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Abstract

Path Planning and Communication Strategies to Enable Connectivity

in Robotic Systems

by

Arjun Muralidharan

There has been considerable interest in the area of communication-aware robotics in re-

cent years, where the sensing, communication and motion objectives of robotic systems

are jointly optimized. One particular open problem in this area is that of exploiting the

mobility of unmanned vehicles in order to improve or satisfy communication objectives

in realistic communication environments. Progress in this field could not only affect ro-

bust networked operation of unmanned vehicles but also would improve communication

systems of the future (e.g. 5G), thus contributing to both areas of robotics and com-

munications. This mobility-enabled connectivity and communication is the main area of

interest in this dissertation.

This dissertation is focused on path planning and communication strategies for robotic

systems seeking to satisfy certain communication objectives in realistic communication

environments experiencing path loss, shadowing and multipath fading. We consider

realistic communication environments by leveraging and incorporating a probabilistic

channel prediction framework that allows the robots to predict the channel quality at

unvisited locations. This thesis then contributes to the area of mobility and connectiv-

ity through three main topics 1) energy-optimal distributed beamforming, 2) finding the

statistics of the distance traveled until connectivity, and 3) path planning for connectivity.

First, in energy-optimal distributed beamforming, we utilize the motion of a group of ini-

tially unconnected mobile robots to enable new forms of connectivity. More specifically,
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we co-optimize their locations and transmission powers to cooperatively enable connec-

tivity through distributed beamforming. We further bring a foundational theoretical

understanding to robotic distributed beamforming. Next, in finding the statistics of the

distance traveled until connectivity, we analytically characterize the probability density

function of the distance traveled by an initially unconnected robot until it gets connected

to a remote node as it moves along a given path. We utilize tools from the stochastic

differential equation literature to develop this characterization. Finally, in path planning

for connectivity, we actively plan the path of a mobile robot such that it finds a connected

spot with a minimum expected traveled distance (i.e., energy). The scenario considered

in this part is in fact a more general one, and tackles the problem of path planning on a

graph to minimize the expected cost incurred until the successful completion of a task.

This framework has applications beyond path planning for connectivity, in areas such

as celestial body imaging, human-robot collaboration, and search scenarios. We bring

a foundational understanding to this problem. We show how this problem is inherently

hard to solve (NP-complete) and also propose a path planner, based on a game-theoretic

framework, that provides an asymptotic optimality guarantee.

Overall, this thesis proposes novel strategies for utilizing the mobility of unmanned ve-

hicles and enabling connectivity while considering the underlying energy constraints. We

also provide a rigorous theoretical analysis of the aforementioned problems using a wide

range of tools from communications theory, game theory, optimal control and time series

literature. Moreover, through extensive realistic numerical studies using real channel

parameters/data, we show the efficiency and performance of our proposed approaches.
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Chapter 1

Introduction

Networked robotic systems have been envisioned to carry out a wide range of tasks such

as search and rescue, surveillance, exploration and sensing of the environment, agricul-

ture, and emergency response [5–10]. Maintaining proper connectivity either within the

network or between the network and a remote station is a key factor in successfully car-

rying out many of these tasks. Moreover, for robotic systems engaged in gathering data,

establishing connectivity with a remote station is essential for the transfer of the collected

information. The robots may not be able to establish connectivity to the remote station

at their current location, and may need to move to establish a connection, exploiting the

spatial variations of the channel quality. Thus, the mobility of unmanned vehicles can

be exploited to establish the needed connectivity among themselves or to outside nodes.

Utilizing mobility for communication also has potential applications in the communi-

cation systems of the future, e.g., 5G. For instance, unmanned vehicles could be utilized

to provide connectivity to areas with dynamic communication loads. As a motivating ex-

ample consider the scenario of a large warehouse or farm that is sparsely populated, i.e.,

occupied by a few humans with communication needs. In this setting it would be more

feasible to have a few unmanned vehicles, serving as mobile access points and satisfying

the communication requirements of the area, rather than having a dense deployment of

static access points. The unmanned vehicles can use their mobility to dynamically posi-
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Introduction Chapter 1

tion themselves such that they provide the desired connectivity to the end users. Other

examples of such demanding spatially-varying and time-varying communication loads are

during events such as parades and sports games. Another possible application of such

mobility-enabled communication in communication systems is in the use of unmanned

aerial vehicles as aerial base stations [11–14]. In all these scenarios, the mobility of un-

manned vehicles can be used to provide communication services. This mobility-enabled

connectivity and communication is the main focus of this dissertation.

An important consideration when planning the control and communication strategies

for the robots is accounting for realistic communication channels. Much of the existing

literature on networked robotics assumes over-simplified models of connectivity such as

disk models (where robots are connected if the distance between them is smaller than a

given threshold) or path-loss only models. Such over-simplified models do not accurately

capture the true nature of realistic communication channels, and the control strategies

developed using them experience significant performance degradation when implemented

in practice. It is a goal of this thesis to plan for the operations of the robot in realistic

communication environments experiencing path loss, shadowing and multipath fading.

Moreover, in order for an unmanned vehicle to effectively exploit it’s mobility to establish

connectivity, it must be able to predict the channel quality reliably at unvisited locations.

We use the realistic channel prediction framework, proposed in [2, 3], to predict the

channel quality at unvisited locations based on a few prior measurements collected in

the environment. In this dissertation, we will utilize this prediction framework to design

communication and motion strategies for robots operating in such realistic, harsh and

complex communication environments.

Another key consideration when dealing with unmanned vehicles is their energy con-

sumption. These vehicles typically have a limited energy budget and thus energy ef-

ficiency can be critical. Energy efficiency is thus another important theme that runs

2



Introduction Chapter 1

through this dissertation.

Overall, the focus of this dissertation is on the following question: how best to uti-

lize the mobility of unmanned vehicles to enable and optimize communication? We are

interested in path planning and communication strategies for robots seeking to satisfy

certain communication objectives, while considering 1) realistic fading communication

environments, and 2) energy efficiency. We will explore this area in this dissertation

through three main topics:

� Energy optimal beamforming using unmanned vehicles : A group of unmanned ve-

hicles use their mobility to enable new forms of connectivity. More specifically, the

robots cooperatively enable connectivity to a remote station through distributed

beamforming, while being energy efficient.

� Statistics of the distance traveled until connectivity : We characterize the probability

density function of the distance that will be traveled by an initially unconnected

robot until it gets connected, as it moves along a path. This characterization allows

the robot to assess its distance to connectivity and plan accordingly.

� Path planning for minimizing the expected cost until success/connectivity : We

tackle the general problem of path planning on a graph where each edge has a

cost associated with it, and each node has a probability of success (with respect

to some task) associated with it. We plan a path on the graph that minimizes the

expected cost until success. An immediate application of this, relevant to the main

focus of this thesis, is for planning the path of an unmanned vehicle to minimize

the expected traveled distance until it gets connected to the remote station.

Our work not only provides an analytical characterization of the impact of mobility on

connectivity, but also describes how to utilize this mobility to enable connectivity as well

3



Introduction Chapter 1

as new communication paradigms. Each topic will be discussed in detail in a separate

chapter.

We first review the current state-of-the-art in the field of communication-aware robotics

and mobility-enabled communication. We will discuss the literature relevant to each of

our main topics in more detail later.

Literature survey:

Communication-aware robotics, where a group of robots carry out their task while

being aware of the communication requirements, has been the focus of considerable re-

search interest in recent years. There has been work on communication-aware robotics

in diverse application areas such as coverage [15–17], surveillance [18–20], flocking and

rendezvous [21,22], sensing [23,24], target tracking [25], and task allocation [26,27]. For

instance, [15] proposes a distributed control scheme to maximize the coverage area of a

robotic network while ensuring reliable communication between the robots. In [18], a

group of mobile robots search an area while periodically guaranteeing connectivity of the

network within a fixed interval, and in [21], traditional control problems of rendezvous,

flocking and formation are tackled while being aware of the connectivity of the network.

In [27], a distributed task allocation framework is proposed that can also handle dynamic

communication network topologies. However, the work in [15, 18, 21, 27] considers sim-

plistic models of connectivity and communication. In contrast, in [16, 19, 20, 25, 28, 29],

a realistic communication environment is considered. In [16], a number of mobile robots

periodically cover a set of points of interests, and in [19], a team of mobile robots search

an area to detect an unknown number of targets. In both scenarios, the networked oper-

ation of the robots are carried out in realistic communication environments. In [28, 29],

a robot co-optimizes its motion speed and communication transmission rate to a remote

station as it moves along a trajectory.

On the mobility-enabled communication side, there has been work on using the mo-
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bility of unmanned vehicles for point-to-point communication [30–32], relaying and rout-

ing [33–37], beamforming [38–40], data gathering and muling [41–45], and UAV-aided

communication coverage [11–14]. For instance, in [30], robots optimize their motion to

spend more time at locations where the channel is good for improved communication per-

formance, and in [31], an energy-efficient trajectory is designed for the reliable transfer

of information to a remote station. In [33], robots utilize mobility to maintain an opti-

mal communication chain between a source and a destination node assuming a simplified

path-loss only model, while in [34], a number of nodes utilize their mobility to form a

communication relay network using a more realistic communication model. In [42–44]

mobile robots act as data mules collecting data from sources and transmitting them to

a remote station. The robots utilize their mobility to enable data gathering and the

corresponding optimized trajectories are generated. In [13], unmanned aerial vehicles

(UAVS) are utilized as aerial base stations, and the problem of their optimal placement

is considered.

We next discuss each of the three aforementioned topics of this dissertation, where

we place our work in context by reviewing the relevant literature, and summarize our

contributions.

1.1 Energy Optimal Distributed Beamforming using

Unmanned Vehicles

In Chapter 3, we consider a scenario where a team of unmanned vehicles utilize their

mobility to cooperatively enable connectivity to a remote station. We are interested in an

energy-aware distributed transmit beamforming using unmanned vehicles. Consider the

case where a number of unmanned vehicles need to establish connectivity to a remote

5
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node but they are in a poorly connected area. Can they cooperatively generate a strong

link? More specifically, the unmanned vehicles are tasked with distributed transmit

beamforming (virtual antenna array placement and design), in order to cooperatively

transmit information to a remote station in realistic communication environments while

minimizing the total energy consumption including both motion and communication

energy costs. In this manner, the unmanned vehicles can achieve a strongly-connected

link with a minimum energy consumption. Fig. 1.1 shows an illustration of distributed

robotic transmit beamforming. We are then interested in characterizing the optimal

motion and communication strategies of the robots, including the optimization of the

transmit power and robot paths. Fig. 1.2 shows an example of such a scenario.

Traditional distributed transmit beamforming is a cooperative communication strat-

egy where a number of fixed transmitters cooperate to emulate a virtual centralized

antenna array. For instance, consider the case where a node needs to transmit infor-

mation to a remote station. If the corresponding link quality is not good, successful

communication may not be possible. Instead, a number of transmitters can perform

transmit beamforming, which means co-phasing and properly weighing their transmitted

signals to communicate the same message while maintaining the same total communi-

cation power. In this manner, transmit beamforming creates an equivalent strong link

to the receiving node. Transmit beamforming was originally proposed in the context of

multiple co-located antennas for improving transmission quality of communication sys-

tems. More recently, it has been extensively studied in the context of fixed nodes that are

spatially distributed over a given area [46, 47]. Then, the nodes align their transmission

phases such that the wireless signals merge constructively at the remote station, thus

providing dramatic gains in the signal to noise ratio (SNR). Using unmanned vehicles

creates new possibilities for distributed transmit beamforming by enabling the trans-

mitters to position themselves in better locations for beamforming, thus improving the

6
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Receiving

node

Figure 1.1: Distributed robotic transmit beamforming. The robots can cooperatively
generate a strong communication link by optimizing their locations.

overall performance significantly. However, several challenges for motion and communi-

cation co-planning need to be addressed before realizing this vision, which is the main

motivation for Chapter 3.

As compared to the existing literature on distributed beamforming, most work are

not concerned with unmanned vehicles and the resulting challenges in terms of path

planning and motion energy. In [38–40], where robots act as collaborative relay beam-

formers, motion energy-related issues are not considered, resulting in a different problem

formulation. Moreover, there is no channel learning and prediction. Finally, the motion

of the relays is myopic, and they can get stuck in a local minimum. In [48], the robots self

organize to form a distributed pattern for beamforming. However, an unrealistic path

loss-only model is considered and the operation is not energy-aware.

Contributions: In Chapter 3, we use the mobility of unmanned vehicles to create

new possibilities for traditional distributed transmit beamforming by enabling the trans-

mitters to position themselves in better locations for beamforming, thus improving the

overall performance significantly. We are interested in the energy-aware (both motion

and communication energy) co-optimization of robotic paths and transmission powers

for cooperative transmit beamforming under a reception quality requirement. Chapter 3

7
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Figure 1.2: Distributed robotic beamforming – The robots move to locations (marked
by ‘x’) better for satisfying the cooperative connectivity requirement, while minimizing
the total energy consumption (both motion and communication).

is different from the existing work on cooperative beamforming in that it deals with the

co-optimization of motion and communication strategies, while considering 1) the total

energy consumption, 2) channel learning and prediction in realistic communication envi-

ronments, and 3) the coupled decision making that arises when dealing with multi-agent

systems.

We first consider the case where the channel is known. For this case, we propose an

efficient approach for getting arbitrarily close to the optimum solution, which involves

solving a series of multiple-choice knapsack problems. We then extend our analysis and

methodology to the case where the channel is not known. The robots then probabilisti-

cally predict the channel at unvisited locations and integrate it with path planning and

decision making for energy-aware distributed transmit beamforming. Finally, we exten-

sively confirm our proposed approach with several simulation results with real channel

8
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parameters. Our results highlight the underlying trends of the optimum strategy and

indicate a considerable energy saving.

1.2 Statistics of the Distance Traveled until Connec-

tivity for Unmanned Vehicles

In Chapter 4, we consider a scenario where a robot needs to establish connectivity

with a remote operator or another robot, as it moves along a given path. We are inter-

ested in answering the following question: what is the distance traveled by the robot along

the path before it finds a connected spot? More specifically, we are interested in char-

acterizing the statistics of the distance traveled along the path before it gets connected,

in realistic channel environments experiencing path loss, shadowing and multipath ef-

fects. We are in particular interested in a predictive characterization that the robot can

implement on the field. Figure 1.3 shows an example of such a scenario.

Such a characterization would not only bring a foundational analytical understand-

ing to the distance traveled until connectivity but can also significantly affect networked

robotic operations. For instance, the analysis can help with the operation of the robotic

system in the field, as well as in the design of robotic paths. The five underlying pa-

rameters of the channel can typically be measured based on very few channel samples in

the environment, either online or from prior operations. Thus, the robot can assess the

statistics of its distance to connectivity, using our derivations, when on a field mission.

Furthermore, the derivations can be used to explicitly co-optimize and design robotic

sensing and path planning. We finally emphasize that the derivations of the chapter are

applicable to both cases of trying to establish communication with remote operators as

well as trying to establish communication with another robot.

9
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Remote Operator
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Figure 1.3: An example of the considered scenario for a general path. In Chapter 4, we
are interested in characterizing the statistics of the distance traveled until connectivity.

There has been some recent research interest in the area of connectivity in robotic

systems. For instance, in [21], the connectivity of a network is maximized using a graph-

theoretic analysis while in [34], connectivity is optimized using a more realistic channel

model. There has also been work on path planning to enable connectivity [31, 34, 35,

49, 50] as well as on communication-aware sensing [44]. In [50], comm-aware trajectory

planning with connectivity repair is carried out, and in [31], an energy efficient trajectory

is designed for a UAV communicating with a remote station.

Contributions: We mathematically characterize the statistics of the distance trav-

eled until connectivity, for a robot traveling on a given path, as a function of the underly-

ing channel parameters of the environment, such as shadowing, path loss, and multipath

fading parameters. To the best of the our knowledge, such an analysis of the distance

traveled until connectivity, is lacking in the literature. We first develop an exact char-

acterization of the statistics of the distance traveled until connectivity for straight-line

paths. We utilize tools from the stochastic differential equation literature to character-

ize the statistics of the distance traveled until connectivity while ignoring the multipath

10
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component (which could be of interest when the robot looks for an area of good connec-

tivity as opposed to a single spot, or when multipath is negligible). For the case when

we include multipath, we develop a recursive characterization of the PDF of the distance

traveled. We then mathematically characterize a more general space of non-straight

paths for which the analysis holds, based on properties of the path such as its curvature.

Our characterizations significantly reduce the computational complexity of computing

this PDF when compared to a direct computation via a high dimensional integration.

Finally, we confirm our theoretical analysis using extensive numerical results with real

channel parameters from downtown San Francisco.

1.3 Path Planning for Minimizing the Expected Cost

until Success/Connectivity for Unmanned Vehi-

cles

In Chapter 5, we consider the problem of planning the path of an unmanned vehicle

seeking to get connected to a remote station. The unmanned vehicle is initially uncon-

nected and must incur motion energy to find a connected spot. We are then interested

in energy-aware path planning of a robot, to ensure reaching a guaranteed connected spot

in a realistic channel environment that experiences path loss, shadowing and multipath

fading. More precisely, we consider the problem of planning the path of a robot in order

to find a connected spot while minimizing the expected traveled distance. We note that in

a realistic channel environment, the robot’s knowledge of the connectivity at any location

is stochastic. Hence, the traveled distance until connectivity is not known a priori, and

is a random variable. Our objective is then to find a path that minimizes the expected

traveled distance until connectivity.

11
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We pose this problem as a graph-theoretic problem where each edge has a cost as-

sociated with it and each node has a Boolean value of success or failure with a given

probability. Success in this setting refers to the state of being connected to a remote

station. The goal is then to plan a path through the graph that would minimize the

expected cost until success.

Although our main motivation for posing this graph-theoretic problem is to plan the

path for a connectivity seeking robot, the underlying general path planning problem on

a graph has several other applications. For instance, consider the scenario of a rover

on mars looking for an object of interest, for instance a sample of water, for scientific

studies. Based on prior information, it has an estimate of the likelihood of finding such

an object at any particular location. The goal in such a scenario would be to locate

one such object with a minimum expected cost. Note that there may be multiple such

objects in the environment, and that we only care about the expected cost until the first

such object is found. We can then pose this in our graph-theoretic framework where

there is a probability of success in finding an object associated with each node. The

goal is then to plan a path through the graph that would minimize the expected cost

until an object of interest is successfully found. Several other problems of interest also

fall into this formulation. For instance, consider the scenario of astronomers searching

for a habitable exoplanet. Researchers have characterized the probability of finding

exoplanets in different parts of space [51]. However, repositioning satellites to target and

image different celestial objects is costly and consumes fuel. Thus, a problem of interest

in this context, is to find an exoplanet while minimizing the expected fuel consumption,

based on the prior probabilities. Finally, consider a human-robot collaboration scenario,

where an office robot needs help from a human, for instance in operating an elevator [52].

If the robot has an estimate of different people’s willingness to help, perhaps from past

observations, it can then plan its trajectory to minimize its energy consumption until it

12
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Figure 1.4: Possible applications of the problem of interest: (top left) path planning
for a rover, (top right) imaging of celestial objects, (bottom left) human-robot collab-
oration and (bottom right) path planning to find a connected spot. Image credit:(top
left) and (top right) NASA, (bottom left) Noto: http://www.noto.design/.

finds help. Fig. 1.4 showcases a sample of these possible applications.

With regard to planning for connectivity in robotic networks, there has been some

work in recent years. In [53], an energy-aware trajectory is designed for a robotic network

in order to enable within-network connectivity. In [54], a controller that ensures persistent

intermittent connectivity is designed for a robotic network. However, oversimplified

and unrealistic channel models are considered in all the above references [33, 53–55].

In [28,34,56,57], a realistic channel model and probabilistic prediction framework based

on [3] is utilized. In [34], locations of mobile robotic routers are optimized for enabling

13
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end-to-end connectivity. In [56], an optimal control-based framework is proposed to

co-optimize motion and communication.

With regard to the general graph-theoretic problem, optimal path planning for a robot

has received considerable interest in the research community, and several algorithms have

been proposed in the literature to tackle such problems, e.g., A*, RRT* [58, 59]. These

works are concerned with planning a path for a robot, with a minimum cost, from an

initial state to a predefined goal state. However, this is different from our problem of

interest in several aspects. For instance, the cost metric is additive in these works, which

does not apply to our setting due to its stochastic nature. In the probabilistic traveling

salesman problem [60] and the probabilistic vehicle routing problem [61], each node is

associated with a prior probability of having a demand to be serviced, and the objective is

to plan an a priori ordering of the nodes which minimizes the expected length of the tour.

A node is visited in a particular realization only if there is a demand to be serviced. Thus,

each realization has a different tour associated with it, and the expectation is computed

over these tours, which is a fundamentally different problem than ours. Another area of

active research is in path planning strategies for a robot searching for a target [62–64]. For

instance, in [62], a mobile robot is tasked with locating a stationary target in minimum

expected time. In [63], there are multiple mobile robots and the objective is to find

a moving target efficiently. In general, these papers belong to a body of work known

as optimal search theory where the objective is to find a single hidden target based

on an initial probability estimate, where the probabilities over the graph sum up to

one [64, 65]. The minimum latency problem [66] is another problem related to search

where the objective is to design a tour that minimizes the average wait time until a node

is visited. In contrast, our setting is fundamentally different, and involves an unknown

number of targets where each node has a probability of containing a target ranging from

0 to 1. Moreover, the objective is to plan a path that minimizes the expected cost to

14
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the first target found. This results in a different analysis and we utilize a different set

of tools to tackle this problem. Another related problem is that of satisficing search

in the artificial intelligence literature which deals with planning a sequence of nodes

to be searched until the first satisfactory solution is found, which could be the proof

of a theorem or a task to be solved [67]. The objective in this setting is to minimize

the expected cost until the first instance of success. However, in this setting there is

no cost associated with switching the search from one node to another. Our problem

also has interesting analogies (while still different) to the discounted-reward traveling

salesman problem [68] and the stochastic shortest path with recourse problem [69] which

are discussed in Appendix C.4 and C.5 respectively.

Contributions: In Chapter 5, we consider a general path planning problem of a

robot on a graph with edge costs, and where each node has a Boolean value of success

or failure (with respect to some task) with a given probability. The objective is to plan

a path for the robot on the graph that minimizes the expected cost until success. To

the best of our knowledge, the problem considered in Chapter 5 has not been explored

before. We bring a foundational understanding to this problem. We start by showing

how this problem can be posed as an infinite horizon Markov Decision Process (MDP)

and solved optimally, but with an exponential space complexity. We then formally prove

its NP-hardness. To address the space complexity, we then propose an asymptotically

ε-suboptimal (i.e., within ε of the optimal solution value) path planner for this problem,

using a game-theoretic framework. We further show how it is possible to solve this

problem very quickly by proposing two sub-optimal but non-myopic approaches. Our

proposed approaches provide a variety of tools that can be suitable for applications with

different needs. To show the performance of our framework, we do extensive simulations

for the scenario of a rover on Mars searching for an object for scientific studies. Our

numerical results show a considerable performance improvement over existing state-of-
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the-art approaches.

We also implement our proposed approaches for the scenario of an unmanned vehicle

looking for a connected spot to a remote station. Our extensive simulations, with real

channel parameters from downtown San Francisco, confirm that our approaches can

significantly reduce the expected traveled distance until connectivity, thus minimizing

the total energy consumption.
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Chapter 2

Preliminaries

In this chapter we will review the wireless channel model, as well as the realistic channel

prediction framework proposed in [2,3]. The contents of this chapter are used throughout

the rest of this dissertation.

2.1 Probabilistic Channel Modeling [1]

A communication channel is well modeled as a multi-scale random process with three

major dynamics: path loss, shadowing and multipath fading [1]. Path loss is the slowest

dynamic and is the result of a distant dependent signal attenuation. The shadowing

component or large scale fading is a faster dynamic, and represents fluctuations of the

channel power due to the blocking impact of large objects such as buildings and trees.

The multipath component or small-scale fading represents fluctuations in the channel

power in the order of a wavelength due to multiple reflecting objects in the environment.

Fig. 2.1 shows the received signal power collected across an indoor route, and marked

are the three underlying dynamics.

Let Γlin(q1) represent the received channel power from a transmitter at location q1 ∈

W (W ⊆ R2 is the workspace) to the remote station located at qb. The received channel
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Figure 2.1: Underlying dynamics of the received power across an indoor route [4].

power in dB, Γ(q1) = 10 log10 Γlin(q1), can be expressed as

Γ(q1) = γPL(q1) + ΓSH(q1) + ΓMP(q1)

where γPL(q1) = KdB − 10nPL log10 ‖q1 − qb‖ is the distance-dependent path loss with

nPL representing the path loss exponent, and ΓSH(q1) and ΓMP(q1) are random vari-

ables denoting the impact of shadowing and multipath respectively. ΓSH(q1) is best

modeled as a Gaussian random variable with an exponential spatial correlation, i.e.,

E {ΓSH(q1)ΓSH(q2)} = σ2
SHe

−‖q1−q2‖/βSH where σ2
SH is the shadowing power and βSH is the

decorrelation distance. As for multipath, a number of distributions such as Nakagami,

Rician and lognormal have been found to be a good fit (in the linear domain) [70,71].
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2.2 Realistic Channel Prediction [2, 3]

We next show how a robot can predict the channel quality at unvisited locations based

on a small number of a priori-gathered measurements. Let ϑ = [KdB nPL]T denote the

vector of path loss parameters. Let Γq represent the vector of m a priori-gathered received

channel power measurements (in dB) from the same environment, and q = [q1 · · · qm]T

denote the vector of the corresponding positions.

Lemma 2.1 (See [3] for proof) A Gaussian random vector, Γ(r) =

[Γ(r1) · · ·Γ(rk)]
T ∼ N

(
Γ(r),Σ(r)

)
can best characterize the vector of channel power (in

the dB domain) when transmitting from unvisited locations r = [r1 · · · rk]T, with the mean

and covariance matrix given by

Γ(r) = E
{

Γ(r)
∣∣ Γq, ϑ̂, β̂SH, σ̂SH, σ̂MP

}
= Grϑ̂+ Ξr,q

(
Ξq + σ̂2

MPIm
)−1 (

Γq −Gqϑ̂
)

and

Σ(r) = E
{(

Γ(r)− Γ(r)
)(

Γ(r)− Γ(r)
)T ∣∣ Γq, ϑ̂, β̂SH, σ̂SH, σ̂MP

}
= Ξr + σ̂2

MPIk − Ξr,q

(
Ξq + σ̂2

MPIm
)−1

ΞT
r,q,

respectively, where Gr = [1k − Lr], Gq = [1m − Lq], 1m (1k) represents the m-

dimensional (k - dimensional) vector of all ones, Im (Ik) represents the m-dimensional

(k - dimensional) identity matrix, Lq =
[
10 log10(‖q1 − qb‖) · · · 10 log10(‖qm − qb‖)

]T
,

Lr =
[
10 log10(‖r1 − qb‖) · · · 10 log10(‖rk − qb‖)

]T
and qb is the position of the remote
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station. Furthermore, Ξq, Ξr and Ξr,q denote matrices with entries

[
Ξq

]
i1,i2

= σ̂2
SHe

−‖qi1−qi2‖/β̂SH ,[
Ξr

]
j1,j2

= σ̂2
SHe

−‖rj1−rj2‖/β̂SH ,[
Ξr,q

]
j1,i1

= σ̂2
SH e

−‖rj1−qi1‖/β̂SH ,

where i1, i2 ∈ {1, · · · ,m}, and j1, j2 ∈ {1, · · · , k}. Moreover, ϑ, βSH, σ2
SH and σ2

MP denote

the path loss parameters, the decorrelation distance of shadowing, the power of shadowing

(in dB) and the power of multipath (in dB) respectively. The ˆ symbol denotes the

estimate of the corresponding parameter.

The underlying parameters ϑ, βSH, σSH, and σMP, can be estimated based on very few

a priori measurements as well. See [3] for more details on the estimation of the under-

lying parameters and the performance of this framework with real data and in different

environments.
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Chapter 3

Energy Optimal Distributed
Beamforming using Unmanned
Vehicles

In this chapter, we show how a team of unmanned vehicles utilize their mobility to

cooperatively enable connectivity to a remote station. We consider a team of unmanned

vehicles that need to communicate to a remote node but are located in a poorly-connected

area. The nodes are then interested in cooperatively generating a strong link to the re-

mote node by utilizing their mobility. More specifically, they are tasked with distributed

transmit beamforming (virtual antenna array placement and design), in order to coopera-

tively transmit information to a remote station in realistic communication environments.

We are interested in an energy-aware operation, where the unmanned vehicles cooper-

atively transmit information, while minimizing the total energy consumption including

both motion and communication energy costs. We are then interested in characterizing

the optimal motion and communication strategies of the robots, including the optimiza-

tion of the transmit power and locations of the robots. Fig. 1.2 shows an example of such

a scenario, where the unmanned vehicles use their mobility to move to better locations

Parts of this chapter have appeared in our journal submission [72], ©[2017] IEEE.
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for distributed beamforming.

The chapter is organized as follows. In Section 3.1, we introduce the motion and

communication energy cost models and briefly review distributed transmit beamforming.

In Section 3.2, we consider the scenario where the robots do not satisfy the reception

quality requirement from their initial positions when employing distributed transmit

beamforming. We are then interested in determining the optimum paths of the robots

such that the reception requirement is met with minimum motion energy cost. As a

starting point, we start with the case where the robots know the channel strength over the

workspace. We show how to pose this problem as a multiple-choice knapsack problem,

which can be solved optimally. We then extend our analysis to the scenario where

the robots no longer have the knowledge of the channel strength. Instead, they use

the channel prediction framework of Chapter 2 to probabilistically predict the channel

quality at unvisited locations based on a small number of a priori channel samples. In

Section 3.3, we then incorporate communication energy cost into our framework, i.e, we

minimize the total energy cost (both motion and communication) while satisfying the

reception quality requirement. We are then interested in the co-optimization of robotic

paths and transmission powers for cooperative transmit beamforming. For the perfect

channel knowledge case, we show how to obtain an ε-suboptimal solution by solving a

series of multiple-choice knapsack problems. We then extend our analysis to the case

where the channel is not known, by utilizing probabilistic channel prediction. In Section

3.4, we confirm our proposed approach with extensive simulation results using channel

parameters obtained from real measurements [73]. Our results indicate a considerable

energy saving.
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3.1 Problem Setup

In this section we first introduce our energy consumption models for both motion and

communication. We then review distributed transmit beamforming and the correspond-

ing power gains that it provides. Finally, we briefly summarize probabilistic modeling

and prediction of wireless channels.

3.1.1 Motion Energy Model

In this chapter, we adopt a model where the motion energy consumption is propor-

tional to the distance traveled, similar to the one adopted in [55,74]. Thus, motion energy

= KMd, where d is the distance traveled by the robot and KM is a constant that depends

on the environment (e.g., friction coefficient, terrain) and the mass of the vehicle. This

model is a good match for wheeled robots (see [74] for discussion).

3.1.2 Communication Energy Model

We consider a generic model of communication rate of the form η1W log2

(
1 + η2

PR
N0

)
,

where η1, η2 ≤ 1 are constants, W is the available bandwidth, PR is the received power and

N0 is the noise power.1 For capacity approaching codes (such as turbo codes and LDPC),

the constants for a binary symmetric channel correspond to η1 = 1− ε and η2 = 1 where

ε is the multiplicative gap to capacity [75]. For an uncoded MQAM modulation scheme

with a target bit error rate of BERth, we obtain η1 = 1 and η2 = 1.5/ ln(5BERth) [1]. The

communication energy incurred in transmitting nbits bits of data can then be expressed

1Note that the communication rate is adaptive as it is a function of the received power.
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as

Communication Energy =
nbits

η1W log2

(
1 + η2

PR
N0

)
︸ ︷︷ ︸

time to transmit nbits bits

P0, (3.1)

where P0 is the transmit power.

3.1.3 Distributed Transmit Beamforming

Distributed transmit beamforming is a form of cooperative communication where

several nodes that are distributed in a given space emulate a centralized antenna array

[46]. The nodes simultaneously transmit the same message such that the signals combine

constructively at the remote station. Channel state information (CSI), i.e., information

about the channel, is required at the transmitters for the implementation of distributed

transmit beamforming.

Consider N robots in an environment. Let hi = αie
j∠hi denote the complex baseband

channel from robot i to the remote station with αi denoting the channel amplitude. Ide-

ally, node i transmits ωisb(t) where ωi = ρie
−j∠hi is the complex beamforming weight

and sb(t) is the complex baseband signal to be transmitted. As can be seen, setting

∠ωi = −∠hi is the crucial step in obtaining a constructive interference and thus beam-

forming gains. The received signal is then (
∑N

i=1 hiwi)sb(t) =
∑N

i=1(αiρi)sb(t) resulting

in the received SNR of
P0(
∑N
i=1 αiρi)

2

N0
where the transmit power of robot i is ρ2

iP0. Con-

straining ρi ≤ 1 imposes a maximum power of P0 on each node. We stress here the

difference from the traditional centralized transmit beamforming where a total transmit

power is enforced, i.e.
∑N

i=1 ρ
2
i ≤ 1. However, in distributed beamforming, the nodes are

separated and have their own power supply. We thus impose individual power constraints

instead. Note that the position of node i affects αi, the corresponding channel ampli-

tude, and therefore the overall received SNR. Thus, by properly designing robotic paths
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and transmit power (ρi), using unmanned vehicles can significantly improve distributed

transmit beamforming, as we shall see in this chapter.

3.2 Motion Energy-Aware Cooperative Robotic Beam-

forming

Consider the case where the robots are distributed over the space such that the

required cooperative received SNR is not satisfied. The robots thus need to move to

new positions that satisfy the cooperative connectivity requirement while minimizing

the motion energy consumption. We start by looking at the case of perfect channel

knowledge (i.e., the robots know the uplink channel quality for transmission from any

unvisited location), and show how this problem can be optimally solved by posing it as

a multiple-choice knapsack problem. We then extend our analysis to the stochastic case

where the nodes predict the channel based on a small number of a priori channel samples,

as discussed in Section 2.2. In this section we focus on motion energy minimization,

assuming a non-adaptive communication transmit power case.

3.2.1 Perfect Channel Knowledge

The perfect channel knowledge assumption would be a good approximation for envi-

ronments where path loss is dominant and channel has a low variance around path loss.

In our case, this serves as a starting point for our analysis, which will then be extended

to the general case of an unknown channel. Consider N robots in a workspace W ⊆ R2.

Let di(ri) = ||ri − r0
i ||2 be the distance traveled by robot i with r0

i and ri denoting the

initial and final position respectively. Let h(ri) = α(ri)e
j∠h(ri) be the uplink channel from

position ri to the remote station with α(ri) denoting the channel amplitude.
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Since communication cost is not penalized in this setup, the optimal thing for the

nodes would be to maximize the SNR at the remote station, subject to the individual

power constraints. We then set ρi = 1, which corresponds to each node transmitting

at the maximum allowed power, and the complex beamforming weight as ωi = e−j∠h(ri),

for the ith node. The received signal power, after beamforming, is then given by PR =

P0

(∑N
i=1 α(ri)

)2

.

A Quality of Service (QoS) requirement, such as a target bit error rate, would result in

a minimum required received power at the remote station, which we denote as PR,th. We

then need PR = P0

(∑N
i=1 α(ri)

)2

≥ PR,th or equivalently
∑N

i=1 α(ri) ≥
√

PR,th
P0

, which

results in the following optimization problem,

minimize
r

KM
∑
i

di(ri)

subject to
∑
i

α(ri) ≥ αR,th

ri ∈ N (r0
i ), i = 1, · · · , N,

(3.2)

where αR,th =
√

PR,th
P0

, N (r0
i ) ⊆ W is the neighborhood around r0

i that the ith node is

constrained to stay in, and r = [r1 · · · rN ]T are the final positions of the robots.

Optimal Solution

We next show how to repose the optimization problem of (3.2) as a multiple-choice

knapsack problem, which is a well studied problem in the computer science literature

and can be solved optimally [76]. We first discretize our workspace W into M cells with

centers rj ∈ W , for j ∈ {1, · · · ,M}. The motion cost is then given by JMEMP({zij}) =
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KM

∑N
i=1

∑
j∈Ni di(rj)zij and the optimization problem of (3.2) can be reformulated as

minimize
{zij}

JMEMP({zij})

subject to
∑
i

∑
j∈Ni

α(rj)zij ≥ αR,th

∑
j∈Ni

zij = 1, zij ∈ {0, 1}, ∀ j ∈ Ni, ∀ i,

(3.3)

where di(rj) is the distance to cell j for robot i, α(rj) is the channel amplitude from cell

j to the remote station and Ni ⊆ {1, · · · ,M} is the set of cells present in N (r0
i ). A value

of zij = 1 implies that robot i chooses to move to cell j. We refer to this problem as the

Motion Energy Minimization Problem (MEMP), with the optimal value of JOPT
MEMP.

Lemma 3.1 MEMP of (3.3) can be posed as a multiple-choice knapsack problem (MCKP).

Proof: Define {πij} and {$j} as

πij = max
k∈Ni

di(rk)− di(rj)

$j = max
k
α(rk)− α(rj).

We have

N∑
i=1

∑
j∈Ni

πijzij =
N∑
i=1

max
k∈Ni

di(rk)
∑
j∈Ni

zij −
N∑
i=1

∑
j∈Ni

di(rj)zij

=
N∑
i=1

max
k∈Ni

di(rk)−
N∑
i=1

∑
j∈Ni

di(rj)zij,

where the second equality follows for any feasible solution since
∑M

j=1 zij = 1. Similarly,∑N
i=1

∑
j∈Ni $jzij = N maxk α(rk) −

∑
i

∑
j∈Ni α(rj)zij. MEMP of (3.3) can then be
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posed as

maximize
{zij}

∑
i

∑
j∈Ni

πijzij

subject to
∑
i

∑
j∈Ni

$jzij ≤ cKP

∑
j∈Ni

zij = 1, zij ∈ {0, 1}, ∀ j ∈ Ni, ∀ i,

(3.4)

where cKP = N maxk α(rk)− αR,th.

Equation (3.4) is the standard form of the multiple-choice knapsack problem (MCKP).

Although MCKP is NP-hard, the true solution can be efficiently found for several cases

that arise in practice [76]. In this chapter, we thus utilize the minimal algorithm devel-

oped by Pisinger [76] to optimally solve the resulting MCKP.

Remark 3.1 Let JOPT
MCKP denote the optimal value of the objective function of (3.4). The

optimal values of the two formulations (3.3) and (3.4) are then related as follows:

JOPT
MEMP = KM

(∑
i

max
k∈Ni

di(rk)− JOPT
MCKP

)
.

3.2.2 Probabilistic Channel Prediction

In realistic scenarios, the uplink channel values in transmission from unvisited loca-

tions may not be known to the robots a priori. We next consider this realistic case.

The robots then utilize the stochastic prediction approach of Section 2.2 to predict the

channel strength when transmitting from an unvisited location, using a small number of

a priori channel samples in the same environment.2 Optimization of path planning for

2 To predict the channel in transmission from any unvisited location to the remote station, the robots
only need a small number of a priori channel measurements, Γq, from which they can estimate the

channel parameters (ϑ̂, β̂SH, σ̂SH, σ̂MP) [3]. If time division duplexing (TDD) is not utilized, the remote
station can broadcast Γq to the unmanned vehicles during the operation, using a feedback channel.
Alternatively, if we have TDD, then the robots can directly utilize a few a priori downlink channel
samples to obtain Γq.
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cooperative beamforming can then be posed as follows in this case,

minimize
r

KM

∑
i

di(ri)

subject to Pr
(∑

i

α(ri) < αR,th
)
< Prout

ri ∈ N (r0
i ), i = 1, · · · , N,

(3.5)

where Pr(.) denotes the probability of the argument, α(ri) =
√

Γlin(ri) is the random

variable that represents the received channel amplitude when the ith node transmits from

ri, and Prout is the maximum tolerable outage probability.

As discussed in Chapter 2, the predicted channel power (in dB) when transmit-

ting from unvisited locations r = [r1 · · · rN ]T ∈ WN can be represented as a Gaus-

sian random vector Γ(r) ∼ N (Γ(r),Σ(r)), where Γ(r) and Σ(r) are the estimated

mean and covariance matrix respectively. Thus, the channel amplitude at locations

r, α(r) = [α(r1) · · ·α(rN)]T =
[√

Γlin(r1) · · ·
√

Γlin(rN)
]T

is a lognormal random vector,

i.e., [20 log10 α(r1) · · · 20 log10 α(rN)]T ∼ N (Γ(r),Σ(r)).∑N
i=1 α(ri) is then the sum of lognormal random variables. As established in the

literature, the lognormal distribution is a good approximation for the distribution of

the sum of lognormal random variables [77]. Let αsum with distribution 20 log10 αsum ∼

N (Γsum, σ
2
sum) denote the lognormal random variable approximating

∑N
i=1 α(ri). Γsum

and σ2
sum can be found, based on Γ(r) and Σ(r), by using the extended Fenton-Wilkinson

(F-W) method [77]. The details are given in Appendix A.1.

The outage probability inequality in (3.5) can then be expressed as

Γsum + σsumQ
−1 (1− Prout) ≥ 20 log10(αR,th),
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where Q(.) denotes the Q function. Equation (3.5) can then be posed as

minimize
r

KM

∑
i

di(ri)

subject to Γsum + σsumQ
−1 (1− Prout) ≥ 20 log10 αR,th

ri ∈ N (r0
i ), i = 1, · · · , N.

(3.6)

We refer to this as the Motion Energy Stochastic Setting (MESS) minimization prob-

lem. The optimization problem (3.6) can then be solved by using existing optimization

toolboxes. We next propose an alternative approach for the case of stochastic channel

knowledge, based on our proposed MEMP approach of (3.3) of Section 3.2.1.

Approximation using analysis of MEMP of (3.3)

In Section 3.2.1, we showed how the motion energy-aware optimization problem can

be solved for the case of perfect channel knowledge. That analysis and the corresponding

solution can be used to find an approximate solution for the stochastic case, as we show

next. As introduced earlier, the channel power in dB, 20 log10 α(rj), has the distribution

20 log10 α(rj) ∼ N
(
Γ(rj), σ

2(rj)
)
, where rj is the jth cell, as defined in Section 3.2.1, and

Γ(rj) and σ2(rj) = Σ(rj) are obtained by evaluating Lemma 2.1 at rj (scalar). Consider

α̃(rj) such that 20 log10 α̃(rj) = Γ(rj) − ζσ(rj) for some constant ζ ≥ 0. α̃(rj) provides

a conservative estimate of the channel amplitude. We then approximate α(rj) by α̃(rj)

in (3.3), which results in the following optimization problem:

minimize
{zij}

JMEMP({zij})

subject to
∑
i

∑
j∈Ni

α̃(rj)zij ≥ αR,th

∑
j∈Ni

zij = 1, zij ∈ {0, 1}, ∀ j ∈ Ni, ∀ i.

(3.7)
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Equation (3.7) can then be efficiently solved using the proposed approach of Section 3.2.1

for MEMP of (3.3). We next relate the optimization problem of (3.7) to the original

optimization problem of (3.5) by finding a bound on the probability that the obtained

solution satisfies the inequality constraint of (3.3). We first need the following lemma.

Lemma 3.2 20 log10 α(rji)s are positively correlated as a result of the exponential corre-

lation, where ji is the cell chosen by robot i. We then have Pr (20 log10 α(rji) ≥ ξi, ∀i) ≥∏N
i=1 Pr (20 log10 α(rji) ≥ ξi), for any ξi ∈ R.

Proof: See [78].

Lemma 3.3 Let {zij} be the solution of (3.7), and let ji be such that ziji = 1. Then

the probability that this solution results in an outage in (3.3) is bounded as follows:

Pr
(∑N

i=1 α(rji) < αR,th

)
< 1− [Q (−ζ)]N .

Proof: The probability of successful transmission is Pr
(∑N

i=1 α(rji) ≥ αR,th

)
≥

Pr
(∑N

i=1 α(rji) ≥
∑N

i=1 α̃(rji)
)

since
∑N

i=1 α̃(rji) ≥ αR,th for a feasible solution of (3.7).

Further,

Pr

(
N∑
i=1

α(rji) ≥
N∑
i=1

α̃(rji)

)
≥ Pr (20 log10 α(rji) ≥ 20 log10 α̃(rji), ∀i)

≥
N∏
i=1

Pr

(
20 log10 α(rji)− Γ(rji)

σ(rji)
≥ −ζ

)
= [Q (−ζ)]N

where the second inequality follows from Lemma 3.2.
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3.3 Energy-Aware Cooperative Robotic Beamform-

ing

In this section, we extend our results of Section 3.2 to include the communication

energy cost as well, i.e., we are interested in finding the most energy efficient way (con-

sidering both motion and communication) for the robots to cooperatively transmit the

data to a remote station. The robots need to determine new locations for transmission

as well as the transmission powers such that they minimize the total energy consumption

while satisfying the cooperative connectivity requirement. As in Section 3.2, we start

with the scenario of perfect channel knowledge, for which we obtain an ε-suboptimal

solution by showing that solving our problem is equivalent to solving a series of multiple-

choice knapsack problems. We then extend our analysis to the stochastic setting with

probabilistic channel prediction and incorporate channel uncertainty into our formula-

tion.

3.3.1 Perfect Channel Knowledge

In this case, the robots perform distributed transmit beamforming with complex

weights ωi = ρie
−∠h(ri), if node i moves to ri, where 0 ≤ ρi ≤ 1 and h(ri) is as described

in Section 3.1.3. The received power is then given as PR = P0

(∑N
i=1 α(ri)ρi

)2

. As can

be seen from Section 3.1.2, imposing a minimum transmission rate requirement results in

a minimum required received power which we denote by PR,th for a given η1, η2 ≤ 1. For

instance, in the case of uncoded MQAM, a bit error rate requirement of BERth, results

in η1 = 1 and η2 = 1.5/ ln(5BERth), and a minimum spectral efficiency requirement

would translate to a minimum required received power PR,th . Imposing this results in

PR = P0

(∑N
i=1 α(ri)ρi

)2

≥ PR,th or equivalently
∑N

i=1 α(ri)ρi ≥
√

PR,th
P0

= αR,th, with
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ρ2
iP0 denoting the transmit power of robot i.

The total energy cost is then given as

JTE(r) = KM

N∑
i=1

di(ri) +
nbitsP0

∑N
i=1 ρ

2
i

η1W log2

(
1 + η2P0

(
∑N
i=1 α(ri)ρi)

2

N0

)

and the resulting optimization problem can be expressed as

minimize
r,ρ

JTE(r)

subject to
∑
i

α(ri)ρi ≥ αR,th

0 ≤ ρi ≤ 1, ri ∈ N (r0
i ), i = 1, · · · , N,

(3.8)

where ρ = [ρ1 · · · ρN ]T, nbits is the number of bits to be transmitted to the remote station

and N (r0
i ) ⊆ W is the neighborhood around r0

i that robot i is constrained to be in.

As before, we first discretize the workspaceW intoM cells with centers rj ∈ W , for j ∈

{1, · · · ,M}. The optimization problem (3.8) can then be reformulated as

minimize
{zij},ρ

JTEMP({zij}, ρ)

subject to
∑
i

∑
j∈Ni

α(rj)ρizij ≥ αR,th

0 ≤ ρi ≤ 1, i = 1, · · · , N∑
j∈Ni

zij = 1, zij ∈ {0, 1}, ∀ j ∈ Ni, ∀ i,

(3.9)

where JTEMP({zij}, ρ) = KM

∑N
i=1

∑
j∈Ni di(rj)zij+

nbitsP0
∑N
i=1 ρ

2
i

η1W log2

1+η2P0
(∑

i

∑
j α(rj)ρizij)

2

N0

 , di(rj)

is the distance to cell j for robot i, α(rj) is the channel amplitude when transmitting

from cell j to the remote station, and Ni ⊆ {1, · · · ,M} is the set of cells present in

33



Energy Optimal Distributed Beamforming using Unmanned Vehicles Chapter 3

N (r0
i ). A value of zij = 1 implies that robot i moves to cell j. We refer to this problem

as the Total Energy Minimization Problem (TEMP), with the optimal value of JOPT
TEMP.

We begin by characterizing properties of the optimal communication strategy as well

as of the optimal solution ({zij},ρ) of TEMP of (3.9). This is one of the key intermediate

steps that allows us to pose our problem as a series of multiple choice knapsack problems.

In the following lemma, we show that the inequality for the cooperative connectivity

requirement in TEMP of (3.9) is satisfied with equality in the optimal solution.

Lemma 3.4 Let ({zOPT
ij }, ρOPT) be an optimal solution of TEMP of (3.9). Let jOPT

i be

such that zOPT
ijOPT
i

= 1. Then the solution satisfies
∑N

i=1 α(rjOPT
i

)ρOPT
i = αR,th.

Proof: See Appendix A.2 for the proof.

Next, consider the case where the positions of the robots are fixed and the only objec-

tive is to minimize the total transmit power (not energy) while satisfying the cooperative

connectivity requirement. Lemma 3.5 characterizes the optimal solution of this case, as

follows.

Lemma 3.5 Consider the following optimization problem:

minimize
ρ

∑
i

ρ2
i

subject to
∑
i

αiρi ≥ αR,th

0 ≤ ρi ≤ 1, i = 1, · · · , N.

(3.10)

The optimal solution for (3.10) is ρi = min{λαi, 1} where λ > 0 is such that∑
i min{λαi, 1}αi = αR,th.3

Proof: See Appendix A.3 for the proof.

3In this case, αi can be interpreted as the fixed channel amplitude from robot i to the remote station.
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Using Lemma 3.4 and 3.5 as building blocks, we next characterize the optimal com-

munication strategy of TEMP of (3.9) given the final optimal positions of the robots.

Lemma 3.6 Let ({zOPT
ij }, ρOPT) be an optimal solution of TEMP of (3.9). Let jOPT

i

be such that zOPT
ijOPT
i

= 1. Then ρOPT
i = min{λα(rjOPT

i
), 1} where λ > 0 is such that∑N

i=1 min{λα(rjOPT
i

), 1}α(rjOPT
i

) = αR,th.

Proof: We prove this by contradiction. Assume that ρOPT
i 6= ρ∗i where ρ∗i =

min{λα(rjOPT
i

), 1}, for λ > 0, such that
∑N

i=1 min{λα(rjOPT
i

), 1}α(rjOPT
i

) = αR,th. Then,

({zOPT
ij }, ρ∗) is a feasible solution of (3.9) since

∑N
i=1 α(rjOPT

i
)ρ∗i = αR,th. The cost of the

optimal solution then becomes

JTEMP({zOPT
ij }, ρOPT) = KM

N∑
i=1

di(rjOPT
i

) +KC

N∑
i=1

(ρOPT
i )2

> KM

N∑
i=1

di(rjOPT
i

) +KC

N∑
i=1

(ρ∗i )
2

= JTEMP({zOPT
ij }, ρ∗),

following from Lemma 3.4 and Lemma 3.5, where KC = nbitsP0

η1W log2

(
1+η2

PR,th
N0

) . Thus, we

have a contradiction, as we found a feasible solution with a lower cost.

We next pose an optimization problem motivated by Lemma 3.6, the solution to

which will help us obtain the solution to TEMP of (3.9). Let KC = nbitsP0

η1W log2

(
1+η2

PR,th
N0

) ,
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as was defined in Lemma 3.6. Consider the following optimization problem,

minimize
{zij},λ

Jλ({zij}, λ)

subject to
∑
i

∑
j∈Ni

min {λα(rj), 1}α(rj)zij ≥ αR,th

∑
j∈Ni

zij = 1, zij ∈ {0, 1}, ∀ j ∈ Ni, ∀ i,

(3.11)

where Jλ({zij}, λ) = KM

∑
i

∑
j∈Ni di(rj)zij + KC

∑
i

∑
j∈Ni [min{λα(rj), 1}]2 zij. We

next show how to obtain an optimal solution for TEMP of (3.9) from an optimal solution

for (3.11).

Lemma 3.7 Let ({z∗ij}, λ∗) be an optimal solution of (3.11). Let j∗i be such that z∗ij∗i = 1

and let ρ∗i = min{λ∗α(rj∗i ), 1}. Then ({z∗ij}, ρ∗) is an optimal solution of TEMP of (3.9).

Proof: Without loss of generality, let λ∗ be such that λ∗α(rj∗i ) ≤ 1 for some i. We

first show that the connectivity requirement inequality in (3.11) is satisfied with equality

for the optimal solution, i.e.,
∑N

i=1 min{λ∗α(rj∗i ), 1}α(rj∗i ) = αR,th. We show this by

contradiction. Assume otherwise, i.e.,
∑N

i=1 min{λ∗α(rj∗i ), 1}α(rj∗i ) > αR,th. Consider λ

such that
∑N

i=1 min{λα(rj∗i ), 1}α(rj∗i ) = αR,th. Clearly we have λ < λ∗, which implies[
min{λα(rj∗i ), 1}

]2
<
[
min{λ∗α(rj∗i ), 1}

]2
for some i. Hence Jλ({z∗ij}, λ) < Jλ({z∗ij}, λ∗),

resulting in a contradiction. Thus
∑N

i=1 min{λ∗α(rj∗i ), 1}α(rj∗i ) = αR,th.

Next, we show via contradiction that ({z∗ij}, ρ∗), obtained from an optimal solu-

tion of (3.11), is an optimal solution of TEMP of (3.9). Assume ({z∗ij}, ρ∗) is not an

optimal solution of (3.9) and let (zOPT
ij , ρOPT) be an optimal solution instead. From

Lemma 3.6, we have that ρOPT
i = min{λOPTα(rjOPT

i
), 1}, where λOPT > 0 is such that

36



Energy Optimal Distributed Beamforming using Unmanned Vehicles Chapter 3

∑N
i=1 min{λα(rjOPT

i
), 1}α(rjOPT

i
) = αR,th. Then, we have

JTEMP({zOPT
ij }, ρOPT) = KM

N∑
i=1

di(rjOPT
i

) +KC

N∑
i=1

[
min{λOPTα(rjOPT

i
), 1}

]2

= Jλ({zOPT
ij }, λOPT),

and similarly JTEMP({z∗ij}, ρ∗) = Jλ({z∗ij}, λ∗). As a result, JTEMP({z∗ij}, ρ∗) >

JTEMP({zOPT
ij }, ρOPT) implies that Jλ({z∗ij}, λ∗) > Jλ({zOPT

ij }, λOPT). Thus, ({zOPT
ij }, λOPT)

is a feasible solution for (3.11) with a lower cost than ({z∗ij}, λ∗), resulting in a contra-

diction.

ε-Suboptimal Solution

In this subsection we pose a series of multiple-choice knapsack problems and relate

their solution to TEMP of (3.9) to obtain an ε-suboptimal solution. In this context,

ε is a positive variable that determines how close to the optimal solution we can get.

Basically, for each fixed value of λ, we have a multiple-choice knapsack problem, as

can be seen from (3.11), which we can solve optimally. We then discretize λ uniformly

with ε determining the corresponding resolution. Let λk = kε1/αmax for k ∈ {klb −

1, · · · , kub − 1} and λkub = 1/α0
min, where ε1 = ε

2N(αmax/α0
min)

, αmax = maxj∈{1,··· ,M} α(rj)

and α0
min = min{α(r0

i ) : i = 1, · · · , N} denotes the minimum channel amplitude among

the initial positions of the robots. Furthermore, klb =
⌈

1
ε1

αR,th
Nαmax

⌉
=
⌈

2
ε

αR,th
α0

min

⌉
and

kub = d 1
ε1
αmax

α0
min
e =

⌈
2N
ε

(
αmax

α0
min

)2
⌉

determine the range of λ, as explained next. Since∑N
i=1 min{λα(rji), 1}α(rji) ≤

∑N
i=1(λklb−1αmax)αmax =

(⌈
1
ε1

αR,th
Nαmax

⌉
− 1
)
ε1Nαmax < αR,th,

λ ≤ λklb−1 could not be a feasible solution of (3.11). Moreover, an optimal solution

({z∗ij}, λ∗) would not involve a robot incurring motion energy to get to a location with a

worse channel amplitude, resulting in α(rj∗i ) ≥ α0
min ∀i. Since λkubα

0
min = 1, we have that
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if λ∗ > λkub is an optimal solution, then λkub is also an optimal solution. Thus, we need

to only consider λ ∈ (λklb−1, λkub ] in (3.11), which results in the following optimization

problem for each k ∈ {klb, · · · , kub}:

minimize
{zij}

Jλ,k({zij})

subject to
∑
i

∑
j∈Ni

[min{λkα(rj), 1}]α(rj)zij ≥ αR,th

∑
j∈Ni

zij = 1, zij ∈ {0, 1}, ∀ j ∈ Ni, ∀ i,

(3.12)

where Jλ,k({zij}) =
∑

i

∑
j∈Ni(KMdi(rj) + KC [min{λkα(rj), 1}]2)zij, with the optimum

value of JOPT
λ,k . This optimization problem can be solved similar to (3.3) by posing it as

a knapsack problem through a change of variable as shown in Section 3.2.

Let Jλ,min = mink∈{klb,··· ,kub}{JOPT
λ,k }. In order to find Jλ,min, we need to solve kub −

klb + 1 ≤
⌈

2N
ε
αmax

α0
min

(
αmax

α0
min
− αR,th

Nαmax

)⌉
+ 1 multiple choice knapsack problems. As can be

seen, the number of knapsack problems to be solved grows linearly with N and 1
ε
. In the

following theorem, we show how we can get arbitrarily close to the optimal solution by

solving this set of knapsack problems.

Theorem 3.1 Let m = arg mink∈{klb,··· ,kub}{J
OPT
λ,k }. Let {z∗ij} be a solution of (3.12)

when k = m, and j∗i be such that z∗ij∗i = 1. Consider a λ∗ such that λ∗ ≤ λm and∑N
i=1

[
min{λ∗α(rj∗i ), 1}

]
α(rj∗i ) = αR,th. Further, set ρ∗i = min{λ∗α(rj∗i ), 1}. Then,

({z∗ij}, ρ∗) is a feasible solution of TEMP of (3.9) and

JTEMP({z∗ij}, ρ∗) ≤ JOPT
TEMP + εκC . (3.13)

Proof: It is straightforward to see that ({z∗ij}, ρ∗) is a feasible solution of TEMP of

(3.9). Moreover, JTEMP({z∗ij}, ρ∗) = Jλ({z∗ij}, λ*) ≤ Jλ({z∗ij}, λm) = JOPT
λ,m = Jλ,min since
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Jλ(.) is a non-decreasing function of λ.

Let ({zOPT
ij }, λOPT) be an optimal solution of (3.11). From Lemma 3.7 we have that

JOPT
TEMP = Jλ({zOPT

ij }, λOPT). Let λOPT ∈ (λklb−1, λkub ], as we established earlier. Thus,

there exists a k ∈ {klb, · · · , kub} such that λOPT ∈ (λk−1, λk]. We then have

JTEMP({z∗ij}, ρ∗) ≤ Jλ,min ≤ JOPT
λ,k ≤ Jλ({zOPT

ij }, λk)

= Jλ({zOPT
ij }, λOPT) +

(
Jλ({zOPT

ij }, λk)− Jλ({zOPT
ij }, λOPT)

)
≤ JOPT

TEMP +KC

N∑
i=1

(
λ2
k − (λOPT)2

) (
α(rjOPT

i
)
)2

≤ JOPT
TEMP +KC

N∑
i=1

(λk − λk−1) (λk + λk)
(
α(rjOPT

i
)
)2

≤ JOPT
TEMP + 2

ε1
αmax

λkubKC

N∑
i=1

(
α(rjOPT

i
)
)2

≤ JOPT
TEMP + 2Nε1

αmax

α0
min

KC

= JOPT
TEMP + εKC .

Remark 3.2 KC is the communication energy cost of a single robot when it transmits

at maximum power and the robots satisfy the cooperative connectivity requirement with

equality.

Remark 3.3 Solving TEMP of (3.9) through a brute-force search of space is infeasible

even for moderately small values of the number of robots (N). For instance, if M is the

number of points in the discretized workspace and if we represent each ρi by k bits, then

the computational complexity of an exhaustive search is MN2kN . On the other hand, with

our proposed ε-suboptimal solution, the number of multiple-choice knapsack problems to

solve grows linearly with N and 1
ε
. We note that while we can solve (3.8) with an existing
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solver, there is no guarantee that the solver will find the global optimum since the objective

function is non-convex. Theorem 3.1 then allows us to get arbitrarily close to the optimal

solution with a low computational complexity.

3.3.2 Probabilistic Channel Prediction

As discussed earlier, in realistic scenarios, the unmanned vehicles do not know the

uplink channel when transmitting from unvisited locations. As such, they will proba-

bilistically predict the channel based on a small number of a priori measurements in the

same environment, as summarized in Section 2.2. The energy-aware (both motion and

communication) cooperative beamforming problem (3.8), can then be extended to the

following in this stochastic setting:

minimize
r,ρ

JTE,ST(r, ρ)

subject to Pr
(∑

i

α(ri)ρi < αR,th
)
< Prout

0 ≤ ρi ≤ 1, ri ∈ N (r0
i ), i = 1, · · · , N,

(3.14)

where JTE,ST(r, ρ) = KM

∑N
i=1 di(ri)+E

[
nbitsP0

∑
i ρ

2
i

η1W log2

(
1+η2

P0(
∑
i α(ri)ρi)

2

N0

)], with r = [r1 · · · rN ]T

and ρ = [ρ1 · · · ρN ]T as optimization variables and E(.) representing the average of the ar-

gument. In this case, the average is taken over α(ri), ∀i. The vector [α(r1)ρ1 · · ·α(rN)ρN ]T

is a lognormal random vector with distribution [20 log10(α(r1)ρ1) · · · 20 log10(α(rN)ρN)]T ∼

N
(
ρdB + Γ(r),Σ(r)

)
where Γ(r) and Σ(r) are the estimated mean and covariance ma-

trix of the predicted channel power respectively, and [ρdB]i = 20 log10 ρi. Let αsum,ρ with

distribution 20 log10 αsum,ρ ∼ N (Γsum,ρ, σ
2
sum,ρ) denote the lognormal random variable ap-

proximating
∑N

i=1 α(ri)ρi. Γsum,ρ and σ2
sum,ρ can be found, based on ρdB, Γ(r) and Σ(r),

by using the extended Fenton-Wilkinson method [77]. Similar to Section 3.2, the objec-
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tive then becomes JTESS(r, ρ) = KM

∑
i di(ri) + E

[
nbitsP0

η1W log2

(
1+η2

P0α
2
sum,ρ
N0

)∑
i ρ

2
i

]
, and our

optimization problem can be rewritten as

minimize
r,ρ

JTESS(r, ρ)

subject to Γsum,ρ + σsum,ρQ
−1 (1− Prout) ≥ 20 log10 αR,th

0 ≤ ρi ≤ 1, i = 1, · · · , N

ri ∈ N (r0
i ), i = 1, · · · , N,

(3.15)

which can then be solved by using existing optimization toolboxes. We refer to this as

the Total Energy Stochastic Setting (TESS) minimization problem.

Approximation using analysis of TEMP of (3.9)

Similar to Lemma 3.3, the stochastic optimization problem of (3.14) can be approxi-

mately but efficiently solved using the solution to TEMP of (3.9), which is for the perfect

channel knowledge case. As introduced earlier, the channel power in dB, 20 log10 α(rj),

has the distribution 20 log10 α(rj) ∼ N
(
Γ(rj), σ

2(rj)
)
, where rj is the jth cell, as defined

in Section 3.2.1, and Γ(rj) and σ2(rj) = Σ(rj) are obtained by evaluating Lemma 2.1 at

rj (scalar). Consider α̃(rj) such that 20 log10 α̃(rj) = Γ(rj) − ζσ(rj) for some constant

ζ ≥ 0. α̃(rj) provides a conservative estimate of the channel amplitude with a high

probability. We then approximate α(rj) by α̃(rj) in (3.9), which results in the following
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optimization:

minimize
{zij},ρ

J̃TESS({zij}, ρ)

subject to
∑
i

∑
j∈Ni

α̃(rj)ρizij ≥ αR,th

0 ≤ ρi ≤ 1, i = 1, · · · , N∑
j∈Ni

zij = 1, zij ∈ {0, 1}, ∀ j ∈ Ni, ∀ i.

(3.16)

where J̃TESS({zij}, ρ) = KM

∑
i

∑
j∈Ni di(rj)zij+

nbitsP0
∑
i ρ

2
i

η1W log2

1+η2P0
(∑

i
∑
j∈Ni α̃(rj)ρizij)

2

N0

 . Equa-

tion (3.16) can then be efficiently solved using the proposed approach of Section 3.3.1

for TEMP. We next relate the optimization problem of (3.16) to the original optimiza-

tion problem of (3.14) by finding a bound on the probability that the obtained solution

satisfies the inequality constraint of (3.9).

Lemma 3.8 Let ({zij}, ρ) be the solution obtained when solving (3.16) using the proposed

approach of Section 3.3.1, and let ji be such that ziji = 1. The probability that this

solution results in an outage in (3.9) is bounded as follows: Pr (
∑

i α(rji)ρi < αR,th) <

1− [Q (−ζ)]N .

The proof is similar to the proof of Lemma 3.3.

3.4 Simulation Results

Consider a scenario where 6 robots are located in a 50 m × 50 m workspace with

the remote station at the origin and initial positions as shown in Fig. 3.3. The channel

is generated using the probabilistic channel model described in Section 2.1, with the

following parameters that were obtained from real channel measurements in downtown
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San Francisco [73] : nPL = 4.4, νSH = 6.76 and βSH = 22.6 m. Moreover, the multipath

fading is taken to be uncorrelated Rician fading with the parameter Kric = 3.9. We

consider a bandwidth of W = 10 MHz and the received noise power is taken to be a

realistic value of −100 dBmW [79]. We consider uncoded MQAM modulation with a

BER tolerance of 10−5 and a minimum spectral efficiency requirement (transmission rate

divided by bandwidth) of4 4. This corresponds to η2 = 0.1515 and a minimum received

SNR requirement of 20 dB which, for the given noise power, corresponds to a received

power requirement of PR,th,dBm = −80 dBmW. We take the maximum transmission

power of a node to be P0,dBm = 27 dBmW [80], which results in αR,th,dB = −53.5 dB.

The amount of data to be transferred is 800 bits/Hz. The robots are situated far enough

from the remote station that they do not satisfy the received power requirement at their

initial positions (see Fig. 3.3). The neighborhood Ni, within which the final position of

robot i is constrained to lie in, is taken to be the entire workspace. The optimization

problems of MEMP, MESS, TEMP and TESS, can be solved centrally by either one of

the robots or by the remote station.

3.4.1 Perfect Channel Knowledge

We first analyze the trends of the motion energy-aware (MEMP) and the total energy-

aware (TEMP) approaches as the communication load (nbits/W ) varies in Figures 3.1,

3.2 and 3.3. TEMP of (3.9) is solved via the set of multiple-choice knapsack problems

of Theorem 3.1 with ε = 0.05. As shown in Theorem 3.1, the optimal value lies at most

0.05κC below the value obtained by solving the family of knapsack problems. This con-

fidence bound is also shown in Fig. 3.1. It can be seen that the confidence bound is very

close to the solution obtained by using Theorem 3.1 for solving TEMP, which confirms

4Note that the BER requirement is always satisfied, even if the minimum transmission rate require-
ment is not satisfied.
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Figure 3.1: Total energy (sum of motion and communication) consumption of MEMP
and TEMP for different communication loads for the case of perfect channel knowl-
edge. TEMP provides a considerable energy saving, as expected. MEMP refers to
the case where only motion energy is minimized while communication energy is also
adapted and co-optimized in TEMP.

that Theorem 3.1 can get arbitrarily close to the optimal solution with a considerably

low computational complexity. Each data point on the plots is obtained by averaging

over 100 channels generated for the given set of channel parameters.

Fig. 3.1 shows the average total energy consumption of MEMP and TEMP. The

figure also shows the corresponding error bars, representing the standard deviation of

the total energy consumption for each data point. As can be seen, TEMP provides a

significant energy saving as the communication load nbits/W increases. In TEMP, with

increasing nbits/W , the time for transmission increases as well, as a direct consequence

of Lemma 3.4. Transmission power is thus penalized more and the robots travel larger

distances to get to the locations with a better channel quality, allowing them to utilize

a lower transmit power for communication. More specifically, Fig. 3.2 shows the total
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Figure 3.2: Total (left) distance traveled and (right) transmission power utilized by
MEMP and TEMP as a function of communication load and for the case of perfect
channel knowledge.

distance traveled as nbits/W varies. We can see that TEMP travels larger distances as

nbits/W increases. Fig. 3.2 also shows how the total communication transmission power

of TEMP decreases with increasing nbits/W . This is due to the fact that in TEMP, by

incurring more motion energy, the nodes can find spots with a better channel quality,

resulting in a lower communication energy and a lower total energy consumption. Fig.

3.3 shows the behavior of the solution of MEMP and TEMP for communication loads of

nbits/W = 100 bits/Hz and nbits/W = 1500 bits/Hz. The background color encodes the

channel power to the remote station. The lighter (darker) areas correspond to regions

with better (worse) channel quality. As expected, the TEMP solution moves larger

distances in the high communication load case to get to locations with a better channel

quality. This is as expected since communication energy is adaptive and penalized in this

case, which has implications for path planning and motion energy consumption, allowing

the robots to achieve a solution that is more efficient in total energy consumption (see

Fig. 3.1).
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Figure 3.3: Solution of MEMP and TEMP for (left) low (nbits/W = 100 bits/Hz) and
(right) high (nbits/W = 1500 bits/Hz) communication loads for the case of perfect
channel knowledge. The background represents the uplink channel power with lighter
(darker) regions corresponding to a better (worse) channel quality.

We next show the underlying trends of the motion energy-aware MEMP of (3.3) and

the total energy-aware TEMP of (3.9) in Fig. 3.4, when varying the channel parameters

for the case of perfect channel knowledge. For each plot, the channel parameter under

consideration is varied while keeping the other parameters fixed at the values discussed

earlier. Fig. 3.4 shows the energy consumption of MEMP and TEMP as a function

of the channel parameters: the path loss exponent, shadowing power and shadowing

decorrelation distance. Both MEMP and TEMP consume more energy as the path loss

exponent increases. This is expected as an increase in the path loss exponent results in

a worse channel quality, requiring the nodes to travel larger distances and/or increase

their transmit power. Also, as can be seen, an increase in the shadowing power results

in a decrease in the energy cost for both MEMP and TEMP. This is due to the fact

that an increase in the shadowing power results in an increase in the spatial variation of

the channel, allowing an unmanned vehicle to find a spot with a good channel quality

with a smaller traveled distance. Moreover, as can been seen in Fig. 3.4, the total

46



Energy Optimal Distributed Beamforming using Unmanned Vehicles Chapter 3

3.6 3.8 4 4.2 4.4 4.6 4.8

Path loss exponent

0

200

400

600

800

T
o

ta
l 
e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
 (

J
)

TEMP of (3.9)
MEMP of (3.3)
Conf. bound of (3.13)

0 2 4 6 8 10

Shadowing power (dB)

300

400

500

600

700

T
o

ta
l 
e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
 (

J
)

TEMP of (3.9)
MEMP of (3.3)
Conf. bound of (3.13)

0 5 10 15 20 25 30

Shadowing decorrelation distance (m)

250

300

350

400

450

500

550

600

650

T
o

ta
l 
e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
 (

J
)

TEMP of (3.9)
MEMP of (3.3)
Conf. bound of (3.13)

Figure 3.4: Total energy (sum of motion and communication) consumption of MEMP
and TEMP for varying (top-left) path loss exponent, (top-right) shadowing power and
(bottom) shadowing decorrelation distance, for the case of perfect channel knowledge.
MEMP refers to the case where only motion energy is minimized while communication
energy is also adapted and co-optimized in TEMP.
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energy increases as we increase the decorrelation distance. This is due to the fact that

an increase in the decorrelation distance reduces the spatial variation and a robot has to

travel larger distances to find a location with a better channel quality.

3.4.2 Probabilistic Channel Prediction

We next consider the case where the channel is not known in the transmission from

unvisited locations. We consider the workspace of Fig. 3.7. The robots are assumed to

have 5% a priori channel measurements in this workspace. The robots then utilize the

channel prediction framework of Section 2.2 for probabilistically predicting the channel

at unvisited locations.5 Channel and system parameters are as summarized earlier in

this section, with Prout = 0.2. Fig. 3.5 shows the average total energy consumption as a

function of nbits/W for both MESS and TESS. The figure also shows the corresponding

error bars which represents the standard deviation of the total energy consumption for

each data point. MESS refers to the case where only motion energy is minimized, for

the case of probabilistic channel prediction, while communication energy is also adapted

and co-optimized in TESS. Curves marked by TESS and MESS denote the total energy

consumption when the nodes move to the final locations and experience the true channel

values. The label ‘TESS predicted’ in Fig. 3.5, on the other hand, is obtained from

(3.15) using predicted channel values and the lognormal approximation. In other words,

the predicted curve is what the nodes predict to consume while the TESS curve is the

true consumption. As expected, we see a significant performance improvement when

using the total energy-aware approach (TESS), as compared to the motion energy-aware

approach (MESS), especially as the communication load increases. Fig. 3.6 shows the

5MESS and TESS are solved using MATLAB’s fmincon solver. fmincon requires the objective and
the constraints to be twice differentiable and is thus unable to handle uncorrelated multipath. We then
assume an exponentially correlated multipath in the channel predictor with a very small decorrelation
distance of βMP = 0.033 m, which has a negligible impact on the prediction performance. It should be
noted that this is only for prediction purposes and that the real channel has an uncorrelated multipath.
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Figure 3.5: Energy consumption of MESS and TESS for different communication loads
for the case of probabilistic channel prediction. TESS provides a considerable energy
saving, as expected. MESS refers to the case where only motion energy is minimized
for the case of probabilistic channel prediction while communication energy is also
adapted and co-optimized in TESS.

total distance traveled by the robots for both MESS and TESS. Similar to the behavior

of the perfect channel knowledge case, an increase in the communication load results in

a larger penalization of the transmit power, and as a result TESS travels larger distances

to get to locations with a better channel quality. Then TESS can use lower transmission

powers, as can be seen in Fig. 3.6. Fig. 3.7 shows the behavior of MESS and TESS

for communication loads of nbits/W = 100 bits/Hz and nbits/W = 1500 bits/Hz. The

background color encodes the estimated channel power to the remote station. The lighter

(darker) areas correspond to a better (worse) channel quality.

Remark 3.4 (Computational complexity) In our simulations, the implementation

is done in MATLAB except for the MCKP solver, which is in C, and is adapted from
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Figure 3.6: Total (left) distance traveled and (right) transmission power utilized by
MESS and TESS for different communication loads for the case of probabilistic channel
prediction.
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Figure 3.7: Solution of MESS and TESS for (left) low (nbits/W = 100 bits/Hz) and
(right) high (nbits/W = 1500 bits/Hz) communication loads for the case of probabilis-
tic channel prediction. The background represents the estimated channel power with
lighter (darker) regions corresponding to a better (worse) channel quality.
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Scenario
TESS of (3.15)
with target
Prout = 0.2

MESS of (3.6)
with target
Prout = 0.2

Approx. of
(3.16) with
ζ = 0.1

Approx. of
(3.7) with
ζ = 0.1

Prob. of
outage

0.108 0.178 0.028 0.020

Table 3.1: Probability of outage for TESS and MESS as well as for the approximations
of (3.16) and (3.7) of Sections 3.3.2 and 3.2.2. We can see that the target Prout is
satisfied for TESS and MESS.

David Pisinger’s implementation [76]. The simulations were run on a 3.4 GHz i7-3770

CPU. For the case of Fig. 3.3, solving MEMP took 0.01 s, and solving TEMP took 25.2 s

and 25.3 s for the case of low (nbits/W = 100 bits/Hz) and high (nbits/W = 1500 bits/Hz)

communication loads respectively. For the case of Fig. 3.7 of probabilistic channel knowl-

edge, solving MESS took 63.8 s and 53.2 s for the case of low (nbits/W = 100 bits/Hz)

and high (nbits/W = 1500 bits/Hz) communication loads respectively. Furthermore, solv-

ing TESS took 122.7 s and 129.3 s for the case of low and high communication loads

respectively.

Since the targeted outage probability was 0.2, some of the cases shown in Fig. 3.5 and

3.6 will result in outage, which means that the constraints of (3.9) and (3.3) will not be

satisfied for TESS and MESS respectively. The first two columns of Table 3.1 show this

outage probability, averaged over different communication loads, which is close to 0.2.

In Sections 3.2.2 and 3.3.2, we proposed an alternative way for solving the probabilistic

cases by choosing 20 log10 α̃(rj) = Γ(rj) − ζσ(rj) in (3.7) and (3.16) with ζ ≥ 0, and

utilizing the corresponding deterministic solutions. Table 3.1 also shows the probability

of outage for such a case with ζ = 0.1, for both the total energy-aware and motion

energy-aware cases. We can see that this approach provides a good performance, with

a low outage probability, in this case. The total energy consumption is also similar to

TESS and MESS in these results. The computational complexity of this approach is also

low, as it takes advantage of our proposed theories of Sections 3.2.1 and 3.3.1. Choosing
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ζ of 20 log10 α̃(rj) = Γ(rj) − ζσ(rj) in a methodical way, in order to satisfy a target

probability of outage, is a subject of future work.

In this chapter, we optimized only for the final location of the robots and did not

consider the channel quality along the path traveled by the robot. Ideally, we would

want to plan the entire path of the robot as opposed to just the final location. However,

this is a very challenging problem as we now need to take into account the statistics of

the channel along a path traveled by a robot. In the next chapter, we take the first step

towards this: we characterize the statistics of the distance traveled by the mobile robot

along a given path until it gets connected to a remote station.
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Chapter 4

Statistics of the Distance Traveled
until Connectivity for Unmanned
Vehicles

In this chapter, we consider a scenario where a robot needs to establish connectiv-

ity with a remote station or another robot, as it moves along a predefined path. We

are interested in answering the following question: what is the distance traveled by the

robot along the path before it finds a connected spot? More specifically, we are inter-

ested in characterizing the statistics of the distance traveled along the path before it

gets connected, in realistic channel environments experiencing path loss, shadowing and

multipath effects. We refer to this problem as the first passage distance (FPD) problem,

analogous to the concept of first passage time [83]. Figure 1.3 shows an example of such

a scenario.

In this chapter, we mathematically characterize the probability density function

(PDF) of the FPD as a function of the underlying channel parameters of the environ-

ment, such as shadowing, path loss, and multipath fading parameters. We do so for two

cases: 1) when ignoring the multipath component (which could be of interest when the

Parts of this chapter have appeared in our conference submission [81], ©[2017] IEEE, and our
submitted journal [82].
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robot looks for an area of good connectivity as opposed to a single spot, or when multi-

path is negligible), and 2) when considering the multipath component. In both cases, we

first develop an exact characterization of the statistics of the FPD for the setting with

straight paths. We utilize tools from the stochastic equation literature to characterize the

FPD while ignoring the multipath component, and develop a recursive characterization

for the case when we include multipath. We then mathematically characterize a more

general space of paths for which the analysis holds, based on properties of the path such

as its curvature. Note that the PDF of the FPD can be directly computed via a high

dimensional integration, as we will discuss in Section 4.3.1. However, the direct compu-

tation of this is infeasible for moderate distances. In this chapter, we utilize tools from

the stochastic differential equation literature to significantly reduce this computational

complexity. The derivations of the chapter can thus bring a foundational analytical un-

derstanding to the FPD and can significantly affect networked robotic operations. Note

that the robot only needs to evaluate the five underlying channel parameters in order

to calculate the PDF of FPD, using our derivations. As such, it can quickly evaluate it

online after collecting a few online channel samples.

The chapter is organized as follows. In Section 4.1, we formally introduce the problem

and briefly summarize the channel’s underlying dynamics. In Section 4.2, we character-

ize the statistics of the distance traveled until connectivity while ignoring the multipath

component. In Section 4.3, we characterize the statistics of the FPD while including the

effect of multipath in the analysis. Finally, in Section 4.4, we validate our mathemat-

ical characterizations through extensive simulation with real channel parameters from

downtown San Francisco.
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4.1 Problem Setup

Consider a robot traveling along a given trajectory that needs to get connected to

either a remote operator or another robot, as shown in Fig. 1.3. In order for the robot to

successfully connect with the remote operator, the receptions need to satisfy a Quality

of Service (QoS) requirement such as a target Bit Error Rate, which in turn results in a

minimum required received Signal to Noise Ratio, or equivalently a minimum required

channel power, given a fixed transmission power. We denote this minimum required re-

ceived channel power as γth in this chapter. This chapter then asks the following question:

What is the distance traveled by the robot along the path before it gets connected to the

remote operator? More specifically, we are interested in mathematically characterizing

the probability density function (PDF) of this distance, for a given path, as a function of

the underlying channel parameters, such as path loss, shadowing and multipath fading

parameters, as well as the parameters of the path, such as its curvature.

4.1.1 Channel Model

As described in Chapter 2, the received channel power (in the dB domain) at location

q ∈ R2 can be expressed as Γ(q) = γPL(q) + ΓSH(q) + ΓMP(q) where γPL(q) = KdB −

10nPL log10 ‖q‖ is the distance-dependent path loss with nPL representing the path loss

exponent, and ΓSH and ΓMP are random variables denoting the impact of shadowing and

multipath respectively (in dB).

Consider the case where the robot is traveling along a path. Let d be the distance

traveled by the robot along this path. With a slight abuse of notation, in the rest of the

chapter we let Γ(d) represent the channel power when the robot has traveled distance d

along the path, as marked in Fig. 1.3. We thus have Γ(d) = γPL(d) + ΓSH(d) + ΓMP(d).
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4.2 Characterizing the FPD Without Considering

Multipath

We start our analysis by ignoring the multipath and only considering the shadowing

and path loss components of the channel, i.e., we want Γ(d) = γPL(d) + ΓSH(d) to be

above γth. This assumption allows us to better analyze and understand the FPD, and

paves the way towards our most general characterization of the next section, which

includes multipath as well. Moreover, the analysis also has practical values of its own,

and would be relevant to the case where the robot is interested in finding a general

area of good connectivity as opposed to a single good spot. In this section, we will

characterize the statistics of the distance traveled until connectivity for this scenario.

We begin by analyzing straight paths in Section 4.2.1, where we utilize the stochastic

differential equation literature [84] in our characterization. We then extend our analysis

to a more general space of paths in Section 4.2.2.

4.2.1 Straight Paths: Stochastic Differential Equation Analysis

In this section, we characterize the PDF of the distance traveled until connectivity for

straight-line paths. Consider a robot situated at a distance dsrc from a remote operator

or from another robot to which it needs to be connected, and moving in the direction

specified by the angle θsrc, as shown in Fig. 4.1. The angle θsrc is measured clockwise

with respect to the line segment connecting the remote operator and the robot, as can

be seen in Fig. 4.1, and denotes the direction of travel chosen by the robot.

Γ(d) represents the channel power when the robot is at distance d along direction
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Mobile Robot

srcθ

srcd

d

)dΓ(

Robot Path

Remote Operator

Figure 4.1: An example of the considered scenario for a straight path.

θsrc, as marked in Fig. 4.1. We thus have Γ(d) = γPL(d) + ΓSH(d), where

γPL(d) = KdB − 5nPL log10(d2
src + d2 − 2dsrcd cos θsrc), (4.1)

and ΓSH(d) is a zero mean Gaussian process with the spatial correlation of E {ΓSH(b)ΓSH(d)} =

σ2
SHe

−(d−b)/βSH , with d ≥ b. Note that Γ(d) is also a function of dsrc and θsrc. We drop

Γ(d)’s dependency on them in the notation as the analysis of the chapter is carried out

for a fixed dsrc and θsrc.

As we shall see, ΓSH(d) becomes an Ornstein-Uhlenbeck process, one of the most

studied types of Gauss-Markov processes [84–87]. Ornstein-Uhlenbeck process appears in

many practical scenarios, such as Brownian motion, financial stock markets, or neuronal

firing [86], [87], and thus has been heavily studied in the literature. In this chapter,

we shall utilize this rich literature [84], [88] to mathematically characterize the FPD to

connectivity for a mobile robot.

We begin by summarizing the definitions of a Gaussian process and a Markov process.
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Definition 4.1 (Gaussian Process [89]) A stochastic process {X(t) : t ∈ T }, where

T is an index set, is a Gaussian process, if any finite number of samples have a joint

Gaussian distribution, i.e., (X(t1), X(t2), · · · , X(tk)) is a Gaussian random vector for

all t1, · · · , tk ∈ T and for all k.

A Gaussian process is completely specified by its mean function mX(t) = E[X(t)] and

its covariance function ΣX(t1, t2) = E {[X(t1)−mX(t1)][X(t2)−mX(t2)]}. We use the

notation X ∼ GP (mX ,ΣX) to denote the underlying process.

Definition 4.2 (Markov Process [90]) A process X(t) is Markov if

Pr (X(tn) ≤ xn|X(tn−1), · · · , X(t1)) = Pr (X(tn) ≤ xn|X(tn−1)) ,

for all n and for all tn ≥ tn−1 ≥ · · · ≥ t1, where Pr(.) denotes the probability of the

argument.

Definition 4.3 (Gauss-Markov Process [91]) A stochastic process is Gauss-Markov

if it satisfies the requirements of both a Gaussian process and a Markov process.

We next state a lemma that shows when a Gaussian process is also Markov, which

we shall utilize to prove that the channel shadowing power ΓSH(d) is Gauss-Markov.

Lemma 4.1 A Gaussian process X ∼ GP(mX ,ΣX) is Markov if and only if

ΣX(t1, t3) =
ΣX(t1, t2)ΣX(t2, t3)

ΣX(t2, t2)
,

for all t3 ≥ t2 ≥ t1.

Proof: See [92] for the proof.
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Corollary 4.1 The channel shadowing power ΓSH(d) and the channel power Γ(d) are

Gauss-Markov processes.

Proof: ΓSH ∼ GP(0,ΣΓSH
) is a Gaussian process with zero mean and covariance

function ΣΓSH
(b, d) = σ2

SHe
−(d−b)/βSH . This covariance function satisfies

ΣΓSH
(b, t)ΣΓSH

(t, d)/ΣΓSH
(t, t) = σ2

SHe
−(d−t)−(t−b)/βSH = ΣΓSH

(b, d), for b ≥ t ≥ d, which

concludes the proof for ΓSH(d) using Lemma 4.1. The channel power Γ(d) is the sum of

ΓSH(d) and a mean function (path loss function γPL(d)). Thus, the channel power is also

a Gauss-Markov process with distribution Γ ∼ GP(γPL,ΣΓSH
).

Remark 4.1 (see [84]) The Ornstein-Uhlenbeck process O ∼ GP(0,ΣO) is a Gauss-

Markov process with the covariance function ΣO(b, d) = σ2e−(d−b)/β, where σ ≥ 0 and

β ≥ 0 are constants. Thus, we can see that ΓSH(d) is an Ornstein-Uhlenbeck process.

In order to gain more insight into the stochastic process Γ(d), we next discuss the

transition PDF f(γ, d|η, b) = ∂
∂γ

Pr (Γ(d) < γ|Γ(b) = η), where d ≥ b, as well as the

stochastic differential equation governing Γ(d), both of which we shall subsequently use

in our characterization of the PDF of the FPD.

The Underlying Stochastic Differential Equation

The transition PDF f(γ, d|η, b) characterizes the distribution of Γ(d) given Γ(b) = η.

This is a normal density characterized by a mean and variance of (see 10.5 of [93])

E [Γ(d)|Γ(b) = η] = γPL(d) + e−(d−b)/βSH(η − γPL(b))

Var [Γ(d)|Γ(b) = η] = σ2
SH(1− e−2(d−b)/βSH). (4.2)

The transition PDF explicitly shows the spatial dependence of the channel power Γ(d). As

stated in [88], f(γ, d|η, b) satisfies the partial differential equation known as the forward
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Fokker-Planck equation:1

∂

∂d
f(γ, d|η, b) = − ∂

∂γ
[AFP(γ, d)f(γ, d|η, b)] +

1

2

∂2

∂γ2
[BFPf(γ, d|η, b)] , (4.3)

with the associated initial condition of f(γ, b|η, b) = δ(γ−η), where AFP(γ, d) = γ′PL(d)−

(γ − γPL(d)) /βSH, BFP = (2σ2
SH)/βSH and γPL(d) is as stated in (4.1), with its derivative:

γ′PL(d) = −10nPL log10(e)
d− dsrc cos θsrc

d2
src + d2 − 2dsrcd cos θsrc

.

The Fokker-Planck equation shows the evolution of the probability density f(γ, d|η, b)

with the traveled distance d given Γ(b) = η.

Moreover, as shown in [84], the channel power Γ(d) can be represented as a stochastic

differential equation:2

dΓ(d) = AFP(Γ, d)dd+
√
BFPdW (d), (4.4)

where W (d) is the Wiener process and AFP(γ, d) and BFP are as defined before.

Remark 4.2 In (4.3) and (4.4), AFP(γ, d) and BFP are known as the drift and the

diffusion components respectively. The drift AFP(γ, d) = γ′PL(d)− (γ − γPL(d)) /βSH is a

pull towards the mean, and the diffusion component BFP = (2σ2
SH)/βSH is a function of

the shadowing variance and the decorrelation distance. Then, in an increment ∆d, we

can think of the channel power spatially evolving with a deterministic rate AFP(γ, d), in

addition to a random Gaussian term with the variance BFP∆d.

Next, we utilize our established lemmas to derive the PDF of the FPD.

1The Fokker-Planck equation of [88] is stated for a general Gauss-Markov process. Here we adapted
it for our specific Gauss-Markov process Γ(d).

2 [84] provides the stochastic differential equation for the Ornstein-Uhlenbeck process, from which we
can easily obtain 4.4.
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First Passage Distance

Consider the random variable Dγ0 = infd≥0{d : Γ(d) ≥ γth|Γ(0) = γ0 < γth}. This

denotes the FPD of the process Γ(d) to the connectivity threshold γth, with the initial

value Γ(0) = γ0 < γth. Further, let g[d|γ0] = ∂
∂d

Pr (Dγ0 < d) represent the PDF of the

FPD. In the following theorem, we characterize this PDF.

Theorem 4.1 The PDF of FPD g[d|γ0] satisfies the following non-singular second-kind

Volterra integral equation:

g[d|γ0] = −2Ψ[d|γ0, 0] + 2

∫ d

0

g[b|γ0]Ψ[d|γth, b]db, (4.5)

where γ0 < γth and

Ψ[d|η, b] =

{
− 1

2

dγPL(d)

dd
− γth − γPL(d)

2βSH

1 + e−2(d−b)/βSH

1− e−2(d−b)/βSH

+
η − γPL(b)

βSH

e−(d−b)/βSH

1− e−2(d−b)/βSH

}
f(γth, d|η, b). (4.6)

Proof: The proof is based on the fact that Γ(d) is a Gauss-Markov process and

utilizes the Fokker-Planck equation (4.3). The details are then adapted from Theorem

3.1 of [88] to our particular Gauss-Markov process.

Dγ0 represents the FPD for a given initial value of Γ(0) = γ0. In many scenarios, we

are instead interested in characterizing the FPD for the initial state Γ(0) being a random

variable bounded from above by γth, i.e., we are interested in characterizing the FPD

when the starting position is not connected. This is known as the upcrossing FPD in the

general first passage literature [88]. We next extend our analysis to derive the PDF of the

upcrossing FPD. Let the random variable D(ε)
Γ0

= infd≥0{d : Γ(d) ≥ γth|Γ(0) < γth − ε}

denote the ε-upcrossing FPD of Γ(d) to the boundary γth given that the initial state
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satisfies Γ(0) < γth − ε, where ε > 0 is a fixed real number. The ε-upcrossing FPD, D(ε)
Γ0

,

can be characterized as follows:

Pr
(
D(ε)

Γ0
< d
)

=

∫ γth−ε

−∞
Pr (Dγ0 < d) ζε(γ0)dγ0,

where Dγ0 is the FPD given the initial value Γ(0) = γ0 < γth, as defined earlier, and

ζε(γ0) =


f(γ0,0)

Pr(Γ(0)<γth−ε)
, γ0 < γth − ε

0, γ0 ≥ γth − ε
,

is the PDF of Γ(0)|Γ(0) < γth − ε with f(γ, d) denoting the PDF of Γ(d). Moreover, the

ε-upcrossing FPD density g
(ε)
u [d] = ∂

∂d
P(D(ε)

Γ0
< d) is similarly related to the FPD density

g[d|γ0] as follows: g
(ε)
u [d] =

∫ γth−ε
−∞ g[d|γ0]ζε(γ0)dγ0.

Remark 4.3 Note that we have required ε > 0. This is due to the fact that the mathe-

matical tools we shall utilize are not well-defined for γ0 = γth. However, ε can be chosen

arbitrarily small.

In the following theorem, we derive an expression for g
(ε)
u [d], the PDF of the ε-

upcrossing FPD.

Theorem 4.2 The PDF of the ε-upcrossing FPD, g
(ε)
u [d], satisfies the following non-

singular second-kind Volterra integral equation:

g(ε)
u [d] = −2Ψ(ε)

u [d] + 2

∫ d

0

g(ε)
u [b]Ψ[d|γth, b]db, (4.7)
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where Ψ[d|η, b] is as defined in (4.6),

Ψ(ε)
u [d] =

1

2Pr(Γ(0) < γth − ε)

{
−2σ2

SH

βSH
e−d/βSHf(γth − ε, 0)f [γth, d|γth − ε, 0]

+
1

2
f(γth, d)(1 + Erf[Υε(d)])

(
−dγPL(d)

dd
− 1

βSH
[γth − γPL(d)]

)}
,

with Erf(z) = 2√
π

∫ z
0
e−t

2
dt representing the error function, and

Υε(d) =
γth − ε− γPL(0)− e−d/βSH (γth − γPL(d))√

2σ2
SH (1− e−2d/βSH)

.

Proof: The proof is obtained by adapting Theorem 5.3 of [88] to our particular

Gauss-Markov process form.

In terms of implementation, the functions Ψ[d|η, b] and Ψε
u[d] in Theorem 4.1 and The-

orem 4.2 can be easily computed. The PDF of the FPD (g[d|γ0]) and the PDF of the

ε-upcrossing FPD (g
(ε)
u [d]) can then be computed from the integral equations (4.5) and

(4.7) respectively. In particular, Simpson rule provides the basis for an efficient iterative

algorithm for evaluating these integrals (See Section 4 of [88]).

Remark 4.4 (Computational complexity) The direct computation of g
(ε)
u [d] involves

a high dimension integration, as we will discuss in Section 4.3.1. For a discretized path

of N steps, this direct computation would have a computational cost exponential in N ,

i.e. O(NMN) for some constant M . In contrast, the computation cost of g
(ε)
u [d] using

Theorem 4.2 is O(N2). Moreover, Theorem 4.2 is also an elegant characterization of the

ε-upcrossing FPD that can be utilized for analysis and design of robotic operations.

63



Statistics of the Distance Traveled until Connectivity for Unmanned Vehicles Chapter 4

4.2.2 Approximately-Markovian Paths

In this section, we characterize the space of paths (beyond straight paths) that re-

sults in approximately-Markovian processes. As we saw in Section 4.2.1, the channel

shadowing component along a straight line is a Gauss-Markov process. This allowed us

to characterize the statistics of the distance to connectivity for a mobile robot traveling

along a straight path. A general non-straight path is not Markovian since the covariance

function ΣΓSH
(b, d) does not satisfy Lemma 4.1. In this section, we characterize the space

of paths for which the channel shadowing power along the path is approximately a Gauss-

Markov process. This allows us to immediately apply the stochastic differential equation

analysis of Section 4.2.1 to characterize the statistics of the distance until connectivity

for these paths.

Consider the scenario in Fig. 4.2 (top), where we have discretized the path with ΓSH,−0

denoting the shadowing power at the current location and ΓSH,−1,ΓSH,−2, · · · indicating

the channel shadowing power at previously-visited points.3 In Section 4.2.2, we saw that a

Gauss-Markov process satisfies the Fokker-Planck equation of (3), which provides us with

the result of Theorem 4.2. The Fokker-Planck equation in turn requires the property that

p(γSH,−0|γSH,−1, γSH,−2, · · · ) = p(γSH,−0|γSH,−1) for its derivation (through the Chapman-

Kolmogorov equation [84]). Thus, we say a path is approximately-Markovian, if at every

point on the path, we have that p(γSH,−0|γSH,−1, γSH,−2, · · · ) is close to p(γSH,−0|γSH,−1).

We will characterize this closeness precisely in Section 4.2.2 using the Kullback-Leibler

(KL) divergence metric.

Our key insight is that the approximate Markovian nature is related to the curvature

of a path, which is a measure of how much the path curves, i.e., how much it deviates

from a straight line. For instance, a straight line has a curvature of 0. Thus, we would

3Note that the discretization step size of the path must be small for the derivations of Theorem 4.2
to be valid.
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expect that paths with small enough curvature would result in approximately-Markovian

processes. We will precisely characterize what we mean by this in Section 4.2.2.

We first describe an outline of our approach for characterizing the space of approximately-

Markovian paths. At every point on the path, instead of checking for the conditional dis-

tribution given all the past points on the path, which is cumbersome, we consider all past

points on the path within a certain distance of the current point, i.e., within a ball cen-

tered at the current point. In other words, to check the approximately-Markovian prop-

erty, we evaluate p(γSH,−0|γSH,−1, γSH,−2, · · · , γSH,−n) instead of p(γSH,−0|γSH,−1, γSH,−2, · · · ).

Fig. 4.2 (top) shows an illustration of this. This makes sense since the shadowing com-

ponent has an exponential correlation function. Thus, if the radius of the ball is large

enough, the points outside of the ball will have a negligible impact on the estimate at the

center of the ball. We will characterize this radius in Section 4.2.2. Thus, our strategy

is to roll a ball along the path, as shown in Fig. 4.2 (bottom), and to check if the ap-

proximate Markovian property holds at each point along the path. We then characterize

two conditions that can ensure that a path will be approximately-Markovian. The first

is that, at any point on the path, if we travel backward along the path it should not

loop either within the ball or such that it re-enters the ball. We refer to such looping

as dth-looping (dth being the radius of the ball), and examples of this are shown in Fig.

4.3. Equivalently, a path is called dth-loop-free if there is no dth-looping. The second

condition is that the maximum curvature of the path should be smaller than a certain

bound, which will be characterized later in Section 4.2.2. If the dth-loop-free condition is

satisfied, then the only part of the path that lies within the ball would lie in the shaded

region of Fig. 4.4, and if the maximum curvature of the path is small enough, then the

path will be approximately-Markovian. We will formulate this precisely in Section 4.2.2.

We start by mathematically characterizing the dth-looping condition in detail.
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-0,SHΓ

-1,SHΓ

-2,SHΓ

-3,SHΓ

-4,SHΓ

-n,SHΓ 1

thd

thdthd

Figure 4.2: (bottom) A ball with radius dth rolling along the path, where we check for
approximate Markovianity within each ball, and (top) the discretized path and the
corresponding channel shadowing power values within a ball.
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dth-Loop-Free Constraint

We define dth-loop-free paths as paths where neither of the two following scenarios

occurs at any point on the path. The first is when traveling backward along a path,

the path loops within the ball itself. More precisely, when traveling backward along the

path, let the initial direction of travel be along the negative x-axis. We say that the path

loops within the ball if at any point (still inside the ball), the direction of travel has a

component along the positive x-axis (e.g., Fig. 4.3 (left)). The second scenario is when

the path re-enters the ball once it leaves it. These two scenarios, which we collectively

refer to as dth-looping, are illustrated in Fig. 4.3. Such dth-looping behavior can possibly

invalidate the approximate Markovian nature of the path.

We next relate the dth-loop-free condition to the curvature of the path. We first

review the precise definition of curvature.

Definition 4.4 (Curvature [94]) The curvature of a planar path r(b) = (x(b), y(b))

parameterized by arc-length is defined as

κ(b) = ‖υ′T (b)‖,

where υT (b) is the unit tangent vector at b.

When traveling backward along a path, consider the segment of the path inside the

ball, before the path exits the ball. Let rball refer to this segment, as shown in Fig. 4.4.

Moreover, let drball
refer to its length. The following lemma characterizes some important

properties of rball.

Lemma 4.2 For a path with maximum curvature κ and a ball with radius dth, the path

segment rball satisfies the following properties:
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1. rball lies within the shaded region of Fig. 4.4 where the boundary of the region

corresponds to circular arcs with curvature κ.

2. If κ < 1/dth, rball cannot loop within the ball (see Fig. 4.3 (left) for an example of

looping within the ball).

3. The length of the segment rball satisfies

drball <
1

κ
sin−1 (κ× dth) .

Proof: See Appendix B.1 for the proof.

Then, a sufficient condition for a dth-loop-free path is given as follows.

Lemma 4.3 (dth-loop-free path) Consider a planar path r(b) = (x(b), y(b)) parame-

terized by arc length, i.e., b denotes the arc length. Let κ be the maximum curvature of

the path. The path is dth-loop-free if it satisfies κ < 1/dth and

‖r(b)− r(b− d)‖ > dth,

for d > 1
κ

sin−1 (κdth) and for all b.

Proof: From Lemma 4.2, we know that if κ < 1/dth, the path cannot loop within

the ball, preventing the condition of Fig. 4.3 (left). Moreover, from Lemma 4.2, it

can easily be confirmed that ‖r(b) − r(b − d)‖ for d > 1
κ

sin−1 (κdth) is the euclidean

distance from the center to a point on the part of the path that has left the ball. Thus,

if ‖r(b) − r(b − d)‖ > dth, for d > 1
κ

sin−1 (κdth) the path cannot re-enter the ball (i.e.,

scenario of Fig. 4.3 (right) is not possible).

Remark 4.5 Any path can be reparameterized by arc length. Details on this can be found

in [95].
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thd

Figure 4.3: Two scenarios of dth-looping: (left) path loops within the ball and (right)
path loops back to re-enter the ball. The parts causing the loop in either scenario is
denoted by the dashed red line.

thd

φ

2
φ−π

κ
1=cR

ballr segment within
       the ball( (

Figure 4.4: A path of maximum curvature κ would lie within the shaded area. A
sample such path is shown.
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We next characterize the similarity or dissimilarity between the true distribution

p(γSH,−0|γSH,−1, · · · , γSH,−n) and its Markov approximation p(γSH,−0|γSH,−1) using the KL

divergence metric. We then utilize this to obtain sufficient conditions on the ball radius

and the curvature of a path for the approximate Markovian nature to hold.

Approximately-Markovian: KL Divergence metric

Consider a path as shown in Fig. 4.2 (top). Let ΓSH,−0 be the channel shadowing

power at the current location and ΓSH,−1, · · · ,ΓSH,−n be the channel shadowing power at

the past n locations along the path. From Section 4.1.1, we know that ΓSH,−0, · · · ,ΓSH,−n

are jointly Gaussian random variables. The distribution of ΓSH,−0|ΓSH,−1, · · · ,ΓSH,−n is

then given as N (m,σ2), where

m = ΣT
0,1:nΣ−1

1:nΓSH,−1:n, (4.8)

σ2 = σ2
SH − ΣT

0,1:nΣ−1
1:nΣ0,1:n, (4.9)

with ΓSH,−1:n = [ΓSH,−1, · · · ,ΓSH,−n]T , Σ0,1:n = E[ΓSH,−0ΓSH,−1:n] and Σ1:n =

E[ΓSH,−1:nΓTSH,−1:n] (see 10.5 of [93]). Moreover, E[ΓSH,−iΓSH,−j] = σ2
SHe

−‖qi−qj‖/βSH , where

qi ∈ R2 is the location corresponding to ΓSH,−i. Let c = Σ−1
1:nΣ0,1:n denote the coefficients

of the mean. We then have m = cTΓSH,−1:n = c1ΓSH,−1 + · · ·+ cnΓSH,−n.

We want to approximate this distribution with the Markovian distribution

ΓSH,−0|ΓSH,−1 ∼ N (m̂, σ̂2) where m̂ = %ΓSH,−1 and σ̂2 = σ2
SH(1− %2), with % = e−∆d/βSH ,

and ∆d being the step size of the path. We first characterize the difference between the

means, given as ∆m = m − m̂ = ∆cTΓSH,−1:n, where ∆c = [c1 − %, c2, · · · , cn]T . ∆m is

thus a zero-mean Gaussian random variable N (0, σ2
∆m), where

σ2
∆m = ∆cTΣ1:n∆c. (4.10)
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We will compare how close the true distribution and its approximation are using the

KL divergence metric. We first review the definition of KL divergence.

Definition 4.5 (KL Divergence [96]) The KL divergence between two distributions

p(x) and p̃(x) is defined as

KL =

∫
p(x) loge

p(x)

p̃(x)
dx.

KL divergence is a measure of the distance between two distributions [96]. We will utilize

this as a measure of the goodness of the approximation: the smaller the KL divergence,

the better the approximation. The following lemma gives us the expression for this KL

divergence.

Lemma 4.4 The KL divergence between N (m,σ2) and its approximation N (m̂, σ̂2) is

given as

KL =
σ2

∆m

2σ̂2
χ2

1 +
1

2

(
σ2

σ̂2
− 1− loge

σ2

σ̂2

)
, (4.11)

where χ2
1 = (m− m̂)2/σ2

∆m.

Proof: See [97] for the proof.

Since m and m̂ are functions of ΓSH,−1, · · · ,ΓSH,−n, they are random variables. Thus, χ2
1

becomes a Chi-squared random variable with one degree of freedom since (m − m̂) ∼

(0, σ2
∆m) [98], and the KL divergence of (4.11) becomes a random variable. More specif-

ically, from (4.11), we know that the KL divergence is a scaled Chi-squared random

variable with an offset term. We use the mean mKL and the standard deviation σKL

of the KL divergence to capture the deviation of the Markov approximation from the

true distribution. The smaller these values are, the better the approximation is. In our

approach, we set maximum tolerable values for the mean and the standard deviation as
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εm and εσ respectively. Then, we say that the distribution is approximately-Markovian

for the parameters εm and εσ if we satisfy mKL ≤ εm and σKL ≤ εσ.

We next consider the setting with 3 points in space, as shown in Fig. 4.5 (top), where

we have the current point (ΓSH,−0), the previous point (ΓSH,−1) and a general point in

space (ΓSH,r). We are interested in mathematically characterizing the impact of ΓSH,r

on the estimate at the current point, i.e., how good an approximation ΓSH,−0|ΓSH,−1 ∼

N (m̂, σ̂2) is for the true distribution ΓSH,−0|ΓSH,−1,ΓSH,r ∼ N (m,σ2). As we shall see,

we will utilize this analysis in such a way that it serves as a good proxy for the general

n point analysis. Specifically, we will utilize it to obtain bounds on the ball radius as

well as on the maximum allowed curvature of a path in Section 4.2.2 and Section 4.2.2

respectively. Let d1 = ‖q0 − q1‖, dr = ‖q0 − qr‖, and d1r = ‖q1 − qr‖, as shown in Fig.

4.5 (top), where qr is the location of the general point. Moreover, d1 = ∆d.

The following lemma characterizes the mean and standard deviation of the KL di-

vergence between the true distribution and its approximation for the 3 point analysis.

Lemma 4.5 The mean and standard deviation of the KL divergence between the true

distribution N (m,σ2) and its approximation N (m̂, σ̂2) for the 3 point analysis of Fig.

4.5 (top) is given as

mKL = −1

2
loge

(
1− σ2

∆m

σ̂2

)
,

σKL =
σ2

∆m√
2σ̂2

,

where

σ2
∆m = σ2

SH

(
e−dr/βSH − e−(d1+d1r)/βSH

)2

1− e−2d1r/βSH
.
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Figure 4.5: 3 points analysis (top) for a general case, (bottom left) for a path with
maximum curvature κ that satisfies κ < 1/dth, and (bottom right) along a path with
a constant curvature.

Proof: See Appendix B.2 for the proof.

Any point on the path can belong to three possible regions: 1) the shaded region

within the ball of Fig. 4.4, 2) within the ball but outside the shaded region, and 3)

outside the ball. If the path is dth-loop-free, then no point of the path lies within region

2 (i.e., within the ball but outside the shaded region). We next characterize the minimum

ball radius and the maximum allowed curvature of a path such that the impact of any

point (ΓSH,r) in region 1 and 3 on the estimate at the center of the ball is negligible.
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Ball Radius

We next utilize our analysis to determine the ball radius dth. We wish to select the

minimum dth such that the impact of any point outside the ball on the approximation is

within the tolerable KL divergence parameters εm and εσ, i.e., the KL divergence between

the true and the approximating distribution (in the 3 point analysis) satisfies mKL ≤ εm

and σKL ≤ εσ.

The following lemma characterizes what the minimum ball radius dth should be.

Lemma 4.6 The minimum ball radius dth such that any point outside the ball satisfies

the maximum tolerable KL divergence parameters εm and εσ for the 3 point analysis, is

given by

dth =
βSH
2

loge

(
%2 +

1− %2

εd

)
,

where % = e−∆d/βSH and εd = min
{

1− e−2εm ,
√

2εσ
}

.

Proof: See Appendix B.3 for the proof.

Curvature Constraint

We next utilize the 3 point analysis to determine the maximum curvature of a path

such that it is approximately-Markovian, i.e., it satisfies the KL divergence constraint

mKL ≤ εm and σKL ≤ εσ.

Consider the scenario in Fig. 4.5 (bottom left). For a given maximum curvature κ,

any valid point of the path must lie within the shaded region of the figure, where the

boundary corresponds to circular paths with curvature κ. We wish to find the maximum

allowed curvature such that the impact of any point within the shaded region on the

approximation is within the tolerable KL divergence parameters εm and εσ, i.e., the KL
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divergence between the true and the approximating distribution (in the 3 point analysis)

satisfies mKL ≤ εm and σKL ≤ εσ. The following lemma characterizes this maximum

allowed curvature as the solution of an optimization problem.

Lemma 4.7 The maximum allowed curvature κth such that any past point on the path

within the ball of radius dth satisfies the maximum tolerable KL divergence parameters εm

and εσ for the 3 point analysis, is the solution to the following optimization problem:

maximize κ

subject to max
φ:0<φ≤ψcons(κ)

ψopt(κ, φ) ≤ εd

κ < 1/dth,

(4.12)

where

ψopt(κ, φ) =

(
e
− 2
κβSH

sin(φ+∆φ
2

) − %e−
2

κβSH
sin(φ

2
)
)2

(1− e−
4

κβSH
sin(φ

2
)
)(1− %2)

,

and ψcons(κ) = 2 sin−1(κdth
2

) − ∆φ, ∆φ = 2 sin−1(κ∆d
2

), % = e−∆d/βSH,

εd = min
{

1− e−2εm ,
√

2εσ
}

.

Proof: See Appendix B.4 for the proof.

Remark 4.6 Ideally, we would have preferred to use the KL divergence between the ap-

proximation and the true distribution where we condition on all the past points on the

path within the ball radius, as opposed to using just the point with the maximal impact.

However, such an analysis does not lend itself to a neat characterization of the maximum

allowed curvature. Through simulations, we have seen that the 3 point analysis, as de-

scribed in Lemma 4.7, serves as a good proxy for the n past points case on a circular path

(which has a maximum curvature everywhere for a given κ). For instance, for parameters
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κ = 1/15, ∆d = 0.1 and βSH = 5 m, the KL divergence mean and standard deviation

when considering all the past points of the path within the ball are mKL = 6× 10−7 and

σKL = 9 × 10−7 respectively. This is comparable to the values mKL = 3 × 10−7 and

σKL = 5× 10−7 obtained for the 3 point analysis from Lemma 4.7.

Finally, we put together all our results to provide sufficient conditions for an approximately-

Markovian path.

Lemma 4.8 (Approximately-Markovian Path) Let r(b) = (x(b), y(b)) be a path pa-

rameterized by its arc length. The path is approximately-Markovian for given maximum

tolerable KL divergence parameters εm and εσ for the 3 point analysis, if it satisfies the

following conditions:

1. r(b) is dth-loop-free for ball radius dth (as characterized by Lemma 4.3),

2. curvature κ(b) < κth for all b,

where dth and κth are obtained from Lemma 4.6 and Lemma 4.7 respectively.

Consider a given path. For a given εm and εσ, we can check if the path satisfies

the conditions of Lemma 4.8. If it does, we can then directly use the results of Section

4.2.1 to obtain the PDF of the FPD for the path. Note that even if the path does not

satisfy the conditions, the path may still be approximately-Markovian as the conditions

of Lemma 4.8 are sufficient conditions.

4.3 Characterizing FPD Considering Multipath

The previous section analyzed the FPD to the connectivity threshold when the mul-

tipath component was ignored. In this section, we show how to derive the FPD density

in the presence of the multipath fading component, and for the most general channel
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model of Γ(d) = γPL(d) + ΓSH(d) + ΓMP(d). We begin by analyzing straight paths in

Section 4.3.1, where we derive the PDF of the FPD using a recursive formulation. We

then extend our analysis to a larger space of paths in Section 4.3.2.

4.3.1 Straight Paths: A Recursive Characterization

We first characterize the PDF of the distance traveled until connectivity for straight

paths. We consider the scenario described in Section 4.2.1, where a robot situated at

a distance dsrc from a remote operator to which it needs to be connected, moves in a

straight path in the direction specified by the angle θsrc, as shown in Fig. 4.1. Γ(d)

represents the channel power when the robot is at distance d along direction θsrc, as

marked in Fig. 4.1.

Recall that we define connectivity as the event where Γ(d) ≥ γth. The connectivity

requirement is then given as Γ(d) = γPL(d) + ΓSH(d) + ΓMP(d) ≥ γth, considering all the

channel components. In this case, the approach of Section 4.2.1 is not applicable anymore

as we no longer deal with a Markov process. Even if the multipath component was taken

to be a Gauss-Markov process (which could be a valid model for some environments [71]),

the resultant channel power would not be Markovian, as can be verified from Lemma

4.1. In this section, we assume that the robot measures the channel along the chosen

straight path in discrete steps of size ∆d. We assume that ∆d is such that the multipath

random variable is uncorrelated at the distance ∆d apart (this is a realistic assumption

as multipath decorrelates fast [3]). We then index the channel power and shadowing

components accordingly, i.e., let Γk = Γ(k∆d) and ΓSH,k = ΓSH(k∆d). The probability

of failure of connectivity at the end of N steps (given the initial failure of connectivity)
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can then be written as

Pr (Γ1,Γ2, · · · ,ΓN < γth|Γ0 < γth) =

∫
· · ·
∫

γ1,··· ,γN<γth

p(γ1, · · · , γN |Γ0 < γth)dγ1 · · · dγN ,

(4.13)

where p(γ1, · · · , γN |Γ0 < γth) is the conditional joint density function of Γ1, · · · ,ΓN .

Consider the computation of this integral, which is an integration in an N dimensional

space. If we discretize the domain of Γk into M parts, then a direct computation of

the FPD for upto N steps would have a computational complexity of O(NMN), which is

infeasible for high values of M and N . Instead, we show how this can be solved efficiently

through a recursive integral computation in O(NM log(M)). In contrast, our previously

proposed dynamic programming approach of [81] had a computational complexity of

O(N2M2).

As mentioned before, the robot measures the channel in discrete steps of size ∆d.

Let dk = k∆d denote the distance when k steps are taken. Then, it can be shown, using

(4.2), that the shadowing component is an autoregressive AR(1) process, the continuous

analogue of which is the Ornstein-Uhlenbeck process (note that the shadowing component

is Markovian):

ΓSH,k+1 = %ΓSH,k + σSH

√
1− %2Zk,

where % = e−∆d/βSH and Zk are i.i.d. with a standard normal distribution. The conditional

random variable ΓSH,k+1|γSH,k is thus a Gaussian random variable with mean %γSH,k and

variance σ2
SH(1− %2).
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Note that the desired probability of (4.13) can be expressed as

Pr (Γ1, · · · ,ΓN < γth|Γ0 < γth) =
Pr (Γ0, · · · ,ΓN < γth)

Pr (Γ0 < γth)
. (4.14)

We next show how to compute Pr(Γ0,Γ1, · · ·ΓN < γth) via a recursive characteriza-

tion. This is inspired in part by the calculation of orthant probabilities for auto-regressive

sequences in [99]. Define the set of functions Ωk, as follows:

Ωk(γSH,k) =

∫ γth−γPL(dk)−γSH,k

γMP,k=−∞

∫
· · ·
∫

Sk−1

p(γSH,0, γMP,0, · · · , γSH,k, γMP,k)

× dγSH,0dγMP,0 · · · dγSH,k−1dγMP,k−1dγMP,k (4.15)

where Sk−1 = ∩k−1
i=0 {γSH,i, γMP,i : γPL(di) + γSH,i + γMP,i < γth} and

p(γSH,0, γMP,0, · · · , γSH,k, γMP,k) is the joint density of ΓSH,0,ΓMP,0, · · · ,ΓSH,k,ΓMP,k. Note

that

Pr (Γ0,Γ1, · · · ,ΓN < γth) =

∫
· · ·
∫

SN

p(γSH,0, γMP,0, · · · , γSH,N , γMP,N)

× dγSH,0dγMP,0 · · · dγSH,NdγMP,N

=

∫ ∞
γSH,N=−∞

ΩN(γSH,N)dγSH,N . (4.16)

In the following lemma we show how to compute Ωk(γSH,k) recursively.

Lemma 4.9 The functions Ωk, for k = 1, · · · , N , of (4.15) can be computed by the

recursion:

Ωk+1(γSH,k+1) = FMP(γth − γPL(dk+1)− γSH,k+1)
1

%

∫ ∞
u=−∞

ϕ

(
γSH,k+1 − u
σSH
√

1− %

)
Ωk(

u

%
)du,
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initialized with

Ω0(γSH,0) = FMP(γth − γPL(0)− γSH,0)ϕ

(
γSH,0
σSH

)
,

where FMP(.) is the CDF of the multipath random variable ΓMP and ϕ(.) is the standard

Gaussian density function.

Proof: It can be seen that this clearly holds for k = 0:

Ω0(γSH,0) =

∫ γth−γPL(d0)−γSH,0

γMP,k=−∞
p(γSH,0, γMP,0)dγMP,0

= FMP(γth − γPL(0)− γSH,0)ϕ

(
γSH,0

σSH

)
.

Next, Ωk+1(γSH,k+1) can be expanded as

Ωk+1(γSH,k+1) =

∫ γth,MP,k+1

−∞

∫
· · ·
∫

Sk

p(γSH,0, γMP,0, · · · , γSH,k+1, γMP,k+1)

× dγSH,0dγMP,0 · · · dγSH,kdγMP,kdγMP,k+1

=

∫ γth,MP,k+1

−∞
p(γMP,k+1)dγMP,k+1

∫ ∞
−∞

p(γSH,k+1|γSH,k)

×
∫ γth,MP,k

−∞

∫
· · ·
∫

Sk−1

p(γSH,0, γMP,0, · · · , γSH,k, γMP,k)

× dγSH,0dγMP,0 · · · dγSH,k−1dγMP,k−1dγMP,k

= FMP(γth,MP,k+1)

∫ ∞
−∞

ϕ

(
γSH,k+1 − %γSH,k

σSH

√
1− %

)
Ωk(γSH,k)dγSH,k

=
FMP(γth,MP,k+1)

%

∫ ∞
u=−∞

ϕ

(
γSH,k+1 − u
σSH

√
1− %

)
Ωk(

u

%
)du,

where γth,MP,k = γth − γPL(d)− γSH,k.
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Remark 4.7 Note that the recursive integral in Lemma 4.9 is in the form of a convolu-

tion. This can be computed efficiently using the Fast Fourier transform.

Using Lemma 4.9, we can compute Pr (Γ0,Γ1, · · · ,ΓN < γth) as shown in (4.16), which

in turn is used to compute Pr (Γ1, · · ·ΓN < γth|Γ0 < γth) via (4.14).

Next, we use this result to calculate the FPD probability. Let K =

mink=1,2,··· {k : Γk ≥ γth,Γ0 < γth} be the random variable which denotes the upcrossing

first passage step to connectivity given that Γ0 is restricted to lie below γth. Then,

Pr(K = k) = Pr (Γ1, · · ·Γk−1 < γth,Γk ≥ γth|Γ0 < γth)

= Pr (Γ1, · · ·Γk−1 < γth|Γ0 < γth)− Pr (Γ1, · · ·Γk < γth|Γ0 < γth) ,

where both terms on the right hand side can be obtained from our recursive characteri-

zation using Lemma 4.9.

4.3.2 Approximately-Markovian Paths

In this section, we characterize the space of paths (beyond straight paths) for which

we can characterize the statistics of the distance traveled until connectivity. As we saw

in Section 4.3.1, the recursive characterization of Lemma 4.9 depends on the channel

shadowing power being a Markov process. Specifically, the proof of Lemma 4.9 requires

that p(γSH,−0|γSH,−1, γSH,−2, · · · ) = p(γSH,−0|γSH,−1), where ΓSH,−0 is the shadowing power

at the current location and ΓSH,−1,ΓSH,−2, · · · are the channel shadowing power at pre-

viously visited points, as shown in Fig. 4.2 (top). We can then directly use the tools

and strategies developed in Section 4.2.2 to characterize the space of paths that are

approximately-Markovian. We then obtain the statistics of the FPD for these paths

using Lemma 4.9.
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Remark 4.8 (Computational complexity) A natural question that arises is: why

not use the results of Section 4.3.1 to tackle the case without considering multipath of

Section 4.2.1? We next address this. As discussed in Section 4.3.1, the computation cost

of Lemma 4.9 for upto N steps is O(NM log(M)). In contrast, the computational cost

of Theorem 4.2 for the case without considering multipath, for upto N steps, is O(N2).

Since M >> N , the stochastic differential equation approach is more computationally

efficient. Moreover, the characterization of the ε-upcrossing FPD of Section 4.2.1 can be

used for analytical purposes.

4.4 Numerical Results based on Real Channel Data

In this section, we validate the derivations of Sections 4.2 and 4.3 in a simulation

environment with real channel parameters. We also highlight interesting trends of the

FPD statistics as a function of the channel parameters. The channel is generated using

the channel model described in Section 4.1.1, with parameters obtained from real channel

measurements in downtown San Francisco [73]: nPL = 4.2, σ2
SH = 8.41 and βSH = 12.92

m. We impose a minimum required received SNR of 20 dB, the noise power is taken

to be a realistic −100 dBmW, and the transmit power is taken to be 30 dBmW, which

results in a channel power connectivity threshold of γth = −110 dB. We furthermore take

the upcrossing FDP constant to be ε = 0.1 in the simulation results.

We consider a discretization step size of ∆d = 0.03 m. Let the maximum tolerable

KL divergence parameters be εm = 0.001 and εσ = 0.001. Then, the ball radius dth = 9.5

m and the maximum allowed curvature κth = 0.104 satisfy Lemma 4.6 and Lemma 4.7

respectively. We will demonstrate the efficacy of our proposed approaches through two

different paths that satisfy these constraints and are thus approximately-Markovian: 1)

an archimedian spiral with equation rd = 11 + 5eθ, and 2) a logarithmic spiral with
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equation rd = 11e0.5θ, where both equations are in polar coordinates (rd, θ). Figure 4.6

(top) shows the path and the curvature along the path of the archimedian spiral, while

Fig. 4.7 (top) shows the path and the curvature along the path of the logarithmic spiral.

The remote station is located at the origin as denoted in figures 4.6 (top) and 4.7 (top).

4.4.1 Results Without Considering Multipath

We first consider the case without multipath. Figure 4.6 (middle) shows the PDF

and CDF of the upcrossing FPD for the archimedian path. Figure 4.7 (middle) shows

the PDF and CDF of the upcrossing FPD for the logarithmic path. We can see that,

for both paths, our theoretical derivations match the true statistics obtained via Monte

Carlo simulations very well.

When considering the FPD to connectivity, it should be noted that DεΓ0
may not be a

proper random variable, i.e.4, Pr(DεΓ0
<∞) < 1. To see how this may arise, consider the

case when the robot moves away from the remote operator. In this case, it is reasonable

to expect that with a finite probability the robot will never be connected to the remote

operator, especially if it started far from the remote operator to begin with. Formally,

let Pconn,∞ = Pr(DεΓ0
< ∞) denote the probability of connectivity as d → ∞, i.e., the

event that the robot will eventually be connected. Then, there could be cases where

Pconn,∞ < 1. Thus, to fully characterize the first passage statistics and embrace this

possibility, we further consider Pconn,∞ as well.

Consider a robot moving along a straight path as shown in Fig. 4.1b. The robot

travels along this path until it gets connected or until it travels a 1000 m. Figure 4.8 shows

the contour plots of the probability of connectivity Pconn,∞ and the expected distance

traveled, as a function of dsrc and θsrc. These plots are representative of the connection

statistics for a given space and given set of channel parameters. As expected, with an

4This issue also arises in the general literature on first passage [100].
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Initial location

Final location

Figure 4.6: (top) Archimedian spiral as the path of the robot and curvature along the
archimedian spiral, (middle) PDF and CDF of upcrossing FPD without considering
multipath, and (bottom) PDF and CDF of upcrossing FPD when including multipath.
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Initial location

Final location

Figure 4.7: (top) Logarithmic spiral as the path of the robot and curvature along the
logarithmic spiral, (middle) PDF and CDF of upcrossing FPD without considering
multipath, and (bottom) PDF and CDF of upcrossing FPD when including multipath.
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Figure 4.8: Polar contour plot of (left) eventual probability of connectivity Pconn,∞,
and (right) expected distance traveled without considering multipath, as a function
of dsrc and θsrc.

increase in θsrc, i.e., angling away from the remote operator, Pconn,∞ decreases (i.e., there is

a higher non-zero probability that the robot will never get connected) and the expected

distance traveled by the robot increases. Note that for every dsrc, there is a positive

angle φ > 0 for which for angle θsrc ≤ φ, connectivity is a sure event, i.e., Pconn,∞ = 1.

Furthermore, as dsrc increases, φ decreases as can be seen from Fig. 4.8, i.e., the robot

needs to stay closer to θsrc = 0 to guarantee Pconn,∞ = 1. Moreover, as expected, there is

an increase in the expected distance traveled by the robot with increasing distance from

the source dsrc.

4.4.2 Results When Including Multipath

Next, consider the case where multipath of the environment can not be neglected. We

then simulate the multipath fading as an uncorrelated Rician random variable. Rician

distribution is a common distribution for characterizing multipath [70] and is given by

fric(z) = (1 +Kric)e
−Kric−(1+Kric)zIB,0

(
2
√
zKric(1 +Kric)

)
,
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where IB,0(.) is the modified 0th order Bessel function and the parameter Kric is the

ratio of the power in the line of sight component to the power in the non-line of sight

components of the channel. We use the rician parameter Kric = 1.59, which we obtain

from the real channel measurements in downtown San Francisco. We further assume

that the multipath component gets uncorrelated at our discretization interval of 0.03 m,

which is a reasonable assumption in many cases [3].

Figure 4.6 (bottom) shows the PDF and CDF of the upcrossing FPD for the archime-

dian path. Figure 4.7 (bottom) shows the PDF and CDF of the upcrossing FPD for the

logarithmic path. The histogram obtained via Monte Carlo simulations is also plotted

for comparison. It can be seen that in the case of both paths our derivations match the

true statistics very well.

Finally, different environments will have different underlying channel parameters.

Thus, we next consider the impact of the underlying channel parameters on the FPD.

Figure 4.9 (top) shows the expected distance traveled as a function of the shadowing

decorrelation distance (βSH) and the shadowing variance (σ2
SH) respectively when dsrc =

550 m and θsrc = 0 rad, along a straight path. Increasing the shadowing power directly

increases the spatial variance of the channel power. Thus, with a higher probability, Γ(d)

stumbles upon the connectivity threshold earlier, resulting in a smaller FPD, as can be

seen. An increase in the decorrelation distance, on the other hand, implies a greater

spatial correlation of the channel power and decreases the spatial variation. Thus, we

observe that the expected traveled distance increases when increasing the decorrelation

distance. Figure 4.9 (bottom) shows the expected distance until connectivity as a function

of Kric of multipath. For large values of Kric, the line of sight component dominates and

results in a more deterministic multipath term. Decreasing Kric, on the other hand,

results in an increase in the variance of the multipath component, thus increasing the

randomness of the channel. Thus as Kric decreases, Γ(d) would cross the connectivity

87



Statistics of the Distance Traveled until Connectivity for Unmanned Vehicles Chapter 4

Figure 4.9: Expected distance until connectivity (with multipath) as a function of the
(top left) shadowing power, (top right) shadowing decorrelation distance and (bottom)
rician parameter Kric, for the case of a straight path with dsrc = 550 m and θsrc = 0
rad.
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threshold earlier with a higher probability (due to the increase in channel randomness),

resulting in a smaller expected distance traveled.

In this chapter, we characterized the distance traveled by a mobile robot until it gets

connected along a given path. In the next chapter, we actively plan the path of the robot,

such that we minimize the expected traveled distance until the robot gets connected.
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Chapter 5

Path Planning for Minimizing the
Expected Cost until
Success/Connectivity

In this chapter, we consider the scenario where an unmanned vehicle needs to get

connected to a remote station (or another robot). More specifically, we consider the

case where an unmanned vehicle is not connected in its initial location and needs to

incur motion energy to find a connected spot. We are then interested in designing an

energy efficient path for the robot that can guarantee connectivity in realistic channel

environments experiencing path loss, shadowing, and multipath fading. More precisely,

we consider the problem of planning the path of a robot in order to find a connected spot

while minimizing the expected traveled distance.

We pose this in the framework of a general path planning problem of a robot on a

graph with edge costs, and where each node has a Boolean value of success or failure

(with respect to some task) with a given probability. The objective is to plan a path

for the robot on the graph that minimizes the expected cost until success. As discussed

in Section 1.3, this general problem has several possible applications. In the rest of

Parts of this chapter have appeared in our conference submission [49], ©[2017] IEEE, and our
submitted journal [101].
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the chapter we will primarily analyze and obtain results for the general graph-theoretic

problem. We will apply the results we obtain to the specific scenario of path planning

for a connectivity seeking robot in Section 5.5.2, where the robot uses the probabilistic

prediction framework of Section 2.2 to evaluate the probability of connectivity success at

each node on the graph, and then uses our proposed framework of this section to design

a minimum average cost path to a connected spot.

In this chapter, it is our goal to bring a foundational understanding to this general

graph-theoretic problem. We start by showing that the problem of interest, i.e., minimiz-

ing the expected cost until success, can be posed as an infinite horizon Markov Decision

Process (MDP) and solved optimally, but with an exponential space complexity. We

then formally prove its NP-hardness. To address the space complexity, we then propose

an asymptotically ε-suboptimal (i.e., within ε of the optimal solution value) path planner

for this problem, using a game-theoretic framework. We further show how it is possible

to solve this problem very quickly by proposing two sub-optimal but non-myopic ap-

proaches. Our proposed approaches provide a variety of tools that can be suitable for

applications with different needs.

The rest of the chapter is organized as follows. In Section 5.1, we formally introduce

the problem of interest and show how to optimally solve it by formulating it in an infinite

horizon MDP framework as a stochastic shortest path (SSP) problem. As we shall see,

however, the state space requirement for this formulation is exponential in the number

of nodes in the graph. In Section 5.2, we formally prove our problem to be NP-hard,

demonstrating that the exponential complexity result of the MDP formulation is not

specific to it. In Section 5.3, we propose an asymptotically ε-suboptimal path planner

and in Section 5.4 we propose two suboptimal but non-myopic and fast path planners to

tackle the problem. Finally, in Section 5.5, we confirm the efficiency of our approaches

with numerical results in two different scenarios: a rover on Mars searching for an object
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for scientific studies, and a robot looking for a connected spot to a remote station (with

real data from downtown San Francisco). Our numerical results show a considerable

performance improvement over existing state-of-the-art approaches.

5.1 Problem Formulation

In this section, we formally define the problem of interest, which we refer to as the

Min-Exp-Cost-Path problem. We next show that we can find the optimal solution of

Min-Exp-Cost-Path by formulating it as an infinite horizon MDP with an absorbing

state, a formulation known in the stochastic dynamic programming literature as the

stochastic shortest path problem [102]. However, we show that this results in a state

space requirement that is exponential in the number of nodes of the graph, implying that

it is only feasible for small graphs and not scalable when increasing the size of the graph.

5.1.1 Min-Exp-Cost-Path Problem

Consider an undirected connected finite graph G = (V , E), where V denotes the set

of nodes and E denotes the set of edges. Let pv ∈ [0, 1] be the probability of success at

node v ∈ V and let luv > 0 denote the cost of traversing edge (u, v) ∈ E . We assume that

the success or failure of a node is independent of the success or failure of the other nodes

in the graph. Let vs ∈ V denote the starting node. The objective is to produce a path

starting from node vs that minimizes the expected cost incurred until success. In other

words, the average cost until success on the optimal path is smaller than the average cost

on any other possible path on the graph. Note that the robot may only traverse part of

the entire path produced by its planning, as its planning is based on a probabilistic prior

knowledge and success may occur at any node along the path.

For the expected cost until success of a path to be well defined, the probability of
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failure after traversing the entire path must be 0. This implies that the final node of

the path must be one where success is guaranteed, i.e., a v such that pv = 1. We call

such a node a terminal node and let T = {v ∈ V : pv = 1} denote the set of terminal

nodes. We assume that the set T is non-empty in this subsection. We refer to this as the

Min-Exp-Cost-Path problem. Fig. 5.1 shows a toy example along with a feasible solution

path. In Section 5.2.1, we will extend our discussion to the setting when the the set T is

empty.

We next characterize the expected cost for paths where nodes are not revisited,

i.e., simple paths, and then generalize it to all possible paths. Let the path, P =

(v1, v2, · · · , vm = vt), be a sequence of m nodes such that no node is revisited, i.e.,

vi 6= vj, ∀i 6= j, and which ends at a terminal node vt ∈ T . Let C(P , i) represent the

expected cost of the path from node P [i] = vi onward. C(P , 1) is then given as

C(P , 1) = pv1 × 0 + (1− pv1)pv2lv1v2 + · · ·

+

[ ∏
j≤m−1

(1− pvj)

]
pvm(lv1v2 + · · ·+ lvm−1vm)

= (1− pv1)lv1v2 + (1− pv1)(1− pv2)lv2v3 + · · ·

+

[ ∏
j≤m−1

(1− pvj)

]
lvm−1vm

=
m−1∑
i=1

[∏
j≤i

(1− pvj)

]
lvivi+1

.
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For a path which contains revisited nodes, the expected cost can then be given by

C(P , 1) =
m−1∑
i=1

 ∏
j≤i:vj 6=vk,∀k<j

(1− pvj)

 lvivi+1

=
∑
e∈E(P)

 ∏
v∈V(Pe)

(1− pv)

 le,
where E(P) denotes the set of edges belonging to the path P , and V(Pe) denotes the

set of vertices encountered along P until the edge e ∈ E(P). Note that C(P , i) can be

expressed recursively as

C(P , i) =

 (1− pvi)
(
lvivi+1

+ C(P , i+ 1)
)
, if vi 6= vk,∀k < i

lvivi+1
+ C(P , i+ 1), else

. (5.1)

The Min-Exp-Cost-Path optimization can then be expressed as

minimize
P

C(P , 1)

subject to P is a path of G

P [1] = vs

P [end] ∈ T.

(5.2)

We next show how to optimally solve the Min-Exp-Cost-Path problem by formulating

it as an infinite horizon MDP.

5.1.2 Optimal Solution via MDP Formulation

The stochastic shortest path problem (SSP) [102] is an infinite horizon MDP formu-

lation, which is specified by a state space S, control/action constraint sets As for s ∈ S,

state transition probabilities Pss′(as) = P (sk+1 = s′|sk = s, ak = as), an absorbing ter-
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Figure 5.1: A toy example along with a feasible solution path starting from node 1.

minal state st ∈ S, and a cost function gcost(s, as) for s ∈ S and as ∈ As. The goal is to

obtain a policy that would lead to the terminal state st with a probability 1 and with a

minimum expected cost.

We next show that the Min-Exp-Cost-Path problem formulation of (5.2) can be posed

in an SSP formulation. Utilizing the recursive expression of (5.1), we can see that the

expected cost from a node, conditioned on the set of nodes already visited by the path

can be expressed in terms of the expected cost from the neighboring node that the path

visits next. Thus, the optimal path from a node can be expressed in terms of the optimal

path from the neighboring node that the path visits next, conditioned on the set of nodes

already visited. This motivates the use of a stochastic dynamic programming framework

where a state is given by the current node as well as the set of nodes already visited.

More precisely, we formulate the SSP as follows. Let V ′ = V \ T be the set of

non-terminal nodes in the graph. A state of the MDP is given by s = (v,H), where

v ∈ V ′ is the current node and H ⊆ V ′ is the set of nodes already visited (keeping

track of the history of the nodes visited), i.e., u ∈ H, if u is visited. The state space is

then given by S = {(v,H) : v ∈ V ′, H ⊆ V ′} ∪ {st}, where st is the absorbing terminal
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state. In this setting, the state st denotes the state of success. The actions/controls

available at a given state is the set of neighbors of the current node, i.e., As = {u ∈ V :

(v, u) ∈ E} for s = (v,H). The state transition probabilities are denoted by Pss′(u) =

P (sk+1 = s′|sk = s, ak = u) where s, s′ ∈ S and u ∈ As. Then, for s = (v,H) and u ∈ As,

if v ∈ H (i.e., v is revisited), we have

Pss′(u) =

 1, if s′ = gtrans(u,H)

0, else
,

and if v /∈ H, we have

Pss′(u) =


1− pv, if s′ = gtrans(u,H)

pv, if s′ = st

0, else

,

where gtrans(u,H) =

 (u,H ∪ {v}), if u ∈ V ′

st, if u ∈ T
. This implies that at node v, the robot

will experience success with probability pv if v has not been visited before, i.e., v /∈ H.

The terminal state st is absorbing, i.e., Pstst(u) = 1, ∀u ∈ Ast . The cost gcost(s, u) incurred

when action/control u ∈ As is taken in state s ∈ S is given by gcost (s = (v,H), u) = (1− pv)luv, if v /∈ H

luv, if v ∈ H
, representing the expected cost incurred when going from v to

u conditioned on the set of already visited nodes H.

The optimal (minimum expected) cost incurred from any state s1 is then given by

J
∗
s1

= min
µ

E
{sk}

[
∞∑
k=1

gcost(sk, µsk)

]
,

where µ is a policy that prescribes what action to take/neighbor to choose at a given
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state, i.e., µs is the action to take at state s. The policy µ, specifies which node to move to

next, i.e., if at state s, then µs denotes which node to go to next. The objective is to find

the optimal policy µ∗ that would minimize the expected cost from any given state of the

SSP formulation. Given the optimal policy µ∗, we can then extract the optimal solution

path of (5.2). Let (s1, · · · , sm = st) be the sequence of states such that s1 = (vs, H1 = {})

and sk+1 = (v∗k+1, Hk+1), k = 1, · · · ,m− 2, where v∗k+1 = µ∗(sk) and Hk+1 = Hk ∪ {v∗k}.

This sequence must end at sm = st for some finite m, since the expected cost is not well

defined otherwise. The optimal path starting from node vs is then extracted from this

solution as P∗ = (vs, v
∗
2, · · · , v∗m).

In the following Lemma, we show that the optimal solution can be characterized by

the Bellman equation.

Lemma 5.1 The optimal cost function J
∗

is the unique solution of the Bellman equation:

J
∗
s = min

u∈As

gcost(s, u) +
∑

s′∈S\{st}

Pss′(u)J
∗
s′

 ,
and the optimal policy µ∗ is given by

µ∗s = arg min
u∈As

gcost(s, u) +
∑

s′∈S\{st}

Pss′(u)J
∗
s′

 ,
for all s ∈ S \ {st}.

Proof: Let J
µ

s denote the cost of state s for a policy µ. We first review the definition

of a proper policy. A policy µ is said to be proper if, when using this policy, there is

a positive probability that the terminal state will be reached after at most |S| stages,

regardless of the initial state [102]. We next show that the MDP formulation satisfies the

following properties: 1) there exists at least one proper policy, and 2) for every improper
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policy µ, there exists at least one state with cost J
µ

s = ∞. We know that there exists

at least one proper policy since the policy corresponding to taking the shortest path to

the nearest terminal node irrespective of the history of nodes visited, is a proper policy.

Moreover, since gcost(s, u) > 0 for all s 6= st, every cycle in the state space not including

the destination has strictly positive cost. This implies property 2 is true. The proof is

then provided in [102].

The optimal solution can then be found by the value iteration method. Given an

initialization Js(0), for all s ∈ S \ {st}, value iteration produces the sequence:

Js(k + 1) = min
u∈As

gcost(s, u) +
∑

s′∈S\{st}

Pss′(u)Js′(k)

 ,
for all s ∈ S \{st}. This sequence converges to the optimal cost J

∗
s, for each s ∈ S \{st}.

Lemma 5.2 When starting from Js(0) = ∞ for all s ∈ S \ {st}, the value iteration

method yields the optimal solution after at most |S| = |V ′| × 2|V
′| + 1 iterations.

Proof: Let µ∗ be the optimal policy. Consider a directed graph with the states

of the MDP as nodes which has an edge (s, s′) if Pss′(µ
∗
s) > 0. We will first show that

this graph is acyclic. Note that a state s = (v,H), where v /∈ H, can never be revisited

regardless of the policy used, since a transition from s will occur either to st or a state

with H = H ∪ {v}. Then, any cycle in the directed graph corresponding to µ∗ would

only have states of the form s = (v,H) with v ∈ H. Moreover, any state s = (v,H) in

the cycle cannot have a transition to state st since v ∈ H. Thus, if there is a cycle, the

cost of any state s in the cycle will be J
µ∗

s = ∞, which results in a contradiction. The

value iteration method converges in |S| iterations when the graph corresponding to the

optimal policy µ∗ is acyclic [102].

Remark 5.1 Each stage of the value iteration process has a computational cost of O(|E|2|V ′|)
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since for each state s = (v,H) there is an associated a computational cost of O(|Av|).

Then, from Lemma 5.2, we can see that the overall computational cost of value iteration is

O(|V ′||E|22|V ′|), which is exponential in the number of nodes in the graph. Note, however,

that the brute force approach of enumerating all paths has a much larger computational

cost of O(|V ′|!).

The exponential space complexity prevents the stochastic shortest path formulation

from providing a scalable solution for solving the problem for larger graphs. A gen-

eral question then arises as to whether this high computational complexity result is a

result of the Markov Decision Process formulation. In other words, can we optimally

solve the Min-Exp-Cost-Path problem with a low computational complexity using an

alternate method? We next show that the Min-Exp-Cost-Path problem is inherently

computationally complex (NP-hard).

5.2 Computational Complexity

In this section, we prove that Min-Exp-Cost-Path is NP-hard. In order to do so,

we first consider the extension of the Min-Exp-Cost-Path problem to the setting where

there is no terminal node, which we refer to as the Min-Exp-Cost-Path-NT problem (Min-

Exp-Cost-Path No Terminal node). We prove that Min-Exp-Cost-Path-NT is NP-hard,

a result we then utilize to prove that Min-Exp-Cost-Path is NP-hard.

Motivated by the negative space complexity result of our MDP formulation, we then

discuss a setting where we restrict ourselves to the class of simple paths, i.e., cycle free

paths, and we refer to the minimum expected cost until success problem in this setting as

the Min-Exp-Cost-Simple-Path problem. This serves as the setting for our path planning

approaches of Section 5.3 and 5.4. Furthermore, we show that we can obtain a solution
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to the Min-Exp-Cost-Path problem from a solution of the Min-Exp-Cost-Simple-Path

problem in an appropriately defined complete graph.

5.2.1 Min-Exp-Cost-Path-NT Problem

Consider the graph-theoretic setup of the Min-Exp-Cost-Path problem of Section

5.1.1. In this subsection, we assume that there is no terminal node, i.e., the set T = {v ∈

V : pv = 1} is empty. There is thus a finite probability of failure for any path in the

graph and as a result the expected cost until success is not well defined. The expected

cost of a path then includes the event of failure after traversing the entire path and its

associated cost. The objective in Min-Exp-Cost-Path-NT is to obtain a path that visits

all the vertices with a non-zero probability of success, i.e., {v ∈ V : pv > 0}, such that

the expected cost is minimized. This objective finds the minimum expected cost path

among all paths that have a minimum probability of failure. More formally, the objective

for Min-Exp-Cost-Path-NT is given as

minimize
P

∑
e∈E(P)

 ∏
v∈V(Pe)

(1− pv)

 le
subject to P is a path of G

P [1] = vs

V(P) = {v ∈ V : pv > 0},

(5.3)

where V(P) is the set of all vertices in path P .

Remark 5.2 The Min-Exp-Cost-Path-NT problem is an important problem on its own

(to address cases where no prior knowledge is available on nodes with pv = 1), even

though we have primarily introduced it here to help prove that the Min-Exp-Cost-Path

problem is NP-hard.
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5.2.2 NP-hardness

In order to establish that Min-Exp-Cost-Path is NP-hard, we first introduce the de-

cision versions of Min-Exp-Cost-Path (MECPD) and Min-Exp-Cost-Path-NT (MECP-

NTD).

Definition 5.1 (Min-Exp-Cost-Path Decision Problem) Given a graph G = (V , E)

with starting node vs ∈ V, edge weights le, ∀e ∈ E, probability of success pv ∈ [0, 1],

∀v ∈ V, such that T 6= ∅, and budget BMECP, does there exist a path P from vs such that

the expected cost of the path C(P , 1) ≤ BMECP?

Definition 5.2 (Min-Exp-Cost-Path-NT Decision Problem) Given a graph G =

(V , E) with starting node vs ∈ V, edge weights le,∀e ∈ E, probability of success pv ∈

[0, 1),∀v ∈ V and budget BMECPNT, does there exist a path P from vs that visits all nodes

in {v ∈ V : pv > 0} such that
∑

e∈E(P)

[∏
v∈V(Pe)(1− pv)

]
le ≤ BMECPNT?

In the following Lemma, we first show that we can reduce MECPNTD to MECPD.

This implies that if we have a solver for MECPD, we can use it to solve MECPNTD as

well.

Lemma 5.3 Min-Exp-Cost-Path-NT Decision problem reduces to Min-Exp-Cost-Path

Decision problem.

Proof: Consider a general instance of MECPNTD with graph G = (V , E), starting

node vs ∈ V , edge weights le,∀e ∈ E , probability of success pv ∈ [0, 1), ∀v ∈ V , and

budget BMECPNT. We create an instance of MECPD by introducing a new node vt into

the graph with pvt = 1. We add edges of cost l between vt and all the existing nodes

of the graph. We next show that if we choose a large enough value for l, then the Min-

Exp-Cost-Path solution would visit all nodes in V̄ = {v ∈ V : pv > 0} before moving to

101



Path Planning for Minimizing the Expected Cost until Success/Connectivity Chapter 5

the terminal node vt. Let l = 1.5D/minv∈V̄ pv, where D is the diameter of the graph.

Then, the Min-Exp-Cost-Path solution, which we denote by P∗ must visit all nodes in

V̄ before moving to node vt. We show this by contradiction. Assume that this is not

the case. Since P∗ has not visited all nodes in V̄ , there exists a node w ∈ V̄ that does

not belong to P∗. Let Q∗ be the subpath of P∗ that lies in the original graph G and let

u be the last node in Q∗. Consider the path P created by stitching together the path

Q∗, followed by the shortest path from u to w and then finally the terminal node vt.

Let pf =
∏

v∈V(Q∗)(1 − pv) be the probability of failure after traversing path Q∗. The

expected cost of path P then satisfies

C(P , 1) ≤
∑

e∈E(Q∗)

[ ∏
v∈V(Q∗e)

(1− pv)

]
le + pf

(
lmin
uw + (1− pw)l

)
<

∑
e∈E(Q∗)

[ ∏
v∈V(Q∗e)

(1− pv)

]
le + pf l = C(P∗, 1),

where lmin
uw is the cost of the shortest path between u and w. We thus have a contradiction.

Thus, Q∗ visits all the nodes in V̄ . Moreover, since P∗ is a solution of Min-Exp-

Cost-Path, we can see that Q∗ must also be a solution of Min-Exp-Cost-Path-NT. Thus,

setting a budget of BMECP = BMECPNT+pf l, where pf =
∏

v∈V(Q∗)(1−pv) =
∏

v∈V̄(1−pv),

implies that the general instance of MECPNTD is satisfied if and only if our instance of

MECPD is satisfied.

Remark 5.3 Even though we utilize the above Lemma primarily to analyze the compu-

tational complexity of the problems, we will also utilize the construction provided for path

planners for Min-Exp-Cost-Path-NT in Section 5.5.

We next show that MECPNTD is NP-complete (NP-hard and in NP), which together

with Lemma 5.3, implies that MECPD is NP-hard.
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Theorem 5.1 Min-Exp-Cost-Path-NT Decision problem is NP-complete.

Proof: Clearly MECPNTD is in NP, since given a path we can compute its as-

sociated expected cost in polynomial time. We next show that MECPNTD is NP-hard

using a reduction from a rooted version of the NP-hard Hamiltonian path problem [103].

Consider an instance of the Hamiltonian path problem G = (V , E), where the objective is

to determine if there exists a path originating from vs that visits each vertex only once.

We create an instance of MECPNTD by setting the probability of success to a non-zero

constant for all nodes, i.e., pv = p > 0, ∀v ∈ V . We create a complete graph and set edge

weights as le =

 1, if e ∈ E

2, else
.

A Hamiltonian path P on G, if it exists, would have an expected distance cost of

∑
e∈E(P)

 ∏
v∈V(Pe)

(1− pv)

 le =
1− p
p

(
1− (1− p)|V|−1

)
.

Any path on the complete graph that is not Hamiltonian on G, would involve either

more edges or an edge with a larger cost than 1 and would thus have a cost strictly

greater than that of P . Thus, by setting BMECPNT = 1−p
p

(
1− (1− p)|V|−1

)
, there exists

a Hamiltonian path if and only if the specific MECPNTD instance created is satisfied.

Thus, the general MECPNTD problem is at least as hard as the Hamiltonian path

problem. Since the Hamiltonian path problem is NP-hard, this implies that MECPNTD

is NP-hard.

Corollary 5.1 Min-Exp-Cost-Path Decision problem is NP-complete.

Proof: We can see that MECPD is in NP. The proof of NP-hardness follows directly

from Lemma 5.3. MECPD is thus NP-complete.
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5.2.3 Min-Exp-Cost-Simple-Path

We now propose ways to tackle the prohibitive computational complexity (space

complexity) of our MDP formulation of Section 5.1.2, which possesses a state space of

size exponential in the number of nodes in the graph. If we can restrict ourselves to

paths that do not revisit nodes, known as simple paths (i.e., cycle free paths), then the

expected cost from a node could be expressed in terms of the expected cost from the

neighboring node that the path visits next.1 We refer to this problem of minimizing the

expected cost, while restricted to the space of simple paths, as the Min-Exp-Cost-Simple-

Path problem. The Min-Exp-Cost-Simple-Path problem is also computationally hard as

shown in the following Lemma.

Lemma 5.4 The decision version of Min-Exp-Cost-Simple-Path is NP-hard.

Proof: This follows from Theorem 5.1 and Lemma 5.3, since the optimal path

considered in the construction of Theorem 5.1 was a simple path that visited all nodes.

Note that the optimal path of Min-Exp-Cost-Path could involve revisiting nodes, im-

plying that the optimal solution to Min-Exp-Cost-Simple-Path on G could be suboptimal.

For instance, consider the toy problem of Fig 5.2. The optimal path starting from node

2, in this case, is P∗ = (2, 1, 2, 3, 4).

Consider Min-Exp-Cost-Simple-Path on the following complete graph. This complete

graph Gcomp is formed from the original graph G = (V , E) by adding an edge between all

pairs of vertices of the graph, excluding self-loops. The cost of the edge (u, v) is the cost of

the shortest path between u and v on G which we denote by lmin
uv . This can be computed by

1Note that depending on how we impose a simple path, we may need to keep track of the visited
nodes. However, as we shall see, this keeping track of the history will not result in an exponential
memory requirement, as was the case for the original MDP formulation. We further note that it is also
possible to impose simple paths without a need to keep track of the history of the visited nodes, as we
shall see in Section 5.4.2.
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1 2 3 4

p1 = 0.9 p2 = 0.1 p3 = 0.1 p4 = 1

l12 = 1 l23 = 1 l34 = 1

Figure 5.2: A toy example with the optimal path from node 2. The optimal path
involves revisiting node 2.

the all-pairs shortest path Floyd-Warshall algorithm in O(|V|3) computations. We next

show in the following Lemma that the optimal solution of Min-Exp-Cost-Simple-Path on

this complete graph can provide us with the optimal solution to Min-Exp-Cost-Path on

the original graph.

Lemma 5.5 The solution to Min-Exp-Cost-Simple-Path on Gcomp can be used to obtain

the solution to Min-Exp-Cost-Path on G.

Proof: See Appendix C.1 for the proof.

Lemma 5.5 is a powerful result that allows us to asymptotically solve the Min-Exp-

Cost-Path problem, with ε sub-optimality, as we shall see in the next Section.

5.3 Asymptotically ε-suboptimal Path Planner

In this section, we propose a path planner, based on a game theoretic framework, that

asymptotically gets arbitrarily close to the optimum solution of the Min-Exp-Cost-Path

problem, i.e., it is an asymptotically ε-suboptimal solver. This is important as it allows us

to solve the NP-hard Min-Exp-Cost-Path problem, with near optimality, given enough

time. More specifically, we utilize log-linear learning to asymptotically obtain the global

potential minimizer of an appropriately defined potential game.

We start with the space of simple paths, i.e., we are interested in the Min-Exp-

Cost-Simple-Path problem on a given graph G. A node v will then route to a single

other node. Moreover, the expected cost from a node can then be expressed in terms
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of the expected cost from the neighbor it routes through. The state of the system can

then be considered to be just the current node v, and the actions available at state v,

Av = {u ∈ V : (v, u) ∈ E}, is the set of neighbors of v. The policy µ specifies which node

to move to next, i.e., if the current node is v, then µv is the next node to go to.

We next discuss our game-theoretic setting. So far, we viewed a node v as a state

and Av as the action space for state v. In contrast, in this game-theoretic setting, we

interpret node v as a player and Av as the action set of player v. Similarly, µ was viewed

as a policy with µv specifying the action to take at state v. Here, we reinterpret µ as the

joint action profile of the players with µv being the action of player v.

We consider a game {V ′, {Av}, {Jv}}, where the set of non-terminal nodes V ′ are the

players of the game and Av is the action set of node/player v. Moreover, Jv : A → R

is the local cost function of player v, where A =
∏

v∈V ′ Av is the space of joint actions.

Finally, Jv(µ) is the cost of the action profile µ as experienced by player v.

We first describe the expected cost from a node v in terms of the action profile µ.

An action profile µ induces a directed graph on G, which has the same set of nodes as G

and directed edges from v to µv for all v ∈ V ′. We call this the successor graph, using

terminology from [104], and denote it by SG(µ). As we shall show, our proposed strategy

produces an action profile µ which induces a directed acyclic graph. This is referred to

as an acyclic successor graph (ASG) [104].

Node v is said to be downstream of u in SG(µ) if v lies on the directed path from

u to the corresponding sink. Moreover, node u is said to be upstream of v in this case,

and we denote the set of upstream nodes of v by Uv(µ−v), where µ−v denotes the action

profile of all players except v. Let v ∈ Uv(µ−v) by convention. Note that Uv(µ−v) is only

a function of µ−v as it does not depend on the action of player v.

Let P(µ, v) be the path from agent v on this successor graph. We use the shorthand

Cv(µ) = C(P(µ, v), 1), to denote the expected cost from node v when following the path
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Figure 5.3: An example ASG induced by an action profile µ.

P(µ, v). Since P(µ, v) is a path along SG(µ), it can either end at some node or it can

end in a cycle. If it ends in a cycle or at a node that is not a terminal node, we define

the expected cost Cv(µ) to be infinity. If it does end at a terminal node, we obtain the

following recursive relation from (5.1):

Cv(µ) = (1− pv) (lvµv + Cµv(µ)) , (5.4)

where Cvt(µ) = 0 for all vt ∈ T .

Let AASG denote the set of action profiles such that the expected cost Cv(µ) < ∞

for all v ∈ V . This will only happen if the path P(µ, v) ends at a terminal node for all

v. This corresponds to SG(µ) being an ASG with terminal nodes as sinks. Specifically,

SG(µ) would be a forest with the root or sink of each tree being a terminal node. An

ASG is shown in Fig. 5.3 for the toy example from Fig. 5.1.

µ ∈ AASG implies that the action of player v satisfies µv ∈ Acv(µ−v), where Acv(µ−v) =

{u ∈ V : (v, u) ∈ E , u /∈ Uv(µ−v), Cu(µ) < ∞} is the set of actions that result in a finite

expected cost from v. Note that Acv(µ−v) is a function of only µ−v. This is because
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u /∈ Uv(µ−v) implies v /∈ P(µ, u) which in turn implies that Cu(µ) is a function of only

µ−v.

We next define the local cost function of player v to be

Jv(µ) =
∑

u∈Uv(µ)

ςuCu(µ), (5.5)

where Uv(µ) is the set of upstream nodes of v, and ςu > 0 are constants such that ςvs = 1

and ςv = ε
′
, for all v 6= vs, where ε

′
> 0 is a small constant.

We next show that these local cost functions induce a potential game over the action

space AASG. In order to do so, we first define a potential game over AASG.2

Definition 5.3 (Potential Game [105]) {V ′, {Av}, {Jv}} is an exact potential game

over AASG if there exists a function Φ : AASG → R such that

Jv(µ
′

v, µ−v)− Jv(µv, µ−v) = Φ(µ
′

v, µ−v)− Φ(µv, µ−v),

for all µ
′
v ∈ Acv(µ−v), µ = (µv, µ−v) ∈ AASG, and v ∈ V ′, where µ−v denotes the action

profile of all players except v.

The function Φ is called the potential function. In the following Lemma, we show

that using local cost functions as described in (5.5), results in an exact potential game.

Lemma 5.6 The game {V ′, {Av}, {Jv}}, with local cost functions as defined in (5.5), is

an exact potential game over AASG with potential function

Φ(µ) =
∑
v∈V ′

ςvCv(µ) = Cvs(µ) + ε
′∑
v 6=vs

Cv(µ). (5.6)

2This differs from the usual definition of a potential game in that the joint action profiles are restricted
to lie in AASG.
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Proof: Consider a node v and µ = (µv, µ−v) and µ
′
v such that Cv(µ

′
v, µ−v) <

Cv(µv, µ−v). From (5.4), we have that Cu(µ
′
v, µ−v) < Cu(µv, µ−v), ∀u ∈ Uv(µ), where

Uv(µ) is the set of upstream nodes from v. Furthermore, Cu(µ
′
v, µ−v) = Cu(µv, µ−v), ∀u /∈

Uv(µ). Thus, we have

Φ(µ
′

v, µ−v)− Φ(µ) =
∑
u∈V ′

ςu

[
Cu(µ

′

v, µ−v)− Cu(µ)
]

=
∑

u∈Uv(µ)

ςu

[
Cu(µ

′

v, µ−v)− Cu(µ)
]

= Jv(µ
′

v, µ−v)− Jv(µ),

for all µ
′
v ∈ Acv(µ−v), µ ∈ AASG, and v ∈ V ′.

Minimizing Φ(µ) gives us a solution that can be arbitrarily close to that of Min-

Exp-Cost-Simple-Path since we can select the value of ε
′

appropriately. Let µ∗ =

arg minµ Φ(µ) and µOPT = arg minµCvs(µ). Then,

Cvs(µ
∗) + ε

′∑
u6=vs

Cu(µ
∗) ≤ Cvs(µ

OPT) + ε
′∑
u6=vs

Cu(µ
OPT).

Rearranging gives us

Cvs(µ
∗) ≤ Cvs(µ

OPT) + ε
′

[∑
u6=vs

Cu(µ
OPT)−

∑
u6=vs

Cu(µ
∗)

]

≤ Cvs(µ
OPT) + ε

′ |V ′|D,

where D is the diameter of the graph. Thus minimizing Φ(µ) gives us an ε-suboptimal

solution to the Min-Exp-Cost-Simple-Path problem, where ε = ε
′ |V ′|D.

We next show how to asymptotically obtain the global minimizer of Φ(µ) by utilizing

a learning process known as log-linear learning [106].
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Log-linear Learning

Let µv = a∅ correspond to node v not pointing to any successor node. We refer to

this as a null action. Then, the log-linear process utilized in our setting is as follows:

1. The action profile µ(0) is initialized with a null action, i.e., µv(0) = a∅ for all v.

The local cost function is thus Jv(µ(0)) =∞, for all v ∈ V ′.

2. At every iteration k + 1, a node v is randomly selected from V ′ uniformly. If

Acv(µ−v(k)) is empty, we set µv(k+ 1) = a∅. Else, node v selects action µv(k+ 1) =

µv ∈ Acv(µ−v(k)) with the following probability:

Pr(µv) =
e−

1
τ

(Jv(µv ,µ−v(k)))∑
µ′v∈Acv(µ−v(k)) e

− 1
τ (Jv(µ′v ,µ−v(k)))

,

where τ is a tunable parameter known as the temperature. The remaining nodes

repeat their action, i.e., µu(k + 1) = µu(k) for u 6= v.

We next show that log-linear learning asymptotically obtains an ε-suboptimal solu-

tion to the Min-Exp-Cost-Path problem. We first show, in the following Lemma, that

it asymptotically provides an ε-suboptimal solution to the Min-Exp-Cost-Simple-Path

problem.

Theorem 5.2 As τ → 0, log-linear learning on a potential game with a local cost func-

tion defined in (5.5), asymptotically provides an ε-suboptimal solution to the Min-Exp-

Cost-Simple-Path problem.

Proof: See Appendix C.2 for the proof.

Lemma 5.7 As τ → 0, log-linear learning on a potential game with a local cost function

defined in (5.5) on the complete graph Gcomp, asymptotically provides an ε-suboptimal

solution to the Min-Exp-Cost-Path problem.
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Proof: From Theorem 5.2, we know that log-linear learning asymptotically provides

an ε-suboptimal solution to the Min-Exp-Cost-Simple-Path problem on the complete

graph Gcomp. Using Lemma 5.5, we then utilize this solution to obtain an ε-suboptimal

solution to the Min-Exp-Cost-Path problem on G.

Remark 5.4 We implement the log-linear learning algorithm by keeping track of the ex-

pected cost Cv(µ(k)) in memory, for all nodes v ∈ V ′. In each iteration, we compute

the set of upstream nodes of the selected node v in order to compute the set Acv(µ(−k)).

From (5.4), we can see that the expected cost of each node upstream of v can be ex-

pressed as a linear function of Cv(µ). Then we can compute an expression for Jv(µ) =∑
u∈Uv(µ−v) Cu(µ) as a linear function of the expected cost Cv(µ) with a computational

cost of O(|V ′|). We can then compute Jv(µv, µ−v) for all µv ∈ Acv(µ(−k)) using this pre-

computed expression for Jv(). Finally, once µv(k+ 1) is selected, we update the expected

cost of v as well as all its upstream nodes using (5.4). Thus, the overall computation cost

of each iteration is O(|V ′|).

5.4 Fast Non-myopic Path Planners

In the previous section, we proposed an approach that finds an ε-suboptimal solution

to the Min-Exp-Cost-Path problem asymptotically. However, for certain applications,

finding a suboptimal but fast solution may be more important. This motivates us to

propose two suboptimal path planners that are non-myopic and very fast. We use the

term non-myopic here to contrast with the myopic approaches of choosing your next step

based on your immediate or short-term reward (e.g., local greedy search). We shall see

an example of such a myopic heuristic in Section 5.5.

In this part, we first propose a non-myopic path planner based on a game theoretic

framework that finds a directionally local minimum of the potential function Φ of (5.6).
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We next propose a path planner based on an SSP formulation that provides us with the

optimal path among the set of paths satisfying a mild assumption.

We assume simple paths in this Section. Lemma 5.5 can then be used to find a

optimum non-simple path with minimal computation. Alternatively, the simple path

solution can also be directly utilized.

5.4.1 Best Reply Process

Consider the potential game {V ′, {Av}, {Jv}} of Section 5.3 with local cost functions

{Jv} as given in (5.5). We next show how to obtain a directionally local minimum of the

potential function Φ(µ) = Cvs(µ) + ε
′∑

v 6=vs Cv(µ). In order to do so, we first review the

definition of a Nash equilibrium.

Definition 5.4 (Nash Equilibrium [107]) An action profile µNE is said to be a pure

Nash equilibrium if

Jv(µNE) ≤ Jv(µv, µNE
−v ), ∀µv ∈ Av, ∀v ∈ V ′

where µ−v denotes the action profile of all players except v.

It can be seen that an action µNE is a Nash equilibrium of a potential game if and only

if it is a directionally local minimum of Φ, i.e., Φ(µ
′
v, µ

NE
−v ) ≥ Φ(µNE), ∀µ′v ∈ Av, ∀v ∈

V ′. Since we have a potential game, a Nash equilibrium of the game is a directionally

local minimum of Φ(µ). We can find a Nash equilibrium of the game using a learning

mechanism such as the best reply process [106], which we next discuss.

Let µv = a∅ correspond to node v not pointing to any successor node. We refer to

this as a null action. The best reply process utilized in our setting is as follows:

1. The action profile µ(0) is initialized with a null action, i.e., µv(0) = a∅ for all v.
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The local cost function is thus Jv(µ(0)) =∞, for all v ∈ V ′.

2. At iteration k + 1, a node v is randomly selected from V ′ uniformly. If Acv(µ−v(k))

is empty, we set µv(k + 1) = a∅. Else, the action of node v is updated as

µv(k + 1) = arg min
µv∈Acv(µ−v(k))

Jv(µv, µ−v(k))

= arg min
µv∈Acv(µ−v(k))

Cv(µv, µ−v(k))

= arg min
u∈Acv(µ−v(k))

{(1− pv) [lvu + Cu(µ(k))]} ,

where the second and third equality follow from (5.4). The actions of the remaining

nodes stay the same, i.e., µu(k + 1) = µu(k), ∀u 6= v.

The best reply process in a potential game converges to a pure Nash equilibrium [106],

which is also a directionally local minimum of Φ(µ) = Cvs(µ) + ε
′∑

v 6=vs Cv(µ).

Since a node is selected at random at each iteration in the best reply process, analyzing

its convergence rate becomes challenging. Instead, in the following Theorem, we analyze

the convergence rate of the best reply process when the nodes for update are selected

deterministically in a cyclic manner. We show that it converges quickly to a directionally

local minimum, and is thus an efficient path planner.

Theorem 5.3 (Computational complexity) Consider the best reply process where

we select the next node for update in a round robin fashion. Then, this process con-

verges after at most |V ′|2 iterations.

Proof: See Appendix C.3 for the proof.

Remark 5.5 We implement the best reply process by keeping track of the expected cost

Cv(µ(k)) in memory, for all nodes v ∈ V ′. In each iteration of the best reply process,
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we compute the set of upstream nodes of the selected node v in order to compute the set

Acv(µ(−k)). Moreover, we compute lvµv + Cµv(µ(k)) for all µv ∈ Acv(µ(−k)) to find the

action µv that minimizes the expected cost from v. Finally, once µv(k+ 1) is selected, we

update the expected cost of v as well as all the nodes upstream of it using (5.4). Then,

the computation cost of each iteration is O(|V ′|). Thus, from Theorem 5.3, the best reply

process in a round robin setting has a computational complexity of O(|V ′|3).

5.4.2 Imposing a Directed Acyclic Graph

We next propose an SSP-based path planner. We enforce that a node cannot be

revisited by imposing a directed acyclic graph (DAG), GDAG, on the original graph. The

state of the SSP formulation of Section 5.1.2 is then just the current node v ∈ V ′. The

transition probability from state v to state u is then simply given as

Pvu(av) =


1− pv, if u = gtrans(av)

pv, if u = st

0, else

,

where gtrans(av) =

 av, if av ∈ V ′

st, if av ∈ T
, and the stage cost of action u at state v is given

as gcost(v, u) = (1− pv)lvu. We refer to running value iteration on this SSP as the IDAG

(imposing a DAG) path planner.

Imposing a DAG, GDAG = (V , EDAG), corresponds to modifying the action space of

each state v such that only a subset of the neighbors are available actions, i.e., Av =

{u : (v, u) ∈ EDAG}. For instance, given a relative ordering of the nodes, a directed edge

would be allowed from node u to v, only if v ≥ u with respect to some ordering. As a

concrete example, consider the case where a directed edge from node u to v exists only if
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Optimum 
path

Figure 5.4: A DAG is imposed which allows only “outward” motion. The solution
produced by SSP would be the best among all such paths from the start node vs to
the terminal node vt.

v is farther away from the starting node vs on the graph than node u is, i.e., lmin
vsv > lmin

vsu ,

where lmin
vsv is the cost of the shortest path from vs to v on the original graph G. More

specifically, the imposed DAG has the same set of nodes V as the original graph, and

the set of edges is given by EDAG = {(u, v) ∈ E : lmin
vsv > lmin

vsu }, where (u, v) represents a

directed edge from u to v. For example, consider an n×n grid graph, where neighboring

nodes are limited to {left, right, top, down} nodes. In the resulting DAG, only outward

flowing edges from the start node are allowed, i.e., edges that take you further away

from the start node. For instance, consider the start node vs as the center and for each

quadrant, form outward moving edges, as shown in Fig. 5.4. In the first quadrant only

right and top edges are allowed, in the second quadrant only left and top edges and so on.

Fig. 5.4 shows an illustration of this, where several feasible paths from vs to a terminal

node are shown.

Imposing this DAG is equivalent to placing the following requirement that a feasible
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Size of grid (n) 5 10 15 20 25 30 40 50
RTDP (MDP formulation) 3.510 - - - - - - -

Simulated Annealing 3.510 7.515 84.138 159.88 150.59 25.997 426.71 406.71
Best Reply 3.510 6.722 8.588 10.437 10.569 11.032 12.930 12.530
Log-linear 3.510 6.722 8.588 10.437 10.569 11.032 13.450 12.186

Table 5.1: Expected traveled distance for the path produced by the various approaches
for different grid sizes (n) with a single connected point (nt = 1). We can see that
RTDP is unable to produce a viable path for n ≥ 10 and that simulated annealing
produces paths with poor performance for increasing n.

path must satisfy: Each successive node on the path must be further away from the start-

ing node vs, i.e., for a path P = (v1 = vs, v2, · · · , vm), the condition lmin
vsvi

> lmin
vsvi−1

should

be satisfied. In the case of a grid graph with a single terminal node, this implies that a

path must always move towards the terminal node, which is a reasonable requirement to

impose. We next show that we can obtain the optimal solution among all paths satisfying

this requirement using value iteration.

The optimal solution with minimum expected cost on the imposed DAG GDAG can

be found by running value iteration:

Jv(k + 1) = min
u∈Av

{
(1− pv)lvu + (1− pv)Jgtrans(u)(k)

}
,

with the policy at iteration k + 1 given by

µv(k + 1) = arg min
u∈Av

{
(1− pv)lvu + (1− pv)Jgtrans(u)(k)

}
,

for all v ∈ V ′, where Jst(k) = 0, for all k.

The following lemma shows that we can find this optimal solution efficiently.

Lemma 5.8 (Computational complexity) When starting from Jv(0) = ∞, for all

v ∈ V ′, the value iteration method will yield the optimal solution after at most |V ′|

iterations.

116



Path Planning for Minimizing the Expected Cost until Success/Connectivity Chapter 5

Proof: This follows from the convergence analysis of value iteration on an SSP with

a DAG structure [102].

Remark 5.6 Each stage of the value iteration process has a computation cost of O(|EDAG|)

since for each node we have as many computations as there are outgoing edges. Thus,

from Lemma 5.8, we can see that the computational cost of value iteration is O(|V ′||EDAG|).

Remark 5.7 Log-linear learning, best reply, and IDAG, each have their own pros and

cons. For instance, log-linear learning has strong asymptotic optimality guarantees. In

contrast, best reply converges quickly to a directionally-local minimum but does not possess

similar optimality guarantees. Numerically, for the applications considered in Section 5.5,

the best reply solver performs better than the IDAG solver. However, the IDAG approach

is considerably fast and provides a natural understanding of the solution it produces, being

particularly suitable for spatial path planning problems. For instance, as shown in Fig.

5.4, the solution of IDAG for the imposed DAG is the best solution among all paths that

move outward from the start node. More generally, it is the optimal solution among all

the paths allowed by the imposed DAG.

5.5 Numerical Results

In this section, we show the performance of our approaches for Min-Exp-Cost-Path,

via numerical analysis of two applications. In our first application, a rover is exploring

mars, to which we refer as the SamplingRover problem. In our second application, we

then consider a realistic scenario of a robot planning a path in order to find a connected

spot to a remote station. We see that in both scenarios our solvers perform well and

outperform the naive and greedy heuristic approaches.
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Figure 5.5: Evolution of the expected traveled distance with time for the log-linear
learning approach with n = 25 and nt = 1.

5.5.1 Sampling Rover

The scenario considered here is loosely inspired by the RockSample problem intro-

duced in [108]. A rover on a science exploration mission is exploring an area looking for

an object of interest for scientific studies. For instance, consider a rover exploring Mars

with the objective of obtaining a sample of water. Based on prior information, which

could for instance be from orbital flyovers over the area of interest or from the estimation

by experts, the rover has an a priori probability of finding the object at any location.

An instance of the SamplingRover[n,nt] consists of an n× n grid with nt locations of

guaranteed success, i.e., nt nodes such that pv = 1. The probability of success at each

node is generated independently and uniformly from [0, 0.1]. At any node, the actions

allowed by the rover are {left, right, top, down}. The starting position of the rover is

taken to be at the center of the grid, vs =
(
bn

2
c, bn

2
c
)
. When the number of points of

guaranteed success (nt) is 1, we take the location of the node with pv = 1 at (0, 0).
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Figure 5.6: The expected traveled distance by the various approaches for different grid
sizes (n) with a single connected point (nt = 1). The results are averaged over 1000
different probability of success maps. The corresponding standard deviation is also
shown in the form of error bars. We can see that the best reply and IDAG approaches
outperform the greedy and closest terminal heuristics.
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Figure 5.7: Acyclic successor graph (ASG) of (left) best reply process and (right)
log-linear learning process for n = 25, when there are four nodes with pv = 1. The
trees corresponding to each of the four terminal nodes are marked in purple, red, green
and brown. The path traveled from the starting node is also plotted (in blue). The
starting position at (12, 12) is marked by the orange “x”. The background color plot
specifies the probability of success of each node.

We found that log-linear learning on a complete graph produces similar results as

log-linear learning on the original grid graph, but over longer run-times. Thus, unless

explicitly mentioned otherwise, when we refer to the best reply or the log-linear learning

approach, it is with respect to finding a simple path on the original grid graph. We set

weight ε
′
= 10−6 in Φ(µ) = Cvs(µ) + ε

′∑
v∈V ′,v 6=vs Cv(µ). We use a decaying temperature

for log-linear learning. Through experimentation, we found that a decaying temperature

of τ ∝ k−0.75 (where k is the iteration number) performs well.

We first compare our approach with alternate approaches for solving the Min-Exp-

Cost-Path problem. We consider one instance of a probability of success map. We

then implement Real Time Dynamic Programming (RTDP) [109], which is a heuristic

search method that tries to obtain a good solution quickly for the MDP formulation of

Section 5.1.2. Furthermore, we also implemented Simulated Annealing as implemented

in [110] for the traveling salesman problem, where we modify the cost of a state to be
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the expected cost from the starting node. Moreover, the starting position of the rover

is fixed as the start of the simulated annealing path. Table 5.1 shows the performance

of RTDP, simulated annealing and our (asymptotically ε-suboptimal) log-linear learning

and (non-myopic fast) best reply approaches for various grid sizes (n) when nt = 1, where

for each approach we impose a computational time limit of an hour. We see that RTDP

is unable to produce viable solutions for n ≥ 10 due to the state explosion problem of the

MDP formulation, as discussed in Section 5.1.2. Moreover, the performance of simulated

annealing worsens significantly with increasing values of n. On the other hand, the best

reply and log-linear learning approach produce solutions with good performance that

outperform simulated annealing considerably (e.g., simulated annealing has 15 times

more expected traveled distance than the best reply approach for n = 20).

We next show the asymptotically ε-suboptimal behavior of the log-linear learning

approach of Section 5.3. Fig. 5.5 shows the evolution of the expected distance with time

for the solution produced by log-linear learning for an instance of a probability of success

map with n = 25 and nt = 1. In comparison, the best reply and IDAG approaches

converged in 1.75 s and 0.25 s respectively.

Remark 5.8 We note that based on several numerical results, we have observed that

the best reply and IDAG approaches produce results very close to those produced by log-

linear learning. They thus act as fast efficient solvers. On the other hand, the log-linear

learning approach provides a guarantee of optimality (within ε) asymptotically. Thus all

3 approaches are useful depending on the application requirements.

We next compare our proposed approaches with two heuristics. The first is a heuristic

of moving straight towards the closest node with pv = 1, which we refer to as the closest

terminal heuristic. The second is a myopic greedy heuristic, where the rover at any

time moves towards the node with the highest pv among its unvisited neighbors. We
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refer to this as the nearest neighbor heuristic. These are similar to strategies utilized

in the optimal search theory literature [62, 65], where myopic strategies with limited

lookahead are typically utilized. Fig. 5.6 shows the performance of the best reply, IDAG,

nearest neighbor and closest terminal heuristic for various grid sizes (n) when nt = 1.

We generated a 1000 different probability of success maps, and averaged the expected

traveled distance over them to obtain the plotted performance for each n. Also, the

error bars in the plot represent the standard deviation of each approach. In Fig. 5.6, we

can see that the best reply and IDAG approach outperform the greedy nearest neighbor

heuristic as well as the closest terminal heuristic significantly. Moreover, the best reply

approach outperforms the IDAG approach for larger n.

In order to gain more insight into the nature of the solution produced by our proposed

approaches, we next consider a scenario where nt = 4, where we place the four nodes of

guaranteed success at the four corners of the workspace, i.e., at (0, 0), (0, n−1) (n−1, 0)

and (n − 1, n − 1). Fig. 5.7 shows the ASG of the best reply process and log-linear

learning for a sample such scenario, where we impose a computational time limit of 1

hour on the log-linear learning approach. We see that in both cases, the resulting ASG

is a forest with 4 trees, each denoted with a different color in Fig. 5.7, where the roots

of the 4 trees correspond to the 4 nodes of guaranteed success. As discussed in Section

5.4, the solution ASG of the best reply process is an equilibrium where no node can

improve its expected traveled distance by switching the neighbor it routes to. The route

followed by the rover is also plotted on the ASG, which can be seen to visit nodes of

higher probability of success. Fig. 5.8 shows a plot of the routes traveled by the IDAG

and the nearest neighbor approach. In this instance, the paths produced by the best

reply and log-linear learning approach were the same as that of the IDAG approach.

We next consider the case of nt = 0, which corresponds to no terminal node being

present. This is an instance of the Min-Exp-Cost-Path-NT problem. In this setting,
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Figure 5.8: Path traveled by IDAG and nearest neighbor approach for n = 25, when
there are four nodes with pv = 1. The solution path produced by the best reply and
log-linear learning approaches are the same as that of the IDAG approach in this
instance. The background color plot specifies the probability of success of each node.

the solution we are looking for is a tour of all nodes {v ∈ V : pv > 0} that minimizes∑
e∈E(P)

∏
v∈V(Pe)(1− pv)le. In order to facilitate the use of our approaches on the Min-

Exp-Cost-Path-NT problem, we introduce a terminal node in the grid graph as discussed

in the construction in the proof of Lemma 5.3. We include an edge weight l = 1.5× D
minv pv

between the artificial terminal node and all other nodes, where D = 2n is the diameter

of the graph. Note that these solution paths may not visit all the nodes in the grid

graph, due to the limited computation time. The best reply process was run 100 times

and the best solution was selected among the solutions produced. Moreover, we impose a

computational time limit of 1 hour on the log-linear learning approach. Fig. 5.9 shows the

ASG for the best reply and log-linear learning process as well as the path traveled from

the starting node for both cases. We can see that the paths produced by both approaches

traverse through nodes of high probability of success. Since success is not guaranteed
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Figure 5.9: Acyclic successor graph (ASG) of (left) best reply process and (right) log–
linear learning process for n = 25 when there is no terminal node. The path traveled
from the starting node is also plotted (in blue). The starting position at (12, 12) is
marked by the orange “x”. The background color plot specifies the probability of
success of each node.

Exp distance (m) Prob of fail along path
Best reply 12.40 3.5e− 7

Log-linear learning 12.51 2.5e− 7

Table 5.2: The expected traveled distance and the probability of failure along path
for the best reply and log-linear learning approaches.

when traversing along a solution path of an approach, expected distance until success

is no longer well defined. In other words, we no longer have a single metric by which

to judge the quality of a solution. Instead, we now have two metrics, the probability

of failure along a path and the expected distance of traversing the path. Table. 5.2

shows the performance of the best reply and log-linear approaches on these metrics for

the sample scenario shown in Fig. 5.9. We see that both best reply and log-linear

approaches produce a solution with good performance.
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5.5.2 Connectivity seeking robot

In this section, we consider the scenario of a robot seeking to get connected to a remote

station. We say that the robot is connected if it is able to reliably transfer information to

the remote station. This would imply satisfying a Quality of Service (QoS) requirement

such as a target bit error rate (BER), which would in turn imply a minimum required

received channel power given a fixed transmit power. Thus, in order for the robot to get

connected, it needs to find a location where the channel power, when transmitting from

that location, would be greater than the minimum required channel power. However,

the robot’s prior knowledge of the channel is stochastic. Thus, for a robot seeking to

do this in an energy efficient manner, its goal would be to plan a path such that it gets

connected with a minimum expected traveled distance.

For the robot to plan such a path, it would require an assessment of the channel

quality at any unvisited location. As discussed in Section 2.1, the spatial variations of the

channel have three main components: path loss, shadowing and multipath fading. The

shadowing component is the result of attenuation through large stationary objects in the

environment, such as buildings or hills. We thus assume that the path loss and shadowing

component stay constant with time. Multipath fading, on the other hand, is the result

of the additions of multiple paths. Thus, small changes in the positions of reflectors and

scatterers in the environment can cause large changes in the multipath fading signal.

Thus, depending on environmental factors such as speed of motion of the scatterers, the

multipath component could be time-invariant or time-varying. In this section, we assume

that the multipath component is time-varying. This then implies that the multipath

value at any location during the operation phase of the robot, is independent of its

corresponding value when the prior measurements were collected [73,111,112]. Note that

the probabilistic channel prediction framework of Section 2.2 focuses on the case where
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the multipath component is time-invariant. It can be easily extended to account for

the case where the multipath component of the operation phase is independent of its

corresponding prior measurement value. See [49] for more details on this.

Consider a scenario where the robot is located in the center of a 50 m × 50 m

workspace as shown in Fig. 5.10, with the remote station located at the origin. The

channel is generated using the realistic probabilistic channel model of Section 2.1, with the

following parameters that were obtained from real channel measurements in downtown

San Francisco [73] : path loss exponent nPL = 4.2, shadowing power σSH = 2.9 and

shadowing decorrelation distance βSH = 12.92 m. Moreover, the multipath fading is taken

to be uncorrelated Rician fading with the parameter Kric = 1.59. In order for the robot to

be connected, we require a minimum required received power of PR,th,dBm = −80 dBmW.

We take the maximum transmission power of a node to be P0,dBm = 27 dBmW [80]. The

robot is assumed to have 5 % a priori measurements in the workspace.

We discretize the workspace of the robot into cells of size 1 m by 1 m. A cell is

connected if there exists a location in the cell that is connected. For instance, consider a

cell that consists of locations r = [r1, · · · , rk]T . The probability of failure of connectivity

of the cell is then given by Pr(Γ(ri) < γth,∀i ≤ k), where Γ(r) = [Γ(r1) · · ·Γ(rk)]
T ∼

N
(
Γ(r),Σ(r)

)
is a Gaussian random vector as obtained from our channel prediction

framework, and γth is the minimum required channel power for connectivity. See [49] for

more details on this estimation. We next construct a grid graph with each cell serving as

a node on our graph. This gives us a grid graph of dimension 50x50 with a probability

of connectivity assigned to each node. We also add a new terminal node to the graph

with probability of connectivity 1, which represents the remote station at the origin. We

attach the node in the workspace closest to the remote station to this terminal node

with an edge cost equal to the expected distance until connectivity when moving straight

towards the remote station from the node. This can be calculated based on the work in
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Figure 5.10: Solution paths produced by the best reply and IDAG approaches for a
channel realization. Also shown is the first connected node on the respective paths for
the true channel realization. The background plot denotes the predicted probability
of connectivity, which is used by the robot for path planning.

Chapter 4.

Best reply IDAG Nearest neighbor Closest terminal
Avg distance (m) 28.40±25.93 32.90±26.12 44.17±56.22 50.24±30.38

Table 5.3: The average traveled distance along with the corresponding standard de-
viation, for our proposed approaches and for the greedy nearest neighbor and closest
terminal heuristic approaches. The average is obtained by averaging over 500 channel
realizations. We can see that our approaches results in a significant reduction in the
traveled distance.

We next compare our proposed approaches with the greedy nearest neighbor heuristic

as well as the closest terminal heuristic of moving straight towards the remote station. We

calculate the performance of the approaches based on the true probability of connectivity

of a node calculated based on the true value of the channel. Fig. 5.10 shows the solution

path produced by the best reply and IDAG heuristic for a sample channel realization.

The background plot denotes the predicted probability of connectivity. We see that
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Figure 5.11: Histogram of the expected cost of the best reply and closest terminal
heuristic over 500 channel realizations.

the paths produced take detours on the path to the connected point to visit areas of

good probability of connectivity. Table. 5.3 shows the expected distance along with

the corresponding standard deviation, for the best reply, IDAG, nearest neighbor and

closest terminal approaches averaged over 500 channel realizations. We do not include

the performance of log-linear as it takes longer to arrive at a good solution and is thus

impractical to average over 500 channel realizations. However, in our simulations, we

did observe that the performance of best reply was generally similar to the performance

of log-linear learning. We see that the best reply and IDAG approach outperformed the

nearest neighbor and closest terminal heuristics significantly. For instance, the best reply

approach provided an overall 35% and 44% reduction in the expected traveled distance

when compared to the nearest neighbor and closest terminal heuristics respectively. Fig.

5.11 shows the histogram of the expected cost of the best reply and closest terminal

heuristic over the 500 channel realizations. We can see that the expected cost associated

with the best reply heuristic is typically better than that associated with the closest
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terminal heuristic.

Remark 5.9 Note that our framework can be extended to the case where the robot up-

dates the probabilities of success as it operates in the environment.
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Conclusions and Future Work

In this dissertation, we showed how we can utilize the mobility of unmanned vehicles to

enable and optimize communication. We proposed energy efficient path planning and

communication strategies that exploit the mobility of unmanned vehicles in order to

enable connectivity and new modes of communication.

We next summarize the results of each chapter and suggest some possible extensions

for each topic.

6.1 Energy Optimal Distributed Beamforming using

Unmanned Vehicles

In Chapter 3, we considered a motion and communication co-optimization problem

where a team of unmanned vehicles were tasked with cooperatively beamforming com-

mon information to a remote station in a realistic communication environment, while

minimizing the total energy consumption (both motion and communication energy). For

the case where the channel is known, we found an ε-suboptimal solution by proving that

the original optimization problem can be posed as a series of multiple-choice knapsack

problems. This solution provided the robots with the locations for distributed beam-
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forming as well as the optimum transmission powers. We then extended our analysis

and methodology to the case where the robots probabilistically predict the channel at

unvisited locations. Finally, our simulation results showed the performance of the mo-

tion energy-aware and total energy-aware approaches for both perfect channel knowledge

cases (MEMP and TEMP) as well as the stochastic cases (MESS and TESS). Overall,

our results highlighted the underlying trends of the optimum strategy and indicated a

considerable energy saving.

In Chapter 3, we have optimized for the final location of the robot and have not

considered the channel quality along the path of the robot. An interesting future direction

is to plan the path of the robots accounting for the statistics of the channel quality along

the traveled path, perhaps by utilizing the results of Chapter 4 and Chapter 5.

6.2 Statistics of the Distance Traveled until Connec-

tivity for Unmanned Vehicles

In Chapter 4, we considered the scenario of a robot that seeks to get connected to

another robot or a remote operator, as it moves along a path. We started by mathemat-

ically characterizing the PDF of the distance traveled until connectivity along straight

paths, using a stochastic differential equation approach when multipath can be ignored,

and a recursive characterization method for the case of multipath. We then developed

a theoretical characterization of a more general space of paths, based on properties of

the path such as its curvature, for which we can theoretically characterize the PDF of

the FPD. Our characterizations not only enable new theoretical analysis but also allow

for an efficient low-complexity implementation. Finally, we confirmed our theoretical re-

sults with simulations with real channel parameters from downtown San Francisco, and
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highlighted interesting trends of the FPD.

Developing a low-computational complexity method for characterizing the statistics of

the distance traveled until connectivity for paths that are not approximately-Markovian

is an interesting future work direction.

6.3 Path Planning for Minimizing the Expected Cost

until Success/Connectivity for Unmanned Vehi-

cles

In Chapter 5, we considered the problem of path planning on a graph for minimiz-

ing the expected cost until success. We showed that this problem is NP-complete and

that it can be posed in a Markov Decision Process framework as a stochastic shortest

path problem. We then proposed a path planner based on a game-theoretic framework

that yields an ε-suboptimal solution to this problem asymptotically. In addition, we also

proposed two non-myopic suboptimal strategies that find a good solution efficiently. Fi-

nally, through numerical results we showed that the proposed path planners outperform

greedy heuristics significantly. For example, in numerical simulations, we considered the

scenarios of a rover on mars searching for an object for scientific study. Our results then

indicated a significant reduction in the expected cost incurred when using our proposed

approaches.

We then applied our results to the scenario of planning an energy efficient path for

a connectivity seeking robot, which is of particular relevance to this dissertation. Our

numerical results, using real channel parameters from downtown San Francisco, indicated

a significant reduction in the expected traveled distance (e.g., 35% reduction), when using

our proposed approaches.
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Some open questions and interesting directions to pursue in this area are:

� Developing algorithms with provable performance guarantees that run in polyno-

mial time (α-approximation algorithms) for the Min-Exp-Cost-Path problem.

� Development of fast solvers specifically tailored for the case where there are no

terminal nodes, i.e., the Min-Exp-Cost-Path-NT problem.

� Applying the results in Chapter 5 to areas such as satisficing search and theorem

solving [67].

� For the scenario of a connectivity seeking robot, we can use the analysis of Chapter

4 to obtain a more realistic characterization of the cost of a path. Then planning

the path of a robot for establishing connectivity using this more realistic cost is an

interesting direction for future work.
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A.1 Extended Fenton-Wilkinson Method

Consider a lognormal random vector α = [α1 · · ·αN ]T with distribution

[20 log10 α1 · · · 20 log10 αN ]T ∼ N (Γ,Σ). The distribution can alternatively be expressed

as [lnα1 · · · lnαN ]T ∼ N (ξΓ, ξ2Σ), where ξ = 0.05 ln 10. Let αsum with distribution

20 log10 αsum ∼ N (Γsum, σ
2
sum) denote the lognormal random variable approximating∑

i αi. The first and second moments of
∑

i αi are given by

E

[∑
i

αi

]
=
∑
i

eξΓi+ξ
2Σii/2

and

E

(∑
i

αi

)2
 =

∑
i

e2ξΓi+2ξ2Σii + 2
N−1∑
i=1

N∑
j=i+1

eξ(Γi+Γj)e
ξ2

2
(Σii+Σjj+2Σij)),

where Γi is the ith entry of µ and Σij is the ijth entry of Σ. In the extended Fenton-

Wilkinson method [77], the first and second moments of αsum and
∑

i αi are equated to
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obtain

Γsum =
1

ξ

2 ln

(
E

[∑
i

αi

])
− 1

2
ln

E

(∑
i

αi

)2


σ2
sum =

1

ξ2

ln

E

(∑
i

αi

)2
− 2 ln

(
E

[∑
i

αi

]) .

A.2 Proof of Lemma 3.4

We first prove the following lemma, which we shall use in proving Lemma 3.4.

Lemma A.1 Let ψ : Rn
+ → R+ with ψ(ρ) =

∑n
i=1 ρ

2
i

ln
(

1+ξ(
∑n
i=1 αiρi)

2
) where ξ, αi > 0. Given

ρ, let I = {i : ρi
αi
≥ ρj

αj
∀j} and let ν ∈ Rn be such that its ith element is ν(i) = −αi, ∀i ∈ I0, else

. Then ψ(ρ) is strictly decreasing in direction ν, i.e. (∇ψ)Tν < 0.

Proof:

∂

∂ρk
ψ(ρ) =

2ρk

ln
(

1 + ξ (
∑n

i=1 αiρi)
2
) − (

∑n
i=1 ρ

2
i ) 2ξ (

∑n
i=1 αiρi)αk(

1 + ξ (
∑n

i=1 αiρi)
2
) [

ln
(

1 + ξ (
∑n

i=1 αiρi)
2
)]2 .

(A.1)

Let y = ξ (
∑n

i=1 αiρi)
2
. Also, αk (

∑n
i=1 ρ

2
i ) = ρk (

∑n
i=1 αiρi) +

∑n
i=1 (αkρi − αiρk) ρi.

Inserting this in (A.1) and rearranging result in

∇ψ(ρ))Tν =
2

ln (1 + y)

{(∑
k∈I

−αkρk

)[
1− y

(1 + y) ln (1 + y)

]

+
ξ (
∑n

i=1 αiρi)
(∑n

i=1

[(∑
k∈I α

2
k

)
ρi − αi

(∑
k∈I αkρk

)]
ρi
)

(1 + y) ln (1 + y)

}
.
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We have d
dy

((1 + y) ln(1 + y)− y) = ln(1 + y) > 0 for y > 0. Also, (1 + y) ln(1 + y) −

y|y=0 = 0. Thus (1 + y) ln(1 + y) − y > 0, which results in y
(1+y) ln(1+y)

< 1 for y > 0.

Since ρk
αk

=
ρj
αj
,∀j, k ∈ I, we have

∑
k∈I αkρk∑
k∈I α

2
k

=
αjρj +

∑
k∈I,k 6=j α

2
k
ρk
αk∑

k∈I α
2
k

=
ρj
αj
≥ ρi
αi
,

for all i, and for j ∈ I. Thus, we have
(∑

k∈I α
2
k

)
ρi − αi

(∑
k∈I αkρk

)
≤ 0, ∀i, resulting

in (∇ψ(ρ))Tν < 0.

Proof: [Proof of Lemma 3.4] We prove this by contradiction. Assume that∑N
i=1 α(rjOPT

i
)ρOPT
i > αR,th. Let I = {i : ρi

α(r
jOPT
i

)
≥ ρk

α(r
jOPT
k

)
∀k} and let ν ∈ RN be

such that ν(i) =

 −α(rjOPT
i

), ∀i ∈ I

0, else
. We decrease ρ in the direction of ν until either

ρi
α(r

jOPT
i

)
= ρk

α(r
jOPT
k

)
for some i /∈ I (k ∈ I), or

∑
i α(rjOPT

i
)ρi = αR,th. If ρi

α(r
jOPT
i

)
= ρk

α(r
jOPT
k

)

for some i /∈ I (k ∈ I), we add i to I, update our ν, and continue decreasing ρ. If∑
i α(rjOPT

i
)ρi = αR,th, we terminate our update.

Let∇ρJTEMP = [ ∂
∂ρ1
JTEMP · · · ∂

∂ρN
JTEMP]T. From Lemma A.1, we have (∇ρJTEMP)Tν <

0 and hence JTEMP({zOPT
ij }, ρ) < JTEMP({zOPT

ij }, ρOPT). Also, ρ is a feasible solution since∑
i α(rjOPT

i
)ρi = αR,th. We thus have a contradiction.

A.3 Proof of Lemma 3.5

Proof: We introduce Lagrange multipliers ξ, ι ∈ RN for the inequality constraints

ρi ≤ 1 and ρi ≥ 0 respectively, and λ0 ∈ R for the constraint
∑

i αiρi ≥ αR,th. The La-

grangian is given as L(ρ, λ0, ξ, ι) =
∑

i ρ
2
i+
∑

i ξi(ρi−1)+
∑

i ιi(−ρi)+λ0 (αR,th −
∑

i αiρi).
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We have the following KKT conditions:

2ρ∗i − λ∗0αi + ξ∗i − ι∗i = 0, ξ∗i (ρ
∗
i − 1) = 0,

ι∗i ρ
∗
i = 0, λ∗0

(
αR,th −

∑
i

αiρ
∗
i

)
= 0,

ξ∗ � 0, ι∗ � 0, λ∗0 > 0, 0 ≤ ρ∗i ≤ 1,
∑
i

αiρ
∗
i ≥ αR,th.

Assume ι∗i > 0 for some i. Then ρ∗i = 0 and thus ξ∗i = 0. But ρ∗i =
λ∗0
2
αi − ξ∗i

2
+

ι∗i
2

=

λ∗0
2
αi +

ι∗i
2
> 0, resulting in a contradiction. Therefore, ι∗i = 0,∀i. Assume λ∗0 = 0.

Then ρ∗i = − ξ∗i
2

= 0, and hence
∑

i αiρ
∗
i = 0 < αR,th, resulting in a contradiction. Thus∑

i αiρ
∗
i = αR,th. If

λ∗0
2
αi > 1 then ξ∗i > 0 which in turn implies that ρ∗i = 1. If

λ∗0
2
αi < 1,

then ξ∗i = 0 and hence ρ∗i =
λ∗0
2
αi. Thus, ρ∗i = min{λαi, 1}, where λ =

λ∗0
2
> 0 is such

that
∑

i min{λαi, 1}αi = αR,th.
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B.1 Proof of Lemma 4.2

Proof: Let r(b) = (x(b), y(b)) be the equation of the path parameterized by arc

length. Since the path is parameterized by arc length, we have

‖r′(b)‖2 = |x′(b)|2 + |y′(b)|2 = 1. (B.1)

Moreover, we have the curvature constraint

‖r′′(b)‖2 = |x′′(b)|2 + |y′′(b)|2 ≤ κ2. (B.2)

Let b0 denote the current point, i.e., the center of the ball. Without loss of generality, let

(x(b0), y(b0)) = (0, 0) and let the tangent at b0 be parallel to the x-axis, i.e., x′(b0) = −1,

y′(b0) = 0, as shown in Fig. 4.4.

We first prove that no point of rball can lie outside the shaded region of Fig. 4.4. Note

that the shaded region has a boundary on the left corresponding to x = −dth, and the two

other boundaries correspond to circular arcs with curvature κ. Let us consider traveling

backward along the path. For a given distance dx traveled along the negative x-axis (i.e.,

x(b) = −dx), the path which maximizes the distance traveled along the y-axis |y(b)|,
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is the one that minimizes the x-axis velocity |x′(b)| and maximizes the y-axis velocity

|y′(b)| the most. This corresponds to the circular path (Rc cos(b/Rc), Rc sin(b/Rc)) with

constant curvature κ. Thus, for any path satisfying (B.1) and (B.2), the y-axis coordinate

is bounded above and below by the circular arc. This implies that the segment rball lies

within the shaded region.

We next show that if κ < 1/dth, then rball cannot loop within the ball. Note that,

by definition, rball loops within the ball if x′(b) > 0 for some point on the path within

the shaded region. The circular path with curvature κ is the path that maximizes x′(b).

From Fig. 4.4, we can see that if κ = 1/dth, then x′(b) = 0 at x(b) = −dth for the circular

path. Thus, if κ < 1/dth, we have x′(b) > 0 for any point of the path within the shaded

region.

Finally, we determine the bound on the length of rball. If we travel a distance of dth

along the negative x-axis, then we are guaranteed to have exit the ball. The path that

maximizes its length before covering dth along the negative x-axis, would be the one that

reduces the x-axis velocity |x′(b)| the most. This maximal length path corresponds to

the circular path with constant curvature κ. Any other path satisfying (B.1) and (B.2)

would exit the shaded region before this circular path, i.e., the length of the segment of

any path would be less that the length of this circular arc. The length of this circular

arc can be found from the geometry of the figure. The chord length can be seen to be

2Rc sin(φ/2) where Rc = 1/κ. Moreover, we have cos(φ/2) = dth

2Rc sin(φ/2)
which implies

that φ = sin−1
(
dth

Rc

)
. This gives us the arc length as 2πRc × φ

2π
= Rc sin−1

(
dth

Rc

)
=

1
κ

sin−1 (κdth).
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B.2 Proof of Lemma 4.5

Proof: Using (4.8), we can show that m = c1ΓSH,−1 + crΓSH,r where

c1 =
e−d1/βSH − e−(d1r+dr)/βSH

1− e−2d1r/βSH
,

cr =
e−dr/βSH − e−(d1+d1r)/βSH

1− e−2d1r/βSH
.

Then, the difference in mean ∆m = m − m̂ is distributed as N (0, σ2
∆m), where using

(4.10) we have

σ2
∆m = σ2

SH

(
e−dr/βSH − e−(d1+d1r)/βSH

)2

1− e−2d1r/βSH
.

Moreover, using (4.9) we can calculate

σ2

σ2
SH

= 1− e−2d1/βSH + e−2dr/βSH − 2e−(d1+dr+d1r)/βSH

1− e−2d1r/βSH
.

The difference in variance ∆σ2 = σ2 − σ̂2 can be calculated as

∆σ2 = −σ2
SH

(
e−dr/βSH − e−(d1+d1r)/βSH

)2

1− e−2d1r/βSH

= −σ2
∆m.

From (4.11), we then have

KL =
σ2

∆m

2σ̂2
χ2

1 +
1

2

(
−|∆σ

2|
σ̂2
− loge

(
1− |∆σ

2|
σ̂2

))
.
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Since E[χ2
1] = 1 and Var[χ2

1] = 2, we can calculate the mean mKL and the standard

deviation σKL to be as stated in the lemma.

B.3 Proof of Lemma 4.6

Proof: Consider all possible locations of the general point (see Fig. 4.5 (top))

at a fixed distance dr. From the geometry of Fig. 4.5 (top), we can see that d1r =√
d2

1 + d2
r − 2d1dr cos θ. Varying θ, results in varying d1r which can take values in [dr −

d1, dr + d1]. From Lemma 4.5, we can see that the θ that has a maximum impact on the

KL divergence is the one that would minimize mKL and σKL. This would occur when

we maximize σ2
∆m = σ2

SHe
−dr/βSH (1−e−(z−zl))2

1−e−2z where z = d1r/βSH and zl = (dr − d1)/βSH.

We wish to maximize ψ(z) = (1−e−(z−zl))2

1−e−2z . Taking it’s derivative gives us

d

dz
ψ(z) =

2(1− e−(z−zl))

(1− e−2z)2
(e−(z−zl) − e−2z).

Then d
dz
ψ(z) > 0 if z > −zl, which is true as long as dr > d1.

Thus, maximizing σ2
∆m occurs at θ = π where d1r takes its maximum value of d1 +dr.

Setting θ = π gives us

σ2
∆m = σ2

SH

(
e−dr/βSH − e−(2d1+dr)/βSH

)2

1− e−2(d1+dr)/βSH
.

From Lemma 4.5, we can see that satisfying the KL divergence parameters implies

that
σ2

∆m

σ̂2 ≤ 1 − e−2εm , and
σ2

∆m

σ̂2 ≤
√

2εσ. Let εd = min
{

1− e−2εm ,
√

2εσ
}

. Thus, we

obtain the constraint

e−2dr/βSH(1− ρ2)2

(1− ρ2e−2dr/βSH)(1− ρ2)
≤ εd,
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which in turn gives us the constraint

dr ≥
βSH

2
loge

(
ρ2 +

1− ρ2

εd

)
.

B.4 Proof of Lemma 4.7

Proof: Consider the scenario of Fig. 4.5 (bottom left) where d1 = ∆d. We will

choose the location of the general point (ΓSH,r), which lies within the shaded region, such

that it maximizes the impact (in terms of the KL divergence) on the approximation.

From Lemma 4.5, we can see that the point that has a maximum impact on the KL

divergence is the one that would maximize σ2
∆m. From the proof of Lemma 4.6, we know

that for a fixed dr and varying θ, the maximum value of σ2
∆m occurs at the maximum

value of d1r. This occurs at the boundary of the shaded region, i.e., at a point on the

circular arc. Since this holds for all d1 < dr ≤ dth, we know that the point that maximizes

σ2
∆m lies on the circular path with constant curvature κ.

We thus consider the setting in Fig. 4.5 (bottom right) with a fixed curvature κ. From

the geometry of the figure, we have the following relations: d1 = 2Rc sin
(

∆φ
2

)
, d1r =

2Rc sin
(
φ
2

)
and dr = 2Rc sin

(
φ+∆φ

2

)
. Since d1 = ∆d, we have ∆φ = 2 sin−1(κ∆d/2).

From Lemma 4.3, we have the constraint that κ < 1/dth. This guarantees that the

path will leave the ball. Moreover, from the geometry of the figure, we can see that

this will occur at the angle φ such that dr = 2Rc sin
(
φ+∆φ

2

)
= dth. This occurs at

φ = ψcons(κ) = 2 sin−1(κdth

2
)−∆φ.

From Lemma 4.5, we can see that satisfying the KL divergence parameters implies

that
σ2

∆m

σ̂2 ≤ 1 − e−2εm , and
σ2

∆m

σ̂2 ≤
√

2εσ. Let εd = min
{

1− e−2εm ,
√

2εσ
}

. Thus, the
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point on the path that maximizes the KL divergence occurs at the angle

arg max
0<φ≤ψcons(κ)

ψopt(κ, φ),

where

ψopt(κ, φ) =
σ2

∆m

σ̂2

=

(
e
− 2
κβSH

sin(φ+∆φ
2

) − ρe−
2

κβSH
sin(φ

2
)
)2

(1− e−
4

κβSH
sin(φ

2
)
)(1− ρ2)

.

We wish to find the maximum curvature κ, such that this maximum impact still satisfies

the KL divergence parameters, i.e.,

max
0<φ≤ψcons(κ)

ψopt(κ, φ) ≤ εd.

This results in the optimization problem stated in the lemma.

144



Appendix C

C.1 Proof of Lemma 5.5

We first describe some properties of the solution of Min-Exp-Cost-Path and Min-Exp-

Cost-Simple-Path.

Definition C.1 Consider a path P = (v1, v2, · · · , vm). A node vi is a revisited node in

the ith location of P if vi = vj for some j < i. A node vi is a first-visit node in the ith

location of P if vi 6= vj for all j < i.

Property C.1 Let P∗ = (v1, v2, · · · , vm) be a solution to Min-Exp-Cost-Path on G.

Consider any subpath (vi, vi+1, · · · , vj−1, vj) of P∗ such that vi and vj are first-visit nodes,

and vi+1, · · · , vj−1 are revisited nodes. Then, (vi, vi+1, · · · , vj−1, vj) is the shortest path

between vi and vj.

Proof: We show this by contradiction. Assume otherwise, i.e., (vi, vi+1, · · · , vj−1, vj)

is not the shortest path between vi and vj. Let Q be the path produced by replacing this

subpath in P∗ with the shortest path between vi and vj. Let us denote this shortest
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path by (vi, ui+1, · · · , uj̃−1, uj̃) where uj̃ = vj. Then,

C(Q, i) = (1− pvi)

[
lviui+1

+
[ ∏
k∈Li+1

(1− puk)
]
lui+1ui+2

+ · · ·+
[ ∏
k∈Lj̃−1

(1− puk)
][
luj̃−1uj̃

+ C(Q, j̃)
]]

≤ (1− pvi)

[
lmin
vivj

+
[ ∏
k∈Lj̃−1

(1− puk)
]
C(Q, j̃)

]
,

where Lm = {k ∈ {i+1, · · · ,m} : uk is a first visit node of Q}. The nodes (ui+1, · · · , uj̃)

could be first visit nodes of Q or repeated nodes. We next show that in either scenario

the expected cost of Q would be smaller than that of P . If they are all revisited nodes or

if they are first-visit nodes that are not revisited after node uj̃, then C(Q, j̃) = C(P∗, j).

If some or all of (ui+1, · · · , uj̃) are first-visit nodes of Q that are visited later on, then

[
∏

k∈Lj̃−1
(1 − puk)]C(Q, j̃) ≤ C(P∗, j), since success at a first visit node uk can occur

earlier in path Q in comparison to P∗ (which discounts the cost of all following edges).

Thus, in either case, we have the inequality

C(Q, i) ≤ (1− pvi)
[
lmin
vivj

+ C(P∗, j)
]

< (1− pvi)
[
lvivi+1

+ · · ·+ lvj−1vj + C(P∗, j)
]

= C(P∗, i).

This implies that C(Q, 1) < C(P∗, 1) resulting in a contradiction.

Property C.2 Let P∗ = (v1, v2, · · · , vm) be a solution of Min-Exp-Cost-Simple-Path on

complete graph Gcomp. Consider any two consecutive nodes vi and vi+1. The shortest path

between vi and vi+1 in G would only consist of nodes that have been visited earlier in P∗.

Proof: Suppose this is not true for consecutive nodes vi and vi+1. Then there exists
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at least a single node u that lies on the shortest path between vi and vi+1, and that

has not been visited earlier in P∗. Let Q be the path formed from P∗ when u is added

between vi and vi+1. The expected cost of Q from the ith node onwards is given by

C(Q, i) = (1− pvi)
[
lviu + (1− pu)

[
luvi+1

+ C(Q, i+ 2)
]]

< (1− pvi)
[
lvivi+1

+ C(P∗, i+ 1)
]
.

This implies that the expected cost of Q would be less than that of P∗, resulting in a

contradiction.

Proof: [Proof of Lemma 5.5] Let P be the solution to Min-Exp-Cost-Path on G and

let Q be the solution of the Min-Exp-Cost-Simple-Path on Gcomp. From Property C.1, we

know that the path produced by removing revisited nodes in P , will produce a feasible

solution to Min-Exp-Cost-Simple-Path on Gcomp with the same cost as P . Thus, the cost

of P is greater than or equal that of Q. Similarly, from Property C.2, we know that the

path produced by expanding the shortest path between any adjacent nodes in Q, will be

a feasible solution to Min-Exp-Cost-Path on G with the same cost as Q. Thus, this path

produced from Q will be an optimal solution to Min-Exp-Cost-Path on G.

C.2 Proof of Theorem 5.2

Log-linear learning induces a Markov process on the action profile space AASG ∪ A∅,

where A∅ = {µ : µv = a∅ for some v}. In the following lemma, we first show that AASG

is a closed communicating recurrent class.

Lemma C.1 AASG is a closed communicating recurrent class.

Proof: We first show that AASG is a communicating class, i.e., there is a finite

transition sequence from µs to µf with non-zero probability for all µs, µf ∈ AASG. Con-
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sider the set of states R0,R1, · · · , defined by the recursion Rk+1 = {v : µfv ∈ Rk},

where R0 = T , i.e., Rk is the set of all nodes that are k hops away from the set of

terminal nodes T in the ASG SG(µf ). Let k̄ be the last of the sets that is non-empty.

Since µf ∈ AASG, we have k̄ ≤ |V| and ∪k̄m=0Rm = V . We transition from µs to µf

by sequentially switching from µv = µsv to µv = µfv , for all v ∈ Rk, starting at k = 1

and incrementing k until k = k̄, i.e., we first change the action of nodes in R1, and

then R2 and so on until Rk. We next show that this transition sequence has a non-zero

probability by showing that each component transition has a non-zero probability. At

stage k+ 1, consider the transition where we switch the action of a node v ∈ Rk, and let

µ be the current action. At this stage we have already changed the action of players in

R1, · · · ,Rk, and for the current graph SG(µ), there is a path leading from µfv ∈ Rk to

a terminal node in R0. Moreover, µfv is not upstream of v since the intermediate nodes

of the path are in Rk−1, · · · ,R1. Then, µfv ∈ Acv(µ−v), which implies that the transition

(µsv, µ−v)→ (µfv , µ−v) has a non-zero probability. Thus, AASG is a communicating class.

We next show that AASG is closed. Consider a state µ ∈ AASG, and a node v ∈ V ′.

Then, Acv(µ−v) is not empty, since µv ∈ Acv(µ−v). This implies that µv can not be set as

the null action a∅. Thus, AASG is closed. Since AASG is a closed communicating class,

every action profile µ ∈ AASG is a recurrent state.

We next show, in the following lemma, that all states in A∅ are transient states.

Lemma C.2 Any state µ ∈ A∅ is a transient state.

Proof: Consider a state µs ∈ A∅ and a state µf ∈ AASG. We can design a transition

sequence of non-zero probability from µs to µf similar to how we did so in the proof of

Lemma C.1, as the sequence designed did not depend on µs. Moreover, from Lemma

C.1, we know that AASG is a closed class. Thus, there is a finite non-zero probability

that the state µs ∈ A∅ will never be revisited.
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Proof: [Proof of Theorem 5.2] From Lemma C.1 and Lemma C.2, we know that there

is exactly one closed communicating recurrent class. Thus, the stationary distribution

of the Markov chain induced by log-linear learning is unique. The transition probability

from state µ to µ
′
= (µ

′
v, µ−v) for µ, µ

′ ∈ AASG is given as

Pµµ′ =
1

|V ′ |
e
− 1
τ

(
Jv(µ

′
v ,µ−v)

)
∑

µ′′v∈Acv(µ−v) e
− 1
τ (Jv(µ′′v ,µ−v))

,

denote . We can reformulate this as

Pµµ′ =
1

|V ′ |
e
− 1
τ

(
φ(µ
′
v ,µ−v)

)
∑

µ′′v∈Acv(µ−v) e
− 1
τ (φ(µ′′v ,µ−v(k)))

,

using Jv(µ
′
v, µ−v) − Jv(µv, µ−v) = φ(µ

′
v, µ−v) − φ(µv, µ−v) from Lemma 5.6. Then, we

can see that the probability distribution Π ∈ ∆(AASG) given by

Π(µ) =
e−

1
τ
φ(µ)∑

µ′′∈AASG
e−

1
τ
φ(µ′′ )

,

satisfies the detailed balance equation ΠµPµµ′ = Πµ′Pµ′µ. Thus, Π is the unique sta-

tionary distribution. As temperature τ → 0, the weight of the stationary distribu-

tion will be on the global minimizers of the potential function [106]. In other words,

limτ→0

∑
µ∈arg min

µ
′∈AASG

φ(µ′ ) Π(µ) = 1. Thus, asymptotically, log-linear learning provides

us with the global minimizer of φ(µ) = Cvs(µ)+ ε
′∑

v 6=vs Cv(µ), an ε-suboptimal solution

to the Min-Exp-Cost-Simple-Path problem.
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C.3 Proof of Theorem 5.3

Proof: We first show that there exists an kl such that µ(k) ∈ AASG for all k ≥ kl.

Let A∅ = {µ : µv = a∅ for some v} denote the set of action profiles with at least one

player playing a null action. Consider a action profile µ ∈ A∅. Then there must exist

a node v ∈ {u : µu = a∅} which has a neighbor in T ∪ {u : µu 6= a∅}, since otherwise

{u : µu = a∅} and T ∪{u : µu 6= a∅} are not connected, contradicting the assumption that

the graph is connected. Then, Acv(µ−v) is non-empty, and when node v is selected in the

round robin iteration it will play a non-null action. Moreover, µv 6= a∅ for all subsequent

iterations, since its current action at any iteration k will always belong to Acv(µ−v(k)).

We can apply this reasoning repeatedly to show that eventually at some iteration kl the

set {u : µu(kl) = a∅} will be empty, i.e., µ(kl) ∈ AASG. Furthermore, µ(k) ∈ AASG for all

k ≥ kl.

We next prove that Cv(µ(k+ 1)) ≤ Cv(µ(k)) for all v ∈ V ′ and for all k. Let v be the

node selected at stage k + 1. Clearly, if µv(k) = a∅ this is true. Else,

Cv(µ(k + 1)) = min
u∈Acv(µ−v(k))

{(1− pv) [lvu + Cu(µ(k))]}

≤ (1− pv)
[
lvµv(k) + Cµv(k)(µ(k))

]
(C.1)

= Cv(µ(k)),

where (C.1) follows since µv(k) ∈ Acv(µ−v(k)). From (5.4), we have that Cu(µ(k + 1)) ≤

Cu(µ(k)), ∀u ∈ Uv(µ), where Uv(µ) is the set of upstream nodes from v. Furthermore,

Cu(µ(k + 1)) = Cu(µ(k)), ∀u /∈ Uv(µ). Thus, Cv(µ(k + 1)) ≤ Cv(µ(k)) for all v ∈ V ′.

Since {Cv(µ(k))}k is a monotonically non-increasing sequence, bounded by below

from 0, we know that the limit exists. Moreover, since µ belongs to a finite space, we

know that convergence must occur in a finite number of iterations. It should be noted
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however, that the limit can be different based on the order of the nodes in the round

robin. Let µ∗ ∈ AASG denote the solution at convergence for the particular order of

nodes. We assume that, when selecting µv, ties are broken using a consistent set of rules,

since otherwise we may cycle repeatedly through action profiles having the same expected

costs {Cv(µ)}v.

We next show that we converge to this limit in |V ′|2 iterations. Let n = |V ′|. Consider

the set of states R0,R1, · · · , defined by the recursion Rk+1 = {v : µ∗v ∈ Rk}, where

R0 = T , i.e., Rk is the set of all nodes that are k hops away from the set of terminal

nodes T in the ASG SG(µ∗). Let k̄ be the last of the sets that is non-empty. Since

µ∗ ∈ AASG, we have k̄ ≤ n and ∪k̄m=0Rm = V . We next show by induction that µv(nk) =

µ∗v, ∀v ∈ ∪km=0Rm, for k = 0, 1, · · · , k̄. This is true for k = 0. Assume that it holds true

at stage k, i.e., µv(nk) = µ∗v for all v ∈ ∪km=1R0. Since {Cv(µ(k))}k is monotonically

non-increasing, we have Cv(µ
∗) ≤ Cv(µ(k + 1)). Moreover, since any node v ∈ ∪k+1

m=0Rm

would be selected once in round k + 1 of the round robin process, we have

Cv(µ(n(k + 1))) = min
u∈Acv(µ−v(n(k+1)−1))

{
(1− pv)×

[
lvu + Cu(µ(n(k + 1)− 1))

]}
≤ (1− pv)

[
lvµ∗v + Cµv(µ

∗)
]

(C.2)

= Cv(µ
∗).

where (C.2) follows based on the induction hypothesis, since µ∗v leads to a direct path

to a terminal node, and is not an upstream node of v. Thus, µv(n(k + 1)) = µ∗v for all

v ∈ ∪k+1
m=0Rm. This implies that the best reply process, when we cycle through the nodes

in a round robin, converges within at most n2 iterations.
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Chapter C

C.4 Relation to the Discounted-Reward Traveling

Salesman Problem

In this section, we show the relationship between the Min-Exp-Cost-Path-NT problem

of Section 5.2.1 and the Discounted-Reward-TSP, a path planning problem studied in the

theoretical computer science community [68]. Note that this section is merely pointing

out the relationship between the objectives/constraints of the two problems, and is not

claiming that one is reducible to the other. In Discounted-Reward-TSP, each node v has

a prize πv associated with it and each edge (u, v) has a cost luv associated with it. The

goal is to find a path P that visits all nodes and that maximizes the discounted reward

collected
∑

v ξ
lPv πv, where ξ < 1 is the discount factor, and lPv =

∑
e∈E(Pv) le is the cost

incurred along path P until node v.

In the setting of our Min-Exp-Cost-Path-NT problem, the prize of a node v is taken

as πv = logξ(1 − pv) for a value of ξ < 1. Our Min-Exp-Cost-Path-NT objective can

then be reformulated as
∑

e∈E(P) ξ
πPe le, where πPe =

∑
v∈V(Pe) πv is the reward collected

along path P until edge e is encountered. We can refer to this problem as the Discounted-

Cost-TSP problem, drawing a parallel to the Discounted-Reward-TSP problem described

above. However, note that our problem is not the same as the Discounted-Reward-TSP

problem. Rather, we simply illustrated a relationship between the two problems, which

can lead to further explorations in this area.

152



Chapter C

C.5 Formulation as Stochastic Shortest Path Prob-

lem with Recourse

In this section, we show that we can formulate the Min-Exp-Cost-Path problem as a

special case of the stochastic shortest path problem with recourse [69]. The terminology of

stochastic shortest path here is different from its usage in 5.1.2. The stochastic shortest

path problem with recourse consists of a graph where the edge weights are random

variables taking values from a finite range. As the graph is traversed, the realizations of

the cost of an edge is learned when one of its end nodes are visited. The goal is to find

a policy that minimizes the expected cost from a source node vs to a destination node

vt. The best policy would determine where to go next based on the currently available

information.

Consider the Min-Exp-Cost-Path problem on a graph G = (V , E), with probability of

success pv ∈ [0, 1], for all v ∈ V . We can formulate this as a special case of this stochastic

shortest path problem with recourse, by adding a node vt which acts as the destination

node. Each node in G is connected to vt with a edge of random weight. The edge from v to

vt has weight lvvt =

 0, w.p. pv

∞, w.p. 1− pv
. The remaining set of edges E are deterministic.

The solution to the shortest path problem from vs to vt with recourse, would provide a

policy that would give us the solution to the Min-Exp-Cost-Path problem. The policy in

this special case would produce a path from vs to a node in the set of terminal nodes T .

However, the general stochastic shortest path with recourse is a much harder problem

to solve than the Min-Exp-Cost-Path problem and the heuristics utilized for stochastic

shortest path with recourse are not particularly suited to our specific problem. For

instance, in the open loop feedback certainty equivalent heuristic [113], at each iteration,

the uncertain edge costs are replaced with their expectation and the next node is chosen
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according to the deterministic shortest path to the destination. In our setting this would

correspond to the heuristic of moving along the deterministic shortest path to the closest

terminal node. Such a heuristic would ignore the probability of success pv of the nodes.
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