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Constrained Control of a Process Network Using Multi-Agent Reinforcement Learning

Abstract

This thesis examines the application of model-free multi-agent reinforcement learning for

autonomous model-free control and constrained optimization of process networks com-

prised of multiple interconnected processes. Initially, different types of multi-agent re-

inforcement learning algorithms are outlined, and the challenges faced in their imple-

mentation for process control are identified. Reinforcement learning is then combined

with optimal control, where the reward function is designed based on quadratic penalty

functions to improve computational time and achieve improved performance compared to

sparse rewards proposed in previous research studies. Several multi-agent reinforcement

learning strategies, including centralized, decentralized, and mixed-type (centralized ac-

tion and decentralized execution) are considered and compared. An assessment of the

benefits and drawbacks of each control strategy is presented. Finally, an evaluation of the

robustness of the control system against parametric uncertainties and sensor noise which

are of practical significance is given. Throughout the thesis, a model system comprising of

two interconnected non-isothermal chemical reactors with a recycle stream and multiple

reactions is used to illustrate the design and implementation of the reinforcement learning

agents. The control objective is to regulate the reactors’ temperatures and concentrations

at desired set-points. The proposed framework can be applied to more general process

networks.
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Chapter 1

Introduction

1.1 Background

A multi-agent system can be defined as a group of autonomous,interacting entities shar-

ing a common environment, which they perceive with sensors and upon which they act

with actuators [38, 35].Multi-agent systems are finding applications in a wide variety of

domains including robotic teams, distributed control, resource management, collaborative

decision support systems, and data mining, to name a few [21]. The complexity of many

tasks arising in these domains makes them difficult to solve with pre-programmed agent

behaviors. The agents must, instead, discover a solution on their own, using learning.

A significant part of the research on multi-agent learning concerns Reinforcement Learn-

ing (RL) techniques. Well-understood algorithms with good convergence and consistency

properties are available for solving the single-agent RL task, both when the agent knows

the dynamics of the environment and the reward function (the task model), and when it

does not.

In the context of chemical process control, one of the early works involving reinforce-

ment learning focused on temperature control of a nonlinear chemical reactor using only
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information about the states without any model, and was conducted by Hoskins and

Himmelblau [12]. The algorithm consists of two Artificial Neural Networks (ANNs). One

ANN (called the evaluation ANN) evaluates the actions of the other ANN (called the

action ANN). The action ANN gives the controlled input to the system. The weights

of both ANNs are updated by a Reinforcement Learning algorithm based on the reward

function.

While this work did not receive significant attention, due in part to the sub-optimal

performance of the model-free controller compared to the PID controller, and also due

to the computationally-intensive requirements of the algorithm (which took several hours

and multiple computers to achieve the control task using data-driven and black-box model

of the ANN), it paved the way for subsequent important developments in the area. For

example, Syafiie, Fernando and Martinez [34] developed a Model-Free Learning Control

(MFLC) strategy for pH process control based on reinforcement learning [32] and hierar-

chical reinforcement learning [33]. A single RL agent was designed to control the pH of

a chemical process. Instead of using neural networks for policy and value functions, their

work used an algorithm based on Q-Learning and a multi-step action framework [26].

Starting in 2012 with the advancements in Deep Learning, deep neural networks(DNNs)

began to be used as feature extractors. This allowed the application of reinforcement

learning in problems with high-dimensional state space (i.e., deep reinforcement learning

(DRL)) such as, for example, cyber-physical systems and complex large-scale environ-

ments.

For these reasons, the number of publications on reinforcement learning applied to

process control began to grow again. Mart́ınez and Rodŕıguez [20] developed a controller
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based on a deep reinforcement learning methodology in order to keep the level and compo-

sition of an exothermic continuous stirred-tank reactor under control. They implemented

a single Twin Delayed Deep Deterministic Policy Gradient (DDPG:TD3) agent to control

both the level and concentration of the reactor. The observations to the agent were the

error, the integral error, and its derivative, which is quite similar to the concept of the

PID controller. Their work, however, did not assess the robustness of the controller to

external disturbances, sensor noise and controller performance at multiple set-points. Al-

hazm and Sarathy [1] developed a single DDPG RL agent to control the temperature of

a complex reaction network in a continuous stirred-tank reactor. The process considered

was a fourth order nonlinear dynamical system, with unstable zero dynamics, and could

not be effectively controlled using linear controllers, resembling many real world control

problems. The observation space for the RL agent consisted of the proportional error (ϵ),

the integral error (
∫
ϵdt), the differential error ( d

dt
ϵ), and the reactor temperature Tr. The

reward function was chosen as rt = 10(|ϵ| < 0.005)− 1(|ϵt| ≥ |ϵt−1|), Where ϵ is the error

between the process variable and the set-point. Ten points were rewarded if the error was

less than 5% and one point was subtracted if the error increased. The performance of the

RL controller was tested for set-point variations, disturbance rejection and sensor noise.

While the results of this study are promising, the controller was designed to control only

a single variable (reactor temperature). The methodology to design an RL control system

for multiple process outputs was not studied in this work.

Other efforts involving the use of single-agent RL in chemical process control include

the works in [28, 14, 27, 40]. In all these works, a single RL agent was used to control

the process variables in a single (stand-alone) process unit. Work on simultaneous use
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of multiple DRL agents towards optimal control includes the studies in [25, 6]. The

work in [25] used multi-agent reinforcement learning to develop operational strategies for

semi-batch reactors. The RL-based operation strategy uses an RL agent both for the

feeding and mixing phase. The RL controller in the feeding phase is a simple single-loop

controller, while it acts as a primary controller in a cascade-loop during the mixing phase.

During the feeding phase, the temperature was controlled by varying the feeding rate, and

in the mixing phase, the temperature was controlled by manipulating the coolant rate.

The operation phases from the control point are independent, so the two RL agents are

decoupled and independent.

The work in [6] focused on using multi-agent reinforcement learning for optimal control

of wastewater treatment plants. The study used a novel technique, multi-agent deep rein-

forcement learning (MADRL), to simultaneously optimize dissolved oxygen and chemical

dosage in a wastewater treatment plant. The reward function was specially designed from

a life cycle perspective to achieve sustainable optimization. In this work, two agents were

deployed in terms of a multi-agent paradigm, i.e., MADDPG. Compared to single-agent

reinforcement learning, agents of MARL are merely able to receive local information,

which is consistent with practical control scenarios. The main focus in this work was

to control multiple variables in a single process. Their work, however, did not consider

multiple processing units or coupling between the controlled variables.

Other works involving the application of multi-agent RL control strategies to a single

continuous-stirred tank reactor (CSTR) include the study in [39].In this work, a multi-

agent reinforcement learning (MARL) system was designed to control a multiple-input

multiple-output (MIMO) process. The MARL system resembles a multi-loop control

4



system that is comprised of two control loops. In each loop, two RL agents are trained

in a feed forward-feedback control configuration to control the process. Two controlled

variables were identified in the CSTR model. These were the reactor temperature and

reactor volume. For each control loop, a pair of TD3 agents were created and trained

to control the controlled variable in a feed forward-feedback configuration. The TD3

agents interact with the CSTR model by making observations of the controlled variables

and disturbances to maintain steady-state operation. Reward functions were applied to

reward stable control and penalize deviations in the controlled variables. The objective

of the MARL control system was to regulate the reactor temperature and volume so as to

maintain a specified product concentration. A total of four TD3 agents were created; one

feedback controller and one feed-forward controller each of the two control loops. Each

feedback controller resembles a PID controller, and the feed-forward controller is a simple

Proportional (P) controller. The reward function used was of the form

rV (t) =


−|Verr(t)|, if|Verr(t)| ≥ 0.5

0, if|Verr(t)| < 0.5

The reward function resembles the criteria of the integral of the absolute value of the error

(IAE) used for controller tuning. The main objective of the TD3 agent is to minimize

the long-term cumulative IAE. Both agents controlling the temperature share the same

reward function:

rT =


−|Terr|, if|Terr| ≥ 0.1

0, if|Terr| < 0.1

The main limitation of this work is the fact that each RL agent is pre-trained in-

dividually and once all four agents are trained they are then loaded into the common
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environment and then trained simultaneously. This might not be feasible in practical

scenarios for such multiple training. The work also did not take into account the dynamic

nature of the environment due to use of multiple agents. The environment is constantly

changing due to the actions of multiple agents and it is imperative to develop RL agents

such that they can communicate and work with each other to reach a common goal.

An examination of the available literature shows that, to date and within the chemical

process control research area, no work has been conducted on applying deep reinforce-

ment learning to the control of large-scale process networks comprised of interconnected

processing units. The current work aims in part to bridge this gap. It should be noted

that while significant work has been reported on the application of traditional model-

based control methods to interconnected systems, these method are mostly focused on

decentralized control due to the practical constraints on scaling a centralized controller

to a vast number of interconnected units. A number of different decentralized feedback

control methods can be found in [23, 29, 3, 19].

The goal of our work is to study the MIMO control of interconnected processes using

multi-agent deep reinforcement learning. Within this context, the research is mainly con-

cerned with the application of different multi-agent reinforcement learning frameworks,

i.e.,centralized training for centralized control (CTCC), decentralized training for decen-

tralized control (DTDC) and centralized training and decentralized Control (CTDC) to

develop a model-free control strategy to control a process network comprised of intercon-

nected units. An essential aspect for the reinforcement learning agent to reach its goal is

the design of appropriate reward functions. In this research, the control goals are defined

and this poses an additional challenge for the RL agent as it needs to achieve its goal
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under constraints. To address this issue, the reward function is designed using exterior

penalty functions. Specifically, quadratic penalty functions are used, which transforms

the constrained problem into a series of unconstrained problems, and a large negative

penalty is applied whenever the agent actions lead to outcomes outside the control goals.

An additional reason for using penalty functions is their effectiveness in nonlinear pro-

gramming as the processes considered in this work are highly nonlinear. Throughout this

work, we outline the procedure for designing the actor and critic functions to approxi-

mate the policy and value functions in the reinforcement learning agents. We also outline

the design of observation space for the reinforcement learning agents based on control

theory. The results are applied to a process network comprised of two interconnected

continuous-stirred tank reactors.

1.2 Objectives

Motivated by the considerations mentioned above, the broad objectives of this thesis are

to:

• Develop a model-free multi-agent reinforcement learning algorithm to control the

temperature and concentration of a process network made up of a cascade of two

interconnected non-isothermal continuous-stirred tank reactors with recycle.

• Design a reward function for the reinforcement learning agent to achieve the control

goals and also satisfy process constraints.

• Implement decentralized MARL, centralized MARL and centralized action and de-

centralized execution methods, and compare their effectiveness using a simulated

process network example.
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• Evaluate the robustness of the model-free controllers under parameter uncertainty

and sensor noise.

• Highlight the benefits, challenges and possible future directions of research in this

area.
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Chapter 2

Review of Reinforcement Learning

2.1 Fundamentals of Reinforcement Learning

Fig 2.1 [32] illustrates how a single RL agent interacts with its environment. At time step

t, the agent takes an action At. This results in a transition in the state of the environment

from St to St+1 and the reward function generates an immediate reward Rt+1. The agent

receives observation of the state of the environment, St+1, and the immediate reward,

Rt+1, in the next time step. Subsequently, the agent uses a policy function π to map

current state s to action a, such that a = π(s). The agent takes the next action At+1 and

the process is repeated [32].

The value function Vπ(s) is the expected reward of an agent starting from state s, and

subsequently following policy π.

Vπ (s) = Eπ

{
∞∑
k=0

γkrt+k+1 | St = s

}
(1)

where γ ∈ [0, 1] refers to the discount factor that determines the weight of future rewards,

Eπ denotes the expectation of the value of following the policy π. Correspondingly, the

action-value function Qπ(s, a) is the expected reward of starting from state s, taking
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Figure 2.1: Reinforcement Learning framework.

action a and following policy π [32].

Qπ (s, a) = Eπ

{
∞∑
k=0

γkrt+k+1 | St = s, At = a

}
(2)

The objective of the RL agent is to find an optimal policy that maximises the long-term

reward. The optimal policy π∗ is defined as the policy that maximizes future rewards.

π∗ can be derived from the optimal value function V ∗(s) [32]. This is also known as the

optimal Bellman equation:

V ∗(s) = max
a(s)

Q∗(s, a)

= max
a(s)

∑
s′,r

P a
ssr [r(s, a) + γ∗(s′)] (3)

where Q∗(s, a) is the optimal action-value function, and the term P a
ssr is the transitional

probability of the environment, which is the probability that the current environment at

state s and action a will transition to the next state s′ and receive the reward r. The

optimal policy π∗(s) can be derived from V ∗(s) once Eq. 3 is solved.
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π∗ = argmax
a

Q∗(s, a) (4)

In practice, the optimal Bellman equation is very difficult to solve. Hence, Neural

Networks (NNs) are utilized as function approximators that are trained to estimate the

true value function V ∗ and find the optimal policy function π∗.

2.2 Deep Reinforcement Learning

NNs are a network of neurons arranged in multiple layers and are commonly utilized as

function approximators in RL. Deep Neural Networks (DNNs) [24] is a class of NNs that

have multiple hidden layers in between the input and output layers. Deep Reinforcement

Learning (DRL) [36] is a field in RL that utilizes powerful DNN as function approximators

in RL. In the section below, we briefly review the Twin-Delayed Deep Deterministic Policy

Gradients (TD3) algorithm which is used in this research.

2.3 Twin-Delayed Deep Deterministic Policy Gradients(TD3)

Algorithm

For continuous action spaces, a popular DRL algorithm is the Deep Deterministic Pol-

icy Gradient (DDPG) algorithm. DDPG is a model-free, off-policy actor-critic algorithm

that can learn deterministic policies in continuous action spaces [16]. An extension of the

DDPG, the Twin-Delayed Deep Deterministic Policy Gradient (TD3) algorithm is devel-

oped to further address problems with value-function overestimation in DDPG [10]. In

Q-learning, the value function is updated based on the Bellman equation. For determin-

istic policies, the action-value function Qµ(s, a) is parameterized by µ can be expressed
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using the Bellman equation [16].

Qµ(st, at) = Est+1 [r(st, at) + γQµ(st+1, µ(st+1))] (5)

The function approximators in the actor and critic networks parameterized by θQ can be

optimized by minimizing the Loss function L(θQ) [37]:

L(θQ) = E[(Q(st, at | θQ)− yt)
2] (6)

where yt is known as the target value:

yt = r(st, at) + γQ(st+1, µ(st+1) | θQ) (7)

The DDPG algorithm introduces the concepts of experience buffer and target networks

to achieve stability in learning [16]. The TD3 algorithm is an extension of DDPG. TD3

agents utilizes two target critic networks, denoted by Qθi′ , where i ∈ {1,2}, and one actor

network πϕ, parameterized by ϕ′. The target value yt at a particular time step t is updated

by the minimum estimation of the target Q-values to resolve the issue of value function

overestimation [10]:

yt = r(st, at) + γ min
i=1,2

QθIi
(st+1, πϕ, (st+1)) (8)

At the start of each iteration, the agent takes action at based on current policy π from

the actor with exploration noise N .

at = πϕ(st) +N (9)
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The agent will execute action αt, observe the transition in state from st to st+1, and

receive reward rt. This data is stored in the replay buffer R as a tuple (st, at, rt, st+1).

Thereafter, a mini batch of N transition is sampled normally from R. The target value

yt will be computed using Eq. 8. The two critic networks are updated by minimizing the

loss function:

L(θi) =
1

N

∑
j

[yj −Qθi(sj, αj)]
2 (10)

And the actor network is updated using the policy gradient from the sample of transitions

[30]:

∇ϕJ(ϕ) =
1

N

∑
j

∇aQθ1(sj, aj)∇ϕπϕ(sj) (11)

Finally, the parameters of target networks are updated to slowly track the parameters from

the learned actor parameter β and critic parameter θ using a slow tracking parameter τ :

θ′i ← τθi + (1− τ)θ′i (12)

ϕ′ ← τϕ+ (1− τ)ϕ′ (13)

2.4 Policy Gradient for Multi-Agent Systems

In this section, we review extensions of single-agent policy gradient methods to cooper-

ative multi-agent settings. The research work is built upon the concepts introduced in

[5, 11]. We shall distinguish between three paradigms: Centralized Training for Central-

ized Control (CTCC) vs. Distributed Training for Decentralized Control (DTDC) vs.

Centralized Training for Decentralized Control (CTDC), illustrated in Fig. 2.2 [5].
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Figure 2.2: For each paradigms—(left) CTCC; (center) CTDC; and (right) DTDC—we describe actor-
critic algorithmic schemes. The blue, green and red arrows represent, respectively, the forward control
flow; the aggregation of information for the next time step; and the feedback signals back-propagated to
update all parameters.

2.5 Centralized Training for Centralized Control (CTCC)

Some cooperative multi-agent applications have cost-free instantaneous communications.

Such applications can be modeled as Partially Observable Markov Decision Processes

(POMDPs) [15], making it possible to use single-agent policy gradient methods. In such

a CTCC paradigm (see Fig. 2.2 (left)), centralized single-agent policy gradient methods

use a single critic and a single actor. The major limitation of this paradigm is also its

strength: the requirement for instantaneous, free and noiseless communications among all

agents till the end of the process both at the training and execution phases.

2.6 Distributed Training for Decentralized Control (DTDC)

Perhaps surprisingly, the earliest multi-agent policy gradient method aims at learning

in a distributed manner policies that are to be executed in a decentralized way, e.g.,

distributed Reinforce [22]. In this DTDC paradigm (see Fig. 2.2 (right)), agents simul-

taneously, but independently, learn via Reinforce their individual policies using multiple

critics and multiple actors. The independence of parameter vectors θ10:T , . . . , θ
n
0:T leads to

the following distributed update rule:
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∆θit = αED
[
R(ω0:T )

∂ log ait(u
i
t|oit)

∂θit

]
, ∀t = 0, 1, . . . , T,∀i ∈ In (14)

Interestingly, the sum of individual policy gradient estimates is an unbiased estimate of

the joint policy gradient. However, how to exploit insights from actor-critic methods

to combat high-variance in the joint policy gradient estimate remains an open question.

Distributed Reinforce restricts to on-policy setting; off-policy methods instead can sig-

nificantly improve the exploration, i.e., learns target joint policy π while following and

obtaining trajectories from behavioral joint policy π [7].

2.7 Centralized Training for Decentralized Control (CTDC)

The CTDC paradigm has been successfully applied in planning [2, 4, 8] and learning

[13, 17, 18]. In such a paradigm, a centralized coordinator agent learns on behalf of all

agents at the training phase and then assigns policies to corresponding agents before the

execution phase takes place. Actor-critic algorithms in this paradigm (refer to Fig. 2.2

(center)) maintain a centralized critic but learn multiple actors, one for each agent. The

critic framework used in this work is individual critics with shared parameters [11].
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Chapter 3

Application of Multi-Agent RL to a

Process Network

In this chapter, a multi-agent RL control system is applied to the control of two intercon-

nected chemical reactors. Each reactor has two controlled variables, reactor temperature

and reactant concentration, which are dependent on the reactor temperature and reactant

concentration of the other reactor. The control objective is to maintain each the concen-

tration and temperature of each reactor at a desired set-point using the heat input rate

and the inlet reactant concentration as manipulated inputs for the first reactor and using

the heat input rate and the inlet reactant concentration as manipulated inputs for the

second reactor. A detailed description of the design of RL control agents using the CTCC,

DTDC and CTDC frameworks, as well as the reward function design, is provided. The

objective of this study is to demonstrate how model-free MARL systems can be trained

and implemented to control complex interconnected systems.
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3.1 Simulation setup

Consider a plant composed of two well-mixed,non-isothermal continuous stirred-tank re-

actors (CSTRs) with interconnections [31], where three parallel irreversible elementary

exothermic reactions of the form A
k1−→ B, A

k2−→ U and A
k3−→ R take place, where A is

the reactant species, B is the desired product, and U and R are undesired byproducts.

Feed to CSTR 1 consists of two streams, one containing fresh A at flow rate F0, molar

concentration CA0, and temperature T0; and another containing recycled A from the sec-

ond reactor at flow rate Fr, molar concentration CA2, and temperature T2. The feed to

CSTR 2 consists of the output of CSTR 1, and an additional fresh stream feeding pure

A at flow rate F3, molar concentration CA03, and temperature T03. The output of CSTR

2 is passed through a separator that removes the products and recycles unreacted A to

CSTR 1. Due to the non-isothermal nature of the reactions, a jacket is used to remove

or provide heat to both reactors. Under standard modeling assumptions, a plant model

of the following form can be derived:

Ṫ1 =
F0

V1

(T0 − T1) +
Fr

V1

(T2 − T1) +
3∑

i=1

Gi(T1)CA1 +
Q1

ρ ∗ Cp ∗ V1

˙CA1 =
F0

V1

(CA0 − CA1) +
Fr

V1

(CA2 − CA1)−
3∑

i=1

Ri(T1)CA1

Ṫ2 =
F1

V2

(T1 − T2) +
F3

V2

(T03− T2) +
3∑

i=1

Gi(T2)CA2 +
Q2

ρ ∗ Cp ∗ V2

˙CA2 =
F1

V2

(CA1 − CA2) +
F3

V2

(CA03 − CA2)−
3∑

i=1

Ri(T2)CA2

(15)

where Ri(Tj) = kio exp (−Ei/RTj), Gi(Tj) = ((−∆Hi)/ρCp)Ri(Tj) for j = 1, 2. Tj, CAj,

Qj, and Vj denote the temperature of the reactor, the concentration of A, the rate of heat

input to the reactor, and the reactor volume, respectively, with subscript i denoting the
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i-th CSTR. ∆Hi, ki, Ei, for i = 1, 2, 3, denote the enthalpies, pre-exponential constants,

and activation energies of the three reactions, respectively; cp and ρ denote the heat

capacity and density of fluid in the reactor, respectively. For typical values of the process

parameters as given in Table 3.1, the plant (with Q1 = 0, Q2 = 0, CA0 = Cs
A0, CA03 =

Cs
A03 and a recycle ratio of r = 0.5) has three steady states: two locally asymptotically

stable, and one unstable. The non-linear system is linearized at one of the steady state

operating points, and the MARL algorithm is used to control the plant outputs. Also,

while designing the MARL algorithms it is assumed that there is no communication delay

in receiving the state information from different units, i.e., the MARL agent receives the

state signals continuously without any delay. Below are the detailed guidelines to design

and implement the MARL control system for the interconnected CSTR network in series.

The CSTR model is created in the MATLAB Simulink environment, and the steady state

process variables are validated.

Table 3.1: Process parameter values for the chemical reactors of Eq.15.
F0 = 4.998m3/hr
F1 = 39.996m3/hr
F3 = 30.0m3/hr
Fr = 34.998m3/hr
V1 = 1.0m3

V2 = 3.0m3

R = 8.314kJ/kmolK
T0 = 300.0K
T03 = 300.0K
Cs

A0 = 4.0kmol/m3

Cs
A03 = 2.0kmol/m3

∆H1 = −5.0 ∗ 104KJ/kmol
∆H2 = −5.2 ∗ 104KJ/Kmol
∆H3 = −5.4 ∗ 104KJ/kmol
k10 = 3.0 ∗ 106h−1
k20 = 3.0 ∗ 105h−1
k30 = 3.0 ∗ 105h−1
E1 = 5.0 ∗ 104KJ/kmol
E2 = 7.53 ∗ 104KJ/kmol
E3 = 7.53 ∗ 104KJ/kmol
ρ = 1000.0kg/m3

Cp = 0.231KJ/kgK
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3.2 Centralized Training for Centralized Control (CTCC)

The reinforcement learning algorithm that is used for CTCC is called the Twin-Delayed

Deep Deterministic Policy Gradient (TD3) algorithm. It is a model-free, online, off-policy

reinforcement learning method. A TD3 agent is an actor-critic reinforcement learning

agent that searches for an optimal policy that maximizes the expected cumulative long-

term reward.

3.2.1 TD3 Agent Design Procedure

To estimate the policy and value function, the TD3 Agent has actor and critic function

approximators which are designed using Deep Neural Networks(DNNs).

3.2.2 Design Procedure for Actor and Critic Functions

The Twin-Delayed Deep Deterministic Policy Gradient (TD3) agent uses two parame-

terized Q-value function approximators to estimate the value (that is the expected cu-

mulative long-term reward) of the policy. To model the parameterized Q-value function

within both critics, a neural network with two inputs (the observation and action) and one

output (the value of the policy when taking a given action from the state corresponding

to a given observation) is designed. Each network path is defined as an array of layer

objects. In this work, three layers are defined. A state input layer, an action input layer,

and a common path. The three layers are then combined to create the Critic Net in

each Critic Function. Below is the image of the Critic Net which has relu activation

function and fully connected layers.

In Fig. 3.1, the left hand side (fc1) has 256 neurons and the layers take the observations

19



Figure 3.1: Critic Network Architecture.

of the RL agent as input. For CTCC, we have a total of 48 observations. The right hand

side (fc2) has 256 neurons and takes four action variables in CTCC as input. These two

layers are merged with another layer which has two relu activation functions and two

fully connected layers. Table 3.2 provides a detailed description of the number of neurons

present in each layer.

Table 3.2: Critic Net Design Information.
Critic Net Layers Number of Neurons

State input fc-1 256
Action input fc-2 256
Common path fc 256
QValueOut layer 1

Once the Critic Net is built, it is randomly initialized using a random seed generator
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in MATLAB. Critic Net is then used to build Critic function. It is built in MATLAB

using the following Command:

critic1 = rlQV alueFunction(initialize(criticDLNet), Observations, Actions)

where rlQvalueFunction is an object in MATLAB which implements a Q-value function

approximator. AQ-value function (also known as action-value function) is a mapping from

an environment observation-action pair to the value of a policy. Specifically, its output

is a scalar that represents the expected discounted cumulative long-term reward when an

agent starts from the state corresponding to the given observation, executes the given

action, and keeps on taking actions according to the given policy afterwards. A Q-value

function critic, therefore, needs both the environment state (observations) and actions as

inputs.

Critic function 2 also shares the same neural network architecture as Critic func-

tion 1. Although Critic function 2 can have different design, we choose to keep it the

same for simplicity. But it is important to explicitly initialize the network each time (to

make sure weights are initialized differently) before passing it to rlQValueFunction.

Actor Function:TD3 agents use a parameterized deterministic policy over continu-

ous action spaces, which is learned by a continuous deterministic actor. This actor takes

the current observation as input and returns as output an action that is a determinis-

tic function of the observation. To create a parameterized policy within the actor, a

neural network with one input layer (which receives the content of the environment ob-

servation channel) and one output layer (which returns the action to the environment

action channel) with intermediate layers is designed in MATLAB. Below is the figure
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of the architecture of the Actor Network. Actor Function is created using the Ob-

Figure 3.2: Actor Network Architecture.

ject rlContinuousDeterministicActor in MATLAB passing the actor network and the

environment specifications as input arguments.

ActorFunction = rlContinuousDeterministicActor(ActorNetwork,Observations, Actions)

The rlContinuousDeterministicActor object implements a function approximator to

be used as a deterministic actor within a reinforcement learning agent with a continuous

action space. A continuous deterministic actor takes an environment observation as input

and returns as output an action that is a parameterized deterministic function of the

observation, thereby implementing a parameterized deterministic policy. Below is a table
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with the number of neurons in each layer. The activation function used for each layer is

relu.

Table 3.3: Actor Net Layers Design Information.
Actor Net Layers Number of Neurons

fc-1 256
fc-2 256

Action Layer No of Action Outputs(4 in case of CTCC)

3.2.3 Initializing and Optimizing Parameters for TD3 Agent

Table 3.4: TD3 Agent Hyper-parameters.
TD3 Agent Hyper-parameters Values

Sample Time 0.1
Discount Factor 0.999

Experience BufferLength 10000
Mini BatchSize 64

Number of Steps To Look Ahead 1
Target SmoothFactor 0.005

Target Update Frequency 2

Table 3.5: Critic Hyper-parameters.
Critic Hyper-parameters Values

Learn rate 10−4

Gradient threshold 1
Optimizer adam

Denominator offset 10−8

Gradient decay 0.9
Squared gradient decay 0.999

Gradient threshold method i2norm
L2 regularization factor 0.0001

Both critics share the same learn rate and gradient threshold mentioned in Table

3.5. The learn rate is chosen as 10−4 to improve accuracy. Smaller values to improve

the accuracy can be chosen, but it takes too much computational resources. There is a

trade off between accuracy and computational time. The RL agent is trained on NVIDIA

MX150 GPU for 2 hours.

In CTCC, a single RL agent is used to control both reactors. The RL agent has the
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Table 3.6: Actor Hyper-parameters.
Actor Parameters Values

Learn Rate 10−4

Gradient Threshold 1
Optimizer adam

Denominator offset 10−8

Gradient decay 0.9
Squared gradient decay 0.999

Gradient threshold method i2norm
L2 Regularization Factor 0.001

Exploration Model Variance 0.05
Exploration Model Variance Decay Rate 1 ∗ 10−5

Exploration Model Variance Min 0.001
Target Policy Smooth Model Variance 0.1

Target Policy Smooth Model Variance Decay Rate 10−4

following observations and reward structure.

3.2.4 Observation Space

The observations to the RL Agent form the simulation Environment consists of:

Table 3.7: CTCC TD3 RL Agent Observation States.
Quantity Purpose

e Proportional error Accounts for present error value∫
e dt Integral error Accounts for cumulative error
T1 Reactor 1 Temperature To perceive the state
CA1 Reactor 1 Concentration To perceive the state
T2 Reactor 2 Temperature To perceive the state
CA2 Reactor 2 Concentration To perceive the state

T1SP Reactor 1 Temperature Set point (SP) To perceive the current SP
CA1 SP Reactor 1 Concentration Set point (SP) To perceive the current SP
T2 SP Reactor 2 Temperature Set point (SP) To perceive the current SP
CA2 SP Reactor 2 Concentration Set point(SP) To perceive the current SP

For both reactors, the past five concentration and temperature measurements and set-

points are provided so that the agent has knowledge of the evolution of the corresponding

Variables. The total number of states in the observation space in the CTCC framework

are 48. As the number of units increases, the number of observation states increase expo-

nentially leading to the curse of dimensionality and increasing computational resources.

This factor is a major limitation in applying a centralized control strategy for a large
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number of units.

3.2.5 Reward Functions

The main objective of the reward function is to guide the reinforcement learning algo-

rithm to achieve the desired output. Safety is a critical factor in the operation of chemical

reactors and other unit operations in the Chemical Industry. Sparse rewards like those

mentioned in [39] are not feasible from a practical viewpoint. As unconstrained explo-

ration by RL algorithms might lead to huge computational resources, equipment loss and

loss of life. Taking this into account, we define the reward function as a constrained

optimization problem and impose a high negative reward on the agent when its actions

go beyond the design criteria in Table 3.8. In this work, a quadratic loss function, which

falls under Exterior Penalty methods, is defined based on initial value, desired final value,

rise time, settling time, percent overshoot, percent rise, percent settling and percent un-

dershoot. These are the desired parameters chosen for the temperature of CSTR 1. For

all other controlled variables, only the final value (set-point) is changed. All the other

parameter values are fixed in this research work. These can be modified as desired for

each controlled variable.

Table 3.8: Control Objectives for the Temperature of CSTR 1.
step time (seconds) = 0
Intial value = 0 Final value = 1.2
Rise time(seconds) = 2 % Rise = 80
Settling time(seconds): = 5 % settling = 2
% Overshoot = 10 %Undershoot = 5
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3.2.6 Quadratic Penalty Function

The key significance of using penalty functions in reward functions is that they “absorb”

the equality and inequality constraints into a penalizing term that augments the original

objective function, along with weighting parameters, to enforce increasing satisfaction of

the constraints involved. This ensures that the RL agent receives huge negative penalty

as long as the desired outcome is outside the parameters described in the above table

and their effectiveness in solving nonlinear programming problems. The algorithm is

developed based on the work in [9] which contains all the theorems and proofs for penalty

and barrier functions. The reward function is defined as:

R(x, t) = −Weight ∗ Penalty

where x is the desired value of the Controlled variable and t is the time where the

controller achieves the desired set-point. Weight is a tunable parameter, which is chosen

to be 10 for the purpose of our study. The same framework is used to design the reward

functions for the other three Controlled Variables. For CTCC, the reward is the sum of

the individual reward functions, i.e.,

R =
4∑

i=1

Ri(xi, t)

The source code for the algorithm below is adapted from the MATLAB Quadratic

Penalty documentation and is modified according to the current research problem.
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Algorithm 1 Quadratic Penalty Based Reward Function Algorithm.

IntialV alue← UserDefined
F inalV alue← UserDefined
StepT ime← 0
StepRange = FinalV alue− InitialV alue
MinRise = InitialV alue+ (StepRange ∗%Rise)
MaxSettling = InitialV alue+ StepRange ∗ (IntialV alue+ FinalV alue/100)
MinSettling = InitialV alue+ StepRange ∗ (IntialV alue− FinalV alue/100)
MaxOvershoot = InitialV alue+ StepRange ∗ (1 + %Overshoot)
MinUndershoot = InitialV alue− StepRange ∗%Undershoot
if t ≥ steptime then

if Intialvalue ≤ Finalvalue then
UpperBoundT imes← [0, 5; 5,max(5 + 1, t+ 1)];
UpperBoundAmplitudes← [MaxOvershoot,MaxOvershoot;MaxSettling,MaxSettling]
LowerBoundT imes = [0, 2; 2, 5; 5,max(5 + 1, t+ 1)]

LowerBoundAmplitudes = [MinUndershoot,MinUndershoot;MinRise,Block1M inRise;MinSettling,MinSettling]

else
UpperBoundT imes← [0, 2; 2, 5; 5,max(5 + 1, t+ 1)];

UpperBoundAmplitudes← [MinUndershoot,MinUndershoot;MinRise,MinRise;MinSettling,MinSettling]

LowerBoundT imes← [0, 5; 5,max(5 + 1, t+ 1)];
LowerBoundAmplitudes← [MaxOvershoot,MaxOvershoot;MaxSettling,MaxSettling]

end ifxmax = zeros(1, size(UpperBoundT imes, 1))
for idx = 1 : size(xmax) do

tseg ← UpperBoundT imes(idx, :)
xseg ← UpperBoundAmplitudes(idx, :)
xmax(idx)← interp1(tseg, xseg, t,′ linear′, NaN)

end for
if all(isnan(xmax))xmax← Inf then

xmax = Inf ;
else

xmax← max(xmax, [],′ omitnan′)
end ifxmin = zeros(1, size(LowerBoundT imes, 1))
for xmin = zeros(1, size(LowerBoundT imes, 1)) do

tseg ← LowerBoundT imes(idx, :)
xseg ← LowerBoundAmplitudes(idx, :)
Block1xmin(idx)← interp1(tseg, xseg, t,′ linear′, NaN)

end for
if all(isnan(Block1xmin)) then

xmin = −Inf
else

xmin = max(xmin, [],′ omitnan′)
end if

else
xmin = −Inf
xmax = Inf ;
Weight← 10
Penalty ← sum(exteriorPenalty(x, xmin, xmax,′ Quadratic′))
reward = −Weight ∗ Penalty

end if
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3.2.7 Results

Below are the set-point tracking plots for the temperature and concentration of CSTR 1

and CSTR 2 using CTCC.
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Figure 3.3: Temperature set-point tracking for CSTR 1 using CTCC.

The controller is able to reach the desired temperature set-point for CSTR 1. The

offset is minimal with error less than 1%. Although the overshoot is within the design

limit of 10%, the controller was unable to maintain the undershoot under 5% as it can

be observed from Fig. 3.3. The design goal is to reach 80% of the set-point under 25

seconds. Although this has been achieved, the settling time took much longer to achieve.

While the controller is able to achieve the desired concentration set-point for CSTR 1

as can be seen from Fig. 3.4, it took a longer time to settle and the undershoot was also

significantly higher than the design goal of 5%.
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Figure 3.4: Concentration set-point tracking for CSTR 1 using CTCC.
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Figure 3.5: Temperature set-point tracking for CSTR 2 using CTCC.
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Figure 3.6: Concentration set-point tracking for CSTR 2 using CTCC.

For the temperature control of CSTR 2, the results are similar to the those for CSTR

1 as seen in Fig. 3.5 in that the settling time is longer than the design objective. Also,

the overshoot is above 10% for the temperature response of CSTR 2 and the undershoot

remains within the target range of 5%.

Figure 3.6 shows the response of the concentration for CSTR 2. Although the set-

point tracking objective has been met and the error is less than 1%, the settling time

is longer than the design goal and the controller overshoot is also higher than the 10%

design objective. Figures 3.7 and 3.8 show the corresponding evolution of the manipulated

variables for the two reactors.
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Figure 3.7: Rates of heat input for CSTR 1 and CSTR 2 under CTCC.
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Figure 3.8: Inlet reactant concentrations for CSTR 1 and CSTR 2 under CTCC.
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3.2.8 Parameter Variations

The TD3 Agent is trained at the operating conditions as stated in Table 3.1. In practical

applications, disturbances are common and the efficiency of the equipment also gradually

deteriorates due to wear and tear, fouling and other factors. To test the robustness of

the model-free controller, the following parameters are chosen upon careful consideration

based on practical considerations, such as fluctuations in flow rates, input feed concen-

trations, and deactivation of catalyst, and are varied as stated in Table 3.9. The new

operating conditions are updated in the simulation model and the pre-trained RL CTCC

control agent is used in the updated model to test set-point tracking. Note that, instead

of introducing uncertainties in the middle of the simulation at a certain time, here the

model parameters are changed.

Table 3.9: Details of Parameter Variations.

Parameter Description Variation
T0 Temperature of Feed A to CSTR 1 10%
T03 Temperature of Feed A to CSTR 2 10%
Ca0 Concentration of Feed A to CSTR 1 10%
Ca03 Concentration of Feed A to CSTR 2 10%
E1 Activation energy of Reaction 1 40%
E2 Activation energy of Reaction 2 40%
E3 Activation energy of Reaction 3 40%
F0 Fresh A Feed flow to CSTR 1 10%

Fr
Recycled A flow from CSTR 2 to CSTR
1

14%

F3 Fresh A Feed flow to CSTR 2 10%
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Figure 3.9: Temperature set-point tracking for CSTR 1 under CTCC and parametric variations.
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Figure 3.10: Concentration set-point tracking for CSTR 1 under CTCC and parametric variations.
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Figure 3.11: Temperature set-point tracking for CSTR 2 under CTCC and parametric variations.
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Figure 3.12: Concentration set-point tracking for CSTR 2 under CTCC and parametric variations.
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Parameter uncertainty has the most effect on temperature control of CSTR 1. Ex-

amining Figs. 3.9-3.12, it can be seen that introducing uncertainties slowed down the

temperature response time but there is no offset in reaching the desired set-point. For

the other controlled variables, parameter variations have no significant impact on the

controller response.

3.2.9 Effect of Sensor Noise

For each sensor, Gaussian random noise with a mean of 0.01 and variance of 10−5 was

introduced to evaluate the controller performance with respect to random noise. The

plots below show that the controller performance is robust in the presence of the sensor

noise considered.
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Figure 3.13: Temperature set-point tracking for CSTR 1 under CTCC and sensor noise.
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Figure 3.14: Concentration set-point tracking for CSTR 1 under CTCC and sensor noise.
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Figure 3.15: Temperature set-point tracking for CSTR 2 under CTCC and sensor noise.
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Figure 3.16: Concentration set-point tracking for CSTR 2 under CTCC and sensor noise.

From the results in Figs. 3.13-3.16, the controller performance appears to be robust to

the sensor noise considered. Although there is some noise in the controller output, both

the concentration and temperature set-points for CSTR 1 and CSTR 2 are still achieved

without any deterioration in controller performance with respect to the design objectives.

It should be noted here that sensor noise was not considered while training the RL agent.

3.3 Distributed Training for Decentralized Control (DTDC)

In the DTDC framework, each controlled variable is controlled by an independent RL

agent with observation space having variables from that subsystem. Each agent has partial
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observability of the plant environment, takes independent actions with the objective of

maximizing their own reward without considering the impact of their actions on other

agents. This can lead to convergence issues, i.e., the controller not able to reach the

desired goal. Unlike the CTCC framework, where a single RL agent controls all four

controlled variables, four decentralized individual RL agents are designed to control the

four controlled variables with each corresponding to a single control variable.

3.3.1 TD3 Agent Design Architecture

The TD3 agents are designed based on the same framework used in the CTCC control

framework with some modifications in the Actor Network and Critic Network archi-

tectures, as well as tuning of hyper-parameters. Below are the images of the Critic and

Actor Network architectures used in each TD3 Agent.
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Figure 3.17: Critic Network Architecture.

Table 3.10: Critic Net Design Information.
Critic Net Layers Number of Neurons

State input fc-1 256
Action input fc-2 256
common path fc-1 256
common path fc-1 256
QValueOut layer 1

Table 3.11: Actor Net Layers Design Information.
Actor Net Layers Number of Neurons

fc-1 256
fc-2 256
fc-3 256

Action Layer(tanhLayer) No. of Action Outputs (1 in case of DTDC)
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Figure 3.18: Actor Network Architecture.

3.3.2 TD3 Agent Hyper-parameters

Table 3.12: TD3 Agent Hyper-parameters.
TD3 Agent Hyper-parameters Values

Sample Time 0.1
Discount Factor 0.999

Experience BufferLength 2 ∗ 106
Mini BatchSize 512

Number of Steps To Look Ahead 1
Target SmoothFactor 0.005

Target Update Frequency 10
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Table 3.13: Critic Hyper-parameters.
Critic Hyper-parameters Values

Learn rate 10−4

Gradient threshold 1
Optimizer adam

Denominator offset 10−8

Gradient decay 0.9
Squared gradient decay 0.999

Gradient threshold method i2norm
L2 regularization factor 0.0001

Table 3.14: Actor Hyper-parameters.
Actor Parameters Values

Learn rate 10−4

Gradient threshold 1
Optimizer adam

Denominator offset 10−8

Gradient decay 0.9
Squared gradient decay 0.999

Gradient threshold method i2norm
L2 regularization factor 0.001

Exploration model variance 0.05
Exploration model variance decay rate 2 ∗ 10−4

Exploration vodel variance min. 0.001
Target policy smooth model variance 0.1

Target policy smooth model variance decay rate 10−4

3.3.3 Observation Space

There are total four TD3 agents with each agent having their own local observations. The

observations to the RL agent from the simulation environment consist of the error, the

integral error of the controlled process variable, the current state of the control variable

and its past four states, and the current set-point and past four values (the set-point is

varied randomly to prevent over fitting during training).

Table 3.15: TD3 Agent 1 Observation Space for CSTR 1 Temperature Control.
Process parameter Quantity Purpose

e Proportional error Accounts for present error value∫
e dt Integral error Accounts for cumulative error
T1 Reactor 1 Temperature To perceive the state

T1 SP Reactor 1 Temperature Set point(SP) To perceive the SP
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Table 3.16: TD3 Agent 2 Observation Space for CSTR 1 Concentration Control.
Quantity Purpose

e Proportional error Accounts for present error value∫
e dt Integral error Accounts for cumulative error

CA1 Reactor 1 Concentration To perceive the state
CA1 SP Reactor 1 Concentration Set-point (SP) To perceive the SP

Table 3.17: TD3 Agent 3 Observation Space for CSTR 2 Temperature Control.
Quantity Purpose

e Proportional error Accounts for present error value∫
e dt Integral error Accounts for cumulative error
T2 Reactor 2 Temperature To perceive the state

T2 SP Reactor 2 Temperature Set-point (SP) To perceive the SP

Table 3.18: TD3 Agent 4 Observation Space for CSTR 2 Concentration Control.
Quantity Purpose

e Proportional error Accounts for present error value∫
e dt Integral error Accounts for cumulative error

CA2 Reactor 1 Concentration To perceive the state
CA2 SP Reactor 1 Concentration Set point(SP) To perceive the SP

3.3.4 Reward Functions

The reward function framework and objective is similar as described earlier in the CTCC

framework. The main difference here is that each RL agent has its own reward function

with the same design goals as in CTCC.

3.3.5 Results

Compared to the CTCC framework, the DTDC control strategy yields superior controller

performance with respect to the speed of the response time, the %undershoot and %over-

shoot. Below are the plots for the temperature and concentration set-point tracking for

CSTR 1 and CSTR 2, respectively. It should be noted that there is an offset of about

10% divergence from the set-point for temperature control of CSTR 2. This is due to

the convergence issue with the DTDC algorithm, as the RL agents are completely decen-

tralized with no information exchange between them. The individual agents are unaware
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Figure 3.19: Temperature set-point tracking for CSTR 1 under DTDC.

of the other agents’ actions and, since in an interconnected system variation in one con-

trolled variable affects the other variables, there is a convergence issue due to the partial

observability of states and non-stationary environment.

As observed from Fig. 3.19, the DTDC controller was able to achieve set-point tracking

for the temperature of CSTR 1 with less than 2% error. The settling time, the rise time,

the % overshoot and % undershoot also met the design goals.
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Figure 3.20: Concentration set-point tracking for CSTR 1 under DTDC.

From Fig. 3.20, it can be seen that the controller was able to successfully achieve the

desired set-point for the reactant concentration for CSTR 1. From the plot, the set-point

tracking error is less than 2%. The rise time is slower compared to the other controlled

variables. Except for the rise time, all the other design goals have been met.
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Figure 3.21: Temperature set-point tracking for CSTR 2 under DTDC.
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Figure 3.22: Concentration set-point tracking for CSTR 2 under DTDC.
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Figure 3.23: Rates of heat input for CSTR 1 and CSTR 2 under DTDC.
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Figure 3.24: Inlet reactant concentrations for CSTR 1 and CSTR 2 under DTDC.
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Figure 3.21 shows that the controller failed to achieve the temperature set-point for

CSTR 2. The set-point error is about 10%. Except for the offset in the set-point, the

other design goals for rise time, the % undershoot, %overshoot, and settling time have

been successfully achieved. More control effort is needed to reach the set-point compared

to the CTCC controller, and the control effort to maintain the concentration of CSTR 2

(see Figs. 3.23-3.24 is too high and might not be feasible from a practical standpoint. In

decentralized control, the individual controllers act independently, with no knowledge of

the impact of their actions on other controllers. Each controller has only information about

their local states. Since each agent has partial observability of the plant environment, this

leads to non-convergence issue for an optimization problem.

In the case of the reactant concentration in CSTR 2, the Controller was able to reach

the desired set-point with error under 2% as can be seen from Fig. 3.22. The rise time is

under 2 seconds, while the settling time is under 5 seconds. There is almost no overshoot

or undershoot. All the design goals have been met. Except for the temperature offset in

CSTR 2, the decentralized RL agents performance is in line with the design objectives.

3.3.6 Parameter Variations

The same parameter variations considered under CTCC control (see Table 3.9) are im-

plemented in the DTDC framework to assess the controller performance. As observed

from the plots in Figs. 3.25-3.28, the parameter uncertainty had the most impact on the

temperature of CSTR 1, where it took longer to reach the desired set-point compared to

the other controlled Variables. The DTDC algorithm based controller is robust to the

parameter variations considered as can be observed from the plots, and the controllers are

able to achieve their desired set-points except for temperature control of CSTR 2 which
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Figure 3.25: Temperature set-point tracking for CSTR 1 under DTDC and parameter variations.

has an offset of 10%.

3.4 Effect of Sensor Noise

For each sensor, Gaussian random noise with a mean of 0 and a variance of 10−5 was

introduced to evaluate the controller performance with respect to random sensor noise.
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Figure 3.26: Concentration set-point tracking for CSTR 1 under DTDC and parameter variations.
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Figure 3.27: Temperature set-point tracking for CSTR 2 under DTDC and parameter variations.
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Figure 3.28: Concentration set-point tracking for CSTR 2 under DTDC and parameter variations.
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Figure 3.29: Temperature set-point tracking for CSTR 1 under DTDC and sensor noise.
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Figure 3.30: Concentration set-point tracking for CSTR 1 under DTDC and sensor noise.
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Figure 3.31: Temperature set-point tracking for CSTR 2 under DTDC and sensor noise.
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Figure 3.32: Concentration set-point tracking for CSTR 2 under DTDC and sensor noise.

From the results in Figs. 3.29-3.32, it is evident that the controller was still able to

reach the desired set-point, albeit with some noise. We ran the simulations with the

strength of the noise much lower than that of the response signal. Still the Controller was

able to perform well considering we have not considered sensor noise while training the

RL controller.

3.5 Centralized Training for Decentralized Control (CTDC)

In the CTDC framework, each agent has its own observation space but share a common

critic network. Once the individual actors receive their localized observations, the common

critic has the collective knowledge of all the other actors and guides the actors to achieve

the collective goal. The actor and critic structure for each agent is the same as in DTDC

control with the main difference being that all four TD3 agents critics have same hyper-
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parameters and initialization so that all four TD3 agents share the same critic function.

The actor and agent hyper-parameters are also kept same as in the DTDC algorithm for

simplicity (these can be changed for each agent but the critic has to be common for all

four agents). The observation space is also the same as in the DTDC framework.

3.5.1 Reward Functions

The reward function framework in CTDC slightly differs from the other two methods.

Specifically,

R = Ri(xi, t) +RC

where RC is a common reward received by each agent if all the errors (i.e., error 1, error

2, error 3 and error 4 corresponding to the temperatures and concentrations of CSTR 1

and CSTR 2, respectively) are less then 0.05. The reward function is designed such that

the agents collaborate with each other to reach their target goal.

3.5.2 Results

In the CTDC framework, each RL agent receives local observations of the states but

they share a common critic network structure as represented in Fig. 2.2(center). Once

the local RL agents receive their observations, the critic neural network has access to all

the agents’ local observations, and during training guides the individual agents to arrive

towards the common goal. This solves the partial observability problem in the DTDC

algorithm and also the computational burden and complexity of a central controller in

the CTCC framework. It can be observed from the results (see Figs. 3.33-3.36) that the

CTDC controller enforces the desired set-points without any offset. The controller also

shows robust performance to parameter uncertainty that is better than the other two
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control algorithms. However, compared to CTCC and DTDC, a slight overshoot above

the set-points is observed which is not present in the other two control schemes.
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Figure 3.33: Temperature set-point tracking for CSTR 1 under CTDC.

Figure 3.33 shows that the controller was able to reach the temperature set-point with

offset less than 1%. The rise time and the settling time are also according to the design

specifications. Compared to the decentralized control scheme, where there is minimal

overshoot, here we can notice that there is a slight overshoot of around 10% which is

within the range of the design objective. Also, it took a longer time for the controller to

reach the set-point with error less than 1% than in the DTDC control setting.

For the reactant concentration set-point tracking in CSTR 1, Fig. 3.34 shows that

although the rise time and settling time design objectives have been met, the controller

took longer time to stabilize the control action than in DTDC control. Furthermore, there

is a slight undershoot in this scenario, though it is around 2% and much less than the
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Figure 3.34: Concentration set-point tracking for CSTR 1 under CTDC.

design tolerance limit. Also, at the beginning the overshoot is around 8% which is well

within the design objective.

For temperature control of CSTR 2, the overshoot is around 5% and there is almost

no overshoot (see Fig. 3.35). The rise time and settling time objectives have been met.

As with the previous controlled variables, it took longer time for the controller to achieve

the set-point with error under 1% compared to DTDC control. Also, no undershoot

is observed in this scenario. The control response profile is very similar to that of the

temperature control of CSTR 1.

The controller response for the reactant concentration control of CSTR 2 is similar to

that of the concentration profile of CSTR 1 (see Fig. 3.36. The overshoot though is much

less than that in the case of the concentration control of CSTR 1. The rise time, the

settling time, the undershoot and overshoot are well within the design Objectives, albeit
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Figure 3.35: Temperature set-point tracking for CSTR2 under CTDC.
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Figure 3.36: Concentration set-point tracking of CSTR 2 under CTDC.
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slower compared to the DTDC control strategy. As shown from the manipulated input

profiles in Figs. 3.37-3.38, the control effort in this case is higher than that in the CTCC

control scheme but lower than that of the DTDC scheme.
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Figure 3.37: Rates of heat input under CTDC.
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Figure 3.38: inlet reactant concentrations under CTDC control.

3.5.3 Parameter Variations

The trained RL agent was evaluated for robustness by changing the model parameters

and observing the controller set-point tracking performance on the new simulated model

with the updated parameters. The same parameter variations which are highlighted in

Table 3.9 are used. As it can be observed from the plots in Figs. 3.39-3.42, the controller

was able to achieve the desired set-points even when the parameters were modified, and

no offsets were detected.
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Figure 3.39: Temperature set-point tracking for CSTR 1 under CTDC and parameter variations.
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Figure 3.40: Concentration set-point tracking for CSTR 1 under CTDC and parameter variations.
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Figure 3.41: Temperature set-point tracking for CSTR 2 under CTDC and parameter variations.
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Figure 3.42: Concentration set-point tracking for CSTR 2 under CTDC and parameter variations.
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All the parameters that can be varied in a practical scenario are considered, and the

limits are chosen such that the percentage variations can be expected in real-life scenarios

due, for example, to catalyst deactivation, changes in flow rates due to pump problems,

changes in concentration of the fresh feeds to the CSTRs due to any unknown factors.

From the plots, it can be seen that the parameter uncertainties have the most effect on the

temperature of CSTR 1 and it took a long time to reach the desired set-point (around 200

seconds) compared to the other controlled parameters. All the other controlled variables

were able to reach their specified set-points rapidly. Compared to the DTDC and CTCC

control frameworks, the CTDC framework based controller shows improved performance

under parameter uncertainty. From the plots, the CTDC controller took less time to

stabilize and reach the set-points compared to the other controllers. It is important to

note that the individual RL agents were not trained under parameter uncertainty. The

ability of RL agents to robustly maintain controlled variables at the desired set-point

under parameter variations shows the promising applicability of RL agents for control

system applications when a reliable model is not available or when the system is too

complex to generate a model.

3.5.4 Effect of Sensor Noise

For each sensor, Gaussian random noise with a mean of 0.01 and variance of 10−5 was

introduced to evaluate the controller performance with respect to random noise. From

the plots given in Figs. 3.43-3.46, we conclude that the controller performance is robust

in the presence of the sensor noise considered, although some slight oscillatory behavior

is observed at the very beginning and then response becomes smoother quickly.
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Figure 3.43: Temperature set-point tracking for CSTR 1 under CTDC and sensor noise.
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Figure 3.44: Concentration set-point tracking for CSTR 1 under CTDC and sensor noise.
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Figure 3.45: Temperature set-point tracking for CSTR 2 under CTDC and sensor noise.
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Figure 3.46: Concentration set-point tracking for CSTR 2 under CTDC and sensor noise.
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The concentration profile of CSTR 1 shows oscillations under sensor noise at the be-

ginning and eventually became smoother. All the other controlled variables are able to

achieve the desired set-points with some background noise in the control signal. These

results illustrate the robustness of the controller to sensor noise, although the controller

is not trained under sensor noise.
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Chapter 4

Conclusions and Possible Future

Extensions

This work illustrated the design and implementation of three different multi-agent RL

control strategies to a process network comprised of two interconnected chemical reactors

with a recycle stream. A a centralized strategy (CTCC) was considered first, where a

central RL agent has the information of all the states of the system. A fully-decentralized

control strategy (DTDC) was presented next, where each RL agent acts on its own without

interacting with other agents or considering the impact of their actions on other agents.

The third strategy involved decentralized execution with centralized control (CTDC),

where all the RL agents share a common critic network parameters.

The CTCC control strategy requires instantaneous knowledge of all the states which

may not be feasible practically if the interconnected process units are located far from one

another and the RL agent may receive state signals at different time intervals from the

different units. Also, the observation space increases exponentially with an increase in the

number of units, leading to computational burden on the central controller, as evident

from the results in which the CTCC based controller took longer to reach the control
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goals compared to the DTDC and CTDC based controllers, which makes this approach

practically challenging.

In the DTDC control strategy, four individual RL agents were used to control the

process variables. This approach resolved the issue of availability of all the states at

the same instance faced in the CTCC control strategy, but was not able to achieve the

desired set-point for the temperature of the second reactor. The control strategy showed

excellent disturbance rejection and robust performance to sensor noise even though these

considerations were not accounted for during the training phase. The main limitation

of this strategy is the partial observability of the states and non-stationary environment.

Each agent has no knowledge of the complete states of the system and there is also no

communication between the agents. This can lead to non-convergence and competition

between the agents. The offset is the result of the failure of convergence due to this issue.

Further research is needed to design the decentralized RL agents to cooperate with one

another to achieve their individual goals.

Compared to the CTCC and DTDC strategies, the CTDC control strategy showed

promising results, as it was able to achieve the desired set-point tracking using moderate

control effort, and exhibited robustness to parameter variations and sensor noise. This

approach overcomes the limitations of both the CTCC and DTDC based control frame-

works; however, the response time is slower than that of the DTDC strategy and faster

than that of the CTCC strategy. In all three control schemes, similar observation space

and reward function structure were used for comparing the results. This work shows

that multi-agent RL can effectively control highly nonlinear interconnected systems when

a model of the system is not known. The reward function and observation space were
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designed using optimization techniques and concepts from PI control.

While the results of this comparative study of the different multi-agent RL control

systems show promise, several issues of practical concern remain to be addressed and can

be the subject of future extensions. These include developing multi-agent RL control

systems that explicitly account for communication delays, and investigating the effects

of sensor faults which result in loss of state information to the RL agents, degradation

of the control system performance and raises safety concerns to assets. Further research

is needed to develop robust fault-tolerant RL control systems for interconnected process

networks.
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