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ABSTRACT
We exploit the high memory bandwidth of AI-customized Cerebras
CS-2 systems for seismic processing. By leveraging low-rank matrix
approximation, we fit memory-hungry seismic applications onto
memory-austere SRAM wafer-scale hardware, thus addressing a
challenge arising in many wave-equation-based algorithms that
rely on Multi-Dimensional Convolution (MDC) operators. Exploit-
ing sparsity inherent in seismic data in the frequency domain, we
implement embarrassingly parallel tile low-rank matrix-vector mul-
tiplications (TLR-MVM), which account for most of the elapsed time
in MDC operations, to successfully solve the Multi-Dimensional
Deconvolution (MDD) inverse problem. By reducing memory foot-
print along with arithmetic complexity, we fit a standard seismic
benchmark dataset into the small local memories of Cerebras pro-
cessing elements. Deploying TLR-MVM execution onto 48 CS-2
systems in support of MDD gives a sustained memory bandwidth
of 92.58PB/s on 35, 784, 000 processing elements, a significant mile-
stone that highlights the capabilities of AI-customized architectures
to enable a new generation of seismic algorithms that will empower
multiple technologies of our low-carbon future.

KEYWORDS
Seismic Processing, Low-Carbon Energy Applications, AI-
optimized Architecture, Low-Rank Matrix Approximation, High
Memory Bandwidth, Extreme Parallelism, Energy Efficiency.
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1 JUSTIFICATION FOR THE GORDON BELL
PRIZE

High-performance matrix-vector multiplication using low-rank
approximation. Memory layout optimizations and batched exe-
cutions on massively parallel Cerebras CS-2 systems. Leveraging
AI-customized hardware capabilities for seismic applications for
a low-carbon future. Application-worthy accuracy (FP32) with a
sustained bandwidth of 92.58PB/s (for 48 CS-2s) would constitute
the second-highest throughput from June’23 Top500.

2 PERFORMANCE ATTRIBUTES

Performance Attributes Our submission
Problem Size Broadband 3D seismic dataset

(∼ 20𝑘 sources and receivers
and frequencies up to 50Hz)

Category of achievement Sustained bandwidth
Scalability

Type of method used Algebraic compression
Results reported on basis of Whole application (for GPU cluster)

Main kernel (for Cerebras cluster)
Precision reported Single precision complex
System scale Up to 48 Cerebras CS-2 systems, i.e.,

35, 784, 000 processing elements
Measurement mechanism Timers; Memory accesses; Sustained

bandwidth; Performance modeling

3 OVERVIEW OF THE PROBLEM
Reflection seismology is a remote sensing technique that utilizes
reflected seismic waves to produce high-resolution images of the
subsurface as well as estimates of the associated rock properties.
While developed primarily to map anomalies corresponding to
mineral or hydrocarbon deposits, it is now also being used for the

https://doi.org/10.1145/3581784.3627042
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more demanding requirements of carbon capture and storage [33],
geothermal exploration [14], and assessment of near subsurface
integrity for offshore wind farms [2].

Traditional algorithms rely on strong assumptions about the
propagation of waves in the subsurface; namely, they consider a
1D layered medium and therefore ignore propagation effects due
to lateral heterogeneities. The 1990s saw the development of a
plethora of wave-equation-based processing methods that better
handle the multi-dimensional nature of seismic waves [11, 26, 45].
In the 2010s most of these methods were recast as inverse problems
[30, 42, 46, 47], providing unprecedented processing capabilities for
enhancing the imaging of seismic data acquired in complex geology.
However, such approaches come with a number of computational
challenges, mostly associated with their repeated access to the
entire seismic dataset when solving the associated inverse problem
with iterative schemes[36]. Thus, industrial applications of these
novel techniques are still in their infancy.

At the core of typical wave-equation-based processing algo-
rithms lies a Multi-Dimensional Convolution (MDC) operator,
which can be defined by the following integral relation:

𝑦 (𝑡, x𝑉𝑆 , x𝑆 ) =

F −1
(∫

𝛿D
𝐾 (𝜔, x𝑅, x𝑆 )F (𝑥 (𝑡, x𝑅, x𝑉𝑆 ))𝑑x𝑅

)
, (1)

where 𝑥 and 𝑦 are time-domain seismic wavefields, and 𝐾 is the
kernel of the MDC operator. Here, F and F −1 represent the for-
ward and inverse Fourier transforms, 𝜔 is the angular frequency,
x𝑆 , x𝑅 and x𝑉𝑆 are the spatial locations of the sources, receivers,
and virtual sources, respectively. Once discretised, Eqn. (1) can be
written in a compact matrix-vector form [36]:

y = F𝐻KFx, (2)

where F and F𝐻 represent the operators performing forward and
inverse Fast Fourier Transforms along the time/frequency axes
(implemented, of course, as subroutines, not dense matrix multipli-
cations), and x and y contain vectorized versions of the input and
output functions. Finally, K is an operator that performs repeated
Matrix-Vector Multiplications (MVMs) with the frequency matrices
belonging to the seismic bandwidth of interest. Different choices
of 𝑥 , 𝑦, and 𝐾 , as well as the creation of composite modelling op-
erators that contain two or more MDC operators, lead to different
applications. In this paper, we are concerned with solving Eqn. (1)
directly for 𝑥 = 𝑟 , the so-called local reflectivity, given 𝑦 = 𝑝− and
𝐾 = 𝑃+ defined as the time-domain up-going component and the
frequency-domain down-going component of the seismic wave-
field recorded along the 𝛿D boundary, respectively (Fig. 1). The
local reflectivity can be interpreted as the wavefield that would be
physically generated if sources and receivers were placed along
the boundary 𝛿D and the medium above it was homogeneous. This
problem is commonly referred to as Multi-Dimensional Deconvolu-
tion (MDD) [11, 47] and enables a number of different applications
depending on where the boundary 𝛿D is located within the medium
of interest. For example, if the boundary is placed on the seafloor,
as in the numerical example in this paper, MDD can be used to elim-
inate free-surface multiples from ocean-bottom seismic recordings
[12, 35, 37]. MDD can be also used to remove overburden-related

P+

p-

Figure 1: Schematic representation of the Multi-Dimensional
Deconvolution problem. A red star indicates the source, a
green triangle refers to the receiver, and the virtual source is
represented by a white triangle.

multiples when the boundary is located at any given depth level in
the subsurface [41, 43, 44]. In both cases, the retrieved local reflec-
tivity contains only seismic arrivals originating below the boundary,
making it easier to produce high-quality images of the discontinu-
ities in the subsurface without artifacts arising from overburden
effects. This is of particular relevance when the times of certain
multiple arrivals overlap with that of primaries from the target of
interest – e.g., a CO2 storage site to be monitored over time. To
foster the development of wave-equation-based processing algo-
rithms and increase their industrial adoption, we need to alleviate
the memory footprint and arithmetic complexity bottlenecks of
Eqn. (2). This will enable the processing of seismic datasets that are
orders of magnitude larger than currently possible, thus improv-
ing the accuracy and resolution of the resulting subsurface images.
We here optimize the MVM computational kernel that accounts
for the most time-consuming operation in the MDC operator: by
leveraging low-rank matrix approximation [19, 20], we exploit the
inherent data sparsity of seismic frequency matrices and retain
only the critical information needed to apply the MDC operator
for the required accuracy of MMD. While the literature is rich in
low-rank matrix approximations for the MVM operation, this paper
deals with a new research trend: how to steer emerging special-
ized hardware exhibiting highmemory throughput to deliver
high performance for the intrinsically memory-bound MVM
kernel? Our synergistic approach combines algebraic compression
with the capabilities of Cerebras CS-2 SRAM architecture to achieve
sustained memory bandwidth of an unprecedented level in the field
of seismic processing.

“History doesn’t repeat itself, but it often rhymes.” [Mark Twain,
attributed] The ConnectionMachine series, designed for AI, and the
Blue Gene series, designed for protein folding, were each employed
to win three Gordon Bell Prizes for applications far removed from
their design domains, including for seismic imaging on the CM-2
in 1989. Will the CS-2 “rhyme”?
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4 CURRENT STATE OF THE ART
State-of-the-art approaches to MDD mitigate the challenge of han-
dling large amounts of data by solving the inverse problem associ-
ated with Eqn. (1) one frequency at a time (e.g., [12]). While this
problem can be decoupled in the frequency domain, recent research
has shown that this may have detrimental effects on the quality
of the retrieved local reflectivity [43]. An alternative approach,
originally proposed in [27], takes advantage of the hierarchically
low-rank structure of seismic data in the frequency domain. By
performing a step of pre-processing, where the different frequency
matrices of the downgoing wavefield are compressed using an alge-
braic method of choice (e.g., rank revealing QR [16, 18], randomized
SVD [21], adaptive cross approximation [49], etc.), the overall mem-
ory footprint of the kernel of the MDC operator can be significantly
reduced. This idea, originally proposed in the context of the surface
related multiple elimination (SRME) algorithm for two-dimensional
synthetic and real datasets, can also be used to relax the memory
and computational burden associated with the MDC operator and
therefore enable the practical application of time-domain MDD.

More recently, [22] proposed an extension of the approach of [27],
particularly suitable to large 3D seismic datasets. The idea is to split
the matrix operator into tiles and compress them independently.
Figure 2 shows a standard dense MVM on a 10 × 6 tiled matrix
with tile size 𝑛𝑏. Figure 3 represents the compression of the matrix
operator and highlights the resulting bases with different ranks.
This tile low-rank (TLR) matrix approximation [4, 8] relies on a
flat representation of the compressed operator. While this is not
the most optimal representation in terms of memory and operation
savings compared to hierarchical formats i.e.,H -matrices [19, 20,
28], Hierarchically Semi-Separable (HSS) [17, 29, 38], Hierarchically
Off-Diagonal Low-Rank (HODLR) [7, 9], andH2-matrix [13], the
simplicity of the TLR data structure has led to broad application
to 3D computational science problems at scale, on a myriad of
architectures [1, 5, 6, 15, 31].

Additionally, [23] and [24] introduce a distance-aware re-
arrangement of the rows and columns of the frequency slices
that can leverage the spatial locality and eventually lead to
improved compression capabilities. Reordering strategies that aim
at reducing the overall distance between sources (and receivers)
within the same tile can in fact dramatically decrease the ranks
of the corresponding tiles: more specifically, the famous Hilbert
sort algorithm, also known as Hilbert space-filling curve [39], is
shown to provide the best compression capabilities over alternative
strategies (e.g., Morton ordering) [3, 6].

Using TLR to accelerate the matrix-vector multiplication (TLR-
MVM) requires a redesign of the algorithm. The resulting 𝑈 and 𝑉
bases from the compression phase need to be stacked in memory,
as shown in Fig. 4, to ensure contiguous access when fetching in
from memory 𝑈 and 𝑉 bases with different ranks, e.g., the rank
k3,3 of the indexed tile (3,3) as illustrated. The TLR-MVM operation
can then proceed with three successive computational phases: 1)
a batched MVM kernel for the 𝑉 bases with variable sizes, 2) a
memory shuffle operation to project from the𝑉 to the𝑈 bases, and
3) a batched MVM kernel for the 𝑈 bases with variable sizes, as
highlighted in Figs. 5, 6, and 7, respectively.

The memory layout and the reduced sizes of the bases may create
further opportunities to fit in small shared caches of x86, ARM, and
vector-based hardware solutions, while mitigating overheads of
data motion within the memory subsystem. On GPU hardware
accelerators, the challenge resides in ensuring high occupancy by
engaging all cores and their associated memory banks during the
computation. The current NVIDIA and AMD software ecosystems
for GPUs do not provide support for batched execution required to
effectively launch TLR-MVM with complex precisions and variable
ranks. This serious lack of support for batched matrix operations
in vendor-optimized numerical libraries has impeded deployment
and performance of low-rank matrix computations on massively
parallel architectures. The implementation of new batched kernels
for TLR-MVM are needed to exploit the underlying GPU hardware
resources and achieve sustained bandwidth close to the theoretical
peak bandwidth, as detailed in [24].

5 INNOVATIONS REALIZED
5.1 Riding the Trend of AI-Customized

Innovative Hardware
The growth of the AI market has led to significant hardware in-
novations over the last few years that translate into the on-chip
deployment of high memory bandwidth technologies and high
compute capabilities. While these innovations are primarily dedi-
cated to supporting deep learning and inference workloads, recent
work has highlighted promising ventures from the HPC scientific
community to steer these AI-specialized hardware systems and sup-
port climate/weather modeling, computational astronomy, wireless
communication, and seismic imaging applications on Cerebras CS-
2 [25] and Graphcore IPUs [32]. The challenges related to executing
HPC workloads on these two AI-customized hardware solutions are
similar to those faced by the HPC community in the early days of
GPU hardware accelerators and ARM processors, which came from
the gaming industry and embedded systems, respectively. Today,
these processor architectures provision most of the world’s Top10
most powerful computers and have transformed the HPC and AI
communities.

5.2 The Cerebras CS-2 Wafer Scale Engine
The Cerebras CS-2 Wafer Scale Engine (WSE) is a 2D array of dies
that occupies an entire wafer. A die is itself a grid of tiles linked via
a 2D grid fabric interconnect. A tile contains a router, a processing
element (PE) and single-cycle access memory (SRAM). Figure 8
highlights a WSE containing a grid of tiles on the right and a zoom-
in view of a single tile with a PE and its local SRAMmemory on the
left. This flat memory machine model has been successful thanks
to the high memory bandwidth offered by the SRAM memory tech-
nology. However, more memory accesses are required to perform
the same workload compared to a cache-based memory subsystem
where transient data can be kept in caches before being written
back to main memory. Moreover, the resource disaggregation of
the WSE makes it akin to a distributed-memory architecture: inter-
PE data movement involving the fabric is required to access data
residing outside the memory of a given PE. The high throughput
fabric allows to transfer data at the same rate as the SRAMmemory
although at a higher latency, making it relatively more expensive
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Figure 2: Original dense MVM. Figure 3: Rank-compressed operator.
Figure 4: Stacked bases𝑈 and 𝑉 .

Figure 5: 𝑉 -batch stage of MVM. Figure 6: Shuffle from 𝑉 to𝑈 bases.
Figure 7:𝑈 -batch of MVM.
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Figure 8: Cerebras CS-2 Wafer Scale Engine.

than accessing data within the local SRAM of a PE.

5.3 Novel Communication-Avoiding Memory
Layout

In this paper, we develop a new high-performance TLR-MVMkernel
that takes advantage of the high SRAMmemory bandwidth of Cere-
bras CS-2 systems, while mapping the seismic datasets onto the mil-
lions of PEs. Our previous implementation on Graphcore IPUs [32]
consists of porting the three computational phases of TLR-MVM
(Figs. 5, 6, and 7), as originally developed for x86/ARM/vector/GPU
systems [22, 24, 31]. While we report higher memory throughput

on IPUs than the other conventional hardware systems thanks to
the SRAMmemory technology, the second phase (i.e., memory shuf-
fling) requires synchronization across the IPUs, which is further
exacerbated due to the Bulk Synchronous Parallel (BSP) paradigm
that characterizes the Graphcore architecture. With Cerebras CS-2
systems, our new TLR-MVM kernel combines the first and third
stages together, while removing the expensive second phase that
necessitates cross-fabric communications. Figure 9 pictures our
new SRAM-aware implementation of the TLR-MVM kernel on the
disaggregated memory resource of Cerebras CS-2. For example, we
take all 𝑉 bases of the tile column 𝐴:,3, stack them vertically, and
execute the 𝑉 -batch of MVMs similar to Fig. 5. Then, instead of
stacking horizontally the𝑈 bases of a tile row as shown in Fig. 7, we
select and reshape the 𝑈 bases of each tile column by storing them
side-by-side. The stack width is an important tuning parameter as
it enables the exposure of more concurrency when strong scaling
operations by splitting the stacked bases into chunks of similar
sizes. We can then launch the 𝑈 -batch MVM, without having to
perform the expensive memory shuffle operation described in Fig. 6.
This comes at the price of an increase of data movement of multi-
ple 𝑦 vectors in and out but occurring only within the local SRAM
memory of each PE thanks to the flat memory machine model, as ex-
plained in Section 5.2. This is where the high throughput advantage
of SRAM plays an effective role.
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Figure 9: Design of a new communication-avoiding imple-
mentation of the TLR-MVM kernel.

Figure 10: SEG/EAGE Overthrust model. The red grid refers
to sources and the green grid to receivers on the seafloor.

6 HOW PERFORMANCEWAS MEASURED
6.1 Description of the Seismic Dataset
Our numerical example is based on the SEG/EAGE Overthrust
model, an openly available 3D geological model created as part of
a joint project between the Society of Exploration Geophysicists
(SEG) and the European Association of Geoscientists and Engineers
(EAGE) in 1996 [10]. Our model is modified by including a 300m
water column in order to be able to mimic an ocean-bottom acqui-
sition scenario, for a total size of 3 × 5 × 2.3 km3. The acquisition
geometry consists of a grid of 217 × 120 sources at a depth of 10m
below the air-water interface and 177 × 90 receivers at a depth of
300m (i.e., along the seafloor). In both cases, 20m spacing is used
for both the inline (x) and crossline (y) directions (Fig. 10).

Pressure and particle velocity data are modeled with a flat
wavelet up to 45Hz for a total time of 4.5s (with a 4ms temporal
sampling), with each dataset having an effective size of approxi-
mately 1.8TB. In pre-processing, wavefield separation is performed
to separate the downgoing (𝑝+) from the upgoing (𝑝− ) components
of the pressure wavefield, with the former being transformed to the
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Figure 11: MDD results. a) Cross-correlation (i.e., adjoint) and
b) Inversion with 𝑛𝑏 = 70 and 𝑎𝑐𝑐 = 1e − 4, c) Inversion with
𝑛𝑏 = 70 and 𝑎𝑐𝑐 = 7e−4. d) Ground truth fromfinite-difference
modelling.

frequency domain for further computations. Given the maximum
frequency available in the data, the length and sampling of the time
axis, 230 complex-valued frequency matrices of size 26040 × 15930
are stored for a total size of 763GB. Finally, each frequency matrix is
compressed using the TLR compression algorithm described above
with uniform tile size 𝑛𝑏 = 70 (similar results can be achieved
using smaller tile sizes 𝑛𝑏 = 25 and 𝑛𝑏 = 50). As previously
shown in [23, 24], using frequency matrices with the original
arrangement of rows (sources) and columns (receivers) leads to
poor compression of the dataset. On the other hand, when Hilbert
reordering is applied upfront to each frequency matrix, the main
contributions gather towards the matrix main diagonal. This leads
to superior compression capabilities with a 7X compression factor
of the original dataset when using a tile-wise accuracy tolerance of
𝑎𝑐𝑐 = 1e − 4 (110GB for the compressed version versus 763GB for
the original dataset).
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6.2 Running the Whole MDD Simulation on
Real Datasets

The resulting TLR compressed kernels are now used to solve the
MDD problem in Eqn. (1) via 30 iterations of LSQR [34] on a GPU-
based system composed of computational nodes equipped by four
NVIDIA V100 GPUs, each with 32GB of main memory. Further de-
tails on the GPU implementation can be found in [24]. To beginwith,
we consider a single virtual source along the seafloor at horizontal
location (𝑦 = 1620m, 𝑥 = 2460m), for which the entire compressed
seismic datasets max out the memory capacity of four NVIDIA V100
GPUs; the deconvolved wavefield is extracted over eight equidistant
receiver lines along the crossline direction and shown in Fig. 11
alongside the cross-correlation (i.e., adjoint) wavefield and the di-
rectlymodelled reflectivity.We first observe howMDDhas removed
free-surface effects appearing in the cross-correlation dataset, pro-
viding a local reflectivity response that closely resembles the ground
truth. However, owing to the ill-posed nature of the inverse prob-
lem, we notice some minor differences between the estimated and
true solution; most prominently, the frequency content is slightly
higher in the true response than in the estimated one, meaning that
MDD has struggled to recover some of the higher frequencies in the
dataset. Nevertheless, empowered by the compression capabilities
of our TLR pre-processing step, we have presented here what is to
the best of our knowledge the very first successful implementation
of time-domain MDD to a large-scale 3D seismic dataset.

6.3 Impact of the Compression Threshold on
MDD Accuracy

To illustrate the effect of the accuracy threshold, we present another
MDD result using a much looser accuracy tolerance (𝑎𝑐𝑐 = 7e − 4)
for the TLR compression of the frequency matrices (Fig. 11c). Com-
paring with Fig. 11b, it is clear that reducing the accuracy to further
increase compression introduces unwanted noise in the solution.
A higher level summary of the effect of tile size 𝑛𝑏 and accuracy
𝑎𝑐𝑐 is presented in Fig. 12: here, we observe two opposite trends.
By loosening the accuracy threshold (from 1e − 4 to 7e − 4), we
trade off quality in the final solution for additional compression. We
identify three regions: green, orange, and red, referring respectively
to accurate, satisfactory (but affected by additional noise), and un-
acceptably inaccurate solutions. In general, the degree of accuracy
required when performing MDD depends on the downstream ap-
plication as well as the amount of computational (and monetary)
resources a user is willing to afford. We consider the green solutions
to be accurate for subsequent quantitative analysis (e.g., seismic
inversion), while the yellow solutions may still be suitable for qual-
itative analysis (e.g., seismic interpretation). For the subsequent
experiments, we report only on the five green configurations.

6.4 MDD in Action Removes Free-Surface
Related Effects

Finally, to further corroborate the ability of the MDD algorithm to
remove free-surface related effects from the deconvolved wavefield,
a line of 177 virtual sources is considered along a fixed crossline
(𝑦 = 1620m), which can run in an embarrassingly parallel fashion
on 177 × 4 = 708 NVIDIA V100 GPUs. In real production runs,
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Figure 12: Effect of compression on the quality of the MDD
inversion product. Top: Black lines represent percentage
change of normalized mean square error of each solution
against the benchmark solution with 𝑛𝑏 = 70 and 𝑎𝑐𝑐 = 1e − 4.
Brown lines refer to percentage of compression of each ap-
proximation compared to the original, dense solution. Bot-
tom: Aggregated size of the 𝑈 and 𝑉 bases as function of
frequency for the different combinations of 𝑛𝑏 and 𝑎𝑐𝑐.

the number of virtual sources can be of the order of tens of thou-
sands, which can easily fill up the memory capacity of large-scale
supercomputers. Zero-offset time sections (i.e., from horizontally co-
located source and receiver) are shown in Fig. 13 for the full dataset,
upgoing dataset, and MDD dataset. Red arrows indicate downgo-
ing events that are present in the full data and are suppressed in
the upgoing component, and green arrows indicate upgoing free-
surface multiples that are present in the upgoing dataset and are
successfully removed from the MDD data. Given the increased level
of background noise in the deconvolved data, a simple stacking
procedure is employed to produce the last panel in Fig. 13. Over-
all, this result highlights the benefit of applying MDD as part of
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Figure 13: Zero-offset sections along 𝑦 = 1620𝑚 for a) velocity model (converted to time domain), b) full dataset (i.e., 𝑝 = 𝑝+ + 𝑝−),
c) upgoing dataset 𝑝− , and d) estimated local reflectivity 𝑟 . In the latter case, a standard post-processing flow is applied to be
able to stack all of those traces corresponding to a single source-to-receiver midpoint; this is required because the zero-offset
trace is usually noisy.

a seismic processing project prior to imaging, as mostly primary
arrivals are now present in the data and free-surface effects are
nicely suppressed.

6.5 CS-2 Environment Settings and
Experimental Setup

The experiments are now ported to Cerebras CS-2 hardware by
first dividing the matrices of the real datasets introduced in Sec-
tion 6.1 into six “shards,” since accommodating the full compressed
matrix in CS-2 SRAM requires a minimum of six CS-2 systems,
each comprising a grid of 757× 996 processing elements (PEs), with
a clock frequency of 850MHz. Each shard is mapped onto a CS-2
system using the Cerebras SDK [40], which allows users to develop
and write programs in the Cerebras Software Language (CSL) on a
simulator for performance modeling and on the actual hardware.
Each shard uses up to 750 × 994 PEs, with the additional PEs on
the fabric used for routing data on and off the wafer. The perfor-
mance modeling tool captures the number of cycles and memory
accesses by leveraging code compilation information and is able
to provide reliable estimates of performance on the CS-2. Each PE
can perform up to two 64-bit reads and one 64-bit write per cycle.
On each PE, the 48kB of SRAM memory is divided up into eight
banks of 6kB each. To perform two reads in a cycle, the reads must
be from separate banks. Thus, one must properly align memory
and pad arrays to guarantee this for every fmac instruction that is
performed in the MVM.

We use up to 48 systems from G42’s Condor Galaxy AI super-
computer, with the assistance of Cerebras. Since seismic processing
and imaging MVM workloads are embarrassingly parallel, no com-
munication is required between the CS-2 systems, nor between PEs
on a system. We report the sustained bandwidth based on the worst
cycle count across all PEs on all systems.

6.6 Complex Batched MVMs and Bandwidth
Metrics

Seismic processing requires complex arithmetic. While this is
widely supported in vendor-optimized numerical libraries, the
batched mode of execution for MVMs lacks support for complex
datatypes from all vendors of which we know. Therefore, we
implement the complex MVM via four separate MVMs involving
the real and imaginary parts. The complex MVM thus translates
into four real MVMs, which are in FP32. As shown in Fig. 9, we
deal with two batches of MVMs for 𝑈 and 𝑉 bases. Therefore,
we can expose a total of eight independent MVMs. In terms of
bandwidth metrics, we present two measures, which we refer
to as “relative” and “absolute.” To introduce these, consider a
matrix-vector product 𝑦 = 𝐴𝑥 , where 𝐴 is𝑀 × 𝑁 . In a traditional
memory architecture, the 𝑁 elements of 𝑥 are read once and
cached, each element of𝐴 is read once for the computation of𝐴𝑖 𝑗𝑥𝑖 ,
and each element of 𝑦 is written once, for a total of𝑀 ×𝑁 +𝑀 +𝑁
reads and writes of elements. For single precision, this results in
4 × (𝑀 × 𝑁 + 𝑀 + 𝑁 ) bytes of memory accesses. We use this to
compute the “relative” memory bandwidth. However, on the CS-2,
there is no memory hierarchy and no cache; all memory is SRAM,
uniformly distributed between the PEs. An MVM implementation
does for each column 𝐴𝑖 and each element 𝑥𝑖 the following: 1)
read 𝑦, 𝐴𝑖 , and 𝑥𝑖 , 2) increment 𝑦 by the vector-scalar product
𝐴𝑖𝑥𝑖 , and 3) write 𝑦 back to memory. The total is 3𝑀 × 𝑁 + 𝑁
reads and writes of elements. For single precision, this results
in 4 × (3𝑀 × 𝑁 + 𝑁 ) bytes of memory accesses. We use this to
compute the “absolute” memory bandwidth. While the relative
bandwidth gives an opportunity to compare CS-2 flat memory
throughput against sustained bandwidth on cache-based memory
subsystem in a fair manner, the absolute bandwidth demonstrates
the actual throughput capability of CS-2 systems. We do not
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take into account the TLR compression performed on the host
in our elapsed time, nor the data transfer. The former requires
variants of the work horse of linear algebra, i.e., Singular Value
Decomposition (SVD), which is not available in the Cerebras SDK.
The latter suffers from overheads due to a slow-bandwidth ethernet
interconnect, which may be mitigated with a double buffering
mechanism or for instance, the adoption of the Compute Express
Link (CXL) standard protocol designed to enable coherency in a
heterogeneous computing environment.

6.7 Two Strategies for Strong Scaling
Experiments

We elaborate on two strategies for strong scaling experiments for
the TLR-MVM kernel. The first one consists of running the eight
MVMs for handling the complex datatypes on a single PE. We
then choose the stack width to ensure that we max out the SRAM
capacity. As we increase the number of PEs, we split the stack
width to expose more concurrency, while ensuring an even data
distribution for load balancing purposes. This comes at the cost of
reducing the arithmetic intensity of the𝑉 /𝑈 -batch of MVMs, which
may degrade parallel efficiency. The second strategy keeps the same
stackwidth parameter tomax out thememory capacity of the SRAM
memory, but scatters the eight batches of MVMs (i.e., four for each
basis) onto eight PEs. While this strategy spares the arithmetic
intensity, it engenders an overhead in terms of memory footprint
since additional copies of both𝑈 and𝑉 bases need to be distributed
among the PEs. Both strategies require also a reduction step, which
is handled by the host to avoid expensive data movement within
the fabric interconnect.

7 PERFORMANCE RESULTS
7.1 Impact of Tile Size on Memory Bandwidth
To understand the impact of the tile size on memory bandwidth,
we perform a single precision batch of MVMs with constant size 𝑁
on each PE of a single Cerebras CS-2 system. Figure 14 shows the
aggregate memory bandwidth across a fabric of 750 × 994 PEs, i.e.,
the maximum the SDK allows to use as some PEs are reserved for
routing data on and off the wafer, for a simulated CS-2 and a real
CS-2. The simulated memory bandwidth numbers are calculated via
the performance model by taking the cycle count for performing a
single MVM on a single PE, and scaling up the bandwidth to the
entire 750 × 994 grid of PEs. The bandwidth for the real CS-2 was
calculated by performing 10,000 MVMs on each PE, dividing the
measured cycle count by 10,000, taking the worst measured cycle
count among all 745,500 PEs. We can thus calculate the memory
bandwidth by: bytes accessed × 850MHz / cycle count. The relative
bandwidth quickly saturates to 2PB/s as we increase the matrix size,
which transitions the batch MVM execution from a memory-bound
to a compute-bound operation. This synthetic benchmark using
constant ranks is an ideal case and gives a good perspective for
our TLR-MVM kernel. The absolute bandwidth based on the actual
memory accesses shows the hardware capability by achieving 3X
speedup compared to the relative bandwidth.

Figure 14: Impact of the tile size on the relative and abso-
lute memory bandwidths for performing a single precision
batched MVMs with constant matrix size 𝑁 .

7.2 Impact of the Stack Width on Hardware
Occupancy

We show the performance of the TLR-MVM kernel across six CS-2s
on the five validated configurations from Section 6.3. Because these
configurations engender larger memory footprints than can fit on a
single CS-2, we partition the dataset into six shards by splitting the
stack width accordingly to ensure evenly distributed workloads as
much as possible. Table 1 identifies the stack width such that each
dataset shard nearly fills all PEs.

nb acc stack width PEs used Occupancy
25 0.0001 64 4417690 99%
50 0.0001 32 4330150 97%
70 0.0001 23 4416383 98%
50 0.0003 18 4445947 99%
70 0.0003 14 4252877 95%

Table 1: Configurations delivering proper MDD accuracy.

7.3 Reporting Bandwidth Metrics
Since the workload is embarrassingly parallel, with no communi-
cation or synchronization between shards of the dataset, we can
compute total aggregate bandwidth by taking the worst cycle count
across all PEs on all systems. Table 2 shows the total number of
memory accesses in bytes and worst cycle count across all PEs.

Table 3 presents the aggregate relative and absolute bandwidth
across six shards on six CS-2s, as explained in Section 6.5. We
achieve the maximum relative sustained bandwidth of 12.26PB/s
on six shards (14.44 𝜇s) with 𝑛𝑏 = 50 and 𝑎𝑐𝑐 = 3e − 4, a nearly
linear speedup compared to the bandwidth achieved in the ideal
synthetic case on a single CS-2 reported in Fig. 14.
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𝑛𝑏 acc Worst Relative memory Absolute memory
cycle cnt accesses accesses

25 0.0001 21350 2.94E+11 6.85E+11
50 0.0001 19214 2.60E+11 6.71E+11
70 0.0001 19131 2.60E+11 6.89E+11
50 0.0003 12275 1.64E+11 3.89E+11
70 0.0003 12999 1.64E+11 4.06E+11
Table 2: Worst cycle count / # of memory accesses (bytes).

𝑛𝑏 acc Agg. relative Agg. absolute PFlop/s
bw (PB/s) bw (PB/s)

25 0.0001 11.24 26.19 3.77
50 0.0001 11.70 30.15 4.60
70 0.0001 11.92 31.62 4.89
50 0.0003 12.26 29.05 4.16
70 0.0003 11.60 28.79 4.23

Table 3: Aggregate bandwidth metrics on six shards.

7.4 Performance Scalability
Table 4 shows strong scaling performance on the configuration
𝑛𝑏 = 25 and 𝑎𝑐𝑐 = 1e − 4, based on the first strong scaling strategy
(see Section 6.7) and up to 12, 16, and 20 shards. This corresponds
to maximum stack widths of 64, 32, 25, and 19, respectively, to
ensure enough concurrency is exposed to keep most PEs busy with
work. To compute the aggregate bandwidth, we again use the worst
cycle count recorded across all PEs for each shard configuration. We
achieve 95% parallel efficiency on 20 shards, due to lower arithmetic
intensity of the batched MVMs, as we decrease the stack width.

Table 4 also includes a 48-shard configuration based on the sec-
ond strong scaling strategy (see Section 6.7). This strategy favors
concurrency over memory footprint by replicating the bases such
that the real and imaginary components are handled separately via
eight batched MVMs, as explained in Section 6.6. The resulting rel-
ative bandwidth for the 48-shard configuration is 87.71PB/s (6.698
𝜇s with 97% parallel efficiency).

Shards Stack Agg. relative Agg. absolute PFlop/s
width bw (PB/s) bw (PB/s)

6 64 11.24 26.19 3.77
12 32 22.13 51.17 7.28
16 24 29.28 67.40 9.52
20 19 35.77 81.97 11.51
48 64 87.73 204.51 29.40

Table 4: Aggregate bandwidth for the 𝑛𝑏 = 25 and 𝑎𝑐𝑐 = 1e − 4
configuration, partitioned into 6, 12, 16, and 20 shards, and
the 48-shard case using the first and second strong scaling
strategies, respectively.

To further demonstrate the performance of the second strong
scaling strategy, we additionally performed runs on Condor Galaxy
using this strategy for the 𝑛𝑏 = 50, 𝑎𝑐𝑐 = 1e − 4 and 𝑛𝑏 = 70, 𝑎𝑐𝑐 =

1e − 4 configurations. We report metrics of all three configurations,
along with number of shards and systems used, in Table 5. We
achieve our highest reported relative bandwidth of 92.58PB/s for
𝑛𝑏 = 70, 𝑎𝑐𝑐 = 1e − 4 across 48 shards.

𝑛𝑏 𝑎𝑐𝑐 Stack Shards Agg. rel Agg. abs PFlop/s
width bw (PB/s) bw (PB/s)

25 0.0001 64 48 87.73 204.51 29.40
50 0.0001 32 47 91.15 235.04 35.86
70 0.0001 23 48 92.58 245.59 37.95

Table 5: Aggregate bandwidth for the 𝑛𝑏 = 25, 50, 70, 𝑎𝑐𝑐 =

1e−4 configurations, using the second strong scaling strategy.
While 𝑛𝑏 = 25 and 𝑛𝑏 = 70 required 48 shards and thus 48
systems, 𝑛𝑏 = 50 required only 47 shards.

7.5 Roofline Performance Models
Figure 15 shows the roofline performance models of the minimum
configurations of various contemporary vendor offerings required
to host our real seismic processing workload in memory, namely six
CS-2 systems, compared with one AMD GPU, two NVIDIA GPUs,
three NEC vector engines, four Fujitsu ARMs, and one x86 node
from AMD and Intel. The arithmetic intensity (Flop/Byte) for the
TLR-MVMonCerebras CS-2 is lower than on the other architectures
due to the strategy of splitting real and imaginary parts of complex
batched MVMs into four real batched MVMs, as described in Sec-
tion 6.6. This strategy doubles the number of memory accesses re-
quired for TLR-MVM due to the flat memory machine model, as op-
posed to cache-based architectures. Our communication-avoiding
TLR-MVM implementation scores more than three orders of mag-
nitude higher bandwidth than the bandwidth achieved on an AMD
MI250X GPU. Figure 16 shows roofline performance models of
48 CS-2 systems, compared with the world’s current top 5 super-
computers. In particular, we highlight our relative and absolute
sustained bandwidth metrics obtained for our TLR-MVM implemen-
tation against the theoretical peak bandwidth of Frontier, Fugaku,
LUMI, Leonardo, and Summit. The absolute sustained bandwidth
reaches an impressive 245.59PB/s, which demonstrates the hard-
ware capabilities of Cerebras CS-2 systems, as long as the workloads
can fit into the local SRAM. Tile low-rank matrix approximation
is a versatile algorithmic enabler that has demonstrated the abil-
ity to extract high performance from a broad range of hardware
solutions. We also provide the relative sustained bandwidth cal-
culated by removing the additional data movements engendered
by Cerebras’ flat memory architecture, which permits fair com-
parisons with the top 5 systems. We report 92.58PB/s sustained
throughput, more than 3X faster than the aggregated theoretical
bandwidth of Leonardo or Summit. We estimate an upper-bound for
Fugaku and Frontier based on TLR-MVM with constant ranks (i.e.,
an ideal scenario without load imbalance issues) using a synthetic
dataset to extract the maximum bandwidth on a single A64FX node
and a single compute die of MI250X before extrapolating to the
respective machine scale. The respective 95.38PB/s and 69.01PB/s
are tighter than using the Stream benchmark but still grant benefit
relative to our rank-adaptive 92.58PB/s on the Cerebras cluster.
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Figure 15: Roofline performance models of 6-shard configu-
ration VS other vendor hardware solutions. TLR-MVM data
point is optimal 6-shard configuration of 𝑛𝑏 = 50, 𝑎𝑐𝑐 = 3e− 4.

Our bandwidth score thus outperforms the fastest supercomputer
Frontier and is comparable to Fugaku, at a much lower acquisition
and operational cost.

7.6 Assessing Power Consumption
We profile the power consumption of a single CS-2 running the
worst-case load-balanced shard (out of the six shards) for the real
dataset with the configuration of 𝑛𝑏 = 25, 𝑎𝑐𝑐 = 1e − 4, and stack
width set to 64. The TLR-MVM kernel is run in a loop for 108 iter-
ations to collect sustained power statistics, given the five-second
coarse granularity of the CS-2 power measurement tool. We report
a steady low power consumption of 16kW, which corresponds to
36.50GFlop/s/W in terms of energy efficiency. This contrasts with
the higher power profile of matrix-free stencil workloads [25] of
close to 23kW. This may be due to the extensive inter-PE commu-
nications required via the fabric interconnect for stencil updates,
which are not required for our MDD application, thanks to the
communication-avoiding memory layout. The 36.50GFlop/s/W of
the Cerebras CS-2 for TLR-MVM, which behaves as a compute-
bound kernel, compares favorably with the 52GFlop/s/W of Fron-
tier and LUMI systems on the HPL-dominated workload of the
Top500/Green500 ranking.
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Figure 16: Roofline performance models of 48-shard config-
uration VS current top 5 supercomputers. TLR-MVM data
point is optimal 48-shard configuration of𝑛𝑏 = 70, 𝑎𝑐𝑐 = 1e−4.

8 IMPLICATIONS
The exponential divergence of processing rates and memory band-
width was recognized before the problem of the “memory wall”
was codified in a short note in 1994 [48], bringing to the fore the
great trade-off in computer architecture between having essentially
unlimited slow memory or having limited fast memory. This expo-
nentially growing gap has traditionally been resolved through a
memory hierarchy with an increasing number of levels. We resolve
it, instead, by shrinking the problem to reside within a very fast
memory with a tunable trade-off in accuracy.

The accuracy of representation of a formally dense tile by its
low rank factors (𝑎𝑐𝑐 herein) and the size of the individual tiles
(𝑛𝑏 herein) are parameters under the control of the user. (Herein,
we choose both 𝑎𝑐𝑐 and 𝑛𝑏 uniformly across all tiles, but this is a
simplification that could be relaxed by a user expert in the appli-
cation of interest.) With knowledge of the other inaccuracies that
affect the application (e.g., in acquisition and in downstream usage),
𝑎𝑐𝑐 can be adjusted to reduce local rank, instead of defaulting to
traditional global full rank with its wasteful implications for data
storage, data motion, and computation. With knowledge of the size
of the fast memory available to each core and of the rank structure
of the operator, 𝑛𝑏 can be adjusted with the stack width so that an
arbitrarily large application fits in fast memory – provided only
that one has enough PEs.

Now that TLR-MVM has made an impact for the seismic process-
ing of multiple single virtual shots, we want to consider seismic
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processing of multiple shots simultaneously, by recasting our TLR-
MVM kernel into TLR matrix-matrix multiplication (TLR-MMM).
This re-exacerbates the memory wall bottleneck and is an open
research opportunity that has not yet been addressed at realistic
scales.

The future of seismic processing is overall indeed bright, because
highly resolving technologies likeMDD can increasingly be brought
to bear on geological structures too complex to understand well
with today’s workhorse alternatives – thanks to investments in
architecture that are amortized by their importance to AI workloads.
(History rhymes!)

Illustrating for a particular scenario of high contemporary in-
terest to exploration geophysicists on particular hardware of high
contemporary interest,we scale thememory bandwidth wall for next-
generation large-scale seismic processing applications on SRAM-
based wafer scale engines by tile low-rank algebraic compression
with tuned approximation – and save energy while exploring below
the surface for future energy solutions.
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