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Non-random patterns in viral diversity
Simon J. Anthony1,2,3, Ariful Islam3, Christine Johnson4, Isamara Navarrete-Macias1, Eliza Liang1,3, Komal Jain1,

Peta L. Hitchens4,5, Xiaoyu Che1, Alexander Soloyvov1, Allison L. Hicks1, Rafael Ojeda-Flores6,

Carlos Zambrana-Torrelio3, Werner Ulrich7, Melinda K. Rostal3, Alexandra Petrosov1, Joel Garcia1,

Najmul Haider8,9, Nathan Wolfe10, Tracey Goldstein4, Stephen S. Morse2, Mahmudur Rahman11,

Jonathan H. Epstein3, Jonna K. Mazet4, Peter Daszak3 & W. Ian Lipkin1,2

It is currently unclear whether changes in viral communities will ever be predictable. Here we

investigate whether viral communities in wildlife are inherently structured (inferring

predictability) by looking at whether communities are assembled through deterministic (often

predictable) or stochastic (not predictable) processes. We sample macaque faeces across

nine sites in Bangladesh and use consensus PCR and sequencing to discover 184 viruses from

14 viral families. We then use network modelling and statistical null-hypothesis testing to

show the presence of non-random deterministic patterns at different scales, between sites

and within individuals. We show that the effects of determinism are not absolute however, as

stochastic patterns are also observed. In showing that determinism is an important process in

viral community assembly we conclude that it should be possible to forecast changes to some

portion of a viral community, however there will always be some portion for which prediction

will be unlikely.
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T
he recent Ebola virus outbreak in West Africa1,2 is a timely
reminder that we have never successfully predicted the
emergence of a new infectious disease in people3. Perhaps

precluded from doing so (at least in part) by historical
deficiencies in our knowledge of global viral diversity in
wildlife4–6 or the pathways and mechanisms of spillover and
spread7–9, the threat that infectious diseases now increasingly
pose to public health4–6 and economic stability10–12 has excited
efforts to establish a predictive understanding of emergence3,4,13.
One area of ‘prediction’ that would be particularly useful is
the ability to forecast how viral diversity might respond to
environmental drivers of disease emergence, for example land-use
change. This would allow us to test response options designed
to mitigate, or adapt to, the impact of those changes and
potentially reduce the risk of zoonotic emergence14. Being able to
predict such changes however assumes that viral diversity is
inherently predictable. It assumes that viral communities are
built and controlled through deterministic and inherently
ecological processes that can be identified and understood, and
we do not yet know whether this is true. If viral diversity in
wildlife is inherently random (stochastic), then predicting the
outcome of an environmental perturbation would be impossible,
as many have long believed15. But if it is not random, if it is
deterministically structured (or at least structured to some
degree) then predicting changes in viral diversity might indeed
be possible.

Here, we apply established ecological theory on macrobial
species distributions (for example, plants and animals)16,17 to
viral assemblages of the rhesus macaque and look for evidence of
deterministic and stochastic effects in the structure of these
communities. We adopt the null hypothesis that virodiversity can
be readily explained by random processes (chance colonisation or
extinction and ecological drift) and look for departure from
random via the presence of discernible pattern to identify and
subsequently test for the presence of determinism18,19. Our data
indicate that viral communities within the macaque are
assembled though largely ecological (deterministic) processes
and should therefore be inherently predictable. However, we also
show that stochastic processes contribute to patterns of viral
diversity, suggesting that changes to some portion of the
community will never be predictable.

Throughout the paper we use the terms ‘determinism’ to refer
to the identification of non-random patterns and ‘stochastic’
to refer to any ecological process that results in patterns
of diversity, relative abundance and composition that are
indistinguishable from random chance alone18. We clarify
that it is not our intention at this time to determine the
processes behind non-randomness, as these might involve a
variety of either neutral processes assuming ecological
equivalence17 or processes based on ecological niche
differentiation16.

Results
Virodiversity of the rhesus macaque in Bangladesh. Using a
combination of consensus polymerase chain reaction (cPCR) and
high-throughput sequencing (HTS), we characterised the faecal
virodiversity of 458 rhesus macaques sampled across nine urban
sites in Bangladesh (Fig. 1) and identified 184 unique viruses from
14 families (Fig. 2a and Supplementary Table 1). We identified
37/184 viruses by cPCR and 147/184 by HTS — highlighting
the usefulness of combining the high sensitivity of PCR with the
broad reactivity of HTS. We make particular note of an
unprecedented diversity of a small bipartite picobirnaviruses
(PbVs), which accounted for 120 of the 184 viruses found in
these animals (Fig. 2b). Importantly, we make no assertion that

all 184 viruses are singularly associated with macaques,
or that true infection has occurred. Indeed, several human viruses
were detected during this discovery effort (Supplementary
Table 1) suggesting a multihost ecology that would be readily
explained by the long and close association between people and
macaques at each of our sampling sites21,22. Instead, we use
genetic detection to demonstrate inclusion in the viral
community to which these macaques are exposed, even if the
presence of a virus is the result of dispersal from another
host species or contribution to the community is low
because of rarity23. For purposes of definition, we consider a
‘unique virus’ to be a monophyletic cluster of sequences that is
distinct from its nearest neighbour by non-overlapping genetic
identities24.

Non-parametric viral discovery curves were used to assess the
bounds of the viral community (total number of viruses) and
assess the completeness of our discovery effort24–26. These curves
indicated that the community contains a total of 283 viruses
(Fig. 2c). We estimate therefore that the 184 viruses detected in
our study represent B65% of the viruses that exist in these
macaques. Plotting the rank abundance of the observed
virodiversity showed that only a few of these viruses dominated
the community, whereas most occurred only rarely (Fig. 2d). This
uneven distribution is a pervasive pattern characterising
macrobial communities27, and lends support to the notion of
universal or unifying laws of assembly that apply as equally to
microbes as they do to communities of plants and animals23.
Assuming that the remaining (undiscovered) virodiversity was
not detected because of rarity (that is, exists within the long tail of
the rank abundance curve) and that rare viruses contribute little
to the community27, we suggest that sufficient diversity has been
detected with which to explore the structure of this naturally
occurring community.
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Figure 1 | Distribution of the nine macaque sampling sites. Number of

individuals sampled at each site is indicated. All sites are urban/peri-urban,

with known contact between macaques and people, livestock and domestic

animals (though frequency of contact is not assessed here). Number of

samples collected is not consistent across sites, however sampling effort

(number of collection days per site) is the same. Further description of each

site is provided in Supplementary Table 3.
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Evidence of determinism driving viral community structure. A
two-mode affiliation network28 was used to illustrate the
connectivity between viruses and their hosts. This revealed a
dominant (though not exclusive) pattern of site-specific diversity
consistent with determinism (Fig. 3a). To ensure that the patterns
observed here were not simply the result of chance, null models19

were incorporated into an assessment of b-diversity29 (difference
in viral composition between sites) and used to confirm that
individual macaques mostly shared viruses with other individuals
from the same site, and only rarely with those located elsewhere
(Fig. 3c and Supplementary Fig. 1). By applying phylogenetic
measures of b-diversity (Beta Nearest Taxon Index30,31) to a
subset of the community (applied to the 120 PbVs) we were also
able to infer that these non-random patterns may be emerging
due to dispersal limitation (Supplementary Fig. 2).

To verify that dispersal (a largely stochastic process) was
not responsible for the observed distributions, we correlated
b-diversity (Jaccard index) with distance between sites to look
further at the potential influence of dispersal limitation, and
found no significant association (Mantel test: P¼ 0.807; Principle
Coordinates of Neighbour Matrices (PCNM)31–33: � 0.352,
P¼ 0.134). We also tested for dispersal limitation by looking at
whether PbV sequences from the same site were more related to
each other than to viruses from other sites and whether this
relatedness decreased with increasing site distance. When ‘same-
site’ (distance¼ 0 km) was included in the analysis, the
association was shown to be significant for both genotype 1
(G1) and genotype 2 (G2) PbVs (Spearman’s rank correlation
test; G1: r¼ � 0.034; Po0.001; G2: r¼ � 0.186; Po0.001).
However when removed to test the strength of the effect, the
significance of the correlation was lost (G1: r¼ � 0.209;
P¼ 0.222; G2: r¼ � 0.149; P¼ 0.448). These results confirm
that while there is substantial dispersal among macaques within a
population, there is very limited dispersal among populations —
regardless of geographic distance separating them. Evidence of

multiple recombination events between viruses detected at
different sites (Supplementary Table 2) and the natal migrations
of male macaques seeking new groups22,34 both demonstrate
connectivity between these populations, and suggest that these
viruses are not (completely) limited in their ability to disperse.
However, the frequency at which viruses become established in
new populations via dispersal is seemingly low. Although we
interpret these patterns of b-diversity as the result of
deterministic processes based on our definition (that is, non-
random), we also acknowledge that very low, or very high, rates
of dispersal can lead to non-random patterns.

Determinism was also observed on more local scales, within
sites and individuals. Using the PbV data (again, because of its
presence at all sites) we looked to see whether there was a limit to
how genetically similar two co-occurring viruses could be.
The maximum observed identity between any two PbV sequences
found in the same individual was 85.8% for G1 viruses, and 88.7%
for G2 viruses (Fig. 3d). In contrast, the maximum identity
for any two non-identical sequences found in different
individuals at the same site was 99.8% (for both G1 and G2).
This pattern was shown to be significantly different from chance
(Wilcoxon rank-sum test; Po0.001) based on 1,000 random
selections of g-diversity (restricting a-diversity to the richness
observed), and was consistent when stratified by site. It strongly
suggests deterministic mechanisms do exist to limit the
co-occurrence of closely related viruses in the same animal, and
while the specific mechanisms are unknown we postulate they
could well include virus:virus interactions such as competitive
exclusion (analogous to the theory of limiting similarity16)
or virus:host interactions like immune recognition. We qualify
that this conclusion is dependent on the assumption that a
correlation exists between phylogenetic relatedness and ecological
similarity30 (for a competitive process) or host response
(for immune recognition), and while we see no reason to doubt
the validity of this assumption we acknowledge that little is
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Figure 2 | Virodiversity of rhesus macaques in Bangladesh. (a) Diversity of viruses discovered by family. (b) Maximum likelihood phylogeny of

picobirnavirus diversity. Although viruses from many families were discovered, we have selected to show the PbV tree because of the substantial
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detected in this study.
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currently known about picobirnavirus ecology and host
interactions. We therefore suggest that additional data exploring
whether ecological similarity increases with genetic similarity will
now be required to confirm this relationship.

The potential for virus:virus interactions was investigated
further using a one-mode network that showed the connectivity
of viruses based on the relative frequency of host sharing (Fig. 4).
Several biological associations were apparent, including that
of adenovirus MmAdV-5 with dependoviruses MmAaV-1, 2
and 3. Named dependoviruses (or adeno-associated viruses)
because of their requirement for a ‘helper virus’, these small
DNA viruses are well known to use adenovirus to satisfy their
replicative deficiencies35. The strength of this association was
tested using PAIRS24,36, and the frequency of their co-occurrence
shown to be significantly greater than expected by chance
(C-score; Po0.001). The network also identified significant
co-occurrence between MmAaV-1 and the herpesvirus
MmHV-1 (P¼ 0.002). Herpesviruses are also known to satisfy
the helper requirements of dependoviruses35. Together these
results demonstrate (and to some degree, validate) the usefulness
of networks in understanding biological relationships in
viral communities. In total, 35/184 viruses showed statistically
supported (P¼o0.05) positive co-occurrence with another virus,
while 12/184 had negative associations. These results demonstrate
that deterministic mechanisms exist to both promote and prevent
the co-occurrence of viruses in the community.

Stochastic distributions. Not all distributions could be attributed
to determinism. MmAdV-5 was shown to significantly co-occur
with various dependoviruses, but no discernible pattern could be

identified and tested to explain its own distribution (that is, the
presence of MmAdV-5 would explain the presence of MmAaV-1,
2 and 3, but perhaps not vice versa). The same is true for simian
foamy virus (MmSFV) and the two HVs (MmHV-1 and 2),
which like MmAdV-5 were detected at multiple sites without
any apparently deterministic signature (Fig. 3b). We therefore
attribute the distribution of these viruses to stochastic processes
but acknowledge that scale or incomplete sampling might be
obscuring determinism18.

Discussion
Our results suggest that viral communities in the rhesus macaque
are heavily influenced by deterministic factors, and therefore
likely to be inherently structured. The effects of determinism were
not absolute however, as stochastic processes also appeared to
contribute to virodiversity. As such, we conclude that it should be
possible to forecast changes to a significant portion of the viral
community in a given location, but suggest there will also be
some portion for which prediction will always be unlikely.
We qualify that our study only demonstrates that changes in
viral diversity should eventually be predictable, based on the
assumption that non-random patterns in biological systems infer
inherent predictability16,18,19,23,37, and based on the assumption
that our data is representative of the entire community (that is,
including those viruses that were not discovered, and assumed to
be rare). It does not, and is not intended to, present a framework
for how this prediction might be achieved. Instead, this study
contributes to the theory that will support the future development
of these probabilistic models, describing how the distribution of
viruses is likely to change in response to different environmental
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or host factors. To achieve this, we advocate investigating the
specific mechanisms associated with determinism (for example,
the host:host; host:virus or virus:virus interactions) as well as the
continued and systematic description of wildlife virodiversity
through time and space. We also acknowledge that this finding
will not lead directly to predictions of disease emergence, however
we suggest it does provide the basis on which to test the
hypothesis that drivers such as land-use change or climate
(among others) promote disease emergence through their effect
on the structure of the zoonotic pool.

Methods
Sample collection. Faecal samples (n¼ 458) were collected non-invasively from
free-ranging rhesus macaques (Macaca mulatta) over a 2-month period (February/
March-2013) under ethical approval from the International Centre for Diarrhoeal
Disease Research, Bangladesh (icddr, b; protocol: 2008-074) and UC Davis
(protocol: 16048). Location of each site and a description of the macaque
populations are provided in Supplementary Table 3. Sampling effort was consistent
for all sites (3 days per site). All samples were collected immediately after
defecation and stored in liquid nitrogen within 10 min of collection, until transfer
to � 80 �C for storage.

Sample processing and viral discovery. Samples were viral particle enriched
through (i) filtration to remove cellular debris and bacteria and (ii) nuclease
treatment to remove unencapsulated RNA/DNA. For this, samples were thawed on
ice and 500ml of viral transport medium (Viral Transport Medium (VTM); BD
Universal Viral Transport System) added, vortexed to homogenise, and centrifuged
for 5 min at 8,000g. Supernatant was transferred to an Ultrafree-MC HV
Centrifugal Filter 0.45 mM (Milipore Cat. No. UFC30HVNB) and centrifuged for
3 min at 12,000g. The flow (B130–150ml) was collected and 1 ml RNase A
(Ribonuclease protection assay Grade, 1 mg ml� 1, Life Technologies Cat. No.
AM2272) added and incubated at room temperature for 15 min. If the flow volume

was close to 200 ml then 2 ml of RNase A was used. Following RNase treatment,
1.5 ml of MgCl2 (1M), 4 ml of Turbo DNase (2 U ml� 1, Ambion Cat. No. AM2238)
and 1 ml of Benzonase. (Novagen, Cat. No. 70664-3), were added, mixed gently and
incubated at room temperature for 45 min. Roche MagNa Pure lysis solution was
added immediately to inactivate nucleases and lyse viral particles, and total nucleic
acids extracted using the Roche MagNA Pure 96 platform according to the man-
ufacturer’s instructions.

Samples were processed for viral detection and discovery using both consensus
PCR and next-generation sequencing. cPCR, allows the ‘universal’ amplification of
sequences from viruses within a given family or genus, and the subsequent
discernment of viral strains within. Total nucleic acids was reverse transcribed into
cDNA using SuperScript III (Invitrogen) according to the manufacturer’s
instructions, and a total of 41 assays representing 27 viral families or genera used
for the detection of viral sequences. Two synthetic plasmids were constructed for
use as ‘universal controls’ to confirm successful execution of each assay and check
for contamination (Supplementary Fig. 3). Detailed protocols for all cPCR assays
used are provided in the Supplementary Methods and Supplementary Table 4.
Bands of the expected size were excised from 1% agarose, cloned into Strataclone
PCR cloning vector, and 24 white colonies sequenced to confirm detection and
look for co-occurring viruses.

To guard against the potential of cPCR to miss viruses that are divergent or not
among the targeted viral families, HTS was also applied to all samples. Although
generally less sensitive than PCR, HTS allows for the capture of a very broad
diversity of viruses because it amplifies all viral nucleic acids present. Samples were
processed in pools of eight, and libraries prepared for both the Ion Torrent (PGM;
1 million reads per pool) and Illumina (High-Seq; 10 million reads per pool)
platforms, according to each of the manufacturer’s instructions. Sequence reads
were aligned against host reference databases to remove host background using
bowtie2 mapper, and host-subtracted reads primer trimmed and filtered based on
quality, GC content and sequence complexity. The remaining reads were de novo
assembled using Newbler (v2.6) for PGM data and MIRA (v4.0) for Illumina.
Contigs and unique singletons were subjected to homology search using MegaBlast
against the GenBank nucleotide database. Sequences that showed poor or no
homology at the nucleotide level were blasted using BLASTx against the viral
GenBank protein database. Viral sequences from the BLASTx analysis were
subjected to a homology search against the GenBank protein database to correct for
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biased e-values. Sequences of plant viruses or insect viruses from viral families that
have (to date) never been associated with infection of any vertebrate species were
not considered in this study. All other viral sequences identified by HTS were
subsequently confirmed by PCR and all samples re-screened individually to assess
sequence distribution in all macaques (as we assume the lower sensitivity of HTS
may produce false negatives). Where substantial diversity was observed (for
example, PbVs), new cPCR assays were designed based on the HTS data, and used
to re-screen all pooled samples individually to detect the full diversity present.

Network, phylogenetic and statistical analyses. A presence/absence matrix was
constructed to show the distribution of viruses across all samples, and used for
network and statistical analyses as described in the main text. In summary,
A bipartite (two-mode) affiliation network was generated for virus–macaque host
matrix data, stratified by site name, and a unipartite (one-mode) virus:virus net-
work was generated to display the connections between viruses. Network analyses
and visualisation were conducted in the network analysis platform Gephi, using the
force-directed algorithm ForceAtlas2 (ref. 28). Significance of pairwise associations
was determined using PARS24,36. All other statistical analyses were performed
using MATLAB (Mathworks, Natick USA) version R2013a. Discovery curves were
generated in R package iNEXT. Phylogenetic analyses of sequence data were
performed using MUSCLE38 for initial alignments, followed by manual refinement
in Se-Al v2.0a11 (ref. 39). Maximum Likelihood trees were reconstructed using
PAUP* (ref. 40) and best fitting models selected using jModeltest v2.1.5 (ref. 41).
Trees were annotated using iTOL (v2.1)42. Measures of phylogenetic b-diversity
were performed by first calculating the genetic similarity between every two
different PbV sequences. This similarity matrix was then transformed into a
distance matrix using the method proposed by Dray et al.31, which was then used
to calculate the bMNTD (Beta Mean Nearest Taxon Distance)30. Results were
compared with a null distribution of bMNTD, where PbV taxa were randomised
across sites with a fixed relative abundance and recalculated 999 times. Beta
Nearest Taxon Index values were then calculated as the number of s.d. that the
observed bMNTD is from the mean of the null distribution.
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