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Abstract

Electron-Phonon Coupling from GW Perturbation Theory and Electronic and Magnetic
Properties of Novel Two-Dimensional Materials

by

Zhenglu Li

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Steven G. Louie, Chair

Condensed matter physics is a very broad and fast-developing field, which studies emerg-
ing phenomena, interactions, phases, and symmetries in materials, such as solids. Predictive
first-principles, or ab initio, methodologies play a significant role in understanding vari-
ous phenomena and new physics. This dissertation is aimed at developing new ab initio
methodologies for the investigation of important novel phenomena and applying various ab
initio methods combined with analytical approaches to a broad range of condensed mat-
ter systems, including the high-transition-temperature superconductor Ba1−xKxBiO3, the
two-dimensional (2D) ferromagnet Cr2Ge2Te6, Dirac fermions generated in few-layer black
phosphorus, defects in hexagonal boron nitride, and non-trivial topological surface states of
antimony.

This dissertation is divided into two parts. Part I is focused on methods development,
and Part II is a collection of theoretical and computational studies of novel materials. The
dissertation is organized as follows:

Part I: Electronic structure methodologies for condensed matter

• In Chapter 1, we review some important ab initio methods to lay the foundation
for the development of a new ab initio method − named GW perturbation theory
(GWPT) − in Chapter 2, and for various applications to the materials studied in Part
II. In Chapter 1, we review the basics of density functional theory (DFT), the GW
method, the general phonon formalism and electron-phonon (e-ph) coupling formalism,
density-functional perturbation theory (DFPT), and the Wannier representation of e-
ph coupling.

• In Chapter 2, we present a new ab initio method, which we named theGW perturbation
theory (GWPT). This method is a linear-response theory of the GW method, and it
gives efficient and accurate access to all e-ph matrix elements at the many-electron
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level in the full Brillouin zone and between any pairs of electronic states. We discuss
its general formalism, implementation and verification in this Chapter.

• In Chapter 3, we develop a general renormalized spin-wave theory (RSWT) by includ-
ing full sublattice dependence. This RSWT method includes magnon-magnon interac-
tions, and therefore can give quantitative predictions of magnetic transition temper-
atures, especially in 2D. This method is solved numerically and self-consistently. We
discuss its formalism, implementation, and behavior in this Chapter.

Part II: Studies of superconductivity, and electronic and magnetic interactions in novel
materials

• In Chapter 4, we apply our newly developedGWPT method to study superconductivity
in Ba1−xKxBiO3, which shows an experimental superconducting transition temperature
(Tc) of 30−32 K at optimal doping. Our GWPT calculations show that many-electron
correlations significantly enhance the e-ph interactions compared to DFPT values for
states near the Fermi surface and renormalize the e-ph coupling constant λ by a factor
of 2.4, nicely explaining the high Tc as well as the doping dependence observed in this
family of material.

• In Chapter 5, we present a collaborative work with experimental groups on the dis-
covery of the 2D van der Waals ferromagnet Cr2Ge2Te6, probed using the scanning
magneto-optic Kerr effect (MOKE) technique. We apply our RSWT method to this
system, and our calculation nicely reproduces and explains the experimentally ob-
served strong dimensionality effect in this 2D ferromagnet. Furthermore, our theory
reveals an intriguing interplay between anisotropy and dimensionality, which leads to
an unprecedented magnetic-field control of ferromagnetism in this system.

• In Chapter 6, we propose a strategy for the generation of novel anisotropic Dirac
fermions in few-layer black phosphorus by applying inversely designed superlattice
potentials. We show that these novel quasiparticles exhibit asymmetric Klein tunnel-
ing, in which the perfect transmission direction significantly differs from the normal
incidence direction. These unusual states are highly tunable and accessible with ex-
perimentally achievable conditions. The findings revealed in this Chapter provide new
platforms for device design.

• In Chapter 7, we present a collaborative work with an experimental group to study
the electron-irradiation-induced triangular and hexagonal defects in hexagonal boron
nitride, observed in transmission electron microscopy (TEM) measurements. We use
DFT to calculate the formation enthalpy of different structures (as well as the edges
and corners), to provide an overall diagram of preferred structures under different
conditions at equilibrium. Our theory provides important insights into the formation
of these defects.
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• In Chapter 8, we present a collaborative work with experimental groups to study
the unusual behavior of photoelectrons from the topological surface states of Sb(111),
measured with spin- and angle-resolved photoemission spectroscopy (spin-ARPES).
Our theory, using the ab initio tight-binding method, reproduces well the observed
spin textures. Our theoretical analysis shows that the unexpected spin-polarization
behavior comes from the interplay between strong spin-orbit coupling (SOC) and the
symmetry requirement of the electron wavefunction in high symmetry regions of the
Brillouin zone.
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Chapter 1

Review of first-principles
methodologies for electrons and
phonons

1.1 Density-functional theory (DFT)

1.1.1 Kohn-Sham equation

To formulate and solve for the properties of materials, in particular, those of interacting
electrons moving among nuclei, one builds a many-body Schrödinger equation involving all
electrons and nuclei in the system. Density-functional theory (DFT) [1], as one of the most
widely used ab initio method, reduces the many-body problem into a mean-field tractable
problem for electrons, as the Hohenberg-Kohn theorem [2] states that any ground-state
property of a system of many interacting electrons can be viewed as a functional of the
ground state density n(r). The core of static DFT is to solve self-consistently the Kohn-
Sham [3] equation,

HDFTψn(r) =

(
− ~2

2m

∂2

∂r2
+ V KS(r)

)
ψn(r) = εnψn(r), (1.1)

where ψn(r) is the non-interacting single-electron orbit, commonly used as quasiparticle
wavefunctions, and εn is the eigenvalue, commonly interpreted as quasiparticle state energy.
(These interpretations however can only be viewed as low-order estimates of the physical
quantities.) The ground-state electron charge density is given by the single-electron orbit
(ψn(r)) module square of all occupied states,

n(r) =
occ∑
n

|ψn(r)|2. (1.2)
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In the Kohn-Sham equation, Eq. (1.1), the Kohn-Sham potential is written as,

V KS(r) = Vion(r) + VH(r) + Vxc(r)

= Vion(r) + VH[n(r)] + Vxc[n(r)],
(1.3)

which is a functional of the charge density. In the above equation, Vion is the potential from
ions (as well as any applied external potentials). VH is the electrostatic Hartree potential
that takes the form,

VH(r) = e2

∫
dr′

n(r′)

|r− r′|
, (1.4)

and Vxc is the exchange-correlation potential defined as,

Vxc(r) =
δExc[n(r)]

δn(r)
, (1.5)

where Exc is the exchange-correlation energy, which is the most intriguing part and its exact
form is still unknown. One of the most common (and also the most basic) approximation
to the exchange-correlation energy is known as the local-density approximation (LDA) [4, 5]
such that Exc is approximated to depend only on the local density, i.e. only n(r),

ELDA
xc [n] =

∫
drn(r)εhom

xc (n(r)) , (1.6)

where εhom
xc (n(r)) is approximated to be the exchange-correlation energy per electron in a

homogeneous electron gas at density n. The above equations can be solved self-consistently
by minimizing the total energy.

1.1.2 Bloch theorem

Most systems that this dissertation focuses on are crystals hosting discrete translational
symmetry. As a result, the quantum states are propagating states with n can be re-labeled
as nk where k is a wavevector, and n denotes the other quantum numbers of the state.
The energies of these states in crystals form band structures which are represented by εnk.
According to the Bloch theorem [6], the wavefunction in crystals is composed of a phase
factor multiplied by a periodic function unk(r),

ψnk(r) =
1√
Nl

eik·runk(r), (1.7)

where Nl is the number of unit cells under the periodic boundary condition, the phase factor
carries a crystal momentum k, and the periodic part satisfies,

unk(r) = unk(r + R), (1.8)
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in which R is a lattice vector. Given the periodic property of unk(r), it is convenient to
Fourier transform to reciprocal G space (this is the spirit of the many plane-wave basis
codes),

unk(r) =
∑
G

cnk(G)eiG·r, (1.9)

where G’s are reciprocal lattice vectors, and the summation is (usually) up to an energy
cutoff in practical computations.

1.2 The GW method

DFT provides strong predictive power in the description of material ground-state prop-
erties, such as total energy, equilibrium structures, phonon frequencies and so on. However,
static DFT is constructed for the ground state and thus fails in many cases, for example,
on the properties of excited states phenomena, or for ground-state properties when the elec-
tron correlation becomes too strong [1, 7, 8] because of the approximate nature of current
exchange-correlation functionals. A formal route to improve the ab initio prediction power
is to pursue a many-body field-theoretic approach with the Green’s function method.

The GW method has been shown to be very accurate in capturing the many-body corre-
lation effects by evaluating the self-energy operator within the GW level [7–11]. This method
was initially developed by Hedin in 1960s [9] for electron gas (nicely reviewed by Hedin and
Lundqvist [10]), and was generalized to practical first-principles calculations in 1980s by
Hybertsen and Louie [7, 8] showing that it correctly predicts the values of semiconductor
and insulator quasiparticle band gaps (where DFT fails significantly). In this section, we
review the core of the GW method.

1.2.1 Hedin equations

First, we introduce the one-electron Green’s function [9, 10]. We consider a system of
N electrons in its ground state and define the one-electron Green’s function in coordinate
space:

G(rt, r′t′) = −i 〈N |Tt[ψ(r, t)ψ+(r′, t′)] |N〉 . (1.10)

Here |N〉 denotes the ground state, and ψ+(r, t) and ψ(r, t) are the Heisenberg field operators
for creation and annihilation of an electron, respectively. Tt is the time-ordering operator.
For t > t′, the Green’s function describes the propagation of an additional electron injected
at time t′, whereas for t < t′ it describes the propagation of a hole (extraction of an electron).
In the next, we introduce the short-hand index for the combined real-space position and time,
such that 1 ≡ (r1, t1), 1+ = (r1, t1 + δ) with positive infinitesimal δ = 0+ here.

In the many-body problem, the fully interacting Green’s function G can be casted into
the Dyson’s equation [12], with which by starting from a non-interacting Green’s function
G0, all unknown interactions can be mapped into the self-energy term Σ, which is in general
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non-local and frequency-dependent. The Dyson’s equation reads,

G(1, 2) = G0(1, 2) +

∫
d(34)G0(1, 3)Σ(3, 4)G(4, 2). (1.11)

The major goal is to solve for the electron self-energy operator Σ. Hedin [9, 10] ex-
panded the self-energy operator in terms of the interacting Green’s function and the screened
Coulomb interaction W (which is much weaker than the bare Coulomb interaction v), and
derived the following complete set of coupled integral equations (together with the Dyson’s
equation Eq. (1.11)), known as the Hedin equations [9, 10],

W (1, 2) = v(1, 2) +

∫
d(34)v(1, 3)P (3, 4)W (4, 2), (1.12)

P (1, 2) = −i
∫
d(34)G(1, 3)G(4, 1+)Γ(3, 4; 2), (1.13)

Σ(1, 2) = i

∫
d(34)G(1, 3)Γ(3, 2; 4)W (1+, 4), (1.14)

Γ(1, 2; 3) = δ(1, 2)δ(1, 3) +

∫
d(4567)

δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7; 3). (1.15)

In the above Hedin equations, P denotes the irreducible polarizability, and Γ is the vertex
function.

1.2.2 The GW approximation

The above Hedin equations provide a systematic way for evaluating the many-body prob-
lem for one-particle excitations, but it is still extremely complicated especially with the
involvement of the vertex function Γ. Therefore, Hedin [9, 10] takes an important approx-
imation that only keeps the vertex function in its lowest order (essentially eliminating the
vertex function):

Γ(1, 2; 3) = δ(1, 2)δ(1, 3). (1.16)

This approximation directly generates two consequences. First, the polarizability is now
rewritten as

P (1, 2) = −iG(1, 2+)G(2, 1), (1.17)

and this form corresponds to the random phase approximation (RPA) for the dielectric
matrix. Moreover, now the self-energy Σ is given to first order in G and W as,

Σ(1, 2) = iG(1, 2)W (1+, 2). (1.18)

This is the well-known GW approximation [9, 10].
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It is convenient to work in the frequency (energy) domain by taking advantage of the
time transnational symmetry with reducing the two time arguments t and t′ to t = t − t′.
With the Fourier transform,

Σ(r, r′; ε) =

∫
dt eiεt Σ(r, r′; t), (1.19)

and pluging Eq. (1.18) into the above equation and using the similar Fourier transforms for
G and W , one can work out the following expression,

Σ(r, r′; ε) = i

∫
dε′

2π
e−iδε

′
G(r, r′; ε− ε′)W (r, r′; ε′). (1.20)

Within the GW approximation, we can solve the following quasiparticle equation [7, 9,
10],(

− ~2

2m

∂2

∂r2
+ Vion(r) + VH(r)

)
ψnk(r) +

∫
dr′Σ(r, r′; εGWnk )ψnk(r′) = εGWnk ψnk(r), (1.21)

where εGWnk is the solution, which corresponds to the quasiparticle energy within the GW
method. In practice, many calculations of εGWnk are done by [7, 8],

εGWnk = εDFT
nk + 〈ψnk|Σ(εGWnk )− Vxc|ψnk〉 . (1.22)

1.2.3 Practical evaluation of G, W , and Σ

The fully interacting Green’s function is unknown, therefore it is common to do a one-
shot calculation, i.e. using DFT wavefunctions and eigenvalues to construct G, W , and Σ
[7, 8, 11]. This is called the G0W0 approximation. Note that this G0 indeed represents
the non-interacting G0 defined above if one were to call DFT as the mean-field starting
point, and call (Σ − Vxc) the interaction part. This practice is justified [7, 8] with two
important arguments: 1) it is found that DFT wavefunctions in most cases nicely represent
the true quasiparticle wavefunctions, and 2) the negligence of vertex correction and the
underestimation of band gaps from DFT (i.e. using DFT eigenvalues to construct W0)
together form an error cancellation. Therefore, practical G0W0 results from DFT starting
mean field usually agree well with experiments.

The Green’s function defined in Eq. (1.10) can be built with the Bloch states if we use
the mean-field DFT results [7, 8, 10],

G(r, r′; ε) =
∑
nk

ψnk(r)ψ∗nk(r′)

ε− εnk − iδnk
, (1.23)

where δnk = 0+ for εnk < εF and δnk = 0− for εnk > εF , and εF is the Fermi energy.
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The screened Coulomb interaction W within RPA [7, 8, 10, 13] is constructed from the
RPA dielectric matrix ε from Eq. (1.12) as,

W (r, r′;ω) =

∫
dr′′ε−1(r, r′′;ω)v(r′′, r′), (1.24)

where the bare Coulomb interaction is,

v(r, r′) =
e2

|r− r′|
. (1.25)

The RPA dielectric matrix therefore is related to the RPA polarizability as,

ε(r, r′;ω) = δ(r− r′)−
∫
dr′′v(r, r′′)P (r′′, r′;ω). (1.26)

The polarizability can be constructed with Eq. (1.13) and Eq. (1.23).
With a plane-wave basis set [8, 13], we can further write the polarizability for an insulator

in reciprocal space as,

PGG′(q, ω) =
2

V

∑
vck

〈ψck|e−i(q+G)·r|ψvk+q〉 〈ψvk+q|ei(q+G′)·r′|ψck〉

×
(

1

ω − (εck − εvk+q) + iδ
− 1

ω + (εck − εvk+q)− iδ

)
,

(1.27)

where V is the crystal volume, q is a wavevector, v and c represent summation over va-
lence and conduction bands, respectively. The dielectric matrix in the reciprocal space then
becomes,

εGG′(q, ω) = δGG′ − v(q + G)PGG′(q, ω), (1.28)

where

v(q + G) =
4πe2

|q + G|2
. (1.29)

The screened Coulomb interaction in reciprocal space can be constructed after inverting the
dielectric matrix to get ε−1

GG′
(q, ω), that is,

WGG′(q, ω) = ε−1
GG′

(q, ω)v(q + G′). (1.30)

The frequency dependence in the dielectric matrix can be either sampled directly (the full-
frequency calculation) which may be expensive, or treated using models based on the static
dielectric matrix, i.e. with ω = 0, that is directly calculated. In this dissertation, we often
adopt the Hybertsen-Louie generalized plasmon-pole model [8] for the frequency convolution
in Eq. (1.20).
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Finally, we are interested in calculating the quasiparticle energies using Eq. (1.22), in
which an important ingredient, the matrix element of Σ, is needed. Using the Fourier
transform relation of W , Eq. (1.20), and Eq. (1.23), we arrive at [8],

〈ψnk|Σ(r, r′; ε)|ψnk〉

=
i

2π

∑
n′

∑
qGG′

〈ψnk|ei(q+G)·r|ψn′k−q〉 〈ψn′k−q|e−i(q+G′)·r′ |ψnk〉

×
∫
dε′

WGG′(q, ε
′)e−iδε

′

ε− εn′k−q − iδn′k−q − ε′
.

(1.31)

The quasiparticle band energies within the GW method can then be calculated using Eq.
(1.22) with the matrix elements obtained in the above equation.

1.3 Phonons and electron-phonon coupling

1.3.1 Phonons: lattice vibrations in crystals

In crystals, quantum lattice vibrations are commonly treated in the language of phonons
[14–16]. As mentioned before, a fundamental treatment of crystals is done with periodic
boundary conditions, also known as the Born-von Kármán (BvK) conditions. Under these
conditions, a BvK supercell contains Nl unit cells which corresponds to the number of degrees
of freedom in wavevectors (k, q points). These unit cells are positioned at Rl, which are
the lattice vectors. The summation over all BvK supercells are implicitly included in this
dissertation, or equivalently, by conceptually imposing BvK boundary conditions for all
quantities.

Now we define the notations [16] for ions, which are the core objects for phonons. Within
each unit cell, the position of the nucleus κ with mass Mκ is defined as τ κ with three
Cartesian components α = x, y, z. We also introduce the position vectors for all ions in the
BvK supercell as τ κl = Rl + τ κ. We denote the set of equilibrium positions as {τ 0

κl}.
Within the Born-Oppenheimer and harmonic approximations [16], the total potential

energy of electrons and nuclei U can be expanded over small atomic displacements away
from equilibrium positions,

U = U0 +
1

2

∑
καl
κ′α′l′

Cκαl,κ′α′l′∆τκαl∆τκ′α′l′ , (1.32)

where U0 is the total potential energy at equilibrium, and the interatomic force constants
are defined as,

Cκαl,κ′α′l′ =
∂2U

∂τκαl∂τκ′α′l′
. (1.33)
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The Fourier transform of the interatomic force constants is the dynamical matrix, a central
quantity in phonon calculations that takes into account the crystal translational symmetry.
The dynamical matrix at a given phonon wavevector q is,

Dκα,κ′α′(q) = (MκMκ′)
−1/2

∑
l′

Cκα0,κ′α′l′ e
iq·Rl′ . (1.34)

Diagonalization [16] of the dynamical matrix yields the phonon frequencies and eigenvec-
tors, such that, ∑

κ′α′

Dκα,κ′α′(q)eκ′α′,ν(q) = ω2
qνeκα,ν(q), (1.35)

where ν labels the phonon branches, and the square root of the eigenvalue ωqν is the phonon
frequency. When a structure is stable, all ω2

qν would be equal or greater than zero. When
negative ω2

qν exists, this is the case with imaginary phonon frequency, indicating that the
structure is unstable and the system tends to form a structural transition.

By introducing creation and annihilation operators for phonons a†qν and aqν [16], the
lattice vibrations become quantized, known as phonons. These operators obey Bose-Einstein
statistics,

[aqν , a
†
q′ν′ ] = δνν′δqq′ ,

[aqν , aq′ν′ ] = [a†qν , a
†
q′ν′ ] = 0.

(1.36)

Importantly, the atom displacement can be written in terms of these operators,

∆τκαl =
1√
NlMκ

∑
qν

√
~

2ωqν

eκα,ν(q)eiq·Rl(aqν + a†−qν). (1.37)

The phonon Hamiltonian can be written as [16],

Hph =
∑
qν

~ωqν(a
†
qνaqν +

1

2
). (1.38)

1.3.2 Electron-phonon coupling Hamiltonian based on DFT

Based on DFT and assuming that the Kohn-Sham eigenvalues and eigenfunctions are
the corresponding quasiparticle quantities, we derive the electron-phonon (e-ph) Hamiltonian
[16]. In this context, electron-phonon coupling means when an atom displacement or phonon
perturbation is introduced into the system, how the electron states would respond to this
perturbation. Since rigorously the Kohn-Sham states are fictitious independent particles that
are used to construct only the density, the DFT electron-phonon coupling derived below is
just an approximation to the real electron-phonon coupling. Recall that within DFT, the
governing equation for the fictitious independent electrons is the Kohn-Sham equation, Eq.
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(1.1). Now we would explicitly include the atom position dependence in the Kohn-Sham
potential V KS(r; {τκαl}). In terms of second quantization, we write the electron Hamiltonian
as [16],

HDFT
e =

∑
nk,n′k′

〈ψnk|HDFT |ψn′k′〉 c†nkcn′k′ =
∑
nk

εDFT
nk c†nkcnk, (1.39)

where c†nk and cn′k′ are the creation and annihilation operators for Kohn-Sham electrons. The
implicit approximation made here is that the electronic system can be described by well-
defined quasiparticles and they are given the Kohn-Sham eigenvalues and eigenfunctions.

Expand the Kohn-Sham potential near the equilibrium atom positions up to the first
order, i.e. within linear response, we have,

V KS({τκαl}) = V KS({τ 0
καl}) +

∑
καl

∂V KS

∂τκαl
∆τκαl. (1.40)

We denote the last term in the above equation as ∆V KS({τκαl}), and it can be rewritten as
phonon mode-decomposed perturbation by plugging Eq. (1.37) into the above expression
[16],

∆V KS({τκαl}) =
∑
καl

∂V KS({τκαl})
∂τκαl

∆τκαl

=
∑
καl

1

Nl

√
Mκ

∑
qν

√
~

2ωqν

eκα,ν(q)eiq·Rl(aqν + a†−qν)
∂V KS({τκαl})

∂τκαl

=
1√
Nl

∑
qν

(aqν + a†−qν)∆qνV
KS.

(1.41)

In this above expression, we have introduced the phonon-mode differential perturbation
operator ∆qν , which is defined as [17],

∆qν =

√
~

2ωqν

∑
κα

1√
Mκ

eκα,ν(q)

Nl∑
l

eiq·Rl
∂

∂τκαl
. (1.42)

It is very important to note that the operator ∆qν defined here carries the crystal momentum
of q, which means that ∆qνV

KS is just in a form as a phase factor eiq·r multiplied by a unit-
cell lattice-periodic function (see next Section 1.4 for detailed analysis). Importantly, we
note that the perturbations from phonons to the Kohn-Sham potential can be decomposed
into independent components with respect to each phonon mode as ∆qνV

KS.
The e-ph Hamiltonian is defined as [16]

HDFT
e-ph =

∑
nk,n′k′

〈ψnk|∆V KS({τκαl}) |ψn′k′〉 c†nkcn′k′ . (1.43)



CHAPTER 1. REVIEW OF FIRST-PRINCIPLES METHODOLOGIES FOR
ELECTRONS AND PHONONS 11

By plugging Eq. (1.41) into the above equation and applying crystal momentum conserva-
tion, we arrive at,

HDFT
e-ph =

1√
Nl

∑
mnν

∑
kq

gDFT
mnν (k,q)c†mk+qcnk(aqν + a†−qν), (1.44)

in which the e-ph matrix element at the DFT level, is defined as,

gDFT
mnν (k,q) = 〈ψmk+q|∆qνV

KS|ψnk〉 . (1.45)

The e-ph matrix element gmnν(k,q) is the core quantity in e-ph physics, because it serves as
the building blocks of all microscopic formulations of various important phenomena such as
phonon-induced superconductivity [18], electrical and thermal transport [19], temperature-
dependent direct and indirect optical absorption [20], and so on. Each matrix element
gmnν(k,q) represents the scattering magnitude from the initial state |ψnk〉 to the final state
|ψmk+q〉 by a phonon mode labeled by qν. Note that in the integral in Eq. (1.45), the two
wavefunctions and the first-order change in Kohn-Sham potential all have phases that can
be factored out and they together conserve the crystal momentum, therefore the integral
is indeed done with only unit-cell lattice-periodic functions. Consequently, the e-ph ma-
trix elements gDFT

mnν (k,q) can be calculated within primitive unit cell calculations from first
principles [15, 16]. We will discuss this feature in more details in the next Section 1.4.

1.4 Density-functional perturbation theory (DFPT)

In this section, we review density-functional perturbation theory (DFPT)[15, 21–23],
which is a linear response theory of DFT. DFPT takes the advantage that it self-consistently
calculates the change (response function) in charge density, potential, wavefunctions, etc.
within a single primitive unit cell, enabled by linear response theory. Phonon [15] is among
the most important applications of DFPT, and any phonon mode qν is independent from
each other, and the calculation time is about the same, also similar to its corresponding
single DFT self-consistent calculation.

1.4.1 Sternheimer equation

By linearizing the Kohn-Sham equation in Eq. (1.1), we can derive the Sternheimer
equation [24], which is the main equation in DFPT [15, 21, 22, 24, 25],

P k+q
c

(
HDFT − εvk

)
P k+q
c |∆qνψvk〉 = −P k+q

c ∆qνV
KS |ψvk〉 , (1.46)

where v and c represent valence and conduction bands, respectively, and

P k+q
c =

∑
c

|ψck+q〉 〈ψck+q| . (1.47)
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The projection operator P k+q
c is to remove the singularity in

(
HDFT − εvk

)
[15]. Note that

the separation using valence (v) and conduction (c) states are most commonly seen in the
literature. This is because, as we will see in the next, the first-order change in the charge
density ∆qνn(r) and Kohn-Sham potential ∆qνV

KS(r) requires only first-order change in
valence wavefunctions ∆qνψvk(r). For metals, a similar formalism applies by differentiating
k-point dependent occupied and unoccupied states, and practically a smearing scheme is
often adopted [15]. This separation into two orthogonal subspaces can be generalized in
other way [25], and we will discuss this generalization in the next chapter in Section 2.3.2
for the development of GW perturbation theory (GWPT) [17]. The first-order change in
charge density is [15],

∆qνn(r) = 2
∑
vk

(
ψ∗vk(r)∆qνψvk(r) + [∆−qνψvk(r)]∗ψvk(r)

)
= 4

∑
vk

ψ∗vk(r)∆qνψvk(r),
(1.48)

where we have used the fact that the summation over k is in the full Brillouin zone, and
have applied the following relations,

∆qν [ψ
∗
nk(r)] = [∆−qνψnk(r)]∗, (1.49)

and
[∆−qνψn−k(r)]∗ = ∆qνψnk(r), (1.50)

due to time-reversal symmetry, which is one property of the systems we restricted to (i.e. non-
magnetic systems) when using DFPT and also later GWPT. In case of magnetic materials,
time-reversal symmetry is broken, and the above formalism will need to be generalized
because q and −q become no longer time-reversal related. The first-order change in the
Kohn-Sham potential, by linearizing Eq. (1.3), can be written as [15],

∆qνV
KS(r) = ∆qνVion(r) + ∆qνV

H[∆qνn(r)] + V xc[∆qνn(r)]. (1.51)

The three equations Eq. (1.46), Eq. (1.48), and Eq. (1.51) form a set of closed equations,
from which the three unknown quantities ∆qνn(r), ∆qνV

KS(r), and ∆qνψvk(r) can be solved
self-consistently [21].

1.4.2 Factorization of crystal momentum phase factors and
calculation within primitive unit cell

We would discuss one important essence here, as we mentioned before, that the whole set
of DFPT equations based on the Sternheimer equation can be solved in a primitive unit cell
for phonon perturbations [15, 16, 21–23, 25]. The key is to factor out the phase factor. We
already know this fact for the wavefunctions in the Bloch form Eq. (1.7) , and this is true
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for the change in wavefunctions as well from the definition of the ∆qν operator Eq. (1.37),
so is the change in the charge density ∆qνn. Now we show that for ∆qνV

KS(r), we also can
write it as [15, 16],

∆qνV
KS(r) = eiq·r∆vKS

qν , (1.52)

where,

∆vKS
qν (r) =

√
~

2ωqν

∑
κα

1√
Mκ

eκα,ν(q)
∑
l

e−iq·(r−Rl)
∂V KS(r−Rl)

∂τκα0

, (1.53)

which is a unit-cell lattice periodic function satisfying,

∆vKS
qν (r) = ∆vKS

qν (r + R). (1.54)

In Eq. (1.53), we have utilized the lattice periodicity of V KS(r) that gives,

∂V KS(r)

∂τκαl
=
∂V KS(r−Rl)

∂τκα0

. (1.55)

Therefore, all quantities within the linear-response DFPT can be formulated and calculated
in a single primitive unit cell with arbitrary phonon perturbation with wavevector q.

It is noted that DFPT can serve as a straightforward and very convenient method to
calculate the e-ph matrix elements gDFT

mnν (k,q) in Eq. (1.45), once the first-order change in
Kohn-Sham potential ∆qνV

KS(r) is solved in DFPT [16]. Equivalently, we can write the
e-ph matrix element as,

gDFT
mnν (k,q) = 〈umk+q|∆vKS

qν |unk〉unit cell
, (1.56)

where note that the spatial integral is done with all lattice-periodic functions, and therefore
the integral is performed within one primitive unit cell [16]. Till now, we can study the e-ph
physics from first principles at the DFT level.

1.5 Electron-phonon coupling in Wannier

representation

Now an important ingredient for e-ph physics, the e-ph matrix elements gDFT
mnν (k,q), can

be calculated from ab initio DFPT method. However, it is found that often the numerical
convergence of various e-ph properties requires very fine k and q mesh and straight forward
application of DFPT to all the fine k and q points is very computationally intensive..

To overcome this difficulty, Wannier representation [26–28] of e-ph coupling has been
developed and used to very efficiently interpolate the e-ph matrix elements [16, 29, 30] from
a coarse to a fine grid while keeping high ab initio accuracy. Wannier interpolation for
e-ph coupling is a rather physical interpolation (than a numerical interpolation) because
it captures the dominant characters in the Bloch states with proper Wannier functions.
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Furthermore, by specifically using the maximally localized Wannier functions [26–28] which
decay relatively fast in real space, the interpolation becomes very efficient with a reasonable
coarse grid in the DFT and DFPT calculations.

We introduce the e-ph matrix elements in the Wannier representation [30], gstκα(Re,Rp),
where s and t label the Wannier functions, and Re and Rp are lattice vectors for electron
Wannier functions and phonon Wannier functions (i.e. atom positions), respectively. We in-
troduce the basis transformation matrix between electron Bloch waves and electron Wannier
functions as Untk which can be derived by projecting DFT wavefunctions onto Wannier basis
[26–28]. Similarly, we introduce the basis transformation matrix between phonon eigenmodes
and phonon Wannier functions, which are just the phonon eigenvectors. Then the e-ph ma-
trix elements in the Bloch representation can be written in the Wannier representation as
[16, 30],

gmnν(k,q) =
∑
ReRp

eik·Re+iq·Rp
∑
stκα

√
~

2Mκωqν

Umsk+qgstκα(Re,Rp)U
†
tnkeκα,ν(q), (1.57)

and the inverse transformation is [16, 30],

gstκα(Re,Rp) =
1

NeNp

∑
kq

e−ik·Re−iq·Rp
∑
mnν

√
2Mκωqν

~
e∗κα,ν(q)U †smk+qgmnν(k,q)Untk,

(1.58)
where Ne and Np have the same meaning as Nl, but are for electrons and phonons BvK
supercells, respectively.

With these two relations, we can transform gmnν(kco,qco) on uniform coarse grids (de-
noted by subscript ‘co’) into the Wannier basis gstκα(Re,Rp) using Eq. (1.58), and then
perform the interpolation by transforming back to get gmnν(kfi,qfi) on arbitrary points or
fine grids (denoted by subscript ‘fi’) by using Eq. (1.57). With this capability, e-ph physics
quantities can be calculated efficiently with ab initio accuracy.
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Chapter 2

Development of GW perturbation
theory (GWPT) for electron-phonon
interactions at many-electron level

In this Chapter, we develop a new first-principles method called GW perturbation theory
(GWPT) [17, 31]. It is a linear-response theory of the GW self-energy, in similar spirit of
density-functional perturbation theory, but at the GW level that thus gives the coupling of
phonons to real quasiparticles as opposed to Kohn-Sham fictitious electrons. In the GWPT
method, we deal with the non-local and frequency-dependent change in self-energy. With
GWPT, one can access efficiently and accurately the e-ph matrix elements at the many-
electron GW level. We present the formalism, implementations, verification, and discussions
in this Chapter. Its application to a correlated superconductor with high transition temper-
ature is presented in Chapter 4. The formalism of GWPT is first published in Ref. [17], and
the manuscript with more details and discussions is in preparation [31].

2.1 Introduction

First-principles calculation of electron-phonon (e-ph) coupling [16, 17] is of tremendous
interest as it serves as a non-empirical approach to predict and understand a number of
phenomena in condensed matter physics and materials physics, such as phonon-mediated
superconductivity [18], electrical and thermal transport [19], quasiparticle energy renormal-
ization [32], charge-density wave (CDW) [33], and vibrational features in optical spectra
[20]. By formulating a linear-response theory of density functional theory (DFT) [1] to
phonon perturbations, density-functional perturbation theory (DFPT) [15, 21–23] has been
the prevailing and most efficient ab initio method to study the e-ph interactions within DFT.
The e-ph coupling treated in DFPT is at the same level as the DFT Kohn-Sham eigenval-
ues which are not the true electron (or quasiparticle) energies. This is reflected in that,
in general, the Kohn-Sham eigenvalues do not yield accurate band gaps and band widths
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nor information on lifetimes [7, 8]. The exchange-correlation potentials Vxc in DFT (such
as those in the local-density approximation (LDA) [4] or the generalized gradient approx-
imation (GGA) [5]) can only be at best considered as an approximation to the nonlocal,
frequency-dependent self-energy operator .

The GW approximation [7–11] has proven, for many materials, to be an accurate ab
initio method in capturing the many-electron correlation effects in the evaluation of the
quasiparticle energies. In the GW approximation, the self-energy operator Σ is expanded
in terms of the single-particle Greens function G and the screened Coulomb interaction
W to first order, i.e. Σ = iGW , hence named the GW method. By combining frozen-
phonon technique with GW calculations, previous studies [34–40] have found that many-
electron corrections to the DFT e-ph coupling strength are essential to accurately describe a
number of phenomena, such as the phonon dispersion in graphene and graphite [34, 35], the
temperature-dependent band gap in diamond [38], and superconductivity in Ba0.6K0.4BiO3

[37]. However, the frozen-phonon technique is limited to only investigate couplings to phonon
wavevectors that are commensurate to a large supercell, which makes it prohibitive to achieve
a fine sampling of the Brillouin zone. More importantly, frozen-phonon calculations can
only provide some intra-band part of the e-ph matrix elements indirectly and an overall e-ph
coupling strength by examining band energy shifts; the e-ph matrix elements among all bands
and across the full Brillouin zone the essential ingredient of microscopic e-ph formulations of
many physical phenomena are not available [16, 37, 39, 40]. The importance of self-energy
effects in e-ph coupling and severe limitations of the frozen-phonon GW technique thus point
to a strong necessity for a linear-response GW theory (similar in spirit as DFPT [15, 21–23])
to efficiently and accurately calculate the quasiparticle e-ph interactions at the GW level
[16, 37, 39, 40].

In this Chapter, we present our development [17] of the first-principles linear-response
GW method to external perturbations, which we call the GW perturbation theory (GWPT).
In this scheme, the first-order change of the self-energy operator to a phonon perturbation
∆qνΣ is constructed from a linear-response calculation, which is performed within a single
primitive unit cell for any phonon wavevector q and phonon branch ν. This method avoids
the use of supercells, and the computational cost naturally scales linearly with the number
of phonon modes needed. It provides the e-ph matrix elements at the GW level for any pairs
of electronic states efficiently, making GWPT a desirable ab initio method to systematically
study e-ph interactions including many-electron self-energy effects.

2.2 Formalism of GW perturbation theory (GWPT)

We derive the GWPT formalism in this section.
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2.2.1 Derivation starting from quasiparticle equation

We start from the quasiparticle equation Eq. (1.21). By linearizing Eq. (1.21), and by
generalizing the e-ph Hamiltonian at the DFT level to the GW level, we can have,

HGW
e-ph =

∑
nk,n′k′

〈ψnk|∆Vion({τκαl}) + ∆VH({τκαl}) + ∆Σ({τκαl}) |ψn′k′〉 c†nkcn′k′

=
∑
nk,n′k′

〈ψnk|∆V KS({τκαl})−∆Vxc({τκαl}) + ∆Σ({τκαl}) |ψn′k′〉 c†nkcn′k′

=
1√
Nl

∑
mnν

∑
kq

[
gDFT
mnν (k,q)− 〈ψmk+q|∆qνVxc |ψnk〉

]
c†mk+qcnk(aqν + a†−qν)

+
∑
nk,n′k′

〈ψnk|∆Σ |ψn′k′〉 c†nkcn′k′ ,

(2.1)

The goal is to write the last term in the last line of Eq. (2.1) into phonon mode decomposition
associated with c†mk+qcnk(aqν + a†−qν) for coupling between electrons and phonons.

Note that unlike V KS(r) (in which Vxc(r) is one part) which is a local potential, the self-
energy operator Σ(r, r′) is a non-local operator. Similar to Eq. (1.41) , the total change in
self-energy ∆Σ due to atom displacements is defined as,

∆Σ(r, r′; {τκαl}) = Σ(r, r′; {τκαl})− Σ(r, r′; {τ 0
καl})

=
∑
καl

∂Σ(r, r′; {τκαl})
∂τκαl

∆τκαl.
(2.2)

2.2.2 Constant-screening approximation

From the time and position domain Eq. (1.18), the change in the self-energy operator in
principle involves two terms,

∆Σ = i∆GW + iG∆W = i∆GW. (2.3)

where we have used the constant-screening approximation [39] such that ∆W may be ne-
glected compared to ∆G against small perturbations,

∆W ≈ 0. (2.4)

The validity of this approximation has been verified by using frozen-phonon calculations in
a previous study [39] and by our own calculations. It is expected to be generally valid in
semiconductors where the charges are bounded in bonds, and in metals with large Fermi
surfaces. This constant-screening approximation is equivalent to the important approxima-
tion adopted in the widely used Bethe-Salpeter equation (BSE) [41–43] for solving excitonic
properties. The approximation adopted in the BSE formalism is [41–43],

δW

δG
≈ 0. (2.5)
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Note that the charge density is just,

n(r1) = −iG(1, 1+). (2.6)

Therefore, the change in W due to the atomic position perturbation indeed can be approxi-
mated as,

∂W

∂τκαl
=
δW

δn

∂n

∂τκαl
= i

δW

δG(1, 1+)

∂n

∂τκαl
≈ 0. (2.7)

Therefore, the constant-screening approximation in Eq. (2.4) is also justified by the wide
successful applications with BSE [11, 41–43].

2.2.3 Phonon-mode decomposed changes ∆qνG and ∆qνΣ

Using constant-screening approximation, and working in the frequency domain based on
Eq. (1.20), within linear response, we have,

∆Σ(r, r′; ε) = i

∫
dε′

2π
e−iδε

′
∆G(r, r′; ε− ε′)W (r, r′; ε′). (2.8)

Now, we need to work out the expression for ∆G(r, r′; ε−ε′). Propagating the differential
operator into the Green’s function in Eq. (1.23), and consider first the numerator part, we
need to work out ∆[ψnk(r)ψ∗nk(r)]. Let us look at the change in a single wavefunction,

ψnk(r; {τ κp}) = ψnk(r; {τ 0
κp}) + ∆ψnk(r; {τ κp}). (2.9)

Since ψ∗nk(r) is not an independent quantity, and it is the complex conjugate of a wavefunc-
tion ψnk(r), therefore,

ψ∗nk(r; {τ κp}) = ψ∗nk(r; {τ 0
κp}) + [∆ψnk(r; {τ κp})]∗. (2.10)

Note the order of applying ∆ operator and applying complex conjugate in the above equation.
Using these two equation, then within the linear-response regime by keeping linear order, we
have,

∆[ψnk(r)ψ∗nk(r)] = ∆ψnk(r)ψ∗nk(r) + ψnk(r)[∆ψnk(r; {τ κp})]∗. (2.11)

According to the first-order perturbation theory [15, 16],

∆ψnk(r) =
∑

n′k′ 6=nk

ψn′k′(r)
〈ψn′k′ |∆V KS |ψnk〉

εnk − εn′k′

=
1√
Nl

∑
m

∑
qν

ψmk+q(r)
(aqν + a†−qν)

εnk − εmk+q

〈ψmk+q|∆qνV
KS |ψnk〉 ,

(2.12)

where we have used the phonon-mode decomposed expression for ∆V KS in Eq. (1.41), and
applied crystal momentum conservation. We further introduce the following phonon-mode
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decomposed first-order change in the wavefunction ∆qνψnk, with noticing that the above
integral just gives the e-ph matrix element, and then we have,

∆qνψnk(r) =
∑
m

gDFT
mnν (k,q)

εnk − εmk+q

ψmk+q(r). (2.13)

Then we arrive at,

∆ψnk(r) =
1√
Nl

∑
qν

(aqν + a†−qν)∆qνψnk(r). (2.14)

This is result is important because it first shows that the phonon-mode decomposed first-
order change in wavefunction can be derived by the standard sum-over-states method from
Eq. (2.13), and second it shows that the total change in wavefunction indeed can be decom-
posed into independent perturbations from each phonon mode, as shown in Eq. (2.14). Note
that both Eq. (2.13) and the DFPT method with Sternheimer equation Eq. (1.46) can give
∆ψnk(r), but there is a critical difference between the two. We will discuss in more details
later in Section 2.3.2 later in this Chapter. For GWPT, Eq. (2.13) should be used. We will
show later in Section 2.3.2 how we transform the output from solving Sternheimer equation
to Eq. (2.13). Now, we take complex conjugate of Eq. (2.14), and get,

[∆ψnk(r)]∗ =
1√
Nl

∑
qν

(a†qν + a−qν)[∆qνψnk(r)]∗

=
1√
Nl

∑
qν

(a†−qν + aqν)[∆−qνψnk(r)]∗,
(2.15)

where the last step is done by noting the summation is over the full Brillouin zone of phonon
q, and it is to match the single q decomposition which comes into the e-ph Hamiltonian as
c†mk+qcnk(aqν + a†−qν) at the end. Taken together, we have,

∆[ψnk(r)ψ∗nk(r)] =
1√
Nl

∑
qν

(aqν +a†−qν)

(
∆qνψ

∗
nk(r)ψnk(r)+ψnk(r)[∆−qνψnk(r)]∗

)
. (2.16)

To get ∆G in terms of ∆qνG, according to Eq. (1.23) and the chain rule of taking
derivatives, the denominator needs to be taken care of. One will end up with dealing the
quantity ∆qνεnk. In general, ∂εnk

∂τκαl
6= 0. However, by nicely utilizing the periodic perturbation

nature embedded in phonon wavevector q, i.e. ∆qν operator carries a crystal momentum of
q, we show from the crystal momentum conservation that,

∆qνεnk = 〈ψnk|∆qνH|ψnk〉 = 0, ∀q 6= 0, (2.17)

where we have also used the Hellmann-Feynman theorem [15]. Note that the special case
arises with q = 0 where the above equality cannot be guaranteed, and indeed it will depend
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closely on the detailed crystal symmetry. But since in the general formulations of various e-
ph quantities, the q = 0 point (as other q points) represents a certain region in the Brillouin
zone associated with a weight, and indeed the weight of the exact q = 0 point becomes zero
in the region it represents. Therefore, for the relation Eq. (2.17), we treat all the q points
on the same footing.

Then the next steps become quite straightforward that using Eq. (2.16), Eq. (2.17), and
Eq. (1.23), we can write

∆G(r, r′; ε) =
1√
Nl

∑
qν

(aqν + a†−qν)∆qνG(r, r′; ε), (2.18)

where the phonon-mode decomposed first-order change in the Green’s function is,

∆qνG(r, r′; ε) =
∑
nk

∆qνψnk(r)ψnk(r) + ψnk(r)[∆−qνψnk(r)]∗

ε− εnk − iδnk
. (2.19)

We can check that ∆qνG still carries the crystal momentum of q, as [∆−qνψnk(r)]∗ also
carries crystal momentum of q− k by using Eq. (1.49). Then similarly, from Eq. (2.8), we
have,

∆Σ(r, r′; ε) =
1√
Nl

∑
qν

(aqν + a†−qν)∆qνΣ(r, r′; ε), (2.20)

where the phonon-mode decomposed first-order change in the self-energy operator is,

∆qνΣ(r, r′; ε) = i

∫
dε′

2π
e−iδε

′
∆Gqν(r, r

′; ε− ε′)W (r, r′; ε′). (2.21)

2.2.4 Electron-phonon matrix element at the GW level from
GWPT

Now we put Eq. (2.20) and Eq. (2.21) back to the e-ph Hamiltonian at the GW level in
Eq. (2.1), and by utilizing the crystal momentum conservation, we arrive at,

HGW
e-ph =

1√
Nl

∑
mnν

∑
kq

gGWmnν(k,q)c†mk+qcnk(aqν + a†−qν), (2.22)

where the e-ph matrix element at the GW level is written as,

gGWmnν(k,q) = gDFT
mnν (k,q)− 〈ψmk+q|∆qνVxc |ψnk〉+ 〈ψmk+q|∆qνΣ |ψnk〉 . (2.23)
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Finally, we need to calculate the matrix elements of ∆qνΣ. By utilizing crystal momentum
conservation, we arrive at,

〈ψmk+q|∆qνΣ(r, r′; ε)|ψnk〉

=
i

2π

∑
n′

∑
pGG′

(
〈ψmk+q|ei(p+G)·r|∆qνψn′k−p〉 〈ψn′k−p|e−i(p+G′)·r′|ψnk〉

×
∫
dε′

WGG′(p, ε
′)e−iδε

′

ε− εn′k−p − iδn′k−p − ε′

+ 〈ψmk+q|ei(p+G)·r|ψn′k+q−p〉 〈∆−qνψn′k+q−p|e−i(p+G′)·r′ |ψnk〉

×
∫
dε′

WGG′(p, ε
′)e−iδε

′

ε− εn′k+q−p − iδn′k+q−p − ε′

)
.

(2.24)

The energy dependence of ∆qνΣ(ε) is treated with the strategy that every matrix element is
evaluated at both εnk and εmk+q, and the average value is taken. We now have the matrix
element of ∆qνΣ. Eq. (2.24) completes Eq. (2.23) to get gGWmnν(k,q).

Note that in practice, in the construction of ∆qν operator, the use of Kohn-Sham eigen-
values, DFPT e-ph matrix elements, and the unperturbed and first-order wavefunctions
from DFT and DFPT, respectively, makes the current calculations at the level of one-shot
G0W0PT, consistent with the conventional one-shot G0W0 calculations. In principle, further
iterations can be applied.

2.2.5 Symmetries in e-ph matrix elements gGWmnν(k,q)

In this section, we discuss the symmetries in the e-ph matrix elements at the GW level. It
will be very helpful to save computation time as only phonon wave vectors q in the irreducible
wedge in the Brillouin zone are needed to be calculated. The full phonon Brillouin zone
information can then be unfolded.

We introduce the symmetry operation [14, 30],

{S|v}r = Sr + v, (2.25)

where S is the rotational part and v the fractional translation. {S|v} is a symmetry under
which the system is invariant. It has been shown that the DFT e-ph matrix elements follow
the relation [30],

gDFT
mnν (k,Sq) = gDFT

mnν (S−1k,q), (2.26)

by using the following symmetry relation,

∆SqV (r) = ∆qV
KS({S|v}−1r), (2.27)

and,
ψmk+Sq({S|v}r) = ψmS−1k+q(r), (2.28)
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and,
εnk+Sq = εnS−1k+q. (2.29)

TheGW e-ph matrix element gGWmnν(k,q) is being calculated from the non-local ∆qνΣ(r, r′)
operator, and we derive its symmetry relation here. First, the change in the wavefunction
follows,

∆Sqνψnk(r) =
∑
m

gDFT
mnν (k,Sq)

εnk − εmk+Sq
ψmk+Sq(r)

=
∑
m

gDFT
mnν (S−1k,q)

εnS−1k − εmS−1k+q

ψmS−1k+q({S|v}−1r)

= ∆qνψnS−1k({S|v}−1r).

(2.30)

For the change in the Green’s function, using Eq. (2.28), Eq. (2.30) and by noting the
summation is in full k Brillouin zone, we can show that,

∆SqνG(r, r′) = ∆qνG({S|v}−1r, {S|v}−1r′). (2.31)

The screened Coulomb interaction satisfies the following equation by inheriting the symmetry
relation in dielectric matrix and the bare Coulomb interaction,

W ({S|v}r, {S|v}r′) = W (r, r′) . (2.32)

Now we label the GW correction to the matrix element in Eq. (2.24), i.e. the contribution
from ∆qνΣ as gΣ,

gΣ
mnν(k,q) = gGWmnν(k,q)− gDFT

mnν (k,q). (2.33)

Using Eq. (1.20), Eq. (2.31), and Eq. (2.32), we have the following relation,

∆SqνΣ(r, r′) = ∆qνΣ({S|v}−1r, {S|v}−1r′) (2.34)

Then we have,

gΣ
mnν(k,Sq) = 〈ψmk+Sq(r)|∆SqνΣ(r, r′) |ψnk(r′)〉

= 〈ψmS−1k+q({S|v}−1r)|∆qνΣ({S|v}−1r, {S|v}−1r′) |ψnS−1k({S|v}−1r′)〉
= gΣ

mnν(S−1k,q).

(2.35)

Then combined with Eq. (2.26), we have

gGWmnν(k,Sq) = gGWmnν(S−1k,q). (2.36)

The e-ph matrix elements at the GW level follow the same symmetry relation as those at
the DFT level. We can nicely utilize these relations to reduce computational efforts.
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2.3 Further remarks on GWPT method

2.3.1 Time-reversal symmetry treatment and gauge

In Eq. (2.24), the wavefunction ∆−qνψnk is involved in the expression for the matrix
element of ∆qνΣ. Because the whole set of calculations (from DFPT to GWPT) is for
a monochromatic q, therefore we would like to utilize TRS to generate ∆−qνψnk using Eq.
(1.50). However, note that the operator Σ itself is gauge invariant, and therefore ∆qνΣ should
only carry a phase of eiq·r without any gauges. The gauge associated with wavefunctions
usually arises from diagonalization of a matrix, and the resulting gauge is usually arbitrary.
But by definition in Eq. (2.12), this arbitrary phase is the same for ψnk and ∆qνψnk except
that the latter carries an extra definitive eiq·r phase. Therefore, in the construction of the
Green’s function, the associated wavefunction and first-order change in the wavefunction
must be generated from TRS simultaneously, i.e. the following substitution is used in Eq.
(2.24),

|ψnk〉 〈∆−qνψnk| = |Tψn−k〉 〈T (∆qνψn−k)| . (2.37)

In this way, the e-ph matrix elements (which are gauge-dependent) at both DFT and GW
level, gDFT

mnν (k,q) and gGWmnν(k,q), are having the same gauge that is completely determined
by the wavefunctions used to evaluate (not construct) the operators, i.e. 〈ψmk+q| and |ψnk〉.
Note that this is a requirement to correctly applying the GWPT correction to the DFPT
e-ph matrix elements.

2.3.2 Complete first-order change in wavefunction ∆qνψnk

We have briefly touched before that the first-order change in wavefunction ∆qνψnk solved
from Sternheimer equation Eq. (1.46) and constructed by sum-over-states Eq. (2.13) are
different. We have also mentioned the in Eq. (1.46), the separation into valence v and
conduction c subspaces are not unique. We will address these two related points here.

First, let us differentiate the two ∆qνψnk. The one solved from Sternheimer equation
Eq. (1.46) is in the parallel-transport gauge [25], therefore we label it as ∆qνψ

pt
nk. The one

constructed by sum-over-states Eq. (2.13) is in the diagonal gauge [25], therefore we label
it as ∆qνψ

d
nk. Note that ∆qνψ

d
nk and its definition Eq. (2.13) is the standard definition (by

summing over all states) and represents the true first-order change in wavefunctions.
The Sternheimer equation in Eq. (1.46) with the separation into v and c subspaces is the

most commonly seen one. In principle, when solving for one particular band n, as long as its
own component is projected out (by 1−Pn), the Sternheimer equation has no singularity and
can be solved. In this case, one gets ∆qνψ

d
nk in diagonal gauge. In practical DFPT, there is a

minimum requirement, that only and the changes in all the valence wavefunctions ∆qνψvk are
needed to construct ∆qνn from Eq. (1.48) and ∆qνV

KS from Eq. (1.51). So now all valence
states are in the same situation, but this does not mean that they can be grouped together
and projected out. The reason that P k+q

c = 1 − P k+q
v can be applied is fundamentally

related to the density functional. It is important to notice that the construction of ∆qνn



CHAPTER 2. DEVELOPMENT OF GW PERTURBATION THEORY (GWPT) FOR
ELECTRON-PHONON INTERACTIONS AT MANY-ELECTRON LEVEL 24

only requires the conduction manifolds in ∆qνψvk, and therefore, within DFPT using the
Sternheimer equation Eq. (1.46), one can all together project out all the valence states
because it does not change ∆qνn and ∆qνV

KS, however just bringing the first-order change
in wavefunction into a the parallel-transport gauge. We elaborate this property of ∆qνn here
based on Eq. (1.48) and Eq. (2.13),

∆qνn(r) = 4
occ∑
nk

ψ∗nk(r)∆qνψ
d
nk(r)

= 4
occ∑
nk

∑
m

ψ∗nk(r)ψmk+q(r)
〈ψmk+q|∆qνV

KS|ψnk〉
εnk − εmk+q

= 4
occ∑
nk

unocc∑
m

ψ∗nk(r)ψmk+q(r)
〈ψmk+q|∆qνV

KS|ψnk〉
εnk − εmk+q

= 4
occ∑
nk

ψ∗nk(r)∆qνψ
pt
nk(r),

(2.38)

where the summation range of m changes from all states to only unoccupied states, and this
is done noting the k summation is over full Brillouin zone, and the factor 1

εnk−εmk+q
cancels

all transitions from valence to valence states, and leaving only transitions from valence to
conduction states. This is quite physical because for fermions, the unperturbed valence states
are all fully occupied. Any perturbation can only perturb the density into the unoccupied
states. In the last line of the above equation, we have used the relation that,

∆qνψ
pt
nk(r) = P k+q

c ∆qνψ
d
nk(r) =

unocc∑
m

gDFT
mnν (k,q)

εnk − εmk+q

ψmk+q(r), (2.39)

which can be shown by combining first-order perturbation theory and the Sternheimer equa-
tion defined in Eq. (1.46). As a result, the solution of ∆qνψ

pt
nk in DFPT does not alter the

physical results. However, for GWPT calculation, one cannot directly use ∆qνψ
pt
nk, because

what really goes into the formalism is ∆qνψ
d
nk.

Another point we would like to discuss here is the generalization of the separation by v
and c. This is because in practical GWPT calculation, e.g. in Eq. (2.24), the summation
over n′ goes to “infinity” until a convergence cutoff is reached. Therefore we also need the
change in the conduction wavefunctions to be calculated within DFPT using Sternheimer
equation. Therefore, we separate the whole Hilbert space with a band index Na, such that
for n ≤ Na, we call it the active space, and for band index n > Na, we call it the Sternheimer
space. Note that we require Na ≥ Nv so we still have all ∆qνψvk for ∆qνn and ∆qνV

KS. We
then define the projection operator to project all states into the active space as Pa, and then
the projection into the Sternheimer space Ps is,

Ps = 1− Pa. (2.40)
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We then can generalize the Sternheimer equation in Eq. (1.46) as,

P k+q
s

(
HDFT − εnk

)
P k+q
s |∆qνψ

pt
nk〉 = −P k+q

s ∆qνV
KS |ψnk〉 . (2.41)

Now we can solve for change in the conduction wavefunctions by setting Ns to included
all conduction and valence states (labeled by n in the above equation) we would like to
calculate. The calculation of ∆qνn and ∆qνV

KS still use all n = {v} as before. (Note, in
practical calculation using Eq. (2.41), the first-order ∆qνψ

pt
nk still needs to be completed as

discussed in the next paragraph in order to get the correct ∆qνn using a similar equation
to Eq. (2.42), but the summation over m usually goes from Nv + 1 to Na so that the full
empty manifold is restored.)

Lastly, we construct the full ∆qνψ
d
nk in diagonal gauge from the output of Sternheimer

DFPT ∆qνψ
pt
nk in the parallel-transport gauge using Eq. (2.41). This is done by the following

relation,

∆qνψ
d
nk(r) = ∆qνψ

pt
nk(r) +

Na∑
m=1

gDFT
mnν (k,q)

εnk − εmk+q

ψmk+q(r). (2.42)

Note that in construction of ∆qνψ
d
nk(r) using Eq. (2.42), according to the first-order per-

turbation theory, the sum-over-state part will exclude the degenerate subset such that
εnk = εmk+q. For numerical stability, this is done by adding a small non-zero imaginary
part in the denominator as a standard treatment. Our tests show that this treatment gives
negligible effects, and this imaginary part can be smaller than the smearing factor used in
the density of states calculations, and should not be unphysically large. We adopt Eq. (2.42)
in the GWPT calculations.

2.4 Code developments and practical workflow

2.4.1 Abinit code for DFT and DFPT calculations

We adopt Abinit code [44] for the DFT and DFPT calculation because it is implemented
with the generalized separation of subspaces in Sternheimer equation Eq. (2.41). Therefore
we can generate ∆qνψnk for as many empty states as needed. Note that in Abinit response-
function calculations [44], the differential operator is taken as for each atom, moving atom
along the three primitive cell vectors (not Cartesian coordinates). Therefore coordinate
transformation is performed at the end to transform to Cartesian coordinates in definition,
then transform into the phonon mode basis. Furthermore, we use Abinit to generate ∆qνVsc,
for the calculation of its matrix elements later.

We have developed the interface for DFPT-GWPT in the wrapper abi2bgw distributed
with the BerkeleyGW package [45], to handle the format transformation of ∆qνψnk and
∆qνVsc.
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2.4.2 Implementation of GWPT in BerkeleyGW code

The main code development is in BerkeleyGW [45], in particular the Sigma part.
With the converted ∆qνψnk and ∆qνVsc from abi2bgw, BerkeleyGW reads these two
files in addition to the regular input data files. Then the matrix elements of ∆qνΣ as in Eq.
(2.24) and ∆qνVxc are calculated.

The current implementation supports calculation of e-ph matrix elements between any
specified pair of states in the scattering, for a given qν. With the advantage of linear response,
the scaling with phonon modes is perfectly linear. These calculations are still demanding
because the combined degrees of freedom in qν is usually to the order of 1,000. Therefore
the computation of a regular GWPT calculation is about three orders of magnitude of a
conventional GW calculations.

2.4.3 Epw code for Wannier interpolation - development of
interface to Abinit and BerkeleyGW

We have developed a general interface to the Epw code [46], which is originally inter-
faced and distributed with Quantum Espresso [47]. This new interface enables general
input of e-ph matrix elements, band energies, phonon dynamical matrices, etc. to be used
and interpolated by Epw. We use this interface to interpolate the e-ph matrix elements
gDFT
mnν (k,q) calculated using Abinit, and gGWmnν(k,q) calculated using BerkeleyGW.

Note that the Wannierization step using Wannier90 code [48] requires a set of wave-
functions on full k Brillouin zone from DFT, and the rotation matrices Untk in Eq. (1.57) and
Eq. (1.58) depend on the gauge of this given set of wavefunctions. Therefore, for Wannier
interpolation purpose, we use full k and q grids through the DFPT and GWPT calculations,
and do not use any symmetry (symmetry rotation introduces different gauges), to keep all
the gauges consistent through this DFT→ DFPT→ GWPT→Wannier interpolation work-
flow. Note that if no Wannier interpolation is used, and direct calculations up to GWPT
are adequate for convergence, symmetries in gGWmnν(k,q) can be applied as discussed in the
above Section 2.2.5.

2.5 Verification benchmarks against frozen-phonon

results

Frozen-phonon technique calculates phonon response by extracting information from di-
rect supercell calculations with displaced atoms. Such method can be extremely expensive
when supercells become very large, therefore is only limited for some high-symmetry q points
(often the zone-boundary points) that are accessible from existing computational resource.
Furthermore, to extract e-ph matrix elements, straightforward frozen-phonon calculations
can only extract gmnν(k,q) for scatterings between degenerate states by fitting band split-
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ting with displacements [16, 37, 39, 40]. However, the linear-response DFPT and GWPT
can easily access all scatterings on the same footing.

We can use frozen-phonon results to verify our GWPT method. In the frozen-phonon
GW calculations, the supercell wavefunctions with displacements are used to construct the Σ
operator, and the equilibrium wavefunctions are used for the evaluation of the quasiparticle
energy. There is a subtlety here - that is, a straightforward/conventional frozen-phonon
calculation, such as those in DFT, uses the same wavefunctions with displacements at all
time. This is not an issue for the comparison between frozen-phonon DFT and DFPT,
because both theories self-consistently update the wavefunctions. However, both the G0W0

method and G0W0PT method are not self-consistent theories (A full self-consistency within
GW theory involves many theoretical and technical challenges and is beyond the scope of
this work.), and this leads to some degrees of freedom to build the theory. We use the
unperturbed initial and final states wavefunctions to evaluate the first-order change in self-
energy operator ∆qνΣ in the GWPT theory (as presented in the main text), and this is
consistent with the Hellmann-Feynman theorem and the formalism of DFPT. The frozen-
phonon GW calculations are prepared and performed with the same idea in the supercells.
In this way, we benchmark our implementation of the GWPT method against the finite-
difference frozen-phonon calculations. Note that the assumption that the electrons respond
instantaneously to the motion of the ions, i.e. the Born-Oppenheimer approximation [1,
15], is used in both DFPT and GWPT, therefore the comparison between the perturbation
theory and the frozen-phonon method is meaningful.

We provide the verification of diamond by comparing frozen-phonon results and pertur-
bation theory calculations. We choose a phonon wavevector q = L, which corresponds to a
2 × 1 × 1 supercell. In the frozen-phonon calculation, the energy of the degenerate states
at the Brillouin zone boundary splits linearly with increasing displacement (when it is small
enough). The slope in the change in energy with respect to displacement is given by a
specific single e-ph matrix element that can be fitted from finite-difference frozen-phonon
calculations, or directly calculated with the linear-response perturbation theory in a primi-
tive unit cell. This type of e-ph matrix elements that connect degenerate states is the only
one that frozen-phonon GW can relatively accurately calculate by making supercells [16, 37,
39, 40] from extracting band energies, but GWPT can access all inter-/intra-band e-ph ma-
trix elements across the whole Brillouin zone with equal and high accuracy. In this example
of diamond, the state of interest has quadruple degeneracy at the supercell Brillouin zone
boundary as plotted in Fig. 2.1(a), and will split upon the atom displacement (moving one
atom along the first lattice vector). The results are shown in Fig. 2.1(b). We find excellent
agreement between frozen-phonon DFT and DFPT, and between frozen-phonon GW and
GWPT, nicely verifying our GWPT method.



CHAPTER 2. DEVELOPMENT OF GW PERTURBATION THEORY (GWPT) FOR
ELECTRON-PHONON INTERACTIONS AT MANY-ELECTRON LEVEL 28

Figure 2.1: (a) DFT band structure of diamond, where the valence band maximum is set
to zero energy. The high symmetry points are Γ = (0.0, 0.0, 0.0) and L = (0.5, 0.0, 0.0). We
consider a phonon wavevector q = L, which corresponds to a 2 × 1 × 1 supercell, folding
the Brillouin zone at the blue dashed line. The highlighted blue band is doubly degenerate,
therefore the state of interest (at k = L/2 in the primitive unit cell Brillouin zone, indicated
by the blue dot) will have four degenerate states at the supercell Brillouin zone boundary.
After applying an atom displacement (moving one atom along the first lattice vector), the
four states will split. (b) Comparison of energy splitting-versus-displacement curves between
perturbation theory and direct frozen-phonon (finite-difference) calculations.
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2.6 Conclusion

In this Chapter, we have developed, for the first time, the GWPT method [17]. This
method is a linear-response theory of the GW method, and is designed for calculating the
e-ph coupling, in particular, any e-ph matrix elements of interests with the many-electron
correlation effects included. We have presented detailed derivations with some sensible ap-
proximations. This method has been implemented into the BerkeleyGW code, and we
have developed its interfaces to Abinit and Epw for the e-ph coupling calculations. We can
calculate the general e-ph related quantities accurately and efficiently. Verification against
frozen-phonon results gives excellent agreement.

GWPT in general is able to systematically and accurately investigate the rich e-ph physics
at the GW level, beyond the accessibility of any other existing ab initio methods. The
capability of GWPT demonstrates its great application potential to the study of the rich e-
ph physics in a wide range of materials, going beyond DFT and DFPT. We expect a lot new
physics including how e-ph coupling and many-electron correlations intertwine, and what is
the role of e-ph coupling in correlated materials, to be revealed with the GWPT method.
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Chapter 3

Renormalized spin-wave theory
(RSWT) for magnetic materials

In this Chapter, we develop a computational method called renormalized spin-wave the-
ory (RSWT). This method is developed in an collaborative work with experimental group on
the first discovery of two-dimensional ferromagnetic van der Waals materials Cr2Ge2Te6 in
Ref. [49]. Discussions on experimental observations and materials properties are presented
in Chapter 5. More theoretical details of RSWT are summarized in Ref. [50]. The RSWT
method includes the higher order magnon-magnon interactions beyond linear spin-wave the-
ory (LSWT), and explains well the experimentally observed behavior of the 2D ferromagnet
− few-layer Cr2Ge2Te6. We present the formalism, implementation, and behavior of RSWT
in this Chapter.

3.1 Introduction

Recently, two-dimensional (2D) magnetism has been successfully achieved experimentally
in atomically thin samples by exfoliating magnetic bulk van der Waals (vdW) crystals down
to the few-layer limit, including Cr2Ge2Te6 [49] and CrI3 [51]. This new addition of atomically
thin magnetic 2D materials expands the families of 2D vdW materials beyond the well-
studied systems such as graphene [52] and transition metal dichalcogenides [53]. Like other
novel properties that arise in the 2D limit, ferromagnetism may behave very differently in
2D than in three dimensions (3D). The Mermin-Wagner theorem [54] excludes ferromagnetic
phases at any finite temperatures in a strictly 2D isotropic Heisenberg model. However, an
easy-axis anisotropy could break the rotational symmetry and stabilize ferromagnetic order
in 2D. Moreover, with the help of external magnetic field, it is discovered that the interplay
between anisotropy and dimensionality can give rise to useful behavior for systems with small
intrinsic anisotropy [49].

An accurate theoretical treatment of magnetic systems at finite temperature is generally
difficult due to the complex behaviors of interacting spins. In the quasi 2D limit, it is even
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more challenging owing to the stronger role of thermal fluctuations and quantum effects
(such as quantum statistics) in reduced dimensions. In this work, we present the details of
a systematic approach that is suitable to study ferromagnetism in few-layer vdW crystals,
such as Cr2Ge2Te6 [49, 55, 56]. There have been several theoretical works on this family of
materials, using combination of ab initio electronic structure calculations and classical Monte
Carlo simulations or molecular-field theory to study their ferromagnetic behavior [57–59].
These previous studies treat spins as classical objects; however, in low dimensions and at
low temperatures, the quantum nature of spins may manifest significantly.

In this project, we adopt a renormalized spin-wave theory (RSWT) [60] to study mag-
netism in few-layer systems. Within the RSWT approach, we solve the equation of mo-
tion of spins to obtain the spin-wave (magnon) excitation spectrum within a self-consistent
Hartree-Fock approximation. The spin-wave excitation spectrum is numerically calculated
as a function of temperature. We discuss the details of the numerical implementation and
the behavior of the RSWT method. We apply the RSWT method to study Cr2Ge2Te6 in its
bulk and few-layer forms, which will be discussed in more details in Chapter 5.

3.2 Formalism of renormalized spin-wave theory

3.2.1 General Hamiltonian and Holstein-Primakoff
transformation

In this work, we study collinear ferromagnetism within the framework of RSWT for
systems with different number of atomic layers. This method can be extended to noncollinear
systems by rotating the spin quantization axes [61]. We consider first an isotropic Heisenberg
system with the exchange interactions between localized spins denoted as J l−l′

νν′ where l are the
lattice vectors, labeling the N unit cells under periodic boundary condition, and ν denotes
the basis sites (ν = 1, ..., n, where n is the number of magnetic basis atoms) in one unit cell.
We then include a single-ion anisotropy, denoted by A, an effect from spin-orbit coupling,
and ignore its site dependence because we will be dealing with only one type of magnetic ion
in this work. Furthermore, we include the Zeeman term from an external magnetic field B, to
explore the interplay between dimensionality and externally induced magnetic anisotropies
on the magnetic behavior of the system.

The general Hamiltonian is

H =
1

2

∑
ll′

∑
νν′

J l−l′
νν′ Slν · Sl′ν′ +

∑
l

∑
ν

A(Szlν)
2 − gµB

∑
l

∑
ν

BSzlν , (3.1)

where Slν = (Sxlν , S
y
lν , S

z
lν) is the spin operator on site ν in the l-th unit cell (Note that the

position vector is l). J < 0 (J > 0) represents ferromagnetic (antiferromagnetic) interaction,
and g is the Landé g-factor. In this work, we consider an easy-axis single-ion anisotropy
along the z direction (the direction normal to the plane of the atomic layers) so that A < 0.
We also align the external magnetic field in the easy axis, i.e. the z direction.
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Now we introduce the Holstein-Primakoff transformation [62], rewriting the spin opera-
tors with the so-called deviation creation and annihilation operators a† and a, respectively:

S+
lν =

√
2S − a†lνalνalν

S−lν = a†lν

√
2S − a†lνalν

Szlν = S − a†lνalν

(3.2)

where S is the total angular momentum of a spin, and S± = Sx ± iSy are spin ladder
operators. The deviation operators strictly follow the bosonic commutation relations:

[alν , a
†
l′ν′

] = δll′δνν′ ,

[alν , al′ν′ ] = [a†lν , a
†
l′ν′

] = 0.
(3.3)

However, the deviation operators do not represent real bosons because 〈nlν〉 = 〈a†
l′ν′
alν〉

cannot go to infinity and is upper-bounded by 2S. In the case that 〈a†a〉 � 2S, one can
approximate these deviations as low-energy excitations – spin waves, or magnons – and they
have bosonic nature, and are therefore treated as (and often called) bosons. To proceed, we
expand Eq. (3.2) in different orders of a†a/2S for different levels of approximations.

3.2.2 Linear spin-wave theory (LSWT) and Fourier transform

We start with linear spin-wave theory (LSWT) by expanding Eq. (3.2) to the lowest
order, 

S+
lν ≈
√

2Salν

S−lν ≈
√

2Sa†lν

Szlν = S − a†lνalν

(3.4)

We then rewrite the Hamiltonian (Eq. (3.1)) in terms of the deviation operators as

H0 =
S

2

∑
ll′

∑
νν′

J l−l′
νν′

(
a†lνal′ν′ + alνa

†
l′ν′

)
−
∑
ll′

∑
νν′

SJ l−l′
νν′ a

†
lνalν

−
∑
l

∑
ν

(2AS − gµBB) a†lνalν + E0,
(3.5)

where

E0 = nN

1

2

∑
l−l′

∑
ν′

J l−l′
νν′ S

2 + AS2 − gµBBS

 (3.6)



CHAPTER 3. RENORMALIZED SPIN-WAVE THEORY (RSWT) FOR MAGNETIC
MATERIALS 33

is the ground-state energy. Here, we use H0 to denote the transformed Hamiltonian at the
LSWT level. We introduce the Fourier transform of the deviation operators through:

a†lν =
1√
N

∑
k

e−ik·lb†kν

alν =
1√
N

∑
k

eik·lbkν

(3.7)

where b†kν and bkν are basis operators in Bloch wave form that will be used to solve for the
spin-wave eigenmodes of the system. It is easy to show that they follow similar commutation
relations as their lattice-space counterparts:

[bkν , b
†
k′ν′

] = δkk′δνν′ ,

[bkν , bk′ν′ ] = [b†kν , b
†
k′ν′

] = 0.
(3.8)

We also introduce the Fourier representation of the exchange interaction,

Jk
νν′ =

∑
l−l′

e−ik·(l−l
′)J l−l′

νν′ . (3.9)

The isotropic pairwise interaction satisfies J l−l′
νν′ = J l′−l

ν′ν , which leads to the symmetry Jk
νν′ =

J−kν′ν . Using the relation 1
N

∑
l e
i(k−k′)·l = δk,k′ , the Hamiltonian of Eq. (3.5) can be rewritten

(i.e. Eq. (3.1) at the LSWT level) in reciprocal space as

H0 =
S

2

∑
νν′

∑
k

(
Jk
νν′b

†
kνbkν′ + J−kνν′ bkνb

†
kν′

)
−
∑
ν

(
SJ̃k=0

ν + 2AS − gµBB
)∑

k

b†kνbkν + E0,
(3.10)

where J̃k=0
ν =

∑
l−l′
∑

ν′ J
l−l′
νν′ =

∑
ν′ J

k=0
νν′ is a short-hand notation, denoting the sum of all

J ’s on one specific spin site. At the LSWT level, the magnons (eigenstates of H0) are free
bosons without mutual interactions.

3.2.3 Derivation of renormalized spin-wave theory (RSWT)
Hamiltonian

At low temperatures, the deviation of the magnetization from its saturated value versus
temperature shows a power law behavior, with the exponent being 3/2. This behavior
is well given by the LSWT, known as the Bloch-3/2 theorem [63]. However, as we will
show later, at high temperature, LSWT fails to capture the physics. This is because as
temperature increases, magnon-magnon interactions become indispensable, so that higher-
order interaction effects neglected in LSWT must be taken into account. In this work,
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going beyond LSWT, we consider RSWT, where we include up to fourth order terms in the
deviation operators in the Hamiltonian, and treat the magnon-magnon interaction at the
self-consistent Hartree-Fock level.

We expand Eq. (3.2) to the second order [60], and get,

S+
lν ≈
√

2S

(
alν −

a†lνalνalν
4S

)

S−lν ≈
√

2S

(
a†lν −

a†lνa
†
lνalν

4S

)
Szlν = S − a†lνalν

(3.11)

Using Eq. (3.7) in Eq. (3.1), we next separate the total Hamiltonian H into two terms,

H = H0 +H1, (3.12)

where H0 represents the LSWT part (Eq. (3.5) or Eq. (3.10)), and the other term H1 gives
the interaction effects in what is called the RSWT. In lattice-space representation, H1 reads

H1 =
1

2

∑
ll′

∑
νν′

J l−l′
νν′

(
a†lνalνa

†
l′ν′
al′ν′ −

1

4
a†lνalνalνa

†
l′ν′
− 1

4
alνa

†
l′ν′
a†
l′ν′
al′ν′

− 1

4
a†lνa

†
lνalνal′ν′ −

1

4
a†lνa

†
l′ν′
al′ν′al′ν′

)
+
∑
l

∑
ν

Aa†lνalνa
†
lνalν .

(3.13)

Using Fourier transforms and the commutation relations of the deviation operators, we
can rewrite all terms in Eq. (3.13) in the form of b†

k′+q
b†k−qb

†
k′
bk where k, k′, q are three

independent wave vectors. Note that the terms in Eq. (3.13) have different sub-lattice
dependence, and this leads to the complexity of the general formalism. We now convert the
interacting part of the Hamiltonian given by Eq. (3.13) into the reciprocal space:

H1 =
1

2N

∑
νν′

∑
kk′

∑
q

(
Jq
νν′b

†
k′+qν

b†k−qν′bk′νbkν′

− 1

4
J−k+q
νν′ b†

k′+qν
b†k−qν′bk′νbkν −

1

4
J−k

′

νν′ b
†
k′+qν′

b†k−qν′bk′νbkν′

− 1

4
Jk
νν′b

†
k′+qν

b†k−qνbk′νbkν′ −
1

4
Jk′+q
νν′ b†

k′+qν
b†k−qν′bk′ν′bkν′

)
+

1

N

∑
ν

∑
kk′

∑
q

Ab†
k′+qν

b†k−qνbk′νbkν +
∑
ν

∑
k

Ab†kνbkν .

(3.14)

Interestingly, a linear order term in b†kνbkν associated with the single-ion anisotropy (A) sur-
vives, which originates from the local commutation relation between the deviation operators.



CHAPTER 3. RENORMALIZED SPIN-WAVE THEORY (RSWT) FOR MAGNETIC
MATERIALS 35

3.2.4 Equation of motion and Hartree-Fock approximation

We now have a spin Hamiltonian with a non-interacting part H0 and an interacting part
H1. To solve this Hamiltonian, i.e. calculate its spectrum (eigenstates and eigenvalues), we
solve the equation of motion,

i~
∂

∂t
bk0ν0 = [bk0ν0 , H], (3.15)

where bk0ν0 is for a specific label of k0 and ν0. The commutator is in general an nn matrix
(i.e., for all possible ν0) at each given k0, and the eigenvalues of this matrix correspond to
the excitation energy ~ωk0 of the different branches of the magnons at k0. We deal with
non-interacting part first. The commutation dictating the evolution of deviation operator
can be performed easily using the commutation relation of bk0ν0 and b†k0ν0

,

[bk0ν0 , H0] = S
∑
ν

Jk0
ν0ν
bk0ν −

(
SJ̃k=0

ν0
+ 2AS − gµBB

)
bk0ν0 . (3.16)

By running ν0 = 1, ..., n, we can construct the full matrix of the equation of motion. The
magnon spectrum obtained at this step is that of the LSWT, and has been widely discussed in
the literature. The excitation spectrum within the LSWT is independent of the temperature,
because the evolution of a given magnon does not correlate with excitations of other magnons
at this level of approximation. As a result, the LSWT is usually acceptable only when the
temperature of the system is much lower than the transition temperature, in which case the
magnon-magnon interaction events are rare.

To include the effects of magnon-magnon interaction, we derive the commutator for the
interacting part,

[bk0ν0 , H1] =
1

2N

∑
ν

∑
k

∑
q

(
Jq
ν0ν
b†k−qνbk0−qν0bkν + Jq

νν0
b†k+qνbkνbk0+qν0

− 1

4
J−k+q
ν0ν

b†k−qνbk0−qν0bkν0 −
1

4
J−k0
νν0

b†k+qνbkνbk0+qν

− 1

4
J−k0+q
νν0

b†k−qν0bk0−qνbkν0 −
1

4
J−kνν0b

†
k+qν0

bkνbk0+qν0

− 1

4
Jk
ν0ν
b†k−qν0bk0−qν0bkν −

1

4
Jk0+q
ν0ν

b†k+qν0
bkν0bk0+qν

− 1

4
Jk0
ν0ν
b†k−qνbk0−qνbkν −

1

4
Jk+q
νν0

b†k+qνbkν0bk0+qν0

)
+

1

N

∑
k

∑
q

(
Ab†k−qν0bk0−qν0bkν0 + Ab†k+qν0

bkν0bk0+qν0

)
+ Abk0ν0 .

(3.17)

This many-body problem is very difficult to be accurately solved at finite temperature. Here
we adopt the Hartree-Fock approximation in which we only keep the so-called diagonal terms
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that have the same k and ν indices [60]:

b†k0ν0
bkνbk′ν′

≈ δk0kδν0ν 〈b
†
k0ν0

bk0ν0〉 bk′ν′ + δk0k
′δν0ν′ 〈b

†
k0ν0

bk0ν0〉 bkν .
(3.18)

Applying this approximation to Eq. (3.17), we arrive at

[bk0ν0 , H1]

=
1

N

∑
k

(
Jk−k0
ν0ν0

− Jk
ν0ν0

)
〈nkν0〉 bk0ν0 +

1

N

∑
ν

∑
k

J0
ν0ν
〈nkν〉 bk0ν0

− 1

2N

∑
ν

∑
k

(
Jk0
ν0ν
〈nkν〉+ Jk0

ν0ν
〈nkν0〉

)
bk0ν0

+
1

N

∑
k

4A 〈nkν0〉 bk0ν0 + Abk0ν0 ,

(3.19)

where we define,
〈nkν〉 = 〈b†kνbkν〉 , (3.20)

the occupation number of the Bloch wave of wave vector k on site ν. This occupation
number can be obtained after the eigenmodes (a linear combination of the different Bloch
waves) are solved with diagonalization. Till now, we have derived the essential formalism for
solving the spin Hamiltonian with up to first- and second-order approximations. Combining
Eq. (3.16) and Eq. (3.19), we can solve for the magnon spectrum with the inclusion of
magnon-magnon interactions, and this level of theory is called RSWT. Note that 〈nkν〉 is
temperature-dependent. This indicates temperature renormalization effects in the magnon
spectrum within RSWT. The solution, i.e. the eigenvalues of [bk0ν0 , H0 +H1], which are the
magnons of the system, indeed requires self-consistent solutions, as will be discussed in the
next section.

3.3 Code implementation

3.3.1 Self-consistent equations for magnetization

Basically, we are solving the combination of Eq. (3.16) and Eq. (3.19). Here, as an
example, we discuss the case of Cr2Ge2Te6, which is the main physical research object of
Chapter 5. Cr2Ge2Te6 is a layered vdW ferromagnetic semiconductor, and has recently been
successfully exfoliated down to the 2D limit [49]. The detailed structural information and its
theory study using a combined DFT plus RSWT approach is discussed in details in Chapter
5. Here, we focus on the algorithm behavior.

For the monolayer or the bulk Cr2Ge2Te6, in one unit cell there are two magnetic sites
(n = 2), so that ν = 1, 2; and we introduce ν1 = 1 and ν2 = 2. Moreover, the two sites
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are symmetrically equivalent, therefore after diagonalization the eigenstates of the system
are just in-phase acoustic mode (labeled by −) with the cell-periodic part of the eigenvector

1√
2
(1, 1)T and anti-phase optical mode (labeled by +) with the cell-periodic part of the

eigenvector 1√
2
(1,−1)T . The total number of magnons excited at a given k point in the two

magnon branches may be obtained from the Bose-Einstein distribution, i.e.:

〈nk〉 = 〈nk+〉+ 〈nk−〉

=
∑
±

1

exp
(

~ωk±
kBT

)
− 1

. (3.21)

In general, at a given k point, the relation between the total excitation number 〈nk〉 and the
excitation number of each site nkν is directly given by the eigenvalues and eigenvectors of
the magnon modes at that k point. For this particular system of two equivalent magnetic
sites, by symmetry we have

nkν1 = nkν2 =
1

2
nkν , (3.22)

for all k points. (Note that the right hand side of Eq. (3.21) is in general an approximation
for the excitation number, because the deviation operators are not real bosonic operators, as
we discussed before.) Then, for the single-layer or the bulk Cr2Ge2Te6 system, the equation
of motion of magnons is further simplified as

[bk0ν0 , H]

= S
∑
ν

Jk0
ν0ν
bk0ν −

(
SJ̃k=0

ν0
+ 2AS − gµBB

)
bk0ν0

+
1

2N

∑
k

(
Jk−k0
ν0ν0

− Jk
ν0ν0

+ J0
ν0ν
− Jk0

ν0ν

)
〈nk〉 bk0ν0

+
1

N

∑
k

2A 〈nk〉 bk0ν0 + Abk0ν0 .

(3.23)

Eq. (3.21) and Eq. (3.23) form the self-consistent loop: at a given temperature, the occu-
pation 〈nk〉 given by Eq. (3.21) depends on the spin-wave spectrum (i.e., the eigenvalues),
and the spin-wave eigenvalues are derived from diagonalization of the matrix representation
of the equation of motion (Eq. (3.23)), which explicitly depends on the occupation.

We solve this set of self-consistent equations in the following way: (a) at each given
temperature, we start from LSWT and solve for the non-interacting spectrum; (b) with the
spectrum solved, we calculate 〈nk〉 using Eq. (3.21); (c) we put the calculated 〈nk〉 back
into Eq. (3.23) to solve for a new spectrum. These steps are repeated until the solutions are
self-consistent. The convergence criterion can be defined either using the spectrum, or the
total magnetization. In this work, we use the latter criterion,

M(T )

M0

= 1− 1

nNS

∑
k

〈nk〉 , (3.24)
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where M(T ) is the total magnetization as a function of temperature T , and M0 = M(0)
denotes the fully polarized magnetization (at T = 0). The ferromagnetic Curie temperature
TC is simply determined here by the temperature at which the total magnetization becomes
zero, i.e. M(TC) = 0. Our calculations show that, at a given temperature, 20 self-consistent
steps usually give very good convergence in M(T ).

3.3.2 Dimensionality reflected in numerical implementation

The summation over k points in our formalism is equivalent to an integral over the first
Brillouin zone, in the limit that the number of k points used goes to infinity. However,
numerically, we could only perform the summation over a grid of finite number of points.
For this reason, care must be taken when dealing with some numerically diverging cases
based on the physical behavior from analytical limit. For example, in the long wavelength
regime, as k → 0, the acoustic spin-wave excitation in the ferromagnetic phase behaves as
~ωk ∼ k2, whereas the optical mode has a much higher energy and its relative contribution
is little. Therefore, the integration over the occupation numbers∑

k

〈nk〉 →
V

(2π)D

∫
dDk

exp
(

~ωk

kBT

)
− 1

(3.25)

behaves quite differently in 2D (D = 2) and in 3D (D = 3). Considering the ideal case of a
truly isotropic Hamiltonian with no spin-wave excitation gap, around the k = 0 point, the
integral diverges in 2D, but remains finite in 3D. This means from Eq. (3.24) that there
cannot be any magnetization at any finite temperature in this magnetically isotropic 2D
system, as shown by the Mermin-Wagner theorem. In 3D, since the integral over a small
region around the point k = 0 is finite, the contribution of the k = 0 point vanish as the
k grid becomes finer. In 2D, the contribution from integrating over this point is divergent,
so that the deviation blows up and we have TC = 0. In the case that anisotropy is present
and a spin-wave excitation gap is established in a 2D system, the contribution of the k = 0
is finite, and sometimes dominant (especially when the gap is small), we directly evaluate
its contribution and include it in the summation. In our numerical implementation of the
method (with and without a spin-wave energy gap), for the case of 2D calculation, we always
keep the contribution of the k = 0 point; for the case of 3D calculation, one can safely neglect
the contribution of the k = 0 point. In both cases, we need very fine k point to converge the
calculation (e.g. 72×72 for 2D and 36×36×36 for 3D, for application in Cr2Ge2Te6 system
discussed in Chapter 5). Spatial symmetries are used to reduce the computation time.

With an attentive treatment of k = 0, we can investigate the layer-number dependence
of ferromagnetism. The inclusion of interlayer couplings allows for more magnon modes at
each k point in the 2D Brillouin zone, physically corresponding to additional confined modes
in the normal direction. This additional modes along the normal direction are mimicked by
introducing discrete kz values, with the number of kz points correspond to the number of
layers nz [64]. We replace the interlayer coupling Jz of the bulk by nz−1

nz
Jz to give the correct
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ground-state total energy, as the coupling at the two surfaces (to the upper or lower layer)
of a multilayer sample are physically cut off. With this method, we are always dealing with
a unit cell with two basis sites. In principle, in the multilayer cases, one would include
the multiples of basis sites, then construct and diagonalize bigger matrices to obtain the
different magnon modes. Our approximate treatment here (by introducing discrete kz and
modifying interlayer coupling) can be shown to yield the same results to the direct diago-
nalization method in the monolayer, bilayer (two layers are equivalent), and bulk Cr2Ge2Te6

systems. For other multilayer cases, this simple treatment gives satisfactory description of
the multilayer behavior of vdW quasi 2D systems with weak interlayer coupling.

In the next section, we present our benchmark results on quasi 2D magnetism within
RSWT. Note that in the presence of an external magnetic field, rigorously speaking, there
is no well-defined phase transition temperature TC ; however, experimentally, a transition
between ferromagnetic-like and paramagnetic-like states can be distinguished from the tail
effect [49], and theoretically under the spin-wave theory framework, we can locate where the
magnetization vanishes and thus determine an effective TC . Therefore, we use the notation
T ∗C to represent the transition temperature in the presence of an external field.

3.3.3 Self-consistent behavior of RSWT and temperature
dependent magnon spectrum

Before presenting and discussing more results, we first show the self-consistent behavior
of the RSWT method. The example used here is the monolayer Cr2Ge2Te6 system, setting
A = 0, B = 1.0 T. As we can see in Fig. 3.1(a), the magnetization curve of the monolayer
system converges rapidly with the number of iterations, giving T ∗C = 35 K with 20 iterations.
The line with zero iteration represents LSWT, and it gives a T ∗C = 110 K, showing that
LSWT overestimates TC (and T ∗C) dramatically, as was also observed in studies of other
systems [60]. However, it is noted that the converged magnetization-temperature curve
from RSWT show a first-order-like phase transition (a nearly sudden drop of M(T ) to zero
magnetization), whereas ferromagnetic transition is known to be second order. This feature
is a known artifact of RSWT, as has been discussed in Refs. [60, 65]. Physically, RSWT
can describe the general temperature behavior of ferromagnetic systems, but not necessarily
the exact behavior near the vicinity of TC (e.g., T > 0.9TC), where the approximate boson
approximation breaks down and the constraint of having a finite total spin plays an important
role. However, the determination of TC (and T ∗C) using vanishing magnetization from RSWT
usually gives rather accurate estimation of TC (and T ∗C) [60, 65].

The inclusion of spin-wave interactions is important, and RSWT captures the essence of
magnon softening or the temperature renormalization of the magnon dispersion. It has been
observed experimentally [66, 67], that the magnon excitation energy decreases as temperature
increases, and the renormalization is especially strong when approaching TC . Fig. 3.1(b)
shows the temperature-dependent magnon dispersions of monolayer Cr2Ge2Te6 under B =
1.0 T with a converged T ∗C = 35 K from RSWT. Shown are the calculated temperature-
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Figure 3.1: Behavior of RSWT method for monolayer Cr2Ge2Te6. Example used is set
A = 0 and B = 1 T. (a) Convergence behavior of the self-consistency procedure of RSWT.
Plotted are renormalized magnetization M(T )/M0 as a function of temperature T . TC (or
T ∗C , see text) is determined by the value at which the magnetization vanishes. We show the
results of 0, 5, 10, and 20 iterations and TC eventually converge to 35 K. The 0-iteration
represents LSWT, and the curve extends beyond the plot to give a T ∗C = 110 K, which greatly
overestimates the final result. (b) Temperature-dependent spin-wave excitation spectrum.
Shown are results at three different temperatures: 0.01T ∗C (i.e., 0.35 K), 0.5T ∗C (i.e., 17.5 K),
and 0.9T ∗C (i.e., 31.5 K). Strong temperature renormalization effect is observed.
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dependent spin-wave dispersion at 0.01T ∗C (i.e. 0.35 K), 0.5T ∗C (i.e. 17.5 K), and 0.9T ∗C
(i.e. 31.5 K). As seen in experiment, the calculated magnon excitation energy decreases as
temperature increases, and more rapidly at higher temperature. This is a direct consequence
of spin-wave interactions where temperature changes the strength of the scattering. RSWT
nicely captures the temperature renormalization effect, which can be directly compared with
neutron diffraction experiments quantitatively.

3.4 Conclusion

In this Chapter, we have developed the formalism of RSWT to calculate magnetic proper-
ties and the transition temperature of 2D and 3D ferromagnetic materials. We adopt various
approximations and cast the interacting spin-wave problem into a self-consistent frame-work
with parameters mapped from ab initio DFT calculations. This formalism is general by
including the sublattice dependence ν and ν ′ for pairwise interactions. Magnon-magnon in-
teraction is treated at the Hartree-Fock level, and is important for correctly describing the
high-temperature behavior of magnetism. The test calculations show that numerical self-
consistent calculations are important to get accurate converged value, and the temperature
effect in magnon excitation can be very important. This work provides an accurate theoret-
ical method to study 2D (as well as 3D) ferromagnetism in atomic layers of real materials
with physical insights. We expect more interesting physical phenomena in 2D magnetism
can be understood and predicted using RSWT, employing the theoretical framework and
techniques presented here.
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Part II

Studies of superconductivity, and
electronic and magnetic interactions

in novel materials
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Chapter 4

Correlation-enhanced electron-phonon
coupling and superconductivity in
Ba1−xKxBiO3 from GWPT

Electron-phonon (e-ph) interactions and superconductivity in correlated materials pro-
vide exciting opportunities and challenges for theoretical condensed matter studies. With
the new theoretical and computational method – GW perturbation theory (GWPT), we
are able to investigate a large number of correlated materials where correlation effects in
e-ph interactions were missed from standard density-functional perturbation theory (DFPT)
based calculations.

In this Chapter, we apply our newly developed GWPT method to systematically study
an intriguing superconductor Ba1−xKxBiO3. We find that many-electron correlations signif-
icantly enhance the e-ph coupling strength and the superconducting Tc, nicely agreeing with
experimentally measured Tc = 30− 32 K. This application of GWPT showcases the strong
capability of the linear-response technique that enables a full investigation of the Brillouin
zone and any pairs of transitions for e-ph coupling, and shows its wide application potential
in studying the complex e-ph physics in correlated materials.

4.1 Introduction

We have applied our GWPT method (within a one-shot calculation, i.e. G0W0PT) to
study superconductivity in Ba1−xKxBiO3 in its cubic perovskite phase as shown in Fig.
4.1(a), which has an experimentally measured superconducting Tc of 30 − 32 K [68–70].
Previous ab initio studies [37, 71] show that the e-ph coupling calculated within DFT-
LDA is too weak to account for such a high Tc in this material, and frozen-phonon GW
calculations indicate that many-electron self-energy effects may enhance e-ph interactions,
however estimated from only a single q-point calculation for one electronic state [37].

In this work, we find that the GW self-energy renormalizes the DFT-LDA e-ph matrix
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elements non-uniformly across the Brillouin zone, and enhances the e-ph coupling strength
λ by a factor of 2.4. The GWPT-calculated λ = 1.14 is strong enough to account for the
high superconducting transition temperature Tc in Ba0.6K0.4BiO3. We show that the doping
dependence in the superconductivity is mainly from a density-of-states (DOS) effect.

4.2 Calculation details

In this work, the DFT and DFPT calculations of Ba0.6K0.4BiO3 are performed using
Abinit code [44]. We simulate the potassium (K) doping effects by removing electrons and
adding a compensating background charge. The generalized gradient approximation [5] and
norm-conserving pseudopotentials [72, 73] are used, with a plane-wave cut-off of 100 Ry. The
fully relaxed lattice constant of 4.268 Å is adopted, which is close to the experimental value
of 4.283 Å [70]. In the GW and GWPT calculations using the BerkeleyGW code [45], we
take a 15 Ry cut-off for the screened Coulomb interaction, and include 40 empty bands in
the construction of the dielectric matrix and the self-energy operator. In metallic systems,
the intra-band contributions near the Fermi level are dominant, therefore a relatively small
number of empty bands ensures convergence. In the construction of ∆qνΣ operator, the use
of Kohn-Sham eigenvalues, DFPT e-ph matrix elements, and the unperturbed and first-order
wavefunctions from DFT and DFPT, respectively, makes the current calculations at the level
of one-shot G0W0PT.

4.3 Electronic structure and verification benchmark

against frozen-phonon technique

We first perform standard DFT and DFPT calculations on Ba0.6K0.4BiO3 using the GGA
functional [5]. The calculated Fermi surface shows a regular rounded cubic shape (Fig.
4.1(b)), and is strongly nested. We verify our GWPT method by comparing its results
against reference frozen-phonon GW results at a selected high symmetry q-vector. We focus
on the single band (labeled as n0 and highlighted in Fig. 4.1(c)) crossing εF , which is
expected to give the dominant contribution to superconductivity.

We set up the frozen-phonon calculations by displacing a single oxygen atom along the
normal of the cubic face (that it centers on) as a finite-difference perturbation. This dis-
placement is modulated from one primitive unit cell to another according to the phonon
wavevector q of interest. We are in particular interested in the q = R (TRS-equivalent to
q = R) phonon perturbation, which is (nearly) a nesting vector of the Fermi surface and scat-
ters carriers between the states k = −R/2 and k = R/2. Inducing the atom-displacement
perturbation in the 2 × 2 × 2 supercell splits the degenerate level at the supercell zone
boundary (R′ point in Fig. 4.1(d)).

The slope in the change in energy with respect to displacement is given by a specific single
e-ph matrix element that can be fitted from finite-difference frozen-phonon calculations, or
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Figure 4.1: (a) Crystal structure of Ba0.6K0.4BiO3 in the cubic perovskite phase. (b) Calcu-
lated Fermi surface of Ba0.6K0.4BiO3. (c) The DFT-GGA band structure of Ba0.6K0.4BiO3.
The high symmetry points are Γ = (0.0, 0.0, 0.0), X = (0.5, 0.0, 0.0), M = (0.5, 0.5, 0.0),
and R = (0.5, 0.5, 0.5) in units of primitive reciprocal lattice vectors. The band of interest
which crosses the εF (set to zero) is highlighted with blue color and labeled as n0. The state
at k = R/2 (blue dashed line) indicated by the blue dot has a band energy slightly below
εF . (d) The DFT band structure of a 2× 2× 2 supercell. The R′ point corresponds to the
k = R/2 point at the blue dashed line in (c). The degenerate level indicated by the blue dot
in (c) splits upon the oxygen-atom-displacement perturbation (see Supplemental Materials
[24]) of 0.0171 Å. The corresponding GW quasiparticle energies are indicated by the red
crosses. (e) Comparison of energy splitting-versus-displacement curves between perturbation
theory and direct frozen-phonon (finite-difference) calculations.
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Figure 4.2: Phonon band structure of Ba0.6K0.4BiO3 calculated at the DFT level. The
dots are data adopted from neutron diffraction experiments [14]. The oxygen breathing and
stretching branch is highlighted with blue color and labeled as ν0.

directly calculated with the linear-response perturbation theory in a primitive unit cell. As
mentioned before, this type of e-ph matrix elements that connect degenerate states is the only
one that frozen-phonon GW can relatively accurately calculate by making supercells [16, 37],
but GWPT can access all inter-/intra-band e-ph matrix elements across the whole Brillouin
zone with equal and high accuracy. As shown in Fig. 4.1(e), we find excellent agreement for
this matrix element between frozen-phonon DFT and DFPT, and between frozen-phonon
GW and GWPT, nicely verifying our GWPT method. Moreover, the DFPT and GWPT
results are significantly different, illustrating the importance of having the correct treatment
of the quasiparticle self-energy within the GW approach.

4.4 Phonon spectrum

The phonon band structure directly obtained with DFPT calculations shows imaginary
frequencies at R and M points, leading to a structural phase transition involving the oxygen
octahedron tilting [37, 70, 71, 74] at low temperature. Such an instability is identified to be
physical both theoretically [71] and experimentally [74]. We calculate a finite-temperature
phonon spectrum to get rid of the imaginary frequencies [75] so as to proceed with the e-ph
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calculations. First, a molecular dynamics (MD) sampling at 600 K of a 2 × 2 × 2 supercell
is performed using the Vasp code [76], with the projector augmented wave pseudopotentials
[77] Then 50 randomly selected structures near the MD equilibrium are recalculated using the
Abinit code [44] so that the electronic properties are consistent throughout this work. The
calculated forces are then fitted with harmonic potentials to remove the instability, using the
Alamode code [78]. Finally the inter-atomic force constants and therefore the dynamical
matrices and the phonon spectrum are calculated with the fitted potentials. Our calculated
phonon spectrum as plotted in Fig. 4.2 is in good agreement with neutron diffraction ex-
periment [74] , except that the frequencies of the oxygen breathing and stretching branch
(highlighted in Fig. 4.2 and we label its mode index as ν0) are somewhat underestimated.

4.5 Distribution of e-ph matrix elements and the

many-electron renormalization across Brillouin

zone

To study superconductivity in Ba0.6K0.4BiO3, we calculate the e-ph matrix elements
that scatter quasiparticle states within the n0 band by performing both DFPT and GWPT
calculations on an 8×8×8 k-grid (full grid) and q-grid (35 irreducible q-points) [24]. These
electronic states are coupled most strongly by phonons in the highest three optical branches
[17,30]. As an illustration, we pick out one high-frequency oxygen stretching and breathing
optical branch (labeled as ν0 [24]), and plot the distribution of the strength of the e-ph matrix
element |gn0n0ν0(k,q)| varying k across the Brillouin zone for selected q-points. Fig. 4.3(a-c)
show the scatterings for q = R that are mostly relevant to the superconductivity. For this
important phonon mode, GWPT almost uniformly enhances the value of the e-ph matrix
elements as compared to DFPT with an enhancement factor of ∼ 1.6. This is because
the character of the states on the Fermi surface of Ba0.6K0.4BiO3 is highly isotropic [79].
However, Fig. 4.3(d-i) show strong variances in the distribution (as functions of different k
and q points) of the e-ph matrix elements and also in the enhancement factor of GWPT
over DFPT, due to the wavefunction character changing near the Γ point of either the initial
or final states. These results, for the first time, systematically reveal the complex nature of
many-electron renormalization of the e-ph interactions, demonstrating the strong capability
and uniqueness of GWPT.

Note that in the calculation of superconductivity, the DFT band structure is used, as our
calculated GW band structure remains quite similar near the Fermi level. The significant
enhancement of e-ph coupling is dominantly due to the many-electron renormalization of
the e-ph matrix elements.
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Figure 4.3: Distribution of the absolute value of the e-ph matrix elements |gn0n0ν0(k,q = R)|
at (a) DFPT and (b)GWPT level, across the kx−ky plane at fixed kz = −0.25 of the Brillouin
zone. The wavevectors are in units of reciprocal lattice vectors. The data are calculated on
an 8 × 8 × 8 k-grid for each q-point. (c) Line profile of (a) and (b) with ky = 0.0, and the
path is indicated by the dashed line in (a) and (b). The enhancement factor of |gGW |/|gDFT|
is also plotted. (d-f), (g-i) Similar to (a-c), but with q = R in the kz = −0.125 plane and
q = R/4 in the kz = −0.25 plane, respectively.
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λ ωlog (K) µ∗ Tc (K)
DFPT 0.47 488.2 0.18− 0.08 0.61− 6.1
GWPT 1.14 491.3 0.18− 0.08 28.5− 44.8

Table 4.1: Calculated e-ph coupling strength λ, logarithmic-averaged phonon frequency ωlog,
and superconducting transition temperature Tc (using the McMillan-Allen-Dynes formula
[16, 80, 81]) of Ba0.6K0.4BiO3. The effective Coulomb potential parameter µ∗ is set to a rea-
sonable physical range, giving the corresponding range of Tc. The experimentally measured
Tc is 30− 32 K [68, 69]

4.6 Correlation-enhanced superconductivity in

Ba1−xKxBiO3

We evaluate the superconducting Tc of Ba0.6K0.4BiO3 using the following McMillanAllen-
Dynes formula [80, 81],

kBTc =
~ωlog

1.2
exp

[
− 1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

]
, (4.1)

where ωlog is a logarithmic average of the phonon frequencies, λ is the e-ph coupling strength,
and µ∗ is the effective Coulomb repulsion parameter [16, 80, 81]. The calculation of λ involves
an important physical function, called the Eliashberg function α2F (ω), which measures the
e-ph coupling strength as a function of phonon frequency. The Eliashberg function reads
[16, 80, 81],

α2F (ω) =
1

NF

∫
dkdq

Ω2
BZ

∑
mnν

|gmnν(k,q)|2δ(εnk − εF )δ(εmk+q − εF )δ(~ω − ~ωqν), (4.2)

where NF is the DOS at the Fermi level, and ΩBZ is the Brillouin zone volume. The e-ph
coupling strength λ is then calculated from, [16, 80, 81]

λ = 2

∫ ∞
0

α2F (ω)

ω
dω, (4.3)

and the logarithmic average of the phonon frequencies is [16, 80, 81],

ωlog = exp

[
2

λ

∫ ∞
0

dω
α2F (ω)

ω
logω.

]
(4.4)

We can then estimate the superconducting Tc from the above set of equations.
The e-ph coupling strength λ and the characteristic logarithmic-averaged phonon fre-

quency ωlog [16, 80, 81] are calculated using the e-ph matrix elements that scatter states
within the n0 band for all phonon modes, at both the DFPT and GWPT level (Table 4.1).
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Figure 4.4: (a) Eliashberg function α2F (ω) calculated for Ba0.6K0.4BiO3 (i.e. x = 0.4)
with e-ph matrix elements from GWPT and DFPT. (b) Phase diagram of Ba1−xKxBiO3.
Superconducting Tc is calculated with µ∗ = 0.16. Experimental data are plotted as squares
[70], star [68], left-pointing triangle [69], and right-pointing triangle [79]. Black dashed
line represents the extrapolation of experimental data into doping range of x > 0.5, which
is hard to access experimentally. From the superconducting (SC) phase towards undoped
parent composition, for x < 0.3, the system undergoes a structural phase transition into the
non-superconducting CDW phase.

The correlation-enhanced e-ph interaction strength is directly reflected in the Eliashberg
function α2F (ω) by comparing the results from DFPT and GWPT in Fig. 4.4(a). The
effective Coulomb parameter µ∗ [16, 80, 81] is set to a reasonable physical range in Table
4.1. DFPT severely underestimates the superconducting transition temperature, with the
calculated Tc in the range of 0.61−6.1 K for µ∗ in the range of 0.18−0.08. However, GWPT
significantly increases Tc to the range of 28.5 − 44.8 K for the same range of µ∗ (Table I),
in good agreement with the experimentally measured Tc of 30− 32 K [21-23]. These results
highlight the importance of many-electron correlation effects in e-ph interactions [37] that
are well captured by the GWPT method.

We further study the doping dependence of the superconductivity in Ba1−xKxBiO3 (su-
perconductivity is observed experimentally for x > 0.3) from first principles, calculated using
a rigid-band approximation (band energy, phonon spectrum, and e-ph matrix elements are
taken from ab initio calculations at x = 0.4), which is usually a good approximation if the
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Figure 4.5: Doping-dependent e-ph coupling strength λ from GWPT and DFPT, and
density of states (DOS) at Fermi level.

doping range of study is not too large so that the system remains similar. By varying the
Fermi level, we recalculate the Eliashberg function α2F (ω), the e-ph coupling strength λ,
and the superconducting Tc (using µ∗ = 0.16).

Fig. 4.4(b) shows that the superconducting transition temperatures from GWPT nicely
reproduce the size and shape of the superconducting half dome (however results from DFPT
fail significantly) in the phase diagram observed experimentally [68–70]. At doping smaller
than x = 0.3, the material is in an insulating charge density wave (CDW) phase with
strong structural distortions induced by phonon instability and the nested Fermi surface
[37, 70, 71, 74, 82, 83] . After x = 0.4, an increase in hole doping x suppresses Tc, which
is mainly due to a reduced DOS with a shrinking Fermi surface. By looking at the band
structure (Fig. 4.1(c) ), an increasing hole doping level leads to smaller DOS (Fig. 4.5)
from a shrinking Fermi surface. Therefore, the number of allowed scatterings on Fermi
surface is reduced, leading to the suppressed Tc. In Fig. 4.5, it is clear that the e-ph
coupling strength λ (from both GWPT and DFPT) follows the trend of DOS as a function
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of doping x. Note that DFPT fails to explain the strength of the superconductivity across the
whole range of doping, whereas GWPT reproduces the experimental data [70] well. Beyond
the rigid-band approximation, other factors involving modifications in crystal structures,
quasiparticle bands, phonon spectrum, and e-ph matrix elements may have further influences
on the doping dependence. However, within 0.3 < x < 0.5 (x > 0.5 is very hard to access
experimentally [70]), the rigid-band approximation based on GWPT calculations captures
the dominant DOS effects, and provides reliable doping dependence in both magnitude and
trend. Our GWPT results, along with the recent direct experimental observation of isotropic
s-wave superconducting gap [79], strongly support that superconductivity in Ba1−xKxBiO3

originates from unusually large e-ph interactions, due to many-electron effects.

4.7 Additional discussions on phonons and

computational analysis

The phonon branches that couple the most to the electronic states near the Fermi level
in Ba0.6K0.4BiO3 are the highest three optical branches, as is evidenced by the dominant
spectral weight within the range of 11 − 16 THz in the Eliashberg function α2F (ω) (see
Fig. 4.4(a)). We note that our calculated e-ph coupling strength λ = 0.47 with DFPT is
higher than previous ab initio results λ = 0.33 [37] and λ = 0.29 [71], and this is largely
due to that the previous calculations resulted in higher phonon frequencies (bandwidth ∼ 18
THz) than our calculation (bandwidth ∼ 16 THz, which agrees better with the experiment).
Furthermore, the frequency of the strongly e-ph coupled ν0 branch is around 13 THz from
our calculated α2F (ω) function (see Fig. 4.4(a)), whereas in Refs. [37, 71] the dominant
peak is localized around 17 THz. The overestimation of phonon frequency will lead to an
underestimation of λ, considering which previous calculations [37, 71] and our calculated λ
agree nicely. Nevertheless, the calculated Tc at DFPT level is still too low compared with
experiments. However, according to our GWPT calculations, the absolute values of e-ph
matrix elements |g| are increased with an overall enhancement factor ∼ 1.6 near the Fermi
surface, see Fig. 4.3(c). As is evidenced in the high-frequency range of the α2F (ω) function
(see Fig. 4.4(a) ), the e-ph coupling strength λ is largely enhanced by a factor ∼ 2.4 (coming
from |g|2) in GWPT compared with DFPT. Consequently, the enhancement of Tc due to the
many-electron correlation effects is quite significant.

On the computational side, to highlight the significantly high efficiency of linear-response
method over frozen-phonon technique, in particular by comparing GWPT with frozen-
phonon GW , we further provide an example of comparison of the computation time (defined
as total time spent multiplied by number of central processing units used on Intel Knights
Landing architecture) between GWPT and frozen-phonon GW . For the q = (0.5, 0.5, 0.5)
results plotted in Fig. 4.1(e), the GWPT calculation performed in a primitive unit cell takes
∼ 104 seconds, and the frozen-phonon GW calculation performed in a 2 × 2 × 2 supercell
takes ×106 seconds. The efficiency is differed by two orders of magnitude for this relatively
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DFPT k-grid λ ωlog (K) µ∗ Tc (K)
8× 8× 8 0.47 488.2 0.18− 0.08 0.61− 6.1

16× 16× 16 0.51 486.4 0.18− 0.08 1.2− 8.2

Table 4.2: Convergence of k-grid for superconductivity properties at DFPT level. The e-ph
coupling parameter λ, logarithmic-averaged phonon frequency ωlog, and the superconducting
transition temperature Tc are calculated using DFPT on different k-grids, but with the same
8 × 8 × 8 phonon q-grid. The effective Coulomb potential parameter µ∗ is set to the same
indicated range.

small supercell. For a fine sampling of the q-grid, the frozen-phonon GW technique becomes
prohibitive, whereas GWPT has the capability to access the e-ph physics systematically
and efficiently. For example, the k- and q-grids used in this work for direct calculations is
8 × 8 × 8, and this corresponds to a frozen-phonon supercell containing 2560 atoms, with
which the GW calculations basically cannot be calculated with any contemporary computa-
tional resources. GWPT performs all various kand q calculations using a 5-atom primitive
unit cell efficiently, and the scaling is linear in the phonon modes investigated. This highlight
the strong necessity of developing the linear-response GWPT method to the understanding
of many-electron correlation effects in e-ph physics.

In the above discussions, we report the results of both DFPT and GWPT calculations on
8× 8× 8 k- and q-grids (phonon q-grid is symmetry reduced). We check the convergence of
k-grid up to 16×16×16 with DFPT and list the results in Table 4.2. The superconductivity
properties are converged at 8× 8× 8 k k-grid, because of the highly isotropic Fermi surface
of Ba0.6K0.4BiO3 [79]. The convergence of phonon q-grid is usually faster than that of the
k-grid; therefore, we use the 8× 8× 8 k-grid. In fact, GWPT can further be combined with
Wannier interpolation techniques [30], which we have already successfully developed the
interfaces as discussed in Section 2.4.3, to achieve an efficient yet accurate full description of
the e-ph coupling properties. For this system, due to the nice isotropic property of the Fermi
surface (which is relatively easy to converge) and our convergence test, direct calculation
using GWPT is enough to give converged results, therefore Wannier interpolation for this
system is not necessary here.

4.8 Conclusion

In this Chapter, we have applied the newly developed GWPT method from Chapter 2 to
study the e-ph coupling and superconductivity in the correlated Ba1−xKxBiO3. This study
demonstrates the capabilities of GWPT to efficiently and accurately calculate e-ph matrix
elements in full electron and phonon Brillouin zone, and between any pair of electronic states.
We find that the correlation effect can have significant role in e-ph coupling. In particular
for Ba1−xKxBiO3, we show that many-electron correlations significantly enhance the e-ph
interactions for states near the Fermi surface, and explain the observed high superconductiv-
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ity transition temperature of the optimally doped Ba0.6K0.4BiO3. Furthermore, the doping
dependence is shown to originate from a DOS effect, and we have nicely reproduced the
trend in superconductivity Tc as a function of doping. Our calculations clearly and strongly
support the e-ph origin of the high superconductivity Tc, due to the large many-electron
correlations enhancement. This application of GWPT in Ba1−xKxBiO3 encourages us to
study the important role of correlation-incorporated e-ph in various intriguing correlated
materials.
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Chapter 5

Two-dimensional ferromagnetism in
few-layer van der Waals crystals

Atomically thin vdW crystals provide ideal 2D platform for novel physical properties.
Before the year of 2017, such achievements have been made mainly for exploring the electric
and optical properties. For one of the most important concepts in condensed matter physics
− magnetism − the studies were mostly focusing on extrinsically induced magnetism, by
defect engineering via vacancies, adatoms, grain boundaries, and edges, by adding magnetic
species via intercalation or substitution, or by magnetic proximity effect [84–92].

For intrinsic magnetism, the major hope is to exfoliate intrinsic magnetic 2D materials.
In the year of 2017, two ferromagnetic semiconductors Cr2Ge2Te6 [49] and CrI3 [51] were
successfully exfoliated down to few-layer limit. Later, a ferromagnetic metal has been thinned
down to the 2D limit and shows the tunability in Curie temperature TC via electrostatic
doping [93]. These works boost both the experimental and theoretical studies in the field of
2D magnet, deepening the understanding of physics and leading to new applicable devices
developments.

In this Chapter, we present a collaborative work with experimental groups on the dis-
covery of the 2D vdW crystal Cr2Ge2Te6, published in Ref. [49]. The experimental work
was mainly performed by research groups of Prof. Xiang Zhang (University of California
at Berkeley) and Prof. Jing Xia (University of California at Irvine). In this project, we
developed the renormalized spin-wave theory (RSWT) method described in Refs. [49, 50]
and Chapter 3, and applied RSWT to the understanding of the strong dimensionality effect
in the layer-dependent magnetism and sensitive magnetic-field dependence that gives rise to
an unprecedented magnetic-field control of transition temperature.

5.1 Introduction

Whether or not long-range ferromagnetic order that exists in bulk can persist in 2D regime
is a fundamental question, because the strong thermal fluctuations may easily destroy the 2D
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Figure 5.1: Schematics of spin-wave excitations in two and three dimensions. (a) and (b)
Ferromagnetic spin-wave excitations in 2D (a) and 3D (b), with intralayer and interlayer
exchange interactions J‖ (in green) and J⊥ (in orange), respectively, single-ion anisotropy A
and magnetic field B (in red), as seen in equation (1). The cones are classical precession
trajectories of thermally excited spins (arrows). (c)-(e) Schematics of magnon density of
states (DOS) per spin around the low-energy band edge of monolayer (c), multi-layer (d)
and bulk (e) ferromagnetic materials. The low-energy excitations from the ferromagnetic
ground state follow parabolic dispersions; accordingly, the DOS is a step function in 2D and
proportional to E in 3D, where E is the excitation energy. Consequently, more magnons
are excited by a given thermal energy in 2D than in 3D. In 2D, the ferromagnetic transition
temperature TC is determined primarily by the excitation gap that results from the magnetic
anisotropy, whereas in 3D it is determined primarily by exchange interactions. (f) Crystal
structure (side and top views) of Cr2Ge2Te6. Bulk Cr2Ge2Te6 has a layered structure with
interlayer vdW spacing of 3.4 Å.

ferromagnetism, according to the Mermin-Wagner theorem [54]. We illustrate in Fig. 5.1 the
physics in the ferromagnetic case. Down to the root of 2D ferromagnetism, the presence of a
spin wave excitation gap (a direct result from magnetic anisotropy) is a must for long-range
ferromagnetic order at finite temperature.

This work is in collaboration with the experimental groups on the discovery of long-range
ferromagnetic order in pristine Cr2Ge2Te6 atomic layers by temperature- and magnetic field-
dependent Kerr effect via scanning magneto-optic Kerr effect (MOKE) microscopy.

Bulk Cr2Ge2Te6 crystal is a ferromagnetic semiconducting material, where Cr is the
magnetic ion with a magnetic moment of 3 µB (S = 3/2) [55, 56], where µB is Bohr magneton.
The magnetic Cr ions form a honeycomb structure (as graphene) in each 2D layer, and a
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few-layer sample is formed with an ABC-type stacking, as sketched in Fig. 5.1. Bulk
Cr2Ge2Te6 has a ferromagnetic phase transition Curie temperature TC of 66 K, whereas the
six-layer sample has TC = 10 K [49], indicative of strong dimensionality effect. Furthermore,
it is discovered that TC can be largely tuned with small external magnetic fields in 2D
[49], in strong contrast to 3D. Our theoretical results [56] show quantitative agreement
with experimental measurements, demonstrating the reliability of this method and revealing
strong dimensionality effect. The very large influence of a small external magnetic field on
the ferromagnetic transition temperature in Cr2Ge2Te6 owes its origin in having a very small
intrinsic anisotropy in the system.

5.2 Experimental results summary

In this project [49], the experimentalists successfully exfoliated the vdW Cr2Ge2Te6 to as
thin as bilayer limit. Then the long-range ferromagnetic order in pristine Cr2Ge2Te6 atomic
layers was observed using the temperature- and magnetic-field-dependent Kerr effect study
via scanning magneto-optic Kerr microscopy. In the soft, 2D ferromagnetic vdW crystal
Cr2Ge2Te6, an achieve unprecedented magnetic field control of the ferromagnetic transition
temperature using surprisingly small fields (≤ 0.3 T). In this Section, we summarize the
main experimental observations in Ref. [49].

Experiment has observed ferromagnetism in few-layer, as shown by the temperature-
dependent Kerr image of the bilayer sample in Fig. 5.2(a) with the a small out-of-plane
magnetic field of 0.075 T to stabilize the spins. Strictly speaking, upon applying an exter-
nal magnetic field, we might no longer have a well-defined ferromagnetic phase transition
(which is defined at temperature TC with zero field); therefore, we refer to it as a transition
between a ferromagnetic-like state and a paramagnetic-like state, separated by a transition
temperature T ∗C . Fig. 5.2(b) and (c) show the emergence of ferromagnetic order in bilayer
Cr2Ge2Te6 at different temperatures: at 40 K, the Kerr intensity of the scanning area is
hardly discernible, except in the region corresponding to thicker flakes (≥ 3 layers); as the
temperature decreases, the long strip becomes more easily recognizable, as can be seen at the
temperature of liquid helium (∼ 4.7 K), the long bilayer strip becomes clearly distinguishable
from the surrounding bare substrate, in terms of the intensity of the Kerr rotation angle.

A strong dimensionality effect is observed by a thickness-dependent study under a 0.075-
T field. Fig. 5.2 displays a sharp contrast in T ∗C between a bilayer with value of about 30
K to a bulk limit of about 68 K. More layer-dependent data can be found in Ref. [49]. The
behaviour of T ∗C from 2D to 3D regimes is similar to the universal trend of many magnetic
transition-metal thin films [94, 95], however the interlayer bonding strength in vdW crystals
is 2–3 orders of magnitude weaker than that of traditional metals. The strong thickness
dependence of T ∗C indicates an essential role of interlayer magnetic coupling in establishing
the ferromagnetic order in Cr2Ge2Te6 crystals.

Generally speaking, a field that is usually considered to be too small to affect transition
temperatures of 3D systems (for example, < 0.5 T) can largely affect the behaviour of soft, 2D
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Figure 5.2: Experimental observation [49] of ferromagnetism in bilayer (2L) Cr2Ge2Te6

and temperature-dependent Kerr rotation of few-layer and bulk Cr2Ge2Te6 crystals. (a)
Optical image of exfoliated Cr2Ge2Te6 atomic layers, consisting of a 31-µm-long bilayer strip
attached to a thicker end (≥ 3 layers). (b) and (c) The emergence of a Kerr rotation signal
for the bilayer flake under a magnetic field of 0.075 T, at the temperature 40 K and 4.7
K, respectively. (d) and (e) Temperature dependent Kerr rotation intensities of bilayer and
bulk samples under a 0.075-T magnetic field.
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Figure 5.3: Experimental measurement [49] of magnetic field control of the transition
temperature of few-layer Cr2Ge2Te6 crystals. (a)-(c) Normalized Kerr rotation angle as
a function of temperature, under two different magnetic fields: 0.065 T (red circles) and
0.3 T (blue squares), for bilayer (2L) (a) three-layer (3L) (b) and six-layer (6L) (c) flakes.
The 0.3-T field shifts the curve markedly with respect to the curve for the 0.065-T field,
indicating strong renormalization of T ∗C in few-layer Cr2Ge2Te6. Error bars represent the
standard deviation of sample signals and are smaller than the plotted point if not shown.
d, Temperature-dependent magnetization of the bulk crystal measured by superconducting
quantum interference device (SQUID) under fields of 0.025 T (red) and 0.3 T (blue). Com-
pared with the 0.025-T field, the 0.3-T field introduces only a slightly distorted tail above
T ∗C . The different behaviours below T ∗C possibly result from domains: under a 0.025-T field,
multi-domains are probably formed; under a 0.3-T field, a single-domain was approached.

ferromagnetism by opening the spinwave excitation gap, as sketched in Fig. 5.1(c)–(e). The
experiments examine this scenario by performing a temperature-dependent Kerr rotation
study on bilayer (2L), three-layer (3L) and six-layer (6L) samples under two contrasting
fields: 0.065 T and 0.3 T. As the field increases from 0.065 T to 0.3 T, the T ∗C value of
bilayer flakes increases from 28 K to 44 K, that of three-layer flakes increases from 35K
to 49K, and that of six-layer flakes increases from 48K to 65K, which is close to the bulk
limit, as shown in Fig. 5.3. In sharp contrast, the T ∗C value in the bulk determined from
SQUID measurements under fields of 0.025–0.3 T does not show clear change. Under the two
magnetic fields (0.065 T and 0.3 T), the overall shift in magnetization temperature curves
in 2D layers (Fig. 5.3) is clearly distinguished from the tail effect of a magnetic field on the
critical region above T ∗C .
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Figure 5.4: Illustration of in-plane (left) and out-of-plane (right) nearest-neighbour ex-
change interactions. The ABC-type stacked hexagonal lattice is a reduced illustration of
atomic arrangement of Cr in bulk Cr2Ge2Te6 crystals. J1, J2 and J3 (Jz1, Jz2 and Jz3) repre-
sent the first, second and third in-plane (out-of-plane) nearest-neighbour spinspin exchange
interactions, respectively. Positive and negative J values represent antiferromagnetic and
ferromagnetic exchange interactions. Each Cr site carries a spin S = 3

2
in theoretical simu-

lations. Blue and orange circles represent the Cr ions on A and B sublattices, respectively.

5.3 Theoretical density-functional theory (DFT)

computational details

The RSWT formalism we presented in Chapter 3 requires parameters for the spin in-
teractions: the exchange interactions J and single-ion anisotropy A, which come into the
following Hamiltonian (resembles Eq. (3.1)),

H =
1

2

∑
i,j

JijSi · Sj +
∑
i

A(Szi )2 − gµB
∑
i

BSzi , (5.1)

where Si is the spin operator on site i, Jij is the exchange interaction between sites i and j,
A is the single-ion anisotropy, g is the Landé g-factor, µB is the Bohr magneton and B is
the external magnetic field. We include six exchange pairs that are illustrated in Fig. 5.4.
These parameters can either be deduced from experiments such as inelastic neutron diffrac-
tion, or be evaluated from first-principles calculations using techniques such as those based
on density functional theory (DFT). In this work, we perform ab initio DFT calculations
using the Quantum Espresso package [47] to map out these interactions. We adopt the
experimental crystal structure [55] and use the local spin density approximation plus on-
site Coulomb repulsion U (LSDA+U) [96] to perform the calculations. A plane-wave basis
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Figure 5.5: Magnetic interlayer coupling and single-ion anisotropy as a function of on-
site Hubbard U in bulk Cr2Ge2Te6. Blue circles represent single-ion anisotropy, and the
magnetic anisotropy is out-of-plane (negative single-ion anisotropy) for U > 0.2 eV. Red
squares represent interlayer magnetic coupling, which is ferromagnetic (negative) for U < 1.7
eV. Bulk Cr2Ge2Te6 is a ferromagnet with an out-of-plane easy axis. Therefore, the range
0.2eV < U < 1.7eV (shaded area) could qualitatively reproduce the bulk magnetic property.
We set U = 0.5 eV in the subsequent calculations, because the experimentally estimated
single-ion anisotropy in the bulk is small.
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Figure 5.6: Projected and spin resolved density of states (DOS) for the electronic states in
bulk Cr2Ge2Te6 from first-principles LSDA+U calculations. The top of the valence bands is
set to zero energy, indicated by the dashed line. We project the band states onto different
atomic orbitals. The results show that bulk Cr2Ge2Te6 is a semiconducting ferromagnet,
consistent with experiments.

set with 60 Ry energy cutoff in wavefunctions is used. We use projector-augmented-wave
(PAW) pseudopotentials from PSlibrary [97]. We adopt the four-state mapping analysis
to calculate J , taking the advantage that the effects from other sites can be canceled out
[98]. For single-ion anisotropy A, we use the full-spinor basis and include fully relativistic
effects (i.e., spin-orbit coupling) in the pseudopotentials, and calculate the energy difference
per ion between out-of-plane and in-plane spin configurations.

We find that the description of the magnetic properties of Cr2Ge2Te6 is sensitive to the
choice of the parameter U within LDSA+U . To treat the on-site correlation properly, we
adjust the U value to reproduce the correct experimental magnetic ground state of bulk
Cr2Ge2Te6. Bulk Cr2Ge2Te6 is a ferromagnetic insulator with easy-axis anisotropy pointing
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Parameters
(meV)

J1 J2 J3 Jz1 Jz2 Jz3 A Bulk
TC

JDFT −3.76 0.08 −0.16 0.05 −0.12 −0.38 −0.05 90 K
J = αJDFT −2.71 0.058 −0.115 0.036 −0.086 −0.27 −0.05 65 K

Table 5.1: Exchange parameters and single-ion anisotropy derived from LSDA+U calcu-
lations within DFT. The set of parameters JDFT mapped out from the direct LSDA+U
calculations give a bulk TC = 90 K. Considering the uncertainties in DFT and for better
comparison with experiment, we scale the exchange parameters J DFT with a scaling factor
α = 0.72 to derive a new set of J , giving a bulk TC = 65 K (as compared to the experimental
value of 66 K [49]).

along the (111) direction, perpendicular to the vdW planes. We find that for U < 0.2 eV,
the system becomes in-plane anisotropic; for U > 1.7 eV, the interlayer coupling becomes
antiferromagnetic, which means that the bulk crystal becomes an antiferromagnet, see Fig.
5.5. Therefore, we identify the reasonable range of U values to be 0.21.7 eV. In our subsequent
calculations, we fix U = 0.5 eV, which gives an easy-axis anisotropy with A = 0.05 meV
(see Section 5.4). For experimental bulk anisotropy, we can estimate the easy-axis single-ion
anisotropy A from a mean-field perspective, that the saturation field Bs ≈ 0.5 T of B‖ [49],
AS2 = gµBBsS/2, where S = 3/2, giving an estimated A = 0.02 meV for bulk Cr2Ge2Te6.
Therefore, our choice of U = 0.5 which results from DFT with A = −0.05 meV should give
relatively reasonable and stable results, considering the level of accuracy of DFT in treating
this special case (with a very small energy scale). Fig. 5.6 plots the projected electron density
of states (DOS) for bulk Cr2Ge2Te6. As we can see from the figure, it is a semiconductor
with a band gap of ∼ 0.3 eV and is ferromagnetic with the Cr atoms contributing mostly to
the magnetic moment.

5.4 Parametrization of spin Hamiltonian for RSWT

calculations

We compute a total of six distinct near-neighbor interactions (three in-plane pairs and
three interlayer pairs, see Fig. 5.4), from the four-state energy mapping analysis [98]. In
particular, J1, Jz1, Jz2 and Jz3 are calculated using a 2 × 2 × 1 supercell. For J2 and J3,
instead of using bulk structures, we used a monolayer 2

√
3 × 2 supercell. We find that

under the framework of RSWT, the calculated exchange interactions overestimate the bulk
transition temperature, giving a bulk TC = 90 K (see Table ??) whereas the experimental
value is 66 K [49]. (Note that in 3D crystalline systems, the effect of small anisotropy
to TC is negligible, as we will show later.) This in fact is a rather satisfactory result,
considering the various approximations made and the large uncertainty in DFT in treating
this complex system. However, to accurately compare with experimental results, we rescale
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all the exchange interactions J by a universal factor of 0.72 [49] (see Table ??) to fit the bulk
TC to the experimental value. The rescaled exchange interactions give a theoretical bulk
TC = 65 K. We use this set of rescale exchange parameters (see Table 4.1) fixed through
all later calculations, including those for the bulk and the few-layer cases. The single-ion
anisotropy A is extracted by calculating the energy difference between all spins along the
z direction and along the x or y directions in the bulk. Spinorbit coupling is included
by using fully relativistic pseudopotentials. For the value of single-ion anisotropy, DFT
calculation gives A = −0.05 meV (we do not rescale A), and the experimentally estimated
value is A = −0.02 meV in the bulk (as discussed above). In 2D atomic layers, however,
experiments show an almost negligible anisotropy (yet finite) [49].

5.5 Layer-dependent 2D ferromagnetic transition

temperature

Now, we show the results using RSWT of layer-dependent transition temperature T ∗C in
the presence of a small external field B = 0.075 T in Fig. 5.7. We first set A = 0 in the
few-layer calculations, and discuss the effects from reasonably small anisotropy afterwards.
RSWT quantitatively reproduces and explains the experimental results [49]. The system
shows a very strong dimensionality effect with T ∗C dropping significantly from the 3D bulk
regime to the quasi 2D regime with a few atomic layers [99], in line with experimental
observations. At finite temperatures, spontaneous symmetry breaking (ferromagnetic order)
takes place in 3D for the rotationally invariant isotropic Heisenberg system (A = 0 and
B = 0), but is completely suppressed by the thermal fluctuations of the long-wavelength
gapless NambuGoldstone modes in 2D. In particular for ferromagnetism, this is due to an
increasing value of the available DOS at the onset of the magnon DOS (per spin) as one
goes from the bulk to a few layers, as discussed in the schematic DOS in Fig. 5.1. We plot
the calculated DOS at T = 0 K (at LSWT level) in Fig. 5.8. It indeed shows that the
shape at the onset is a step function in the monolayer case (the dispersion of the low-energy
excitations is quadratic with the wavevector). In the multilayer case, the step height becomes
smaller due to interlayer coupling, and finally in the limit of bulk (infinite number of layers),
the value of the DOS at the onset is zero. Therefore, as the number of layers decreases,
it requires a lower temperature to excite enough spin-wave excitations to eliminate the net
magnetization, resulting in a lower TC (in general T ∗C) in quasi 2D samples.

Nevertheless, magnetic anisotropy (A 6= 0 or B 6= 0) could establish ferromagnetic or-
der in 2D at finite temperatures by breaking the continuous rotational symmetry of the
Hamiltonian, thereby giving rise to a non-zero excitation gap in the lowest-energy mode of
the acoustic magnon branch. Thermal energy at finite T ∗C excites a large number of low-
energy but finite-frequency magnon modes, flattening the expectation value of the collective
spins. As the number of layers increases (from 2D to 3D), the density of states per spin
for the magnon modes near the excitation gap is rapidly reduced (Fig. 5.1(c)–(e) and Fig.
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Figure 5.7: Transition temperatures T ∗C (defined as transition temperature under magnetic
field) of samples of different thickness, obtained from Kerr measurements (blue squares)
and theoretical calculations (red circles), with Zeeman effect from B = 0.075 T. A strong
dimensionality effect is evident. T ∗C is determined experimentally to be the range (error bars)
approximating the paramagnetic tail of the effective Kerr signal, and theoretically by the
vanishing net magnetization.
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Figure 5.8: Magnon DOS of monolayer, five-layer, and bulk Cr2Ge2Te6 at the LSWT level.
The low-energy excitation of ferromagnetic spin waves follows a quadratic dispersion, giving
a constant and square-root-of-energy dependence of the DOS at the onset in 2D and 3D,
respectively. In multilayer case, the large step at the onset in a monolayer splits into several
smaller steps at successively higher energy due to interlayer coupling, therefore reducing the
value of the DOS at the onset. The different behaviors in the DOS for different number of
layers lead to the dimensionality effect in the transition temperature.

5.8), meaning that a higher T ∗C is required to ensure a sufficient population of excitations to
destroy the long-range magnetic order, thus leading to a strong dimensionality effect.

5.6 Magnetic field dependence of 2D transition

temperature

Next, we look at the effect of external magnetic field. For 3D samples, a small external
field is typically used to align the magnetic domains in the experiment to determine the phase
transition temperature TC (more specifically, T ∗C); because the effect of such a small field
is negligible, TC = T ∗C . However, for 2D samples, if the intrinsic anisotropy of a material
is small compared to the dominant exchange interaction, then a small external field can
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Figure 5.9: Theoretical (red circles) and experimental (blue squares) [49] field dependence
of T ∗C in samples of various thickness. T ∗C values for the bulk crystal measured by SQUID
are determined at the steepest slop of the magnetizationtemperature characteristic curve.
Experimental T ∗C error bars arise from the uncertainty due to the tail effect. In (b–d), results
at magnetic fields of 0.065 T and 0.3 T are present. In (b) and (c) for bilayer (2L) and trilayer
(3L) samples, experimental results under a 0.075-T field (Fig. 2) are also plotted, and in (d)
for six-layer (6L), a zero-field data point is also plotted [49]. In the 2D limit, if the single-ion
anisotropy is negligibly small, the transition temperature will be very low, and can easily be
tuned with a small magnetic field (for example, B < 0.5 T). In the bulk limit, owing to the
3D nature, such tuning is not possible.

make a big difference in establishing magnetic order due to the importance of anisotropy in
suppressing magnon excitations in 2D.

By means of the RSWT method, we calculate the magnetic field dependence of T ∗C in
few-layer crystals and bulk. The results from the calculations are quantitatively consistent
with experimental values. As shown in Fig. 5.9, in the bulk, with applied field ranging from
0 to 1 T, the transition temperature T ∗C is almost unchanged (only varied by ∼ 10%) from
experimental measurements, and RSWT very nicely reproduces the results [49]. However,
in all of the bilayer (2L), three-layer (3L) and six-layer (6L) samples, a remarkable change
in T ∗C can be obtained over the magnetic-field range used in experiments (Fig. 5.3). In
particular, when we look at the quasi 2D sample of and six-layer thickness experimentally
in the absence of an external magnetic field, the measured intrinsic TC = 10 K [49]. In
the presence of a small field B = 0.3 T, the measured T ∗C dramatically increases to 65 K
and reaches the bulk TC . The change in transition temperature introduced by this small
field is 550% [49]! RSWT nicely captures this vast change induced by a small field for the
few-layer case. The results demonstrate that the magnetic properties of quasi 2D Cr2Ge2Te6

can be very effectively tuned using small magnetic fields, arising from the interplay between
magnetic anisotropy and dimensionality in such systems.
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Figure 5.10: Magnetic-field-dependent T ∗C under different values of anisotropy in RSWT.
Calculated magnetic-field-dependent T ∗C of monolayer (1L), bilayer (2L), three-layer (3L) and
six-layer (6L) samples using A = 0, A = 0.01 meV and A = 0.001 meV in RSWT, as well as
that of the bulk, with A = 0.05 meV. The x axis (B field) is plotted on a logarithmic scale.
The efficient field control of transition temperature is clearly seen for small anisotropies in
2D layers.

5.7 Role of single-ion anisotropy in 2D

ferromagnetism

Lastly, we discuss the effects from the single-ion anisotropy term A. In the discussions
above, the theoretical results of the magnetic-field dependence for few-layer Cr2Ge2Te6 in
Fig. 5.9 are calculated with A = 0. The RSWT calculated results are consistent with the
experimental data in Fig. 5.3 and in Ref. [49]. We consider possible outcomes with a small
but finite A in Fig. 5.10, plotting T ∗C versus B assuming different values of the intrinsic
single-ion anisotropy: A = 0, 0.01 meV, and 0.001 meV. In the absence of an external
magnetic field, A will play a dominant role in the determination of TC , as can be clearly seen
in Fig. 5.10; with A = 0.01 meV, the 2D layers acquire a sizable TC . However, when we
increase the strength of external field B, the effect from A is weakened, as B will dominate.
In this sense, A and B play similar roles in establishing magnetic ordering.

Experimentally, the six-layer sample shows a zero-field transition temperature at 10 K
[49]. This temperature, comparing with our numerical results within RSWT, indicates an
intrinsic anisotropy in the six-layer sample to be smaller than 0.001 meV in magnitude,
because from the calculations A = 0.001 meV already gives 41 K in six-layer (see 6L results
of Fig. 5.10). Such a tiny intrinsic anisotropy enables an external magnetic field to control
T ∗C over a wide range; but its finite value makes the material intrinsically ferromagnetic,
evident by the experimentally observed finite remanence at zero field [49].
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Looking into the details of Fig. 5.10, we observe a seemingly counterintuitive behavior
that comes from the cross over between A = 0 and A 6= 0 curves: at some finite temperature
and at fixed strength of external magnetic field, the T ∗C with a nonzero A is lower than
the one with A = 0. Naively, we would expect adding a finite A would enhance the total
anisotropy and therefore increase T ∗C . This is true when the temperature is very low; that is,
the magnon excitation gap is larger with a nonzero A. However, the two types of anisotropies
are different in essence – the single-ion anisotropy term is renormalized by temperature (from
the 2A 〈nk〉 bk0ν0 term), whereas the magnetic field term is not (see Eq. (3.23)). Thus, at
higher temperature, the temperature renormalization effect becomes stronger by reducing
the excitation gap and hence lowering T ∗C . Therefore, this unexpected behavior can be seen
as a consequence of the renormalization of the spin-wave energies by temperature.

5.8 Conclusion

The collaborative work presented in this Chapter reports intrinsic ferromagnetism in
the 2D vdW crystal Cr2Ge2Te6, in which a strong dimensionality effect arises from weak
intrinsic anisotropy. Through the effective engineering of the magnetic anisotropy using
small magnetic fields, an unprecedented magnetic-field control of transition temperatures in
soft, 2D ferromagnetic vdW crystals is achieved. Our theoretical study based on the RSWT
method developed in Chapter 3 corroborates the experimental observations very well. We
study the layer-number dependence and the magnetic-field dependence of the transition
temperature. Our theoretical results show that the few-layer Cr2Ge2Te6 samples behave as
2D ferromagnet with tiny (yet finite) intrinsic anisotropy, and the transition temperature
can be tuned over a large range with small external magnetic fields, in nice agreement with
the experimental observation. Our work provides an accurate theoretical method to study
2D ferromagnetism in atomic layers of real materials with physical insights.
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Chapter 6

Generation of anisotropic Dirac
fermions and asymmetric Klein
tunneling in black phosphorus
superlattices

Artificial lattices have been employed in a broad range of two-dimensional systems, in-
cluding those with electrons, atoms and photons, in the quest for massless Dirac fermions
with high flexibility and controllability. Establishing triangular or hexagonal symmetry,
from periodically patterned molecule assembly or electrostatic gating as well as from moiré
pattern induced by substrate, has produced electronic states with linear dispersions from
two-dimensional electron gas (2DEG) residing in semiconductors, metals and graphene. Dif-
ferent from the commonly studied isotropic host systems, here we demonstrate that massless
Dirac fermions with tunable anisotropic characteristics can, in general, be generated in highly
anisotropic 2DEG under slowly varying external periodic potentials. In the case of patterned
few-layer black phosphorus superlattices, the new chiral quasiparticles exist exclusively in
certain isolated energy window and inherit the strong anisotropic properties of pristine black
phosphorus. These states exhibit asymmetric Klein tunneling, in which the transmission
probability of the wave packets with normal incidence is no longer unity and can be tuned
and controlled. In general, the direction of wave packet incidence for perfect transmission
and that of the normal incidence are different, and the difference can reach more than 50◦

under an appropriate barrier orientation in black phosphorus superlattices. Our findings
provide insight to the understanding and possible utilization of these novel emergent chiral
quasiparticles.

In this chapter, we present the theory of generation of anisotropic Dirac fermions and
asymmetric Klein tunneling in few-layer black phosphorus under superlattice potentials. The
major results of this project are published in Ref. [100].
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6.1 Introduction

The unusual relativistic-like quasiparticles in graphene, known as massless Dirac fermions,
intrinsically come from the symmetry of its honeycomb crystal structure [52, 101] and there-
fore can be designed and manipulated in other systems as first theoretically predicted [102,
103]. Many experimental efforts have been successfully performed to generate Dirac fermions
– in common isotropic two-dimensional electron gas (2DEG) on metal or in semiconductor
quantum wells under slowly varying periodic potentials formed by molecule assembly or pat-
terned gate [104–109], as well as with ultra-cold atoms trapped in honeycomb optical crystal
structures[110, 111] and photons confined in photonic crystals [112, 113]. Similarly, lattice
mismatch between graphene and substrate can introduce a long-range moiré superlattice po-
tential, giving rise to new generation of Dirac points in graphene [114–121]. These platforms
combine advantages of an extended degree of control and various foreign modifications [107],
making much physics accessible such as the interplay between Dirac fermions with strong
correlation[105] and spin-orbit coupling [108], and Hofstadter butterfly effect [116–120]. Sim-
ple symmetry argument prescribes a trigonally modulating potential to generate massless
Dirac fermions from an isotropic system [102, 107]. However, previous studies do not ad-
dress the questions: (1) whether these novel quasiparticles can arise from highly anisotropic
host states, and (2) what new physical insights and phenomena one can obtain from such
systems?

In this work, we show that massless Dirac fermions with chiral character can in general be
generated from anisotropic 2DEG systems. We moreover propose that semiconducting few-
layer black phosphorus [122, 123] is an ideal system to achieve this aim upon electron or hole
doping [124, 125]. Electron and hole carriers in black phosphorus exhibit strong anisotropy
with their effective masses along the two orthogonal crystal axes (m∗x and m∗y) differing by
an order of magnitude [126–128], forming highly anisotropic two-dimensional systems. With
properly designed periodic potential (that can be realized with patterned molecule assembly
or electrostatic gating under laboratory conditions), we predict that highly anisotropic mass-
less Dirac fermions are generated and that the ratio of the group velocities along the two
crystalline directions reaches (m∗x/m

∗
y)

1
2 ∼ 1/3. These anisotropic quasiparticles moreover

exist within an isolated energy window separating from other states, hence are expected to
be quite measurable and controllable.

Unlike the Klein tunneling process in graphene with carriers normal incident upon a po-
tential barrier always experiencing perfect transmission [129, 130], we find that the anisotropic
massless Dirac fermions generated in black phosphorus superlattices allow for an asymmetric
Klein tunneling, in which the normal incident wave packets are no more unimpeded and can
be generally tuned and controlled. Specifically, in the case of black phosphorus superlat-
tices, that the directions of normal incidence and perfect transmission can be differed by
more than 50◦. The anisotropic massless Dirac fermions and the asymmetric Klein tun-
neling, can be manifested in various experiments including scanning tunneling microscope,
electrical transport, quantum oscillations, quantum Hall, magnetoresistance etc. Moreover,
these novel tunable features could provide new ingredients in applications [131, 132] such as
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electron optics, where the system serves as anisotropic crystals and negative refraction and
anomalous reflection of the chiral Dirac fermions are expected.

6.2 Generation of anisotropic Dirac fermions in

few-layer black phosphorus under superlattice

potentials

6.2.1 Effective Hamiltonian perturbative analysis

Monolayer and few-layer black phosphorus is a direct gap semiconductor with a band
gap of the order of 1 eV at the Brillouin zone center. We shall use this case as a generic
example of an anisotropic massive 2DEG. Let us begin with the effective Hamiltonian for
the Γ valley of a few-layer black phosphorus (or monolayer phosphorene) [128, 133],

H2DEG(p) =
p2
x

2m∗x
+

p2
y

2m∗y
, (6.1)

where px and py are the crystal momenta along the x and y direction, respectively. Eq. (6.1)
is valid around both the conduction band minimum and valence band maximum, where the
band disperses much faster along the x direction (armchair direction) than along the y direc-
tion (zigzag direction) as plotted in Fig. 6.1(a) and 6.1(b). An external periodic potential
varying much slower than the interatomic distances would create a superlattice structure,
mixing the states in the Γ valley. For an isotropic 2DEG, with m∗x = m∗y, a triangular
potential would strongly mix states near three Kj (j = 1, 2, 3) points (with Kj = pj/~, de-
termined by the periodicity and orientation of the external potential) with degenerate energy
forming a triangle in reciprocal space, leading to Dirac fermions [102, 108]. In an anisotropic
2DEG, m∗x 6= m∗y (for electron-doped few-layer black phosphorus, we take m∗x = 0.15me and
m∗y = 1.18me, where me is the free electron mass [126]); however, in general, one can still
choose three Kj points (on which the states have the same energy) and mix these states with
some scattering strength from a designed potential, that is, solving an inverse problem.

As a demonstration, we pick up the following three Kj points,

K1 = (K0, 0),

K2 = (−K0

2
,

√
3

2

√
m∗y
m∗x

K0),

K3 = (−K0

2
,−
√

3

2

√
m∗y
m∗x

K0),

(6.2)

where K0 is a free parameter scaling the periodicity of the external potential U(r). (For
concrete illustration, we shall set the periodicity of U(r) as 2.35 nm in plotting the figures
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Figure 6.1: Few-layer black phosphorus. (a) Crystal structure and orientation. (b)
Schematic band structure near the band gap around the Γ point. Both the lowest con-
duction band (blue curve) and the highest valence band (red curve) disperse much faster
along the kx direction (armchair direction) than the ky direction (zigzag direction). (c) Ge-
ometry of a triangle defined by three points with degenerate energy in the reciprocal space,
fitting into the band dispersion. (d) Elliptical isoenergetic contour. Three Kj points of
degenerate energies on the energy surface define three Gj vectors. The reciprocal space of
the superlattice is spanned by G1 and G2.
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in the main text.) In generating Eq. (6.2), we demands the Kj points satisfy the condition,
see Fig. 6.1(c) and 6.1(d): E(~K1) = E(~K2) = E(~K3) where E(~Kj) is the energy
eigenvalue of H2DEG(~Kj). With the degeneracy condition satisfied, the choice of the three
Kj points still has many possibilities and may lead to rich phases described by a generalized
Weyl equation [134] (in general tilted Dirac cones or open Fermi surfaces), and even higher
pseudospin fermions can be generated with more Kj included [135, 136]. Here, we consider
a special case with the three Kj points satisfying K1 + K2 + K3 = 0 (Eq. (6.2)) which
guarantees electron-hole symmetry in the Dirac cones generated later. The corresponding
external potential which would lead to mixing of states near those three K points then
has reciprocal lattice vectors (and superlattice Brillouin zone (Brillouin zone)) given by
G1 = K2 −K1 and G2 = K3 −K1, while G3 = G1 −G2 is a dependent vector shown in
Fig. 6.1(d).

As a first example, we consider a simple external potential of the following form [102,
108],

U(r) = 2W [cos(G1 · r) + cos(G2 · r) + cos(G3 · r)] , (6.3)

where W defines the strength of the external potential. The real-space distribution of this
potential is plotted in Fig. 6.2a, with W = 0.1 eV. We define k as a small wavevector, i.e.
|k| � |Kj|, and expand the superlattice wavefunction near the three Kj points as a linear
combination of |j〉 = ei(Kj+k)·r. In this basis, the Hamiltonian up to the first order in k is
given by H ′2DEG = H0 +H1, with 〈j|H0 |j′〉 = W (1− δjj′) and 〈j|H1 |j′〉 = ~vj ·kδjj′ , where

δjj′ is the Kronecker delta function and vj = (vjx, vjy) =
(

~Kjx
m∗x

,
~Kjy
m∗y

)
. The eigenvalues of

the states for k = 0 (Hamiltonian H0) are −W , −W , 2W . The resulting two degenerate
states are 1√

2
(0, 1,−1)T and 1√

6
(2,−1,−1)T , and we may construct a 2 × 2 subspace with

them [102, 108]. The Hamiltonian at finite k in the new basis (setting the zero of energy at
−W ) reads

H ′(k) =
~v0

2
(−σzkx − γ0σxky), (6.4)

where v0 = ~K0

m∗x
, γ0 =

√
m∗x
m∗y

and σj(j = x, y, z) are Pauli matrices. With a unitary transform

[102, 108], we arrive at

H(k) =
~v0

2
(σxkx + γ0σyky). (6.5)

The Hamiltonian H resembles the low-energy effective Hamiltonian in graphene [52, 101],
except that an extra factor γ0 renormalizes the second term. The energy eigenvalues and
the corresponding eigenvectors are therefore given by

E(k) =
λ~v0

2

√
k2
x + γ2

0k
2
y, (6.6)

ψλ(k) =

(
1

λeiφs

)
, (6.7)
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Figure 6.2: Real-space distribution of a superlattice of sinusoidal potentials defined in Eq.
(3) with W = 0.1 eV. a1 and a2 are the superlattice lattice vectors of the external periodic
potential. |a1| = |a2| = 2.35 nm and the angle between the two vectors is 63.4◦. The two
panels on the right are the line profiles of the external potential. (b) Band structures of the
states under the sinusoidal periodic potential from non-perturbative numerical calculations.
Anisotropic massless Dirac fermions are generated. (c) Band structures along two direc-
tions passing through one Dirac point, showing linearly dispersing features with strongly
anisotropic group velocities. (d) DOS of the new Dirac fermions system generated from the
external periodic potential, with the real electron spin degree of freedom included. Dashed
line represents the DOS from the lowest-energy conduction band in pristine few-layer black
phosphorus before applying the external potential.
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where λ = ±1 denoting the upper and lower bands, and φs is the polar angle of the pseu-
dospin vector associated with ψλ(k) with respect to kx. Here we use the notation s for
pseudospin. The energy dispersion is linear and these quasiparticles behave as massless
Dirac fermions under the modulation of the periodic external potential. The group veloc-
ity of the linear dispersion varies with the direction of k, resulting in an anisotropic Dirac
cone band structure. The anisotropy in the group velocity, |vy ||vx| = γ0, originates from the
anisotropic effective masses intrinsic to the original anisotropic 2DEG.

6.2.2 Numerical solutions of 2DEG under realistic superlattice
potentials

We thus have demonstrated the generation of anisotropic Dirac fermions in general, and
in few-layer black phosphorus in particular, for a sinusoidal potential defined in Eq. (6.3)
for small k using a perturbative analysis. We have also numerically solved in the whole
superlattice Brillouin zone for the full band structure in Fig. 6.2(b) and 6.2(c), and find that
the Dirac cone indeed disperses for a large part of the Brillouin zone much faster along the
kx direction than along the ky direction.

We now examine more complex shapes for the applied external potential within a unit cell
of the superlattice. Considering possible experimental fabrications, we perform calculations
on three likely cases: a conical potential of radius 0.3 nm with 2.35 nm periodicity mimicking
molecule assembly [106, 109] as shown in Fig. 6.3(a), a rectangular potential of 2.67 nm long
and 1.65 nm wide with 7.84 nm periodicity representing patterned electrostatic gating 6.4
[102, 104, 108] as shown in Fig. 6.4(a), and a harmonic potential of radius 0.4 nm with
2.35 nm periodicity as shown in Fig. 6.5(a). We expand all quantities with plane waves to
construct the Hamiltonian. The diagonal matrix elements are the unperturbed band energies
from Eq. (6.1), and the off-diagonal matrix elements are from the external potential, which
is given in a Fourier expansion as

U(r) =
∑
G

U(G)eiG·r. (6.8)

Numerical diagonalization of the Hamiltonian gives the energy and wavefunction of states in
the whole Brillouin zone. Generally, if the potential has small deviations in the corresponding
Fourier components given in Eq. (6.3), the generated Dirac points will be slightly shifted
away from the three Kj [111], and the above analysis remains valid approximately.

Since the potential is inversely designed from Eqs. (6.2)–(6.6) in the main text, the
lowest G components, which defines the size and shape of the superlattice, are similar to
those defined in Eq. (6.2) in the main text. In the conical potential, a small deviation
from Eq. (6.3) exists and effectively shifts the positions of the Dirac points away from the
Kj points. However, if the profile of the potential is very localized (such as in molecule
assembly), the analysis in the main text can still be treated as a good approximation to the
realistic situation. Therefore, our conclusions on the generation of massless Dirac fermions
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Figure 6.3: Generation of massless Dirac fermions from a superlattice of conical potentials
mimicking the molecule assembly. (a) Real-space distribution of the conical potential of
radius 0.3 nm with 2.35 nm periodicity (left panel), along with two line profiles plotted
(right two panels). (b) Band structures corresponding to the superlattice potential in (a).
(c) Band structures along two normal directions passing through one Dirac point. (d) Density
of states (DOS) showing V-shape feature with a vanishing point, with the real electron spin
degree of freedom included.

around Kj points are valid, despite the fact that the detailed band structure in other regions
away from k = 0 may vary depending on the higher G components of the potential. The
periodicity of the conical potential is 2.35 nm, which is quite accessible in experiments, e.g.,
the assembly of monoxide molecules on Cu (111) surface takes a periodicity of less than 2 nm.
The periodicity of the rectangular potential is 7.84 nm, in the same order of magnitude of
what has been achieved with current lithographic techniques that can usually reach 1020 nm.
The periodicity of the harmonic potential is 2.35 nm, and we use it to enrich the discussions.

Fig. 6.3(b) and (c), Fig. 6.4(b) and (c) and Fig. 6.5(b) and (c) show the band struc-
tures from the molecule assembly, rectangular, and harmonic potentials, respectively. The
anisotropic linear dispersions are clearly seen. Note that for all potentials, the density of
states (DOS) show the V-shape feature and a vanishing point, as shown in Fig. 6.2(d), Fig.
6.3(d), Fig. 6.4(d), and Fig. 6.5(d).
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Figure 6.4: Generation of massless Dirac fermions from a superlattice of rectangular po-
tentials mimicking the patterned electrostatic gating. (a) Real-space distribution of a rect-
angular potential of 2.67 nm long and 1.65 nm wide with 7.84 nm periodicity (left panel),
along with two line profiles plotted (right two panels). (b) Band structures corresponding
to the superlattice potential in (a). (c) Band structures along two normal directions pass-
ing through one Dirac point. (d) Density of states (DOS) showing V-shape feature with a
vanishing point, with the real electron spin degree of freedom included.

We further discuss the dependence of superlattice periodicity in the electronic structures.
As is shown in Fig. 6.6, we consider the sinusoidal potential (Eq. (6.3)) with different lattice
constants. A smaller periodicity gives a wider energy window for the generated massless
Dirac fermions, i.e., the range of linearity.

Numerical simulations (i.e., diagonalization of the Hamiltonian matrix) show that all
three external potential models produce sizable massless Dirac cones in the superlattice
Brillouin zone with quite achievable parameters in experiments. We have therefore given a
general scheme for generating massless Dirac fermions in arbitrarily anisotropic 2DEG from
the perspective of inverse design.



CHAPTER 6. GENERATION OF ANISOTROPIC DIRAC FERMIONS AND
ASYMMETRIC KLEIN TUNNELING IN BLACK PHOSPHORUS SUPERLATTICES 79

Figure 6.5: Generation of massless Dirac fermions from a superlattice of harmonic poten-
tials. (a) Real-space distribution of a harmonic potential of radius 0.4 nm with 2.35 nm
periodicity (left panel), along with two line profiles plotted (right two panels). (b) Band
structures corresponding to the superlattice potential in (a). (c) Band structures along two
normal directions passing through one Dirac point. (d) Density of states (DOS) showing V-
shape feature with a vanishing point, with the real electron spin degree of freedom included.

6.2.3 Isolation of the new Dirac fermions within an energy
window

One important prerequisite for ease in probing and utilizing the emergent Dirac fermion
states is to have these states well separated from other states. In contrast, tunable and
anisotropic Dirac fermions can also be generated in graphene using one-dimensional periodic
potential [103, 137] due to the chiral nature of states in the original Dirac cone. However,
those new states are typically obscured by other states in the same energy window [103,
137]. In the approach proposed in this work, the resulting density of states (DOS) has a
clear V-shape feature and vanishes at the energy where the two new Dirac cones meet, well
separated from other states, for example, see Fig. 6.2(d). Thus, they can be more easily
characterized in many experiments involving properties of Fermi surface, such as scanning
tunneling microscope, electrical transport, quantum oscillations, quantum Hall, magnetore-
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Figure 6.6: Superlattice periodicity dependence of the electronic band structure of the gen-
erated massless Dirac fermions. Three lattice constants are considered; smaller periodicity
gives a wider energy window hosting the linearly dispersed Dirac states. Note that in this
figure, the k-space and energy origin have been set to the K′ point and the Dirac point
energy, respectively, for a direct comparison of the dispersion.

sistance and electron optics. In the model potential described by Eq. (6.3), the condition
W > ~2K2

0/16m∗x should at least be satisfied to avoid obscuring states stemming from origi-
nal 2DEG dispersions. Comparison with the DOS of the pristine few-layer black phosphorus
in Fig. 6.3(d) indicates that the system is only slightly modified by the superlattice poten-
tial, and the intrinsic band gap of few-layer black phosphorus (∼ 1 eV) is still well preserved.
Therefore, in such a black phosphorus superlattice, the semiconducting phase and the mass-
less Dirac fermion phase can be reversibly switched by tuning the Fermi level within an
achievable carrier density range in the order of 1012 - 1013 cm−2, which is quite achievable
experimentally.

Noticing that the DOS plotted in Fig. 6.2(d), Fig. 6.3(d), Fig. 6.4(d), and Fig. 6.5(d)
only contain the effects of the external potential on the original lowest-energy conduction
band, whereas in a real material, other bands need to be considered as well, because they may
appear in the same energy window where the Dirac fermions exist, and therefore affect the
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experimental measurements. Previous ab initio calculations [126] show that in a monolayer
black phosphorus, there are other bands ∼ 0.2 eV higher in energy than the conduction
band minimum and ∼ 0.5 eV in energy lower than the valence band maximum. When
the number of layers increases to four, other conduction band states almost reach the same
energy as conduction band minimum, but those in the valence bands are still at ∼ 0.5 eV
away from the valence band maximum. Considering the energy of the new Dirac points
and potentially interfering states, hole doping in few-layer black phosphorus should be more
robust in the generation of isolated-in-energy anisotropic Dirac fermions. However, the
ratio of the effective masses along two crystal axes in the hole doping regime varies a lot
with number of layers (γ0 is ∼ 1/6 in monolayer with hole doping), while it is almost a
constant as a function of layer number in conduction bands; therefore, much care is needed
in designing the external potential for a sample with a particular number of layers and the
choice of electron or hole doping. Nevertheless, our analyses and calculations in the above
based on the conduction band states are quite general, and can be easily applied to the
valence band and other systems having anisotropic two-dimensional electron gases.

Furthermore, for the purpose of experimental measurement, considering the sensitivity of
black phosphorus to air, we note that the encapsulation of the material by using hexagonal
boron nitride could be helpful, as it virtually does not affect the electronic structure around
the band edges of black phosphorus [138].

6.3 Asymmetric Klein tunneling from anisotropic

Dirac fermions

6.3.1 Solving for asymmetric Klein tunneling

Next, we explore one of the most counterintuitive phenomena in graphene, Klein tunnel-
ing [129, 130]. That is, normal-incident carriers in graphene experience a perfect transmission
through a potential barrier independent of the potential width and height, made possible
by the chiral nature of the linearly dispersing Dirac fermions and charge-conjugation sym-
metry.30 In an anisotropic Dirac cone, for states with wavevector k (measured from the
Dirac point), the wavevector k, the pseudospinor s and the group velocity v are all generally
noncollinear at a given k point [103]. In fact, they are given (for the potential in Eq. (6.3))

by k = (kx, ky), s = λ~(kx, γ0ky)/
√
k2
x + γ2

0k
2
y, and v = λv0

2
(kx, γ

2
0ky)/

√
k2
x + γ2

0k
2
y (with

λ = ±1) and related by (Fig. 6.7(a))

tanφv = γ0 tanφs = γ2
0 tanφk = γ2

0

ky
kx
, (6.9)

where φk, φs, φv are referenced to kx axis (note that s depends on λ but φs does not, by
definition). If the relevant Fourier components of a potential deviate from Eq. (6.3) slightly,
Eq. (6.9) is then an approximation.
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Figure 6.7: (a) Isoenergetic contour of the anisotropic Dirac cone. Wavevector k, pseu-
dospinor s and group velocity v are noncollinear in general. (b) With the elliptical Fermi
surface plotted in the x − y coordinate system, a potential barrier is created with barrier
normal along the x′-direction in the x′−y′ coordinate system. Vectors and angles are denoted
by the prime symbol if in the x′ − y′ coordinate system, and by r if representing reflected
waves. (c) An n− p− n junction (relative to the Dirac point) created by a potential barrier
of height V0 in region II. (d) Tunneling process through the potential barrier. u, ur, q, qr,
θ, θr, λ′ in region II correspond to v, vr, k, kr, φ, φr, λ in region I.
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Now we consider transmission through a potential barrier with a height of V0 and width
of D0 (D0 � |a1|, |a2|) . Let us align the minor and major axes of the elliptical Fermi surface
along the kx and ky direction, respectively (see Fig. 6.7). We place a potential barrier in
the x′ − y′ coordinate system (rotated at some arbitrary angle α from the x− y coordinate
system), and make the barrier axis infinitely long along the y′ direction with the width D0

lying along the x′ direction. In the continuum limit, translational symmetry along the y′

direction will conserve the ky′ wavevector component of a propagating wave impinging on
the potential barrier, based on which we look for the solutions in the three regions - before
(I), inside (II) and after (III) the barrier. The various notations are illustrated in the caption
of Fig. 6.7 and explained in the following context.

With the problem set up in Fig. 6.7, we analytically look for the solutions of this
transmission problem. The crystal axes of few-layer black phosphorus and the superlattices
are defined in the x− y coordinate system, and the potential barrier is defined in the x′− y′
coordinate system. Vectors and angles in the x′ − y′ coordinate system are denoted with a
prime symbol. We consider group velocity v of the incident wave packet that can hit the
potential barrier, so φ′v ∈

[
−π

2
, π

2

]
. With a given φ′v (φv = φ′v +α), because φk = ky

kx
, φk can

be determined (depending on λ = ±1), and we can write the incident wavevector in region
I as k = (kx, ky) = (|k| cosφk, |k| sinφk), satisfying,

E0 = λ
~
2
v0

√
k2
x + γ2

0k
2
y

= λ
~
2
v0

√
k2(cos2 φk + γ2

0 sin2 φk),

(6.10)

and we have,

|k| = 2|E0|
~v0

(cos2 φk + γ2
0 sin2 φk)−

1
2 . (6.11)

The same vector is represented in the x′− y′ coordinate system as k = (|k| cosφ′k, |k| sinφ′k),
where φ′k = φk − α. In region I, the reflected wavevector takes kr = (krx′ , ky′) in the x′ − y′
coordinate system, because of ky′ conservation. In the x-y coordinate system, the reflected
wavevector reads,

krx = krx′ cosα− ky′ sinα,
kry = krx′ sinα + ky′ cosα,

(6.12)

satisfying,

(krx)
2 + γ2

0(kry)
2 =

4E2
0

~2v2
0

, (6.13)

and we get the solution of krx′ , as well as the spinor angle φrs. In region III, there is only one
wavevector which is the same as k.

In region II, the wavevectors are denoted as q, qr with qy′ = qry′ = ky′ , satisfying,

E0 = λ′
~
2
v0

√
q2
x + γ0q2

y + V0, (6.14)
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where,

qx = qx′ cosα− ky′ sinα,
qy = qx′ sinα + ky′ cosα,

(6.15)

and equivalently, by solving,

(qrx)
2 + γ2

0(qry)
2 =

4(V − E0)2

~2v2
0

, (6.16)

we can have two solutions for qx′ , one for incident and the other for reflected wave in region
II, depending on the group velocities they associated with. Therefore we obtain the spinor
angles θs and θrs . Note that Eq. (6.7) and Eq. (6.9) should be combined (i.e. considering
λ(λ′) = ±1) to determine which quadrant the wavevector and the group velocity lies in, and
the spinor direction is determined by spinor angle and λ(λ′) together. In a word, to obtain
the solutions, the defining equations of the three vectors should be used, coming from Eq.
(6.7) in the main text.

The transmission probability in the ballistic transport limit is obtained by matching the
carrier wavefunction at the boundaries [101, 129]. The solutions of the three regions in the
x′ − y′ coordinate system take the form

ψI(x
′, y′) = 1√

2

(
1

λeiφs

)
ei(kx′x

′+ky′y
′) + r√

2

(
1

λeiφ
r
s

)
ei(k

r
x′x
′+ky′y

′), x′ < 0,

ψII(x
′, y′) = a√

2

(
1

λ′eiθs

)
ei(qx′x

′+ky′y
′) + b√

2

(
1

λ′eiθ
r
s

)
ei(q

r
x′x
′+ky′y

′), 0 < x′ < D0,

ψIII(x
′, y′) = t√

2

(
1

λeiφs

)
ei(kx′x

′+ky′y
′), x′ > D0.

(6.17)
Then we can have the following set of equations from matching the boundary conditions in
the above set of equations,

1 + r = a+ b,
λeiφs + λreiφ

r
s = λ′aeiθs + λ′beiθ

r
s ,

aeiqx′D + beiq
r
x′D = teikx′D,

λ′aeiθs+iqx′D + λ′beiθ
r
s+iqr

x′D = λteiφs+ikx′D.

(6.18)

With some algebra, we derive the transmission amplitude as,

t(φ′v) =
λλ′e−ikx′D(eiθ

r
s − eiθs)(eiφs − eiφrs)
A

, (6.19)

where,

A = e−iqx′D
(
eiθs+iθrs + eiφs+iφrs − λλ′eiθrs+iφrs − λλ′eiθs+iφs

)
− e−iq

r
x′D
(
eiθs+iθrs + eiφs+iφrs − λλ′eiθrs+iφs − λλ′eiθs+iφrs

)
.

(6.20)
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The transmission probability through the potential barrier is

T (φ′v) = tt∗. (6.21)

In the case of graphene, besides the resonant unit transmission at specific angles ow-
ing to a Fabry-Pérot like effect, normal-incident electron wave packet in graphene always
shows perfect transmission because of suppression of backscattering [129] owing to the chiral
character of the Dirac fermions. In the anisotropic case, the pseudospin-momentum locking
(given by Eq. (6.7) and Eq. (6.9)) gives rise to a complete suppression of the scattering only
under the condition k′ → −k′. Considering the fact that ky′ is conserved, this process will
happen only when ky′ = 0. Consequently, φrs = π + φs, θ

r
s = π + θs, φs = θs, and qrx′ = −qx′ ,

resulting in T = 1, i.e. perfect transmission independent of the potential barrier height and
width.

6.3.2 Numerical results of asymmetric Klein tunneling in
patterned few-layer black phosphorus

With an anisotropic Dirac cone, perfect transmission therefore occurs when the incident
wavevector k is along the normal to the potential barrier. However, the fact that the group
velocity and the wavevector are generally noncollinear (Eq. (6.9) and Fig. 6.7(a)) leads to a
remarkably distinct Klein tunneling behavior compared with graphene. For a wave packet,
it is the group velocity, not wavevector, that describes the direction of center-of-mass motion
and energy flow. In graphene, normal incident wave packet (or energy flow) is unimpeded;
however, in the anisotropic case, the transmission probability of a normal incident wave
packet is not unity and can be tuned and controlled. Furthermore, the normal incident
direction and the perfect transmission direction are in general different.

In a general asymmetric Klein tunneling process, the normal incidence direction is differ-
ent from the perfect transmission direction, and this difference can be maximized with given
m∗xandm

∗
y. The perfect transmission case corresponds to k = (k cosα, k sinα ), according

to the above discussion. In this case, if we limit 0 < α < π
2
, we can maximize (α − φv), or

equivalently tan(α − φv)). Together with Eq. (6.9), we may solve for the maximum value
(at α = αm) of the following function,

tan(α− φv) =
tanα− tanφv

1 + tanα tanφv

. (6.22)

The difference between the two directions depends on α and is maximized at

αm = arctan
1

γ0

, (6.23)

The maxium (α−φv) corresponds to tanφv,m = γ0, and meanwhile tanφs,m = 1. Therefore,
we have the following relation,

φ′v,m = φv,m − α = arctan γ0 − arctan
1

γ0

. (6.24)
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Figure 6.8: Transmission probability T versus the incident angle of group velocity φ′v with
respect to the potential barrier normal, showing asymmetric Klein tunneling. E0 = 10meV
is used. (a) Two different potential barrier orientations. At α = αm = arctan 1

γ0
, the

normal-incidence direction and the perfect-transmission direction are maximally differed by
φ′v,m = 50.8◦. (b) Symmetric and asymmetric Klein tunneling profiles corresponding to
the two geometries in (a). (c, d) Asymmetric Klein tunneling with various parameters for
α = αm.
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The few-layer black phosphorus under the superlattice potential takes on a value of φ′v,m =
−50.8◦ with the effective masses considered here for black phosphorus. The directional
dependence of the transmission probability T (φ′v) is plotted in Fig. 6.8, with varying incident
angle φ′v of the group velocity relative to the potential barrier normal, and in principle is
measurable from a directionally dependent nonlocal resistivity experiment [139].

Because of the asymmetric Klein tunneling behavior, the transmission probability of
normal incident wave packets can be controlled with different barrier alignment, height and
width, whereas as discussed above the perfect transmission direction depends on α only.
In the cases where the Fermi surface is smaller inside the potential barrier region than the
outside regions, then at certain angles, no propagating wave solutions exist. But evanescent
wave solutions are allowed by letting qx′ = iκ′ and qrx′ = iκ′r (κ, κ′ ∈ R) . Therefore, a beam
of normal-incident wave packets can be completely turned off by tuning V0, which is also a
missing feature in pristine graphene or any isotropic Dirac fermion system.

6.4 Conclusion

In this work, we have proposed a new platform for the generation of anisotropic Dirac
fermion and novel asymmetric Klein tunneling phenomenon. We have adopted effective
Hamitonian approach with perturbative analysis and numerical solutions. Our results clearly
demonstrate these novel new physics that can be realized in the anisotropic semiconductor
few-layer phosphorus. The phenomena found in this work are general and applicable to any
anisotropic host systems. Moreover, the emergence of highly tunable and easily accessible
anisotropic massless Dirac fermions in few-layer black phosphorus superlattices should pro-
vide a range of interesting experimental investigations and a new direction for possible device
applications.
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Chapter 7

Understanding the formation of
electron-irradiation-induced defects in
boron nitride

Hexagonal boron nitride (h-BN) has become one of the most important materials in
contemporary condensed matter studies due to its various excellent properties. Its defect
formation and dynamics are critically important in understanding the physical, mechanical,
and chemical properties of h-BN for future harsh-environment applications

In this Chapter, we report a collaborative work with the experimental group of Prof.
Alex Zettl (University of California at Berkeley). This work is published as Ref. [140].
In this work, the experimentalists study the defect formation and dynamics of h-BN using
aberration-corrected transmission electron microscopy (TEM) at elevated temperatures. The
experiment finds particularly interesting phenomena that through the TEM beam, hole
defects of triangular and hexagonal shapes are formed with complex dynamics at elevated
temperatures. We perform density functional theory (DFT) calculations to understand the
stability of such defects at thermal equilibrium, and predict a diagram of preferential defects
under different conditions.

7.1 Introduction

Graphene [52] has attracted significant interest over the past decade, which has in turn
spurred interest in few-layer and monolayer hexagonal boron nitride (h-BN) [141, 142]. In
either its bulk or few-layer forms, h-BN is a wide band gap (∼ 5.5 eV) insulator with
comparable mechanical strength to, and higher oxidation resistance than, graphene [142].
These and other characteristics make h-BN a promising candidate in various applications
[143–145]. As a substrate for many other 2D materials, h-BN has been shown to reduce
charge density fluctuation and surface roughness, thus enhancing electronic properties in
overlaid graphene [146, 147] and optoelectronic properties in overlaid few-layer transitional
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metal dichalcogenides [148].
In this collaborative project, experimentally, the atomic structure, stability, and dynam-

ics of defects in hexagonal h-BN are investigated using an aberration-corrected transmission
electron microscope operated at 80 kV between room temperature and 1000 ◦C. At temper-
atures above 700 ◦C, parallelogram- and hexagon-shaped defects with zigzag edges become
prominent, in contrast to the triangular defects typically observed at lower temperatures.
The appearance of 120◦ corners at defect vertices indicates the coexistence of both N- and
B-terminated zigzag edges in the same defect.

The theoretical efforts which will be mainly discussed in the following, complement the
experiments with first-principles calculations which consider the thermal equilibrium forma-
tion energy of different defect configurations. We show that, below a critical defect size,
hexagonal defects have the lowest formation energy and therefore are the more-stable con-
figuration, and triangular defects are energetically metastable but can be “frozen in” under
experimental conditions.

7.2 Experimental results summary

We summarize the experimental observation of electron-irradiation-induced triangular
and hexagonal defects in h-BN here [140].

Fig. 7.1(a) and (b) are a representative high-resolution transmission electron microscopy
(TEM) image of triangular defects in h-BN, obtained at 500 ◦C [140]. A corresponding
atomic model is also shown (B and N atoms are depicted in pink and blue, respectively) for
N-terminated zigzag-edge triangles. Triangular defects of this kind are quite common in h-
BN, and many of them have been previously observed at room temperatures [141, 149–151].
The chemical composition of edge-atoms has been identified as N by high-resolution EELS
and contrast comparison in scanning transmission electron microscopy (STEM) and high-
resolution TEM (N appears to have a slightly higher contrast than B) [141, 150, 152]. The
defect formation by a knock-on mechanism has been widely accepted from both experimental
and theoretical studies [149, 150, 153, 154].

Fig. 7.1 (c) and (d) show a representative TEM image of hexagonal defects at 900 ◦C. At
600 and 700 ◦C, the experiment [140] observes the appearance of hexagonal defects in addition
to the conventional triangles; however, the triangular holes become unstable and very quickly
(in matter of seconds during the imagining process) transform into a hexagonal configuration.
At high temperatures (800, 900, and 1000 ◦C), the hexagonal defects with distinguishing
120◦C corners predominate. This experimental atomic-resolution high-resolution TEM study
provides direct, clear, and unambiguous identification of the edge structure of the hexagonal
defects [140]. Indeed, at all temperatures studied, the experiment [140] find that all the
edges in both cases adopt a zigzag configuration. The simple h-BN atomic models shown in
the right panels of Fig. 7.1(d) demonstrate that parallelogram and hexagon-shaped defects
(or in general any defects with 120◦ corners) with zigzag edges must have both N- and
B-terminated atoms.
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Figure 7.1: Experimental observation [140] of defects in h-BN. (a) and (b) Representative
high-resolution transmission electron microscopy (TEM) image of triangle defects at 500 ◦C
(a) and its corresponding atomic model (b). The image and model also show a triangle with
an ejected chain of B-N atoms (indicated by red arrows). The blue and pink spheres are N
and B atoms, respectively. (c) and (d) High-resolution TEM images of hexagonal defects (at
900 C), showing the presence of both N- and B-terminated zigzag edges in the same defect.
Blue and pink spheres represent for N and B atoms, respectively. Long-range B-terminated
zigzag edges are indicated by red-dotted boxes.
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This key observation [140] apparently contradicts literature wisdom because the presence
of a B-terminated zigzag edge has historically been considered possible only as an interme-
diate transient construct when the triangular defects grow. Defects in h-BN in the literature
have either all N-terminated or all B-terminated edges. The experiment also finds that
extended B-terminated zigzag edges are stable (at least for several seconds under imaging
conditions) and ubiquitous , and both N-terminated and B-terminated edges coexist in the
same defect [140].

In the following theoretical investigation, we use DFT calculations to provide insights in
the stability of these defects from thermal equilibrium perspective.

7.3 Theoretical DFT computation of formation

enthalpy of defect structures, corners, and edges

To gain insight into the defect formation mechanism, we perform first-principles calcula-
tions within the density functional theory to compute the formation enthalpy of each defect
structure (triangles and hexagons), and we break down to corners and edges.

First-principles calculations are performed within the density functional theory using
Quantum Espresso package [47]. We use a plane wave basis set with 45 Ry cutoff, and
projector augmented wave pseudopotentials under local density approximation [97, 155] .
We fully relax the lattice vectors and internal coordinates of pristine monolayer h-BN with
10 Å vacuum size, based on which we construct the defect structures in supercells such that
the defect-defect distance in the periodic image is larger than 9 Å. We have calculated with
six defect structures, as shown in Table 7.1, that there are three types of them, i.e., triangular
defects with N terminated edges (tri-N), triangular defects with B terminated edges (tri-B),
and hexagonal defects with both N and B terminated edges (hex). For each type of defect,
we calculate two different sizes, therefore we can extract the edge and corner energies later
[156]. In the calculations of defects in supercells, we fix the lattice constant from pristine
monolayer h-BN to mimic an environment with relatively low defect density, and fully relax
the internal coordinates to let the edges and corners reconstruct.

To calculate the formation enthalpy ∆H of each defect structure, we need the information
of chemical potentials, i.e. the chemical environment when the system reaches thermal
equilibrium. The chemical potential of monolayer h-BN is denoted as µBN for 1 B atom
and 1 N atom together. The chemical potentials of B and N atoms, are referenced to their
elementary substances, chosen as α-boron and N2 molecule, and denoted as µ0B and µ0N for
per atom, respectively. In a thermal equilibrium state with dominating monolayer h-BN, we
have a constraint [157],

µB + µN = µBN . (7.1)

Under two extreme chemical environment limits, the chemical potential of B (µB) and N
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Defect
structures

Description Edge
length

(number of
atoms)

∆H
(Ry),
N-rich

∆H
(Ry),
B-rich

tri-N-49 Triangle, 3 N-terminated edges, 3 60◦

N-corners, hole of 28 B and 21 N
7 4.180 5.727

tri-N-64 Triangle, 3 N-terminated edges, 3 60◦

N-corners, hole of 36 B and 28 N
8 4.816 6.584

tri-B-49 Triangle, 3 B-terminated edges, 3 60◦

B-corners, hole of 21 B and 28 N
7 5.501 3.955

tri-B-64 Triangle, 3 B-terminated edges, 3 60◦

B-corners, hole of 28 B and 36 N
8 6.320 4.552

hex-96 Hexagon, 3 N- and 3 B-terminated
edges, 6 120◦ BN-corners, hole of 48 B

and 48 N

4 5.566

hex-150 Hexagon, 3 N- and 3 B-terminated
edges, 6 120◦ BN-corners, hole of 75 B

and 75 N

5 7.179

Table 7.1: Defect structures calculated in this work and their formation enthalpies ∆H under
two chemical potential limits.

(µN) can therefore be determined as follow,

N-rich: µN = µ0N , µB = µBN − µN ,
B-rich: µB = µ0B, µN = µBN − µB.

(7.2)

In reality, the chemical potentials µB and µN can vary, but would not be out of the range
defined by Eq. (7.2) in the thermal equilibrium states. With well-defined chemical potentials
under each chemical environment, we can calculate the formation energy for each defect
structure by using,

∆H = Esupercell(defect) + µBN(missing B) + µNN(missing N) − Esupercell(pristine), (7.3)

where Esupercell(defect) is the total energy of a defect structure in a supercell, Esupercell(pristine)
is the total energy of the pristine monolayer BN in the same size supercell, N(missing B) and
N(missing N) are the number of missing B and N atoms in the formation of the defect structure
(see Table 7.1) from the pristine structure. The calculated formation enthalpy for the six
defect structures are listed in Table 7.1. We notice that for the hexagonal defects, the forma-
tion enthalpy is independent of the elemental chemical potential B and N, because in such
defects, the number of (missing) B and N atoms are always equal, so the chemical poten-
tials simply come from the constraint Eq. (7.1). By calculating two defect structures with
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Defects
Edge ∆H (Ry/atom) Corner ∆H (Ry/Corner)

N-rich B-rich N-rich B-rich
tri-N 0.212 0.286 -0.091 -0.091
tri-B 0.273 0.199 -0.077 -0.077
hex 0.269 -0.148

Table 7.2: Calculated formation enthalpies for edges and corners in different defect types.

different sizes of one type, we can extrapolate the edge and corner energies approximately
(the difference in formation enthalpy of two sizes gives the formation enthalpy of the edges,
then that of the corners can be derived [156]), as are listed in Table 7.2.

7.4 Defect formation mechanism from thermal

equilibrium considerations

As we discussed above, Table 7.1 lists the calculated formation enthalpy for six defect
structures with different sizes and shapes, and in two limit conditions, N-rich and B-rich
environments. Therefore the edge and corner energies can then be approximately extracted,
as shown in Table 7.2. We find that formation of the edges requires more energy, whereas the
corners lower the energy due to the appreciable structure reconstructions at the corners, as
evidenced by the relaxed structures. More importantly, the 120◦ BN-corner in the hexagonal
defects has lower energy than either the 60◦ N- or B-corner in the triangular defects. With
the extracted edge and corner energies in each type of defect we can extrapolate to obtain
the formation enthalpy of defects in different sizes, as plotted in Fig. 7.2, assuming all other
effects are negligible.

Fig. 7.2(a) and (b) present the thermal equilibrium formation energy in two limits (N-
rich and B-rich environments) as a function of defect circumference (i.e., perimeter). The
figures show that when the defect sizes are small (n < 10, where n is the number of atoms
on all edges of the defect) the hexagonal defects have the lowest formation energy, and when
the defects are larger (n > 10), triangular defects (either N- or B-terminated edges) are
more stable. This is in line with our finding that the formation of a hexagonal defect can
lower the total energy by having the 120◦ BN-corners at the cost of introducing both N- and
B-terminated edges. However, when the defect size is large the advantages of the corners
lessen compared to the contribution of the edges to the total energy. In this case triangular
defects become energetically preferential since they have solely one type of edges.

By varying the chemical potential between two limits (N-rich and B-rich) we derive a
defect shape preference diagram in terms of defect circumference and chemical potential
using the defect formation energy as shown in Fig. 7.2(c). Apparently under any chemical
potential environment, hexagonal defects have the lowest energy when the defect sizes are
small (n < 10 in most cases). On the other hand triangular defects are more stable at very
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Figure 7.2: (a) Formation energy per unit length (occupied by one atom) as a function
of circumference (i.e. number of atoms on all edges) in different types of defects in the
N-rich limit. We use the edge and corner energies from Table 7.2 and extrapolate to get
the each data point. (b) Similar to (a), but under B-rich limit. (c) Diagram of regions
of preferential existence of various defects as a function of circumference versus chemical
potential. Triangular and hexagonal defects phases are included. Lines separating different
domains are guides for the eyes only.
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large sizes (n > 25).
This model (considering thermal equilibrium formation energy of defects in the ground

state at T = 0) provides a physical mechanism to understand, and shows some degree of
quantitative agreement with, the experimental observations. Experimentally, the experi-
mentalists [140] observed the presence of hexagonal defects with the size (circumference)
in the range of n = 6 to n = 26 [140], which clearly falls within the hexagonal-defect-
dominance space in the diagram (Fig. 7.2(c)). However, for triangular defects, while the
theoretical diagram shows their prevalence only at large size (n > 25), the experimental-
ists [140] observe them even with n = 3 (single point defect) or n = 9 (tetravacancies) at
low temperature (< 500◦C). While admittedly this theory cannot provide a full explanation
to the temperature-dependent defect formation, it gives significant insight into the energy
landscape of defect stability. Together with the experimentalists, we [140] speculate that
the triangular defects are favorable metastable states and at normal conditions (< 500◦C)
they represent a local attractor in phase space. The lowest energy state and hence globally
the most stable one for small sized defects is more likely hexagonal. We conclude that there
is an energy barrier between these two states, and indeed by heating the samples to above
700 ◦C stable hexagonal defects readily emerge experimentally. This sets the energy barrier
scale. Overall, the theoretical calculations provide important insights and understandings to
the formation of these triangular and hexagonal defects in h-BN.

7.5 Conclusion

This Chapter presents a collaborative work that shows the formation and dynamics of
hexagonal defects with both N- and B-terminated zigzag edges in h-BN at high tempera-
tures for the first time. We theoretically performed DFT calculations, which consider only
the thermal equilibrium formation enthalpy of static defects. Our calculations provide care-
ful investigation of the detailed electronic and structural properties of these defects. Based
on the extrapolated edge and corner energies, we generate a diagram to show the most
stable defect structure under different circumference and chemical potential at equilibrium.
These results reveal that hexagonal defects are more stable than the triangular defects for
small sizes (n < 10). In reality, the real experimental conditions involve many other dy-
namic processes, including chemical etching from gas environment and elastic (knock-on)
and inelastic interaction between the electron beam and the material. These factors likely
complicate the equilibrium picture and thus give rise to the experimental observation of the
temperature-dependent defect formation and dynamics. The insights provided by the the-
oretical calculations and analysis are important and helpful to further understand of defect
physics in h-BN.
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Chapter 8

Symmetry rules shaping spin-orbital
textures in topological surface states

Topological insulators and topological semimetals have exhibit novel properties and are
important research objects in condensed matter physics. In these materials, strong spin-orbit
coupling (SOC) often exists, giving rise to exotic electronic properties.

In this Chapter, we discuss a collaborative work with mainly the experimental group of
Prof. Alessandra Lanzara (University of California at Berkeley). This work is published
as Ref. [158]. The experimentalists have probed the 2D topological surface states residing
on Antimony (Sb) (111) surface using spin- and angle-resolved photoemission spectroscopy
(spin-ARPES), and discovered the complex behavior of light-matter interactions that are
governed by symmetries and SOC. We performed detailed theoretical ab initio tight-binding
calculations to reproduce and understand such phenomena. Our theory provides significant
insights in understanding the interplay between SOC and symmetries in this novel electronic
state.

This project [158] discovers that symmetry constrains the way orbital and spin compo-
nents of a state co-evolve as a function of momentum, and from this, the rules governing
how the two degrees of freedom are interwoven are determined. The experiment directly
observes this complexity in spin-resolved photoemission, and our ab initio calculations of
the topological surface states of Sb(111), where the photoelectron spin direction near Γ̄ is
found to have a strong and unusual dependence on photon polarization. This dependence
unexpectedly breaks down at large |k|, where the surface states mix with other nearby sur-
face states. However, along mirror planes, symmetry protects the distinct spin orientations
of different orbitals. The discovery in this project broadens the understanding of surface
states with strong SOC, demonstrates the conditions that allow for optical manipulation of
photoelectron spin, and will be highly instructive for future spintronics applications.
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8.1 Introduction

Materials with strong spin-orbit coupling (SOC) and spin split surface states have gar-
nered significant attention for possible use in spintronic devices, in which the spin degree
of freedom would be manipulated electrically [159–162]. In states subject to spin-orbit cou-
pling, in the atomic limit, spin and orbital angular momenta (S and L) are not good quantum
numbers; total angular momentum J is instead the conserved quantity [163]. In fact, it has
recently been observed in topological surface states that the spin and orbital textures can
be “entangled” such that, at a given momentum, there is a mix of orbitals in which each has
a distinct spin orientation [163–166]. Thus, fully understanding the wave function of these
potentially useful states means characterizing the complex spin-orbital texture.

The dependence of spin texture on wave-function atomic orbital character can give rise
to a rich array of physical phenomena. It causes photoelectron spins to point in a direction
dependent on photon polarization, allowing for optical control of spin polarization [167, 168].
In fact, the relative weight of px,y,z orbitals, and hence spin texture of Bi2Se3, varies through
the atomic layers containing the surface-state wave function [165, 169]. Knowledge of how
the spin and orbital degrees of freedom mix is key to interpreting experimental results from
spin-orbit materials [163–176], as well as possibly utilizing them technologically.

Spin- and angle-resolved photoemission spectroscopy (spin-ARPES) [177, 178] with tun-
able photon polarization is uniquely capable of studying spin-orbital texture, as demon-
strated with the surface states of Bi2Se3, where the spin polarization of photoelectrons was
observed to reverse for light polarization rotated 90◦ [165, 168, 169]. This effect was predicted
based on symmetry arguments and a model Hamiltonian [167] and was further discussed mi-
croscopically in terms of the constituent atomic orbitals making up the band [163]. With
total angular momentum as the conserved quantity, the Jz = ±1

2
basis is used to describe

the surface state near Γ̄ . Under this constraint, spin-orbit coupling gives each of the px,y,z
orbitals its own spin texture. Light will select p orbitals oriented along the direction of
photon polarization according to the selection rules for the photoemission process [164].
Previous discussion of this phenomenon therefore focused on strong spin-orbit coupling and
the symmetries at the Γ̄ point in Bi2Se3: time-reversal, mirror, and C3 rotational symmetry.
Thus far, there have been no tests of how it evolves at high wave vector k as the symmetry
changes, leaving open questions about the fundamental nature of coupling of orbital textures
to distinct spin textures.

Antimony, a topologically nontrivial semimetal, provides an intriguing test case. The
Sb(111) surface states have been investigated with ARPES and spin-ARPES, confirming the
spin polarization due to strong SOC and nonzero Berrys phase [179–184]. While the (111)
surface of Sb has the same symmetries as Bi2Se3, its surface states are distinct in their strong
k dependence. They remain separate from the bulk states out to large |k|, allowing for a
comparison of the spin-orbital texture near Γ̄ to that in areas of reduced symmetry, where
we will demonstrate that there are significant differences.
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Figure 8.1: Experimental spin-ARPES [158] maps of the Γ̄ − M̄ and Γ̄ − K̄ directions of
Sb(111). (a) and (b) Spin-resolved maps of the Γ̄− M̄ direction, taken with (a) p-polarized
and (b) s-polarized light. The two-dimensional color scale displays the total photoelectron
intensity by relative darkness and the spin polarization by the balance of red and blue. (c)
Spin polarization of the two surface bands as a function of photon polarization angle. The
bands are labeled in (a), and spin polarizations were extracted at a fixed k, as indicated by
the small regions marked with arrows. (d) and (e) Similar to (a) and (b) but with sample
azimuth rotated to cut along Γ̄− K̄. (f) Spin polarization along the left branch of the lower
band, as measured with both p- and s-polarized light. The stretch of k space plotted here
is indicated by dispersive lines in (d) and (e).

8.2 Experimental results summary

Here we summarize the key experimental spin-ARPES measurement of Sb(111) surface.
Fig. 8.1 shows the full spin-resolved energy maps for both spin-up and spin-down electrons
along Γ̄ − M̄ and Γ̄ − K̄ for both light polarizations. The spin-ARPES maps are plotted
in Fig. 8.1 with a color scale in which brightness (from light to dark) corresponds to total
photoemission intensity, while color (from red to blue) corresponds to spin polarization.

We first look at the results along the Γ̄−M̄ direction with p-polarized light in Fig. 8.1(a).
The Γ point is enclosed within an electron pocket with positive spin polarization for kx and
negative spin polarization for +kx . The two branches of the surface state meet at The Γ and
bend back up to the Fermi level. Furthermore, when the same map is made with s-polarized
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light as plotted in Fig. 8.1(b), both surface bands show the opposite spin polarization at all
momenta from Γ̄ to the measured range. Furthermore, as in Bi2Se3, the spin polarization
can be adjusted continuously, as shown in Fig. 8.1(c), by rotating the angle of linear photon
polarization.

The Γ̄ − K̄ direction as shown in Figs. 8.1(d)-(f) demonstrates a strong contrast. The
same spin dependence on photon polarization is seen near Γ̄ . However, near kx ≈ ±0.08Å−1,
this behavior ceases, and for larger |k|, s-polarized light yields the same spin polarization as
p-polarized light in the lower surface band.

Besides the rapid change in the spin texture of the lower surface band, an unusual spin
polarization appears around the top of the bulk continuum to the left of the dashed line and
arrows in Fig. 8.1(e). This is contrary to the common knowledge that in the normal bulk
limit of an inversion-symmetric, nonmagnetic crystal, each state is spin degenerate therefore
gives zero spin polarization.

Briefly speaking, for well-known topological insulator, e.g. Bi2Se3, the observed spin po-
larization of topological surface states will flip by switching between s- and p- polarized light.
This is true in Sb(111) for states around Γ̄ and along Γ̄− M̄ , but unexpected breaks down
at high |k| along Γ̄− K̄. The arising of some bulk spin polarization is also unexpected. We
therefore perform ab initio tight-binding calculations to address these unusual phenomena.

8.3 Ab initio tight-binding calculation details

To understand these experimental findings, we performed an ab initio tight-binding sim-
ulation [165]. The basis is chosen to be the Sb p orbitals, and the hopping parameters and
on-site energies for the surface and bulk regions were extracted from first-principles cal-
culations within density functional theory (DFT) using the Quantum Espresso package
[47]. Norm-conserving pseudopotentials with the local-density approximation by Perdew and
Zunger [155] were used for Sb in both scalar- and fully relativistic forms. DFT calculations
for periodic bulk and a 12-bilayer slab were performed to obtain the hopping parameters
within the atomic orbital basis using the Wannier90 code [48]. The 12-bilayer slab and
the bulk DFT calculations are performed to extract the parameters for surface and bulk,
respectively. In the tight-binding model, we separate the slab into top and bottom halves
and repeat the bulk unit cell in between to fill the two halves. The on-site energies in
the bulk region are adjusted to match the middle layers in the 12-bilayer slab. Eventually,
a 90-bilayer slab is constructed. All the physical quantities such as band structures, spin
textures, orbital projections, and photoemission predictions are calculated from this tight-
binding model following the method in Ref. [165]. In the tight-binding model, the SOC
strength can be tuned by weighting the hopping parameters between those extracted from
scalar- and fully relativistic DFT calculations.
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(c) (d)

(a) (b)

Figure 8.2: Calculated spin-orbital textures and simulated spin-ARPES plots. (a) Left:
spin texture of px orbitals in the lower surface band, with x̂ (horizontal dashed line) oriented
along Γ̄ − M̄ . These states can be photoemitted by p-polarized light. The black vectors
are in-plane expectation values 〈Sx,y〉. Right: simulated spin-ARPES measurement along
Γ̄− M̄ using p-polarized light. Spin polarization of the px component of the bands is shown
by the color from blue to red, while the band energies are indicated by gray lines. The
spin polarization of the lower band (with arrows) is associated with the spin texture in the
left panel. (b) Left: spin texture of py orbitals in the lower surface band, with x̂ oriented
along Γ̄ − M̄ . These states can be photoemitted by s-polarized light. Right: simulated
spin-ARPES measurement along Γ̄− M̄ using s-polarized light. (c) and (d) Same as (a) and
(b), but now with x̂ oriented along Γ̄− K̄ and therefore the simulated measurements along
Γ̄ − K̄. Note that in the lower band, the orbital dependence of the spin texture ceases at
large |k| for Γ̄− K̄ but remains in Γ̄− M̄ , consistent with experimental results.

8.4 Simulation of spin textures in topological surface

states

Fig. 8.2 shows the calculated p-orbital-dependent spin textures and the simulated spin-
ARPES results. The simulated spin measurements utilize the optical selection rule for the
dominant p to s transitions, namely, that photons linearly polarized along the i direction
(i = x, y, z) will allow only a pi to s transition (if spin-orbit effects in the light-matter
interaction are neglected). Although the final states reached in the photoemission process
can shape the measured spin polarization [185], the s-wave final states reached in this 6
eV experiment should accept any spin, yielding information about the initial state being
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probed. Our simulations included py orbitals, as probed by s-polarized light, and px orbitals,
as probed by the x component of p-polarized light. While pz orbitals also contributed to
the measurements with p-polarized light, their spins match those of px orbitals along the
directions measured, allowing us to focus on a comparison of only px and py .

In Fig. 8.2, it is clear that in the vicinity of Γ̄, the spin textures of the lower surface band
are the same as those predicted for the Dirac cone in Bi2Se3 [163, 165, 167], with py orbitals
having the opposite spin of px . However, when moving far enough away from Γ̄ along the
Γ̄ − K̄ direction, the spin polarization of py orbitals matches that of px . We note that the
calculations of the upper surface band reveal a similar end to the p-orbital dependence of the
spin orientation, albeit once the band is above the Fermi level in measurements. In contrast,
the spin of py orbitals along Γ̄ − M̄ remains fixed opposite to px orbitals for all k on this
path.

The simulation of Figs. 8.1(c) and (d) shows another important aspect of the experiment:
the apparent spin polarization around the top of the valence band as the surface-state dis-
persion bends down towards it. From Γ to K, as is evident from the spin polarization, around
|k| = 0.06Å1 the lower surface band begins to decouple from the upper surface band and
starts to pair with another surface-state band that is closer in energy to the bulk valence con-
tinuum. Therefore, the experimentally observed spin polarization around the valence band
top and below the topological surface bands should be attributed to this newly emerging
surface band.

8.5 Theoretical analysis of interplay between

spin-orbit coupling and symmetry rules

The results from Sb(111) indicate that the p-orbital dependence of the spin texture
breaks down as band mixing alters the basis states for the surface-state wave function. This
is highlighted by tuning the strength of SOC α in the tight-binding Hamiltonian with,

Hα = H0 + α∆HSOC, (8.1)

where ∆HSOC = H−H0, and H is the Hamiltonian with full SOC, and H0 is the Hamiltonian
without SOC but with scalar-relativistic effects. In addition to shrinking the band gap,
reducing α reduces the splitting between coupled bands, affording a clearer picture of which
states are paired, meaning that they would be degenerate at each k without SOC (α = 0).

Fig. 8.3 shows the band structure with varying values of α. Violet is used to highlight the
paired surface states. As shown in Fig. 8.3(b), along the Γ̄−K̄ direction, the lower topological
surface band clearly couples with the upper topological surface band around the zone center.
However, farther from Γ̄ , the two switch partners: the upper one runs into the conduction-
band continuum, and the other couples with a new surface-state band which emerges above
the bulk valence band. These two eventually disperse together into the bulk valence-band
continuum, as clearly shown in Fig. 8.3(a) with full spin-orbit effects considered. In contrast,
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Figure 8.3: Band structure evolution with spin-orbit coupling (SOC) strength α. (a)
Calculated 90-bilayer Sb band structures with full SOC (α = 1). The darkly shaded area is
the projection of bulk states onto the surface Brillouin zone. The violet color indicates the
surface states that would be degenerate in the absence of SOC (α = 1). (b) Detailed band
structures along two directions (M̄ − Γ̄− K̄), with different SOC strengths α. Along Γ̄− M̄ ,
the two surface bands always couple to each other and stay within the gap; along Γ̄ − K̄,
the lower surface band couples to the upper surface band near k = 0, then switches to a
new surface band closer to the valence bulk continuum at larger |k|. (c) Projected p orbital
character at various SOC strengths along the lower topological surface band indicated by
dashed lines in (b). A rapid change in the orbital character is seen along the Γ̄−K̄ direction.
(d) Similar to (c), showing the two limits of full SOC (α = 1, solid lines) and no SOC (α = 0,
dotted lines). Note that along Γ̄− K̄, all orbitals have a finite projection even in the absence
of SOC, whereas along Γ̄− M̄ , py is finite only with SOC. The missing parts of the curves in
the 0.06 < k < 0.12 range (shaded area) shown in (c) and (d) in the small-α cases represent
the fact that the band of interest disperses into the bulk continuum, as can be seen in (b).
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along Γ̄ − M̄ [Fig. 8.3(b)], the two surface states of interest are always coupled to each
other and remain within the gap, maintaining the p-orbital dependence of their spins. The
surface bands appear in pairs at any individual k point due to the degeneracy when SOC is
completely turned off. The presence of SOC will split the degenerate bands, highlighting the
fact that each of the single-surface bands connects the valence and conduction bulk continua,
a result of the topologically nontrivial nature of Sb.

In Sb, as in Bi2Se3, the electronic states around the Fermi level are dominated by px,y,z
orbitals, which can take on Sz = ±1

2
. In the topological surface states near Γ̄, L and S are

coupled in such a way that Jz = ±1
2

[163, 167]. As shown in Fig. 8.3(d), in the absence
of SOC, at Γ̄ there is only pz character; that is, the orbital projection is zero for px and
py. An eigenstate of Jz will remain such even with SOC turned on. Thus, SOC will mix in
px,y orbitals, giving them a finite projection in Figs. 8.3(c) and (d), while keeping Jz = ±1

2

dominant in the vicinity of Γ̄ . This means that in this region, the states can be described
sufficiently by a two-band model [163, 167]. The Jz = ±1

2
requirement determines the spin

texture that each p orbital must have. In other words, for in-plane orbitals,

|p±〉 =
1√
2

(∓ |px〉 − i |py〉) , with Lz = ±1, (8.2)

the surface state can be constructed from the following two basis states,

|p+, ↓〉 = |p+〉 ⊗ |↓〉 , carrying Jz =
1

2
,

|p−, ↑〉 = |p−〉 ⊗ |↑〉 , carrying Jz = −1

2
.

(8.3)

Such states will always show a p-orbital-dependent spin texture, meaning opposite spins will
be measured with s-polarized and p-polarized light.

Symmetry provides similar constraints along Γ̄ − M̄ . In the absence of SOC, mirror
symmetry excludes py orbitals along this momentum direction because they cannot mix
with px,z orbitals. This is shown in Fig. 8.3(d), where the α = 0 case has a py projection of
zero along the Γ̄−M̄ line. Turning on SOC will mix in py orbitals [making their contribution
finite along Γ̄ − M̄ in Figs. 8.3(c) and (d)] by allowing them to couple to spinors in a way
that respects mirror symmetry; that is, py will couple to the spinor opposite of that to which
px,z orbitals couple. The px,y orbitals at Γ̄ and the py orbitals along Γ̄− M̄ are present only
because of SOC and are subject to symmetry rules. Therefore, they are constrained in the
spins to which they couple.

However, at high |k| along Γ̄ − K̄, where the same symmetry constraints do not exist,
px,y orbitals contribute appreciably even in the absence of SOC (α = 0), as can be seen in
Fig. 8.3(d). Therefore, turning on SOC will change the orbital character only slightly here,
and the properties detected with any photon polarization are primarily non-SOC effects. At
high |k|, two basis states are no longer sufficient to describe the surface complexity, as is
evident from the presence of extra bands along Γ̄ − K̄ in Fig. 8.3(a). In this region with
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more states, more basis vectors are needed,

|p+, ↑〉 = |p+〉 ⊗ |↑〉 , carrying Jz =
3

2
,

|p−, ↓〉 = |p−〉 ⊗ |↓〉 , carrying Jz = −3

2
.

(8.4)

Generally, the inclusion of Jz = ±3
2

components without symmetry constraints will alter
the phase between the spin-up (|↑〉) and spin-down (|↓〉) components of the real spinor wave
functions that couple to p orbitals and may lead the spins not to reverse with different
photon polarizations (e.g., nonzero linear combinations of |p+, ↑〉 and |p+, ↓〉 will never show
this effect). This less constrained spin-orbital coupling along Γ̄− K̄ is in contrast to Γ̄ and
Γ̄ − M̄ , where symmetry protects the way that Jz = ±1

2
and Jz = ±3

2
mix, preserving

the observation of opposite spins with different photon polarizations. Last, we note that
hexagonal warping effects [186] could not be responsible for the sudden change of the spin
texture at large |k| because they do not alter the orbital texture and instead just diminish
the magnitude of in-plane spin polarizations.

8.6 Conclusion

In this Chapter, we present a collaborative work with experimental groups on the spin
textures of the topological surface states of Sb(111). The theoretical ab initio tight-binding
calculations and analysis of the spin-textures show nice agreement with, and provide deep
insights and understandings to various experimental ARPES observations. Our results show
that the coupling between the spin textures and orbital textures can vary across the Bril-
louin zone. Knowledge of the full complexity of a surface state’s wave function, including
the symmetry rules governing the coupling of spin and orbital degrees of freedom, is a fun-
damental prerequisite for its application to spintronics or other technologies. One would
expect to see orbitals with different spin orientations in the parts of a spin-orbit material’s
surface Brillouin zone where various symmetries protect it. Away from these momenta, sur-
face states are allowed to mix with other states, ending the requirement that each orbital
character couple to a distinct spin texture. This picture provides an understanding of the
full complexity of a surface states spin degree of freedom.



105

Bibliography

1R. O. Jones and O. Gunnarsson, “The density functional formalism, its applications and
prospects”, Reviews of Modern Physics 61, 689 (1989).

2P. Hohenberg and W. Kohn, “Inhomogeneous electron gas”, Physical Review 136, B864
(1964).

3W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation
effects”, Physical Review 140, A1133 (1965).

4J. P. Perdew, “Density-functional approximation for the correlation energy of the inho-
mogeneous electron gas”, Physical Review B 33, 8822 (1986).

5J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made
simple”, Physical Review Letters 77, 3865 (1996).
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zero-point renormalization of the band structure”, Physical Review Letters 112, 215501
(2014).

39C. Faber, P. Boulanger, C. Attaccalite, E. Cannuccia, I. Duchemin, T. Deutsch, and X.
Blase, “Exploring approximations to the GW self-energy ionic gradients”, Physical Review
B 91, 155109 (2015).

40B. Monserrat, “Correlation effects on electron-phonon coupling in semiconductors: many-
body theory along thermal lines”, Physical Review B 93, 100301 (2016).

41G. Strinati, “Application of the Green’s functions method to the study of the optical
properties of semiconductors”, La Rivista del Nuovo Cimento 11, 1–86 (1988).

42M. Rohlfing and S. G. Louie, “Electron-hole excitations in semiconductors and insulators”,
Physical Review Letters 81, 2312 (1998).

43M. Rohlfing and S. G. Louie, “Electron-hole excitations and optical spectra from first
principles”, Physical Review B 62, 4927 (2000).

44X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval,
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