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Abstract

The limited ability to simultaneously perform multiple tasks
is one of the most salient features of human performance and
a defining characteristic of controlled processing. Based on
the assumption that multitasking constraints arise from shared
representations between individual tasks, we describe a graph-
theoretic approach to analyze these constraints. Our results
are consistent with previous numerical work (Feng, Schwem-
mer, Gershman, & Cohen, 2014), showing that even modest
amounts of shared representation induce dramatic constraints
on the parallel processing capability of a network architecture.
We further illustrate how this analysis method can be applied
to specific neural networks to efficiently characterize the full
profile of their parallel processing capabilities. We present
simulation results that validate theoretical predictions, and dis-
cuss how these methods can be applied to empirical studies
of controlled vs. and automatic processing and multitasking
performance in humans.

Keywords: multitasking; cognitive control; capacity con-
straint

Introduction
The human ability to carry out multiple tasks concurrently – a
longstanding focus of cognitive research – presents an inter-
esting puzzle. In some domains, humans can fluidly execute a
large number of behaviors concurrently (e.g., locomote, navi-
gate, talk, and bimanually gesticulate). However, in other do-
mains, this capacity is strikingly limited (e.g., conduct mental
arithmetic while constructing a grocery list). In addition to
their obvious practical importance, constraints on multitask-
ing are also of theoretical significance. Any general theory
of cognition must address how choices are made among the
limited set of behaviors that can be carried out at a given time
(Anderson, 2013; Lieder & Griffiths, 2015; Kurzban, Duck-
worth, Kable, & Myers, 2013; Shenhav, Botvinick, & Cohen,
2013), and thus the sources of such limitations occupy a cen-
tral role in cognitive theory.

Whether a set of tasks can or cannot be carried out concur-
rently has often been attributed to a fundamental distinction
between automatic and controlled processing, with the former
relying on parallel processing mechanisms and the latter on a
limited capacity, serial processing (Posner & Snyder, 1975;
Shiffrin & Schneider, 1977). However, this begs a fundamen-
tal question: why are control-dependent processes capacity
limited? Early theories, as well as some of the most success-
ful unified theories of cognition (e.g., ACT-R) have assumed

that this constraint reflects an intrinsic, structural property of
the control system itself (e.g., limited capacity of working
memory). However, alternative accounts have suggested that
limitations in multitasking capacity reflect local properties of
the mechanisms used for task execution, rather than an intrin-
sic property of the control system itself. According to such
accounts, constraints on multitasking arise when two tasks
call upon the same local resources (e.g., representations spe-
cific to the tasks) for different purposes (Allport, 1980; Meyer
& Kieras, 1997; Navon & Gopher, 1979; Salvucci & Taatgen,
2008) and thus cannot be performed at the same time.1

Building on this idea, it has been proposed that a funda-
mental purpose of control mechanisms is to prevent cross-
talk, by limiting the engagement of representations used by
multiple processes (”mulituse representations”) to a single
purpose (e.g., task) at any given time (e.g. Cohen, Dunbar,
& McClelland, 1990; Botvinick, Braver, Barch, Carter, &
Cohen, 2001). From this perspective, constraints on multi-
tasking of control-demanding processes reflect the purpose
of control, rather than an intrinsic limit in control mecha-
nisms. To the extent that the processing pathways required
to perform different tasks rely on shared (i.e., multiuse) rep-
resentations, not only do they become increasingly reliant on
control (to specify the current intended use, and avoid cross-
talk from competing uses), but the multitasking capacity of
the network becomes limited (i.e., driven toward serial pro-
cessing). In other words, control mechanisms are guilty by
association, rather than themselves the source of constraints
on multitasking.

One question that might be asked is: how does the con-
straint on multitasking imposed by pathway overlap scale
with network size? A naive assumption might be that, in
large networks (such as the brain), the constraint is relatively
weak, and thus is inadequate to explain the prohibitive con-
straints apparent in human control-dependent processing. We
have addressed this question in previous work, by examining
the effects of pathway overlap (multiuse of representations) in

1Multitasking (and apparent parallelism) can, in some situations,
be achieved by rapid switching between serial processes (as is com-
mon in computers). Here, we focus on forms of multitasking that
reflect truly concurrent processing, sometimes referred to as per-
fect timesharing or pure parallelism. In the General Discussion, we
consider how our findings concerning the conditions for such paral-
lelism relate to the capability for rapid serial processing.
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two types of networks of varying size (Feng et al., 2014). We
found that even modest degrees of pathway overlap produced
a strikingly strong constraint on parallel processing that was
nearly scale invariant. This supported the idea that constraints
in human multitasking may reflect representational multiuse,
rather than a limitation intrinsic to control mechanisms them-
selves. However, while this work was suggestive, it relied on
numerical simulations that were restricted to a limited range
of parameters. It also failed to provide a clear path from these
theoretical ideas to empirical validation.

Here, we conduct an exhaustive analysis of the relationship
between pathway overlap and parallel processing in single-
layered, feed-forward, non-linear networks. Our findings val-
idate and extend those of Feng et al. (2014), identifying addi-
tional factors that influence the relationship between pathway
overlap and parallel processing capability. We also show how
these analysis methods can be used to fully specify the mul-
titasking capabilities of a network, and validate derived the-
oretical predictions in simulated neural networks. Critically,
we suggest how this method could also be applied to empir-
ical data to determine the multitasking capabilities of natural
agents in realistically large task spaces. Finally, we discuss
related results using these methods to examine the interaction
between pathway overlap, learning and generalization.

Graph-Theoretic Approach to Parallel vs.
Serial Processing Capability

Following Feng et al. (2014), we consider single-layered,
feedforward networks with N input and N output layer com-
ponents. Each component represents an input or output di-
mension (vector subspace), and the connection from an input
to an output component constitutes the processing pathway
for a given task (defined as a unique mapping from all pos-
sible vectors in input subspace to corresponding vectors in
the output subspace, that is independent of the mappings for
all other combinations of input and output components in the
network). The network can be represented as a directed bi-
partite graph GB = (V ,E), in which the node set V can be
partitioned into two disjoint sets of nodes Vin and Vout , rep-
resenting the input and output layer components respectively.
Moreover, an edge (i, j) ∈ E ⊆ Vin ×Vout represents a di-
rected pathway from the input layer to the output layer in the
network (i.e., a task). We introduce the matrix A = [ai j] ∈
{0,1}N×N to represent the network structure and define its el-
ements such that ai j = 1 when, (i, j) ∈ E , i ∈ Vin, j ∈ Vout
and ai j = 0 otherwise.

Pathway Overlap and Interference
The matrix A, extracted from the adjacency matrix of the bi-
partite graph, captures the overall network structure, since by
definition the graph is directed and has no self-loops. In par-
ticular, it represents the degree to which pathways overlap
(i.e., share representations): the sum of each row of matrix
A reflects the multiuse of input representations (out-degree
of input nodes), the sum of each column reflects the same

for output representations (in-degree of output nodes), and
together these indicate the degree of pathway overlap in the
network. We assume that such overlap produces interference,
prohibiting performance of the tasks involved. We formalize
three types of interference, as shown in Fig 1. Convergent
interference (shown in green) occurs when two sources of in-
put compete to determine a common output. In addition, we
consider divergence (shown in red) as a form of interference
in our analysis. Although this does not pose an impediment
to performance (i.e., it is possible to generate two distinct re-
sponses to the same input), it represents a restriction on the
number of independent sources of input (and therefore num-
ber of tasks) that the system can process at once, and thus can
be treated formally as a type of interference in our analysis of
multitasking capability. Finally, we consider a third, indirect
form of interference that supervenes on the first two (shown
in blue). In this case, the two tasks in question do not directly
interfere with one another. However, their simultaneous en-
gagement would necessarily engage a third task (shown in
purple) that would produce interference; accordingly the two
tasks shown in blue can not be performed simultaneously. It
is important to note that not only the amount of interference
(of the forms just described), but also how it is distributed
over the network impacts multitasking performance. Here,
for simplicity, we assume a uniform distribution of pathways
among the input and output components2, which means the
pathway overlap P is equal to the in-degree and out-degree of
each component in the network.

A B C D

1 2 3 4

Figure 1: Illustration of the three types of interference con-
sidered in our analysis (see text).

To quantify multitasking capability, we begin by construct-
ing an interference graph GI associated with the original bi-
partite graph GB. By assigning each edge of the original graph
GB to a node in GI , each node in the GI is used to repre-
sent a task. Interference between tasks is then represented
by assigning edges to pairs of nodes in GI if the tasks repre-
sented by those nodes are subject to any of the three forms of
interference defined above (formally, this corresponds to the
square of the line graph of GB). The adjacency relationships
between nodes in GI thus describe which tasks in the original
network can be executed concurrently (i.e., in parallel). This,
in turn, can be used to identify the maximum multitasking
capability of the network, as discussed in the next section.

2Such a uniform distribution is also reflective of a relatively
broad range of distributions in constraining multitasking.
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(a)Bipartite Graph - GB (b)Interference Graph - GI

Figure 2: The first subfigure (2a) illustrates a network of size
N = 3 and pathway overlap P = 2 (in-degree and out-degree
of each component is 2). The second subfigure (2b) shows
the associated interference graph with 6 nodes, and each of
these nodes has 4 neighbors due to interferences.

Maximum Independent Set (MIS) as a Measure of
Multitasking Capability
Identifying the multitasking (maximum parallel processing)
capability in the original network can be cast as the prob-
lem of finding the largest set of nodes in the interference
graph wherein no two nodes are adjacent. This is formally
known as the maximum independent set (MIS). Finding the
MIS of a graph is an NP-hard problem, that has been stud-
ied extensively in the graph theory literature (Tarjan & Tro-
janowski, 1977). Figure 3 summarizes the effect of pathway
overlap and network size on the MIS for networks with uni-
form pathway distribution (comparable to Feng et al., 2014),
confirming that parallel processing capability is severely con-
strained by pathway overlap in a manner that is virtually
scale invariant for network size (source code available at
github.com/musslick/CogSci-2016). In the sections that
follow, we show how these analysis tools can be used to in-
fer the particular parallel processing capabilities of specific
networks, validate predictions made based on extracted in-
terference graphs in simulations of network multitasking per-
formance, and describe how these tools could be used to infer
similar information regarding human performance from neu-
roimaging data.

Application to Neural Network Models
In the previous section we introduced graph-theoretic analy-
ses to investigate factors affecting the parallel processing ca-
pability in simplified network structures. Here, we examine
the extent to which these analyses can be applied to more
complex models (such as artificial neural networks) and em-
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Figure 3: Network parallel processing capability as a function
of pathway overlap (P) and network size (N) for networks
with uniform pathway distributions.

pirical data (e.g. neuroimaging analyses). We will describe
how neural representations of tasks can be used to generate
predictions about how many and which combinations of tasks
a network (or person) can perform in parallel (a space of pos-
sibilities that grows combinatorially with the number of tasks,
and thus quickly becomes intractable to direct empirical in-
quiry), based on measurements of single task performance
(that grows only linearly in the number of tasks). These anal-
yses may provide useful diagnostic tools for exhaustively as-
sessing multitasking capabilities based on amounts of data
that are practical to acquire.

Network Architecture and Processing

We focus on a network architecture that has been used to
simulate a wide array of empirical findings concerning hu-
man performance (e.g. Cohen et al., 1990; Cohen, Servan-
Schreiber, & McClelland, 1992; Botvinick et al., 2001). Such
networks typically consist of four layers (see Figure 4): an
input layer with two partitions, one of which represents the
current stimulus and projects to an associative layer, and an-
other that encodes the current task and projects to both the
associative and output layers; an associative (hidden) layer
that projects to the output layer; and an output layer that rep-
resents the network’s response. Input units are clamped to
either 0 or 1 to represent the current stimulus and task. These
values are multiplied by the matrix of connection weights
from the input layers to the associative layer, and then passed
through a logistic function to determine the pattern of activ-
ity over the units in the associative layer. This pattern is then
used (together with projections from the task units in the in-
put layer) to determine the pattern of activity over the output
layer. The latter provides a response pattern that is evaluated
by computing its mean squared error (MSE) with respect to
the correct (task-determined) output pattern.

hidden	

stimulus	

output	

…	

…	

neth = whsxs +
s
∑ whtxt

t
∑ +θh

neto = wohyh +
h
∑ wotxt

t
∑ +θo yo =

1
1+ e−neto

whs

yh =
1

1+ e−neth

woh

xs
xt

task	

wht

wot

yh

yo

Figure 4: Feedforward neural network used in simulations.
The input layer is composed of stimulus vector −→xs and task
vector −→xt . The activity of each element in the associative
layer yh ∈−→yh is determined by all elements xs and xt and their
respective weights whs and wht to yh. Similarly, the activity
of each output unit yo ∈ −→yo is determined by all elements yh
and xt and their respective weights woh and wot to yo. A bias
of θ =−2 is added to the net input of all units yh and yo.
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Stimulus input units are structured according to dimensions
(subvectors of the stimulus pattern), each of which is com-
prised of a set of feature units with only one feature unit ac-
tivated per dimension. Similarly, output units are organized
into response dimensions, with only one response unit per-
mitted to be active per dimension. Each task is represented
by a single task input unit that is associated with a set of
unique, one-to-one mappings between the input units in one
stimulus dimension and the output units in one response di-
mension, and that is independent of the mappings for all other
tasks. Here, we focus on networks (N = 6) in which there are
six input dimensions comprised of two features each, and six
output dimensions comprised of two responses each. Such
networks support a total of 6 ∗ 6 = 36 possible tasks; and,
since each stimulus input dimension consists of two features,
26 = 64 possible input patterns per task (including both task-
relevant and task-irrelevant features). The number of hidden
layer units in each network is set to 200 to avoid constrain-
ing the network to low-dimensional mappings of the input
space. Networks are initialized with a set of small random
weights and then trained using the backpropagation algorithm
(David E. Rumelhart & Williams, 1986) to produce the task-
specified response for all stimuli in each task. That is, the net-
work is trained to generate the response for the corresponding
stimulus in the task-relevant dimension, while suppressing re-
sponses in all other response dimensions.

Extracting Directed Bipartite Graph from Task
Representations
Our analysis focuses on the representations (patterns of ac-
tivity) over the associative and output units, insofar as these
reflect the computations carried out by the network required
to perform each task. In particular, we are interested in the
characteristics of these representations for each task, how
they compare across tasks, and how these factors correspond
to multitasking performance. The representations associated
with each task can be characterized by calculating, for each
unit in the associative and output layers, the mean of its activ-
ity over all of the stimuli for a given task; this mean pattern
of activity can then be used as a representation of the task3.
Correlating these patterns of activity across tasks yields a task
similarity matrix that can be examined separately for the as-
sociative and output layers of the network. This can then be
used to assess the extent to which different tasks rely on sim-
ilar or different representation within each layer of the net-
work. Figure 5 provides an example of such similarity ma-
trices (thresholded for similarity correlations above r > 0.8).
Tasks that have similar representations over the associative
layer can be inferred to rely on the same input dimension –
that is, they share an input component in the bipartite graph
representation of the network – and tasks that are similar at
the output layer can be inferred to share an output component.

3A formally equivalent analysis could be carried out using the
weight matrix of the network. Here we focus on patterns of activ-
ity, as these may serve as useful predictors for patterns of activity
observed in empirical data, such as fMRI and/or unit recordings.

Accordingly, a bipartite graph (of the type shown in Figure 3)
can be constructed by measuring the patterns of activity ob-
served in the network while it performs each individual task.
This can then be analyzed, using the graph-theoretic meth-
ods described above, to examine the full multitasking pro-
file of the network – that is, both the maximum concurrency
(parallel processing) capability of the network and, perhaps
more interestingly, the exact profile of which combinations of
tasks can and cannot be performed concurrently (see Figure
6). This procedure is substantially more efficient, and scales
more gracefully (linearly with size of the network) than de-
termining the multitasking profile by simulating and examin-
ing performance of the network for all combinations of tasks
(which scales factorially).
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Thresholded Task Similarity Matrices From Trained Neural Network

Training

Figure 5: A task environment consists of 12 possible tasks
represented as input-output mappings. The bipartite graph
can be extracted from thresholded task similarity matrices
that are obtained from task activity correlations at the asso-
ciative layer and output layer of a trained network.

Simulation Experiment
To validate the methods described above, we compared simu-
lated network performance with analysis predictions for 100
networks of size N = 6, each trained on a different sub-
set of 12 randomly sampled tasks (source code available at
github.com/musslick/CogSci-2016). Tasks were chosen
subject to the constraint that each stimulus dimension was
associated with two tasks. For each network we extracted a
bipartite graph from the task similarity matrices as outlined
above. Figure 5 shows the results for an example network,
from which a bipartite graph was generated that recovered
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the exact task structure imposed during training. That is, the
network learned to use similar associative layer representa-
tions for tasks that involved the same stimulus dimension (e.g.
tasks 1 & 2 in Figure 5), and learned similar output represen-
tations for tasks involving the same response dimensions (e.g.
tasks 2, 3, 5 & 7 in Figure 5).
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Figure 6: Extracted adjacency matrix of interference graph.
Off-diagonal colored entries indicate all tasks that can be
paired with a given task. Colors of off-diagonal elements
indicate the number of all possible multitasking conditions
in which the corresponding task-pairing can occur. Colors
of diagonal elements indicate the number of all multitasking
combinations in which the corresponding task can occur.

For each network, a bipartite graph can be constructed and
used to extract a corresponding interference graph. The adja-
cency matrix of the latter indicates which tasks can be paired.
This can be used, in turn, to identify all combinations of tasks
that can be performed concurrently (see example in Figure
6), as well as the MIS which specifies the greatest number
of tasks that can be performed concurrently. For each of the
100 trained networks, we extracted its interference graph and
computed the multitasking performance (MSE) for all combi-
nations of tasks that belonged to an independent set. We com-
pared this to a random sample (of identical size) composed of
combinations of tasks in which two or more of the tasks did
not belong to an independent set. Figure 7 shows that these
analyses yield accurate predictions about which tasks can be
performed concurrently and which cannot. As the network
was never trained on multitasking, concurrent performance
of tasks from independent sets can still produce some error.
However, the performance for those tasks is markedly and re-
liably better than multitasking performance for combinations
of tasks in which not all belong to the same independent set,
t(98) = 232.34, p < .001 (2 tasks); t(98) = 132.03, p < .001
(3 tasks); t(79) = 29.64, p < .001 (4 tasks).
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Figure 7: Multitasking performance for sets of identified in-
dependent and non-independent tasks. Error bars indicate the
standard error of the mean for multitasking conditions of net-
works trained in different task environments.

General Discussion and Conclusion
We have introduced a graph-theoretic approach to com-
pute the multitasking (parallel processing) capability of feed-
forward, single-layer non-linear networks. This was achieved
by generating an interference graph from the directed bipar-
tite graph representation of the network, which provides a
compact representation of its multitasking capabilities. Iden-
tifying the MIS in the interference graph reveals the maxi-
mum number of concurrent tasks that can be executed with-
out performance loss. The interference graph can also be used
to identify all combinations of tasks that can be performed in
parallel. We have shown that, consistent with previous work
(Feng et al., 2014), introducing even modest amounts of path-
way overlap induces dramatic constraints on multitasking ca-
pability. We then illustrated how the graph-theoretic analysis
can be applied to specific networks, using the patterns of ac-
tivity associated with individual tasks to characterize the full
profile of the network’s multitasking capabilities.

At a practical level, these methods suggest possibilities for
empirical research. For example, if patterns of neural activity
(measured using direct neuronal recordings and/or fMRI) can
be identified for a set of individual tasks, then the analyses
described above can be used to predict multitasking perfor-
mance for all possible combinations of tasks in the set. The
measurements required to carry out this analysis grow lin-
early with the number of tasks in the set, whereas the num-
ber of measurements required to characterize the interactions
among them from behavior would grow factorially with set
size. That is, these analyses may be particularly useful in sit-
uations in which exhaustively assessing the entire space of
task combinations is empirically impractical.

Theoretically, the approach provides a formal framework
for studying the relationship between learned task representa-
tions and controlled (serial) vs. automatic (parallel) process-
ing. Specifically, it permits quantitative analysis of how task
environment and learning impact the tradeoff between com-
pactness of representation (associated with serial, control-
dependent processing) and multitasking capability (associ-
ated with parallel, automatic processing). In related work
others (e.g. Caruana, 1997; Bengio, Courville, & Vincent,
2013; Saxe, McClelland, & Ganguli, 2013) have shown that
compact, ”multiuse” representations not only make more ef-
ficient use of network resources (e.g. fewer associative units)
but also are likely to arise most quickly (especially in hier-
archically structured environments), and support greater gen-
eralization during learning. However, the present work il-
lustrates the costs this incurs with regard to parallelism of
processing: as pathway overlap (mulituse of representations)
increases, processing in the network is rapidly driven to be
serial, and becomes reliant on control mechanisms to avoid
cross-talk. We suggest that this tension underlies the trade-
off between controlled and automatic processing observed in
human performance, and that constraints on the capacity for
human multitasking reflect this tension.

While we have focused on forms of multitasking arising
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from concurrent parallelism, our findings are likely to have
implications even when multitasking is achieved by rapidly
switching between tasks. One of the most robust findings in
the cognitive literature is the cost associated with switching
between tasks, reflecting at least in part carry-over effects that
the representations of one task have on the next (Yeung, Nys-
trom, Aronson, & Cohen, 2006, for a review see Kiesel et al.,
2010). To the extent that such carry-over effects reflect inter-
ference from shared representations, then this may determine
the speed and/or accuracy with which sequential switching
can be achieved in a manner similar to its impact on pure
parallelism. That is, multiuse of representations may define
a continuum from pure sequential processing, though rapid
task switching, to pure parallelism, and the methods we de-
scribe may provide a way of analyzing networks to determine
where they lie along this continuum.

There are a variety of network parameters that can im-
pact the extent to which multiuse representations arise during
training (including weight initialization, regularization con-
straints, number of hidden units, etc.). Here, we have fo-
cused on a simple network parameterization (two-layered,
feedforward, with random weight initialization and no reg-
ularization) as a first assessment of the usefulness of the an-
alytic approach. Another simplification in our treatment was
the construction of binary bipartite and interference graphs,
by thresholding the real-valued correlation matrix of network
representations. Additional simulation results (not reported)
suggest that the analysis methods we report are robust across
a wide range of thresholds and learned task representations.
However, a generalization of the method to address graded
interference effects (e.g., using weighted graphs) is an im-
portant avenue for future research. More generally, it will
be important to explore the extent to which the methods and
analyses we describe can be extended to networks with more
complex and realistic architectures (e.g., multi-layered and/or
recurrent, with varying pathway distributions and graded de-
grees of interference). We hope that the work described here
will encourage a proliferation of efforts along these lines.
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