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ELECTRONIC STRUCTURE OF f-BLOCK COMPOUNDS o i o s e, s 7 ¢

Norman M. Edelstein

Materials & Molecular Research Division, Lawrence
Berkeley Laboratory, Berkeley, California 94720 USA

Introduction

The lanthanide and actinide series differ from the more
widely studied d-transition metal series in that the 4f and 5f
shells are inner electrons shieided by the 5s°5p® (or 6s26p°)
closed shells. The result of this shielding is that the f shell
interacts much less strongly with its environmment than che d-
transition series. Figures 1 and 2 illustrate the radial charge
density for Pr’% and U'+. The electronic structure of an £f0 ion
15 dominated by different interactions than for the more familiar
d-transition ions. In this paper we will review the methods and
nomenclature used to describe the electronic structure of f0 com-—
pounds.

Brief Review of Atomic Theory [1-4].

For an N electron atom with a nuclear charge Ze where e is
the charge of the electron and Z is the atomic number, the non-
relativistic Hamiltonian may be written (assuming the nuclear
mass is infinite)

N 2 N N
= Py Ze2 +Z e2
D om- = = . W
2m T, r:l.j
1=1 1=1 i<j

The first term in this equation represents the kinetic energy of
all the electroms, the second term the potential energy of all
the electrons in the electric field of the nucleus, and the third
term the repulsive Coulomb potential between pairs of electrons.
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Figure 2. Radial charge density for U4,




3

In order to solve this equation we make use of the central

field approximation for which the following assumptions are made:

1) Each electron is assumed to move independently.

2) There is a central field made up of the spherically
averaged potential fields of each of the other elec-
trons and the nucleus; that is each electron is said
to be moving in a spherically symmetric field (poten-
tial), U(r,)

Then we may write the central field Hamiltonian

3 rp,2
Hop 'Z[’z? +0rd) . @
i1

This central field Hamiltonian resulte in a Schrodinger equation
which may be readily solved in polar coordinates with wavefunc-
tions of the form

y=rlp () Vi ©,8 . (3

These wavefunctions are products of the radial functions R,;(r)
times the spherical harmonics Yy, (8,0) and the energy 1eve%s are
highly degenerate. The energy Tefels are labeled by the principal
quantum number n and the crbital quantum number £. This degener-
acy 1s removed by considering a number of perturbiny effects.

An electronic configuration is described by a particular set of
quantum numbers n and 2. For example, the electronic configura-
tion of the U4+ ion is

1822622p%36%3p%30 %4824 p04a 104 £1% 56255654106 5265562

or as is commonly written [Rn]5f2. Since the electrons in filled
subshells (pf 4%+2) do not contribute to the electronic structure
of the low-lying levels we consider im this paper only the proper-
ties of the electrons in the unfilled shell.

For f electrons the most important perturbation is the term
obtained by subtracting equation 2 from equation 1:

N 2 N 2
ELD) ["Zr‘e‘ - ““s.)] DIl &)
1ol i 1<) ij

The first summation shifts all the levels in a given cbnfigv.iration
equally so we will not consider it. The second term
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represents the electrostatic Coulomb repulsion between pairs of
electrons.

It is convenient at this point to introduce the operators
(note: throughout this paper all operators are typed- in script;)

L-E L, and S-z 8
i 1
i

where Li and §; are the orbital and spin angular momentum operators’
of the it# :ioctron. ¥j 1s diagonal in L and S which means we can
label the eifenstal:es with particular eigenvalues of L and S in
the form 25*IL, This type of coupling ig called Rusgell-Saunders
coupling or L-S coupling.

To allow for relativistic corrections in the Hamiltonian we
introduce ¥3, the spin-orbit interaction as

%, =21:E(r1) T (6)

or JcZ Cnf.s - L

2
h

where E(z) = 75 %
2Zmc’r

and T, =j: RA £ .

The term ¥, becomes progressively more important as Z, the atomic
mmber increases. Thig sgin—orbit interaction 1s diagonal in J
where J = L + S, The “5Hy multiplet is split into levels labeled
by their J eigenvalues; J = IMST, |it+s-1],...|L-S| where each

J level has a degeneracy of 2J+l. The interaction ¥y will couple
25+ly, gtates whose value of S and L differ by not more than one.
The spin-orbit interaction is especially important for actinide
fons because of their high values of Z. Then the L-5 coupiing
scheme is no longer a valid approximation and we speak of inter-
mediate coupling.

In a complex a transition metal ion is surrounded by a num-
ber of ligands. If we assume the ion of Interest has purely
electrostatic interactions with its surroundings we can write



P

T

Kym-e 2 Virg, 9,, ¢ &

where the sum extends over all the electrons of the central ion.
v(r,9,%) is the potential at the central ion from the surrounding
ligands. This potential may be expanded in a series of spherical
harmonics and we obtain L . -

q
%, ZD wkyyd ©, 00 - ®

The mumber of terms that need to be considered in this series de~
pends on the symmetry of the problem. This crystal~field or ligand
fiéld perturbation breaks the 2J+1 degeneracy of a particular J
level and the eigenvalues of the operator J, are needed to label
the states.

The last perturbation to be discussed will be the Zeeman
operator

K, = B(L+2® oH 9)

To first order this operator can be replaced by

3(4 - gJBH- J (10)

whera gy 1s the Landé g value which depends on L, S, and J for a
particular free ion multiplet, H is th2 externmal magnetic field,
and B 1s the Bohr magneton. This term is important for the dis-
cussiorn. of magnetic susceptibility and electron paramagnetic
regonance (EPR) results.

We can picture the results of this discussion in Figure 3.
Here we show the energy levels of the £ configuratior and sche-
matically show the vresults of successively applying the perturba-
tion Hamiltonians 3, ¥;, ¥#3 to this configuration.

Ligand Field and Spin Orbit Hamiltonians for fl.

In this section we will discuss in some detail the applica-~
tion of H3 and H3 to a configur~tion consisting of one f electron
outside a closed shell. We shail use as an-example a ligand field
of axial symmetry such as cne might find in uranocene-type mole-
cules.
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Figure 3. Energy levels of the f2 configuration with the pertur-
bations #;, M3, and ¥3 applied successively.
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The ligand-field Hamiltonian was written as (equation 8)

q, 1
%, = Z :nk«iw;(e,q,)
? ’q

for an f electron. The value of k 1s restricted to be k<2¢
where % is the value of the orbital angular momentum for the elec-
trons. For f electrons k<6. Furthermore, from a consideration
of the parity of the matrix elements involving the crystal field
potential, k must be even. This further restricts values of k to
be 2, 4, or 6 for f electrons. Values allowed for q are restricted
by the rule |q|<k. Further restrictions on q are determined by
the symmetry of the ligand field. If the highest symmetry axis
(the quantization axis) contains an n-fold rotation axis then

|q| « An, A = 0,1,2,... . If q is non-zero, then orly J, eigen-
states with eigenvalues that differ by iq can be mixed by the
crystal-field interaction. For the Cp axis found in uranocene
type molecules only q = 0 is allowed. Therefore, the non-zero
crystal field parameters are Dg, D), and D. We shall later
assume that Dg is the dominant term, i.e., D'z’ >> Dﬁ or Dgp and
determine the energy levels for an f! aystem.

A straightforward method for evaluating crystal field matrix
elements was developed by Stevens [5], the operator-equivalent
method. The basis for this method is derived from the Wigner-
Eckart theorem from which it can be shown that within a particular
J (or 1) manifold all operators of the same rank have matrix ele-
ments which are proportional to one amother., The matrix elements
of these operators have been tabulated along with the proportion-
ality constants for the ground terms of the fP ions. A convenient
source for these tables is the appendices of Abragam and Bleaney[6].

The usual way of writing the matrix element is

k
3,3,13,13,3,) =z DRI, 3, |Vl 3,3,)
k,q

k
=ZKkA§<r 23,3,103,3 )
k’q

The Og's are the equivalent operators which are proportional to the
spherical harmonic tensors of Eq.(8) with the proportionality con-
stants Ki being &,B8, and y; the second, fourth, sixth order opera-
tor equivaient factors, respectively. The Aﬁ's are usually traated
as crystal field parameters. .

We will now evaluate the second order crystal field matrix
elements for an £' ion. The equivalent operator is 0% = 3]; - J%,



T "de o ) Table 1

Matrix elements of the type (% 22[0211. L.} for L =3 (2 = 3 for
a single f electron) from Abr aad 3 ey. Each matrix ele-
ment must be multiplied by (-2/4 5)A0(x2)

L 0 1 2 23

Z

“o0]-12 0 o o
11! 6 -9 0 o
21 6 0 0 ¢
3] 6 o0 o0 15

From Table 17 of Appendix B in Abragam and Bleaney we find J = 3
(or L in our case) and the 1, states 0, s ¥2, *3, The matrix
is shown in Table 1. From Table 18 (Abtagam and Bleaney) the
second rank operator equivalent for an f electron is -2/45.

The energy levels may then be listed as

EtB-—EXISXA (r)-—EA(t)

2 0,2
E:z = —’A—SXOXAZ(:L’ Y= 0

(3]
L}

2 0,2 2,0, 2
_Ex(-9)xAz(r)-+3—A2(r)

2

By = -5 (-12) xad?) = ader?) ) (12)

o
GI@

The factor (r?) is the expectation value of the radial wavefunc~
tion. Since A% and (r?) are functions of the radial wavefunctions,
the usual practice is to evaluate these parameters ewpirically.
The matrix elements and factors we have found are dependent only
on the angular parts of the wavefunction and may be evaluated
exactly. The energy levels in terms of the second, fourth, and
gixth order crystal field parameters are given later in Appendix

C.

The other interaction which is important for the f! case is
the spin-orbit interaction i. We may use the £,%, basis set
described above and evaluate exactly the angular part of this
interaction. This 1s described in detail in Appendix A. We may
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" This calculatinn is also shown in
:l.lnlly, we may draw a correlation diagram which goes

Append
from the 1limit of strong sp:l.n-orb:lt interaction to the limit of

strong crystal-field interactiom [7].

Figure 4. Although there is no data for orgamocactinide or
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Figure 4. Energy levels of the fl configuration as a function of

the relative strengths oi the spin-orbit and crystal field inter-

actions.

For chi = 0, only the

spin-orbit interaction is con-

eidered; for chi = 1, only the crystal field interaction is

considered.

The energy levels are numbered by 2Xx J2
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. lanthanide compounds on the relative strengths of the two inter-
_attions we ‘may extrapolate from inorganic complexes and estimate
rhat chi 18 approximately .4 for the actinides and possibly .3 or
.2 for the lanthanides. If covalent bonding is very important

for the actinides we would expect chi to be larger.

It should be emphasized that we are evaluating exactly only
the angular terms in the Hamiltonian, the radial terms are being
treated as parameters. For inorganic complexes these radial terms
show a smooth variation across the series for a particular type of
complex. For example, Figure 5 shows the variation of the spin-
orbit coupling conatant for the entire lanthanide series as deter-
mined from optical spectra of Ln** in LaCls [8]. This curve is
phifted slightly upward by ~.5% for the Ln3t in LaP3. The lan~
thanide series 1is considered to be ionic; 1f covalent effects are
more important in the actinide series, ther we would expect a much
larger variation in the empirical radial parameters for the 5f
series as a function of the crystal host or compound.

T T T T T T 1 T T T

24 4!

22 —

Zeto x16° (em')

] ] 1 | L | { 1 { !
Pr Nd Pm Sm Eun Gd Tb Dy Ho Er
Figure 5. Variation of the empirically determined spin-orbit
coupling constant for Ln®t jons in LaCls; {8].
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The Electrostatic and Spin-Orbit Hamiltonians for £2.

For an f8 configuration the energy levels of the electrnstatic
interaction

e2
-

are written in terms of the Slater integrals
k
w _ 2 f" = < 2
F e I J, _r oy Rnf(ri)nnf(rj) dx-:l drj 13)
: >

where r. is thz lesser and r, is the greater of ry and r,. The
limitations on k are obtained from the properties of Legendre
polynomials and are: k must be even, and k< 22, which for £ elec-
trons means k is restricted to k = 0, 2, 4, 6. For a much more
detailed discussion see Condon and Shortley or Judd {2,3].

It 19 convenient to define a related set of parameters which
avoids the occurrence of fractiomal coefficients for F{k)'g:

%)
Fo =F
e

Fa =355
%)

F
Fs = 1089

e o 25FS
6 = Tasoe1 ° as

The electrostatic imteraction 1s diagonal in the L-S representa-
tion. This is the representatiom usually used in calculations
involving f electrons. We show in Appendix B the calculation of
the electrostatic energies in this representation ugsing the diago-
nal sum method. :

The effect of the spin-orbit interaction, 3, may be readily
evaluated withim a pariicular L-S multiplet. This is equivalent
to assuming ¥; >> ¥#;. We may write

(SLI|T(SL) [SLD = £(sL) ,Mﬂ-‘—‘;’-&i@l—)} a1s)
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' From this expression it can essily be shown that the emergy inter-
val between two states of the same multiplet which differ by 1 in
their J value is

.50 " B,s,01 " G - (16

This is callsd the Landé interval rule.

For the lanthanide series as mentioned previously, Russell-
Saunders coupling is a reasonable approximution for the ground
terms except for the fons sm’+ and Eu®*. 1In the actinide series
this approximation is worse because the effects of spin-orbit
coupling increase as Z increases. The relatively simple methods
we have discussed earlier are inadequate to determine the energies
of the configuration f® with n>2, In the early 1940's Racah [9]
developad more powerful methods which have since been applied to
atomic spectroscopy. We shall simply mention the results of these
methods here.

Results of Tensor Operator Methods

Racah defined a new set of radial parameters (called Racah
parameters) which are related to the Slater integrals by

E = F0 - l()F2 - 33F4 - 286F6

1
E = (701"2 + 231F4 + 200F6) x_g.

=]
!

1
= - X =
(Fz 3F4 + 7F6) 9

1
= - X =
E (5F, + 6F, - 91F.) 3 (17)

Expressions for the angular parts of the electrostatic and spin-:
orbit matrix elements may be obtained in terms of fractional
parentage coefficients and can be relatively easily evaluated by
a digital computer. These matrix elements have been tabulated
for all f® configurations and published in book form by Mielsen
and Koster [10].

The spin-orbit matrix elements may be evaluated by the
expression .
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40N N ;
® asmlcnz 2 :(41 <L) [2ats'L

JH45' JLL' 1 /2
- T -D) ,s. s J} x[en 2}t

x (!.“aSL!!V(H)"P.Na'S'L'> 18)
In this expression the part in the curly brackets is a 6-3
symbol and the (aSL"V(“?ﬂzNa'S'L) is the V(1) r:‘l uced matrix
element. The 6~j symbols are tabulated in the book by Rotenberg,
Bivins, Metropolis, and Wooten [11] wkfle the V(1) reduced matrix
elements are given in Nielson and Koster for the entire f0' series.
The symbol 0 in these matrix elements represent additional quantum
numbers which are necessary to specify a particular state. Note
that these formulas allow us to calculate off-diagonal elements
also.

Nielson and Koster also tabulate another useful series of
reduced matrix elements, the U(K) reduced matrix elements. These

are written as

tePast [[u eMarsrn (19)
where k<6 for f electrons.

In Figure 6 the energy levels of the £2 configuration are
plotted as a function of eta, £, the relative magnitude of the
electrostatic and spin-orbit interactioms [12]. At the left hand
side of the figuref = 0, and the energy levels represent the limit
for pure Russell-Saunders coupling, while on the right hand side
E = 1, vhich represents the energy levels in the limit of j—i
coupling. For the lanthanide ion Pr3t £ is n.1 while for U*+ £ 1is
~v.3. As can be seen the ordering of the energy levels are very
sensitive to the relative strengths of these interactions and can
change from one compound to another.

The discussion up to this point has been concerned with the
free ion model. We have defined the electrostatic and spin-orbit
radjial parameters which can be used as variables in order to fit
spectra. Ideally these parameters should be Independent of the
compound in which they are measured. In fact it is found that,
as mentioned earlier for the spin—orbit coupling constant, the
values of the Slater parameters for Ln’+ in LaCl; are slightly
d%gferent than those found in LaF3. For example, the data for
F are plctted in Figure 7. In the actinide series these effects
are mors important, For the octahedral UX;Z;' series (X = F, Cl, Br,
I) {13] the value of F(?) 15 found to vary by 207 as X goes from



1‘7‘—&; I. This point will be discussed later.
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Figure 6. Energy levels of the t'z configuration for reiative
values of the spin-orbit and electrostatic interactioms. For
eta = 0, only the electrostatic interaction is considered; for
eta = 1, only the spin-orbit interaction is comnsidered. The
energy levels are numbered by cthe J values.
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Pr Nd Pm Sm Eu Gd Tb Dy Ho Er

Figure 7. Variation of F(z) for the I.n3+ ions diluted in LaFj
(dashed line) and Lacl3 (solid line) [8].

Ligand Field Effects for the f2 Configuration - Uranocene.*

..”. . 15"

We may apply the operator equivalent method discussed earlier

for the f2 case on the lowest term for the U*¥ ion, *Hy. In this
example we will use all the terms in the ligand field Hamiltonian
allowed by the symmetry of the molecules. Since uranocene has a
Cs axis there will be no off-diagonal terms allowed (q = 0) and

*For enmergy levels in the strong ligand field limit, see Appendix
E.



We may easily write down the matrix elements for this operator by
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0, k,0
X = ; «*10%, ,4.)
37 '4’6KkAk k%12%s

0, 2,40 0, 4,,0
- Z[Mz(r 300(0,,0,) + aadirr00¢0,,90,)
i

0, 6,.0
+ e ’05‘91""1’] . (20

using Table 17 (Appendix B) of Abragam and Bleamney. The results
are shown in Table 2.

From this matrix we can immedfately write down the energy
levels of ligand field levels in the J,J, representation. The
energy levels for the J = 4 state are:

Ey .o = ~200A0(r%) + 10808A0(r*) - 25200ya8¢c®)

Jz'o
By a1 " —l7c¢Ag(r2> + 560&2(:“) + 126071\2(1:5)
Py -2 ” -8aAd<r?) - 660BAL(E") + 27720vAg(c®)
By mes ” 7a83¢:%) - 1260880 (") - 214207A0 x®
S i " 28(1A2(r2) + 31.03A2(r‘) + 5oaomg<r6) } 21)

Table 2

Ligand field matrix for a J = 4 state for a molecule with a Cg

symmetry axis.
Be = Y1260A2(r®),

In this matrix By = aAl(r?), B, = B60AS(r"}, and

.l: +0 %1 *2 Lx] 14

1} -2052+1854-zons [} o 1] 0
21 o _1752H56+56 2 o o
22 0 o -852-1154+2236 [ 0
13 o 4] 0 732—?':H‘-17B6 1]

0

o

o 0 28324165‘4456
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Now let ué assume as was done earlier, that the second order
term is the most important, i.e., aAf(r?)>> BAd(r*) or vAl(r®).
Then 1f aA} is poaitive the Jz-tlo ligand field state is lowest in

energy.

It is interesting at this point to determine the energy levels
of the f£2 configuration as a function of the strength of the crys—
tal field. Figures 8a and 8b show the energy levels of this ccn-

figuration drawn for two values of eta, the ratis cI iue spin-orbit

interaction to the electrostatic interacticn as defined earlier.
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Figure 8a
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Figures 8a and 8b. Energy levels of the £ configuration for a
fixed ratio (eta) of the electrostatic and spin-orbit interactions
as a function of the strength of the crystal field. For chi = 0,
only the fixed ratio of the electrostatic and spin-orbit inter-
actions 1s considered; for chi = 1, only the crystal field inter-
action 1is considered. a) eta = .1, chi varies from O to 1;
b) eta = .3, chi varies from 0 to 1. The energy levels are num-
bered by the J, values. .
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At the right hand side of the figures, chi = .1, the energy levels
are drawn considering only the crystal field interaction. At the
left hand side of the figures, chi = 0, the energy levels are drawn
for the particular value of eta and no crystal field interaction
as obtained from Figure 6. The values of eta ~ .l and .3 are
‘reasonsble estimates for the lanthanide and actinide series respec-
tively. The value of chi, the ratio of the crystal field inter-
action to the electrostatic and spin-orbit interaction is probably
about n.2-.3 for the two series. These graphs represent Tanabe-
Sugano diagrams for the £ configuration [14].

The magnetic susceptibility of uranocene hae been measured
from 4.2°K to room temperature [15-18]. On the basis of the above
much over-simplified model we may calculate the magnetic suscepti-
bility of this compound. We assume only the ground crystal field
state contributes to the susceptibility ancd second order effects
can be neglected.

The magnetic susceptibility X 1s defined for our purposes as

(__ > —wolk'r ‘ .
> o e | a»
N e

where N is Avogadro's number and the summation is over all energy
levels. - We assume the enmergy level E may be expanded in a power
series of H, the magnetic field, as

2 :
E=Wy+WHE+WHE +. .. . (23)

Since we are neglecting second order effects W, = 0.

To evaluate W3 for our example we need to calculate the
matrix element

1
(LSJJ, | L+ 28|Ls3a)) = gJ(leJlJ;)
= gJ<leJx+Jy + 3,130 (24)
If J_ = J' then
z z
s, =9, . (25)

If Jz #* J; this component is zero.
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Jx+1Jy-J+
J -4 =73
x y -

w3, |35 20 - [(J(J+1) - Jz(Jztl)] 1/2 (26)

1f AJz> 1 the off-diagonal matrix elements are zero.

In our simplified model with aAd > 0 we have foun! the degen—
erate J, = +4 state is lovest. In a magnetic field of magnitude H
parallel to the symmetry axis z the energies of the two levels are

EJz__M = g B (I =4|7 |3 =4) = 4g BH

E = g8 (Jz=-4|Jz]Jz--4) = -4g BH 27

T =t
4

Since 4J,>1 for the off-diagonal components the susceptibility is
zero in the perpendicular direction., Then

aegier x2) 168287
1 - 2KT T TxT
Xl =0
-1
ave =3 O +2X)
L (eglsh
5 e @8
_4 4+
85 =5 for U and then
X - ueffz
Ave 3kT
Hogr = 3.28 .

The experimental value for the magnetic susceptibility for urano-
cene in the low temperature range (4.2°K< T <V80°K) is Hg¢r = 2.4B.
In the original calculation [15] the orbital reduction factor k
was introduced by replacing the Zeeman operator L + 2S wi h
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kL + 28. The deviation of the value of the orbital reduction
factor from unity is a measure of the covalency of the molecule.
The experimental value of the magnetic susceptibility was fit with
k=.8.

This same type of calculation was performed for the higher
Z compounds, neptunocene and plutonocene. For Pu{COT): the ground
term 48 a 5I4. Since J = 4 for this term the crystal field Hamil-
tonian is of exactly the same form as shown earlier for U(COT):2
except the value of &, B, and v are different. If we assume a§ain
B >> B{ and B}, then the only difference between the £ and f
ion will be the value of o. (We have also assumed A}(r?)does not
change much in the two compounds.) From Table 20 (Appendix B) in
Abragam and Bleaney we find

-22x13
3%x5%x11

45 45 2x7
(7L Jla lj£771,) = — - (29)
4 4 3xsx11?

23 23
g, llal[£%n,> =

Since the signs of these factors are difforent, 1f the J, = 14
state is lowest for U(COT)z then the J, = 0 state must be lowest
for Pu(COT)2. The experimental magnetic susceptibility data for
Pu(COT); show this compound is d3¥amagnetic which is consistent
with the above calculations.

Another approach to evaluating the energy levels of uranocene-
type molecules is the effective crystal field model. In this model,
first suggested for actinide COT complexes by Hayes and Edelstein
{19], the ligand field splittings were calculated for an f' system.
Hayes and Edelstein used the Wolfsberg-Helmholz approximation to
determine the one electron orbitals derived from the metal f orbi-
tals. This calculation showed the filled ring orbitals were quite
a bit lower in energy than the metal orbitals. The level scheme
for the metal orbitals is shown in Figure 9. These splittings
were used to evaluate the crystal field parameters (Aﬂ(r }) given
for the f! case in axial symmetry in Appendix C. The crystal field
parameters evaluated in this fashion were then used with the values
of the electrostatic and spin-orbit parameters derived for vt in
UCl, and the energy splittings and magnetic moment of the ground
crystal field state were obtained.

The results of these calculations should be treated with
caution. Even in well-characterized systems of f-transition ions
it appears the empirical fitting of radial parameters to optical
and magnetic data is open to some question. As mentioned previous-
1{5 in the octahedral UX2~ series (X = F, C1l, Br, I) the value of
F(?) varied by V20%Z as X changed from F to I [13]. These systems
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Figure 9. Resgults of the Wolfsberg-Helwholz calculation {19] for
the metal-like orbitals of uranoceme. B = Ap{r®).

were characterized by fitting the electrostatic, spin-orbit, and
cyystal field parameters to optical data. It was suggested that
the value of the Slater parameter F(?) 1s affected by the type of
ligand in the complex and may have adsorbed some of the effects of
the ligand field. This appeared to be true to a 1es?e§ extent for
the spin-orbit coupling constant. If the.value of F 2) and T were
affected by the ligands, then the values found for the ligand field
parameters would also not be the "correct” value.

General Method for Calculating Crystal Field Matrix Elements for
f® Configuration.

The operator equivalent method is useful for determining
crystal field splittings for the lowest J state of a lanthanide
or actinide ion since the necessary @, B, Y'g are tabulated.
However, if we include higher lying J states, the effects of
intermediate coupling and the mixing of various J states by the
relatively strong crystal field are important, especially for
actinide ions. Then it is much simpler to calculate the necessary
watrix elements by the tensor operator technique. Unfortunately,
the definition used for the crystal field parameters B’ 's in the
tensor operator method is different than that of the operator
equivalent method. Note also that we are now using B; for the
parameters where k is the superscript and q the subscript; this
is the opposite to the earlier Bk 8 which are defined differentl:-.
Table 3, taken from Kassman [20], shows the relationship between
the tensor operator notation B% and the operator equivalent
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Table 3

Relationship of the tensor operator parameters B: to the
operator equivalent parameters Ag (from Kassman).

6 0,6
BO-ZA (1‘ ) Bo-lﬁAs(r )
=1/ (012 aZech 88=(16/105) (105)1/2 a2¢x®)
4 6_ 1/2 3,6
Bo-sAl.(r } 33 ~ (8/105) (105) A6(r )
Ba=(2/5) 02 alih B8=(8/21) 14) /2 aber®

Ba= - 2135 3512 p3ect Bg=(16/231)(231)1/ 2 485

1/2 4, 4

Bo=(4/35) 10) /2 afcc®

notation Aﬂ(rk). (Note that Table 6.1 of Wybourne [4] contains
a number of errors. The phase factor in Equation 6-53 of Wybourne
is also incorrect.)

A general formula for crystal field matrix elements is given
in Appendix D along with an example of its application.

Electron Paramuignetic Resonance

We have previously discussed the Zeeman operator #; which
was written as

WA-BH-(L+ZS')

which for an isolated J level, which we will consider here, may
be rewritten

W =gy (Held) =g BH I +HI + Hny)
where gy is the free ion g value for a particular J level, and
is the Bohr magneton, and H the magnetic field. Now EPR experi-
ments are usually described in terms of a phenomenological Hamil-
tonian called a spin-Hamiltonian [6]

HmBH v g e S = (gyH, S + g MSL+aHS) (30)-
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We see by comparison of the two Hamiltonians that if the wave-
function of the ground crystal field state is known we can calcu-
late the g values which will be found in the EPR spectrum, 1i.e.,

8 = 28;(SLIT_| T |sLys )

g = 28;(SLIJ | T |SLIT 21} .

g, = ZgJ(SIJleJyISLJJztl) (31)
If = gy, then the g value in the xy plane is called g). If
Ay, #0, ti the matrix elements will be zero and no EPR spectrum
will be observed. In the f transition series, the orbital angular
momentum is not quenched as in the d transition series and the

measured g values may vary from 0 to 18. The magnitude of the g
value 18 a very sensitive test of the crystal field wavefunction.

In the above Hamiltonian we have not included the hyperfine
interaction term. This term is written as

Jchf = Al o 7 (32)

for an isolated J state is proportional to free ion gj value and
the free hyperfine coupling constant value 2j:

S L
2 (33)

If these proportionalitics do not hold, it is an indication that
crystal field wixing of different J states is important.
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Appendix A

To evaluate the spiu-orbit coupling in this basis set we need
the following matrix elements

rl-s = ;[%(L_'_A_ +L4) + Lzéz]
¢ zzz.-zlz+4_|v o2,-1,8,8 H)

- [(y.-mz) (B2 +1) (e-s,) (mz-u)] 12
(22 88, |8 8 |2,8 +1,8,8 -1)

- [ertp an g cove ) (oms 1] 2
(22se |8 8 [22,88 ) = 2 5

Now for £ = 3, 8-%
(3,2 ,3,5,J€,8 3,2 1,38 41)

- [y G- pGes )]
(3,2 ,3,0,1£.8,13,2 +1,8,5 -1}

- [(3-22) (s ) Gra ) B- sz)] 1/2
G3,5les_+es 2,30 = 3.3es |2,-10 "

+ 03es,l2-3) a0 40

*We have changed the notation here and are using only the £,8,
values since £ and s are fixed at 3 and % respectively, i.e.,
(2,,8,] [2,.8,0.
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1 1
(2'+i I£+4_ + L_4+|3.-§

Y2 _ . 1/2

- [a@ag+pE-P 6

Q45 le s+ L8130 =0
3,3 1es_ + £ s ]2,0
- [0wG -3nG+-p] - 0!

(1,-% [e,s_ + L_4+|o,—§-)

1/2 1/2

- [wed --hw]? - 2

@31e,8_ + 28, |1,-1) = 291/

1,-%1 e+ 28 |-2,5

1/2

- [(3—1)(4-(~1))(1) (1)] - apl’?

(-2.%|£+4_ + £_4+|-1,-% )

- [e-corre-m@w ]2 - an'?

-3,-3 184+t )23 =0

Using these results (and those of Eq. (12)) we may write down
the matrices of the spin-orbit interaction in the £,,8, represen-

tation as follows:
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1 1
"z'sz 3’-5 2.+7
31| -due, 0%
2,45 k6% e,
1
1,-% onf

-1 e, 0%

Z
1 1
) -1.-5 '2:2
-3 orze, tank
) R | O
2L | lan% -,
1
-3,-3
-3,-% | Jore )
Similarlly..
3y3les_ + 28] 2.--;—> =0
2-Lie +2a 1 =[G (1)(1)]1/ 2. anl/?
ades_+2sl2-b - [o@ @] - an’?

alies_ + £_4+|0,--]2=) -0

©-3e o+ 2 LD - [(3) W]V - 20

1 1
L,zl88_+2a,l-2,-3)=0



23l + L) - [ o]V - @2

and the spin-orbit matrices are:

3.3

1 , 3

3 | T+
2,-3 13

0-3 |+, %
a3 | % Lo :
1 1
s B
2,-% [ 1,  2o)%
1]1...% 3
33 | 30% e,

Let us now consider another basis set, the LSJJ, guantum num~
bers. For f' L =3, § =1/2, J = 5/2 or 7/2, that is ’Fs/, OF
2Fy /7, We may find the magnitude of the spin-orbit splitting from

the equation for the diagonal elements
B (3=2) = C/2[3(3+1)-L(LH)-S(sH)]
7.9 1.3
= T/215-3(8)-3 ]

-o2i82 -8 3y -3
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5 5.7 48 3
B ol=3) =t2zxz - -3 = %

We now follow the procedures for operator equivalents as we
did previously. This time we are interested in the J = 5/2 and
J = 7/2 states. From Table 17 of Abragam and Bleaney we can find
the operator equivalent factors for the J = 5/2 and the J = 7/2
states. The energy matrices obtained including spin-orbit coup-

ing are

AR 3 3
12| ~20-8aa0¢r?) 0
21 o -2g-20a0¢c%) 0
2| o  -2p-10aA0 (%)
-3
s [ Ze-15ara0® 0 0 0
3 0 Jrsaradec® o 0
= 0 0 F3arad? o
o2 0 0 0 = TIPUNI

The values for the second order operator equivalent factors
may be obtained from Table 20 (Appendix B) of Abragam and Pryce.
The factors are

Y= =2

572’ = %7
2

12 2

Fspalale™ Fppp) = 335wy

12 12
a = (f . ?Slzlalf F

(fl 2
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v o (gl 2 12, . (132 13 2 -
a' = (£ Fy o]t TF,y) €7 Fyplal £ TRy,
=2
32>t7

Now the operator 03 will mix states of different J but the same
Jz value, i.e., matrix elements of the type

5 0 7
(g= 3..12!02!-! =t *0

so that 2 X 2 matrices need to be diagonalized in order to solve
the problem exactly. We can check the energy of the J; = £7/2
state and compare it to that of the £, state of 3,1/2 and 3,-1/2
calculated previously.

E = 30191020 ¢:%)

el 52172 2

iR
3 -2 0,2
= JnaarxaE - aduh
=3,_2,0.2
= ZC 31\2(1:)
3 _3,.2,0.2

B3t a3 = 3t4e, = 30 2 a0?

Thus, as must be true, the energies do not depend on the basis
functions chosen to do the calculations.
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Appendix B

We start out the calculation of the electrostatic energies
by constructing a table of the complete sets of electroms which
belong to the configuration using all allowed £, and s; values
consistent with the Pauli principle. The resulting table ciassi-
fied by the Ly and S; values is shown (Table 4). We have given
only a little more than half the table since the negative Lz values
may be obtained by interchanging the signs of the %z values for
the positive L, values. From this table we can determine which
L~-8 states are allowed. The largest value of the orbital angular
mcmentum is L = 6 aud the spins are paired. This term must come
from an !I state which also must have singlet L, = 6,5,4,3,....,
0,....=5,-6 substates. There is an S, = 1, Ly = 5 state which
must coms from a 'H term and must have triplet and singlets L, =
5,4,3,....,~3,-4,=5 substrates. By this type of elimination we
arrive at the following terms allowed for an f2 configuration

11, 3, 1, 35, Ip, %, 15 .

Now we can calculate the electrostatic energy of the various
terms by use of the diagonal sum rule. This rule states that the
sum of the roots of the secular equation is equal to the sum of
the diagonal matrix elements. All levels of a particular term
have the same energy. There are no matrix elements connecting
stateswith different L, or S values, thus the secular equation
for the configuration factors into a series of secular equations,
Thus writing E('I) for the energy of this state and (3%3~) for its
diagonal matrix element we find

Table 4

2
£ s, =1 s =0 s, ==t

L6 (€3}
Les | ot ot )
L e8| 0MY ‘ aamhe'n) (3710
v =3 | ofthaehh oo e @702
L, =2 | O*1ha'oh atct et eah et [t uTen's)

L, =1 | ag*-hathetah | atnothatathet o etah aT2HaTe @)

=0 [ gtahathatah | et-netnatoet-ooshe-hatah | oremeatad




34

6 2ln = (3*")

5 ECm = %2h

eCmED+Ete) = (G HHE
eCr+ECn = YoH+Th

eCr+ECH+ECDxEdED) - t-1+2toy+ )

&~

N W

+(3 -1H+270N
1 eCh+eCaHeCs) = @F-2H+aoH+eth
o eCre+eCo+en+edn+ecn+cCn+eds) -
(334 -2+ 10 ) HE-TH 2T

In order to use “his method we need to define two types of
integrals: the direct integral

-]
(ablalab) = 3(a,b) =D 22, P2 (a", a2
k=0

and the exchange integral

(abla|ba) = K(a,b) = 8(s2,sD) 2 bk(laﬂ.:,ﬂ.b!&:)ck(nala,nb!?.b)

=0
N
and E(A) = E [?(a,b)—K(a,bi]
a>b=1
2
vhere q = = and the coeffictents a*(2223,2P40) ana v*(2%22,%%)

are tabulaEéE in Condon and Shortley (Table 2°, page 180 and Table

18, page 178) for s,p,d, and £ electrons. For equivalent electrons
as we are dealing with here F(k)(naﬂa,nﬂﬂa) = G(k)(nala,nblb).

Note also that because of the § function for sg. sg the exchange
integral is zero for singlet states.

1 .
ECI) = F0+25F2+9F47F6

ECH) = F +0F 217

02 4

F0-25F2-51F4-13F6

-6176--251?2-301?4-7]?6



o) = g+aTh e -eC-rdn

- 0-15F2+3!6+15r6

F -15F2+3F4+15F6

Fo+orz-|49r4+36r 4
'F0+25F2+5“6+13F6

-F0-25F2-9F4.F6

= F,-30F,497F +78F,
eOm = atoh+hh-eCn
= F,-207,+18F,~20F

0
+0P2-63F 4—84‘?6

6

+ FO-F-OFZ-JF 4-90F6

-151?2-321? 4-1051? 6

-F0+25F2+51F 4+1 3F6

- F0—10F2—33F 4_286176

and so on.
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Appendix C
The energy levels for £ = 3 with the complete crystal field

Hamiltonian of Equation 20 are (using Table 17, 3ppendix B of
Abragam and Bleaney) and the notation Ag(rk) - Bk

0 4] 0
By . o= -1208, + 36088, - 3600y8g

0. om0 0
By oy = ~90B; + 08B, + 27007Bg

By ..p = OB - 42087 + 1080yB]
2z

0 ] 0
E"z' +3 = 1508, + 1808B, + 180YB,

Now from Table 18, Appendix B
for £ = 3

lal3) = —=

(31813) = -]_—]_-x—th-

-4
II=13%27

(31y13)

Then we obtain

£, <0 =+ a0eh + 32 a0:h 4 T Ag(rﬁ)
By es1 ~ % Ag(rz) + -33;3- Ag(r") - 1%291'3 A2(r6)

By a2 - o-g—g aderty + 180 Ag(rﬁ)

£ = -2 a0eh + & adeh - 5B ala

R, =3
z
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Appendix D

A geieral equation for crystal field matrix elements may be
obtained in terms of tensor operators as follows:

(€ asLIT, |, | £"a'sL1 " 3] )
-EB:(EBGSLJleu:k) [Past a3t veerc® e
Now for f electrons
w1c®ie) = aic®i - (»? [nm]? (g K g)
(£"asL3y | u;") FCANNE

— '
- (-7 (_:; :j.) ("asLatu® 1£% s a7y
z 2

and

(st U1 %5 30y

- (-1)S+L'+J+k|:(23+1)(2J'+1)]1/ 2 ig,i ‘s‘fq“asr.lu‘k’lf“a's'L')

We may gather all the terms together and write for f electrons

(£ asLIT|V]£70"SL 13" 30 )

(k) 3-J_+S+L"+2J+k 3k3\/7 kJ'\)T J'k
“'Zl‘q D77z @ (o 0 0)(—Jz q J;) {L' L s}

1/2

x [(2J+1)(2J'+1)] P U T A

In the above equation the ( )ate 3-j symbols, { } is a 6-j symbol,
and (1UCOI) 45 a reduced matrix element which is tabulated for
all fB configurations by Nielson and Koster. MNote that S = §', 1if
this is not true, the matrix element 1s zero. The above general
equation for crystal field matrix elements may be readily evaluated
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by computer techniques.

To illustrate these calculations, we will evaluate the 366)
matrix element for the J = 4, J, = 4 state of the *H, term of £2.

‘ (f“as;LJlezcjlf“a'sn'J'J;)
88 <6 mua |uf® |£? 2masy 31013y
L (@) 3-atreses o [363)(4 64)fase
By (-1 x (M (ooo)(-ao4){551}
x (2x4 + 1) <2 3mu(®1£? 3py
Now from Rotemberg, Bivens, et al.
633 22xs2  \1/2
000 Ix7x11x13
A ( ) T2 e
4 0-44/ \32x5x11x13
{446}_{644 _{655 . 22x17 _\M?
551 1558 144 33x52x112
From Nielson and Koster

1/2
& 3au(© 12 3 - _(5; 17
3*x7

Substituting we obtain

2 P4 [VE] £ Spasd
- 388 1195, ( 2%x 52 )1/2 § 2 W2
0 IxTx11x13 Zxsxiix1s /

4 1/2 1/2
(i) e o -(22)
37x §°x 11 3"x7




k]

-n°( 28 %372 )1’2
6\ 3% x11% x132

.ol 2w
6\3%x11%x13
We can check tiiis matrix element by comparing it with the value
calculated by the operator equivalent method.

Now from Table 3 in operator equivalent notation this matrix
element is

(€ a6 |v5| €% Mas) = 4x1260 x v AGD)

Now from Table 20, Appendix B, Abragam and Bleaney

4
3 3 2 x17
", |y|["0,) =
47076 Bsxrxn?xis

BO
4 4
4 x1260x ___z._x.]lz__..Ag(rG) = Bg _2_2__’i2.];7__
3"x117x13

Px5x7x11%x13

0,6 6
16 As(r ) = B,

This value agrees with the entry in Table 3.
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Appendix E

We have shown in Fig. & that the energy levels for an el
system in a strong axial ligand field (chi = 1 and considering
only & Bf crystal field term in the Hamiltonian) are:

1

L =0 ora, , E= 444

2 = +1 or e, , E=.333

% =42 ore, , E=.000

f_ =213 or eq sy E=-,556" ;

Now let us consider the case of two f electrons in the strong
crystal or ligand field limit.

There are 10 different ways we may combine the above set of
orbitals by pairs:

233, &% &% 48
age; ee, é.‘,e3

% 5%

82(33

The crystal field operator is a one electron operator so if we
consider the two orthogonal orbitals ¢1 and ¢2 we may write

C0y0,1Ucl0y00) = Coy0,]Vy 5101050 = 0y ]V [
+ (0,[V,]0,)

For example, the energy of two electrons in the azel orbital is
written as

~

Cage, [V lage) = (ay|Vifayy + de|Vle .
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How as po;:ed previously (a,|¢,ja) = .44
CeylVley = 333,
s0 <.2e1|vc|.2e1> = 446 + ,333 = 777,
In order to obtain the normalization used in Fig. 8 the above

energy .777 must be divided by 2. The following energies are
obtained: )

Orbital Normalized energy
aza, R4
ea, .389
€18y .333
e,3, .222
e.eq 167
e, .000
eqa, =.056
eqey -.111
eqe, -.278
eqe, ] -.556

We may determine the degeneracies of each of the two elec-
tron orbitals from a probability argument. An electron may be
placed in an aj orbital with spin up or down, that is, in two
different weys. An electron may be placed in an €4 orbital in
four different ways. If the second €; orbital is equivalent to
the first orbital there are limitations in the number of ways an
electron may be placed in the second orbital due to the Pauli
principle. For example, let us consider the #-e3 orbitals. We
may place the first electron in one of four ways in the first
ey orbital, one of three ways in the second €2 orbital so there
are 4% 3 or 12 ways of placing the electrons in this orbital
pair. However, we must divide this number by two because the
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electrons are indistfaguishable and we are counting only distinct
pairs; that is the-e are 4 x 3/2 or 6 different ways of putting

two electrons in the ese, orbital psir. The degeneracies of the
orhitals are:

Orbital Degeneracy
s, 2x1/2 =1
e a, 4x2 =8
e,8, 4x2 =8
9352 4x2 =8
el.e1 4x3/2 =6
ee, 4x4 = 16
e, 4x4 = 16
eze2 4x3/2 =6
e, 4%x4 = 16
e3e3 4x3/2 =6

TOTAL = 91

We can easily calculate for the purpose of comparison the
degeneracies in the LSJ coupling scheme (Fig. 3), which will
turn out to be the same as in the strong ligand field case. Tor
each J level, there is a (2J+1) degenmeracy.

Level " Degeneracy

3114 2x44+1=98
%, 2xS5+1=11
3, 2x6+1=13
3 2x2+1=5



Degeneracy
2x3+1=7

2x4+1=9
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