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ELECTRONIC STRUCTURE OF f-BLOCK COMPOUNDS 

Norman H. Bdelstein 
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Materials & Molecular Research Division, Lawrence 
Berkeley Laboratory, Berkeley, California 94720 USA 

Introduction 

The lanthanide and actinide series differ from the more 
widely studied d-transition metal series in that the 4f and 5f 
shells are inner electrons shielded by the 5s ?5p 6 (or 6s 26p 6) 
closed shells. The result of this shielding is that the f shell 
interacts much less strongly with its environment than the d-
transition series. Figures 1 and 2 illustrate the radial charge 
density for P r 3 + and il + . The electronic structure of an f n ion 
is dominated by different interactions than for the more familiar 
d-transition ions. In this paper we will review the methods and 
nomenclature used to describe the electronic structure of f n com­
pounds. 

Brief Review of Atomic Theory [1-4]. 

For an N electron atom with a nuclear charge Ze where e is 
the charge of the electron and Z is the atomic number, the non-
relativistic Hamiltonian may be written (assuming the nuclear 
mass is infinite) 

N 2 N o N 
(1) 

i=l i=l i<1 J 

The first term in this equation represents the kinetic energy of 
all the electrons, the second term the potential energy of all 
the electrons in the electric field of the nucleus, and the third 
term the repulsive Coulomb potential between pairs of electrons. 
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Figure 1. Radial charge density for Pr-"\ 

Figure 2. Radial charge density for U* +. 
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In order to solve this equation we make use of the central 

field approximation for which the following assumptions are nade: 
1) Each electron is assumed to move independently. 
2) There is a central field >sade up of the spherically 

averaged potential fields of each of the other elec­
trons and the nucleus; that is each electron is said 
to be moving in a spherically symmetric field (poten­
tial), 0( r i) 

Then we may write the central field Hamiltonian 
N i-n 2 

i-1 
(2) 

This central field Hamiltonian results in a Schrodinger equation 
which may be readily solved in polar coordinates with wavefunc-
tions of the form 

T " r _ 1 R n * ( r ) Y M (0'*> • ( 3 ) 

z 
These wavefunctions are products of the radial functions Rn^(r) 
times the spherical harmonics Yj£ (0,40 and the energy levels are 
highly degenerate. The energy levels are labeled by the principal 
quantum number n and the orbital quantum number £. This degener­
acy is removed by considering a number of perturbing effects. 
An electronic configuration is described by a particular set of 
quantum numbers n and l. For example, the electronic configura­
tion of the U 4 + ion is 

. !, 2, L 2, 6,.10. 2. 6,.10..14. 2. 6..10, 2, 65„2 Is 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 6s 6p 5f 

or as is commonly written [Rn]5f2. Since the electrons in filled 
subshells (n£ 4&+2) do not contribute to the electronic structure 
of the low-lying levals we consider In this paper only the proper­
ties of the electrons in the unfilled shell. 

For f electrons the most important perturbation is the term 
obtained by subtracting equation 2 from equation 1: 

2 
(A) 

J 
The first summation shifts all the levels in a given configuration 
equally so we will not consider it. The second term 



•w 
represents the electrostatic Couloab repulsion between pairs of 
electrons. 

It is convenient at this point to introduce the operators 
(note: throughout this paper all operators are typed in script;) 

• s l ± and S 
i 

where ij sni A^ are the orbital and spin angular momentum operators 
of the i t n electron. W^ is diagonal in L and S which means we can 
label the eigenstates with particular eigenvalues of L and S in 
the form ^S+IL. This type of coupling is called Russell-Saunders 
coupling or L-S coupling. 

To allow for relativistic corrections in the Hamiltonian we 
introduce ftj* t n e spin-orbit interaction as 

JC2 - £ « r t > 4 ± • t ± (6) 
i 

or * , - 5„* S • L 

where £j(r) I * • 
h 2 

2m c r 
dtr 
dr 

and S*" Jo 
' l&SCr)dr 

The term JCj becomes progressively more important as Z, the atomic 
number increases. This spin-orbit interaction Is diagonal in J 
where J = L + S. The 2s-™-I, multiplet is split into levels labeled 
by their J eigenvalues; J « |L+S|, |L+S-l|,.... |L-S| where each 
J level has a degeneracy of 2J+1. The interaction MV, will couple 
ZS+lj, states whose value of S and h differ by not more than one. 
The spin-orbit interaction is especially important for actinide 
ions because of their high values of Z. Then the L-S coupling 
scheme is no longer a valid approximation and we speak of inter­
mediate coupling. 

In a complex a transition metal ion is surrounded by a num­
ber of ligands. If we assume the ion of interest has purely 
electrostatic interactions with its surroundings we can write 
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""~ S * • e S v ( r i « e i ' *i } ( 7 ) 

1 
where the sum extends over all the electrons of the central ion. 
V(r,0,'I>) is the potential at the central ion from the surrounding 
ligands. This potential may be expanded in a series of spherical 
harmonics and we obtain . . . 

, S - 2 3 n k < r i > y i ! < e i ' * i ) • < 8 ) 

The number of terms that need to be considered in this series de­
pends on the symmetry of the problem. This crystal-field or ii,gand 
field perturbation breaks the 2J+1 degeneracy of a particular J 
level and the eigenvalues of the operator Jz are needed to label 
the states. 

The last perturbation to be discussed will be the Zeeman 
operator 

X - B(t+2.« • H (9) 

To first order this operator can be replaced by 

W 4 - g j B K . J (10) 

where gj is the Lands g value which depends on L, S, and J for a 
particular free ion muitiplet, H is ths external magnetic field, 
and S is the Bohr magneton. This term is important for the dis­
cussion of magnetic susceptibility and electron paramagnetic 
resonance (EPR) results. 

We can picture the results of this discussion in Figure 3. 
Here we show the energy levels of the f z configuration and sche­
matically show the results of successively applying the perturba­
tion Hamiltonians Jf̂ , K^, *3 t o t n i s configuration. 

Ligand Field and Spin Orbit Hamiltonians for f . 

In this section we will discuss in some detail the applica­
tion of ̂ 2 and K3 to a configure ion consisting of one f electron 
outside a closed shell. He shail use as an-example a ligand field 
of axial symmetry such as one might find in uranocene-type mole­
cules. 
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The ligand-field Hamiltonian was written as (equation 8) 

i7E,q 
for an f electron. The value of k is restricted to be k<2£ 
where A is the value of the orbital angular momentum for the elec­
trons. For f electrons k<6. Furthermore, from a consideration 
of the parity of the matrix elements involving the crystal field 
potential, k must be even. This further restricts values of k to 
be 2„ 4, or 6 for f electrons. Values allowed for q are restricted 
by rhe rule | q | < k. Further restrictions on q are determined by 
the symmetry of the ligand field. If the highest symmetry axis 
(the quantization axis) contains an n-fold rotation axis then 
|q| - Xn, X - 0,1,2,... . If q is non-aero, then only J z eigen-
states with eigenvalues that differ by ±q can be nixed by the 
crystal-field interaction. For the C« axis found in uranocene 
type molecules only q - 0 is allowed. Therefore, the non-zero 
crystal field parameters are D°, D°, and 0g. He shall later 
aBSune that 0° is the dominant tern, i.e., D° » D» or Dg p and 
determine the energy levels for an f 1 system. 

A straightforward method for evaluating crystal field matrix 
elements was developed by Stevens [5], the operator-equivalent 
method. The basis for this method is derived from the Wigner-
Eckart theorem from which it can be shown that within a particular 
J (or I) manifold all operators of the same rank have matrix ele­
ments which are proportional to one another., The matrix elements 
of these operators have been tabulated along with the proportion­
ality constants for the ground terms of the f n ions. A convenient 
source for these tables is the appendices of Abragam and Bleaney[6]. 

The usual way of writing the matrix element is 

< J , j J J C 3 | j , j z > = J ] D k < r I t > < J ' J J > ' k l J » J

2

> 

k,q 

- 2 K k A k < r k > < j - j . i < , k i j - j , > 

k,q 
The OjJ's are the equivalent operators which are proportional to the 
spherical harmonic tensors of Kq.(8) with the proportionality con­
stants Kjj being a,B, and y; the second, fourth, sixth order opera­
tor equivalent factors, respectively. The AS's are usually traated 
as crystal field parameters. 

We will now evaluate the second order crystal field matrix 
elements for an f 1 ion. The equivalent operator is 0°=3Jf; - J2. 



Table 1 

Matrix elements of the type (i,tz\0^\t,lz> f or L - 3 (*. » 3 for 
a single f electron) from Abragam and Bleaney. Each matrix' ele­
ment must be multiplied by (-2/45)A!?<r2>. 

1 
z 

0 ±1 ±2 ±3 

0 -12 0 0 0 

±1 0 -9 0 0 

±2 0 0 0 C 

±3 0 0 0 15 

From Table 17 of Appendix B in Abragam and Bleaney we find J - 3 
(or L In our case) and the L z states 0, ±1, ±2, ±3. The matrix 
is shown in Table 1. From Table 18 (Abragam and Bleaney) the 
second rank operator equivalent for an f electron is -2/45. 

The energy levels may then be listed as 

E + 3 - --^xl5x A°<r 2> - --§A°<r 2> 

E ± 2 - - - 4 T X 0 X A 2 5 < r 2 > " 0 

E ± 1 > - ̂ x (-9) x A°<r2> - + } A°<r2> 

E Q - - ̂  (-12) x A°<r2> = + £ A°(r2> (12) 

The factor <rJ> is the expectation value of the radial wavefunc-
tion. Since A§ and <r2> are functions of the radial wavefunctions, 
the usual practice is to evaluate these parameters empirically. 
The matrix elements and factors we have found are dependent only 
on the angular parts of the wavefunction and may be evaluated 
exactly. The energy levels in terms of the second, fourth, and 
sixth order crystal field parameters are given later in Appendix 
C. 

The other interaction which is Important for the I1 case is 
the spin-orbit interaction 3f2- We may use the £,£ z basis set 
described above and evaluate exactly the angular part of this 
interaction. This is described in detail in Appendix A. We may 
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ai«o..u«e .the J,Jr basis set which is diagonal in J to calculate 
.. thVenergies of the states. This calculation is also shown in 
Appendix A., finally, we'Bay draw a correlation dlagraa which goes 
from the limit of strong spin-orbit interaction to the limit of 
strong crystal-field interaction [7]. This diagram is shown in 
Figure 4. Although there is no data for organoactinide or 

CHI VARIED ; 

Figure 4. Energy levels of the f configuration as a function of 
the relative strengths of the spin-orbit and crystal field inter­
actions. For chi = 0, only the spin-orbit interaction is con­
sidered; for chi - 1, only the crystal field interaction is 
considered. The energy levels are numbered by 2*J. . 
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lanthanlde compounds on the relative strengths of the two inter-
. actions we may extrapolate from Inorganic coaplexes and estimate 
rhatchlls approximately .4 for the actinides and possibly .3 or 
,2 for the lanthanldes. If covalent bonding is very important 
for the actinides we would expect chl to be larger. 

It should be emphasized that we are evaluating exactly only 
the angular terms in the Hamlltonlan, the radial terms are being 
treated as parameters. For inorganic complexes these radial terns 
show a smooth variation across the series for a particular type of 
complex. For example, Figure 5 shows the variation of the spin-
orbit coupling constant for the entire lantbanide series as deter­
mined from optical spectra of Ln*+ in LaCl3 [8]. This curve is 
shifted slightly upward by t>.5Z for the Ln»+ in LaF 3. The lan-
thanide series is considered, to be ionic; if covalent effects are 
more Important in the actinide series, then we would expect a much 
larger variation in the empirical radial parameters for the 5f 
series as a function of the crystal host or compound. 

T 1 1 1 1 1 1 1 1 1 — I j 

J I I I I I I I I L 
Pr Nd Pm Sm Eu Gd Tb Dy HO Er 

Figure 5. Variation of the empirically determined spin-orbit 
coupling constant for L n 3 + ions in La&3 [8 ] . 
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The Electrostatic and Spin-Orbit Haailtonlans for f 2. 

For an f n configuration the energy levels of the electrostatic 
interaction 

2 
1 rU 

are written in tens of the Slater integrals 

F < k > " ''jfX"7HT [Rnf<ri>*nf<V]2 d rl d rJ < 1 3 ) 

where r< is tha lesser and r> is the greater of r t and rj. The 
limitations on k are obtained from the properties of Legindre 
polynomials and are: 1c oust be even, and k< 21, which for f elec­
trons aeans fc is restricted to k - 0, 2, 4, 6. For a much sore 
detailed discussion see Condon and Shortley or Judd [2,3]. 

It is convenient to define a related set of parameters which 
avoids the occurrence of fractional coefficients for 

? 0 

F 2 

- F < ° > 
F<2> 
225 

F 4 
F<*> 

" 1089 

F 6 
25F<« 

F 6 184041 (14) 

The electrostatic interaction is diagonal in the L-S representa­
tion. This is the representation usually used in calculations 
involving f electrons. We show in Appendix B the calculation of 
the electrostatic energies in this representation using the diago­
nal sum method. 

The effect of the spin-orbit interaction, X~, nay be readily 
evaluated within a particular L-S nultiplet. This is equivalent 
to assuming Jfj » 3f2. He may write 

<SLJ|C(SO|SLJ> = ? ( s « ] JCJ+D-Lq+D-scs+i) j ( 1 5 ) 
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From this expression It can easily be shown that the energy inter­
val between two states of the same multiplet which differ by 1 in 
their J value is 

"L.8.J " ̂ .S.J-l " *<*> • < 1 6> 

This is calls? the Lande Interval rule. 

For the lanthanide series as mentioned previously, Russell-
Saunders coupling is a reasonable approximation for the ground 
terms except for the ions Sm 3 + and Eu 3 +. In the actinide series 
this approximation is worse because the effects of spin-orbit 
coupling increase as Z increases. The relatively simple methods 
we have discussed earlier are inadequate to determine the energies 
of the configuration f n with n> 2. In the early 1940's Racah [9] 
developed more powerful methods which have since been applied to 
atomic spectroscopy. We shall simply mention the results of these 
methods here. 

Results of Tensor Operator Methods 

Racah defined a nei- set of radial parameters (called Racah 
parameters) which are related to the Slater integrals by 

E° = F Q - 10F 2 - 33F4 - 286F6 

E 1 = (70F2 + 231F4 + 200F6) x-| 

E 2 = ( F 2 - 3 F 4 + 7F 6)*i 

E 3 = (5F2 + 6F 4 - 91Fg) x | (17) 

Expressions for the angular parts of the electrostatic and spin-: 
orbit matrix elements may be obtained in terms of fractional 
parentage coefficients and can be relatively easily evaluated by 
a digital computer. These matrix elements have been tabulated 
for all f n configurations and published in book form by Nielson 
and Koster [10]. 

The spin-orbit matrix elements may be evaluated by the 
expression 
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x U NaSL!!V < 1 1 )p Na'S'L ,> (18) 

In this expression the part in the curly brackets 1 I is a 6-j 
symbol and the (ceSLllP'^HjlVs'L) is the CO') reduced matrix 
element. The 6-j symbols are tabulated in the book by Rotenberg, 
Bivins, Metropolis, and Hooten [11] tftile the iK 1 1) reduced matrix 
elements are given in Nielson and Koster for the entire f n series. 
The symbol a in these matrix elements represent additional quantum 
numbers which are necessary to specify a particular state. Note 
that these formulas allow us to calculate off-diagonal elements 
also. 

Nielson and Koster also tabulate another useful series of 
reduced matrix elements, the U( k) reduced matrix elements. These 
are written as 

<fNaSL||U(k)i[fNo,S*L,> (19) 

where k< 6 for f electrons. 

In Figure 6 the energy levels of the f 2 configuration are 
plotted as a function of eta, £, the relative magnitude of the 
electrostatic and spin-orbit interactions [12]. At the left hand 
side of the figure £= 0, and the energy levels represent the limit 
for pure Russell-Saunders coupling, while on the right hand side 
5 " 1» which represents the energy levels in the limit of J-1 
coupling. For the lanthanide ion P r 3 + £ is ̂ .1 while for n1** C is 
^.3. As can be seen the ordering of the energy levels are very 
sensitive to the relative strengths of these interactions and can 
change from one compound to another. 

The discussion up to this point has been concerned with the 
free ion model. We have defined the electrostatic and spin-orbit 
radial parameters which can be used as variables in order to fit 
spectra. Ideally these parameters should be independent of the 
compound in which they are measured. In fact it is found that, 
as mentioned earlier for the spin-orbit coupling constant, the 
values of the Slater parameters for L n 3 + in LaCla are slightly 
different than those found in LaFs. For example, the data for 
F» 2' are plotted in Figure 7. In the actinide series these effects 
are more important. For the octahedral DX|" series (X = F, CI, Br, 
I) [13] the value of p(2> is found to vary by 20% as X goes from 
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F to I. This point will be discussed later. 

' • • i i i i i i i i i I 

ETA VARIED.CHI=3.a | 
I 

2 
Figure 6. Energy levels of the f configuration for relative 
values of the spin-orbit and electrostatic interactions. For 
eta - 0, only the electrostatic interaction is considered; for 
eta » 1, only the spin-orbit interaction is considered. The 
energy levels are numbered by the J values. 
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Figure 7. Variation of F (2) 
(dashed line) and LaCl. (solid line) 

Si-
for the Ln 

[8]. 
ions diluted in LaF3 

Ligand Field Effects for the f Configuration - Uranocene. 

We may apply the operator equivalent method discussed earlier 
for the f 2 case on the lowest term for the U l t + ion, 3Hi,. In this 
example we will use all the terms in the ligand field Hamiltonian 
allowed by the symmetry of the molecules. Since uranocene has a 
C$ axis there will be no off-diagonal terms allowed (q - 0) and 

*For energy levels in the strong ligand field limit, see Appendix 
E. 
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K3- E v ^ X ' w 
i,k>>Z^,6 

- 2 R^^VV + wj<'*wj<ei'*i> 
1 

+ YA°<r6>O°(0i,((.1)J . (20) 

He may easily write down the matrix elements for this operator by 
using Table 17 (Appendix B) of Abragam and Bleauey. The results 
are shown in Table 2. 

From this matrix we can immediately write down the energy 
levels of llgand field levels in the J,JZ representation. The 
energy levels for the J « 4 state are: 

Ej , Q - -20aA°<r2> + lO8O0A°<r4> - 25200yA°<r6> 
z 

Ej _ + 1 - -17aA°lr2> + 540BA°<r4> + 1260YA°<r6> 
z 

K T ., = -8aA°<r2> - 660BA?<r4> + 27720yA°<r6> 
Z 

Ej _ ± 3 - 7oA°<r2> - 126O0A°<r4> - 21420YA°<r6> 
z 

E, ., - 28ctA°<r2) + 8406A?<r4> + 5040yA°<r6> . (21) 
z 

Table 2 
Ligand field matrix for a J = 4 state for a molecule with a Cg 
symmetry axis. In this matrix B2 - aA°<r2>, B4 = S60A°<rl'>, and 
B 6 = Yl260A?<r6>. 

Jz ±0 ±1 ±2 ±3 ±4 

0 0 

0 0 

0 0 

7 B , - ? H - 1 7 B . 0 
2 4 6 

0 28B 2 +14B 4 -MB 6 

0 -20B 2 +18B 4 -20B 0 0 

11 0 -17B--WB.+B, 0 2 4 6 

•2 0 0 - 8 B - - 1 1 B . +22B. 
2 4 6 

±3 0 0 0 

±4 0 0 0 



17 

How let us assume as was done earlier, that the second order 
term is the most important, i.e., otAj<r2>» 8A8<r*> or YAg<r6>. 
Then if aA? is positive the J_"±4 ligand field state is lowest in 
energy. 

It is Interesting at this point to determine the energy levels 
of the f 2 configuration as a function of the strength of the crys­
tal field. Figures 8a and 8b show the energy levels of this con­
figuration drawn for two values of eta, the ratio zZ i.Ue spir.-orbit 
interaction to the electrostatic interaction as defined earlier. 

CHI 
CHI VARIED, ETA=0.1 

Figure 8a 
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CHI 
CHI VARIED, ETA=0.3 

Figure 8b -
Figures 8a and 8b. Energy levels of the f configuration for a 
fixed ratio (eta) of the electrostatic and spin-orbit interactions 
as a function of the strength of the crystal field. For chi = 0, 
only the fixed ratio of the electrostatic and spin-orbit inter­
actions is considered; for chi = 1, only the crystal field inter­
action is considered, a) eta = .1, chi varies from 0 to 1; 
b) eta = .3, chi varies from 0 to 1. The energy levels are num­
bered by the J z values. 
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At the right hand side of the figures, chi » 1, the energy levels 
are drawn considering only the crystal field interaction. At the 
l«ft hand side of the figures, chi - 0, the energy levels are drawn 
for the particular value of eta and no crystal field interaction 
as obtained from Figure 6. The values of eta - .1 and .3 are 
reasonable estimates for the lanthanlde and actlnlde series respec­
tively. The value of chi, the ratio of the crystal field inter­
action to the electrostatic and spin-orbit interaction is probably 
about ^.2-.3 for the two series. These graphs represent Tanabe-
Sugano diagrams for the f 2 configuration [14]. 

The magnetic susceptibility of uranocene has been measured 
from 4.2*K to room temperature [15-18]. On the basis of the above 
much over-simplified model we may calculate the magnetic suscepti­
bility of this compound. He assume only the ground crystal field 
state contributes to the susceptibility and second order effects 
can be neglected. 

The magnetic susceptibility X is defined for our purposes as 

„/kT <di-j±ky 
X " * - V k T < 2 2 > 

where 11 is Avogadro's number and the summation is over all energy 
levels. - We assume the energy level E may be expanded in a power 
series of H, the magnetic field, as 

E = W Q + WjH + W 2 H 2 + . . •. , (23) 

Since we are neglecting second order effects W- = 0. 

To evaluate W^ for our example we need to calculate the 
matrix element 

<LSJJ2|t + 2S|LSJJ*> = g <Jz|J|jM 

- g T<J | J + J + J |J '> (24) 
J z ' x y z ' z 

If J = J ' then z z 
< J , I J . I V - Jz • < 2 5> 

If J ^ Jl this component is zero. 
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j + a - 3. 
x y + 

3 - 1 3 - 3 x y -

and 
<JJz|J±|jJz±l> - f(J(J+l) - J z(J z±l)l 1 / 2 (26) 

If AJ >1 the off-diagonal matrix elements are zero. 

In our simplified model with otA° > 0 we have founii the degen­
erate J z - ±4 state is lowest. In a magnetic field of magnitude H 
parallel to the symmetry axis z the energies of the two levels are 

EJ -44 - »J» < Jz- 4l Jzl Jz" 4 > ' ^ J m 

z 

Ej __4 = g jeH <J z~4|J z|j z~4> - -4 g jBH (27) 
z 

Since AJ Z > 1 for the off-diagonal components the susceptibility is 
zero in the perpendicular direction. Then 

(16g^e2) x 2) 16g 2B 2 

X. - • BJ" 
I 2kT kT 

X ± - 0 

XAve " I f X» + 2 Xi> 

1 ("ffi 
3 kT 

4 4+ g = •=• for U and then 

(28) 

X "eff2 

Ave 3kT 

3.2B 

The experimental value for the magnetic susceptibility for urano-
cene in the low temperature range (4.2°K < T < i*80°K) is u e f f = 2.4g. 
In the original calculation [15] the orbital reduction factor k 
was introduced by replacing the Zeeman operator L + 2S wi h 
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let. + 25. The deviation of the value of the orbital reduction 
factor from unity is a measure of the covalency of the molecule. 
The experimental value of the magnetic susceptibility was fit with 
k - .8. 

This same type of calculation was performed for the higher 
Z compounds, neptunocene and plutonocene. For Pu(C0T)2 the ground 
term is a SI». Since J - 4 for this term the crystal field Hamil-
tonian is of exactly the same form as shown earlier for U(C0T>2 
except the value of a, 8, and Y are different. If we assume again 
B° » B° and BJj, then the only difference between the f 2 and i 
ion will be the value of a. (We have also assumed A? <r2 >does not 
change much in the two compounds.) From Table 20 (Appendix B) in 
Abragam and Bleaney we find 

,e2$* ll»ir*23n s - 2 2 x 13 <f H.||a||f H.) - -= = 
* * 3 x 5 x 11 

<f"l 4l|a||f 4 5y- — ^ (29) 
H 3 x 5 x n ' 

Since the signs of these factors are different, if the J z = ±4 
state is lowest for U(C0T)2 then the J z - 0 state must be lowest 
for Pu(C0T)2. The experimental magnetic susceptibility data for 
Pu(C0T)2 show this compound is dlimagnetic which is consistent 
with the above calculations. 

Another approach to evaluating the energy levels of uranocene-
type molecules is the effective crystal field model. In this model, 
first suggested for actinide COT complexes by Hayes and Edelstein 
[19], the ligand field splittings were calculated for an f1 system. 
Hayes and Edelstein used the Wolfsberg-Helmholz approximation to 
determine the one electron orbitals derived from the metal f orbi-
tals. This calculation showed the filled ring orbitals were quite 
a bit lower in energy than the metal orbitals. The level scheme 
for the metal orbitals is shown in Figure 9. These splittings 
were used to evaluate the crystal field parameters (AjJ<rk>) given 
for the f 1 case in axial symmetry in Appendix C. The crystal field 
parameters evaluated in this fashion were then used with the values 
of the electrostatic and spin-orbit parameters derived for U 1 , + in 
UCln and the energy splittings and magnetic moment of the ground 
crystal field state were obtained. 

The results of these calculations should be treated with 
caution. Even in well-characterized systems of f-transition ions 
it appears the empirical fitting of radial parameters to optical 
and magnetic data is open to some question. As mentioned previous­
ly, in the octahedral uxl~ series (X - F, CI, Br, I) the value of 
F " ' varied by <V/20Z as X changed from F to I [13]. These systems 
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*?.• 33l3cm«=OBS-||B2 + r}|^Bi 
2511 cm1 = 8 n 0 • 16 n 0 • 1600 nQ 2511 cm | 5 B2 + , , B 4 + 3 3 J ( | 3 B 6 

I f i f i fm 1 - J . n 0 j . J L . p i 0 4 0 0 -.Q 
+ , l 6 e c m - - g - B 2 + 3 3 B 4 - n - - I 3 B 6 

Ocm y B c + yp 04 -337 ,3 -86 
i 

Figure 9. Results of the Wolfsberg-Helmholz calculation [19] for 
the metal-like orbitals of uranocene. Bg » Aj^r*). 

were characterized by fitting the electrostatic, spin-orbit, and 
crystal field parameters to optical data. It was suggested that 
the value of the Slater parameter p( !) is affected by the type of 
ligand in the complex and may have adsorbed some of the effects of 
the ligand field. This appeared to be true to a lesser extent for 
the spin-orbit coupling constant. If the .value of F^2' and 5 were 
affected by the ligands, then the values found for the ligand field 
parameters would also not be the "correct" value. 

General Method for Calculating Crystal Field Matrix Elements for 
f n Configuration. 

The operator equivalent method is useful for determining 
crystal field splittings for the lowest J state of a lanthanide 
or actinide ion since the necessary a, @, y's are tabulated. 
However, if we include higher lying J states, the effects of 
intermediate coupling and the mixing of various J states by the 
relatively strong crystal field are important, especially for 
actinide ions. Then it is much simpler to calculate the necessary 
matrix elements by the tensor operator technique. Unfortunately, 
the definition used for the crystal field parameters BjJ's in the 
tensor operator method is different than that of the operator 
equivalent method. Note also that we are now using B~ for the 
parameters where k is the superscript and q the subscript; this 
is the opposite to the earlier Bg's which are defined differently. 
Table 3, taken from Kassman [20], shows the relationship between 
the tensor operator notation BJJ and the operator equivalent 

http://-J.n0j.JL.pi0
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Table 3 

Relationship of the tensor operator parameters B. to the 
operator equivalent parameters A? (from Kassman). 

B2-2A°<r 2> „<> ,,.0. 6. V 1 6 V r } 

B 2-(l/3)(6) 1 / 2 A 2<r 2> B2"(16/105)(105) 1 / 2 A 2<r 6> 

B*-8A°<rS B*-- (8/105)(105)1/2 Ag<r6> 

B*-<2/5)<10) 1 / 2 A 2<r 4> B*«(8/21)(14) 1 / 2 A*<r6> 

6*=-(2/35) (35) 1 / 2 A*<r*> B*-(16/231)(231) 1 / 2 A*<r6> 

B 4«(4/35)(70) 1 / 2 A*<r4> 

notation Ag<rk>. (Note that Table 6.1 of Wybourne [4] contains 
a number of errors. The phase factor in Equation 6-5 of Wybourne 
is also incorrect.) 

A general formula for crystal field matrix elements is given 
in Appendix D along with an example of its application. 

Electron Paramagnetic Resonance 

We have previously discussed the Zeeman operator 2C4 which 
was written as 

3f4 - 6W • (L + 2S) 

which for an isolated J level , which we wi l l consider here, may 
be rewritten 

X. - g T (tf • J) - gTg(H J + H J + H J ) 4 "J ' °J^V z z x x y y 

where gj is the free ion g value for a particular J level, and 
is the Bohr magneton, and H the magnetic field. Now EPR experi­
ments are usually described in terms of a phenomenological Hamil-
tonian called a spin-Hamiltonian [6] 

K - 8H • g • S' - (g.H S ' + g H S ' + g O S 1 ) (30) B v sl z z Bx x x 6 y y y' • 
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We see by comparison of the two Hamiltonlans that if the wave-
function of the ground crystal field state is known we can calcu­
late the g values which will be found In the EFR spectrum, i.e., 

g, - 2gj(SLJJ2|Jz|SLJJz> 

g^ -. 2 g j<SLJJ z | J x | SUJ Z±1 > 

g y - 2gj<SLJJz|Jy|SLJJ2±l> (31) 

If gv • gy, then the g value in the xy plane is called gj,. If 
AJ z^O, ±1 the matrix elements will be zero and no EPR spectrum 
will be observed. In the f transition series, the orbital angular 
momentum is not quenched as in the d transition series and the 
measured g values nay vary from 0 to 18. The magnitude of the g 
value is a very sensitive test of the crystal field wavefunction. 

In the above Hamiltonlan we have not included the hyperfine 
interaction term. ThiB term is written as 

\i f Al • J (32) 

for an isolated J state is proportional to free ion gj value and 
the free hyperfIne coupling constant value aj! 

A a J Al Al 
- - — - — - — (33) 
g gj g, gj. 

If these proportionalities do not hold, it is an Indication that 
crystal field mixing of different J states is important. 

Acknowledgements 

I would like to thank Mr. T. Hayhurst for carefully reading 
and correcting this paper and Mrs. K. Janes for her skill and 
patience in typing and preparing the manuscript. 

This work was supported by the Division of Nuclear Sciences, 
Office of Basic Energy Sciences, U. S. Department of Energy. 



25 
References and Footnotes 

[I] For a more coaplete discussion, see references - through 4. 
[2] E. U. Condon and G. H. Shortley, "The Theory o Atomic Spec­
tra", Cambridge University Press, Hew York, 1935. 
[3] B. R. Judd, "Operator Techniques in Atomic Spectroscopy", 
McGraw-Hill Boole Company, Sew York, 1963. 
[4] B. G. Wybourne, "Spectroscopic Properties of Rare Earths", 
John Wiley and Sons, Hew York, 1965. 
[5] K.H.H. Stevens, Proc. Phys. Soc. A65, 209 (1952). 
[6] A. Abragam and B. Bleaney, "Electron Paramagnetic Resonance 
of Transition Ions", Clarendon Press, Oxford, 1970. 
{7] This diagram is drawn for B 2 positive. The x axis is labeled 

2 
by the parameter chi where /i_ c n<\ " I zeta " T' l e y a x l s o r rela­
tive energy axis is equal to E/[(.6 zeta^+O.SBg) 2] 1' 2. 
[8] W. T. Carnail, H. Crosswhite, and B. H. Crosswhite, "Energy 
Level Structure and Transition Probabilities in the Spectra of the 
Trivalent Lanthanldes in LaFs", Argonne National Laboratory Report, 
1976. 
[91 G. Racah, Phys. Rev. 61, 186 (1942); Phys. Rev. 62, 438 
(1942); Phys. Rev. 63, 367 (1943); Phys. Rev. T6, 1352 (1949). 
[10] C. H. Nielson and G. F. Koster, "Spectroscopic Coefficients 
for the p n, d n, and f n Configuration", The M.I.T. Press, Cambridge, 
MA, 1963. 
[II] M. Rotenberg, R. Bivlns, N. Metropolis, and J. K. Wooten, Jr., 
"The 3-j and 6-j Symbols", The M.I.T. Press, Cambridge, MA, 1959. 
[12] In this figure the x axis is labeled by the parameter eta 

gf*jj 7 zst3 
w h e r C "(l-eta) * 148.1949 ?2* T h e y a x l s o r r e l a t l v e energy axis 
is equal to E/[(F2x 148.1949)2 + (7x zeta) 2] l / 2. The electrosta­
tic parameters F, and F, are set at their respective hydrogenic 
ratios of F2-
[13] W. Wagner, N. Edelsteln, B. Hhittaker, and D. Brown, Inorg. 
Chem. 16, 1021 (1977). 
[14] This diagram is drawn for B? positive. The x axis is labeled 

by the parameter chi where , * = r z e t aa n
4, F *•>%• The values for 

zeta and F 2 are obtained from the parameter eta as described 
earlier [121- The y axis or relative energy axis is equal to 
E/[(l-.2x Bg) 2 + ( F 2

X 148.1949)2 + (7 x zeta)2]l/2. The electro­
static parameters F4 and Vf, are set at their respective hydrogenic 
ratios of F 2. 
[15] D. G. Karraker, J. A. Stone, E. R. Jones, Jr., and H. Kdel-
stein, J. Amer. Chera. Soc. 92, 4841 (1970). This paper on the 
magnetic susceptibility of uranocene reported Curie-Weiss behavior 
in the temperature range studied; subsequently it was shown that 



26 
the magnetic susceptibility of uranocene becomes temperature 
Independent below 10*K. See references [16-18] for further dis­
cussion of this point. 
[16] D. Karraker, InOrg. Chen. 12, 1105 (1973). 
[17] K. D. Amberger, R.D. Fischer, and B. Kanellakopulos, Theor. 
Chin. Acta 37, 105 (1975). 
[18] N. Edelsteln, A. Streitwieser, Jr., D. fl. Horrell, and R. 
Walker, Inorg. Chen. 15, 1397 (1976). 
[19] R. G. Hayes and N. Edelstsin, J. Aner. Chea. Soc. 94, 8688 
(1972). 
[20] A. J. Kassman, J. Chem. Phys. 53, 4118 (1970). 



27 

Appendix A 
To evaluate the spiu-orbit coupling in this basis set we need 

the following aatrlx eleaents 

*'* " #V- + A.V + Vz] 
< Uzsaz\l+ijt',l8-l,«,sB+l> 

- [ ( £ + y W-^+D Cs-sz) ( s + s z + l ) l 1 / 2 

<W z ss z | 0 + | 4 , ) l z + l ,s ,s x - l > 

- r<£-* 8 )«rt z +l)<s+s g > ( s - s ^ l ) ] 1 / 2 

<Mss l i -6 | t t ss > - 4 s z z 1 z z 1 z z z z 

Now for 4 - 3 , 8 - -j 

< 3 . i

z . i 8 J V J 3 ' V 1 » i ' 8 z + 1 > 

. [ (3+y(4-£ z ) ( | -8 z ) ( | + 8 z ) ] 1 / 2 

< 3 ' V T ' 8 J * - * + I 3,dz+l,s,8z-l> 

- [ ( 3 - y ( 4 + 8 2 ) ( | + 8 z ) ( l - 8 z ) ] 1 / 2 

«.|IV- + ^- i+l2>-i>' o.flV-l2'-!* * 
+ <3,||£_4+|2,-|> - 0 + 0 

*We have changed the notation here and are using only the i z
sz 

values since £ and s are fixed at 3 and h respectively, i.e., 
C£ ,« | |t,.e >. 
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<2, + i |V- + *- \ | 3 ' - f 
- [(3-2)(4+2)(|+i)(|-|)J1 / 2 - (6) 1 / 2 

<2.+l IV- + f-*+lJ*"l * " ° 

<3,-f \t+6_ + t_6+\2,%> 

- [ < 6 ) ( l ) ( | - ( - | ) ) ( | + - i ) ] 1 / 2 - ( 6 ) 1 / 2 

- [(4)(3)(i - - | ) ( 1 ) ] 1 / 2 - 2(3) 1 / 2 

<°. | lV- + lJ+\l'~\ > " 2<3> 1 / 2 

< - l , ~ | |£ + 4_ + £_4 + | -2 , |> 

- [(3-l)(4-(-l))(l)(l)] 1 / 2 - (10) 1 / 2 

<-2,||£+i_ + IJ+\-TL,-\ > 

- [(3-(-2))(4+(-2))(l)(l)] 1 / 2 - (10) 1 / 2 

<-3,-| \Z+i_ + l_i+\-2,j> = 0 

Using these results (and those of Eq. (12)) we may write down 
the matrices of the spin-orbit interaction in the £ z,s z represen­
tation as follows: 
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i.- 3--i 2 - + i 
z ' z 

3.4 - | c + e 3 
1(6)^ 

» . • * i ( 6 ) ^ +C+e2 

i.-i o,\ 

1.4 - 5 ^ 1 m\ 
o. | oA •̂ o 

-.4 -•1 
-•4 C/2+e1 | ( loA 

M •|(ioA 

-3.4 

-?+e 2 

- 3 . - 1 1^3 
Similarly, 

<3,||£ +4_ + £ jS + | 2 , - |> = 0 

<2, - i |£ + 4_+£_4 + | l ,^> - [ (3+2)(4-2)( l )( l ) ] 1 / 2 - (10) 

<l , | |£ + i_ +*_4 + | 2 , - f > - [ (2)(5)(1)(1)] 1 / 2 - (10) 

<l , - | |£ + 4_+£_i + |0 , - i> - 0 

<°.4'V-+ *-*+l-1'i> - [ ( 3 > w < » a J 1 / 2 - 2<3> 

1/2 

1/2 

1/2 
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<-2.-| \l+i_ + t_i+\-3±> - [(1)(6) 1 / 2 (1)(1)] 1 / 2 - (6) 1/2 

and the spin-orbit Matrices are: 

3± 

3>i |c+e3 

2-i ^ 
» . - * -C+e2 fdo)'*? 
-A 1(10)^ I^i 

o . - | "4 
o . - l ^0 (3)%C 

-4 (3)*? -i^i 
-2 -i '» 2 -•I 

-2,~| +?+e2 |C6)\ 

"3.1 | ( 6 ) ^ - l C + £ 3 

Let us now consider another basis set, the LSJJ Z quantum num­
bers. For f 1 L - 3, S >= 1/2, J = 5/2 or 7/2, that is *F5/2 o r 

2 F 7 / 2 . He may find the magnitude of the spin-orbit splitting from 
the equation for the diagonal elements 

E^CJ-j) = 5/2[J(J+D-I.(L+l)-S(S+l)] 

C/2[|(|)-3(4)-|(|)] 

C / 2 t f - ^ - | ) ] - | C 
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V J " l ) " c / 2 [ f x l - v - | ] - ~25 

We now follow the procedures for operator equivalents aa we 
did previously. Thia tlae we are Interested in the J " 5/2 and 
J - 7/2 states. From Table 17 of Abragam and Bleaney we can find 
the operator equivalent factors for the J - 5/2 and the J - 7/2 
statea. The energy matrices obtained including spin-orbit coup-
ing are 

' - * 

J z *2 *2 "2 

4 -25-taa5<r2> ° 

4 0 -25-2aA°<r2> 0 

4 0 -2c-10aA°<r2> 

J z 4 +1 
"2 4 4 

4 |c-15a'A°(r 5 > 0 0 0 

4 0 |?-9a'A°<r 2> 0 0 

4 0 0 |c+3a'A2<r2> 0 

4 0 0 0 •|c+21a'A°<r2> 

The values for the second order operator equivalent factors 
may be obtained from Table 20 (Appendix B) of Abragam and Pryce. 
The factors are 

a - (f1 ̂ .Jalf1 \„> =5/21 c5/2' 5x7 

(f1 ^ M f 1 2F 7 / 2> - j J L ^ 
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«' - (f 1 \,2W\fX 2 F ? / 2 > - -<f 1 3 2 F 7 / 2 | a | f 1 3 \ n > 

3 2 x 7 

Now the operator 0° will mix states of different J but the same 
Jz value, i.e., matrix elements of the type 

<J-l.J zl<?2l J--I' Jz > *° 

so that 2 x 2 matrices need to be dlagonalized In order to solve 
the problem exactly. We can check the energy of the J z » ±7/2 
state and compare it to that of the £ z state of 3,1/2 and 3,-1/2 
calculated previously. 

E ? ? - |?+21o'A°<r2> 
J " 2 , J z " 2 

3. 2 .0, 2. 
= 2 C " I A 2 < r * 
3 r ,_ 3>- 2 .0, 2. 

K«-3,*-3 - 2 C + C 3 = I ? - 3 A 2 ( r > 

Thus, as must be true, the energies do not depend on the basis 
functions chosen to do the calculations. 
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Appendix B 

We start out the calculation of the electrostatic energies 
by constructing a table of the complete sets of electrons which 
belong to the configuration using all allowed £ z and s z values 
consistent with the Paul! principle. The resulting table classi­
fied by the L z and S z values is shown (Table 4). We have given 
only a little more than half the table since the negative L z values 
nay be obtained by interchanging the signs of the A z values for 
the positive L z values. From this table we can determine which 
L-S states are allowed. The largest value of the orbital angular 
momentum is L » 6 and the spins are paired. This term must come 
from an 'i state which also must have singlet L z - 6,5,4,3,...., 
0 -5,-6 substates. There is an S z - 1, L z - 5 state which 
must corns from a 3H term and must have triplet and singlets L z -
5,4,3,....,-3,-4,-5 substrates. By this type of elimination we 
arrive at the following terms allowed for an f 2 configuration 

1 3 1 3 1 3 1 
± I , JH, ^G, JF, V JP, XS . 
How we can calculate the electrostatic energy of the various 

terms by use of the diagonal sum rule. This rule states that the 
sum of the roots of the secular equation is equal to the sum of 
the diagonal matrix elements. All levels of a particular term 
have the same energy. There are no matrix elements connecting 
states with different L z or S z values, thus the secular equation 
for the configuration factors into a series of secular equations. 
Thus writing E('l) fpi the energy of this state and (3+3") for its 
diagonal matrix element we find 

Table 4 

f2 
S i - l sl • ° 

S* " - I 

L . . 6 13*1") 

L . . J t .V) 0V>(3"2*> <3"2") 

L I ' 4 oV> 0 V l ( 3 " l * ) ( ! * ! " ! <3"0 

L E - 3 oV-><2V> (iVmVjnVHzV) <3~0~>(2~1~> 

Lt - 2 o*-rt<2V> ( 3 + - 0 (2*0") (1*1") (3~-l +) (2~0+) (3"-l")(2"0") 

l t " 1 ( i V w V i o V ) <3*-Z~> (3"-2+) ( 1 V ) <l"0*> ( 2 * - n (2--l*> (3 -2 Ml 0 )(2 -1 ) 

L^ - 0 «•-!•> (2*-rt(l-V> <3+-3~> <2*-2">(l*-r) «l f-0"> (l"-3 +) C2"-2*> U"-l*> C3"-3")(2"-2~)(r-l"> 
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6 EC 1!) - (3+3") 

5 EC3!!) = (3 +2 +) 

4 E(3H)+E(1I)+E(1*;) - (3+l")+(3~l+)+(2+2") 

3 E(3F)+E(-3H) - (3 +0 +)+(2 +l +) 

2 E(3F)+E(3H)4E(1I)+E(1G)-tE(1b) - (3 +-l~)+(2 +0~)+tt +O 

+(3"-l+)+(2"0+) 

1 E(3F)+E(3H)+E(3P) - (3 +-2 +)+(lV)+(2 +-l +) 

0 E(3F)+E(3H)+E(1I)4E(1(J)«(1D)-W(3P)+E(1S) -

(3+-3")+(2+-2")+(l+-l")+(0+0")+(3"-3+)+(2"-2+)+(l"-l+) 

In order to use '.his method we need to define two types of 
Integrals: the direct integral 

CD 

(ab|q|ab) - J(a,b) -^a ka ai a,Jl bJt b)F k(nV,n b<l b) 
k-0 

and the exchange integral 

(ab|q|ba) - K(a,b) - S(s a,s b) ̂ b k U a £ a , A b ) G k ( n a £ a , n b * b ) 
k-0 

N 
and E(A) - V * [j(a,b)-K(a,b)| 

a>b"l 

where q - — and the coefficients ak(JlaJl|,P,b£b) and bk(JlaJla,iLb!lb) 
are tabulated in Condon and Shortley (Table 2 6, page 180 and Table 
l 6, page 178) for s,p,d, and f electrons. For equivalent electrons 
as we are dealing with here F(k>(na«a,najea) . o(k)(naJ!a,nbjlb). 
Note also that because of the 6 function for s a, s b the exchange 
integral is zero for singlet states. 

EC 1!) - F Q+25F 2+9F 4+F 6 

E( 3 H) = F 0 + 0 F 2 - 2 1 F 4 - 6 F 6 - 2 5 F 2 - 3 0 F 4 - 7 F 6 

" F 0 - 2 5 F 2 - 5 1 V 1 3 , 7 6 



E(XG) - (3 + r)+(3"l + )+(2 + 2")-E( 3 H)-E( 1 I) 

" V 1 5 F 2 + 3 V 1 5 F 6 
F 0-15F 2+3F 4+15F 6 

F0+0F2+49F4+36F4 

-F 0 +25F 2 +51F 4+13F 6 

-F Q -25F 2 -9F 4 -F 6 

- FQ-30F2+97F4+78F6 

E( 3F) - (3 + 0 + )+(2 + l + )-E( 3 H> 

- F 0-20F 2+18F 4-20F 6 

+OF2-63F4-84Fg 

+ F 040F 2-7F 4-90F 6 

-15F 2-32F 4-105F 6 

-F 0+25F 2+51F 4+13F 6 

" V 1 0 V 3 3 F 4 - 2 8 6 F 6 
and so on. 
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Appendix C 

The energy levels for £ • 3 with the complete crystal f ield 
Hamiltonian of Equation 20 are (using Table 17, Appendix B of 
Abragam and Bleaney) and the notation A?(rk> - B? 

E^ _ 0«-12cxB2 + 3608B° - 3600yBg 
z 

E^ _ + 1 - -900*2 + 6 0 8 B 4 + 2 7 0 ° V B 6 
z ~ 

E„ m ± 2 - 003° - 4206B° + 1080yBg 

Z9, -+3 " 1 5 c t B 2 + 1 8 0 e B 4 + ISOYBg z 

Now from Table 18 , Appendix B 

for I = 

<3lal3> 

<3lgl3> 

3 
- 2 

" 45 

2 

for I = 

<3lal3> 

<3lgl3> 11 x 45 

( 3 I Y ' 3 > - 4 ( 3 I Y ' 3 > 11 X 1 3 x 2 7 

Then we obta in 

v -J-JL A ° ^ 2 J j . 1 6

 4

0 / A j . 1600 . 0 , 6 , 
h =0 = + 15 A 2 ( r > + 11 A 4 < r > + 3X11X13 A 6 < r * z 
_ 2 .0 , 2. . 8 . 0 , 4. 400 . 0 . 6, 
h =±1 " 5 V r > + 33 A 4 < r > " I T x T J A 6 < r > z 
_ - 56 . 0 , 4 . . 160 . 0 , 6. 
h =±2 = ° - 3 3 A 4 < r > + 1 1 7 1 5 A 6 < r > 

Z 
_ _ 2 , 0 , 2, 8 .0 . 4. 80 .0 , 6. 
\ -±3 = " I A 2 < r } + IT A 4 < r > - 3X11X13 A 6 < r > z 
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Appendix D 

A general equation for crystal f ie ld matrix elements may be 
obtained in terms of tensor operators as follows: 

<f nctSLJJz | W31 f V SL' J' 3'x > 

- V V t < f n a S L J J | U < k > | f n a S L , J , J , X f l C < k ) l f > . £^ q z' q ' z 

Now for f electrons 

<f lC ( k ) l f> - <3lC ( k ) l3> - ( -1) 3 [ (7>( 7 , ]^ (^^ 

<fnaSLJJ |U ( k ) |f noc'SL*J'J'> z' q ' z 

- ( 

and 

• l ) J _ J z M k 3j, ) ( f n oSLJIU ( k ) l f n a'SL'J : > 

<f naSLJlU ( k >«f naSL ,J ,> 

, { . 1 ) W . , * H * j - ( 2 J ( . 1 ) ( 2 J t + 1 ) J l / 2 J J J ' k J ( f n a S L | 0 ( k ) | f n a , s , L l > 

We may gather a l l the terms together and write for f electrons 

(f^aSLJjJI/ lfVsL'J'J') 

V " V k > f n3-J z+S+L'+2J+k (3 k 3 \ (3 k J*\ ( j J' k) 
ZA ( _ 1 ) m\o0o)\-3zti 3<z)\V LsJ 

x f(2j+l)(2J'+1)]1/2 <fnaSLl<i(k)lfna,SL> 

In the above equation the ( ) are 3-j symbols, | } is a 6-j symbol, 
and <IU<k>l > is a reduced matrix element which is tabulated for 
all f n configurations by Nielson and Koster. Note that S = S', if 
this is not true, the matrix element is zero. The above general 
equation for crystal field matrix elements may be readily evaluated 
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by computer techniques. 

To illustrate these calculations, we will evaluate the BQ 
matrix element for the J - 4, Jz - 4 state of the 3H« tern of f 2. 

< f n o S L J J z | ^ | f V s L , J , J ' > 

- B< 6 ) <f 2 ^ 4 4 | t £ 6 ) | f 2 3H44> <3IC ( 6 )I3> 

• ^c^)«*—«« (7) (i ss)(i, •*){* *«} 
x ( 2 x 4 + 1) <f2 3 HlU< 6 ) l f 2 3H> 

Now from Rotenberg, Bivens, et a l . 

1/2 

1/2 
(3 6 3 \ / 6 3 3 \ / 2 2 x 5 2 \ 
o o o y l o o o y " I 3x7x11 x 13y 

I it 6 4\ U 4 4\ /6 4 4 \ / 2 2 V 
V4 ° V " \° * "V " 1° " 4 V V " 3X11X13/ 
^4 4 6^ (6 4 4) (5 5 5) / 2 2 x i 7 \ 1 / 2 

| 5 5 l / - ( l 5 5 j - j l « « } - ^ 3 3 x 5 2 x n 2 J 

From Nielson and Koster 

<£2 3H|u(6) | f2 3H> , JlpLJ'2 

Substituting we obtain 

<f2 ^ l ^ l f 2 3H44> 



-< 

- * , 

/ 2 8*17 2 V 
\3 4xll 4xl3 2/ 

( 2
2 4 X

2
1 7 ) 
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He can check this matrix element by comparing it with the value 
calculated by the operator equivalent method. 

Now from Table 3 In operator equivalent notation this matrix 
element is 

<f 2 3H44|v£|f2 3H44> - 4x1260 x y A°(r6> 

Now from Table 20, Appendix B, Abraham and Bleaney 

<\\r\\> - 4

 z 4 x l 7

2 

* 3 x 5 x 7 x 11* x 13 

4 x l 2 6 0 x — 2 " 1 7 - A°<r6> = \ 
3 x 5 x 7 x 11^ x 13 ° 

16A°<r«>-B{ | 

6 / 2 4 x 17 \ 

° \3 2 * l l 2 x l 3 y 

This value agrees with the entry in Table 3 . 
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Appendix E 

We have shown in Fig. 4 that- the energy levels for an f . 
system in a strong axial ligand field (chi - 1 and considering 
only a B§ crystal field term in.the Haailtonian) are: 

( 
t - 0 or a, , E - .444 ; 

t - ±1 or e , E - .333 ; 

i, - ±2 or e„ , E - .000 ; 
z & I '43 ore, , E = -.556 ; z J 

Now let us consider the case of two f electrons in the strong 
crystal or ligand field limit. 

There are 10 different ways we may combine the above set of 
orbitals by pairs: 

a 2a 2 e ^ e.,e2 e ^ 

a2 el el e2 C2 e3 

a2 e2 el e3 

Vs 
The crystal field operator is a one electron operator so if we 
consider the two orthogonal orbitals $. and $_ we may write 

<*1*2|l'cl*1«l>2> " {*l <* ,
2l , /l" H'2l*l*2 > = <*ll"'ll*l> 

+ <* 2|P 2|* 2> 

For example, the energy of two electrons in the a„e orbital is 
written as 



41 

How as noted previously (a^tfjjaj) " •*** • 

<e 1IV 2|e 1) - .333 , 

so <»2 ell ,'cl a2 el > * - 4 4 4 + * 3 3 3 " , 7 7 7 ' 

In order to obtain the normalization used in Fig. 8 the above 
energy .777 must be divided by 2. The following energies are 
obtained: 

Orbital normalized energy 

a 2 a 2 .444 

e l a 2 .389 

e l e l .333 

e 2 a 2 .222 

e 2 e l .167 

e 2 e 2 .000 

e 3 a 2 ->.056 

e 3 £ l -.111 

e 3 e 2 -.278 

e 3 6 3 -.556 

We may determine the degeneracies of each of the two elec­
tron orbitals from a probability argument. An electron may be 
placed in an a2 orbital with spin up or down, that is, in two 
different wsys. An electron may be placed in an e^ orbital in 
four different ways. If the second e^ orbital is equivalent to 
the first orbital there are limitations in the number of ways an 
electron may be placed in the second orbital due to the Fauli 
principle. For example, let us consider the "~&2 orbitals. We 
may place the first electron in one of four ways in the first 
e 2 orbital, one of three' ways in the second e 2 orbital so there 
are 4 x3 or 12 ways of placing the electrons in this orbital 
pair. However, we must divide this number by two because the 
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electrons are Indistinguishable and we are counting only distinct 
pairs; that Is thr*.e are 4 x 3/2 or 6 different ways of putting 
two electrons In the e2 e2 orbital pair. The degeneracies of the 
orbitals are: 

Orbital Degeneracy 

»2»2 2 x 1 / 2 - 1 

V 2 4 x 2 - 8 

e 2 B 2 4 x 2 - 8 

6 3 a 2 4 x 2 - 8 

e i e l 4 x 3 / 2 - 6 

e 2 6 l 4 x 4 - 16 

e 3 6 l 4 x 4 - 16 

e 2 e 2 4 x 3 / 2 - 6 

e„e. 2 3 4 x 4 - 16 

3 3 4 x 3 / 2 - 6 

TOTAL - 91 

We can easily calculate for the purpose of comparison the 
degeneracies in the LSJ coupling scheme (Fig. 3), which will 
turn out to be the same as in the strong ligand field case. For 
each J level, there is a (2J+1) degeneracy. 

]>evel Degeneracy 

\ 2 * 4 + 1 - 9 

\ 2 x 5 + 1 - 11 

2 x 6 + 1 - 13 

3 P 
P 2 

2 x 2 + 1 - 5 



Level Degeneracy 

^ 2 x 3 + 1 - 7 

^ 2 x 4 + 1 - 9 

a G 4 2 x 4 + 1 - 9 

h>2 2 x 2 + 1 - 5 

3 P Q 2 x 0 + 1 - 1 

3 P X 2 x 1 + 1 - 3 

3 P 2 2 x 2 + 1 - 5 

hg 2 x 0 + 1 - 1 

TOTAL = 91 




