals
1 if μ holds at time t, and 0 otherwise. In fact, by the recur-
sive definition of our MILP constraints on STL formulas, we
can assume that each operand ϕ in a boolean operation has
a corresponding (binary or continuous) variable Pϕt which
is 1 if ϕ holds at t and 0 if not. Here we define boolean
operations on these variables; these are the building blocks
of our recursive encoding.

Given a formula ψ containing a boolean operation, we
add new continuous variables Pψt ∈ [0, 1] to represent its
truth value at each time step of the parametrized trajectory.
These variables are constrained such that Pψt = 1 if ψ holds

at time t and Pψt = 0 otherwise.

• Negation: ψ = ¬μ Pψt = 1− Pμt

• Conjunction: ψ = ∧mi=1ϕi
Pψt ≤ Pϕi

t , i = 1, ...,m,

Pψt ≥ 1−m+
∑m
i=1 P

ϕi
t

• Disjunction: ψ = ∨mi=1ϕi
Pψt ≥ Pϕi

t , i = 1, ...,m,

Pψt ≤
∑m
i=1 P

ϕi
t

3.3 Temporal constraints
Here we describe how we encode timed operators. We first

present encodings for the � and � operators. We will use
these encodings to define the encoding for the U[a,b] operator.

• Always: ψ = �[a,b] ϕ

Let aNt = min(t+ a,N) and bNt = min(t+ b,N)

Define Pψt = ∧bNt
i=aNt

Pϕi The logical operation ∧ on the

variables Pϕi here is as defined in Section 3.2.

• Eventually: ψ = �[a,b] ϕ

Define Pψt = ∨bNt
i=aNt

Pϕi
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Figure 1: Block diagram of power system and its re-
lation to governor, turbine, generator, and the AGC
signal for each control area. More details on the
power grid model can be found in [5].

• Until: ψ = ϕ1 U[a,b] ϕ2

The bounded until operator U[a,b] can be defined in
terms of the unbounded U from LTL as follows [3]:

ϕ1 U[a,b] ϕ2 = �[0,a] ϕ1 ∧ �[a,b] ϕ2 ∧ �[a,a](ϕ1 U ϕ2)

We will use the linear encoding of the unbounded U
from [2]. We define

Pϕ1 U ϕ2
t = Pϕ2

t ∨ (Pϕ1
t ∧ Pϕ1 U ϕ2

t+1 )

for t = 1, ..., N − 1, and Pϕ1 U ϕ2
N = Pϕ2

N .

Given this encoding of the unbounded until and the
encodings of �[a,b] and �[a,b] above, we can encode

P
ϕ1 U[a,b] ϕ2

t = P
�[0,a] ϕ1

t ∧P �[a,b] ϕ2

t ∧P �[a,a](ϕ1 U ϕ2)

t .

By induction on the structure of STL formulas ϕ, Pϕt = 1
if and only if ϕ holds on the system at time t. With this
motivation, given a specification ϕ, we add a final constraint
to the MILP:

Pϕ0 = 0.

The union of the STL constraints, system constraints and
loop constraints gives the MILP encoding of Problem 1; this
enables checking feasibility of this set and finding a solu-
tion using an MILP solver. Other cost functions and more
general dynamics can be included by using an appropriate
mixed integer-nonlinear solver.

3.4 Complexity
Mixed integer-linear programs are NP-hard, but we can

still describe the computational costs of our encoding and
approach in terms of the number of variables and constraints
in the resulting MILP. In practice, one measure of complex-
ity is the number of binary variables required to indicate the
satisfaction of the predicates μ. This depends directly on the
number of predicates used in the STL formula ϕ. If P is the
set of predicates used in the formula, then O(N · |P |) binary
variables are introduced. In addition, continuous variables
are introduced during the MILP encoding of the STL for-
mula. The number of continuous variables used is O(N ·|ϕ|),
where |ϕ| is the length (i.e. the number of operators) of the
formula.

4. A SMART GRID BUILDING SYSTEM
In this paper, we use the smart grid building model of

the power system presented in [5]. The interconnection of

power system components, including a governor, turbine and
generator, is shown in the block diagram in Figure 1. In
the diagram, δPC is a control input which acts against an
increase or decrease in power demand to regulate the system
frequency, and δPD denotes fluctuations in power demand,
modeled as an exogenous input (disturbance).

4.1 Two-Area System Model
We consider a two-area interconnected system consisting

of two buses connected by a tie line with reactance Xtie. The
power flow on the tie line from area 1 to area 2 is denoted
by Ptie. A positive δPtie represents an increase in power
transfer from area 1 to area 2. This is equivalent in effect to
increasing the load of area 1 and decreasing the load of area
2. Each area consists of the subsystems shown in Figure 1.
Next, we present the mathematical model of the two-area
system. Note that for states, x, the superscript refers to the
control area (i.e., i = 1, 2), and the subscript indexes the
state in each area.

dxi
1

dt
=

(−Dixi
1 + δP i

M − δP i
D − δP ij

tie + δP i
anc)

Mi
x

(3a)

dxi
2

dt
=

(xi
3 − xi

2)

T i
7

,
dxi

3

dt
=

(xi
4 − xi

3)

T i
6

,
dxi

4

dt
=

(xi
5 − xi

4)

T i
5

(3b)

dxi
5

dt
=

(P i
GV − xi

5)

T i
4

,
dxi

6

dt
=

(xi
7 − xi

6)

T i
3

(3c)

dxi
7

dt
=

(−xi
7 + δP i

C − xi
1/R

i)

T i
1

,
dxi

8

dt
= x

i
1 (3d)

where δP iM and P iGV are given by δP iM = Ki
1x
i
5 + Ki

3x
i
4 +

Ki
5x
i
3 +Ki

7x
i
2, and P iGV = (1− T2/T3)x

i
6 + (T2/T3)x

i
7. D is

the damping coefficient, M is the machine inertia constant,
R is the speed regulation constant, Ti’s are time constants
for power system components, and Ki’s are fractions of total
mechanical power outputs associated with different operat-
ing points of the turbine. In formulation (3), the first state
represents the frequency increment, xi1 = δωi. All state dy-
namics are derived using the mathematical model of each
subsystem, as presented in [5]. The state space model (3)
can be discretized and written in compact form as

x[k + 1] = Ax[k] +B1usc[k] +B2uanc[k] + Ed[k]. (4)

We use this state update equation in Section 4.3, where
we present the MPC formulation. Input signals are usc =
[δP 1

C δP 2
C ]
T , the ancillary inputs are uanc = [δP 1

anc δP 2
anc]

T ,
and the exogenous inputs (i.e. disturbances or variations in
demands) are denoted by d = [δP 1

D δP 2
D]
T .

4.2 MPC for Automatic Generation Control
In the classical AGC, a simple PI control is utilized to

regulate the frequency of the grid. The Area Control Er-
ror (ACE) is defined as ACEi = δP itie+βixi1, where δP

i
tie =

P itie − P itie,scheduled, and βi is the bias coefficient of area i.

The standard industry practice is to set the bias βi at the
so-called Area Frequency Response Characteristic (AFRC),
which is defined as βi = Di + 1/Ri. The integral of ACE is
used to construct the speed changer position feedback con-
trol signal (δP iC). In other words, the control input δP iC
is given by δP iC = −Kixi9, where Ki is the feedback gain

and
dxi9
dt

= ACEi. We propose a methodology for the ancil-
lary services complementing the primary control of AGC, as
described in 4.3.

4.3 MPC for Ancillary Services
We present an MPC scheme to control the ancillary service

to improve on the classical AGC practice. This optimization-
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based control framework is utilized as a higher-level con-
trol in a “hierarchical” scheme on top of the low-level clas-
sical AGC control [5]. We require that uanc satisfies uanc ≤
uanc[k + j|k] ≤ uanc for some uanc < 0 and uanc > 0, and a
maximum ramp constraint:

|uanc[k + 1]− uanc[k] ≤ λ, for some λ > 0. (5)

At each time step k, we thus solve the following problem:

min
Uanc[k]

J(ACE, Uanc) (6)

s.t. x[k + j + 1|k] =
Ax[k + j|k] +B2uanc[k + j|k] + Ed[k + j|k]

uanc ≤ uanc[k + j|k] ≤ uanc

|uanc[k + j + 1|k]− uanc[k + j|k]| ≤ λ

where

Uanc[k] = (uanc[k|k], uanc[k + 1|k], . . . , uanc[k +H − 1|k])
is the vector of inputs from k to k+H andH is the prediction
horizon. The notation x[k + j|k] denotes that predictions
of x for future times k + j are obtained at each time step
k. All the constraints of problem (6) should hold for j =
0, 1, . . . , H − 1.

The cost function proposed in [5] minimizes the 	2 norm
of the ACE signal in areas i = 1, 2, by exploiting the an-
cillary service available in each area, while taking into ac-
count the system dynamics and constraints.. We propose to
constrain the ACE signal to satisfy a specified set of STL
properties, while minimizing the ancillary service used by
each area. Thus we defined J(ACE,Uanc) = ‖Uanc‖�2 =
∑2
i=1

∑H−1
j=0 (U ianc[k + j|k])2, and an STL formula ϕ which

says that whenever |ACEi| is larger than 0.01, it should be-
come less than 0.01 in less than τ s. More precisely we used
ϕ = �(ϕt) with

ϕt = ¬(|ACE1| < .01))⇒ ( �[0,τ ](|ACE1| < .01)

∧ (¬(|ACE2| < .01))⇒ ( �[0,τ ](|ACE2| < .01)
(7)

We encoded this formula and added the resulting constraints
to the MPC problem as described in the previous sections,
and solved it for different values of τ . Results are shown
in Figure 2, and demonstrate that the STL constraint is
correctly enforced in the stabilization of the ACE signal.

5. DISCUSSION
This paper presented work in progress on framing STL

synthesis for controllers using an MPC formulation. The
idea is to encode STL formulas as MILP constraints that can
be efficiently solved by the same solver used to implement
the model predictive control. A preliminary implementation
was applied to a power systems case study. The continua-
tion of this work will include a better characterization of
the MPC problem feasibility, proof that the resulting con-
troller enforces the STL specification, improved soundness
and efficiency of encodings (especially in the case of liveness
properties), and applications to further case studies.
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controller correctly enforces the stabilisation delay
in both cases.
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