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Abstract: Fruit flies are one of the most harmful insect species to fruit yields. In AlertTrap, implementation of SSD architecture 

with different state-of-the-art backbone feature extractors such as MobileNetV1 and MobileNetV2 appear to be potential solutions 

for the real-time detection problem. SSD-MobileNetV1 and SSD-MobileNetV2 perform well and result in AP@0.5 of 0.957 and 

1.0 respectively. YOLOv4-tiny outperforms the SSD family with 1.0 in AP@0.5; however, its throughput velocity is considerably 

slower, which shows SSD models better candidate for real-time implementation. We also tested the models with synthetic test sets 

simulating expected environmental disturbances. The YOLOv4-tiny had better tolerance to these disturbances than the SSD models. 

The Raspberry Pi system successfully gathered environmental data and pest counts, sending them via email over 4G. However, 

running the full YOLO version in real time on Raspberry Pi isn't feasible, indicating a need for a lighter object detection algorithm 

for future research. Among model candidates, YOLOv4-tiny generally performs best, with SSD-MobileNetV2 also comparable 

and sometimes better, especially in scenarios with synthetic disturbances. SSD models excel in processing time, enabling real-time, 

high-accuracy detection. TFLITE versions of SSD models also process faster than their inference graph on TPU hardware, 

suggesting real-time implementation on edge devices like the Google Coral Dev Board. The results demonstrate the feasibility of 

real-time implementation of the fruit fly detection models on edge devices with high performance. In addition, YOLOv4-tiny is 

shown to be the most probable candidate, because YOLOv4-tiny demonstrates a robust testing performance towards citrus fruit fly 

detection. Nevertheless, SSD-MobileNetV2 will be the better model, considering the inference time. 

 

Keywords: fruit fly, environmental data, smart IoT, edge computing, TPU 

 

1. Introduction 
 

Agriculture plays an important role in economic growth, and 

improving crop yield is of great concern [1] in Vietnam. On 

the one hand, insect pesticides can affect the metabolic 

processes of crops to degrade crop yield and quality [2]. On 

the other hand, fruit flies are known to cause 50 to 100% crop 

loss unless timely interventions are implemented. There are 

just a small number of fruit fly species that have been 

discovered, namely Bactrocera dorsalis, B. correcta, B. 

cucurbitae, B. tau, B. latifrons, B. zonata, B. tuberculata, B. 

moroides and B. albistriga, while some species remain 

unidentified. The species which are harmful to fruits are of 

the common fruit fly species, namely B. cucurbitae and B. 

tau [3]. To optimize crop yields, agricultural workers tend to 

use a pesticide scheduler rather than consider the likelihood 

of pests’ presence in the crop [4]. Thus, this not only causes 

many pesticide residues in agricultural commodities but also 

brings great pressure to the ecological environment [5]. The 

overuse of pesticides is partly because information about 

pest species and densities cannot be provided in a timely and 

accurate way. In contrast, if the information is provided in a 
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timely fashion, it could be possible to take proper prevention 

steps and adopt suitable pest management strategies 

including the rational use of pesticides [6, 7]. 

Traditionally, the information about the environment and 

pest species is acquired mainly through handcrafted feature 

engineering [6] such that workers manually use sensors and 

compare a pest’s shape, color, texture, and other 

characteristics with justification from the domain experts. 

Likewise, counting is typically time-consuming, labor-

intensive, and error-prone [8]. Therefore, it is urgent and 

significant to establish an autonomous and accurate pest 

identification system. There is a growing tendency of 

utilizing machine vision technology to solve these problems 

with promising performance in the agriculture research field. 

In this work, we focus on developing a solution to detect 

oriental yellow flies which usually harm citrus fruits such as 

oranges and grapefruits. We implement and evaluate the 

object detection models by applying the models with testsets 

simulating potential disturbances occurring in real scenario. 

Additionally, the work presented in this paper will not only 

focus on the use of different types of object detection 

algorithms but also apply the TFLITE format of the models 

compatible to edge device system such as TPU processors. 

This direction of study is to develop real-time detection 

application with the emerging edge computing technology to 

enhance the performance of the system in terms of detection 

accuracy, power efficiency, and latency reduction with the 

purpose of detecting the living fruit flies beside the stuck and 

dead ones on the trap. Moreover, the article will describe the 

hardware implementation so that the work can be reproduced 

and further developed. Our contributions are: 

(1) We constructed, developed, and provided a more 

in-depth discussion of the end-to-end camera-equipped trap, 

named AlertTrap with installation of a Lynfield-inspired 

sticky trap, to instantly detect fruit flies and the solar-energy 

powering system controlled by a separate Raspberry Pi. 

(2) We evaluate three different compact and fast 

object detection deep learning models, namely SSD-

MobileNetV1, SSD-MobileNetV2, and the Yolov4-tiny. 

Nevertheless, we introduce artificial disturbances imitating 

inference effects which may compromise the detection 

performance in real-time scenario. Moreover, we also 

evaluate the SSD-MobileNetV1 and SSD-MobileNetV2 

models with their TFLITE format versions on a TPU device. 

With the results, we compare not only their ability to 

accurately detect and localize the fruit flies which we had 

trained them to predict, but also the increase in processing 

speed as well as the power saving factor. 

2. Literature Review 
 

Insect detection techniques can be classified into three 

system types, namely manual, automatic, or semi-automatic 

systems. Manual insect detection techniques are known as a 

process in which trained workers count the trapped flies on 

a daily basis. These turn out to be error-prone, time-

consuming, and labor-intensive, while semi-automatic and 

automatic systems can address the disadvantages with the 

replacement of highly accurate and autonomous emerging 

technological software and hardware. 

Specifically, the remaining two types of insect detection 

systems are often called e-traps as they are fueled by 

electronic components with extensive computer algorithms 

such as a center-controlled unit connecting with a camera 

and the trap actuators. Thus, they are also known as vision-

based insect traps. As suggested in the names, the automatic 

insect detection systems [9-20] are fully autonomous, 

whereas the semi-automatic ones [21-24] involve human 

interaction in the loop. For example, in [24], the images of 

insect body parts are classified to aid humans to better 

categorize the insects. Generally, the e-traps are equipped 

with a wide range of post-processing techniques to detect 

and classify trapped insects. These techniques are 

recognized by the sensor type that is used to capture the 

existence of insects in the trap. Particularly, they are image-

based, spectroscopy-based, and optoacoustic techniques, 

which correspond respectively to the visible-light camera, 

the near-infrared (NIR) camera, and the ultrasound sensor. 

The image-based techniques consist of three sub-domain 

techniques, namely deep learning [9-12] and shallow 

learning [12], which both are sub-domains in the machine 

learning field, and image processing [13-20] techniques.  

Shallow learning-wise, Kaya et al. [12] created a machine-

learning-based classifier that can differentiate between 14 

butterfly species. The texture and color characteristics are 

extracted by the writers. A three-layer neural network is used 

to process the extracted features. The categorization 

accuracy achieved is 92.85 percent. 

The detection approach is based on image processing as 

described in [14-17]. While image-processing techniques are 

simpler than deep learning techniques, their accuracy is 

reasonable (70-80%) and the system is wired with the 

illumination environment. However, extensive feature 

engineering must take place prior to the classification. 

Doitsidis and colleagues [13] created an image processing 

method to detect olive fruit flies. By using auto-brightness 

adjustment, the algorithm first reduces the effect of changing 

lighting and weather conditions. Then, using a coordinate 

logic filter improves the edges by amplifying the difference 

between the dark bug and the bright background. Finally, the 

technique uses a circular Hough transform followed by a 

noise reduction filter to identify the trap's limits. The 

achieved accuracy rate is 75%. In [14], it was reported that a 

Wireless Sensor Network (WSN) was created for detecting 

pests in greenhouses. The image processing technique first 

removes the effect of light changes from the photos, then 

denoises them, and finally recognizes the blobs. In [15], it 

was suggested that insect image processing, segmentation, 

and sorting algorithms could be used as insect "soup" 

images. In insect "soup" photos, the insects float on the 

liquid surface. The method was evaluated on 19 soup images 

by the authors, and it worked well for many of them. Using 

McPhail traps, a WSN was developed to detect the olive fruit 

fly and medfly in the field [16]. WSNs are sensor networks 

that gather data and may be built to process information and 

transfer it to humans. WSNs may also have actuators that 

respond to specific events. The template comparison 

algorithm is the detection algorithm. The identification is 

based on the detection of specific anatomical, patterning, and 

color characteristics.  

Near Infrared Spectroscopy (NIR) was used to identify 

infested olives in harvested crops [17]. The Genetic 
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Algorithm (GA) extracts the features from the collected full 

spectral data. The retrieved features serve as the input for the 

classifier. Hyperspectral imaging was deployed to identify 

contaminated mangos [18]. The algorithm's overall error 

proportion of high infested samples ranges between 2% and 

6%, whereas the algorithm's overall error rate for low 

infested samples is 12.3 percent. To detect contaminated 

cherries, Xing et al. used reflectance and transmittance 

spectra [19]. According to the extent of damage, the cherries 

were separated into two categories: "acceptable" and "non-

acceptable." On transmittance spectra, Canonical 

Discriminant Analysis (CDA) achieved 85 percent 

classification accuracy.  

Potamitis et al. [15] used optoacoustic spectrum analysis to 

construct an olive fruit fly detection system. The 

optoacoustic spectrum analysis detects the species of insects 

based on wingbeat analysis. The authors examined the 

recorded signal's temporal and frequency domains. The 

random forest classifier is fed the retrieved features from the 

time and frequency domains. The random forest classifier 

had a precision of 0.93, a recall of 0.93, and an F1-Score of 

0.93. The optoacoustic approach, on the other hand, cannot 

distinguish between different types of fruit flies, including 

peaches and figs. Furthermore, solar radiation affects sensor 

readings, and the trap is susceptible to sudden strikes or 

shocks that cause false alarms on windy days. 

Böckmann et al. [25] utilizes Bag of Visual Words (BoVW) 

to encode clusters of key points extracted by scale-invariant 

feature transform (SIFT) into some meaningful local features 

in a so-called visual codebook. This kind of dictionary is 

then used to incorporate how frequent each feature appears 

in each patch of newly extracted key points as the input to 

train an SVM classifier for different classes of flies as well 

as one background class for a patch of nothing of interest. In 

contrast, the precision values decreased after 7 days of the 

insects remaining on the Yellow Sticky Paper by 

approximately 20% compared to the test results of the 

initialization measurement on day 0. Regarding class mean 

accuracy, the dictionary size had no obvious influence but 

on the recall in individual categories. Within the individual 

categories, the recall of the background class was the 

highest, as expected. A maximum value of 99.13% was 

achieved without differences in color space conversion or 

dictionary size. The best classification results were achieved 

with greyscale images and dictionary sizes of 200 and 500 

words. 

Regarding deep learning techniques, Zhong et al. [9] created 

a deep-learning-based multi-class classifier that can classify 

and count six different types of flying insects. The You Only 

Look Once (YOLO) algorithm [26] is used for detection and 

coarse counting. To increase the number of training images 

required by the YOLO deep learning model, the scientists 

considered the six species of flying insects as a single class. 

The authors augment the images with translation, rotation, 

flipping, scaling, noise addition, and contrast adjustment to 

extend the data set size. They also employed a pre-trained 

YOLO to fine-tune its parameters on an insect dataset. 

Support Vector Machine (SVM) is used for classification 

and fine counting, with global features. The technique was 

run on Raspberry PI, with detection and counting performed 

locally in each trap. The system attained a 92.5 percent 

average counting accuracy and a 90.18 percent average 

categorization accuracy. The Dacus Image Recognition 

Toolkit (DIRT) was created by Kalamatianos et al. [10]. The 

toolkit includes MATLAB code samples for fast 

experimentation, as well as a collection of annotated olive 

fruit fly photos acquired by McPhail traps. On the DIRT 

dataset, the authors tested various forms of the pre-trained 

Faster Region Convolutional Neural Networks (Faster-

RCNN) deep learning detection technique. Prior to 

classification, RCNNs are convolutional neural networks 

containing region proposals that suggest the regions of 

objects. Faster-RCNN had a mAP of 91.52 percent, where 

mAP is the average maximum precision for various recall 

levels. The authors demonstrated that image size has a 

substantial impact on the detection, but RGB and grayscale 

images have almost the same detection accuracy. Because 

Faster RCNN is computationally costly, each e-trap 

regularly uploads its collected image to a server for 

processing. Ding et al. created a technique for detecting moth 

flies [8]. Translation, rotation, and flipping are used to 

enhance the visuals. To balance the average intensities of the 

red, green, and blue channels, the photos are pre-processed 

with a color-correcting algorithm. The moths in the photos 

are then detected using a sliding window Convolutional 

Neural Network (CNN). CNNs are supervised learning 

algorithms that use learned weights to apply filters on picture 

pixels. Backpropagation is used to learn the weights. Finally, 

Non-Max Suppression is used to remove the overlapping 

bounding boxes (NMS). Using an end-to-end deep learning 

neural network, Xia et al. detect 24 kinds of insects in 

agriculture fields [11]. A pre-trained VGG-19 network is 

utilized to retrieve the features. The insect's position is then 

determined through the Region Proposal Network (RPN). 

The proposed model had a mAP of 89.22 percent. 

Recently, YOLO is proving its notable performance in the 

work [27] in pest detection. Especially, the reported results 

of YOLO v5 by the authors illustrate the mAP of 94.7 

percent, where it has the highest recall score of 0.92 among 

all the other state-of-the-art methods, such as Fast RCNN, 

Faster RCNN and RetinaNet. The models have been 

pretrained on COCO dataset [28] and later fine-tuned on a 

training dataset of 4480 sub-images made from 280 images 

of yellow sticky pheromone traps. However, YOLO v5 is 

considered slower than YOLOv4. For the AI implementation 

on edge devices, works in [29, 30] demonstrate the AI 

applications on edge devices pest monitoring as well. In [30], 

Lynfield-inspired trap was used with naled-and fipronil-

intoxicated methyl eugenol [31] in replacement of the yellow 

sticky paper trap combined with object detection system to 

detect only targeted oriental yellow flies. Unlike the yellow 

sticky paper, the substance is proved to only attract harmful 

fruit flies and the detection problem is thus reduced to one-

class detection for detecting the existence of the fruit flies 

and verifying whether the detection is correct. The work 

showed primary work and provided foundation to further 

develop real-time system for yellow fly detection in on-field 

scenario. Compared to [27], the application Single Shot 

Multibox Detector with variant backbones and YOLOv4-

tiny show significant speed performance to YOLO v5, while 

taking the raw images as input instead of segmented sub-

images. Nevertheless, the work also showed limitation of 

applying detection models on edge device due to the slow 
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processing speed, which will be further addressed in this 

article. 

3. Methodology 

3.1. Overview of the Trap System 
 

Most of the time, insects are not stationary, so it is difficult 

to get a clear image of flying insects. In studies [32 - 35], the 

authors chose insect specimens that were well-preserved in 

an ideal laboratory environment to capture images of the 

insects at high resolution. However, since fewer 

environmental factors are considered in this method, it is 

limited in specific applications. In this study, we designed a 

unique automatic autonomous environment data reading and 

pest identification system to try to eliminate the above 

problems. 

Being largely motivated by preventing the oriental fruit flies 

from destroying citrus fruits such as oranges and grapefruits, 

we come up with a trap which targets only that one type of 

the species, which is specifically named B. Dorsalis. This 

can be achieved by replacing the yellow sticky paper with 

the naled-and fipronil-intoxicated methyl eugenol attractant 

to assure only B. Dorsalis flies are lured into the trap. It eases 

the classification and counting process as no other insects 

will get attracted by the methyl eugenol attractant [31]. The 

objects can be further reassured by the object detection 

system before getting counted. 

The system involves a two-fold setting: a) an electronic 

system reads environment data with a sticky trap installed 

and a digital camera is set up to collect images of the flies, 

b) the object detection software to recognize fruit flies on the 

image before sending all information (environmental data 

and number of fruit flies) via email or SMS to alert farmers 

independently. The whole system is autonomous and 

powered by a solar system. This system is implemented on 

an Arduino Uno and Raspberry Pi system. The results 

provide precise prevention and treatment methods based on 

the combination of pest information and other environmental 

information. Based on this edge computing design, the 

computation pressure on the server is alleviated and the 

network burden is largely reduced. 

The edge-computing traps are designed to work separately 

and individually re-port the count of fruit flies to the farmers. 

They are spread, based on the effectiveness of the attractant, 

such that each 2-3 devices can cover an area of 1000 square 

meters. 

3.2. Hardware 
 

Overall, the hardware part of the system consists of five 

interconnected subsystems with distinctive functions and 

behaviors, which are described in Figure 1, namely the solar 

panel system, the control system, the sensor system, the trap, 

and the object detection and communication system. 

The power system of the trap contains a solar panel, a 

battery, and a solar charge controller (Figure 1a). The solar 

panel converts the solar energy to DC current with 830 mA 

to power the trap system. The converted energy is stored in 

an electro-chemical energy storage with a capacity of 5 Ah 

and a voltage of 12 V. The Arduino in the operating system 

will check voltage of the battery with a voltage sensor to 

make sure the battery voltage is above a certain level 

required for the system’s operation. If the condition is not 

met, the object detection module will not be operated. The 

Pulse Width Modulation (PWM) solar charge controller is 

used to control the device voltage, open the circuit, and halt 

the charging process if the battery voltage is above a certain 

level. 

The operation system (Figure 1b) is controlled by an 

Arduino microcontroller board. As aforementioned, the 

Arduino module reads the battery voltage with a voltage 

sensor from the sensor system to decide whether to turn on 

or off the object detection system, which is controlled by the 

Raspberry module. The SSR10D is used to control activate 

and deactivate the object detection system. The SSR10D is a 

solid-state relay and uses lower power electrical signal to 

generate an optical semiconductor signal as an activate 

signal for the opto-transistor to allow high voltage going into 

and powering the device’s output device, which is the 

Raspberry device in this case. In addition, the lower 

electrical signal is the output from the 2N2222 bipolar 

junction transistor receiving control signal from the Arduino 

module. Hence, the Arduino can stop the Raspberry Pi 3b+ 

computer drawing current from the solar system after it is 

shut down. The sensor system (Figure 1c) takes 

responsibility for measuring the three important factors, 

temperature, humidity, and light. Also, it records the current 

created by the solar system and the voltage battery. The 

humidity and temperature, which also affect the living 

environment of the yellow flies, are measured with the 

AM2315 I2C sensor. RGB and clear light is measured with 

the TCS34725 light sensor with IR filter and white LED. In 

addition to sensor system, INA219 is used to read the solar 

current and battery voltage information. Moreover, a 

DS1307, which is a battery-backed real time clock (RTC), is 

used to help the microcontroller keep track of time. The 

Figure 1. Overview of the trap system consisting of a) 
The solar panel system, b) The operation system, c) The 
sensor system, d) The modified Lynfield trap and e) The 
object detection system [30]. 
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information from the sensors along with their corresponding 

time are stored in an SD card attached on the device. These 

two factors, the operation system and sensor system, help the 

microcontroller decide whether to turn on the object 

detection or not. The object detection system, shown in 

Figure 1e, is operated by the Raspberry Pi 3b+ and collect 

images for its fruit fly detection algorithm with a Waveshare 

Pi camera with 5 MP. The camera is placed at the top of a 

double-size Lynfield shape trap with several holes at the 

bottom, shown in Figure 1d. To attract and capture only the 

yellow flies, methyl eugenol is used as the attractant to the 

insects [31], which later helps to simplify the detection and 

classification problem. The Raspberry Pi module will 

receive data from the sensor system and send all data to the 

notification system to notify or alert farmers about the 

environmental data and the number of detected fruit flies 

through email or SMS. The behavior of the whole system is 

described in the flow chart shown in Figure 2. 

 

3.3. Software - Object detection pipelines 
 

The architectures used to train the yellow fly detection 

models are SSD with MobilenetV1 and MobilenetV2 

backbones, and YOLOv4-tiny. The selected models are all 

single-stage detection models since, compared to their 

counterpart, the two-stage detection models, the single-stage 

detection models have been shown to have a faster 

processing speed with a competitive performance. 

Moreover, the three models were selected because of their 

comparable parameter size and their feasibility for real-time 

implementation on edge devices. The pretrained models of 

these architectures were finetuned with our proposed insect 

dataset so that they can be used for the yellow fly detection 

application, as finetuning is also one of the common 

solutions for data scarcity problem in object detection. 

Because the models had been trained with COCO dataset 

[28], which is a large dataset having over 200,000 labeled 

images with 1.5 million object instances for 80 object 

categories, and, hence, contains common features for object 

detection problem, finetuning the models with 200 yellow 

fly images helped the models perform the yellow fly 

detection task. 

3.3.1. SSD 
 

To solve the real-time object detection in the yellow fly 

detection problem, variants of Single-Shot Multibox 

Detector (SSD) are used. The SSD method was first 

proposed in [36] by Wei Liu et al. and described as a one-

stage object detection method that completely omits the 

region proposal and pixel/feature resampling stages used in 

region proposal-based techniques such as Faster-RCNN. 

The SSD network is based on a feed-forward network that 

uses default bounding boxes with different shapes, ratios, 

and scales to produce a fixed-size collection of bounding 

boxes with corresponding shape offsets and confidence 

scores [36]. In addition, the early layers of the network are 

based on a standard image classification without 

classification layers, which is called the base network [36]. 

In this work, MobileNetV1 and MobileNetV2 are used as 

base networks for the SSD detection models. The 

elimination of region proposal and pixel/feature resampling 

stages helps to improve the processing speed of the model 

compared to two-stage techniques such as Faster-RCNN 

with a small trade-off in the model’s accuracy, which 

enables the implementation of real-time object detection 

with high accuracy on embedded system for yellow fly 

detection problem. 

3.3.2. MobileNetV1 
 

The approach was first proposed in [37] by A. Howard et al. 

and was described as a lightweight deep neural network for 

mobile and embedded system applications with an efficient 

trade-off between latency and accuracy. The model is based 

on depth wise separable convolution including depth wise 

convolution layer which is used to apply a single filter per 

input channel, and pointwise convolution layer, which 

creates a linear combination of the output of the depth wise 

layer. In addition, to construct the model further less 

computationally expensive, width multiplier, which is used 

to thin the network uniformly at each layer, and resolution 

multiplier, which is applied to input images and the internal 

representation of each layer, were introduced as a 

hyperparameter to tune, and choose the size of the model. 

Figure 2. Flow chart of the trap system. 
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3.3.3. MobileNetV2 
 

The MobileNetV2 approach was first presented in [38] by 

M. Sandler et al. The approach is built based on 

MobileNetV1; therefore, it also makes use of the depth wise 

separable convolution architecture which consists of depth 

wise convolution layer and 1x1 pointwise convolution layer. 

In addition, the approach also utilizes linear bottleneck 

layers in convolutional blocks to optimize the neural 

architecture [38]. Moreover, inverted residual design is also 

used in the model to implement shortcuts between 

bottlenecks with the purpose of improving the ability of 

gradient propagation across the multiplier layers. 

Nevertheless, the implementation of the inverted design also 

showed better performance and significantly more memory 

efficiency in the work [38]. 

The training and evaluation of the SSD with MobileNetV1 

and MobileNetV2 base networks is based on the pre-trained 

models provided in the Object Detection API in TensorFlow 

Model Garden [39]. The models were also trained on the 

Google Colab Pro environment to utilize the provided GPUs 

for the training purpose. 

3.3.4. YOLOv4-tiny 
 

The YOLOv4 model is a method for detecting objects that 

was developed from the YOLOv3 model proposed in [40]. 

The YOLOv4 approach was created by Alexey 

Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao 

[41]. It is twice as fast as EfficientDet in terms of 

performance. Furthermore, when compared to YOLOv3, AP 

(Average Precision) and FPS (Frames Per Second) in 

YOLOv4 have increased by 10% and 12%, respectively. 

This is because a CSPDarknet53 backbone and a PANet 

path-aggregation neck along with the YOLOv3 head make 

up for the YOLOv4 architecture. YOLOv4-tiny [42] is the 

compressed version of YOLOv4. Based on YOLOv4, it is 

suggested that the network topology should be simplified, 

and parameters should be reduced so that it may be 

implemented on mobile and embedded devices. The 

YOLOv4-tiny model can be trained in a shorter time than the 

YOLOv4. 

4. Evaluation 
 

The proposed models, YOLOv4-tiny, SSD-MobileNetV1, 

and SSD-MobileNetV2, were evaluated by using 

performance metrics such as precision, recall, F1 score, 

mean IoU, and average precision (or AP). In addition, the 

models’ processing time was also evaluated to check for 

real-time application feasibility. The processing time of the 

models was calculated while they were run on CPU, GPU, 

and TPU hardware. The hardware provided by Colab Pro 

service was Tesla V100-SXM2-16GB, TPU V2, and Intel(R) 

Xeon(R) CPU @ 2.30GHz, which were used to find the 

average processing time of the models on GPU, TPU, and 

CPU respectively. Moreover, besides the regular test set, the 

models were also checked with synthetic test images 

originating from the original test set. The augmentation 

effects were implemented to simulate disturbances that can 

be captured in practice, such as leaf, insect, dust, and flaring 

effect. We also make the dataset available in [43]. 

4.1 Training Dataset 
 

The contributed 200 images of fruit flies in the trap are 

consolidated into two parts, namely training dataset and test 

dataset, with the proportion of 75% and 25%, respectively. 

Therefore, there are 150 images being used to train the 

models incorporated in this paper. The remaining 50 images 

are responsible for evaluating the performance of such 

models. 

4.2 Test Dataset 
 

For the evaluation of the proposed models, the original test 

set, which includes 50 images, was used along with other 

four synthetic datasets generated from the original test 

images. The synthetic datasets were used to simulate the 

common disturbances which could be captured in real-life 

scenarios such as blurry, dust, salt-pepper, and flaring effect. 

Therefore, in general, the total test set has 250 images, in 

which 50 images come from the original dataset and the 

other 150 images are copies of them with augmentation 

effects. An example of an original image and its synthetic 

versions are shown in Figure 3. 

 

The synthetic images with dust and salt-pepper 

augmentation are to simulate the disturbances coming from 

the weather and environmental conditions, while the blurring 

augmentation is used to simulate foggy or out-of-focus 

issues captured by the camera in the field and maybe disrupt 

the classification of the targeted object class. 

Figure 3. An example of an original image and its synthetic 
versions with a) original image, b) blurry filter c) adding salt-
pepper disturbance, and d) adding dust disturbance. 
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4.3 Evaluation Metrics 
 

The performance of the trained detectors was evaluated by 

being tested with a test dataset. The true positive (TP), false 

positive (FP), and false negative (FN) were counted from the 

detection results and used to find the precision, recall, and 

F1 score metrics. TP is the number of correctly detected 

objects, while FP shows the amount of the falsely detected 

object and FN informs the number of targeted objects which 

were missed during the detection process. The three metrics 

can then be used to evaluate further aspects of the models’ 

performance such as precision, recall, F1-Score, and average 

precision, which were also used for model evaluation in this 

work. In addition, the average processing time of the models 

during the detection process was also measured and used as 

another evaluation criterion, and Mean IoU was also used to 

evaluate the localization of the detection. 

4.3.1. Precision 
 

Precision is an evaluation metric calculated with true 

positives and false positives. The metric indicates how 

accurate the detector’s performance is by showing the 

percentage of correctly detected objects out of the total 

detected objects. The relationship between the precision, true 

positive and false positive numbers can be expressed as the 

following: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=  

𝑇𝑃

𝐴𝑙𝑙 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
 (1) 

4.3.2. Recall 
 

Recall is an evaluation metric calculated with counted true 

positives and false negatives. The recall value decreases 

when the number of false negatives is increased. The metric 

measures how many objects are missed by the evaluated 

detector by showing the percentage of correctly detected 

objects out of the total true objects. The relationship between 

the recall and true positive and false negative numbers can 

be expressed as the following: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=  

𝑇𝑃

𝐴𝑙𝑙 𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ𝑠
 (2) 

4.3.3. F1-score 
 

F1-Score is an evaluation metric calculated with both 

precision and recall metrics, or with all counted true 

positives, false positives, and false negatives. The F1-Score 

metric combines both precision and recall with equal weight 

to show the balance and relative relation between the 

precision and recall metrics. The mathematical expression of 

the F1-Score metric regarding other evaluation metrics is 

shown as: 

𝐹1 =  2 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 

=  
𝑇𝑃

𝑇𝑃 + 
1
2

(𝐹𝑃 + 𝐹𝑁)
 

(3) 

4.3.4. Average Precision (AP) 
 

By adjusting the confidence score threshold, the precision 

and recall will also be changed accordingly. Calculating the 

mean value of the precision score corresponding to the 

confidence score threshold varied from 0 to 1, average 

precision, or AP for short, can be found. 

4.3.5. Mean IoU 
 

IoU stands for intersection over union. The intersection can 

be understood as the over-lapping area between a ground-

truth bounding box and its corresponding detected bounding 

box, while the union is the total area of the ground-truth 

bounding box and the corresponding detected bounding box 

with the omission of the overlapping area. The graphical 

representation of the mentioned definition is shown in Figure 

4. 

 

Then, the IoU is the ratio of the intersection area over the 

area of union of the two bounding boxes. The higher the 

value of the IoU, the more matched the two bounding boxes 

are. Therefore, the mean IoU, which is the mean value of the 

IoU values of all available pairs of detected bounding boxes 

and their corresponding ground-truth bounding boxes, 

shows the localization of the examined algorithm. The 

mathematical relation between the IoU, the area of 

intersection, and the area of union can be expressed with the 

following formula: 

𝐼𝑜𝑈 =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 (4) 

4.3.5. Processing Time 
 

To examine the feasibility of real-time implementation of the 

trained models, the models’ processing time was also 

Figure 4. Area of Intersection (left) and Area of Union 
(right) examples. 
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measured and used as an evaluation metric. The processing 

speed of a detector is found by calculating the mean 

processing speed of the detector during its detection 

operation over 250 test images. 

4.4 Experimental Results 
 

4.4.1. Precision, Recall, F1-score, mean IoU, 

and AP evaluation 
 

In this work, the models were evaluated for F1-score, mean 

IoU, and AP evaluation metrics with different choices of IoU 

threshold value. The following shows the performance tables 

of the trained detectors through different testing scenarios 

with IoU threshold values of 0.25, 0.50, and 0.75, which may 

reflect the performance of the algorithms with different 

localization demands. Additionally, in this paper, the result 

performance of the models in normal testset or disturbance-

free is further discussed. 

a) Normal Testset 

 

In the normal test case with no augmented and synthetic 

disturbances, it can be observed in all IoU thresholds that 

YOLOv4-tiny is the model having the best performance in 

all aspects among the three examined algorithms, YOLOv4-

tiny, SSD-MobileNetV1, and SSD-MobileNetV2. 

Especially, for IoU threshold values 0.25 and 0.5, the 

YOLOv4-tiny model achieved perfect F1-Score, and AP 

metrics with the value of 1.0. Moreover, with high 

localization constraints, YOLOv4-tiny still has a good F1-

score which is 0.847. In addition, the detection from the 

YOLOv4-tiny model also has great localization based on the 

mean IoU metric, which is 0.834 for IoU threshold 0.25 and 

0.50, and 0.857 for IoU threshold 0.75. Nevertheless, SSD-

MobileNetV2 also has comparable performance to the 

performance of YOLOv4-tiny, since for IoU threshold 0.25 

and 0.5, SSD-MobileNetV2 also achieved a great F1-Score, 

and AP metrics with the values of 0.969 and 1.0 respectively. 

In the extreme case of IoU threshold 0.75, SSD-

MobileNetV2 can also have good performance with values 

of 0.751 for F1-score, and 0.69 for AP metric. In addition, 

SSD-MobileNetV2’s detection also has similar localization 

compared to YOLOv4-tiny, which are 0.811 for IoU 

threshold 0.25 and 0.50 and 0.847 for IoU threshold with the 

value of 0.75. The SSD-MobileNetV1 also has good 

performance for IoU threshold 0.25 and 0.50; however, with 

IoU threshold of 0.75, the model’s performance was heavily 

compromised. Moreover, in all three IoU threshold cases, the 

SSD-MobileNetV2 has better performance than SSD-

MobileNetV1 in all aspects. The performance results on 

different localization constraints are shown in Figure 5.  

 

b) Blurry Testset 

 

In Blurry testset, a Box filter of size 30x30 is convolved over 

the images in the Normal testset to create the blur effect 

which aims to replicate the foggy weather inside the trap or 

the out-of-focus issue of the camera. Generally, this testset 

changes the overall features of the fruit flies because of the 

averaging effect of the filter; therefore, the models might not 

work as expected, which is clearly shown via the results of 

SSD-MobileNetV2. However, According to Figure 6, 

YOLOv4-tiny still performs stably on the testset. 

Specifically, YOLOv4-tiny can maintain its metrics values 

in the variation range of 0.2 throughout three IoU thresholds; 

whereas SSD-MobileNetV2 is totally collapsed when the 

IoU threshold increases and SSD-MobileNetV1 

significantly drops in F1-Score and AP by a value of 0.6 at 

the extreme case IoU threshold. 

c) Salt-pepper Testset 

 

The salt-pepper disturbances imply the appearance of 

unwanted tiny fraction of leaves or other insects that are 

Figure 6. Evaluation results on Blurry test set. 

Figure 5. Evaluation results on Normal test set. 

Figure 7. Evaluation results on Salt-pepper test set. 
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accidentally flown into the trap by the wind. It is named 

“Salt-pepper” because the effect looks visually like salt and 

pepper on a dish, which is not related to the salt-and-pepper 

noise in image processing point of view. It can be observed 

from Figure 7 that YOLOv4-tiny, with extreme localization 

constraint, IoU threshold 0.75, the model outperformed other 

models, and it also has best mean IoU in all IoU threshold 

constraints. However, adding the Salt-pepper disturbance 

makes all three models’ performance worse than their 

performance on the remaining testsets. Specifically, SSD-

MobileNetV1 suffers the most where in the extreme case, 

both its F1-Score and AP drop to 0.  

 

d) Dust Testset 

 

With test images with added dust disturbance, it can be 

observed in all IoU thresholds that YOLOv4-tiny has the 

best performance in all aspects. Nevertheless, compared to 

its performance with the normal dataset, it can be observed 

that the disturbance effect did compromise the performance 

of the model based on the F1-score. The same conclusion 

can also be drawn for SSD-MobileNetV1 and SSD-

MobileNetV2 models based on their performance on the 

testset. In addition, the dust disturbance also proves to have 

a great negative effect on the SSD-MobileNetV2 model 

when the extreme localization constraint is applied, since 

while in the Salt-pepper testset with IoU threshold of 0.75, 

the SSD-MobileNetV2 could still perform well with an F1-

Score value of 0.38, while with dust disturbance, the model 

can only achieve 0.251 in F1-Score. Based on the mean IoU 

metric, the dust disturbance also decreases the localization 

of all three models’ detection results. 

4.4.2. Processing time evaluation 
 

In this work, the model candidates are examined with CPU, 

GPU, and TPU hardware. Moreover, the SSD-MobileNetV1 

and SSD-MobileNetV2 models with TFLITE convert 

support were also converted into TFLITE format which is 

compatible with TPU and can exploit the advantage of the 

hardware. Table 1 shows the processing time of each model 

on CPU, GPU, and TPU hardware. It can be observed that 

SSD models have a faster processing time than the 

YOLOv4-tiny model on GPU, CPU, or TPU hardware. 

Moreover, the TFLITE version of SSD-MobileNetV1 and 

SSD-MobileNetV2 models run on TPU is much faster than 

SSD-MobileNetV1, SSD-MobileNetV2, and YOLOv4-tiny 

inference graphs run on the same device. In addition, we 

show the processing speed in FPS for TFLITE models with 

SSD-MobileNetV1 and SSD-MobileNetV2 architecture on 

a TPU device. TPU processors can be found in edge device 

such as Google Coral Dev board, and by comparing the 

processing speed of the models in TFLITE format in TPU 

shown in this work and the processing speed of the models 

in Raspberry Pi, it can be shown that with the same 

architectures, the TFLITE models’ processing speed on a 

TPU device is approximately 6 times faster than the 

inference models on Raspberry Pi. This shows that TFLITE 

model on TPU edge device would be a more feasible for real-

time application implementation. 

Table 1. Comparisons of the processing time of the trap 
object detection system between different types of 
processing units 

Models 

CPU 

Intel(R) 

Xeon(R) 

CPU @ 

2.30GHz 

GPU 

Tesla 

V100-

SXM2-

16GB 

TPU 

Google 

TPU v2 

SSD-

MobileNetV1 
3.414 FPS 29.140 FPS 1.025 FPS 

SSD-

MobileNetV2 
3.485 FPS 21.000 FPS 1.024 FPS 

SSD-

MobileNetV1 

TFLITE 

_ _ 8.743 FPS 

SSD-

MobileNetV2 

TFLITE 

_ _ 10.058 FPS 

YOLOv4-

tiny 
1.282 FPS 1.207 FPS 0.545 FPS 

 

5. Discussion 
 

The assessments in this research are dedicated to search for 
the most appropriate object detection method among the 
current state-of-the-art algorithms which have been 
implemented for insect and fly recognition under our 
hardware constraints and problem definition. As we only 
target one type of fruit flies that particularly causes harm to 
the citrus fruits, we have replaced the yellow sticky paper 
with a white disc containing the special attractant as a hard 
refinement to pick up only the flies we are interested in. The 
object detection problem is then simplified to only one-class 
object detection, which eases the need for exhausting feature 
extraction. However, the general constraints, such as 
correctness and fastness, for an object detection task on an 
edge-device still hold since early detection and separation of 
the infected areas are extremely important to the fruit yield. 

Figure 8. Evaluation results on Dust testset. 
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Ultimately, SSD-MobileNetV1, SSD-MobileNetV2 and 
YOLOv4-tiny are the best candidates for these requirements 
because they utilize extracted features from a backbone 
classification model to automatically propose object-related 
regions instead of using a region-proposal module to pool 
the related regions before classifying them as many two-
stage object detection models, such as Fast-RCNN and 
Faster-RCNN.  

Table 2. Overall assessment of the models, SSD-
MobileNetV2 TFLITE and YOLOv4-tiny based on F1-
Score and inference time. 

Models 

F1-Score 

(Normal Testset 

with 0.75 IoU 

threshold) 

Inference Time  

(TPU 

Google TPU v2) 

SSD-

MobileNetV2 

TFLITE 

0.751 10.058 FPS 

YOLOv4-

tiny 
0.847 0.545 FPS 

 

Regarding the correctness, YOLOv4-tiny clearly 

outperforms the two SSD models over all the evaluations on 

four different types of testset with very high and stable 

results. This could make YOLOv4-tiny become the most 

probable candidate, because YOLOv4-tiny demonstrates a 

robust testing performance towards citrus fruit fly detection 

although it has been fine-tuned only on a training dataset 

without augmentation effects. SSD-MobileNetV2 shows 

appropriate robustness given its small number of trainable 

parameters by yielding good results in two over four testsets, 

while SSD-MobileNetV1 only works with the original 

testset. Nevertheless, SSD-MobileNetv2 fails dramatically 

with the Blurry testset, which simulates a very frequent event 

that could happen in a fruit field. YOLOv4-tiny is no doubt 

the chosen one among the three methods if we would not 

have taken other aspects into account. 

Conventionally, highly accurate object detection methods 

trade their processing speed for its better performance due to 

the employment of more parameters in their architecture. 

YOLOv4-tiny is not an exception where its processing speed 

is far from real-time (1.2 FPS compared to 30 FPS). While 

missing a fraction of time could lead to undetectable events 

in which the flies appear, our second choice, which is the 

SSD-MobileNetV2 model, should be considered. To realize 

this choice after extensive performance analysis with four 

different testsets, SSD-MobileNetV2 must have been fine-

tuned with more augmented versions of the original training 

dataset before going to production to leverage its robustness 

to the level of YOLOv4-tiny while retaining its processing 

speed. Moreover, TFLITE version of SSD-models are also 

tested on a cloud TPU Google engine, TPUv2, for the 

feasibility of edge-device deployment. The overall 

assessment table for YOLOv4-tiny and SSD-MobileNetV2 

(TFLITE) is shown in Table 2 in terms of F1-Score and 

inference time. 

4. Conclusion 
 

Experimental results show that the Raspberry Pi system 

successfully gained environmental data and number of 

counted pests which were transferred to email addresses 

through the 4G network. The full YOLO version cannot run 

in real time on Raspberry Pi which poses the need of a lighter 

object detection algorithm for future research.  

From the results, it can also be concluded that in general, 

YOLOv4-tiny, with 0.847 F1-Score for IoU threshold 0.75, 

has the best performance among the three model candidates. 

Nevertheless, SSD-MobileNetV2 also has a comparable 

performance, 0.751 F1-Score for IoU threshold 0.75, to the 

YOLOv4-tiny model. Moreover, the SSD-MobileNetV2 

model also outperforms the YOLOv4-tiny model in some 

test scenarios with synthetic disturbances. In addition, SSD 

models, especially SSD-MobileNetV2 model with 10.058 

FPS on TPU, have a clear advantage over YOLOv4-tiny, 

with 0.545 FPS on TPU, in processing time criterion, which 

makes real-time detection application with high accuracy 

feasible. Furthermore, the TFLITE versions of SSD models 

also process faster than the SSD models’ inference graph on 

TPU hardware, suggesting a feasibility of real-time 

implementation of the SSD models on edge devices with 

TPU processors such as Google Coral Dev Board with edge 

TPU. 

 

Recommendations 
 

In the future work, Google Coral Dev Board will be 

implemented on the system, which can be used to compare 

with the Raspberry Pi 3b+’s in accuracy and processing time 

aspects. In addition, in-field operation of the system will be 

tested to check the system’s practicability and for further 

improvement. From the test result with the synthetic test sets, 

the SSD family models were susceptible to disturbance and 

noise compared to the YOLOv4-tiny model. Our next 

attempt is also to improve the SSD models’ performance 

training the detectors with augmented and synthetic data 

synthesized from the original dataset. Moreover, by building 

several trap devices, we will try to apply federated learning 

on the multiple on-field traps so that the detection algorithm 

can be trained, and improved while being applied on the 

field. Hence, the detection performance of the traps can be 

further boosted. Moreover, the performance of the detection 

models can also be enhanced with the implementation of 

wavelet analysis due to the preservation of detailed features. 

This has been proposed and tested in [44]. Furthermore, we 

also would like to further develop our detection solution to 

other types of insects so that it may not only enhance the 

yellow fly detection performance but also make the solution 

applicable for other insect detection problems. To achieve 

the goal, we will need to expand our dataset so that it would 

contain other types of insects. 
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