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Abstract
We study the statistical properties of the dynamic trajectory of stochastic gradient 
descent (SGD). We approximate the mini-batch SGD and the momentum SGD as 
stochastic differential equations. We exploit the continuous formulation of SDE and 
the theory of Fokker–Planck equations to develop new results on the escaping phe-
nomenon and the relationship with large batch and sharp minima. In particular, we 
find that the stochastic process solution tends to converge to flatter minima regard-
less of the batch size in the asymptotic regime. However, the convergence rate is rig-
orously proven to depend on the batch size. These results are validated empirically 
with various datasets and models.

Keywords Large batch training · Sharp minima · Fokker–Planck equation · 
Stochastic gradient algorithm · Deep neural network

Mathematics Subject Classification 90C15 · 35Q62 · 65K05

1 Introduction

We consider the following empirical risk minimization problem in statistical 
machine learning:
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where � represents the model parameters, Ln(�) denotes the loss due to the nth train-
ing sample, and N is the size of the training set. Since the training set for many 
application domains such as image (He et  al.[12]) and speech recognition (Amo-
dei et  al.[1]) is large, the stochastic gradient descent (SGD) and its variants have 
become standard approaches of training complex model including deep neural net-
works (Bottou et al.[4]). The mini-batch SGD estimates the negative loss gradient 
based on a small subset of training examples. This approach incurs the computa-
tional complexity per iteration independent of N:

where k ≥ 0 , �k is the learning rate, and the mini-batch set Bk consists of Mk uni-
formly selected sample indices from {1, 2,… ,N} . A notable variant of mini-batch 
SGD is momentum SGD, which is a practical approach of speeding up the training 
(Nesterov[23]). For mini-batch SGD and its variant, we use the term large batch 
training to denote the use of a large mini-batch (Keskar et al.[17]).

Recently, several works have discussed the geometry of SGD (Keskar et al.[17]; 
Goyal et  al.[11]; Hoffer et  al.[14]). Specifically, Keskar et  al.[17] find, based on 
empirical experiments, that the large batch training tends to converge to the sharp 
minima of the training function. In contrast, the small batch training is more likely 
to escape the sharp minima. In this work, we study theoretically and empirically the 
dynamic of the convergence and escaping phenomenon relating to the batch size for 
mini-batch SGD and momentum SGD.

We approximate SGD using continuous stochastic differential equation (SDE) 
(Chaudhari et  al.[7]; Li et  al.[21]; Mandt et  al.[22]). Assuming isotropic gradient 
noise, we derive new results on the dynamic trajectory of the Fokker–Planck solu-
tion. In particular, the derived convergence rate in terms of the batch size provides 
new insights into the escaping phenomenon for mini-batch SGD and momentum 
SGD. Our main finding is that the stochastic process solution of SDE tends to con-
verge to flatter minima regardless of the batch size in the asymptotic regime. How-
ever, the convergence rate depends on the batch size. Motivated by partial differen-
tial equation theory, we define the sharpness in terms of the Hessian’s determinant. 
This result provides a new perspective into the ongoing discussion on the definition 
of the sharpness (e.g., Dinh et al.[9]). We verify our theoretical results experimen-
tally on different datasets and deep neural network models. The proposed statistical 
view using tools from the Fokker–Planck equation can be used to analyze other sto-
chastic algorithms for complex models.

The rest of the paper is organized as follows. We introduce the background in 
Sect. 2. We present our main result for mini-batch SGD in Sect. 3. We extend the 
result to momentum SGD in Sect.  4. We show numerical experiments in Sect.  5. 
Related works are provided in Sect. 6. We conclude the paper with discussions in 
Sect. 7. Proofs are given in “Appendix.”

min
�∈ℝd

1

N

N∑
n=1

Ln(�),

(1)�k+1 = �k −
�k
Mk

∑
n∈Bk

∇Ln(�k),
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2  SDE Modeling for Large Batch Training

We study the dynamics of the mini-batch SGD in both the finite-time regime and 
the asymptotic regime, depending on whether the training time is finite or tends to 
infinity. It turns out that the dynamics of the finite-time regime given in this section 
are fundamentally different from those of the asymptotic regime to be discussed in 
Sects. 3–4.

The mini-batch SGD carries out the update at each step following (1), which can 
be rewritten as

where L(�) ≡ �[Ln(�)] is the risk function and �k =
1√
Mk

∑
n∈Bk

(∇L(�k) − ∇Ln(�k)) 
is a d-dimensional random vector. Assume that the covariance matrix 
Var[∇Ln(�)] ≡ �

2(�) is positive definite, which holds for typical loss functions, 
including the squared loss. By the dominated convergence theorem, �k has mean 0 
and covariance �2(�k) for any k ≥ 0 (see, “Appendix A.1”).

For the large batch training, the distribution of �k is well approximated by the 
normal distribution due to the central limit theorem. Consider the following stochas-
tic differential equation (SDE) model:

where the Brownian motion �(t) accounts for random fluctuations due to the use 
of mini-batches for gradient estimation in (2). The Euler discretization of SDE (3) 
resembles the mini-batch SGD (2), and the SDE solution approximates the mini-
batch SGD in the weak sense (i.e., in distribution) under the finite-time setting 
t ∈ [0, T] for any T > 0 ; see, e.g., Li et al.[21] and Mandt et al.[22] .

2.1  Escaping Phenomenon

Recently, Keskar et  al.[17] note the escaping phenomenon of mini-batch SGD in 
training neural networks. Namely, the large batch training tends to converge to the 
sharp minima of the training function while the small batch training is more likely 
to escape the sharp minima. A conceptual sketch of “sharp” (and relatively, “flat”) 
minima are shown in Fig.  1, where a mathematical definition of the sharpness is 
given in Sect. 2.3. Based on the numerical experiments, Keskar et al.[17] also find 
that a sharp minimum correlates with a worse generalization, which, however, will 
not be studied in the current paper.

The escaping phenomenon is important for understanding the algorithm design 
for complex statistics and machine learning models. The phenomenon has been vali-
dated in extensive numerical results; see, e.g., Goyal et al.[11] and Hoffer et al.[14]. 

(2)�k+1 − �k = −�k∇L(�k) +
�k√
Mk

⋅ �k,

(3)d�(t) = −∇L(�(t))dt −

√
�(t)

M(t)
�(�(t))d�(t), �(0) = �0,
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However, the theoretical support for the phenomenon is limited in the literature. The 
current paper fills some gaps in this important direction. Our approach uses the SDE 
model (3) and studies the escaping phenomenon for the stochastic process solution 
to the SDE model.

2.2  Fokker–Planck Equation

We allow the learning rate �k and the batch size Mk in (2) to vary along with the step 
k, which is consistent with the practice. As a result, the functions �(t) and M(t) in (3) 
are time-dependent. Consider the isotropic gradient covariance:

where the scalar function �(�) depends on � . Similar assumptions as (4) have been 
made in the stochastic algorithm literature, for example, Chaudhari et  al.[7] and 
Jastrzebski et al.[16], where �(�) ≡ � is restricted to a constant. Since our interest 
lies in the escaping phenomenon and the relationship with the scale of variance, the 
learning rate, and the batch size, we make the isotropic assumption (4) for simplicity 
and leave the anisotropic case for future study.

Denote by p(�, t) the probability density function of the stochastic process solu-
tion �(t) . We can characterize p(�, t) in the following lemma, which is from the 
partial differential equations literature (e.g., Kolpas et al.[18]).

Lemma 1 The probability density function p(�, t) satisfies the following Fokker–
Planck equation:

where p(�, 0) = �(�0) , and �(⋅) denotes the Dirac’s delta function.

We give a proof in “Appendix A.2.” Note that the drift term in (5) 
∇[L(�) + �(t)�(�)∕2M(t)] ≠ ∇L(�) , which implies that the stochastic process solu-
tion �(t) does not follow the mean drift direction −∇L(�) as its update direction. A 

(4)�
2(�) = �(�) ⋅ �,

(5)�tp(�, t) = ∇ ⋅

([
∇

(
L(�) +

�(t)�(�)

2M(t)

)]
p(�, t) +

�(t)�(�)

2M(t)
∇p(�, t)

)
,

Fig. 1  Sketch of “flat” and “sharp” minima for one-dimensional case (left plot) and two-dimensional 
case (right plot). The vertical axis indicates the value of the loss function
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smaller batch size M(t) corresponds to a drift term deviates further from the mean 
drift direction.

2.3  Kramer’s Formula

Based on the Fokker–Planck equation in Lemma 1, we can characterize the dynam-
ics of the stochastic process solution in the finite-time regime. In particular, we 
have the escaping time of the stochastic process solution from one local mini-
mizer �̌1 to its nearest local minimizer �̌2 . Figure 2 gives an illustration, where �∗ 
is the saddle point between �̌1 and �̌2 . There are possibly multiple saddle points 
between �̌1 and �̌2 in the multidimensional setting. The �∗ should be defined as 
the saddle point with the minimal height among all saddle points in the follow-
ing sense. Denote by �(t), 0 ≤ t ≤ 1, be any continuous path from �̌1 to �̌2 , and 
�� = arg inf

�∶�(0)=�̌1,�(1)=�̌2
supt∈[0,1] L(�(t)) the path with the minimal saddle point 

height among all continuous path. Then, �∗ ≡ maxt∈[0,1] �̂(t) . It is known that the 
Hessian ∇2L(�∗) has a single negative eigenvalue (e.g., Berglund[3]). Let −�∗ be 
the negative eigenvalue of ∇2L(�∗) and H(�∗, �̌1) ≡ L(�∗) − L(�̌1) be the relative 
height of �∗ to �̌1 . We have the following lemma characterizing the escaping time of 
the stochastic process solution from �̌1 to �̌2.

Lemma 2 Let 𝜏
�̌1→�̌2

 be the transition time for �(t) from a closed ball of radius 
𝜖 > 0 centered at �̌1 to a closed ball of radius 𝜖 > 0 centered at �̌2 . Then,

where |∇2L(⋅)| denotes the determinant of ∇2L(⋅) , M(�̌1) is the batch size at �̌1 , 
𝛾(�̌1) is the learning rate at �̌1 , and �(⋅) is defined in (4).

Similarly, we have the transition time from �̌2 to �̌1 (i.e., 𝜏
�̌2→�̌1

 ) with the only 
difference that the right side of the equation in Lemma 2 should be replaced by the 
geometry related to �̌2 . This lemma is known in the diffusion process literature as the 
Eyring–Kramers formula; see, e.g., Berglund[3], Bovier et al.[5, 6]. If the radius of the 
ball centered at �̌1 is different from the radius of the ball centered at �̌2 , Lemma 2 still 
holds by changing the radius � to be the smaller one of the two radius (Bovier et al.
[5]). Our observation is that the Eyring–Kramers formula can provide a quantitative 

�[𝜏
�̌1→�̌2

] =
2𝜋
𝜆∗

�
�∇2L(�∗)�
�∇2L(�̌1)�

exp

�
H(�∗, �̌1) ⋅ 2M(�̌1)

𝛾(�̌1)𝛽(�̌1)

��
1 + O

�√
𝜖 log

�
1

𝜖

���
,

Fig. 2  Sketch of two local 
minimizer �̌1 and �̌2 of a risk 
function. The �∗ is the saddle 
point between �̌1 and �̌2
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description of the escaping phenomenon in the finite-time regime. In particular, the 
time that �(t) escapes from one local minimum to its nearest local minimum depends 
on three factors. Namely, the diffusion factor �(�)�(�)∕M(�) , the potential barrier 
H(�∗, �̌1) that �(t) has to climb to escape �̌1 , and the determinants of the Hessians 
of the risk function at �̌1 and �∗ . This fact suggests the following definition of the 
sharpness.

Definition 1 (Sharpness) The sharpness of a minimizer is defined as the determinant 
of the Hessian of the risk function at the minimizer, i.e., |∇2L(⋅)| . A larger |∇2L(⋅)| 
corresponds to a sharper minimizer.

Lemma 2 shows that a larger batch size M(�̌1) at a local minimizer �̌1 results in 
a longer time to escape from �̌1 . If �̌1 corresponds to a sharp minimum with a large 
|∇2L(�̌1)| , the exponential term

dominates the escaping time in the following sense. Compare the SGD training with 
two different batch sizes: M1(�̌1) and M2(�̌2) with M1(�̌1) > M2(�̌2) , and the same 
learning rate 𝛾(�̌1) = 𝛾(�̌2) . It takes a longer time for the large batch SGD to escape 
from �̌1 as compared with the small batch SGD to escape from �̌2 , only if

That is, the exponential term (6) makes the effect of sharpness on the escaping time 
on a logarithm scale compared with the effect of batch size. A local minimizer of the 
risk function lies in a closed ball of a local minimizer of the training function. This 
result shows that large batch training is more likely to be trapped at sharp minima of 
the training function in the finite-time regime than small batch training. On the other 
hand, if the batch size M(�̌1) decreases, the exponential term (6) decreases, and the 
stochastic process solution �(t) will be trapped at �̌1 only when the determinant 
|∇2L(�̌1)| is small enough, as shown in Lemma 2. In words, it explains the escaping 
phenomenon that small batch training tends to escape sharp minima and converge 
to flat minima.

The escaping phenomenon in the asymptotic regime is different from that in the 
finite-time regime. However, the Eyring–Kramers formula fails when t → ∞ . We 
develop a new theory for the asymptotic regime in the following Sect. 3 and extend the 
result for momentum SGD-related SDE in Sect. 4.

(6)exp

(
H(�∗, �̌1) ⋅ 2M(�̌1)

𝛾(�̌1)𝛽(�̌1)

)

H(�∗, �̌1)M(�̌1) − H(�∗, �̌2)M(�̌2)

>
𝛾(�̌1)𝛽(�̌1)

4

[
log(|∇2L(�̌1)|) − log(|∇2L(�̌2)|)

]
.
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3  Convergence Properties for Large Batch Training

We study the stochastic process solution �(t) of the SDE (3) in the asymptotic 
regime (i.e., t → ∞).

3.1  Main Assumptions

The main assumptions are outlined as follows. 

 (A.1) The risk function L(�) is confinement in the sense that 

 (A.2) Denote by Tr(∇2L) the trace of the Hessian of L. Assume 

 (A.3) There exists a constant M
�
 , such that 

Assumptions (A.1)–(A.3) are common in the diffusion process literature, see, 
e.g., Pavliotis[24]. We show in “Appendix B.1” that (A.1)–(A.3) hold for typical 
loss functions, including the regularized mean cross-entropy and the squared loss. 
In particular, Assumption (A.1) ensures that the Gibbs density function e−L(�) is 
well defined. Assumption (A.2) guarantees the measure �(�) = ∫ e−L(�)d� satis-
fying the Poincaré inequality (see, Pavliotis[24]):

with some CP > 0 , where f is an integrable function satisfying ∫ f 2(�)d� < ∞.

Lemma 3 Under Assumption (A.1) and �(�) ≡ � , the Fokker–Planck equation (5) 
has a stationary solution in the asymptotic regime (i.e., t → ∞):

where � is a normalization constant such that ∫ p∞(�)d� = 1 , and the limiting batch 
size and learning rate are defined as M(∞) ≡ limt→∞ M(t) and �(∞) ≡ limt→∞ �(t) , 
respectively.

lim‖�‖→+∞
L(�) = +∞, ∫ e−L(�)d� < +∞.

lim‖�‖→+∞

�
1

2
‖∇L(�)‖2 − Tr(∇2L(�))

�
= +∞,

lim‖�‖→+∞

�
Tr(∇2L(�))∕‖∇L(�)‖2� = 0.

���e
−L(�)

�‖∇L(�)‖2 − Tr(∇2L(�))
���� ≤ M

�
.

(7)� ‖∇f (�)‖2d�(�) ≥ CP �
�
f (�) − � f (�)d�(�)

�2

d�(�)

p∞(�) = �e
−

2M(∞)L(�)

�(∞)� ,
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A derivation of Lemma 3 is provided in “Appendix B.2.” We remark that for a 
general �(�) , which depends on � , the existence and an explicit form of the sta-
tionary solution to the Fokker–Planck equation (5) remains an open question. We 
focus on �(�) ≡ � in this section.

3.2  Escaping Phenomenon in the Asymptotic Regime

Related works on the analysis of stochastic algorithms have studied the stationary 
solution p∞(�) ; see, e.g., Jastrzebski et al.[16]. However, it is unclear whether the 
density function p(�, t) converges to the stationary solution p∞(�) , not to men-
tion the convergence rate. Theorem 1 gives an affirmative answer to this problem, 
and it also provides new insights into the escaping phenomenon and the relation-
ship with large batch and sharp minima.

Theorem  1 Under Assumptions (A.1)–(A.3), the density function p(�, t) of �(t) 
converges to the stationary solution p∞(�) . Moreover, there exists T > 0 such that 
for any t > T ,

where the constant CP is defined in (7), and the function C(t, T) is given by

Theorem 1 is new in the literature, and its proof is given in “Appendix B.3.” 
We also provide a quantification of the constant T in “Appendix B.4.” We make 
three remarks for Theorem  1. First, the theorem verifies that p(�, t) converges 
to the stationary solution p∞(�) with an exponential convergence rate regard-
less of the initial value. This result provides theoretical support for related works 
that analyze the density function p(�, t) based on analysis of the stationary dis-
tribution p∞(�) , for example, Jastrzebski et al.[16]. Second, large batch training 
with increasing batch size converges exponentially slower. Finally, there exists a 
trade-off in choosing the batch size and learning rate, since the convergence rate 
exp(−CP ⋅ (t − T) ⋅ �(∞)�∕2M(∞)) depends on the batch size M and the learning 
rate �.

From Theorem 1, we can also characterize the limiting behavior of �(t) in the 
asymptotic regime when t → ∞.

Theorem 2 Let �̌ be a local minimizer. Then,

������
p(�, t) − p∞(�)√

p∞(�)

������

2

L2(ℝd)

≤ C(t, T)e
−

CP ⋅(t−T)⋅�(∞)�

2M(∞) ,

C(t, T) ≡ CP ⋅ (t − T) ⋅ �(∞)�

2M(∞)
+

������
p(�,T) − p∞(�)√

p∞(�)

������

2

L2(ℝd)

.
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where � ∈ ℝ
d , �j’s are eigenvalues of the Hessian∇2L(�̌) , and |∇2L(�̌)| is the deter-

minant of ∇2L(�̌) . The constants � and �(∞) are defined in Lemma 3.

The proof of Theorem 2 is given in “Appendix B.5.” To better appreciate Theo-
rem 2, we consider two local minimizers �̌1 and �̌2 which have the same value of 
L(�̌1) = L(�̌2) . Theorem 2 implies that

where the derivation is given in “Appendix B.6.” Then, Eq. (8) suggests that in the 
asymptotic regime (i.e., t → ∞ ), the probability of the stochastic process solution 
�(t) converging to a minimum with small determinant |∇2L(⋅)| is larger than that of 
converging to a minimum with large determinant |∇2L(⋅)| . In words, by Definition 1, 
�(t) is more likely to converge to flatter minima. Moreover, the ratio in (8) does not 
depend on the batch size or learning rate. The ratio only depends on the determinant 
of the Hessian at the minimum.

Theorems 1 and 2 provide new insights into the escaping phenomenon in 
Sect. 2.1. Namely, the stochastic process solution �(t) tends to converge to flatter 
minima regardless of the batch size M in the asymptotic regime t → ∞ . However, 
the convergence rate depends on the batch size. We provide experiments in Sect. 5 
to corroborate these findings for mini-batch SGD with various datasets and neural 
network models.

4  SDE Modeling for Momentum SGD

Momentum SGD (MSGD) is an effective approach of speeding up the mini-batch 
SGD; see, e.g., Qian[26], Nesterov[23], Sutskever et al.[29]. Instead of updating �k 
directly in (1), MSGD adopts the following coupled updates:

where � is the momentum parameter taking values in the range 0 < 𝜉 < 1 . In this 
section, we focus on the constant learning rate and batch size: �k ≡ � ,Mk ≡ M and 
leave the time-dependent case for future study. Let �k = �k∕

√
�  . When the step size 

is small, (�k,�k) can be approximated by the SDE (see, e.g., Li et al.[21], An et al.
[2]),

lim
𝜖→0

ℙ(��(∞) − �̌� ≤ 𝜖)

=
𝜅e−4M(∞)L(�̌)∕[𝛾(∞)𝛽]

[2M(∞)∕𝛾(∞)𝛽]d∕2�∇2L(�̌)� lim𝜖→0

⎡
⎢⎢⎣
e

2M(∞)𝜖2

𝛾(∞)𝛽

d�
j=1

����1 − exp

�
−
2M(∞)𝜖2𝜆j

𝜋𝛾(∞)𝛽

�⎤
⎥⎥⎦
,

(8)lim
𝜖→0

ℙ(|�(∞) − �̌1| ≤ 𝜖)

ℙ(|�(∞) − �̌2| ≤ 𝜖)
=

√||∇2L(�̌2)
||

||∇2L(�̌1)
||
,

�k+1 = � ⋅ �k −
�k
Mk

∑
n∈Bk

∇Ln(�k),

�k+1 = �k + �k+1.
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where �(�) is the scale of the covariance function defined in 4. The SDE modeling 
gives �(k

√
�) ≈ �k , �(k

√
�) ≈ �k , which is shown in “Appendix C.1”.

4.1  Vlasov–Fokker–Planck Equation

Denote by �(�, �, t) the joint probability density function of (�(t),�(t)) . We have 
the following characterization of �(�, �, t) from the partial differential equations lit-
erature (e.g., Pavliotis[24]) and also show the corresponding stationary solution.

Lemma 4 The probability density function �(�, �, t) satisfies the following Vlasov-
Fokker–Planck equation:

Moreover, under Assumption (A.1) and �(�) ≡ � , Eq. (9) has a stationary solution 
in the asymptotic regime (i.e., t → ∞):

where �′ is a normalization constant such that ∫ �∞d�d� = 1.

We give a proof in “Appendix C.2.” By integrating �∞(�, �) over � , we obtain 
that ∫ �∞(�, �)d� = �e

−
2M

��
(1−�)L(�) , which is similar to the stationary solution in 

Lemma 3 and implies Eq. (8) for MSGD. Hence, the stochastic process �(t) for 
MSGD-related SDE tends to converge to flatter minima regardless of the batch size 
in the asymptotic regime t → ∞ . However, we show in Sect.  4.2 that the conver-
gence rate depends on the batch size.

4.2  Escaping Phenomenon of MSGD‑Related SDE

In this section, we require an additional assumption. 

 (A.4) There exists a constant CL such that the absolute values of eigenvalues 
of the matrix {‖(∇2L̃)ij‖∞}1≤i,j≤d are bounded by a constant b > 0 , where 
L̃(�) = L(�) −

1

2
C2
L
‖�‖2 and {‖(∇2L̃)ij‖∞}1≤i,j≤d consists of the (i, j)th entry 

‖(∇2L̃)ij‖∞ ≡ sup
�
�(∇2L̃)ij�.

⎧
⎪⎨⎪⎩

d�(t) = −∇L(�(t))dt −
1 − �√

�
�(t)dt +

�1∕4√
M

√
�(W(t))d�(t),

d�(t) = �(t)dt.

(9)

�t�(�, �, t) + � ⋅ ∇
�
�(�, �, t) − ∇L(�) ⋅ ∇

�
�(�, �, t)

= ∇
�
⋅

�
1 − �√

�
��(�, �, t) +

√
��

2M
∇

�
�(�, �, t)

�
.

�∞(�, �) = ��e
−

2M

��
(1−�)

(
L(�)+

|�|2
2

)
,
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We prove in “Appendix C.3” that Assumption (A.4) holds for typical loss functions 
including the regularized mean cross-entropy and the squared loss.

Theorem  3 Under Assumption (A.1)–(A.4), the density function �(�, �, t) of 
(�(t),�(t)) converges to the stationary solution �∞(�, �) . Moreover, there exists 
T > 0 such that for any t > T ,

The parameters are specified as follows. First, CP is the Poincaré constant defined in 
(7). Define

where the constants C and Ĉ together of the decay rate � are determined by

Next, let �min be the smallest eigenvalue of the matrix P. Finally, let

and �̂� =
(1 +

√
2)b

2𝜆min

 , where b the upper bound defined in Assumption (A.4),

From Theorem  3, it is clear that the large batch training (i.e., as M increases) 
has a slower convergence as compared with the small batch training. Proof of this 
theorem is given in “Appendix C.4.” Theorem 3 is new in the literature, and it builds 
on the result for quadratic function L(�) = 1

2
C2
L
‖�‖2 in the literature (e.g., Pavlio-

tis[24]). Theorem 3 applies to general loss functions, including the regularized mean 
cross-entropy and the squared loss.

The main difficulty in the proof is that Eq. (9) is a degenerate diffusion PDE in 
the sense that it only has the diffusion on the � direction without the diffusion on the 
� direction; see an overview on the diffusion PDE in Evans[10]. We use the tools 
from hypocoercivity (Villani[30]), which links a degenerate diffusion operator and 
a conservative operator. The key idea in the proof is to construct a Lyapunov func-
tional H(t) (Villani[30]):

������
𝜓(�, �, t) − 𝜓∞(�, �)√

𝜓∞(�, �)

������

2

L2(ℝ2d)

≤ 𝛾𝛽

2Mmin{CP, d}(1 − 𝜉)𝜆min

e−2(𝜇−�̂�)tH(0).

h(�, �, t) ≡ 𝜓(�, �, t) − 𝜓∞(�, �)

𝜓∞(�, �)
and matrix P ≡

[
Id ĈId

ĈId CId

]
,

⎧⎪⎪⎨⎪⎪⎩

if
1 − 𝜉√

𝛾
< 2CL ∶ 𝜇 ≡ 1 − 𝜉√

𝛾
, C ≡ C2

L
, Ĉ ≡ 1 − 𝜉

2
√
𝛾
;

if
1 − 𝜉√

𝛾
≥ 2CL ∶ 𝜇 ≡ 1 − 𝜉√

𝛾
−

�
(1 − 𝜉)2

𝛾
− 4C2

L
, C ≡ (1 − 𝜉)2

2𝛾
− C2

L
, Ĉ ≡ 1 − 𝜉

2
√
𝛾
.

H(0) = ∫ [∇
�
h(�, �, 0),∇

�
h(�, �, 0)]⊤P[∇

�
h(�, �, 0),∇

�
h(�, �, 0)]𝜓∞d�d�,

H(t) = ��∇�
h��2∗ + C��∇�

h��2∗ + 2Ĉ⟨∇
�
h,∇

�
h⟩∗,
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where ⟨h, g⟩∗ ≡ ∫ hg�∞d�d� and ‖h‖∗ is the corresponding norm. The above equa-
tion can be equivalently written as,

where C, Ĉ are constants to be determined. Note that

which implies following inequality with some constant C̃,

and the exponential decay of H(t). Finally, the relationship between H(t) and h(t) in 
(10) leads to the exponential decay for ‖h(t)‖2

∗
 as required for Theorem 3.

5  Numerical Experiments

We perform experiments using various datasets and deep learning models to cor-
roborate theoretical findings in Sects. 2–4.

5.1  Escaping Phenomenon for Mini‑Batch SGD

We consider three different neural network models: (1) a four-layer multilayer per-
ception (MLP) with ReLU activation function and batch normalization (Ioffe and 
Szegedy[15]); (2) a shallow convolutional network N1; and (3) a deep convolutional 
network N2. The N1 network is a modified AlexNet configuration (Krizhevsky et al.
[19]), and the N2 network is a modified VGG configuration (Simonyan and Zisser-
man[27]). We test and train the MLP with the MNIST dataset (LeCun et al.[20]), 
and N1 and N2 with the CIFAR-10 dataset, using the mean cross-entropy as the 
loss function. Details on the networks and dataset are given in “Appendix D.” We 
study the escaping phenomenon of the mini-batch SGD with four pairs of learning 
rate and batch size: (� ,M) = (0.1, 64), (0.1, 128),  (0.2, 256),  (0.2, 512). A total of 
100 epochs for each (� ,M) are trained, where the training loss stops decreasing. We 
repeat each experiment 100 times and average the results in Fig. 3. Due to the high 
computational cost for computing the determinant of Hessian, we use the Frobe-
nius norm of Hessian as a substitute, similar to Wu et al.[31]. A smaller y-value in 
Fig.  3 indexes a flatter minimum. The x-axis denotes the number of steps, which 
equals the number of epoch ∗ N∕M , where N is the training sample size, and M is 
the batch size.

Figure 3 shows that under the same learning rate, the large batch training con-
verges to sharper minima, for example, comparing the red solid curves with the blue 
dashed curves for all three plots, which agrees with Lemma 2. The mini-batch SGD 

(10)H(t) = ∫ [∇
�
h,∇

�
h]⊤P[∇

�
h,∇

�
h]𝜓∞d�d�, with P =

[
Id ĈId

ĈId CId

]
.

d

dt
H(t) =

d

dt

���∇�
h��2∗ + C��∇�

h��2∗
�
+ 2Ĉ

d

dt
⟨∇

�
h,∇

�
h⟩∗,

dtH(t) + C̃H(t) ≤ 0,
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with the same �∕M ratio follows a similar dynamic trajectory in terms of sharpness, 
consistent with the result of the SDE modeling in Lemma 3.

Theorem 1 shows that the large batch training converges to a flat minimum slower 
compared with the small batch training in the asymptotic regime. This is clear from 
Fig. 3. For example, the black dash–dot curve in the right plot takes 10,000 steps 
to converge at a minimum of y = 58 , while the green dotted curve only takes 4000 
steps to achieve it. On the other hand, for any batch size, SGD is more likely to satu-
rate with a flatter minimum. For example, in the average case, the black curve in the 
right plot explores minima with a y-values range from 58 to 71 while it ends up with 
a minimum of y = 58 , which corroborates Theorem 2.

5.2  Escaping Phenomenon for Momentum SGD

We empirically study the escaping phenomenon for momentum SGD. We use the 
three neural network models as Sect.  5.1: MLP, convolutional network N1, and 
deep convolutional network N2, which are trained with MNIST, CIFAR-10, and 
CIFAR-10, respectively. We consider four pairs of momentum parameter and batch 
size: (�,M) = (0.9, 64), (0.9, 128), (0.99, 64), (0.99, 128) , while the learning rate is 
� = 0.1 . A total of 100 epochs for each (�,M) are trained, where the training loss 
stops decreasing near the ending of the training. We repeat each experiment 100 
times and average the results in Fig. 4.

Figure 4 shows that under the same momentum parameter, the large batch train-
ing converges to sharp minima. In the asymptotic regime, Theorem  3 shows that 
the large batch training converges to a flat minimum slower compared to the small 
batch training, which is clear from Fig. 4. For example, the blue dashed curve in the 
middle plot takes 8000 steps to converge at a minimum of y = 110 , while the red 
solid curve only takes 2000 steps to achieve it. This phenomenon is robust to the 
momentum parameter (e.g., � = 0.9 or 0.99). On the other hand, Theorem 3 suggests 
there is no monotonic rule for tuning the momentum parameter � since both �min 
and � depend on � . We observe a similar pattern in Fig. 4. While � = 0.99 leads the 

Fig. 3  Log of Frobenius norm of Hessian as a function of steps. The left plot is four-layer batch-normal-
ized MLPs with MNIST dataset. The middle plot is convolutional network N1 with CIFAR-10 dataset. 
The right plot is deep convolutional network N2 with CIFAR-10 dataset. Four (� ,M) pairs are studied: 
(0.1, 64),  (0.1, 128),  (0.2, 256), and (0.2, 512), which are denoted in red, blue, green, and black, respec-
tively. The plots show the averaged results of 100 experiments for each of the four (� ,M) pairs
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momentum SGD to converge to flatter minima for MLP and N1 networks, � = 0.99 
ends up with sharper minima for N2.

6  Related Work

Our work continues the line of research on the geometry of SGD, see, for exam-
ple, Bottou et  al.[4] for a comprehensive review. In particular, our interest lies in 
the role of large batch size and the sharpness of minima found in terms of gener-
alization; see, e.g., Goyal et al.[11], Hoffer et al.[14] and Keskar et al.[17]. In par-
ticular, Keskar et al.[17] find, based on empirical experiments, that the large batch 
training tends to converge to a sharp minimum. Goyal et  al.[11] and Hoffer et  al.
[14] observed through experiments that training for more epochs and scaling up the 
learning rate give good generalization when using large batch size. This paper is 
complementary to the existing works in this direction. Motivated by partial differ-
ential equation theory, we define the sharpness in terms of the determinant of the 
Hessian, which provides a new perspective into the discussion on the definition of 
the sharpness (e.g., Dinh et al.[9]). We explain the dynamic of the convergence and 
escaping phenomenon theoretically and empirically relating to the batch size for 
mini-batch SGD and momentum SGD.

Several authors have developed the relationship between SGD and sampling a 
posterior distribution via stochastic Langevin methods; see, e.g., Chaudhari et  al.
[7], Mandt et al.[22]. In particular, Mandt et al.[22] study SGD using an approxi-
mate Bayesian inference method in a locally convex setting. The modeling of SGD 
as a continuous-time stochastic process can also be achieved using SDE; see, e.g., 
Chaudhari and Soatto[8], Li et al.[21] and Smith and Le[28]. In particular, Li et al.
[21] rigorously derive an approximation error of SDE solution to SGD in the finite-
time regime. Smith and Le[28] use Bayesian principles to relate the generalization 
error with the batch size. Chaudhari and Soatto[8] discuss the stationary non-equi-
librium solution for the stochastic differential equation. They allow the gradient 

Fig. 4  Log of Frobenius norm of Hessian as a function of steps. The left plot is four-layer batch-nor-
malized MLPs with MNIST dataset. The middle plot is convolutional network N1 with the CIFAR-10 
dataset. The right plot is deep convolutional network N2 with the CIFAR-10 dataset. Four (�,M) pairs 
are studied: (0.9, 64),  (0.9, 128),  (0.99, 64), and (0.99, 128), which are denoted in red, blue, green, and 
black, respectively. The plots show the averaged results of 100 experiments for each of the four (�,M) 
pairs



1 3

Journal of Statistical Theory and Practice (2020) 14:53 Page 15 of 31 53

noise to be non-isotropic but require additional conditions to enforce the stationary 
distribution to be path-independent. Instead, we strictly focus on the convergence 
rate of the SDE solution to the stationary distribution with isotropic noise. This 
approach allows us to explore the dynamics of the convergence relating to the batch 
size and sharp minima. The results are verified empirically with various datasets and 
deep neural network models.

We discuss the Fokker–Planck equation and its variant, which modelings have 
appeared in the machine learning literature. Heskes and Kappen[13] derive a Gibbs 
distribution in the online setting. Jastrzebski et  al.[16] discuss how the width and 
height of minima correlate with the learning rate to batch size ratio, but they focus 
on the stationary equilibrium distribution. Our result also shows that the ratio of 
learning rate to batch size correlates with the sharpness of minima (e.g., Lemma 3) 
in the stationary solution. In contrast to other work, we derive new results on the 
dynamic trajectory of the Fokker–Planck solution, including the convergence rate in 
terms of the batch size, which provides new insights into the escaping phenomenon 
for mini-batch SGD and momentum SGD.

7  Conclusion

We study the convergence rate of the SDE solution to the stationary distribution, 
which is new in the literature. It allows us to explore the dynamics of the escap-
ing phenomenon and the relationship with the batch size and sharp minima. The 
perspective from the Fokker–Planck equation and its variant provide novel insights 
into the escaping phenomenon for mini-batch SGD and momentum SGD. Namely, 
the stochastic process solution tends to converge to flatter minima regardless of the 
batch size in the asymptotic regime. However, the convergence rate depends on the 
batch size. These results are validated theoretically and empirically with various 
datasets and deep neural network models.

We made the isotropic assumption on the covariance of the gradients, which is to 
derive a closed-form for the convergence rate of the SDE solution to the stationary 
distribution. It is of interest to study whether the practical techniques such as batch 
normalization would give a covariance of the gradients close to the isotropy. We also 
leave the study of extending this paper to anisotropic covariance structure for future 
work. Finally, the derived asymptotic dynamic reflects the transition dynamics of 
the SDE, which is an idealization of SGD. For the asymptotic regime to directly 
represent the SGD escape dynamics, one requires the additional uniform-in-time 
approximation of SGD by SDE, which remains an open question for non-convex 
loss functions.

Appendix A: Proofs for Section 2

Appendix A.1: Mean and Variance for Random Error Vector

By the mean value theorem with some �(h) ∈ (0, h),
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By the continuity of ∇Ln and the dominated convergence theorem,

Hence, �k has mean 0. Since the independent and uniform sampling for the mini-
batch Bk , we have Var[�k] = �

2(�) as desired.
We remark that a different view of sampling distribution has been adopted in the 

literature, for example Jastrzebski et al.[16] and Li et al.[21], where the expectation 
and variance are taken with respect to the sampling distribution of drawing the mini-
batch Bk from {1,… ,N} . On the contrary, we use the sampling distribution with 
respect to the joint distribution of the underlying population, since our interest is the 
risk function L(⋅) instead of the sample average loss

and we regard the training data only a subset of the underlying population.

Appendix A.2: Proof of Lemma 1

We first consider a special case that �(�) ≡ � is a constant and derive the Fok-
ker–Planck equation by following Kolpas et al.[18]. If �(t) = W(t) ∈ ℝ , W(t) is a 
Markov process and the Chapman–Kolmogorov equation gives the conditional prob-
ability density function for any t1 ≤ t2 ≤ t3,

Denote the integral

where h(w) is a smooth function with compact support. Observe that

Letting Z be an intermediate point between w and W. Applying the Chapman–Kol-
mogorov identity on the right hand side yields

∇L(�) =
d

d�
�[Ln(�)]

= lim
h→0

1

h

{
�[Ln(� + h)] − �[Ln(�)]

}

= lim
h→0

�

{
Ln(� + h) − Ln(�)

h

}
= lim

h→0
�
{
∇Ln(� + �(h))

}
.

lim
h→0

�
{
∇Ln(� + �(h))

}
= �

{
lim
h→0

∇Ln(� + �(h))
}
= �

{
∇Ln(�)

}
.

1

N
[L1(⋅) +⋯ + LN(⋅)],

p
(
W(t3)|W(t1)

)
= ∫

+∞

−∞

p
(
W(t3)|W(t2) = w

)
p
(
W(t2) = w|W(t1)

)
dw.

(11)I(h) = ∫
+∞

−∞

h(w)�tp(w, t|W)dw,

∫
+∞

−∞

h(w)�tp(w, t|W)dw = lim
Δt→0∫

+∞

−∞

h(w)

(
p(w, t + Δt|W) − p(w, t|W)

Δt

)
dw.
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By changing the order of integrations in the first term and letting w approach Z in 
the second term, we obtain that

Expand h(w) as a Taylor series about Z, we can write the above integral as

Now we define the function

We can write the integral I(h) defined in (11) as

Taking the integration by parts n times gives

Let D(1)(w) = −L(w) , D(2)(w) = −�(t)�∕[2M(t)] and D(n)(w) = 0 for all n ≥ 3 . Then, 
the above equation yields

which is the Fokker–Planck equation in one variable. For the multidimensional case 
that � = (W1,W2,… ,Wp) ∈ ℝ

p , we similarly generalize the above procedure to get

Since �(0) = �0 , p(�, 0) = �(�0) . This completes the derivation of the Fok-
ker–Planck equation for constant �(�) = �.

For deriving (5) with general �(�) , we can simply apply (12) together with the 
fact that

lim
Δt→0

1

Δt

(
∫

+∞

−∞

h(w)∫
+∞

−∞

p(w,Δt|Z)p(Z, t|W)dZdw − ∫
+∞

−∞

h(w)p(w, t|W)dw

)
.

lim
Δt→0

1

Δt

(
∫

+∞

−∞

p(Z, t|W)∫
+∞

−∞

p(w,Δt|Z)(h(w) − h(Z))dwdZ

)
.

lim
Δt→0

1

Δt

(
∫

+∞

−∞

p(Z, t|W)∫
+∞

−∞

p(w,Δt|Z)
∞∑
n=1

h(n)(Z)
(w − Z)n

n!

)
dwdZ.

D(n)(Z) =
1

n!

1

Δt ∫
+∞

−∞

p(w,Δt|Z)(w − Z)ndw.

∫
+∞

−∞

h(w)�tp(w, t|W)dw = ∫
+∞

−∞

p(Z, t|W)

∞∑
n=1

D(n)(Z)h(n)(Z)dZ.

�tp(w, t) =
∞∑
n=1

−
�n

�Zn

[
D(n)(Z)p(Z, t|W)

]
.

�tp(w, t) =
�
�w

[
∇L(w)p(w, t)

]
+

�

�w2

[
�(t)�

2M(t)
p(w, t)

]
,

(12)
�tp(�, t) =

p∑
i=1

�
�wi

[
∇L(�)p(�, t)

]
+

p∑
i=1

�2

�w2
i

[
�(t)�

2M(t)
p(�, t)

]

= ∇ ⋅

(
∇L(�)p +

�(t)�

2M(t)
∇p

)
.
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This completes the proof.

Appendix B: Proofs for Section 3

Appendix B.1: Discussion on Main Assumptions (A.1)–(A.3)

We show that Assumptions (A.1)–(A.3) hold for the squared loss and the regularized 
mean cross-entropy loss. Denote by {(�n, yn), 1 ≤ n ≤ N} the set of training data. With-
out loss of generality, let Var[yn|�n] = 1 . First, we consider the squared loss with the 
corresponding risk function

where �0 is the true parameter vector. Since Var[∇Ln(�)] ≡ �
2(�) is positive defi-

nite, we have

where �min{⋅} denotes the minimal eigenvalue. Note that

Hence, Assumption (A.1) holds. To prove (A.2), note that

Similar to (13), we can prove that

This finishes the proof for Assumption (A.2). Finally, (A.3) can be shown similarly 
by following the proof for (A.2) and we omit the details.

Next, we consider the mean cross-entropy loss with the l2-penalty for the logistic 
regression. Without loss of generality, we consider the binary classification:

with ŷn = (1 + e−�⋅�n)−1 . Note that

∇

[
�(t)�(�)

2M(t)
p

]
= ∇

[
�(t)�(�)

2M(t)

]
p +

�(t)�(�)

2M(t)
∇p.

L(�) =
(
� − �

0
)⊤
�
[
�n�

⊤
n

](
� − �

0
)
+ 1,

(13)
lim‖�‖→+∞

L(�) ≥ lim‖�‖→+∞
𝜆min

�
�
�
�n�

⊤
n

��‖� − �
0‖2 + 1

≥ lim‖�‖→+∞
𝜆min

�
�
�
�n�

⊤
n

���‖�‖2∕2 − ‖�0‖2∕2� + 1 = +∞,

� e−L(�)d� = � exp
�
−(� − �

0)⊤�[�n�
⊤
n
](� − �

0) − 1
�
d�

≤ � exp
�
−𝜆min{�[�n�

⊤
n
]}[‖�‖2∕2 − ‖�0‖2∕2] − 1

�
d� < +∞.

‖∇L(�)‖2∕2 = 2
�
� − �

0
�⊤�

�
�
�n�

⊤
n

��2�
� − �

0
�
, Tr

�
∇2L(�)

�
= Tr

�
�
�
�n�

⊤
n

��
.

lim‖�‖→+∞

�‖∇L(�)‖2∕2 − Tr(∇2L(�))
�
= +∞, lim‖�‖→+∞

�
Tr(∇2L(�))∕‖∇L(�)‖2� = 0.

L(�) = �[−yn log ŷn − (1 − yn) log(1 − ŷn)] + �‖�‖2
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which proves (A.1). For (A.2), since

and

we have

Similarly, Assumption (A.3) can be verified as by following the proof for (A.2).

Appendix B.2: Proof of Lemma 3

By Assumption (A.1), the density function p∞(�) ≡ �e−2M(∞)L(�)∕[�(∞)�] is well-
defined. Moreover, p∞(�) satisfies

Hence, p∞(�) is a stationary solution to Fokker–Planck equation (5) by letting 
�tp(�, t) = 0.

Appendix B.3: Proof of Theorem 1

Parallel to the notation p∞(�) = � exp(−
2M(∞)L(�)

�(∞)�
) in Lemma 3, we define

where

and �(t) is a time-dependent normalization factor such that

We can rewrite (5) as

Let

lim‖�‖→+∞
L(�) ≥ 𝜆‖�‖2 = +∞, � e−L(�)d� ≤ � e−𝜆‖�‖2d� < +∞

∇L(�) = �[−�nyn + �n∕(1 + e−�⋅�n )] + 2��,

Tr(∇2L(�)) = �

[
e−�⋅�n

(1 + e−�⋅�n)2
Tr(�n�

⊤
n
)

]
+ 2𝜆d,

‖∇L(�)‖2∕2 − Tr(∇2L(�)) → ∞, Tr(∇2L(�))∕‖∇L(�)‖2 → 0, as ‖�‖ → ∞.

∇ ⋅
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(
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2M(∞)

)
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]
= 0.

p̂(�, t) ≡ 𝜅(t) exp (−𝜂(t)L(�)),

(14)�(t) ≡ 2M(t)∕[�(t)�],

∫ p̂(�, t)d� = 1.

(15)𝜕tp =
1

𝜂
∇

�
⋅

(
p̂∇

�

(
p

p̂

))
.
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Then

Denote by h(�, t) the scaled distance between p(�, t) and p∞(�):

which satisfies the following equation:

Here, 𝛿 is defined as 𝛿(t) = 𝜂(t) − 𝜂(∞) , where �(∞) = limt→∞ �(t) . We multiply h 
to the both sides of (16) and integrate them over � . Using the integration by parts, 
we can obtain

We study the parts I, II, III in the right-hand side of above equation separately.
For the part I, note that

Hence, Assumption (A.3) yields that

which implies that an upper bound of part I in (17):

�(t,�) ≡ �(t)

�
exp (L(�)(�(∞) − �(t))).

p̂(t,�) = p∞(�)𝛿(t,�).

h(�, t) ≡ p(�, t) − p∞(�)√
p∞(�)

,

(16)

𝜕th =
1

𝜂
√
p∞

∇
�
⋅

�
p̂∇

�

�
1

𝛿
+

h√
p∞𝛿

��

=
1

𝜂
√
p∞

∇
�
⋅

�
p∞

�
∇

�
L𝛿 + ∇

�
L𝛿

�
h√
p∞

�
+ ∇

�

�
h√
p∞

���
.

(17)

1

2
𝜕t‖h‖2 = 𝛿

𝜂∫
h√
p∞

∇
�
⋅

�
p∞∇�

L
�
d�

�������������������������������������
I

+
𝛿
𝜂∫

1

2

������
h√
p∞

������

2

∇
�
⋅

�
p∞∇�

L
�
d�

�����������������������������������������������
II

−
1

𝜂∫ p∞

������
∇

�

�
h√
p∞

�������

2

d�

�����������������������������������
III

.

∇
�
⋅

(
p∞∇�

L
)
= p∞

(
∇

�
⋅ ∇

�
L − �(∞)‖‖∇�

L‖‖2
)
.

|||∇�
⋅

(
p∞∇�

L
)||| ≤ p2∕3

∞
max{1, �(∞)}M(∞),
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For the part II, note that Assumption (A.3) gives

which together with Assumption (A.2) implies that

Thus, there exists a constant R, such that

Hence,

By the continuity of L(�) , there exists a constant C2 such that

Therefore, we have the following upper bound for the part II in (17):

By combining the estimates for the parts I and II, we have

where C1 =
1

2
max{1, �(∞)}max

{∫ p
1∕3
∞ d�, 1 + C2∕2

}
M(∞).

For the part III, note that Assumption (A.2) implies the following Poincaré inequal-
ity (see, e.g.,[24]),

We need to show that

The (19) can be proven using the conservation of mass. In particular, if we integrate 
(15) over � and use the integration by parts,

I ≤ max{1, �(∞)}M(∞)

2

�
‖h‖2 + � p1∕3

∞
d�

�
.

lim‖�‖→∞

∇
�
⋅ ∇

�
L

2�(∞)��∇�
L��2

= 0,

lim‖�‖→∞

��∇�
L��2 → +∞.

∇
�
⋅ ∇

�
L − 2𝜂(∞)��∇�

L��2 ≤ 𝜂(∞), 𝜂(∞)��∇�
L��2 ≥ 𝜂(∞), for ∀‖�‖ > R.

∇
�
⋅ ∇

�
L − 𝜂(∞)��∇�

L��2 ≤ 0, for ∀‖�‖ > R.

���∇�
⋅ ∇

�
L − 𝜂(∞)��∇�

L��2��� ≤ C2, for ∀‖�‖ < R.

�II� ≤ C2

2
‖h‖2.

I + II ≤ C1‖h‖2 + C1,

(18)�
������
∇

�

�
h√
p∞

�������

2

p∞ d� ≥ CP �
�

h√
p∞

− � h
√
p∞d�

�2

p∞ d�.

(19)∫ h
√
p∞ d� = 0.
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which implies ∫ h
√
p∞ d� = ∫ p d� − ∫ p∞ d� = 0 . Combining (18) with (19) 

gives a lower bound for the part III:

Combining () and () gives

Since 𝜂(t) → 𝜂(∞) > 0 as t → ∞ , there exists some T large enough and for ∀t > T ,

Plugging 𝛿 ≤ CP∕3C1 into (20), we have

Note that (21) also implies that 2�(∞)∕3 ≤ �(t) ≤ 4�(∞)∕3 . Thus,

Plugging back to (22), we arrive at

Integrating the above equation from T to t > T  , we have

By Gronwall’s Inequality, we finally get

This completes the proof.

Appendix B.4: Quantification of T in Theorem 1

We quantify T by giving a condition that a minimum T should satisfy. From the 
proof in Sect. 3, it is clear that T should be large enough such that for all t > T ,

�t

(
∫ p(�, t) d�

)
= 0,

III ≥ CP‖h‖2.

(20)1

2
𝜕t‖h‖2 +

CP

𝜂
‖h‖2 ≤ C1𝛿

𝜂

�‖h‖2 + 1
�

(21)𝛿 = |𝜂(t) − 𝜂(∞)| ≤ min

{
𝜂(∞)

3
,
CP

3C1

}
.

(22)
1

2
𝜕t‖h‖2 +

2CP

3𝜂
‖h‖2 ≤ CP

3𝜂
, for ∀t > T .

2CP

3�
≥ CP

2�(∞)
,

CP

3�
≤ CP

2�(∞)
.

1

2
𝜕t‖h‖2 +

CP

2𝜂(∞)
‖h‖2 ≤ CP

2𝜂(∞)
, for ∀t > T .

‖h(t)‖2 ≤
�
‖h(T)‖2 + CP

�(∞)
(t − T)

�
−

CP

�(∞) �
t

T

‖h(s)‖2ds.

‖h(t)‖2 ≤
�

CP

�(∞)
(t − T) + ‖h(T)‖2

�
exp

�
−

CP

�(∞)
(t − T)

�
.
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where �(t) is defined in (14) and �(∞) = limt→∞ �(t) , and

and C2 > 0 is an upper bound for |||∇�
⋅ ∇

�
L − �(∞)‖‖∇�

L‖‖2||| in the bounded domain 
{‖�‖ < R} such that

Appendix B.5: Proof of Theorem 2

Denote by P𝜖(�̌) = ℙ(‖�(∞) − �̌‖ ≤ 𝜖) the probability that �(∞) is trapped in an 
�-neighborhood of the minimum �̌ . Recall the probability density function of �(∞) 
is p∞(�) . Then,

where �(t) is defined in (14) and �(∞) = limt→∞ �(t) . Since �̌ is a local mini-
mum of L(�) , ∇2L(�̌) is positive definite. There exists an orthogonal matrix O 
and diagonal matrix F such that ∇2L = O�FO . For simplicity, we assume that 
∇2L = F = diag(�min,⋯ , �d) . Then,

where Φ(⋅) is the cumulative density function for standard normal distribution. The 
first equality is from the change of variable by writing � − �̌ as � . The second 
equality is from changing �(∞)�j�j to �j . Using the approximation of the cumula-
tive density function in Pólya[25], we can simplify the above equation as

|�(t) − �(∞)| ≤ min

{
�(∞)

3
,
CP

3C1

}
,

C1 =
M

2
max{1, �(∞)}max

{
∫ p1∕3

∞
d�, 1 +

C2

2

}
,

∇
�
⋅ ∇

�
L − 𝜂(∞)��∇�

L��2 ≤
�

0, for ∀‖�‖ > R,

C2, for ∀‖�‖ < R.

P𝜖(�̌) = �‖�−�̌‖2≤𝜖2
𝜅e−𝜂(∞)L(�)d�

= �‖�−�̌‖2≤𝜖2
𝜅 exp

�
−𝜂(∞)[L(�̌) + (� − �̌)�∇2L(�̌)(� − �̌) + o{(� − �̌)2}]

�
d�,

lim
𝜖→0

P𝜖(�̌)

= lim
𝜖→0

�
𝜅e−𝜂(∞)L(�̌) �‖�‖2≤𝜖2

d�
j=1

e−𝜂(∞)𝜆jwjd�

�
e𝜂(∞)𝜖2
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⎢⎢⎢⎣
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1�
𝜂(∞)𝜆j

�
𝜖
√

𝜂(∞)𝜆j

−𝜖
√

𝜂(∞)𝜆j

e−w
2

dw

⎤⎥⎥⎥⎦
e𝜂(∞)𝜖2
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�
𝜅𝜂(∞)−d∕2e−𝜂(∞)L(�̌)

d�
j=1

1√
𝜆j
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𝜖
�

𝜂(∞)𝜆j
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− Φ

�
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�
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���
e𝜂(∞)𝜖2 ,
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We complete the proof.

Appendix B.6: Proof of Equation 8

Denote by �k
j
 ’s are eigenvalues of the Hessian ∇2L(�̌k) , k = 1, 2 and j ≥ 1 . By Theo-

rem 2 and L(�̌1) = L(�̌2) , we have that

where �(t) is defined in (14) and �(∞) = limt→∞ �(t).

Appendix C: Proofs for Section 4

Appendix C.1: Derivation of SDE for MSGD

For constant learning rate and batch size: �k ≡ � ,Mk ≡ M , we rewrite the MSGD as

Let �k = �k∕
√
�  . We have the approximation for MSGD

lim
𝜖→0

P𝜖(�̌) = lim
𝜖→0

�
𝜅e−2𝜂(∞)L(�̌)

𝜂(∞)d∕2

d�
j=1

�
1 − e−𝜖

2𝜂(∞)𝜆j∕𝜋

𝜆j

�
e𝜂(∞)𝜖2

=
𝜅e−2𝜂(∞)L(�̌)

𝜂(∞)d∕2�∇2L(�̌)� lim𝜖→0

�
e𝜂(∞)𝜖2

d�
j=1

√
1 − e−𝜖

2𝜂(∞)𝜆j∕𝜋

�
.

lim
𝜖→0

ℙ(|�(∞) − �̌1| ≤ 𝜖)

ℙ(|�(∞) − �̌2| ≤ 𝜖)
=

||∇2L(�̌2)
||

||∇2L(�̌1)
||

√√√√√√√√√lim
𝜖→0

d∏
j=1

1 − exp

(
−

𝜖2𝜂(∞)𝜆1
j

𝜋

)

1 − exp

(
−

𝜖2𝜂(∞)𝜆2
j

𝜋

)

=
||∇2L(�̌2)

||
||∇2L(�̌1)

||
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||

||∇2L(�̌1)
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,

�k+1√
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=
�k√
�
+
√
�

�
−
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�
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�
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√
�

�
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�
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M
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�k+1 = �k +
�k+1√
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√
� .
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�
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√
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√
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where �(�) is the covariance function defined in (4). Hence, MSGD is approximated 
as the Euler–Maruyama discretization for the following SDE,

where �k ≈ �(k
√
�) , �k ≈ �(k

√
�).

Appendix C.2: Proof of Lemma 4

We give a formal derivation, which is similar to the procedure in Pavliotis[24]. Let 
�(⋅, ⋅) be any bivariate function in C∞ with a compact support. Using the Itô ’s formula,

By taking the expectation of the above equation and integrating it over the range 
[t, t + h] , we obtain that

Let �(�, �, t) be the joint probability density function of (�(t),�(t)) . The above 
equation can also be written as

Then, using the integration by parts and letting h → 0 gives

which is satisfied for any test functions. Therefore, the density function �(�, �, t) 
satisfies

⎧
⎪⎨⎪⎩

d�(t) = −∇L(�(t))dt −
1 − �√

�
�(t)dt +

�1∕4√
M

√
�(�(t))d�(t),
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M

√
�∇

�
⋅ ∇

�
�d�(t)

+

�
�(t) ⋅ ∇

�
� +

�
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1 − �√
�
�(t)

�
⋅ ∇

�
� +

�1∕2

2M
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�
⋅ ∇

�
�

�
dt.

1

h
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h ∫
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t
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�
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�
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�
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1
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∫
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�
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�
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�
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�
� +
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2M
∇

�
⋅ ∇

�
�

�
�(�, �, s) d� d� ds.
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�
� + ∇L(�) ⋅ ∇

�
� + ∇
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∇
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which agrees with (9).
Next, we can verify that �∞(�, �) is a stationary solution of the Vlasov-Fok-

ker–Planck equation (9) by a direct calculation as “Appendix B.2”.

Appendix C.3: Discussion on Assumption (A.4)

We show that Assumption (A.4) holds for the squared loss and the regularized 
mean cross-entropy loss. Denote by {(�n, yn), 1 ≤ n ≤ N} the set of training data. 
Without loss of generality, let Var[yn|�n] = 1 . For the squared loss,

where �0 is the true parameter vector. By a direct calculation,

Since the eigenvalues of the design matrix �[�n�⊤n ] are bounded, the eigenvalues of 
∇2L̃(�) are bounded for any CL . Hence, Assumption (A.4) holds for the squared loss.

Nest, we consider the regularized mean cross-entropy loss for the logistic 
regression. Similar to “Appendix B.1,” letting CL =

√
2� yields that

The (i, j)th entry of the Hessian ∇2L(�) is

where xni is the ith element of �n . Then,

which implies that there exists finite constant bij > 0 such that ‖(∇2L(�))ij‖∞ ≤ bij 
and the largest row sum of the matrix {‖(∇2L)ij‖∞}1≤i,j≤d is upper bounded by 
b ≡ maxi(

∑
j bij) . Since the largest eigenvalue of a non-negative matrix is upper 

bounded by its largest row sum, the eigenvalues of {‖(∇2L)ij‖∞}1≤i,j≤d are bounded 
by b. Hence, Assumption (A.4) also holds for the regularized mean cross-entropy 
loss.

Appendix C.4: Proof of Theorem 3

Recall the function defined in Theorem 3:

�t� + � ⋅ ∇
�
� − ∇L(�) ⋅ ∇

�
� = ∇

�
⋅

�
1 − �√

�
�� +

�1∕2�(�)

2M
∇

�
�

�
,

L̃(�) =
�
� − �

0
�⊤
�[�n�

⊤
n
]
�
� − �

0
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+ 1 −

1

2
C2
L
‖�‖2,

∇2L̃(�) = 2�[�n�
⊤
n
] − C2

L
.

L̃(�) = �[−yn log�yn − (1 − yn) log(1 −�yn)].

(∇2L(�))ij = �

[
xnixnj

e−�⋅�n

(1 + e−�⋅�n)2

]
,

(∇2L(�))ij → 0 as ‖�‖ → ∞,
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which is the weighted fluctuation function around the stationary solution �∞(�, �) . 
Then, h(�, �, t) satisfies the following partial differential equation,

where

Also recall the norm ‖⋅‖∗ defined in Theorem 3:

Lemma 5 One have the following properties for the operator T ,F : 

(1) ⟨Tf , g⟩∗ = −⟨f , Tg⟩∗,
(2) ⟨Tf , f ⟩∗ = 0,

(3) ⟨Ff , g⟩∗ = −
�1∕2�

2M
⟨∇

�
f ,∇

�
g⟩∗.

This lemma can be verified by direct calculations, and we omit the details. These 
properties of operators F, T  will be frequently used later.

Lemma 6 For the positive definite matrix P defined in (10), the function h(t,�, �) 
satisfies

where the modified risk function L̃ is defined in Assumption (A.4), and

Proof Taking the gradient ∇
�
 to (23) and multiplying it by ∇

�
h�∞ gives

Them, applying Lemma 5 yields,

h(�, �, t) ≡ �(t,�, �) − �∞(�, �)

�∞(�, �)
,

(23)�th + Th = Fh,

T = � ⋅ ∇
�
− ∇L(�) ⋅ ∇

�
is the transport operator;
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2M
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∇
�
⋅

(
�∞∇�

)
is the Fokker Planck operator.
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∗
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�
h,∇

�
h]K[∇

�
h,∇
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L
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L
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L
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By Assumption (A.4), we have

Similarly, taking the gradient ∇
�
 to (23), multiplying it by ∇

�
h�∞ and applying 

Lemma 5 gives,

Taking the gradient ∇
�
 to (23) and multiply it by ∇

�
h�∞ , then taking the gradient 

∇
�
 to (23) and multiply it by ∇

�
h�∞ , and combine the results gives,

Finally, (25) + C⋅(26) + 2 ̂C⋅ (25) yields

where function H(t) and the positive definite matrix P are defined in (10). The posi-
tive definite property of P implies that

which together with (28) complete the proof.   ◻

Lemma 7 For P, K defined in (10) and (24), respectively, there exists � , C, and Ĉ 
such that

where value of � , C, Ĉ can be quantifies as follows:
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This lemma can be verified by direct calculations and we omit the details. We 
now go back to the proof of Theorem 3.

Proof of Theorem 3 By Lemmas 6, 7, and Assumption (A.4), we obtain

Let �min be the smallest eigenvalue of the positive definite matrix P, we have

which implies

where �̂� =
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√
2

2

b

𝜆min

 . Solving the above inequality yields,

Inserting this inequality to (29) gives

Besides, the Poincaré inequality w.r.t. the measure �∞(�, �) is

Inserting it back to (30) leads to,
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, Ĉ ≡ 1 − 𝜉

2
√
𝛾
;

when
1 − 𝜉√

𝛾
≥ 2CL ∶ 𝜇 ≡ 1 − 𝜉√

𝛾
−

�
(1 − 𝜉)2

𝛾
− 4C2

L
, C ≡ (1 − 𝜉)2

2𝛾
− C2

L
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Appendix D: Networks and Dataset Used in Sect. 5.1

The N1 network is a shallow convolutional network, which is a modified AlexNet 
configuration (Krizhevsky et al.[19]). Let n × [a, b, c, d] denote a stack of n con-
volution layers of a filters and a Kernel size of b × c with stride length of d. Then, 
N1 network uses two sets of [65,  5,  5,  2]–MaxPool(3) and two dense layers of 
sizes (384, 192), and finally an output layer of size 10. We use ReLU activations.

The N2 network is a deep convolutional network, which is a modified VGG 
configuration (Simonyan and Zisserman[27]). The N2 network uses the con-
figuration: 2 × [64, 3, 3, 1] , 2 × [128, 3, 3, 1] , 3 × [256, 3, 3, 1] , 3 × [512, 3, 3, 1] , 
3 × [512, 3, 3, 1] and a MaxPool(2) after each stack. This stack is followed by a 
512-dimensional dense layer and finally, a ten-dimensional output layer. We use 
ReLU activations.

The MNIST dataset (LeCun et  al.[20]) contains 60,000 training images and 
10,000 testing images, where each image is black and white and normalized to fit 
into a 28 × 28 pixel bounding box and it belongs to one of total ten classes of hand-
written digits (i.e., 0, 1, 2,… , 10).

The CIFAR-10 dataset consists of 50,000 training data and 10,000 testing data, 
where each data is a color image with 32×32 features and it belongs to one of total 
ten classes representing airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, 
and trucks.
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