
UCLA
UCLA Electronic Theses and Dissertations

Title
The Accelerated Cauchy Estimator: A Paradigm for Parallelization

Permalink
https://escholarship.org/uc/item/8gg64001

Author
Sanpakit, Chirawat Chriss

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8gg64001
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

The Accelerated Cauchy Estimator:

A Paradigm for Parallelization

A thesis submitted in partial satisfaction

of the requirements for the degree Master of Science

in Aerospace Engineering

by

Chirawat Chriss Sanpakit

2020

© Copyright by

Chirawat Chriss Sanpakit

2020

ii

ABSTRACT OF THE THESIS

The Accelerated Cauchy Estimator:

A Paradigm for Parallelization

by

Chirawat Chriss Sanpakit

Master of Science in Aerospace Engineering

University of California, Los Angeles, 2020

Professor Jason L. Speyer, Chair

This thesis presents a paradigm for accelerating the Cauchy Estimator using high

performance computing for discrete linear systems with scalar process and measurement noises.

The Cauchy Estimator is developed in such a way that is conducive to parallelization and thus

presents an opportunity to leverage the graphics processing unit (GPU) to bring the algorithm

closer to a real time environment. This work compartmentalizes the estimator into smaller routines

and presents algorithms that were developed to accelerate the computations across several

independent terms. First, the serial implementation is given for comparison and to help build

intuition. Then, the GPU implementation is given along with the parameter sending and receiving

requirements for each function. Simulations demonstrate that parallelization does eventually

outpace the serial implementation along with an almost linear scaling in time after each subsequent

measurement.

iii

The thesis of Chirawat Chriss Sanpakit is approved.

Robert M’Closkey

Tsu-Chin Tsao

Jason L. Speyer, Committee Chair

University of California, Los Angeles

2020

iv

DEDICATION

To Jill

For your tireless support, love, and inspiration. To whom this thesis, and everything it means to

me, would not be possible without.

To my Beloved Family

Thank you for your endless love and sacrifice over the years. I will always be grateful and

remember all you have given me.

To the Memory of my Late Father

While I wish you could see where I am today, I hope this thesis helps complete one of the many

dreams you sought out for me.

v

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION – THE CAUCHY ESTIMATOR........................... 1

SECTION 1.1: INTRODUCTION .. 1

SECTION 1.2: THE CAUCHY ESTIMATOR .. 2

SECTION 1.3: PARALLEL PROGRAMMING APPLIED TO STATE ESTIMATION 3

CHAPTER 2: PARALLELIZATION AND THE GPU .. 5

SECTION 2.1: GPU PROGRAMMING: THE NEED FOR SPEED .. 5

SECTION 2.2: CUDA AND THE GPU KERNEL ... 6

SECTION 2.3: CUPY, PYTHONIC PARALLELIZATION .. 7

SECTION 2.4: DATA TRANSFERS .. 8

CHAPTER 3: THE ACCELERATED CAUCHY ESTIMATOR ALGORITHM 9

SECTION 3.1: PROBLEM FORMULATION ... 9

SECTION 3.2: THE CAUCHY ESTIMATOR, OVERVIEW .. 11

SECTION 3.3: TIME PROPAGATION ... 12

3.3.1: Introduction and Serial Implementation .. 12

 3.3.2: Changes Made to the Measurement Update ... 14

 3.3.3: The Parallelized Time Propagation Algorithm ... 15

 3.3.4: “Time Propagation” of the Parent Terms .. 16

SECTION 3.4: MEASUREMENT UPDATE .. 17

3.4.1: The Original Measurement Update ... 17

 3.4.2: Changes Made to the Measurement Update ... 19

 3.4.3: The CPU Implementation of the Measurement Update 20

vi

 3.4.4: The GPU Implementation of the Measurement Update 24

SECTION 3.5: EVALUATING PARAMETERS FOR THE UCPDF .. 30

3.5.1: Calculating the G’s and Yei ... 30

 3.5.2: CPU Implementation of Calculating G’s and Yei .. 31

 3.5.3: Sending Requirements for Calculating G’s and Yei .. 35

 3.5.4: The GPU Implementation of Calculating G’s and Yei 35

SECTION 3.6: COALIGNMENT INTRODUCTION AND SERIAL IMPLEMENTATION 39

3.6.1: Coalignment Introduction ... 39

 3.6.2: Coalignment Serial Implementation ... 41

SECTION 3.7: COALIGNMENT PARALLEL IMPLEMENTATION .. 39

3.7.1: Inputs into Parallel Coalignment .. 43

 3.7.2: Coalignment Serial Implementation ... 44

 3.7.3: Parallel Coalignment – Removing Repeated Hyperplanes 46

 3.7.4: Parallel Coalignment – Parallel Reduction of Coefficients 47

 3.7.5: Parallel Coalignment – Global Versus Shared Memory 48

SECTION 3.8: S-EXPANSION AND LEAST NORMS - INTRODUCTION 52

3.8.1: Kernelizing the S-Expansion - Motivation ... 52

 3.8.2: S-Expansion Nomenclature and Incremental Enumeration 53

 3.8.3: S-Expansion Preliminaries .. 54

 3.8.4: CPU Implementation of S-Expansion Algorithm and Least Norms Solution ... 54

 3.8.5: Challenges in the GPU Implementation of the S-Expansion Algorithm 55

vii

SECTION 3.9: PARALLEL S-EXPANSION AND LEAST NORMS – IMPLEMENTATION 56

3.9.1: CPU Refactoring to Enable Contiguous Inputs to the GPU 56

 3.9.2: Using CUDA Streams for Asynchronous Data Transfers 58

 3.9.3: The S-Expansion Kernel – Introduction and Thread-Blocks Chosen 60

 3.9.4: The S-Expansion Kernel – Computing the Pseudoinverse 68

CHAPTER 4: EXPERIMENTS AND RESULTS FROM PARALLELIZATION .. 69

SECTION 4.1: SIMULATION SETUP AND TESTING .. 69

SECTION 4.2: TIME PROPAGATION .. 70

SECTION 4.3: MEASUREMENT UPDATE .. 72

SECTION 4.4: COMPUTING G, YEI .. 73

SECTION 4.5: TERM-COALIGNMENT .. 74

SECTION 4.6: PARALLEL S-EXPANSION AND COMPUTING THE LEAST NORMS 77

CHAPTER 5: DISCUSSION AND CONCLUSION .. 78

SECTION 5.1: TIME PROPAGATION .. 78

SECTION 5.2: MEASUREMENT UPDATE .. 78

SECTION 5.3: COMPUTING G, YEI .. 79

SECTION 5.4: TERM-COALIGNMENT .. 80

SECTION 5.5: PARALLEL S-EXPANSION AND COMPUTING THE LEAST NORMS 81

SECTION 5.6: IMPLEMENTING THE GPU WITH A SLIDING WINDOW 82

SECTION 5.7: CONCLUSION ... 84

viii

ACKNOWLEDGEMENTS

When I started my graduate studies, I thought for sure I wanted to pursue control theory.

That is, until I took my first course in Probability and Stochastic Processes in Dynamic Systems

with Professor Speyer. I found his overwhelming passion and love for this field infectious,

ultimately propelling my journey into Estimation Theory.

First and foremost, I absolutely must thank Nat Snyder for the countless hours he put into

supporting me and my thesis. His patience, willingness to work with me, and many insightful

discussions has made this work possible. Secondly, I must thank Professor Speyer for his guidance,

trust in me, encouragement, and for his love of teaching. I am eternally grateful for the opportunity

to work on the Cauchy Estimator and for my newfound love of Navigation Engineering. To say

that I am constantly inspired and humbled by you both would not begin to capture my sentiments.

Of course, I must thank my thesis committee: Professor M’Closkey and Professor Tsao.

The time you both dedicate towards cultivating your students is what has made my time at UCLA

incredibly gratifying and why I have found the campus to be such an intellectually vibrant

environment (I most certainly will not forget my first midterm in Linear Dynamic Systems).

Finally, where would I be without the network of people who have supported me

throughout my education, trials of my life, and through this pandemic: Xavier Hernandez, Akila

Ganlath, Audrey Der, Timothy Lam, Steven Luna, John-Pierre Sawma, Luis Miranda, Gustavo

Perez, Josef Bustamante, and Benjamin Sommerkorn. You have all truly made my life full.

And finally, this list would be incomplete without my undergraduate advisor, Dr. Marko

Princevac, who has inspired my love of the sciences and engineering.

1

CHAPTER 1

Introduction – The Cauchy Estimator

1.1. Introduction

 In 1960, Rudolph E. Kalman published a seminal paper on a recursive solution to the

discrete time linear filtering problem [12, 20]. The Discrete-Time Kalman filter consists of

essentially four equations that describe a predictor-corrector algorithm [9]. Moreover, two of these

equations, the apriori and posteriori covariance are not functions of the measurement and in theory,

can be computed offline. On the other hand, the posteriori state estimate is a linear, affine function

of the measurement [17]. These results coalesce to a series of matrix operations that modern day

computers can calculate with remarkable efficiency. The Cauchy Estimator developed by Moshe

Idan and Jason Speyer do not share the same computational luxuries because the number of

operations required along with the large dimensionality of the problems grow with each subsequent

measurement. Practically speaking, each measurement adds a large amount of data that the

algorithm must operate on. This thesis presents a paradigm for applying parallel computing to

accelerate the estimator and offers a path forward towards bringing the Cauchy Estimator to a real-

time implementable environment.

Chapter 1 begins with a select set of literature review relevant to the Cauchy Estimator and

general applications of parallel programming to estimation algorithms. Chapter two then moves

into some relevant background for GPU programming before delineating the algorithm in Chapter

3. Chapter 3 focuses heavily on the exact design and considerations for the parallel algorithms

implemented for the Cauchy Estimator before concluding with the results and discussion in

Chapter 4 and 5.

2

1.2. The Cauchy Estimator

 Many engineering, economic, and telecommunications experience an underlying random

process that exhibits volatility that Gaussian distributions do not properly capture [23]. Rather than

light-tailed Gaussian distributions, heavy-tailed distributions like the Cauchy distributions better

represent these random processes. Examples of engineering applications include radar, sonar

sensors, and turbulent air [29]. This motivates the need for a filtering technique for linear dynamic

systems with Cauchy distributions.

 Results from the Cauchy Estimation paradigm designed by M. Idan and J. Speyer

demonstrates the ability of the filter to respond to such impulsive and heavy-tailed stochasticity.

This filter has seen applications in attitude estimation using a star tracker corrupted by an impulsive

radiation background [38] or drag estimation for low earth orbiters [19]. Here, this sequential

nonlinear estimator demonstrates some quintessential property that differs from the Kalman Filter.

Unfortunately, the Cauchy processes do not have a well-defined first moment and has infinite

second moment [21]. Nevertheless, it does have an analytical form for the conditional probability

density function, given the measurement history and has been shown to have a finite and data

dependent conditional first- and second moment [26,27]. In other words, the state estimates and

error variance are functions of the measurement history and must be computed online. This also

translates to surprising results, most notably state estimates that adapt to significant process noise

as well as error variances that grow with that same measurement [16].

The estimator itself is generated by using the characteristic function of the unnormalized

cpdf, yielding a closed-form expression for the minimum variance estimate of the states and

conditional variance for the n-state problem [28]. Also, unlike the Kalman Filter, the conditional

pdf for the Cauchy Filter exhibits a multimodal, non-symmetric process [26]. By contrast, the

3

Kalman filter has a very rigid, unimodal, and symmetric structure for its probability density

function [17].

1.3. Parallel Programming Applied to State Estimation

 CPU’s have begun to stagnate in performance gains over the years due to the increased

power consumption that comes with higher clock rates. The trend of exponential CPU growth

begun to slow down, and serial computing has thus reached its limits. However, as CPU’s have

begun to reach their performance ceilings, multicore processing and GPU’s began to grow

exponentially due to their ability to conduct massively parallelized operations [6]. Broadly

speaking, the GPU is designed for a class of problems that exhibit large computational

requirements, substantial parallelism, and prioritization of throughput over latency [15].

 Parallel programming has made its way to some classes of state estimation algorithms.

Hendeby and Karlsson describe exploiting parallelism during the resampling phase to accelerate

computation using the GPU [11]. Similarly, Lopez, Zhang, and Mok leverages the CUDA

programming model to accelerate a particle filter for real-time application to a manufacturing

process [10]. Karimipour and Dinavahi describe a parallel dynamic state estimator that is based on

the Extended Kalman Filter that also leverages the GPU to compute matrix-matrix products and

underlying linear algebraic operations for Linear Solvers over large data-sets [14]. Generally

speaking, sequential filters like the discrete-time Kalman Filter is not well suited to GPU

programming. However, when massive independent operations can occur simultaneously, such as

in the case of a particle filter, the estimator can benefit significantly from parallelism.

Related disciplines include the fields of Computer Vision and Robotics, which have also

benefitted from the parallelism offered by the GPU, resulting in massive efficiency gains in

4

decision-making or real-time image processing. Examples include Brian Fulkerson’s and Stefano

Soatto’s Quick Shift Algorithm that uses the GPU to accelerate image segmentation [5],

classification to identify walls, ceilings, and so on for robotics applications [13], and parallel

algorithms to accelerate collision queries [18]. Similarly, massive commercialization efforts have

been made by NVIDIA [32] and Tesla [3] to democratize autonomous driving by accelerating

processing via the GPU. So overtime, the hardware necessary to produce accelerated algorithms

has become more widely available.

The above set of applications share a similar challenge to the Cauchy Estimator. There

exist many parallelizable operations that must occur to bring them into a real-time environment.

Numerous examples of accelerating computation in time sensitive applications like autonomous

driving or collision avoidance suggests that the future of programming has moved towards

leveraging parallelism to improve the viability of data-dependent algorithms.

5

CHAPTER 2

Parallelization and the Graphics Processing Unit (GPU)

2.1 . GPU Programming: The Need for Speed

The graphics processing unit (GPU) provides consumers with the primary means of

visualizing anything on computers. But as it turns out, outside of rendering the graphics for video

games or YouTube videos, the GPU also enables a readily accessible way to accelerate programs

through massive parallel computing. This democratization has gotten to the point that an average

user can go on Amazon and purchase all the parts needed, for under $2000, to build a computer

that can perform tens of teraflops of calculations in a matter of seconds [7].

The GPU has many, many more “simplistic” cores than a CPU. While the CPU optimizes

latency (i.e, the time it takes to compute a single computation), the GPU’s primary advantage

comes from its huge gains in throughput, or the number of possible simultaneous instructions. To

drive the point home, a GPU is analogues to a wide city road that several slower cars can drive

over at once whereas the CPU is like the hyperloop, designed to transport an individual to their

destination much quicker [7].

However, like a city road, a GPU can run into traffic jams or dependencies on other

vehicles. For example, a family might go on a road trip and take several cars. One car might drive

a little slower, thereby arriving at the destination after everyone else and delaying the vacation. On

top of that, how do you divide the workload or exploit parallelism? Ultimately, these questions

translate into small design decisions or “best practices” when designing parallel algorithms for the

Cauchy estimator. This is further delineated in the following sections but for now, this chapter

6

serves to acknowledge the areas where a GPU should be deployed, and a sample of the

complications that arises when designing an efficiently parallelized algorithm.

2.2 . CUDA and the GPU Kernel

CUDA is a framework developed by NVIDIA for general-purpose GPU (GPGPU)

programming and what’s used in this work to accelerate the Cauchy Estimator. It is a mature, free

and open source (FOS) platform that provides access to a set of GPU accelerated mathematical

libraries. Further, there are additional readily available Python libraries that interface with CUDA,

like CuPy or PyCuda, that provide function calls to predeveloped kernels. In other words, CUDA

extends on traditional coding by giving aspiring GPU programmers a means to interface with

underlying parallelization tools.

This segues into the primary means by which a CPU practically interfaces with the GPU.

A GPU Kernel is code that executes on the GPU. It looks virtually identical to serial CPU code

but with the caveat that each thread runs it several times over. In this example adapted from Cupy

documentation [4], a kernel computes the squared difference of f(x,y) = (x-y)2, given x and y.

squared_diff = cp.ElementwiseKernel(

 ... 'float32 x, float32 y',
 ... 'float32 z',
 ... 'z = (x - y) * (x - y)',
 ... 'squared_diff')

At the beginning of a kernel launch, the programmer decides how many threads to deploy. If 512

threads are chosen, then the above code executes 512 times.

7

For the purpose of this thesis, there

are two more primary levels of concurrency,

blocks and grids. Each block contains up to

1024 threads and each grid can contain 231 -

1 in the x-direction and 65535 blocks in the

y and z-direction [30]. Blocks and threads

also have directionality, affording

programmers some intuition when deciding

how to parallelize code. Thus, in any given

program, there are several blocks running at

the same time and within each block, several

threads that perform simple operations,

resulting in millions of operations happening concurrently at any given time. Note, that while it is

theoretically possible to run 231-1 x 65535 x 65535 blocks per grid (all with 1024 threads),

saturation often occurs in other forms, such as GPU memory. Figure 1 visualizes the primary

levels of concurrency. Finally, streams allow course-grain concurrency that performs

asynchronous data transfers to the GPU as well as kernel launches [7].

2.3 . CuPy, Pythonic Parallelization

With the basic definitions of the GPU and how it operates differently from the CPU aside,

this thesis now introduces CuPy as the primary development tool used to interface with the GPU

and CUDA. CuPy is a python library that allows programmers to abstract away algorithms into

function calls rather than develop custom GPU kernels for every parallel task, as in the element-

wise multiplication example above. CuPy was chosen to facilitate future adoption of the algorithm

Figure 1: Host refers to the CPU while Device

refers to the GPU [Image Source: NYU]

8

and because of its natural transition from interpreted languages like, MATLAB. Thus, instead of

writing kernels and worrying about how to allocate threads, blocks or grids (and many other

programmatic challenges like array broadcasting), the focus shifts to developing the higher-level

algorithm and working on exploiting parallelism. For example, if a dot product is required,

typically a GPU programmer would allocate several threads per element in a vector to perform a

multiplication and perhaps a block if the vector has more than 1024 elements. Then, they would

aggregate the results into a sum and assign it into some new variable. Instead of unnecessarily

worrying about these lower level complications, CuPy allows programmers to simply type:

z = x*y or z = cupy.dot(x,y)

Nevertheless, some portions of the Cauchy Estimator cannot rely on CuPy functions alone and

requires kernelization. These kernels are detailed in their corresponding sections.

2.4 . Data Transfers

A data transfer occurs when the CPU needs to send data (say a variable, a matrix, or a

measurement in the case of an estimator) to the GPU. Data transfer represents some of the largest

bottlenecks when designing highly parallelized algorithms and should be minimized whenever

possible [15]. In fact, entire operations on the GPU can be shorter when compared to a single data

transfer. A prudent design will perform a transfer once, do several computations, then transfer the

data back to the CPU as needed. In that vein, the Accelerated Cauchy Estimator (ACE) performs

several algorithmic steps (time propagation, measurement update, etc.) on the GPU, thereby taking

full advantage of the capability of the GPU before necessitating any additional data transfers.

9

Chapter 3

The Accelerated Cauchy Estimator Algorithm

3.1. Problem Formulation

Consider the single-input-single-output multivariable linear system

with state vector xk ∈ ℝ𝑛, scalar measurements zk , and known matrices Φ ∈ ℝ𝑛𝑥𝑛 , Γ ∈ ℝ𝑛𝑥1

and 𝐻 ∈ ℝ1𝑥𝑛. The noise inputs are assumed to be Cauchy distributed random variables where

wk is zero median and has a scaling parameter 𝛽 > 0. Likewise, the noise input to the sensor

measurement, vk, has a Cauchy probability density function (pdf) with a median of zero and

scaling parameter 𝛾 > 0.

The goal is to develop an algorithm that can compute the minimum variance estimate of xk

given the measurement history, yk = { z1, z2, … zk} in real-time. This thesis summarizes the results

from “Multivariate Cauchy Estimator with Scalar Measurement and Process Noise”, by Idan and

Speyer [28], and presents additional insight conducive to parallel programming. The method

proposed in this thesis entails sending the minimum number of parameters required at every

algorithmic step to minimize the overhead associated with GPU transfers. Further, this work takes

a best practice approach to perform as many parallel computations as possible to maximize the

Cauchy estimator’s throughput in the process, resulting in a paradigm for high performance

computing.

𝑥𝑘+1 = Φ𝑥𝑘 + Γ𝜔𝑘 , z𝑘 = 𝐻x𝑘 + v𝑘

10

Some Nomenclature for the Cauchy Estimator

• let d be the state dimension.

• let 𝒍 ∈ L, where L is the set of currently generated hyperplane arrangement sizes (i.e: 5,

6, 7, hyperplanes) over all terms.

• let 𝒎, represent the current hyperplane 𝒎 ∈ [1, 2…, 𝒍].

• let 𝒏𝒕 represent the total number of terms generated at the current step. The number of

hyperplanes in all arrangements is given by the set M

• Ai ∈ ℝ𝑙 𝑥 𝑑 be the matrix which holds term i’s hyperplanes, of dimension d.

• Aim ∈ ℝ1 𝑥 𝑑 represents the m-th hyperplane (row of Ai)

• Ail ∈ ℝ𝑙 𝑥 𝑑 represents the i-th term for the 𝒍-th arrangement

• Aiml ∈ ℝ1 𝑥 𝑑 represents the m-th hyperplane for the 𝒍-th arrangement

• pi ∈ ℝ𝑚 represents the coefficient of the ith term’s hyperplane arrangement within the

exponential of the Cauchy’s characteristic function.

• qi ∈ ℝ𝑚 represent the coefficients to the ith term’s hyperplane arrangement, within the g-

coefficient of the characteristic function

11

3.2. The Cauchy Estimator, Overview

The Cauchy Estimator currently covers 7 subroutines, shown in figure 2. The new

development regarding Reverse Search, Flattening, and Reduction are not covered in this thesis.

Instead, this work covers the routines in the first N-State Estimator derived by M. Idan and J.

Speyer. That said, some of the subroutines discusses calculating certain parameters that are a direct

result of this new development. So, it is important to be generally aware that some of the results

are a direct consequence of the time it takes to compute the supporting parameters needed for, for

example, Flattening.

 This chapter will first begin my discussing the serial implementation of the different

subroutines since the “improvements” reported by parallelization are with respect to the provided

CPU code. Then, the GPU implementation including any required data transfers, memory

management considerations, and other relevant designed decisions are discussed. Finally, there is

an intermediate section that occurs right after coalignment called the S-Expansion kernel discussed

in section 3.8 (not shown below).

 Figure 2: General flow diagram of the Cauchy Estimator and each separate function. The algorithms

are compartmentalized into 7 routines and this thesis covers parallelization of the first 4.

12

3.3. Time Propagation

3.3.1 Introduction and Serial Implementation

Idan and Speyer derived the generalized time propagation characteristic function of the ucpdf of

xi+1 given the measurement history yk = {z1 z2 … zk} [28]. The relevant results to parallel

programming for Time Propagation are summarized by the following:

First, at any time step the characteristic function of the ucpdf of the state xk is given by:

𝜙̅𝑋𝑘|𝑌𝑘(𝑣) = ∑ 𝑔𝑖
𝑘|𝑘𝑛𝑡

𝑘|𝑘

𝑖=1 (𝑦𝑔𝑖
𝑘|𝑘(𝑣))exp (𝑦𝑒𝑖

𝑘|𝑘(𝑣)) (3.3.1)

where

𝑦𝑔𝑖
𝑘|𝑘(𝑣) = ∑ 𝑞𝑖𝑙

𝑘|𝑘
𝑠𝑔𝑛(<

𝑛𝑒𝑖
𝑘|𝑘

𝑙=1 𝑎𝑖𝑙
𝑘|𝑘
, 𝑣 >) (3.4)

 𝑦𝑒𝑖
𝑘|𝑘(𝑣) = −∑ 𝑝𝑖𝑚

𝑘|𝑘
| <

𝑛𝑒𝑖
𝑘|𝑘

𝑙=1
𝑎𝑖𝑙
𝑘|𝑘
, 𝑣>⟩| + 𝑗 < 𝑏𝑖

𝑘|𝑘
, 𝑣 > (3.3.2)

and where 𝑔𝑖
𝑘|𝑘

 will be defined later in section 3.5. In other words, the current state given the

measurement history is a function of several parameters that we compute in the actual estimation

algorithm. Also worth noting is that 𝑦𝑒𝑖
𝑘|𝑘(𝑣) and 𝑦𝑔𝑖

𝑘|𝑘(𝑣) are term dependent parameters,

hence the subscripted i-s. After performing a time propagation, the characteristic function is then

given by:

𝜙̅𝑋𝑘|𝑌𝑘−1(𝑣) = 𝜙̅𝑋𝑘|𝑌𝑘−1(𝑣)(Φ
𝑇 𝑣) 𝜙̅𝑊(Γ

𝑇𝑣)

= ∑ 𝑔𝑖
𝑘|𝑘−1𝑛𝑡

𝑘|𝑘−1

𝑖=1
(𝑦𝑔𝑖

𝑘|𝑘−1(Φ𝑇 𝑣)) exp (𝑦𝑒𝑖
𝑘|𝑘−1(Φ𝑇 𝑣) – 𝛽| < Γ, 𝑣 > |) (3.3.3)

13

Where the above arguments in the exponent can be redefined as:

𝑦𝑔𝑖
𝑘+1|𝑘(𝑣) = 𝑦𝑔𝑖

𝑘|𝑘(Φ𝑇 𝑣) = ∑ 𝑞𝑖𝑙
𝑘|𝑘
𝑠𝑔𝑛(< Φ

𝑛𝑒𝑖
𝑘|𝑘

𝑙=1 𝑎𝑖𝑙
𝑘|𝑘
, 𝑣 >) (3.3.4)

 𝑦𝑒𝑖
𝑘+1|𝑘(𝑣) = 𝑦𝑒𝑖

𝑘|𝑘(Φ𝑇 𝑣) – 𝛽| < Γ, 𝑣 > | (3.3.5)

= -∑ 𝑝𝑖𝑙
𝑘|𝑘
| < Φ

𝑛𝑒𝑖
𝑘|𝑘

𝑙=1 𝑎𝑖𝑙
𝑘|𝑘
, 𝑣 > | − 𝛽| < Γ, 𝑣 > | + 𝑗 < 𝑏𝑖

𝑘|𝑘
, 𝑣 >

Thus, from the algorithmic standpoint the time propagation performs a set of matrix

multiplications with Φ to compute the propagated arguments of g and yei . while c, d, q and p

remain unchanged. For comparison, the pseudocode for the serialized CPU implementation

taking advantage of the Numba library JIT (just-in-time) compiler is given in algorithm 1.

Algorithm 1: Serial CPU Implementation of the Time Propagation

1: #Begin CPU Time Propagation

2: #Inputs: 𝚽, 𝚪, 𝜷, a, b, p

3: For 𝑖 ∈ [1,…,nt]:

4: ak+1|k ← A Φ𝑇, #where ak+1|k ∈ ℝ𝑙 𝑥 𝑑

5: ak+1|k ← Append Γ𝑇 to ak+1|k
 to form [ak+1|k

 ; Γ𝑇] , # ak+1|k ∈ ℝ𝑙+1 𝑥 𝑑

6: bk+1|k ← b Φ𝑇, # bi
k+1|k ∈ ℝ𝑙+1 𝑥 𝑑

7: pk+1|k ← append original ps

8: pk+1|k ← append 𝛽 to last column of pk+1|k prop to form [pk+1|k
 𝛽] , # pk+1|k ∈ ℝ𝑙 𝑥 𝑑+1

9: end for

10: Return Ak+1|k, bk+1|k, pk+1|k

12: end CPU time propagation

14

For the CPU implementation of the time propagation, each parameter’s matrix individually

multiplies or appends within a loop. For notational convenience, the propagated parameters are

denoted with a k+1|k, for the unnormalized characteristic function. A, b and p are the parameters

for the unnormalized characteristic function in the previous step while Φ ∈ ℝ𝑛𝑥𝑛represents the

known, state transition matrix. Finally, Γ ∈ ℝ𝑛𝑥1 and 𝛽 are known vectors and scaling parameters

> 0 for Cauchy distributed noise, respectively. Similarly, vk, the scalar measurement, has a Cauchy

pdf with a scaling parameter 𝛾 > 0. While the number of terms (g’s and yei’s to compute) have

stayed the same at the time propagation step, the number of hyperplanes has increased by one.

3.3.2 Parameter Sending Requirements for the GPU

For the parallel implementation, the time propagation needs to send 3 parameters to the

GPU: A, b, and p. Each of these parameters that make up the argument of the exponential and the

g’s defined in equation 3.3.1 change dynamically as the estimator progresses and thus necessitates

reallocation to the GPU at each measurement. It is worth noting that the reason this occurs at this

stage of the algorithm is because reduction has not been developed for the GPU. Future work in

this area would address this and thus save 3 parameter transfers.

All other parameters, Φ, 𝛾, Γ and 𝛽 are functions of the linear system dynamics and the

known statistics. As a result, these parameters transfer once to the GPU at the start of the algorithm

and stay there for the duration of the estimator, saving 3 additional transfers. Outside of these 6

parameters, no additional parameters need to exist on the GPU at this point in the algorithm to

successfully perform the time propagation. In the case of a linear time varying system, the

dynamics would update on the GPU itself instead of resending the parameters to the device at

every time step.

15

3.3.3 The Parallelized Time Propagation Algorithm

First, note that the time propagation step consists of a weighted sum of parameters

independent from one another, resulting in an inherently parallelizable structure. In other words,

the matrix ΦT multiplies to each ai , forming ai
k+1|k, irrespective of the other values i ∃ [1,…,nt].

Similarly, all matrix multiplications in bi
k+1|k = Φ bi

 k|k can occur simultaneously. Also, note that

the parameters pi
k+1|k = pi

k|k remains unchanged, though both a and p append an additional

parameter to reflect the additional hyperplane. Finally, implementation-wise, whenever operations

between two variables occur, they must exist on the same hardware. For example, CPU variables

can only interact with CPU variables while GPU variables can only operate with GPU variables.

With that in mind, any variables that exist on the GPU will be denoted with the subscripted gpu.

These observations suggest the formulation of the parallelized time propagation algorithm,

given in Algorithm 2, with the Python and CuPy implementation presented in the Appendix A.

This eliminates the inner for loop that the CPU required to perform the matrix multiplication to

each ai
k+1|k

 gpu, bi
k+1|k

 gpu and reassignment for pi
k+1|k

 gpu. Further, all intermediate operations like the

transpose, appending, tiling and so occur in parallel as well. For example, it is worth noting that in

this implementation of the time propagation, the appending of 𝛽 and Γ𝑇 occur in parallel.

The operations happen in parallel over the number of terms while the CPU’s for loop

handles the different hyperplane arrangements. In other words, the time propagation of the

hyperplane arrangement currently happens serially while operations on these hyperplanes occur in

parallel. This is the paradigm for ACE for each section of the algorithm, whether it is the time

propagation, measurement update, or computing the arguments for the characteristic function.

16

3.3.4 “Time Propagation” of the Parent Terms

 An intermediate step occurs in between the time propagation and the measurement update.

Specifically, the parameters that result from the reverse search, , Bp, and Ss append to a Python

list for future use. These parameters can exist on the GPU by the time this propagation happens,

but that requires parallelization of reduction. Otherwise, this requires one transfer of the alphas at

this step of the algorithm. For the purposes of this work, this section was not timed and currently

exists on the CPU; but note this assignment can occur simultaneously.

Algorithm 2: GPU Implementation of the Time Propagation

1: Begin GPU Time Propagation

2: GPU ← a, b, and p to GPU

3: For ∀ Hyperplane Arrangements, #conduct this loop over the CPU

4: In parallel, compute Ak+1|k, bk+1|k and pk+1|k matrix ∀ i ∃ [1,…,nt]

5: ak+1|k
 gpu ← agpu Φ𝑇

gpu

6: ak+1|k
gpu← Assign Γ𝑇gpu to the all row of propagated matrices

7: bk+1|k
gpu← bgpu, Φ𝑇

gpu

8: pk+1|k
gpu ← append original pk+1|k

9: pk+1|k
gpu ← append 𝛽gpu to all last row of pk+1|k , dimension has grown by 1

10: return ak+1|k
gpu, b

k+1|k
gpu, p

k+1|k
gpu

11: end for

12: end GPU time propagation

17

3.4. Measurement Update

3.4.1. The Original Measurement Update

 After performing the generalized time propagation given in section 3.3, Idan and Speyer

then compute the measurement update using zk+1 = Hxk+1 + vk+1 to determine 𝜙̅𝑋𝑘+1|𝑌𝑘+1(𝑣),

where yk+1 = {z1 z2 … zk+1} [28]. Again, the relevant results to parallel programming for the

measurement update as well as the changes made after implementing the reverse search are

summarized here. Like the time propagation, the measurement update is conducive to parallel

programming and can be implemented with some alterations.

Beginning with the ucpdf of the state given the measurement history in Idan and Speyer [28]:

𝜙̅𝑋𝑘+1|𝑌𝑘+1(𝑣) = ∑ 𝑔𝑖
𝑘+1|𝑘+1𝑛𝑡

𝑘+1|𝑘+1

𝑖=1 (𝑦𝑔𝑖
𝑘+1|𝑘+1(𝑣))exp (𝑦𝑒𝑖

𝑘+1|𝑘+1(𝑣)) (3.4.1)

Where, originally, 𝑔i and yei were given by:

𝑦𝑔𝑖
𝑘+1|𝑘+1(𝑣) = ∑ 𝑞𝑖𝑙

𝑘+1|𝑘+1
𝑠𝑔𝑛(<

𝑛𝑒𝑖
𝑘+1|𝑘+1

𝑙=1 𝑎𝑖𝑙
𝑘+1|𝑘+1

, 𝑣 >) (3.4.2)

 𝑦𝑒𝑖
𝑘+1|𝑘(𝑣) = -∑ 𝑝𝑖𝑙

𝑘+1|𝑘+1
| <

𝑛𝑒𝑖
𝑘+1|𝑘+1

𝑙=1 𝑎𝑖𝑙
𝑘+1|𝑘+1

, 𝑣 > | + 𝑗 < 𝑏𝑖
𝑘+1|𝑘+1

, 𝑣 > (3.4.3)

Further, note that some of these parameters are themselves a function of other variables

that must be computed as a part of the measurement update. This nested set of parameters is

delineated below as well as summarized in the Table 1. The way these parameters are evaluated

during the measurement update has not changed between this algorithm and the one presented in

the original paper [28].

18

Starting from equation 3.4.2, the update at measurement 2 for a and b are defined as:

Further note that the imaginary parameter, 𝜁 , and 𝜌 have been donated as ci and di, respectively.

Finally, qil is defined as 𝜌 ∀ 𝑙 ∄ m.

aim [𝑎𝑖
𝑘+1|𝑘

; 0] < [𝑎𝑖
𝑘+1|𝑘

; 0] , 𝐻 > ∀ 𝑙 ≠ m

bim (𝑧 − 𝐻 ∗ 𝑏𝑖𝑚
𝑘+1|𝑘

) ∗ 𝜇𝑖𝑚 + 𝑏𝑖𝑚
𝑘+1|𝑘

pi [𝑝𝑖
𝑘+1|𝑘

; 𝛾𝑖] *< [𝑎𝑖
𝑘+1|𝑘

; 0], 𝐻 > + 𝛾𝑖 ∀ 𝑙 ≠ m

𝜌 [𝑝𝑖
𝑘+1|𝑘

; 𝛾𝑖] *< [𝑎𝑖
𝑘+1|𝑘

; 0], 𝐻 >

𝜁 𝑧 − 𝐻 ∗ 𝑏𝑖
𝑘+1|𝑘

𝑖𝑚

ci 𝜁

di 𝜌𝑖

qi 𝜌𝑖 ∀ 𝑙 ≠ m

Table 1: The nested set of parameters that are computed during the measurement update are

delineated above. Note the column term, 𝑙, has been dropped.

𝑎𝑖𝑚𝑙 = 𝜇𝑖𝑙 − 𝜇𝑖𝑚 =

{

 𝑎𝑖𝑙

2|1

𝐻𝑎𝑖𝑙
2|1
−
𝑎𝑖𝑚
2|1

𝐻𝑎𝑖𝑚
2|1
, 𝑚 ≠ 𝑛𝑒𝑖

2|1
+ 1, 𝑙 ≠ 𝑛𝑒𝑖

2|1
+ 1

𝑎𝑖𝑙
2|1

𝐻𝑎𝑖𝑙
2|1
, 𝑚 = 𝑛𝑒𝑖

2|1
+ 1

−
𝑎𝑖𝑚
2|1

𝐻𝑎𝑖𝑚
2|1
 𝑙 = 𝑛𝑒𝑖

2|1
+ 1

𝑏𝑖𝑚 = 𝜁𝑖 𝜇𝑖𝑚 + 𝑏𝑖
2|1

=

{

 (𝑧2 − 𝐻𝑏𝑖
2|1
)
𝑎𝑖𝑚
2|1

𝐻𝑎𝑖𝑚
2|1
+ 𝑏𝑖

2|1
, 𝑚 ≠ 𝑛𝑒𝑖

2|1

𝑏𝑖
2|1
, 𝑚 = 𝑛𝑒𝑖

2|1
+ 1

19

Note the indexing scheme and the hyperplane exclusions. The measurement update has an

indexing exclusion such that the same hyperplane does not subtract from itself (resulting in a zero

during the update). While looping through the current hyperplane arrangement, care needs to be

taken so that this does not happen, both for the CPU and the GPU implementation of the algorithm.

3.4.2 Changes Made to the Measurement Update

Neither the argument for the exponential nor the denominator is evaluated for the g’s has

changed. However, the ygi variables or the numerators is now computed as the dot product between

the combinatorial S expansion and the alpha parameters that results from the reverse search and

flattening routine, respectively. In fact, the left (positive) side of the numerators for the g’s are

computed using positive S’s – reflecting the positive side of the hyperplanes – while the right

(negative) side of the numerator is computed using negative S’s, reflecting the negative side of the

hyperplanes. This is delineated further in the following section when this thesis discusses

parallelization of evaluating the g’s and yei’s

One last important note is that the measurement update function, implementation-wise,

focuses on computing the parameters needed to evaluate the g’s and the argument for the

exponential. The actual computation of the g’s and yei occurs in a different function. This helps

readability of the code, especially because the reverse search necessitates a combinatorial S

expansion before evaluating the g’s and yei.

20

3.4.3 The CPU Implementation for the Measurement Update

In essence, the CPU implementation of the measurement update computes the parameters

needed to evaluate the g’s over each hyperplane (in the current arrangement) and over each term

in that hyperplane. This necessitates a double for loop to properly compute the required

parameters. That said, some parameters such as 𝜚 or 𝜁 can efficiently be vectorized by using, for

example, numpy’s broadcasting feature. This thesis uses the same notion as Idan and Speyer [28]

and notes that the A, b, and p within the measurement update is not to be confused with the same

variables within the time propagation.

The second essential task for the measurement update is to perform a combinatorial S

expansion and generate coefficients needed to compute the g’s in the next routine. The simplest

implementation involves performing this expansion for each term per hyperplane in the current

arrangement. Implementation-wise, this is conducted over a double for loop. Algorithm 2 depicts

the pseudocode for the CPU implementation of the measurement update. Similar to the time

propagation, this section is mainly provided as a comparison to the GPU implementation because

“improvements” reported by the GPU are with respect to the provided serial implementation.

21

Algorithm 2: CPU Implementation of the Measurement Update

1: #Compute over all hyperplane arrangements, over all terms 𝒊 ∈ [𝟏, 𝟐,… , 𝒏𝒕]

2: # Let m ∈ M, where M is the set of currently generated hyperplane arrangement sizes

3: Input: z, Ai, pi, bi, 𝜸, H, mask #where Ai, pi, and bi are from the time propagation

4: Begin CPU Measurement Update

5: gams ← create nt copies of 𝛾 , # gams ∈ ℝ𝑛𝑡 𝑥 1

6: 𝜚 ← horizontally stack [pi , gams] , # 𝜚 ∈ ℝ𝑛𝑡 𝑥 𝑚+1

7: zeros ← create 0’s ∈ ℝ𝑛𝑡 𝑥 1 𝑥 𝑑

8: 𝜇 ← Append 0’s [Ai, 0i] # where 𝑖 ∈ [1, 2,… , 𝑛𝑡], 𝜇 ∈ ℝ𝑛𝑡 𝑥 (𝑚+1) 𝑥 𝑑

9: 𝜇ℎ ← ∑ 𝜇𝑖𝑟𝑐 ° 𝐻𝑐
𝑇𝑑

𝑐=1 , #where 𝐻𝑇 ∈ ℝ1 𝑥 𝑑, 𝑟 ∈ [1, 2…𝑚 + 1], and 𝜇ℎ ∈ ℝ𝑛𝑡 𝑥 (𝑚+1)

10: 𝜌 ← 𝜚 ° |𝜇ℎ| , #where 𝜌 ∈ ℝ𝑛𝑡 𝑥 (𝑚+1)

11: 𝜌 ← 𝜌[: ,𝑚] + 𝛾 , #and note 𝛾 is a scalar so this is elementwise addition

12: assert 𝜇ℎ as 3D such that 𝜇ℎ ∈ ℝ𝑛𝑡 𝑥 (𝑚+1) 𝑥 1

13: 𝜇 ← 𝜇[: , 1: 𝑒𝑛𝑑 − 1, :] ⊘ 𝜇ℎ[: ,1: 𝑒𝑛𝑑 − 1, :], #𝜇ℎ ∈ ℝ𝑛𝑡 𝑥 (𝑚+1)

14: 𝜁 ← 𝑧 − ∑ (𝐻𝑇𝑑
𝑐=1 ° 𝑏𝑖)𝑐 , #where 𝜁 ∈ ℝ𝑛𝑡 𝑥 1

15: # It is worth noting that these operations are vectorized across the terms, nt

22

Algorithm 2: CPU Implementation of the Measurement Update (CONT.)

16: 𝒏𝒕̇ ← (m + 1) * 𝑛𝑡 , #calculate new number of child terms generated during update

17: zero_indices ← [-1 -1 -1 …] ∈ ℝ𝒏𝒕̇ 𝑥 1

18: n = 0, n ∈ [1, 2,… , 𝑛𝑡̇]

19: #Begin loops to compute measurement update parameters across hyperplanes

20: For 𝑖 ∈ [1, 2,… , 𝑛𝑡]:

21: For j ∈ [1,2, … ,𝑚 + 1]:

22: ell ← [f for f in range(m+1) if f does not equal j], #create iterables

23: aim ← 𝜇[𝑖][ell]

24: 𝜇tmp ← 𝜇[i][j][:] and assert as 1xd vector

25: Anew[n] ← aim – 𝜇tmp , #where Anew[n] ∈ ℝ𝑚 𝑥 𝑑

26: pnew[n] ← 𝜌[i][ell], #where pnew[n] ∈ ℝ1 𝑥 𝑚

27: bnew[n] ← 𝜁[i] ∗ 𝜇[i][j] + b[i], #where bnew[n] ∈ ℝ1 𝑥 𝑑

28: cnew[n] ← 𝜁[i], #where cnew[n] ∈ ℝ1

29: dnew[n] ← 𝜌[i][j], #where dnew[n] ∈ ℝ1

30: qnew[n] ← 𝜌[i][ell], #where dnew[n] ∈ ℝ1𝑥𝑚

31: #Note the double for loop continues onto the next page

23

Algorithm 2: CPU Implementation of the Measurement Update (CONT.)

32: #begin computing flattening terms

33: Ah ← <A[i], H>

34: 𝛼̃ ← get_S(sign(Ah), mask) #conduct row-wise sign expansion

35: 𝛼̃_𝑝[n] ← store 𝛼̃ for future processing

36: Af ← A[i] ⊘ Ah
T , #row-wise element division Af ∈ ℝ𝑚𝑥𝑑

37: if j < m:

38: 𝐴̅ [n] ← Af - Af[j]

39: zero_indices[n] = j

40: else:

41: 𝐴̅ [n] = Af

42: zero_indices[n] = -1

43: n = n + 1

44: end For

45 end For

46: return Anew, pnew, bnew, cnew, dnew, qnew, 𝑨̅, 𝜶̃_𝒑, zero_indices

47: end measurement update function

24

3.4.4 The GPU Implementation of the Measurement Update

 For the parallel implementation of the measurement update, the main goal is to eliminate

any loops needed to compute the updates over the different terms. Similar to the time propagation,

because term for each parameter 𝒊 ∈ [𝟏, 𝟐,… , 𝒏𝒕] , is independent from one another, each

evaluation of the update can occur simultaneously. Because the number of terms grow

exponentially every update along with an increasing number of hyperplanes, this methodology

provides the best practice approach to leveraging the GPU. In other words, this eliminates the outer

for loop needed to compute the measurement update in the CPU implementation.

 The inner for loop that iterates over the current hyperplane unfortunately could not be

parallelized at the time of writing, notwithstanding the hyperplanes being independent from one

another. Attempting to leverage Python libraries such as multipool results in an initialization error

due to the incompatibility of using CUDA in just the parent process. Instead, spawn or forkserver

start methods are required to use CUDA in subprocesses [34]. The overhead of spawning children

processes and reinitializing these GPU parameters in real-time would likely render any speed

benefits obtained during the measurement update moot. However, this represents a section where

CUDA streaming could occur instead if the current computer had enough resources to not saturate

the hardware. This is further elaborate in the discussion section of the thesis. All that said, the inner

for loop is far less computationally expensive than parallelizing over the number of terms because

the number of hyperplanes is at most 11 at the 9th measurement.

25

The indexing scheme to assign the arrays has also changed from the CPU implementation.

In the serial implementation of the measurement update, the ith term of the current hyperplane is

evaluated, until 𝑛𝑡̇ terms are computed. For example, in a (5,3) hyperplane arrangement, the

number of old terms is 20 while the number of new terms is 84. The current indexing scheme

results in the first 5 indices in Anew as being the first updated term for each hyperplane in the

current arrangement. Because the GPU implementation parallelizes the term computation, it also

has to appropriately reassign the indices. In other words, because the outer for loop restarts at index

6 in this example, then it means assignment has to occur in parallel for terms 𝑖 ∈ [0, 6, 12 … 𝑛𝑡̇ -

6] in a Python indexing scheme. Note that this parallel assignment is often a biproduct of parallel

programming. Lastly, a formula was used to conduct the reassignment using the inner for loop

Let the number of indices to reassign at once be:

num_idx = 𝑛𝑡̇ / (m+1)

 Next, Let the starting index to assign the first hyperplane’s updated term be:

stack_index = range(0, num_idx)*(m+1)

The algorithm then increments with the inner for loop such that each updated term for each

hyperplane is computed simultaneously and reassigned into their appropriate index.

 Take for example:

Anew[stack_index + j]. As j increasements to m+1 hyperplane, then stack_index + j indices are

accessed and assigned the updated term, where 𝑗 ∈ [0, 1, … m] for Python.

26

The next change made to the measurement update is the parallel computation of the S

expansion algorithm. In the original CPU implementation, the S expansion occurs for each

hyperplane per term. First note that the mask is a constant matrix throughout the entire

measurement update. Secondly, each input is a function of the current term of A in the current

hyperplane arrangement. Thus, the entire 𝛼̃_𝑝gpu can be found by running a parallel implementation

of the S expansion algorithm for each hyperplane in the current arrangement and make memory

copies of the results 𝑛̇𝑡 times. Alternatively, the S expansion algorithm can occur once over every

term and also in parallel for each hyperplane in the current arrangement. The current

implementation makes use of the former method. This parallel implementation of the S expansion

represents one of the key algorithmic contributions to this thesis and is detailed further in section

3.3.8. Along with this change comes the parallelization of the flattening terms as well, like the

indexing scheme described in the regular update.

 Technically, parallelization can also occur over supporting parameters such as 𝜇 (the

parameters evaluated outside of the double for loop). For example, concatenation, multiplications,

or operations in general occur using parallel methods in CuPy’s built-in library. However, because

the CPU can efficiently conduct the vectorization over each term, there is not as much of a speed

improvement when done over the GPU. That said, it is prudent to conduct operations on the GPU

anyway because otherwise, it would necessitate at least 3 more parameter transfers for 𝜁, 𝜇, and 𝜌,

especially because these are exactly the parameters that are functions of previously allocated

variables to the GPU. These results and observations form the basis for the parallelized

measurement update, presented in Algorithm 4. Similar to the time propagation, parallelization

occurs on the terms whereas the CPU for loop handles the different hyperplane arrangements

themselves, i.e a (4,3) arrangement is processed separately from the (5,3) and so on.

27

Algorithm 4: GPU Implementation of the Measurement Update

1: #Compute over all hyperplane arrangements, over all terms 𝒊 ∈ [𝟏, 𝟐,… , 𝒏𝒕]

2: # Let m ∈ M, where M is the set of currently generated hyperplanes

3: Input: zcpu, Ai_gpu, pi_gpu, bi_gpu, 𝜸gpu, Hgpu, mask

4: Begin GPU Measurement Update

5: zgpu ← zcpu , #send measurement to GPU

6: gamsgpu ← create nt copies of 𝛾gpu , # gams ∈ ℝ𝑛𝑡 𝑥 1

7: 𝜚gpu ← horizontally stack [pi_gpu , gamsgpu] , # 𝜚 ∈ ℝ𝑛𝑡 𝑥 𝑚+1

8: zerosgpu ← create 0’s ∈ ℝ𝑛𝑡 𝑥 1 𝑥 𝑑, #creates variables on device but quite inexpensive

9: 𝜇gpu ← Append 0’s [Ai_gpu, 0i] # where 𝑖 ∈ [1, 2,… , 𝑛𝑡], 𝜇 ∈ ℝ𝑛𝑡 𝑥 (𝑚+1) 𝑥 𝑑

10: 𝜇ℎ_gpu ← (∑ 𝜇𝑖𝑟𝑐 ° 𝐻𝑐
𝑇𝑑

𝑐=1) gpu, #where 𝐻𝑇 ∈ ℝ1 𝑥 𝑑, 𝑟 ∈ [1, 2…𝑚 + 1], and 𝜇ℎ_𝑔𝑝𝑢 ∈

 ℝ𝑛𝑡 𝑥 (𝑚+1)

11: 𝜌gpu ← 𝜚𝑔𝑝𝑢 ° |𝜇ℎ_𝑔𝑝𝑢| , #where 𝜌gpu ∈ ℝ𝑛𝑡 𝑥 (𝑚+1)

12: 𝜌gpu ← 𝜌gpu[: ,𝑚] + 𝛾gpu, #and note 𝛾gpu is a scalar so this is elementwise addition

13: assert 𝜇ℎ_𝑔𝑝𝑢 as 3D such that 𝜇ℎ_𝑔𝑝𝑢 ∈ ℝ𝑛𝑡 𝑥 (𝑚+1) 𝑥 1

14: 𝜇𝑔𝑝𝑢 ← 𝜇𝑔𝑝𝑢[: , 1: 𝑒𝑛𝑑 − 1, :] ⊘ 𝜇ℎ_𝑔𝑝𝑢[: ,1: 𝑒𝑛𝑑 − 1, :], #𝜇ℎ ≠ 0 ∀ elements, and

 𝜇ℎ ∈ ℝ𝑛𝑡 𝑥 (𝑚+1)

15: 𝜁gpu ← 𝑧𝑔𝑝𝑢 − ∑ (𝐻𝑇𝑑
𝑐=1 ° 𝑏𝑖)𝑐_𝑔𝑝𝑢 , #where 𝜁gpu ∈ ℝ𝑛𝑡 𝑥 1

16: # note that this occurs the same way as the CPU implementation but leverages CuPy

28

Algorithm 4: GPU Implementation of the Measurement Update (CONT.)

17: 𝒏𝒕̇ ← (m + 1) * 𝑛𝑡 , #calculate new number of child terms generated during update

18: #now allocate empty space on GPU. Required due to parallel assignment of indices

19: Anew_gpu = empty matrix on GPU ∈ ℝ𝒏𝒕̇ 𝑥 𝑚 𝑥 𝑑

20: pnew_gpu = empty matrix on GPU ∈ ℝ𝒏𝒕̇ 𝑥 𝑚

21: bnew_gpu = empty matrix on GPU ∈ ℝ𝒏𝒕̇ 𝑥 1 𝑥 𝑑

22: qnew_gpu = empty matrix on GPU ∈ ℝ𝒏𝒕̇ 𝑥 𝑚

23: cnew_gpu = empty matrix on GPU ∈ ℝ𝒏𝒕̇

24: dnew_gpu = empty matrix on GPU ∈ ℝ𝒏𝒕̇

25: 𝐴̅gpu = empty matrix on GPU ∈ ℝ𝒏𝒕̇ 𝑥 𝑚 𝑥 𝑑

26: zero_indices ← [-1 -1 -1 …]gpu ∈ ℝ𝒏𝒕̇ 𝑥 1

27: stack_index = create array of range(𝑛𝑡̇/(𝑚 + 1)) * (𝑚 + 1) , #create fancy indexing

28: #compute flattening terms once and repeat per term

29: Ah_gpu ← <Agpu[i], Hgpu>

30: 𝛼̃gpu ← get_S_gpu(sign(Ah_gpu), mask) #conduct row-wise sign expansion

31: #𝛼̃𝑝 ∈ ℝ 𝑛𝑡 𝑥 𝑠𝑑(𝑚) where 𝑠𝑑(𝑚) = mask.shape[0]+1, so each parent’s sign expansion

32: #was computed once, whereby hyperplane 1:m has the same sign expansion per term

33: 𝛼̃𝑝 ← 𝑟𝑒𝑝𝑒𝑎𝑡(𝛼̃) (𝑚 + 1) times row-wise and store for future processing,

 #𝛼̃𝑝 ∈ ℝ1 𝑥 (𝑚+1)∗𝑛𝑡 𝑥 𝑠𝑑(𝑚)

34: #Because of line 36, this algorithm can now repeat the sign expansion m+1 times

35: 𝛼̃𝑝 ← reshape 𝛼̃𝑝 to ∈ ℝ(𝑚+1)∗𝑛𝑡 𝑥 1 𝑥 𝑠𝑑(𝑚)

29

3.4.5 Sending and Receiving to GPU during Measurement Update

Assuming the algorithm conducts the time propagation on the GPU, then the only

parameter that must transfer to the GPU at every time step is the measurement itself. Otherwise,

all other parameters needed to compute the measurement update either already exists on the GPU

thanks to the time propagation or can be allocated apriori since they are functions of the known

dynamics or statistics. Although the time propagation itself does not produce substantially

beneficial results when implemented on the GPU, the speed gains from saving 3 parameter

transfers per hyperplane arrangement greatly improves the viability of parallelizing the

measurement update.

Algorithm 4: GPU Implementation of the Measurement Update (CONT.)

36: #Begin for loop to simultaneously compute all term updates across hyperplanes

37: For j ∈ [1, 2,… ,𝑚 + 1]:

38: ell ← [f for f in range(m+1) if f does not equal j], #create iterables

39: aim_gpu ← 𝜇𝑔𝑝𝑢[:,ell,:]

40: 𝜇tmp_gpu ← 𝜇𝑔𝑝𝑢[:,j,:] and assert as 1xd vector

41: Anew_gpu[stack_index+j]← aim_gpu – 𝜇tmp_gpu , #where Anew ∈ ℝ𝑛𝑡̇ 𝑥 𝑚 𝑥 𝑑

42: pnew_gpu [stack_index+j] ← 𝜌[: , ell], #where pnew ∈ ℝ𝑛𝑡̇ 𝑥 𝑚

43: bnew_gpu [stack_index+j] ← 𝜁[:] ∗ 𝜇[:,j] + b[:], #where bnew ∈ ℝ𝑛𝑡̇ 𝑥 𝑑

44: cnew_gpu [stack_index+j] ← 𝜁[:], #where cnew ∈ ℝ𝑛𝑡̇

45: dnew_gpu [stack_index+j] ← 𝜌[: , j], #where dnew ∈ ℝ𝑛𝑡̇

46: qnew_gpu [stack_index+j] ← 𝜌[:, ell], #where qnew ∈ ℝ𝑛𝑡̇𝑥𝑚

47: Af_gpu ← Agpu ⊘ Ah_gpu
T , #row-wise parallel element divide, Af_gpu ∈ ℝ𝑚𝑥𝑑

48: if j < m:

49: 𝐴̅gpu [stack_index+j] ← Af_gpu - Af_gpu[j]

50: zero_indicesgpu [stack_index+j] = j

51: else:

52: 𝐴̅gpu [stack_index+j] = Af_gpu

53: zero_indicesgpu [stack_index+j] = -1

54: end For

55: return Anew_gpu, pnew_gpu, bnew_gpu, cnew_gpu, dnew_gpu, qnew_gpu, 𝑨̅gpu, 𝜶̃_𝒑gpu, zero_indicesgpu

56: end GPU measurement update function

30

3.5. Evaluating Parameters for the ucpdf

3.5.1 Calculating the G’s and Yei

This routine occurs separately from the measurement update and its main objective is to

evaluate the parameters for the ucpdf, 𝜙̅
𝑋𝑘+1|𝑌𝑘+1

(𝑣), itself. The wonder behind the parallelized

version is that the algorithm can eliminate every for loop within the function with one temporary

parameter transfers necessary to the GPU. Note that from here on out, the gpu designation is

dropped because everything is now assumed to exist on the device.

After the measurement update, the g’s are now evaluated as follows:

𝑔𝑓
𝑖 =

1

2𝜋
[
𝑆+(𝑏𝑖𝑓

𝑝 (𝑧𝑖))
𝑇𝛼̅𝑖

𝑝

𝑗𝑐𝑖+ 𝑑𝑖+ 𝑦𝑔𝑖
−

𝑆−(𝑏𝑖𝑓
𝑝 (𝑧𝑖))

𝑇𝛼̅𝑖
𝑝

𝑗𝑐𝑖− 𝑑𝑖+ 𝑦𝑔𝑖
] (3.5.1)

where the following parameters are defined as:

𝑔𝑖 = 𝑆(𝐵𝑖)𝛼𝑖, and thus, 𝛼𝑖 = 𝑆(𝐵𝑖)
†𝑔𝑖 (3.5.2)

Equation 3.5.1 illustrates a high-level computing of the g-value per face, 𝑓, of 𝑖

hyperplane arrangement. Equation 3.5.2 demonstrates that it is possible to find the g-value by

describing the faces of an arrangement as a linear relation between a real basis matrix Si and a

complex g-coefficient vector 𝛼𝑖 . Note that the superscript p stands for “parent”.

The argument of the exponential for the ucpdf, Yei, is still evaluated as in equation 3.4.3:

 𝑦𝑒𝑖
𝑘+1|𝑘(𝑣) = -∑ 𝑝𝑖𝑙

𝑘+1|𝑘+1
| <

𝑛𝑒𝑖
𝑘+1|𝑘+1

𝑙=1 𝑎𝑖𝑙
𝑘+1|𝑘+1

, 𝑣 > | + 𝑗 < 𝑏𝑖
𝑘+1|𝑘+1

, 𝑣 >

31

3.5.2 CPU Implementation of Calculating G’s and Yei

In the current implementation there exists five major loops or operations that occur before

the final G’s or Yei’s occur. In the first loop, the signs for the flattening term, 𝐴̅ and the original

A from the measurement update is found over each term, 𝒏𝒕̇ using the root point, 𝝂. 𝐴̅ is used to

calculate the sign basis for the G’s while A is used for the argument of the exponential.

The second set of loop’s main logic is now to assign positive 1’s and negative 1’s (which

is used to evaluate the positive and negative side of the G’s, respectively) wherever there are 0’s

that occurred from not finding a sign from the operation above. This first loop occurs over the

number of terms by first checking whether there is a zero in the current row and then using another

loop to find that 0’s index and assign it the appropriate signed 1. Otherwise, if there does not exist

a zero in the current hyperplane term, then these values are simply reassigned to a new variable.

The third loop is used to calculate ygi for equation 3.5.1, as shown in section 3.5.1. This is

simply an element-wise multiplication and a summation between q and the sign basis. Again, this

is evaluated for every term.

The fourth loop represents the main computational overhead for this routine. First, an S

expansion must occur for both the positive and negative S’s (i.e S+ and S- as depicted in equation

3.5.1). This is further compounded by the fact that this must occur for every new child term

generated from the measurement update routine. Because this serial implementation of the sign

expansion consists of a double for loop, there exists a triple nested for loop. Afterwards, gi is

evaluated by computing the dot product between both S+ and 𝛼 as well as S- and 𝛼.

32

After the G’s are computed using the results from the fourth major loop, the yei’s are

computed over every term as well. Unlike the g’s, the yei’s are evaluated the same way as Idan and

Speyer’s methodology [28]. The CPU implementation of the algorithm is detailed below, mainly

for comparison to the parallelized implementation.

Algorithm 5: CPU Implementation of Evaluating the G’s and Yei

1: Input: A, 𝑨̅, p, q, 𝒃, c, d, 𝜶_𝒑, 𝜶_𝒑̃, 𝝂, masks

2: Begin CPU Evaluation of G’s and Yei

3: _s_sgn_basis ← [0 0 0…; 0 0 0…] , #preallocate zeros to _s_sgn_basis ∈ ℝ𝑛𝑡 𝑥 𝑚

4: _sgn_basis ← [0 0 0…; 0 0 0…] , #preallocate zeros to _s_sgn_basis ∈ ℝ𝑛𝑡 𝑥 𝑚

5: For i ∈ [1, 2…𝑛𝑡]: #Loop 1, grab sign basis

6: _s_sgn_basis[i] = sign(< 𝐴̅𝑖 , 𝜈 >), # _s_sgn_basis[i] ∈ ℝ1 𝑥 𝑚

7: _sgn_basis[i] = sign(<Ai , 𝜈>), #_sgn_basis[i] ∈ ℝ1 𝑥 𝑚

8: End For

9: _sbp ← [0 0 0…; 0 0 0…], #preallocate zeros to _sbp ∈ ℝ𝑛𝑡 𝑥 𝑚

10: _sbm ← [0 0 0…; 0 0 0…], #preallocate zeros to _sbm ∈ ℝ𝑛𝑡 𝑥 𝑚

11: For i ∈ [1, 2…𝑛𝑡]: #Loop 2, assign positive and negative 1’s to 0 indices

12: if ∃ 0 𝑓𝑜𝑟 𝑎𝑛𝑦 _s_sgn_basis[i]:

13: gate ← true, idx ← 0

14: while gate:

15: if _s_sgn_basis[0][idx] == 0:

16: gate = False

17: else:

18: indx += 1

33

Algorithm 5: CPU Implementation of Evaluating the G’s and Yei (CONT.)

20: end while

21: sb_pos ← copy(_s_sgn_basis[i]) , #avoid pass by reference in Python

22: sb_neg ← copy(_s_sgn_basis[i])

23: sb_pos[idx] ← 1, sb_neg[idx] ← -1, #assign 1’s to the indices of 0’s

24: _sbp[i] ← sb_pos, _sbm[i] ← sb_neg, #form new row of signs

25: else: #∄ 0 𝑓𝑜𝑟 𝑎𝑛𝑦 _s_sgn_basis[i]:

26: _sbp[i] ← _s_sgn_basis[i], ,_sbm[i] ← _s_sgn_basis[i], # ∈ ℝ1 𝑥 𝑚

27: End For

28: For i ∈ [1, 2…𝑛𝑡]: #Loop 3, compute ygi

29: ygi[i] ← ∑ (𝑞[𝑖]
𝑛𝑡
𝑖=1 ∗ _𝑠𝑔𝑛_𝑏𝑎𝑠𝑖𝑠[𝑖]), #where ygi ∈ ℝ1 𝑥 𝑚

30: End For

31: For i ∈ [1, 2…𝑛𝑡]: #Loop 4, obtain sign expansion and compute S𝜶

32: sip_cut ← _sbp[i][: -1] , sim_cut ← _sbm[i][: -1] , #grab all columns to m-1

33: mask ← masks[(m-1, d)] , #Index masks dict using (m-1, d)

34: Sip ← get_S(sip_cut, mask), Sim ← get_S(sim_cut, masks) # sign expansions

35: 𝛼 = 𝛼𝑝[𝑖] ∗ 𝛼̃[𝑖], 𝛼 ∈ ℝ

36 𝛼_𝑙𝑖𝑠𝑡 = 𝛼, #store alpha for future use

37: gp = Sip*𝛼 , gm = Sim*𝛼 , #compute coefficient for G’s

38: end For

39: Compute: 𝑔𝑓
𝑖 =

1

2𝜋
[
𝑆+(𝑏𝑖𝑓

𝑝 (𝑧𝑖))
𝑇𝛼̅𝑖

𝑝

𝑗𝑐𝑖+ 𝑑𝑖+ 𝑦𝑔𝑖
−

𝑆−(𝑏𝑖𝑓
𝑝 (𝑧𝑖))

𝑇𝛼̅𝑖
𝑝

𝑗𝑐𝑖− 𝑑𝑖+ 𝑦𝑔𝑖
], #𝑔𝑓

𝑖 ∈ ℝ 𝑛𝑡

34

Algorithm 5: CPU Implementation of Evaluating the G’s and Yei (CONT.)

40: For i ∈ [1, 2…𝑛𝑡]: #Loop 5, compute yei

41: _tmp_yei[i] = ∑ (𝐴[𝑖]𝑚
𝑘=1 ∗ 𝑝[𝑖] * _𝑠𝑔𝑛_𝑏𝑎𝑠𝑖𝑠[𝑖])) , #sum across hyperplanes

42: end For

43: yei = 1j*b - _tmp_yei

44: Return G’s, yei, 𝜶_𝒍𝒊𝒔𝒕

45: End CPU Evaluation of G’s and Yei’s

35

3.5.3 Sending Requirements for Calculating G’s and Yei

If the measurement update has been implemented on the GPU, then no parameter transfers

are necessary during the evaluation of the ucpdf except for a mask used to generate the sign

expansion. Regardless, this is very inexpensive transfer and this thesis notes that this is temporary

only because reduction has not yet been implemented on the GPU. Otherwise, all parameters such

as A, p, and so on were already on the GPU because of parallelizing the measurement update.

Further, the root point is determined at the beginning of the algorithm, so it can be allocated to the

GPU apriori, saving one additional real-time transfer. In total, by parallelizing the measurement

update, this saves 10 real-time transfers with the potential to save 1 more after reduction has been

implemented on the GPU.

3.5.4 The GPU implementation of Calculating G’s and Yei

Using a combination of CuPy and kernelizing the sign expansion, it is possible to eliminate

all major loops during this portion of the algorithm. First, finding the sign basis between each term

can happen independently, just like the time propagation. In other words, the dot product between

the root point 𝝂 and each term 𝒏𝒕̇ in 𝐴̅ and the original A from the measurement update occurs

simultaneously.

The second loop that handles the assignment for the 1’s and -1’s to the location of zero’s

in the sign basis can be parallelized. This involves using a GPU function that finds the indices of

zeroes within the sign basis variable. Afterwards, using python’s fancy indexing, the algorithm

can efficiently assign 1’s and -1’s, thereby relegating a double loop to effectively 3 lines of code.

36

Parallelization of the third loop used to calculate ygi for equation 3.5 is similar to how

parallelization occurred in finding the sign basis. Independent element-wise multiplication can

efficiently occur between terms as well as the summation needed to compute the ygi.

The fourth loop that comprises the largest overhead is now relegated to two calls to the

kernelized sign expansion function. This function finds the sign expansion for all terms that

compromise the g vector. Two calls are necessary because one finds S+ and another finds S-. It

may be possible to stream these two calls or perform both expansions simultaneously using

separate grids on the GPU (assuming the hardware had not been saturated), but the author has not

explored this in depth. Afterwards, gi is evaluated by computing the dot product in parallel between

all terms for S+ and 𝛼 as well as S- and 𝛼.

After the g’s are computed using the results from the 𝛼 and sign expansions, the yei’s are

computed over every term as well using a parallel implementation of element-wise multiplication

and summation. This is near identical to the way ygi is computed except there are some intermediate

operations such as making the p’s into a 3D vector to allow for parallel operations across stacks of

terms. Note that these operations entirely depend on how the designer decides to store the variables

in practice when implementing the estimator.

37

Algorithm 6: GPU Implementation of Evaluating the G’s and Yei

1: Input: Agpu, 𝑨̅𝒈𝒑𝒖, pgpu, qgpu, 𝒃gpu, cgpu, dgpu, 𝜶_𝒑gpu, 𝜶_𝒑̃gpu, 𝝂gpu, masks

2: Begin GPU Evaluation of G’s and Yei

3: _s_sgn_basis ← [0 0 0…; 0 0 0…] , #preallocate zeros to _s_sgn_basis ∈ ℝ𝑛𝑡 𝑥 𝑚

4: _sgn_basis ← [0 0 0…; 0 0 0…] , #preallocate zeros to _s_sgn_basis ∈ ℝ𝑛𝑡 𝑥 𝑚

5: In Parallel, for i ∈ [1, 2…𝑛𝑡]: #grab sign basis across all terms

6: _s_sgn_basisgpu[i] = sign(< 𝐴̅𝑔𝑝𝑢 , 𝜈 >), # _s_sgn_basisgpu ∈ ℝ𝑛𝑡 𝑥 𝑚

7: _sgn_basisgpu [i] = sign(<Agpu , 𝜈>), #_sgn_basisgpu ∈ ℝ𝑛𝑡 𝑥 𝑚

8: #note the use of gpu copy below to avoid pass by reference

9: _sbpgpu ← copy(_s_sgn_basis_gpu), #preallocate zeros to _sbp ∈ ℝ𝑛𝑡 𝑥 𝑚

10: _sbmgpu ← copy(_s_sgn_basis_gpu), #preallocate zeros to _sbm ∈ ℝ𝑛𝑡 𝑥 𝑚

11: row, column ← where(_s_sgn_basis_gpu == 0), # rows and column index of 0’s

12: _sbpgpu[row, column] ← 1, _sbmgpu [row, column] ← -1, #vectorize assignment

13: In Parallel, for i ∈ [1, 2…𝑛𝑡]: compute ygi across all terms

14: ygigpu ← ∑ (𝑞𝑔𝑝𝑢
𝑛𝑡
𝑖=1 ∗ _𝑠𝑔𝑛_𝑏𝑎𝑠𝑖𝑠𝑔𝑝𝑢), #ygigpu ∈ ℝ𝑛𝑡 𝑥 𝑚

15: mask ← masks[(m-1, d)] , #Index masks dict using (m-1, d)

16: #Invoke 2 calls to parallel implementation of sign expansion algorithm on GPU

17: Sipgpu ←get_S_gpu(_sbp[:, :-1], mask), Simgpu ← get_S_gpu(_sbm[:, :-1], mask)

18: In Parallel , for i ∈ [1, 2…𝑛𝑡]:

19: 𝛼gpu = 𝛼𝑝_𝑔𝑝𝑢 ∗ 𝛼gpu,

20: gp_gpu = Sipgpu*𝛼gpu , gm_gpu = Simgpu*𝛼gpu , #compute coefficient for G’s

21: Compute: 𝑔𝑓
𝑖 =

1

2𝜋
[
𝑆+(𝑏𝑖𝑓

𝑝
(𝑧𝑖))

𝑇𝛼̅𝑖
𝑝

𝑗𝑐𝑖+ 𝑑𝑖+ 𝑦𝑔𝑖
−

𝑆−(𝑏𝑖𝑓
𝑝
(𝑧𝑖))

𝑇𝛼̅𝑖
𝑝

𝑗𝑐𝑖− 𝑑𝑖+ 𝑦𝑔𝑖
]

38

Algorithm 6: GPU Implementation of Evaluating the G’s and Yei (CONT.)

22: yeigpu = 1j*bgpu

23: In Parallel, for i ∈ [1, 2…𝑛𝑡]: #Compute yei across all terms

24: yeigpu -= ∑ (𝐴𝑔𝑝𝑢
𝑚
𝑘=1 ∗ 𝑝𝑔𝑝𝑢 * _𝑠𝑔𝑛_𝑏𝑎𝑠𝑖𝑠𝑔𝑝𝑢)) , #sum across all hyperplanes

25: Return Ggpu, yeigpu, 𝜶𝒈𝒑𝒖

26: End GPU Evaluation of G’s and Yei’s

39

3.6. Coalignment Introduction and Serial Implementation

3.6.1 Coalignment Introduction

 The Coalignment Algorithm removes any hyperplanes that coalign with another

hyperplane within the same term. In other words, Coalignment seeks to remove all repeated

hyperplanes. Moreover, this algorithm operates term-by-term such that the results of one term in

the hyperplane arrangement does not depend on the preceding results. Although not immediately

apparent, this sets the precedence for parallelism and enables significant speed improvements over

its serial counterpart.

 Like the preceding algorithms, this thesis will cover the serial implementation before

delineating the parallel implementation. First, a methodology to parallelize hyperplane

comparisons using GPU threads is shown. By using knowledge of these thread’s ID, the algorithm

implicitly determines what hyperplanes coalign. Then coalignment is recast into a form that allows

implementation of a partial GPU scan operation to combine coefficients within the exponential of

the Cauchy’s characteristic function using the same thread-block pairs that operated on coaligned

hyperplanes. Finally, the output from the kernelized coalignment goes through post processing to

remove repeated hyperplanes.

 Both the CPU and GPU implementation of term-coalignment saves off ancillary results. In

particular, the direction vectors point with respect to each other and the particular hyperplanes that

coalign are stored in a look-up table format. This is a necessary step since flattening necessitates

expanding the enumerated hyperplanes to perform a sign expansion and ultimately calculate the

g’s using a linear basis. These stored results from term-coalignment give a blueprint to tell the

flattening algorithm which indices to insert hyperplane arrangements.

40

Coalignment Nomenclature

• let d be the state dimension

• let l ∈ L, where L is the set of currently generated hyperplane arrangement sizes over all

terms

• let nt represent the total number of terms generated at the current step. Note that the number

of hyperplanes in all arrangements nt is given by the set L

• let i ∈[1, 2, … nt] be the index for the i-th term of the nt term

• Let Ai ∈ ℝ𝑚𝑥𝑑 be the matrix which holds term I’s hyperplanes, of dimension d

• Aim ∈ ℝ1𝑥𝑑 represents the m-th hyperplane (row of Ai) for term i.

• Note that all hyperplanes are assumed to be normalized

• let pi ∈ ℝ𝑚 be the coefficients to the i-th term’s hyperplane arrangement, within the

exponential of the Cauchy’s characteristic function.

• let qi ∈ ℝ𝑚 be the coefficients to the i-th term’s hyperplane arrangement, within the

exponential of the Cauchy’s characteristic function.

41

3.6.2 Coalignment Serial Implementation

 The serial or CPU implementation of term-coalignment occurs term-by-term. Intuitively

speaking, a sequential implementation must check each term and then check each hyperplane

within that term against all other hyperplanes. In this thesis’ implementation, a term within the

hyperplane arrangement goes into the term-coalignment function and computes a dot product. If

vectors are coaligned, then the dot product should equal close to 1. Thus, the algorithm uses a

parameter, ℰ, to see whether it is numerically close enough to zero when subtracting from 1.

Additionally, the sign mapping between hyperplanes (i.e. whether the dot product process a -1 for

a 1) is also computed and stored along with the indices the coaligned planes. This is used later in

Flattening to reinsert enumerated hyperplanes (results from Reverse Search) into their original

locations since term-coalignment inherently changes the size of hyperplanes.

In the below formulation, Ac represents the current hyperplane and Ar is the reference hyperplane

being compared to:

| (1.0 − |𝐴𝑐 ∗ 𝐴𝑟|) | < ℰ (3.6.1)

If this conditional pass, then term-coalignment proceeds to add coefficients within the

argument of the exponential. Similar to above, a for loop must add all of these parameters to the

current reference coefficient (the pi or qi that corresponds to Ac) [28]: Where the 𝜃𝑙 below is some

nonzero constant related by 𝐴𝑖𝑚̅
𝑘+1|𝑘

 = 𝜃𝑚𝐴𝑖𝑚
𝑘+1|𝑘

, and 𝑚̅ ≠ 𝑚.

𝑞𝑖𝑚̅̅ ̅̅ ̅ = 𝑞𝑖𝑚
𝑘+1|𝑘

 + sign(𝜃𝑚) 𝑞𝑖𝑚̅
𝑘+1|𝑘

, 𝑝𝑖𝑚̅̅ ̅̅ ̅ = 𝑝𝑖𝑚
𝑘+1|𝑘

 + |𝜃𝑚 | 𝑝𝑖𝑚̅
𝑘+1|𝑘

 (3.6.2)

Otherwise, if equation 3.6.1 does not pass, then hyperplanes do not coalign and the

algorithm proceeds with checking all other hyperplanes within the same term. This repeats for all

i ∈[1, 2, … nt]. The serial implementation of term coalignment is given in algorithm 11.

42

Algorithm 11: CPU Coalignment Algorithm

the following algorithm is computed over all all i ∈[1, 2, … nt].

1: Input: Ai, pi, qi

2: m ← number of hyperplanes in arrangement i

3: ℰ ← some acceptably small positive number

4: F ← set to all True, # F ∈ 𝐵𝑚

5: Declare: mapsi = {}, sign_mapsi = {}

6: For j = 1 to m-1 do:

7: if F[j] then:

8: #testing hyperplane j for coalignment

9: ar = Ai[j,:] # ar ∈ ℝ𝑑

10: Ac = Ai[j+1 : m, :] #Ac ∈ ℝ𝑚−𝑗 𝑥 𝑑

11: indxs = argwhere(| (1.0 − |𝐴𝑐 ∗ 𝐴𝑟|) | < ℰ)

12: if len(indxs) ≠ 0 then

13: maps[j] = indxs + j;

14: sign_maps[j] = zeros(len(indx))

15: k = 0

16: For indx in indxs do

17: s = sign(ar *Ai[indx,:]) #find sign mapping

18: pi[j] = pi[j] + pi[indx] #combine terms

19: qi[j] = qi[j] + s * qi[indx]

20: sign_maps[j][k] = s #store sign mapping

21: F[indx] = False;

22: k = k+1

23: end For

24: else:

25: #hyperplanes are unique, so no action is taken

26: end if-else

27: end if

28: end For

29: Return Ai, pi, qi, for True indices of F, and mapsi, sign_mapsi

30: End CPU Term Coalignment

43

3.7. Coalignment Parallel Implementation

 Like the GPU S-Expansion Algorithm, this thesis separates the parallel design of Term-

Coalignment to aid readability and to better highlight the considerations made when designing the

kernel. First, the algorithm takes into GPU-Coalignment stacked hyperplane arrangements and

their corresponding coefficients. For example, the hyperplanes might take the form of 4x3, 5x3, or

6x3 matrices; so, the inputs to GPU-coalignment should be a 15x3 matrix here. The coefficients

of the argument of the exponential should align with this newly stacked form as well. Then, parallel

coalignment simultaneously checks all hyperplanes against each other using a dot product and an

appropriately small epsilon value. These results then tell the next phase how to combine the

arguments of the exponential using a method based off a GPU-Scan (Parallel Prefix) before finally

returning the results in the same stacked format.

3.7.1 Inputs into Parallel Coalignment

 When looking at the serial implementation of term-coalignment, parallelization seems

difficult on the surface since each hyperplane must evaluate against others in the current

arrangement. However, when the algorithm preprocesses the hyperplanes and coefficients into a

stack before inputting them to the kernelized coalignment, this opens some possibilities.

Hyperplanes have the property that their columns always reflect the dimension of the problem.

Because this thesis considers a 3-state system, the matrices will always be m x 3 where m

represents the hyperplane number in the current arrangement. This allows stacking along the

vertical axis as seen in figure 3. This affords GPU designers two distinct advantages. This tall

matrix maximizes parallelization by maintaining a contiguous format. Secondly, the algorithm can

now operate on every hyperplane, not just across terms but across all arrangements. This

contributes to substantial efficiency gains when compared to its serial counterpart.

44

 Because all preceding portions leading up to point – from time propagation to computing

the g’s – were parallelized, this allows zero new transfers to the GPU for coalignment, further

reducing any unnecessary bottlenecks in the current implementation. Also note that the kernel

assumes the matrices have been normalized apriori. Further, the kernel requires some supporting

inputs such as the differently sized hyperplane arrangements and the start indices for each new

arrangement. Fortunately, CuPy allows some simple function calls to parallelize all the

aforementioned operations.

3.7.2 Parallel Coalignment – Choosing Thread-Block Pairs

 Figure 4 demonstrates how the kernel allocates threads to compares hyperplane

arrangements against each other. This gives some insight into the minimum number of threads

should ACE allocate before calling the coalignment kernel. The minimum number of blocks

allocated should equal the total number of terms across all hyperplane arrangements.

Figure 3: Visualization of stacking preceding arrangements into

one large matrix

45

 The following equation reads, the number of minimum blocks to allocate equals the sum

of the number of terms in all hyperplane arrangements:

Number Blocks to Allocate = ∑ 𝐴𝑛𝑡𝑘
max (𝑘)
𝑘

 In the following figure, Tx represents threads allocated in the x-direction, Ty represents

threads allocated in the “y-direction”, and k represents iterations in a loop that point over the

columns. To be clear, Ty threads are not actually pointing in the y-direction in this instance but

are actually being used to independently assess other hyperplanes against threads in the x-

direction. Acurrent and Areference are equal to each other, and a dot product is computed between

rows. For example, Tx0 computes a dot product against the row that Ty0 points to, Ty1, and Ty2.

Thus, to simultaneously compare all hyperplanes, this kernel requires at least (m-1)x(m-1) threads

where m equals the number of hyperplanes in the current arrangement.

Figure 4: This visualizes how threads point at different hyperplanes. This particular term

requires 9 threads. Note that each thread in the x has a corresponding set of threads in the y.

46

 Although Figure 4 demonstrates that a 4x3 term requires at least 9 threads, ACE launches

threads in pairs of 32 to take advantage of the CUDA programming model’s ability to synchronize

Warps [31]. A Warp is a pair of 32 threads that NVIDIA GPU’s launch simultaneously.

Consequently, if any of these threads reach a conditional or a loop, then thread divergence occurs

[31]. Programming techniques such as avoiding branching or loop unrolling is leveraged to

minimize this phenomenon.

3.7.3 Parallel Coalignment – Removing Repeated Hyperplanes

 In the current implementation, if a thread pair (say Tx0 and Ty1) finds that a corresponding

hyperplane coaligns, then it uses the threads in the y-direction to set all indices in that vector to

zero. Later, ACE uses a CuPy implementation of argwhere() to find all columns that have a zero

and fancy indexes to remove these arrangements. Figure 5 demonstrates this access and removal

of repeated arrangements. The thread indices that correspond to the coaligned hyperplanes are then

used to combine terms for the coefficients in the exponential of the characteristic function.

Figure 5: Let A represent the original 4x3 hyperplane arrangement. If the first hyperplane

coaligns with the third hyperplane, then those indices are zeroed out and removed in parallel,

across all terms, in postprocessing.

47

3.7.4 Parallel Coalignment – Parallel Reduction of Coefficients

 As in the case of the serial implementation, the coefficients of the characteristic function,

p and q must also combine with the coefficient that does not coalign. Algorithmically speaking,

this also looks difficult to parallelize since the serial implementation has to loop and add

coefficients together one-by-one. Figure 6 illustrates a serial reduction of values.

 Interestingly, the reduction of p and q falls under a class of problems known as the Prefix-

sum. The Prefix-sum algorithm represents one of the most important building blocks in modern

day parallel computation, such as in radix-sort, solving tri-diagonal linear systems, or quicksort

[36]. Essentially, the algorithm computes the sum of preceding terms, similar to what must occur

for these coefficients. After the introduction of Hillis and Steele Jr.’s work [37], a parallel

implementation of the Prefix Sum was introduced by Daniel Horn [6]. Thus, ACE is inspired by

the work of these authors and recasts the reduction of p and q into a partial Parallel Prefix-Sum

algorithm. In addition, the algorithm deploys sequential addressing for coalesced memory access

to further improve performance [31]. Figure 7 showcases ACE’s implementation and notes that

the same method applies for both p and q, except q has a potential sign change depending on

hyperplane direction.

+

P
2

+
P

0

P
4

Figure 6: Visualization of a serial reduction of terms for the coefficient, P. Here, P combines

with the 3rd and 5th hyperplane arrangement.

48

One important thing to note is that in this implementation, the 3rd and 5th hyperplane also add

together. Nevertheless, these indices are discarded in the post processing phase and thus become

a non-issue. Similar to the hyperplane arrangements, these coefficients also occur on a per-block

basis, so each block uses these interleaved threads to perform the parallel reduction

3.7.5 Parallel Coalignment – Global Versus Shared Memory

 The last design decision involves how to allocate the variables in GPU memory. For the

purposes of this work, there exists 3 primary modes of memory management, Global, Shared, and

Local Memory. Global memory has global scope which just means all threads across blocks have

access to variables stored here. However, it is also the slowest memory type and because memory

sending or retrieving (IO) dominates runtime, ACE should attempt to access global memory as

little as possible [35] Shared memory, or the L1 Cache, is very fast when compared to global

memory but only threads within a block have access to variables stored here. Finally, Register or

Local memory, is private to each thread and is even faster than shared memory [35].

P
0
 P

2
 P

1
 P

3

+
+

P
024

 P
24

 P
4
 P

1
 P

3

P
4

Figure 7: Visualization of a parallel reduction of terms for the coefficient, P. Here, P

combines with the 3rd and 5th hyperplane arrangement. Each arrow represents a different

thread.

49

 For the parallel implementation of coalignment, the hyperplanes that have zeroed out

vectors exist in global memory whereas the hyperplanes that perform the dot product exist in local

memory. On the other hand, the coefficients of the exponential exist in shared memory since they

require interthread communication. Independence of each term contributes to the logic behind this

methodology. Because threads among terms do not have to communicate, this allows the storing

of p and q on shared memory where threads within the same blocks have access [35]. On the other

hand, the hyperplane “strip” must exist on global memory since threads outside of the same block

must access and zero out their corresponding vectors. Figure 8 depicts a high-level view of how

memory storage and communication occur for GPU-Coalignment.

Figure 8: High level view of the interoperability between different memory types and how

hyperplanes or coefficients are stored. In this example, only two blocks and two threads are

shown over a single grid.

50

Algorithm 12: GPU Coalignment Algorithm

// the following algorithm is computed over all i ∈[1, 2, … nt], in parallel.

// A_shapes are the shapes of every stacked term’s hyperplane

//start_indx are the indices of where each new hyperplane begins, row-wise

1: extern “C” __global__

2: void coalign_main(Astack, pstack, qstack, A_shapes, start_indx){

3: int Tx, Ty ← threadIdx.x, threadIdx.y; //declare thread and block indices

4: int Bx, By ← blockIdx.x, blockIdx.y;

5: coalign_and_reduce(Astack, pstack, qstack, A_shapes, start_indx, Tx, Ty, Bx, By)

6: }

7: end GPU Coalignment

8: extern “C” __device__

9: void coalign_and_reduce(Astack, pstack, qstack, A_shapes, start_indx, Tx, Ty, Bx, By){

10: int hp_num ← start_indx[Bx]; // grabs desired hyperplanes

11: int max_num_hp ← Astack[Bx];

12: store on shared memory ← p_shared[];

13: store on shared memory ← q_shared[];

14: p_shared[tx] ← pstack [tx+hp_num]; // copy global to shared memory

15: q_shared[tx+max_num_hp] ← qstack; //offset to use same memory space

16: float *A_r, A_c ← Astack //make local variable copies

17: float *p_r ← pstack

18: float *q_r ← pstack

19: __syncthreads(); // finish all memory copies before proceeding

20: If ((tx+ty+1) < max_num_hp) { // double check we don’t over index

21: For(int k = 0; k < d; k ++) { // loop across columns (d = 3 in this work)

22: float result_of_dot_prod += A_r[tx*d+k+d*hp_num]…

*A_c[(tx+ty+1)*d+k+d*hp_num];

23: }

24: if (| 1-|result_of_dot_prod| | < eps){ // set to 1e-7 here

25: Set all column indices in A_mega[(tx+ty+1)*d + d*hp_num] to 0;

51

Algorithm 12: GPU Coalignment Algorithm (Reduction of Coefficients in Exponential)

// The following algorithm performs sequential addressing and a reduction-type operation

// continuing from line 25 above

26: int s = signum(result_of_dot_prod);

27: //force serialized write (additions) to same address space

28: atomicAdd(&p_shared[tx],p_r[tx+ty+1+hp_num]);

29: atomicAdd(&q_shared[tx+max_num_hp],s*q_r[tx+ty+1+hp_num]);

30: // note that q_shared is offset by max_num_hp

31: pstack [tx+hp_num] ← p_shared[tx]; //reassign shared back to global

32: pstack [tx+hp_num] ← q_shared[tx+max_num_hp];

33: }

34: }

35: }

36: End coalign_and_reduce device function call

52

3.8. S-Expansion and Least Norms - Introduction

3.8.1 Kernelizing the S-Expansion - Motivation

After coalignment, reverse search enumerates the unique hyperplane arrangements. These

enumerations from reverse search then has to expand using an “S-expansion” algorithm such that

it can be used as the least norm solution in flattening. This section details kernelizing the GPU

implementation of the S-expansion as well as when the matrices are inverted for the least norm

solution. ACE uses this algorithm several times throughout the entire estimator; most notably

during the measurement update, initial G calculation, right after the reverse search, and during

flattening. As a result, this routine serves as one of the most important portions of the algorithm to

parallelize.

Further, the results presented here served as the initial motivation for parallelizing the rest

of the Cauchy Estimator. After conducting an initial code review to see where bottlenecks exist,

this section was identified as one of the most promising areas to pursue. This led to the

development of S-expansion algorithm for the first custom kernel to see whether applying GPU

programming was worthwhile.

At the time of writing, reverse search has not yet been developed for the GPU. As a result,

code refactoring had to occur in order to support a GPU implementation of the S-expansion

algorithm. Practically speaking, another CPU algorithm was developed to enable the GPU to take

in as inputs the differently sized matrices that occurred as a result of coalignment. In particular,

the CPU portion that occurs before the GPU expansion uses a list comprehension to identify and

group similarly sized matrices along with its initial ordering due to the CUDA programming model

requiring contiguous arrays as inputs. Then, ACE uses CUDA streams to asynchronously transfer

53

data to the GPU before conducting an expansion in parallel, across several terms and hyperplane

arrangements. These streams improve performance by allowing for course-grain concurrency and

are applied again after the expansion to stream required results back to the CPU.

3.8.2 S-Expansion Nomenclature and Incremental Enumeration

• Let Sd(σm) be the function which provides a combinatorial expansion of m-singletons σm,

up to dimension d.

• Let sd(m) be the count of elements generated from conducting a combinatorial ’S’

expansion of m-singletons in dimension d, for central hyperplane arrangements

• S is overloaded to expand a matrix Z ∈ RF×m of sign sequences row-wise to column length

sd(m).

• Let Bi ∈ RFi×mi be mi-singleton sign sequences. This output from reverse search

describes how to locate a particular face f ∈ [1, 2, ...Fi] for the i ∈ [1, 2, ...nt]:

The above cell-enumeration algorithm utilized for this thesis is Incremental Enumeration

(IncEnu), which is a variation on the reverse search method [8] outlined in [25]. IncEnu will find

all unique faces of a hyperplane arrangement. This requires that coalignment removes aligned

hyperplanes. Otherwise, the algorithm fails. As shown above, IncEnu returns a matrix Bi ∈ RFi×mi

for a hyperplane arrangement Ai ∈ Rmi×d , where F denotes the number of faces found in

arrangement Ai and here, mi denotes the number of hyperplanes in Ai (e.g 4, 5, and so on). The

singleton sequence described above indicates which side of each hyperplane the f-th face lies.

54

3.8.3 S-Expansion Preliminaries

 The S-expansion algorithm at its core takes the results of the reverse search and performs

a combinatoric sign sequence. For example, a sign sequence, b = [σ1 σ2 σ3], with σ ∈ {-1, 1}, with

a state dimension of d =3, would have a sign expansion shown in equation 3.8.

S(b) = S([σ1 σ2 σ3]) = [1, σ1 , σ2 , σ3 , σ1σ2, σ1σ3 , σ2σ3 , σ1 σ2σ3] (3.8)

Because the resulting matrix results in more columns than rows, a pseudoinverse results in the

least norm solution when solving for αi ∈ Csd(mi) .

3.8.4 CPU Implementation of S-Expansion Algorithm and Least Norms Solution

 The CPU implementation leveraging JIT is relatively straightforward. Essentially, a nested

for loop is used to conduct the expansion dimension d times, over the number of combinations

minus 1. The minus 1 is because the first column of the expansion is skipped. The resulting S is

then formed a column at a time.

Algorithm 7: CPU Implementation of the S-Expansion Algorithm

@njit()

1: Begin CPU S-expansion

2: Input: B, masks

2: number_faces ← number of rows in B

3: number_combos = number of rows in masks + 1

4: S ← ones(number_faces, number_combos), # S ∈ RF× s(m)

5: For i in range(number_combos – 1):

6: For j in range(dimensions):

7: if masks[i,j] != -1:

8: indx = masks[i][j]

9: S[:, i + 1] *= B[indx]

10: end if

55

Note that in the above implementation that a variable “masks” was used. This mask can be

obtained and prestored in the beginning of the algorithm. This is worth noting because this saves

at least one real-time transfer for the GPU implementation.

3.8.5 Challenges in the GPU Implementation of the S-Expansion Algorithm

The parallel or custom kernelized implementation is an involved process in the sense that

the asymmetric dimensions that result from reverse search results in non-contiguous inputs to the

GPU. As a result, careful attention is needed to optimize the latency when performing a data

transfer. Moreover, because this is a custom kernel, several layers of concurrency takes place when

designing a GPU program and the designer needs to choose carefully what sections to loop, how

to allocate shared or global memory, and how to distribute the thread-block cluster.

Although the algorithm itself at its core perform an expansion over a double for loop, it

also provides a strong case study to apply fundamental GPU programming techniques. For

example, it showcases quintessential parallel programming challenges, such as code refactoring,

impact of data transfers, and fundamental considerations when designing algorithms using the

CUDA programming model. The goal thus relegates to exploiting parallelism when seemingly

difficult to do so. These techniques apply broadly to parallel programming and this work reiterates

similar approaches when delineating the section on coalignment.

Algorithm 7: CPU Implementation of the S-Expansion Algorithm (cont.)

11: end For

12: end For

13: Return S

14: End CPU Implementation of the S-Expansion Algorithm

56

3.9. Parallel S-Expansion and Least Norms – Implementation

 This thesis separates the parallel design of the S-expansion algorithm to aid readability and

to help draw attention to considerations made when designing the kernel. Secondly, when

implementing the Moore Penrose Pseudoinverse in calculating the least norm, this work uses a

Cupy implementation of matrix multiplications and inverses. Unfortunately, at the time of writing,

a parallel implementation of the singular value decomposition did not work when applied to 3-D

matrices. Thus, this thesis invokes a simple theorem to show an equivalent implementation that is

more suitable to GPU implementation.

3.9.1 CPU Refactoring to Enable Contiguous Inputs to the GPU

The first important design decision made when kernelizing the S-expansion involves how

the CPU will group the enumerated hyperplanes such that it preserves contiguity. To maximize

parallelism, the GPU should perform as many simultaneous operations as possible [24]. Forcing a

Figure 9: The aggregation of enumerated hyperplanes and how they

flow asynchronously to the GPU due to CUDA streams.

57

loop to handle jagged matrices within the kernel compromises this and, as a result, nullifies any

speed improvements that the hardware offers. This is precisely why designers should try to

maximize how many operations happen in parallel by sending as large of a contiguous array as

possible. Figure 9 showcases a high-level view of how the CPU portion of the algorithm groups

the matrices into like dimensions for parallel expansion. Note the separation of the host and device

hardware when looking at the flow of data as well as how the matrices are streamed to the GPU.

ACE begins by separating the enumerated faces for each hyperplane arrangement. So,

enumeration for 4 hyperplane arrangements are grouped versus a 6 hyperplane arrangement.

Afterwards, the question remains on how the CPU should combine the differently sized

enumerated faces due to coalignment combining hyperplanes within terms – again because the

GPU requires a contiguous input. This is done by extracting the unique enumerated faces across

all the terms by looking at the number of rows multiplied to the number of columns. Afterwards,

a loop runs over and stacks matrices that correspond to these unique dimensions, thus minimizing

the amount of iterations required. The indices for teach term corresponding to their original

locations are also stored to reassemble the expanded matrices back to their original locations.

Algorithm 8: CPU Implementation of B-Sort Algorithm

1: Begin CPU Sorting of Unique Dimensioned Hyperplane Terms

2: Input: B

3: Bs_unique_dim ← [size(b) for b in B] #where size is the row*columns

4: For vals in Bs_unique_dim:

5: idx[ii] = where(Bs_size == vals) #find indices corresponding to these sizes in B

6: stack_Bs[ii] = itemgetter(*idx[ii])(B) #use idx to sort B’s into ordered stack

7: ii+= 1

8: end For

9: return stack_Bs, idx

58

For completeness, the CPU reordering algorithm for the original B’s, once they have been

expanded, is also given. This routine is a fair bit simpler and simply requires as inputs, the unsorted

S-expanded matrices, and the indices of their original location (given in Algorithm 7). Algorithm

8 simply concatenates the unsorted S-expanded matrices into a list and then uses a zip function to

sort the list based on the provided indices from algorithm 7.

3.9.2 Using CUDA Streams for Asynchronous Data Transfers

 After CPU refactoring to group matrices of like dimensions, this work leverages CUDA

Streams for course-grained concurrency. One of the largest overheads for GPU programming,

outside of a kernel launch itself, is the bottleneck induced by a data transfer to the GPU. Streams

allow asynchronous transfer of data as well as kernel launches. Rather than serialize each transfer

to the GPU and then invoking the GPU for a computation, it is much more prudent to further

parallelize the calls to the hardware when data does not depend on each other’s results. This is the

case for the enumerated faces across each term in hyperplane arrangements. Figure 10 helps to

visualize how a CUDA stream changes the way the GPU is invoked over a serializing the calls.

Algorithm 8: CPU Implementation of S-expansion Reassembling Algorithm

1: Begin CPU Reassembling of Unique Dimensioned Hyperplane Terms

2: Input: S_expanded, idx

3: assembled_list = empty list of length S_expanded

4: For ii in range(dim[0] – 1) # dim is the number of unique dimensions from algorithm 7

5: assembled_list = list(S_expanded[ii+1])

6: end For

7: return [x for _, x in sorted(zip(idx, assembled_list))]

9: end CPU Reassembling

59

Serialized Calls Between CPU and GPU

CPU

Stream 0

Asynchronous Calls on Multiple CUDA Streams

CPU

Stream 0

Stream 1

Figure 10: The time it takes to complete operations on the GPU and CPU for the serialized versus

streamed version is shown above. Note the time saved when staggering calls.

Time

Algorithm 9: CUDA Streams in the Context of the Entire Algorithm

1: Begin Full Kernelized S-Expansion

2: Input: B #from Reverse Search

3: stack_Bs, idx = B_sort(B) #call algorithm 7

4: For ii in range(len(stack_Bs)): #use CUDA STREAMS here

5: S_GPU[ii] = S_expanded_GPU(stack_Bs, mask)

6: S_pseudo[ii] = get_least_norm_GPU(S_GPU[ii])

7: end For

8: S_final = B_reassemble(S_GPU)

9: S_pseudo_final = B_reassemble(S_pseudo)

10: return S_final, S_pseudo_final

11: End Kernelized S-Expansion

60

3.9.3 The S-expansion Kernel – Introduction and Thread-Blocks Chosen

 After coalescing matrices of like dimensions and setting up the kernel for CUDA streams,

the algorithm then moves into the actual kernel call. This work sets 1024 threads (the maximum

amount of possible threads at the time of writing) at launch and found no considerable difference

when experimenting with this value. That said, threads should launch in pairs of 32 as a best

practice approach since the hardware automatically synchronizes them, thus maximizing speed.

Note that the number of threads equals the chosen threads in the x times the threads in the y, times

the threads in the z. Thus, 32 threads in the x and 32 threads in the y would reach the thread limit.

 The kernelized S-expansion allocates the number of threads in the x direction as the number

of enumerated faces and the threads in the y direction as the number of possible combinations. If

the number of faces multiplied to the number of combinations is greater than the chosen number

of threads, then the algorithm allocates additional blocks to complete the rest of the expansion.

Higher measurement counts with the Cauchy Estimator necessitates this since the hardware limits

the thread count at launch to 1024 [30].

The number of threads in the x are chosen using the formula:

𝑻𝒙 = 𝑓𝑙𝑜𝑜𝑟 (
𝐶ℎ𝑜𝑠𝑒𝑛 𝑇ℎ𝑟𝑒𝑎𝑑𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠
); 𝑻𝒚 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠

Where Tx and Ty are the threads in the x and y directions, respectively. Next, if Tx*Ty exceeds

1024, then the algorithms allocates additional blocks as such:9

𝒕𝒐𝒕𝒂𝒍 𝒕𝒉𝒓𝒆𝒂𝒅𝒔 = 𝑇𝑥 ∗ 𝑇𝑦

𝒕𝒉𝒓𝒆𝒂𝒅𝒔 𝒏𝒆𝒆𝒅𝒆𝒅 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑐𝑒𝑠 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠

𝑩𝒙 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 ; Bz = 𝑐𝑒𝑖𝑙(
𝑡ℎ𝑟𝑒𝑎𝑑𝑠 𝑛𝑒𝑒𝑑𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑡ℎ𝑟𝑒𝑎𝑑𝑠
)

Where Bx and Bz are the blocks required in the x and z, respectively. Bz captures how this work

stacks the enumerated faces per hyperplane arrangement along the third dimension.

61

Recall that each thread runs simultaneously or launches their own instantiation of the

kernel. Each block contains the set of (at most) 1024 threads. Thus, the total number of operations

happening at any given time here is equal to the number of threads multiplied to the number of

blocks. However, blocks also have a limit; blocks launched in the y and z direction are relegated

to 65535 blocks while blocks in the x can reach as much as 231-1 for an NVIDIA 1080 Ti. These

numbers vary depending on the hardware’s compute capability [30]. Thus, the kernel allocates the

blocks in the x direction to the third dimension in a matrix stack for computation since the estimator

will exceed 65535 blocks for a particular hyperplane arrangement by the 9th measurement.

It is worth noting that although the hardware can technically launch 231-1 * 65535 *65535

blocks, and with it, 1024 threads per block (for an unbelievable amount of simultaneous

operations), the GPU memory will likely saturate before leveraging that many thread-block pairs.

Lastly, a device with a compute capability of 6.1, such as the 1080 TI, can launch at most 32 grids

(each of which contain a thread-block pair). However, this work does not leverage parallelism on

the grid level.

3.9.4 The S-expansion Kernel – Algorithm Design

 The kernel is separated into 1 global main function called from the host side and 2 device

functions that the GPU calls on the device side. The global function’s task simply allocates the

threads and blocks into variables which the kernel leverages to point (index) the matrix containing

the enumerated hyperplanes. It also determines whether to distribute blocks or whether a single

block is sufficient to complete the expansion; this explains the purpose of the 2 device functions.

For this implementation, the kernel requires 9 inputs: the enumerated hyperplanes, a mask which

tells the algorithm how to expand the enumeration, an empty matrix to allocate the results of the

expansion, a temporary matrix containing 1’s with the same dimensions as this expanded matrix,

62

the number of combinations, number of faces, the number of hyperplanes, the dimension of the

problem, and the enumeration matrix stack depth.

 Assume that the global function calls the kernel requiring additional blocks (the smaller S

expansion has the same logic but a very slightly different indexing scheme). First, the threads are

checked to insure overallocation does not occur, resulting in undefined behavior in the GPU. Then,

a loop over the dimension of the problem occurs. Because the dimension of the problem here is 3,

the loop does not result in a significant bottleneck. Then, each thread in the y direction

simultaneously points to a different row in the mask, as shown in figure 11.

 .

 .

 .

Like the CPU implementation, the GPU checks whether the algorithm should proceed with

an expansion. In this case, a -1 indicates skipping the current set of faces. Moreover, the indexing

scheme is drastically different than how a typical serial implementation occurs. This changes based

on individual implementation. However, the key thing to note is that CUDA passes variables as 1-

D, row-wise pointers [7]. This work’s indexing scheme is noted in the algorithms section. As an

example, masks indexes using ty*#dimensions + k. This results in the following:

Ty0 Ty1 Ty2

Ty3 Ty4 Ty5

Figure 11: Visualization of how each thread simultaneously operates to access

a value in memory

63

 For k = 0 For k = 1 For k = 2

Ty = 0 0 1 2

Ty = 1 3 4 5

Ty = 2 6 7 8

 After the conditional passes, the expansion occurs. Note that in this the enumerated

hyperplanes exist on global memory where each thread in each block has access to. Similarly, it

writes to the temporary matrix containing 1’s before writing again to the empty matrix, all of which

exist in global memory. Each thread, when checking the mask variable also reads from global

memory. The author would like to note that it be more efficient to allocate the enumerated

hyperplanes (results from reverse search) to local memory, masks to shared memory, and

temporary matrix of 1’s to shared memory before coalescing results to the empty matrix in global

memory. This is possible because of the independence of each hyperplane from each other, and

masks being the same for every enumeration. Thus, the reported results can potentially improve

significantly due to the approximately 100x efficiency gain when accessing shared memory. To

be clear, this does not mean the speed of the overall program improves by a factor of 100. Rather,

the latency of accessing shared memory is approximately 100 times faster when compared to

accessing global memory [24]. The full kernel along with the pseudoinverse of the expansion is

delineated further in algorithm 10 along with a high-level flow of the code.

Table 1: Indexing values for masks. Note that each row in the table happens concurrently whereas

a loop covers each column serially.

64

Figure 12: Example of how thread-block pairs operate on the expanded matrix, S. Note that each thread

runs a copy of the kernel and that there exists many 3-D Tensors.

Figure 13: Sending the enumerated matrices to GPU can be done asynchronously through CUDA streams

65

Algorithm 10: S-Expansion Kernel

1: Begin GPU S-Expansion //note that Pseudocode now reflects C language

2: extern “C” __global__

3: void getS_kern_main(float *B, float *masks, float *S_GPU, float *S, int NC, int NF, int B_col,

int ndim, int stackDepth)

4: {

5: //BlockDim.x,y,z, gives num of threads in a block , in particular direction (fixed scalar)

6: // gridDim.x,y,z gives num of blocks in a grid, in a particular direction (fixed scalar)

7: // threadidx.x gives the thread indices themselves (changes)

8: int Tx ← threadIdx.x; , int Bx ← blockIdx.x; , int Bdx = blockDim.x;

9: int Ty ← (threadIdx.y + blockIdx.y*blockDim.y); // initialize thread block indexing scheme

10: int Tz ← (threadIdx.z + blockIdx.z*blockDim.z); , int Bz ← blockIdx.z;

12: // blockDimx gives the proper thread count (max thread count)

13: // Each thread runs a copy of the kernel

14: if (bx < 1){ //i.e required thread count is less than 1024

15: S_GPU[bz*NC*NF + NC*bdx*bx) < NF) = getS_small(B, masks, S, tx, bx, ty, tz,

 Bz, NC, NF, B_col, ndim, stackDepth)

 }

16: Else if (Bx > 0 && (Tx + Bdx*Bx) < NF){

 S_GPU[bz*NC*NF + NC*bdx*bx + tx*NC + (ty+1)] = getS_slack(…) //same as 15

 }

17: }

18: End GPU S-Expansion

19: //In this implementation, the Bz axis is used to contain the third dimension of the expanded S-

20: //Matrix. This was done to support intuition. It is important to note that at the 9th measurement,

21: this can //exceed the maximum block size of 65534. This can be resolved by replacing Bz with

22: Bx and make according changes

66

Algorithm 10: S-Expansion Kernel – Device Functions for < 1024 Threads

1: Begin GPU S-Expansion for < 1024 threads

2: extern “C” __Device__

3: float getS_small(//Note the inputs in line 16 of the above algorithm) {

4: //NC = number of combos (columns of S) and rows of mask

5: //NF = number of faces (rows of S) and rows of B

6: //Prevent over indexing with following conditional

7: If(Tx < number of faces) and (Ty < number of combos – 1) and (Tz < stack depth){

8: For (int k = 0; k < state dimension; k++){

9: __syncthreads();

10: if(masks[Ty*state dimensions + k] != -1){ //all threads in y check a column

11: int idx = masks[Ty*state dimension+k];

12: S[bz*NC*NF+tx*NC + (Ty+1)] *= B[bz*B_col*NF+tx*B_col+idx];

13: }Else If{

14: S[Bz*NC*NF+Tx*NC + (Ty+1)] *= 1;

15: }

16: }

17: }

18: return(S[Bz*NC*NF+Tx*NC + (Ty+1)]);

19: }

20: End getS_small

67

Algorithm 10: S-Expansion Kernel – Device Functions for > 1024 Threads

//Difference is the use of the block indices as pointers to index the remaining expansions.

1: Begin GPU S-Expansion for < 1024 threads

2: extern “C” __Device__

3: float getS_slack(//Note the inputs in line 16 of the S-expansion algorithm) {

4: //NC = number of combos (columns of S) and rows of mask

5: //NF = number of faces (rows of S) and rows of B

6: //Prevent over indexing with following conditional

7: If(Tx < number of faces) and (Ty < number of combos – 1) and (Tz < stack depth){

8: For (int k = 0; k < state dimension; k++){

9: __syncthreads();

10: if(masks[Ty*state dimensions + k] != -1){ //all threads in y check a column

11: int idx = masks[Ty*state dimension+k];

12: int indx_scheme = Bz*B_col*NF + B_col*Bdx*Bx + Tx*B_col + idx;

13: S[bz*NC*NF+NC*Bdx*Bx + Tx*NC + (Ty+1)] *=B[indx_scheme];

14: }Else If{

15: S[Bz*NC*NF+ NC*Bdx*Bx + Tx*NC + (Ty+1)] *= 1;

16: }

17: }

18: }

19: return(S[Bz*NC*NF+ NC*Bdx*Bx + Tx*NC + (Ty+1)]);

20: }

20: End getS_slack

68

3.9.5 The S-expansion Kernel – Computing the Pseudoinverse

 At the time of writing, CuPy did not allow a singular value decomposition across a 3-D

stack of matrices. However, transposes and matrix multiplications is possible. Thus, to compute

the pseudoinverse of the expanded S, this work uses the following from Laub [1]:

Theorem 1:

A† = lim 𝐴𝑇
→0

(𝐴𝐴𝑇 + 2𝐼)-1 (3.9)

Taking the limit as  approaches 0 simply results in:

A† = 𝐴𝑇(𝐴𝐴𝑇)-1 (3.9.1)

Equation 3.9.1 is implemented on the GPU and is much more suitable to parallel computation.

This is also possible because coalignment removed redundant hyperplane arrangements, resulting

in linearly independent rows. This is a necessity condition for equation 3.9.1 [1].

69

CHAPTER 4

Experiments and Results from Parallelization

4.1 Simulation Setup and Testing

The performance of ACE was tested numerically in Python 3. This algorithm considers a

3-state system with the following parameters:

 = [
1.4 −0.6 −1.0
−0.2 1.0 0.5
0.6 −0.6 −0.2

] ,  = [
0.1
0.3
−0.2

] , [

𝛼1
𝛼2
𝛼3
] = [

0.1
0.08
0.05

]

H = [1.0 0.5 0.2], β = 0.1, 𝛾 = 0.2.

This system has stable eigenvalues at 0.7 ± 0.3j and 0.8. It is also observable and complies with

a necessary condition for the estimator that H ≠ 0 [22].

 For timing results, each algorithm within the Cauchy Estimator was independently

parallelized and timed using CUDA events. CUDA events utilizes the concepts of streams and

records a time stamp for the piece of GPU code between a designated start and stop. This

methodology has a resolution of approximately one-half microsecond and avoids the slight

overhead often associated with using CPU timing methods [22]. That said, serial implementations

of the Cauchy Estimator are timed using CPU timing methods.

 When appropriate, data transfers are also included in the GPU timing results to consider

the worst-case scenario. Moreover, the number of terms for 𝑖 ∈ [1, 2,… 𝑛𝑡] for each hyperplane

arrangement is also reported since that contributes greatly to the algorithm’s performance. Lastly,

simulations were conducted on a Ryzen 1700x with a 1080 Ti, and 32 Gb of RAM at 3200 Mhz.

70

The timing results are summarized in table 2. Note that measurement one is skipped

because the first step is a different formulation than the generalized time propagation of k+1|k and

measurement update of k+1|k+1. Also, note that the table shows a comparatively long time for

measurement 2, both for the CPU and the GPU. That is because the just-in-time (JIT) must compile

the code on the first invocation before accelerating the subsequent runs [2]. Similarly, the GPU

code must compile and link with NVIDIA’s nvcc compiler the first time it’s run [7]. Consequently,

these results are discarded since they would skew the timing far in favor of the GPU and can be

initialized at the start of the algorithm.

4.2 Time Propagation

 The time it takes to complete the time propagation for each measurement is coalesced

below. Note that the second measurement has been omitted in the plotting since it would skew the

results largely in favor of the GPU. The results here demonstrate an almost linear scaling for the

GPU whereas by the 7th measurement, the CPU begins to increase exponentially in time.

0 0.005 0.01 0.015 0.02 0.025

CPU

GPU

Time to Complete[Sec]

H
ar

d
w

ar
e

Ty
p

e

Total Time to Compute Time Prop Per Msmt

k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9

Figure 14: The total time it takes to finish 9 measurements, excluding measurement 1 and 2,

is shown. Notice that the GPU outpaces the CPU by about the 7th to 8th measurement.

71

Measurement

Number

Number of

Hyperplanes

CPU (seconds) GPU (seconds) Speed

Improvements

2 16 0.718 0.127 N/A

3 70 2.58E-05 0.00041199 0.062502

4 276 0.000065804 0.00078273 0.08407

5 1035 0.0001626 0.0013 0.125077

6 3704 0.00044847 0.0018 0.24915

7 12888 0.0013 0.0023 0.565217

8 85698 0.004 0.0028 1.428571

9 148740 0.0131 0.0036 3.638889

Table 2: Tabulated timing results for each measurement step, including the number of

hyperplanes that ACE must operate on during time propagation. Note that the speed

improvements are relative to the CPU. A result of <1 means the GPU was slower by that factor.

Figure 15: Results demonstrate that this implementation of ACE has an almost linear scaling

per measurement.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

3 4 5 6 7 8 9

Ti
m

e
[s

ec
]

Measurement Step

Time Propogation Scaling

CPU GPU

72

4.3 Measurement Update

 Like the time propagation, the results for the measurement update are summarized below

while omitting the second measurement in the plotting routine. Similar to the time propagation,

the measurement update also sees an almost linear scaling per measurement. The exception,

however, is the ninth measurement where the time to completion seemingly doubles.

Figure 16: The total time it takes to finish 9 measurements, excluding measurement 1 and 2,

is shown. Notice that the GPU outpaces the CPU by about the 6th measurement.

0 0.5 1 1.5 2 2.5 3 3.5

CPU

GPU

Time to Complete [Sec]

H
ar

d
w

ar
e

Ty
p

e

Total Time to Compute Msmt Update Per Msmt

k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9

Figure 17: Results demonstrate that this implementation of ACE has an almost linear scaling

per measurement until approximately the 9th measurement, which almost doubles in runtime.

0

0.5

1

1.5

2

2.5

3 4 5 6 7 8 9

Ti
m

e
to

 C
o

m
p

le
te

 [S
ec

]

Measurement Number

Measurement Update Scaling

CPU GPU

73

4.4 Computing G, Yei

Computing the G and Yei is partitioned out into their own routine to help aid readability.

For the most part, the results of this portion of the algorithm displays similar characteristics to the

measurement update. Here, the run time for the ninth measurement grows considerably over the

prior steps.

Measurement

Number

Number of

Hyperplanes

CPU (seconds) GPU (seconds) Speed

Improvements

2 80 4.975 0.0175 N/A

3 420 3.23E-04 0.0073 0.044288

4 1896 0.0016 0.0161 0.099379

5 7790 0.0067 0.0263 0.254753

6 30190 0.0302 0.0453 0.666667

7 112294 0.1278 0.0787 1.623888

8 405836 0.5259 0.1624 3.2383

9 1437320 2.1888 0.4164 5.256484

Table 3: Tabulated timing results for each measurement step, including the number of

hyperplanes that ACE must operate on during measurement update.

Figure 18: The total time it takes to finish 9 measurements, excluding measurement 1 and 2,

is shown. Notice that the GPU outpaces the CPU by about the 6th measurement.

0.00 0.20 0.40 0.60 0.80 1.00 1.20

CPU

GPU

Time [Sec]

H
ad

w
ar

e
Ty

p
e

Total Time to Compute Gs, Per Measurement

k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9

74

4.5 Term-Coalignment

 GPU Term -Coalignment is almost incomparable to its serial counterpart. However, timing

results do not fully capture the efficacy of parallelization for this section of the algorithm. Results

for how many terms were coaligned on the GPU versus the CPU is also presented. Note, that the

GPU had a closeness measure of 1e-7 due to the imprecision of operating on floating point 32

variables. This further explains why the GPU would coalign more over the CPU.

0.00

0.20

0.40

0.60

0.80

3 4 5 6 7 8 9

Ti
m

e
[S

ec
]

Measurement Number

Setting Gs, Scaling

CPU GPU

Measurement

Number

Number of

Hyperplanes

CPU (seconds) GPU (seconds) Speed

Improvements

2 80 5.3103 0.0133 N/A

3 420 4.00E-04 0.0021 0.190476

4 1896 0.0013 0.0046 0.282609

5 7790 0.0049 0.0088 0.556818

6 30190 0.0171 0.0096 1.78125

7 112294 0.06 0.0142 4.225352

8 405836 0.1975 0.0253 7.806324

9 1437320 0.7068 0.1021 6.922625

Figure 19: Results demonstrate that this implementation of ACE has an almost linear scaling

per measurement until approximately the 9th measurement, which almost doubles in runtime.

Table 4: Tabulated timing results for each measurement step, including the number of

hyperplanes that ACE must operate when computing G’s.

75

The results are presented as a logarithmic scaling since it gives a better sense of the scale that

GPU programming outpaces the CPU for this custom kernel.

0.00001 0.0001 0.001 0.01 0.1 1 10

Time [Sec]

H
ar

d
w

ar
e

Ty
p

e

Coallignment Timing Results - Logarithmic

k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9

Figure 20: Results demonstrates that custom kernelization of coalignment completes 3 to 9

measurements in the same amount of time that the CPU completes 3 to 4 measurements.

0.00001

0.0001

0.001

0.01

0.1

1

1 2 3 4 5 6 7

Ti
m

e
[S

ec
]

Measurement Number

Log Scaling GPU vs CPU for Term-Coallignment

CPU GPU

Figure 21: The logarithmic scaling demonstrates several orders of magnitude speed

improvement per measurement

76

Measurement

Number

Number of

Hyperplanes

CPU

(seconds)

GPU

(seconds)

FP(32)

GPU

(seconds)
(FP64)

Speed

Improvements

(FP32)

Speed

Improvements

(FP64)

2 80 3.788115501 0.00040122 0.000394 N/A N/A

3 420 0.00116539 1.54E-05 1.54E-05 75.71401 75.87175

4 1896 0.002156019 1.64E-05 1.84E-05 131.593 116.9715

5 7790 0.007196665 2.25E-05 2.56E-05 319.4542 281.4716

6 30190 0.024286985 4.43E-05 4.48E-05 547.9916 541.7333

7 112294 0.082619429 0.00014848 0.000157 556.4347 527.3401

8 405836 0.285746336 0.00051814 0.001097 551.4805 260.5501

9 1437320 0.934037924 0.00182579 0.001871 511.5796 499.2591

Measurement

Number

Coaligned

(CPU)

#Coaligned

(GPU)

Difference

3 28 34 6

4 250 352 102

5 1433 1650 217

6 6861 7028 167

7 29630 30146 516

8 119638 124356 4718

9 461092 492514 31422

1 10 100 1000 10000 100000 1000000

3

4

5

6

7

8

9

Number of Coaligned Hyperplanes per Measurement

GPU CPU

Figure 22: The logarithmic scaling showcases how many hyperplanes coaligned per

measurement for both the GPU and CPU. For the chosen closeness measure, the hyperplanes

consistently coaligned more on the GPU.

Table(s) 5 and 6: Note that measurement 2 is not shown because there were no coaligned

hyperplanes for the given dynamics. The difference generally increases per measurement step.

77

4.6 Parallel S-Expansion and Computing the Least Norms

 Recall that the S-expansion occurs right after evaluating the enumerated hyperplanes

using Reverse Search. Occasionally, this kernelized function is also called throughout the

estimator. For example, invoking this routine to parallelize the expansion per arrangement in the

measurement update or when computing the G’s is possible.

Measurement

Number

CPU (seconds) GPU (seconds) Speed

Improvements

4 0.5535 0.3112 1.7786

5 0.3104 0.0202 15.3663

6 0.5043 0.0449 11.2316

7 1.8930 0.1393 13.5894

8 5.9965 0.5198 11.5362

9 22.3283 2.0127 11.0937

Figure 23: Note that measurement 1 to 3 is not shown because this kernel only becomes viable

by the fourth measurement. Results include GPU data transfers and pseudoinverse calculations.

Table 7: The timing results of the expansion is given. Note that when this data was collected,

the 4th measurement was the first call to this function, so it is slower than the subsequent runs.

78

CHAPTER 5

Discussion and Conclusion

5.1 Time Propagation

 The parallel time propagation computed using CuPy’s built in functions performs well,

demonstrating an almost linear scaling across each measurement. On the other hand, the jitted CPU

implementation begins to scale exponentially and quickly becomes unviable at larger

measurements. This makes sense considering the time propagation consists of matrix

multiplications with readily scales across the GPU. However, while the number of operations can

scale, there are additional calls to the GPU time propagation function because of the additional

hyperplane arrangements after every measurement update.

 However, note that the time propagation has a consistent dimension across its columns for

parameters like A, the hyperplanes. Although the number of rows grow, the columns always

consists of the dimension of the states. Thus, time propagation could simultaneously operate on all

hyperplane arrangements at once, versus calling the GPU implementation each time. Alternatively,

if multiple GPU’s were used, the designer could also allocate the arrangements to each GPU or

stream multiple kernel calls if memory footprint permits.

5.2 Measurement Update

 For the measurement update, the parallel implementation begins to outpace the CPU

implementation right around 7th measurement. Also similar to the time propagation, the

measurement update exhibits an almost linear scaling until the 9th measurement where it almost

doubles in compute time. As it turns out, an operation that repeats the 𝛼 needed to compute the

G’s in the following routine is quite expensive due to creating memory copies; future work should

79

seek to implement this in a more efficient manner. Implementing the algorithm this way was

simpler, but the computational overhead and scaling per measurement is likely not worth the trade

off on higher measurements. Instead, a preallocation of appropriate 𝛼 copies and a modification to

get_S_gpu() (the kernelized S-expansion) to compute the same copies in parallel will likely be

more efficient.

Although promising, the parallel implementation of the measurement update focuses on

simultaneous computation across terms for each hyperplane arrangement. While this course level

of parallelism should be maintained, the measurement update to each hyperplane arrangements is

done serially across the CPU, just like the time propagation. To improve results, future work could

focus on sending each arrangement to a separate GPU or instead, stack terms and arrangements

across consistent dimensions so that a custom kernel could operate on a contiguous input. This

will help improve the scaling of the measurement update considerably along with further speed

improvements.

5.3 Evaluating G and Yei

Computing the G is very fast when compared to the measurement update. The parallel

implementation does not begin to outpace the CPU implementation until the 6th measurement.

Afterwards, the GPU implementation can compute 9 measurements in less time than the serial

implementation can compute 8 measurements. Something worth pointing out is that the number

of hyperplanes grow very quickly. From 80 in the second measurement to over 1.4 million by the

9th, the number of operations increases considerably. This partially explains why scaling towards

the ninth measurement increases versus the almost linear scaling demonstrated in the first 8

measurements. This same reasoning also applies to the measurement update. Measurements 2 to 5

also demonstrates the quintessential problem of parallel programming; that unless there exists

enough operations, the serial version will likely outcompete the GPU.

80

Again, parallelization happens across terms and not across hyperplane arrangements.

Unfortunately, unlike coalignment, many of the operations like expanding the sign basis does not

occur across consistent dimensions. As a result, serially computing each arrangement using

parallel operations will likely have to occur unless the designer has access to multiple GPU’s.

Alternatively, overallocated arrays can be used to maintain a contiguous array for a custom kernel.

Although memory inefficient, it would allow for simultaneous computing of G and Yei across

hyperplane arrangements if only a single GPU is available.

5.4 Term-Coalignment

 GPU term-coalignment was one of the last algorithms developed for this thesis and

represents the coalescing of many GPU design techniques. This translated to many times speed

improvement over the best CPU implementation at the time of this writing. The most important

takeaway was getting creative with exploiting parallelism and recasting problems into a GPU

implementable form in the case of the parallel-prefix sum.

 Several other design techniques also contributed to the improvements, including using

shared memory when possible, launching in batches of 32 threads, loop unrolling, and avoiding

branching of conditionals when possible. However, the greatest improvement involved

simultaneously operating across all hyperplane arrangements via a contiguous input. Although this

might take some preprocessing to stack matrices in practice, the speed gains were well-worth the

cost of these operations. It is worth noting that these speed improvements did not measure the

aforementioned preprocessing done, just the time to execute the kernel itself.

This also motivates stacking or operating across several arrangements in parallel in the case

of the time propagation, measurement update, and computing of G. In fact, when looking at the

number of hyperplanes that had to be checked for coalignment, the same increase of 80 to 1.4

million terms can be seen. However, speed improvements were consistently large and time to

81

completion scaled well due to the ability to complete simultaneous operations across the growing

number of hyperplanes. Moreover, the second table demonstrates that the GPU consistently

coaligned more over its serial counterpart. The parallel implementation has the distinct advantage

that when more hyperplanes have to coalign, the combining of the coefficients in the exponential,

p and q, can also occur in parallel using coalesced memory access. As a result, the algorithm

continues to scale if more hyperplanes must coalign whereas the serial implementation has to

perform an inner loop to combine the coefficients. This further slows the serial implementation as

more hyperplanes begin to coalign.

The largest challenge with this implementation of coalignment was the fact that all GPU

operations were done using floating point 32. As a result, the precision of all results could only be

matched to the 7th or so decimal place. This applies to all previously discussed GPU algorithms.

This causes coalignment to remove more or less hyperplanes over its serial counterpart, depending

on the closeness measured used. To circumvent this issue, future work should leverage GPU’s

designed for high precision scientific computing, like the NVIDIA Tesla, to maintain speed

improvements over double precision and to pick an appropriately lower closeness measure.

5.5 Parallel S-Expansion and Computing the Least Norms

The parallel S-expansion and computing of the pseudoinverse also demonstrates

appreciable speed improvements over the serial implementation. Further, it maintains the speed

improvements of over 10x across higher measurements. Note, however, that the results include the

time it took to perform data transfers to the GPU, the time to assemble and reassemble hyperplane

arrangements using the CPU, as well as computing the pseudoinverse. Data transfers are very

expensive here because the number of enumerated hyperplanes grow considerably across each

82

measurement and rearranging does not take a trivial amount of time as well. This necessitates

parallelization of reverse search if ACE wants to avoid this data transfer.

Future work for this algorithm should focus on leveraging shared memory. In this work the

expansion accesses and writes to global memory across all enumerated planes. This is unnecessary

since expansions for each face is independent from one another and can be done at the block level

using shared memory. However, the largest speed improvements and the greatest impact to scaling

will come from eliminating the need to reorder the hyperplane arrangements and instead conduct

as many simultaneous expansions as possible.

5.6 Implementing the GPU With a Sliding Window

 Although not presented in detail for this thesis, early work to implement the GPU with a

sliding window of measurements was conducted to validate a general paradigm for high

performance computing (HPC). In particular, each core in the CPU can run its own instantiation

of the estimator and process several measurements. The results of these measurements are then

carried over and used in a different window once it reaches the appropriate measurement. For

example, if core 0 finishes 6 measurements, then core 1 would be at 5 measurements. Once core 1

reaches 5 measurements, it has the results from core 0 to process the next step and so on. At the

time of this writing, only the parent process can leverage the GPU without using methods from

Python’s multiprocessing library to initialize the device for each instantiation (child) of the

estimator [34]. Although this is the simplest way to do this, this requires n-times the memory

consumption of the GPU where n is the number of sliding windows. Notwithstanding this

bottleneck, it is nevertheless possible to leverage the GPU for each sliding window. Alternatively,

each window could have access to its own GPU. This paradigm of using the GPU per window or

separate GPU’s per window is illustrated in 23 and 24, respectively. Lastly, only the parent can

83

leverage the GPU and child processes can send required parameters for processing on the GPU in

the parent. However, the overhead of the transfers however might negate any speed benefits gained

from parallelization in the first place. This paradigm is illustrated in Figure 25.

Figure 24: Each child process may leverage the same GPU using Python’s multiprocessing library.

Figure 25: Alternatively, each process that computes the sliding window can have its own GPU.

Image Credit: N. Snyder.

84

5.7 Conclusion

 This thesis presents a parallelization paradigm for several key routines for the linear

discrete-time system for the n-state Cauchy Estimator. Although the algorithms were written

specifically for the 3-state estimator, they can also scale to the n-state estimator with modifications

to how operations occur when the dimensions grow. Every subroutine demonstrates a speed

improvement once the number of required parallel operations have grown past a certain amount.

For the estimator, this takes place in the form of higher measurements.

 It is shown that simultaneous operations across a contiguous array yields the greatest speed

improvement (in the case of term-coalignment) and future work should focus on maximizing this

level of concurrency as much as possible. At this stage of the algorithm, only the time propagation,

measurement update, computing the G’s, term-coalignment, and expanding the numerated planes

have been parallelized. Three key routines remain: flattening, reduction, and reverse search. Before

Figure 26: It is currently not possible for there to be a global GPU parameter space at the CPU level.

Instead, one process may have access to local GPU parameters for computation and Process 1-to-n can

send parameters to process 0 to accelerate computation, as necessary.

85

fully realizing the Cauchy estimator, these routines must be completed as well. Nonetheless, these

results demonstrate promise for leveraging HPC to accelerate the estimator.

 Finally, a discussion on implementing the GPU in conjunction with a multicore GPU

processing to continuously process measurements using a sliding window was provided. In this

instance, the greatest bottleneck is memory footprint since each core must compute n-

measurements each where n is the size of the sliding window. This problem can be circumvented

by assigning each core of the CPU with its own GPU or reducing memory consumption in general.

Nonetheless, early work has shown that aggregating the GPU and CPU for multilayer concurrency

is possible and can be used to fully realize the estimator for a general class of problems.

86

CITATION

[1] A. Laub, Matrix Analysis for Scientists and Engineers, SIAM, USA, 2004.

[2] Anaconda, Numba Documentation, Release 0.51.2-py3.7-linux-x86_64.egg, Nov. 26, 2020,

https://numba.readthedocs.io/en/stable/user/5minguide.html, Accessed, Nov. 2020.

[3] Autopilot, https://www.tesla.com/autopilotAI, Accessed Nov. 2020.

[4] Basics of CuPy, https://docs.cupy.dev/en/latest/tutorial/basic.html, Accessed Aug. 2020.

[5] B. Fulkerson and S. Soatto, Really Quick Shift: Image Segmentation on a GPU, ECCV 2010

Workshop, Part II, LNCS 6554, pp. 350 – 358, 2012.

[6] Brodtkorb, A.R., Hagen, T.R. and Saetra, M.L. (2013) Graphics Processing Unit (GPU)

Programming Strategies and Trends in GPU Computing. Journal of Parallel and Distributed

Computing, 73, 4-13. https://doi.org/10.1016/j.jpdc.2012.04.003

[7] B. Tuomanen, Hands-On GPU Programming with Python and CUDA, Packt Publishing Ltd.

2018.

[8] D. Avis, K. Fukuda, Reverse Search for Enumeration¸ Discrete Applied Mathematics, Vol.

64, Issues 1-3, pp 21-46, 1996.

[9] D. Horn, Stream Reduction Operations for GPGPU Applications, in GPU Gems 2, Ch. 36,

573-589, 2005.

[10] F. Lopez, L. Zhang, A. Mok, and J. Beaman, Particle Filtering on GPU Architectures for

Manufacturing Applications, Computers in Industry, Vol. 71, Issue C, 2015.

https://numba.readthedocs.io/en/stable/user/5minguide.html
https://www.tesla.com/autopilotAI
https://docs.cupy.dev/en/latest/tutorial/basic.html
https://doi.org/10.1016/j.jpdc.2012.04.003

87

[11] G. Hendeby, R. Karlsson, and F. Gustafsson, Particle Filtering: The Need for Speed,

EURASIP Journal on Advances in Signal Processing, 2010.

[12] G. Welch, and G. Bishop, An Introduction to the Kalman Filter, ACM, Inc., 2001

[13] H. Balta, J. Bedkowski, S. Govindaraj, K. Majek, P. Musialik, D. Serrano, K. Alexis, R.

Siegwart, and G.D. Cubber, Integrated Data Management for a Fleet of Search-and-rescue

Robots, Journal of Field Robotics, 2016.

[14] H. Karimipour, V. Dinavahi, Extended Kalman Filter-Based Parallel Dynamic State

Estimation, IEEE Transactions on Smart Grid, Vol. 6, Issue 3, 2015.

[15] J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone, and J.C. Phillips, GPU

Computing, Proceedings of the IEEE, Vol. 96, No. 5, 2008.

[16] J.H. Fernandez, J.L. Speyer, and M. Idan., Stochastic Estimation for Two-State Linear

Dynamic Systems with Additive Cauchy Noises, IEEE Trans. on Automat. Control, Vol. 60, No.

12, 2015.

[17] J. L. Speyer and W. H. Chung, Stochastic Processes, Estimation, and Control, SIAM,

Philadelphia, 2008.

[18] J. Pan, D. Manocha, GPU-Based Parallel Collision Detection for Fast Motion Planning,

International Journal of Robotics Research, 2012.

[19] J.R. Carpenter and A.K. Mashiku, Cauchy Drag Estimation for Low Earth Orbiters.

AAS/AIAA Space Flight Mechanics Meeting, Williamsburg, VA, 2005.

[20] Kalman, R., A New Approach to Linear Filtering and Prediction Problems. ASME Journal of

Basic Engineering, 82, 35-45, 1960

88

[21] L. N. Johnson, S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, Vol. 1,

2nd ed., John Wiley & Sons, New York, 1994.

[22] M. Harris, How to Implement Performance Metrics in CUDA C/C++, Nov. 7th, 2012,

https://developer.nvidia.com/blog/how-implement-performance-metrics-cuda-cc/, Accessed Nov

2020.

[23] M. Harris, How to Access Global Memory Efficiently in CUDA C/C++ Kernels, Jan. 7th,

2013, https://developer.nvidia.com/blog/how-access-global-memory-efficiently-cuda-c-kernels/,

Accessed Nov 2020.

[24] M. Harris, Using Shared Memory in CUDA C/C++, Jan. 28th, 2013,

https://developer.nvidia.com/blog/using-shared-memory-cuda-cc/, Accessed Nov 2020.

[25] M. Rada and M. Cerny, A New Algorithm for Enumeration of Cells of Hyperplane

Arrangements and a Comparison with Avis-Fukuda’s Reverse Search¸ SIAM Journal on Discrete

Mathematics, Vol. 32, No. 1, pp. 455-473, 2018.

[26] M. Idan and J.L. Speyer, Cauchy Estimation for Linear Scalar Systems, 47th IEEE

Conference on Decision and Control, Mexico, 2008.

[27] M. Idan and J.L. Speyer, Cauchy Estimation for Linear Scalar Systems, IEEE Trans.

Automat. Control, 55 (2010), pp. 1329-1342.

[28] M. Idan and J.L. Speyer, Multivariate Cauchy Estimator with Scalar Measurement and

Process Noises, SIAM, Vol. 52, No. 2, pp. 1108-1141, 2014.

[29] N. N. Taleb, The Black Swan: The Impact of the Highly Improbably, Random House, New

York, 2007.

https://developer.nvidia.com/blog/how-implement-performance-metrics-cuda-cc/
https://developer.nvidia.com/blog/how-access-global-memory-efficiently-cuda-c-kernels/
https://developer.nvidia.com/blog/using-shared-memory-cuda-cc/

89

[30] NVIDIA, CUDA C++ Programming Guide, PG-02829-001_V11.1, Oct. 2020,

https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf, Accessed Nov. 2020.

[31] NVIDIA, CUDA C++ Best Practices Guide – Design Guide, DG-05603-001_V11.1, Oct.

2020, https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#optimizing-cuda-

applications, Accessed, Nov. 2020.

[32] NVIDIA Drive, https://www.nvidia.com/en-gb/self-driving-cars/drive-platform/, Accessed

Nov. 2020.

[33] P. Reeves, A Non-Gaussian Turbulence Simulation, Technical Report AFFDL-TR-69-67,

Air Force Flight Dynamics Laboratory, 1969.

[34] Pytorch, Multiprocessing Best Practices,

https://pytorch.org/docs/master/notes/multiprocessing.html, Accessed Sept. 2020.

[35] G. Stathopoulos, E. Jaszewski, Alden R., CS 179 GPU Programming, Lecture 4,

http://courses.cms.caltech.edu/cs179/, Accessed Nov. 2020.

[36] S. Sengupta, A.E. Lefohn, and J.D. Owens, A Work-Efficient Step-Efficient Prefix-Sum

Algorithm, ResearchGate, 2006.

[37] W. D. Hillis, and G.L. Steele Jr, Data Parallel Algorithms, Communications of the ACM

29, 1170-1183, 1986.

[38] Y. Bai, J.L. Speyer, and M. Idan, Planetary Flyby Attitude Estimation in an Intense

Radiation Background Based on Cauchy Uncertainty

https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#optimizing-cuda-applications
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#optimizing-cuda-applications
https://www.nvidia.com/en-gb/self-driving-cars/drive-platform/
https://pytorch.org/docs/master/notes/multiprocessing.html
http://courses.cms.caltech.edu/cs179/

