
UC San Diego
UC San Diego Previously Published Works

Title
AlertTrap: A Study on Object Detection in Remote Insect Trap Monitoring System Using on
the Edge Deep Learning Platform

Permalink
https://escholarship.org/uc/item/8gb9z7xq

Authors
Le, An
Pham, Duy Anh
Thanh, Dong
et al.

Publication Date
2024-06-24

DOI
10.47852/bonviewjcce42023264

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8gb9z7xq
https://escholarship.org/uc/item/8gb9z7xq#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

© The Author(s) 2024. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY

License (https://creativecommons.org/

licenses/by/4.0/).

1

Received: d month yyyy | Revised: d month yyyy | Accepted: d month yyyy | Published online: d month yyyy

RESEARCH ARTICLE

AlertTrap: A study on object

detection in remote insect trap

monitoring system using on the edge

deep learning platform

Journal of Computational and Cognitive Engineering

yyyy, Vol. XX(XX) 1–5

DOI: 10.47852/bonviewJCCEXXXXXXXX

An Dinh Le 1, Duy Anh Pham 2, Dong Thanh Pham 3, Hien Bich Vo 4*

1 Electrical and Computer Engineering Department, University of California San Diego, USA, d0le@ucsd.edu.

2 Osnabrück University, Joint Lab Artificial Intelligence and Data Science, Osnabrück, Germany, apham@uni-

osnabrueck.de.

3 Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Japan,

phamtdong0406@gmail.com.

4 Electrical and Computer Engineering Department, Vietnamese-German University, Vietnam, hien.vb@vgu.edu.vn.

*Corresponding author: Hien B. Vo, Electrical and Computer Engineering Department, Vietnamese-German University,

Vietnam, hien.vb@vgu.edu.vn

Abstract: Fruit flies are one of the most harmful insect species to fruit yields. In AlertTrap, implementation of SSD architecture

with different state-of-the-art backbone feature extractors such as MobileNetV1 and MobileNetV2 appear to be potential solutions

for the real-time detection problem. SSD-MobileNetV1 and SSD-MobileNetV2 perform well and result in AP@0.5 of 0.957 and

1.0 respectively. YOLOv4-tiny outperforms the SSD family with 1.0 in AP@0.5; however, its throughput velocity is considerably

slower, which shows SSD models better candidate for real-time implementation. We also tested the models with synthetic test sets

simulating expected environmental disturbances. The YOLOv4-tiny had better tolerance to these disturbances than the SSD models.

The Raspberry Pi system successfully gathered environmental data and pest counts, sending them via email over 4G. However,

running the full YOLO version in real time on Raspberry Pi isn't feasible, indicating a need for a lighter object detection algorithm

for future research. Among model candidates, YOLOv4-tiny generally performs best, with SSD-MobileNetV2 also comparable

and sometimes better, especially in scenarios with synthetic disturbances. SSD models excel in processing time, enabling real-time,

high-accuracy detection. TFLITE versions of SSD models also process faster than their inference graph on TPU hardware,

suggesting real-time implementation on edge devices like the Google Coral Dev Board. The results demonstrate the feasibility of

real-time implementation of the fruit fly detection models on edge devices with high performance. In addition, YOLOv4-tiny is

shown to be the most probable candidate, because YOLOv4-tiny demonstrates a robust testing performance towards citrus fruit fly

detection. Nevertheless, SSD-MobileNetV2 will be the better model, considering the inference time.

Keywords: fruit fly, environmental data, smart IoT, edge computing, TPU

1. Introduction

Agriculture plays an important role in economic growth, and

improving crop yield is of great concern [1] in Vietnam. On

the one hand, insect pesticides can affect the metabolic

processes of crops to degrade crop yield and quality [2]. On

the other hand, fruit flies are known to cause 50 to 100% crop

loss unless timely interventions are implemented. There are

just a small number of fruit fly species that have been

discovered, namely Bactrocera dorsalis, B. correcta, B.

cucurbitae, B. tau, B. latifrons, B. zonata, B. tuberculata, B.

moroides and B. albistriga, while some species remain

unidentified. The species which are harmful to fruits are of

the common fruit fly species, namely B. cucurbitae and B.

tau [3]. To optimize crop yields, agricultural workers tend to

use a pesticide scheduler rather than consider the likelihood

of pests’ presence in the crop [4]. Thus, this not only causes

many pesticide residues in agricultural commodities but also

brings great pressure to the ecological environment [5]. The

overuse of pesticides is partly because information about

pest species and densities cannot be provided in a timely and

accurate way. In contrast, if the information is provided in a

Journal of Computational and Cognitive Engineering Vol. XX Iss. XX yyyy

__

 2

timely fashion, it could be possible to take proper prevention

steps and adopt suitable pest management strategies

including the rational use of pesticides [6, 7].

Traditionally, the information about the environment and

pest species is acquired mainly through handcrafted feature

engineering [6] such that workers manually use sensors and

compare a pest’s shape, color, texture, and other

characteristics with justification from the domain experts.

Likewise, counting is typically time-consuming, labor-

intensive, and error-prone [8]. Therefore, it is urgent and

significant to establish an autonomous and accurate pest

identification system. There is a growing tendency of

utilizing machine vision technology to solve these problems

with promising performance in the agriculture research field.

In this work, we focus on developing a solution to detect

oriental yellow flies which usually harm citrus fruits such as

oranges and grapefruits. We implement and evaluate the

object detection models by applying the models with testsets

simulating potential disturbances occurring in real scenario.

Additionally, the work presented in this paper will not only

focus on the use of different types of object detection

algorithms but also apply the TFLITE format of the models

compatible to edge device system such as TPU processors.

This direction of study is to develop real-time detection

application with the emerging edge computing technology to

enhance the performance of the system in terms of detection

accuracy, power efficiency, and latency reduction with the

purpose of detecting the living fruit flies beside the stuck and

dead ones on the trap. Moreover, the article will describe the

hardware implementation so that the work can be reproduced

and further developed. Our contributions are:

(1) We constructed, developed, and provided a more

in-depth discussion of the end-to-end camera-equipped trap,

named AlertTrap with installation of a Lynfield-inspired

sticky trap, to instantly detect fruit flies and the solar-energy

powering system controlled by a separate Raspberry Pi.

(2) We evaluate three different compact and fast

object detection deep learning models, namely SSD-

MobileNetV1, SSD-MobileNetV2, and the Yolov4-tiny.

Nevertheless, we introduce artificial disturbances imitating

inference effects which may compromise the detection

performance in real-time scenario. Moreover, we also

evaluate the SSD-MobileNetV1 and SSD-MobileNetV2

models with their TFLITE format versions on a TPU device.

With the results, we compare not only their ability to

accurately detect and localize the fruit flies which we had

trained them to predict, but also the increase in processing

speed as well as the power saving factor.

2. Literature Review

Insect detection techniques can be classified into three

system types, namely manual, automatic, or semi-automatic

systems. Manual insect detection techniques are known as a

process in which trained workers count the trapped flies on

a daily basis. These turn out to be error-prone, time-

consuming, and labor-intensive, while semi-automatic and

automatic systems can address the disadvantages with the

replacement of highly accurate and autonomous emerging

technological software and hardware.

Specifically, the remaining two types of insect detection

systems are often called e-traps as they are fueled by

electronic components with extensive computer algorithms

such as a center-controlled unit connecting with a camera

and the trap actuators. Thus, they are also known as vision-

based insect traps. As suggested in the names, the automatic

insect detection systems [9-20] are fully autonomous,

whereas the semi-automatic ones [21-24] involve human

interaction in the loop. For example, in [24], the images of

insect body parts are classified to aid humans to better

categorize the insects. Generally, the e-traps are equipped

with a wide range of post-processing techniques to detect

and classify trapped insects. These techniques are

recognized by the sensor type that is used to capture the

existence of insects in the trap. Particularly, they are image-

based, spectroscopy-based, and optoacoustic techniques,

which correspond respectively to the visible-light camera,

the near-infrared (NIR) camera, and the ultrasound sensor.

The image-based techniques consist of three sub-domain

techniques, namely deep learning [9-12] and shallow

learning [12], which both are sub-domains in the machine

learning field, and image processing [13-20] techniques.

Shallow learning-wise, Kaya et al. [12] created a machine-

learning-based classifier that can differentiate between 14

butterfly species. The texture and color characteristics are

extracted by the writers. A three-layer neural network is used

to process the extracted features. The categorization

accuracy achieved is 92.85 percent.

The detection approach is based on image processing as

described in [14-17]. While image-processing techniques are

simpler than deep learning techniques, their accuracy is

reasonable (70-80%) and the system is wired with the

illumination environment. However, extensive feature

engineering must take place prior to the classification.

Doitsidis and colleagues [13] created an image processing

method to detect olive fruit flies. By using auto-brightness

adjustment, the algorithm first reduces the effect of changing

lighting and weather conditions. Then, using a coordinate

logic filter improves the edges by amplifying the difference

between the dark bug and the bright background. Finally, the

technique uses a circular Hough transform followed by a

noise reduction filter to identify the trap's limits. The

achieved accuracy rate is 75%. In [14], it was reported that a

Wireless Sensor Network (WSN) was created for detecting

pests in greenhouses. The image processing technique first

removes the effect of light changes from the photos, then

denoises them, and finally recognizes the blobs. In [15], it

was suggested that insect image processing, segmentation,

and sorting algorithms could be used as insect "soup"

images. In insect "soup" photos, the insects float on the

liquid surface. The method was evaluated on 19 soup images

by the authors, and it worked well for many of them. Using

McPhail traps, a WSN was developed to detect the olive fruit

fly and medfly in the field [16]. WSNs are sensor networks

that gather data and may be built to process information and

transfer it to humans. WSNs may also have actuators that

respond to specific events. The template comparison

algorithm is the detection algorithm. The identification is

based on the detection of specific anatomical, patterning, and

color characteristics.

Near Infrared Spectroscopy (NIR) was used to identify

infested olives in harvested crops [17]. The Genetic

Journal of Computational and Cognitive Engineering Vol. XX Iss. XX yyyy

__

 3

Algorithm (GA) extracts the features from the collected full

spectral data. The retrieved features serve as the input for the

classifier. Hyperspectral imaging was deployed to identify

contaminated mangos [18]. The algorithm's overall error

proportion of high infested samples ranges between 2% and

6%, whereas the algorithm's overall error rate for low

infested samples is 12.3 percent. To detect contaminated

cherries, Xing et al. used reflectance and transmittance

spectra [19]. According to the extent of damage, the cherries

were separated into two categories: "acceptable" and "non-

acceptable." On transmittance spectra, Canonical

Discriminant Analysis (CDA) achieved 85 percent

classification accuracy.

Potamitis et al. [15] used optoacoustic spectrum analysis to

construct an olive fruit fly detection system. The

optoacoustic spectrum analysis detects the species of insects

based on wingbeat analysis. The authors examined the

recorded signal's temporal and frequency domains. The

random forest classifier is fed the retrieved features from the

time and frequency domains. The random forest classifier

had a precision of 0.93, a recall of 0.93, and an F1-Score of

0.93. The optoacoustic approach, on the other hand, cannot

distinguish between different types of fruit flies, including

peaches and figs. Furthermore, solar radiation affects sensor

readings, and the trap is susceptible to sudden strikes or

shocks that cause false alarms on windy days.

Böckmann et al. [25] utilizes Bag of Visual Words (BoVW)

to encode clusters of key points extracted by scale-invariant

feature transform (SIFT) into some meaningful local features

in a so-called visual codebook. This kind of dictionary is

then used to incorporate how frequent each feature appears

in each patch of newly extracted key points as the input to

train an SVM classifier for different classes of flies as well

as one background class for a patch of nothing of interest. In

contrast, the precision values decreased after 7 days of the

insects remaining on the Yellow Sticky Paper by

approximately 20% compared to the test results of the

initialization measurement on day 0. Regarding class mean

accuracy, the dictionary size had no obvious influence but

on the recall in individual categories. Within the individual

categories, the recall of the background class was the

highest, as expected. A maximum value of 99.13% was

achieved without differences in color space conversion or

dictionary size. The best classification results were achieved

with greyscale images and dictionary sizes of 200 and 500

words.

Regarding deep learning techniques, Zhong et al. [9] created

a deep-learning-based multi-class classifier that can classify

and count six different types of flying insects. The You Only

Look Once (YOLO) algorithm [26] is used for detection and

coarse counting. To increase the number of training images

required by the YOLO deep learning model, the scientists

considered the six species of flying insects as a single class.

The authors augment the images with translation, rotation,

flipping, scaling, noise addition, and contrast adjustment to

extend the data set size. They also employed a pre-trained

YOLO to fine-tune its parameters on an insect dataset.

Support Vector Machine (SVM) is used for classification

and fine counting, with global features. The technique was

run on Raspberry PI, with detection and counting performed

locally in each trap. The system attained a 92.5 percent

average counting accuracy and a 90.18 percent average

categorization accuracy. The Dacus Image Recognition

Toolkit (DIRT) was created by Kalamatianos et al. [10]. The

toolkit includes MATLAB code samples for fast

experimentation, as well as a collection of annotated olive

fruit fly photos acquired by McPhail traps. On the DIRT

dataset, the authors tested various forms of the pre-trained

Faster Region Convolutional Neural Networks (Faster-

RCNN) deep learning detection technique. Prior to

classification, RCNNs are convolutional neural networks

containing region proposals that suggest the regions of

objects. Faster-RCNN had a mAP of 91.52 percent, where

mAP is the average maximum precision for various recall

levels. The authors demonstrated that image size has a

substantial impact on the detection, but RGB and grayscale

images have almost the same detection accuracy. Because

Faster RCNN is computationally costly, each e-trap

regularly uploads its collected image to a server for

processing. Ding et al. created a technique for detecting moth

flies [8]. Translation, rotation, and flipping are used to

enhance the visuals. To balance the average intensities of the

red, green, and blue channels, the photos are pre-processed

with a color-correcting algorithm. The moths in the photos

are then detected using a sliding window Convolutional

Neural Network (CNN). CNNs are supervised learning

algorithms that use learned weights to apply filters on picture

pixels. Backpropagation is used to learn the weights. Finally,

Non-Max Suppression is used to remove the overlapping

bounding boxes (NMS). Using an end-to-end deep learning

neural network, Xia et al. detect 24 kinds of insects in

agriculture fields [11]. A pre-trained VGG-19 network is

utilized to retrieve the features. The insect's position is then

determined through the Region Proposal Network (RPN).

The proposed model had a mAP of 89.22 percent.

Recently, YOLO is proving its notable performance in the

work [27] in pest detection. Especially, the reported results

of YOLO v5 by the authors illustrate the mAP of 94.7

percent, where it has the highest recall score of 0.92 among

all the other state-of-the-art methods, such as Fast RCNN,

Faster RCNN and RetinaNet. The models have been

pretrained on COCO dataset [28] and later fine-tuned on a

training dataset of 4480 sub-images made from 280 images

of yellow sticky pheromone traps. However, YOLO v5 is

considered slower than YOLOv4. For the AI implementation

on edge devices, works in [29, 30] demonstrate the AI

applications on edge devices pest monitoring as well. In [30],

Lynfield-inspired trap was used with naled-and fipronil-

intoxicated methyl eugenol [31] in replacement of the yellow

sticky paper trap combined with object detection system to

detect only targeted oriental yellow flies. Unlike the yellow

sticky paper, the substance is proved to only attract harmful

fruit flies and the detection problem is thus reduced to one-

class detection for detecting the existence of the fruit flies

and verifying whether the detection is correct. The work

showed primary work and provided foundation to further

develop real-time system for yellow fly detection in on-field

scenario. Compared to [27], the application Single Shot

Multibox Detector with variant backbones and YOLOv4-

tiny show significant speed performance to YOLO v5, while

taking the raw images as input instead of segmented sub-

images. Nevertheless, the work also showed limitation of

applying detection models on edge device due to the slow

Journal of Computational and Cognitive Engineering Vol. XX Iss. XX yyyy

__

 4

processing speed, which will be further addressed in this

article.

3. Methodology

3.1. Overview of the Trap System

Most of the time, insects are not stationary, so it is difficult

to get a clear image of flying insects. In studies [32 - 35], the

authors chose insect specimens that were well-preserved in

an ideal laboratory environment to capture images of the

insects at high resolution. However, since fewer

environmental factors are considered in this method, it is

limited in specific applications. In this study, we designed a

unique automatic autonomous environment data reading and

pest identification system to try to eliminate the above

problems.

Being largely motivated by preventing the oriental fruit flies

from destroying citrus fruits such as oranges and grapefruits,

we come up with a trap which targets only that one type of

the species, which is specifically named B. Dorsalis. This

can be achieved by replacing the yellow sticky paper with

the naled-and fipronil-intoxicated methyl eugenol attractant

to assure only B. Dorsalis flies are lured into the trap. It eases

the classification and counting process as no other insects

will get attracted by the methyl eugenol attractant [31]. The

objects can be further reassured by the object detection

system before getting counted.

The system involves a two-fold setting: a) an electronic

system reads environment data with a sticky trap installed

and a digital camera is set up to collect images of the flies,

b) the object detection software to recognize fruit flies on the

image before sending all information (environmental data

and number of fruit flies) via email or SMS to alert farmers

independently. The whole system is autonomous and

powered by a solar system. This system is implemented on

an Arduino Uno and Raspberry Pi system. The results

provide precise prevention and treatment methods based on

the combination of pest information and other environmental

information. Based on this edge computing design, the

computation pressure on the server is alleviated and the

network burden is largely reduced.

The edge-computing traps are designed to work separately

and individually re-port the count of fruit flies to the farmers.

They are spread, based on the effectiveness of the attractant,

such that each 2-3 devices can cover an area of 1000 square

meters.

3.2. Hardware

Overall, the hardware part of the system consists of five

interconnected subsystems with distinctive functions and

behaviors, which are described in Figure 1, namely the solar

panel system, the control system, the sensor system, the trap,

and the object detection and communication system.

The power system of the trap contains a solar panel, a

battery, and a solar charge controller (Figure 1a). The solar

panel converts the solar energy to DC current with 830 mA

to power the trap system. The converted energy is stored in

an electro-chemical energy storage with a capacity of 5 Ah

and a voltage of 12 V. The Arduino in the operating system

will check voltage of the battery with a voltage sensor to

make sure the battery voltage is above a certain level

required for the system’s operation. If the condition is not

met, the object detection module will not be operated. The

Pulse Width Modulation (PWM) solar charge controller is

used to control the device voltage, open the circuit, and halt

the charging process if the battery voltage is above a certain

level.

The operation system (Figure 1b) is controlled by an

Arduino microcontroller board. As aforementioned, the

Arduino module reads the battery voltage with a voltage

sensor from the sensor system to decide whether to turn on

or off the object detection system, which is controlled by the

Raspberry module. The SSR10D is used to control activate

and deactivate the object detection system. The SSR10D is a

solid-state relay and uses lower power electrical signal to

generate an optical semiconductor signal as an activate

signal for the opto-transistor to allow high voltage going into

and powering the device’s output device, which is the

Raspberry device in this case. In addition, the lower

electrical signal is the output from the 2N2222 bipolar

junction transistor receiving control signal from the Arduino

module. Hence, the Arduino can stop the Raspberry Pi 3b+

computer drawing current from the solar system after it is

shut down. The sensor system (Figure 1c) takes

responsibility for measuring the three important factors,

temperature, humidity, and light. Also, it records the current

created by the solar system and the voltage battery. The

humidity and temperature, which also affect the living

environment of the yellow flies, are measured with the

AM2315 I2C sensor. RGB and clear light is measured with

the TCS34725 light sensor with IR filter and white LED. In

addition to sensor system, INA219 is used to read the solar

current and battery voltage information. Moreover, a

DS1307, which is a battery-backed real time clock (RTC), is

used to help the microcontroller keep track of time. The

Figure 1. Overview of the trap system consisting of a)
The solar panel system, b) The operation system, c) The
sensor system, d) The modified Lynfield trap and e) The
object detection system [30].

Journal of Computational and Cognitive Engineering Vol. XX Iss. XX yyyy

__

 5

information from the sensors along with their corresponding

time are stored in an SD card attached on the device. These

two factors, the operation system and sensor system, help the

microcontroller decide whether to turn on the object

detection or not. The object detection system, shown in

Figure 1e, is operated by the Raspberry Pi 3b+ and collect

images for its fruit fly detection algorithm with a Waveshare

Pi camera with 5 MP. The camera is placed at the top of a

double-size Lynfield shape trap with several holes at the

bottom, shown in Figure 1d. To attract and capture only the

yellow flies, methyl eugenol is used as the attractant to the

insects [31], which later helps to simplify the detection and

classification problem. The Raspberry Pi module will

receive data from the sensor system and send all data to the

notification system to notify or alert farmers about the

environmental data and the number of detected fruit flies

through email or SMS. The behavior of the whole system is

described in the flow chart shown in Figure 2.

3.3. Software - Object detection pipelines

The architectures used to train the yellow fly detection

models are SSD with MobilenetV1 and MobilenetV2

backbones, and YOLOv4-tiny. The selected models are all

single-stage detection models since, compared to their

counterpart, the two-stage detection models, the single-stage

detection models have been shown to have a faster

processing speed with a competitive performance.

Moreover, the three models were selected because of their

comparable parameter size and their feasibility for real-time

implementation on edge devices. The pretrained models of

these architectures were finetuned with our proposed insect

dataset so that they can be used for the yellow fly detection

application, as finetuning is also one of the common

solutions for data scarcity problem in object detection.

Because the models had been trained with COCO dataset

[28], which is a large dataset having over 200,000 labeled

images with 1.5 million object instances for 80 object

categories, and, hence, contains common features for object

detection problem, finetuning the models with 200 yellow

fly images helped the models perform the yellow fly

detection task.

3.3.1. SSD

To solve the real-time object detection in the yellow fly

detection problem, variants of Single-Shot Multibox

Detector (SSD) are used. The SSD method was first

proposed in [36] by Wei Liu et al. and described as a one-

stage object detection method that completely omits the

region proposal and pixel/feature resampling stages used in

region proposal-based techniques such as Faster-RCNN.

The SSD network is based on a feed-forward network that

uses default bounding boxes with different shapes, ratios,

and scales to produce a fixed-size collection of bounding

boxes with corresponding shape offsets and confidence

scores [36]. In addition, the early layers of the network are

based on a standard image classification without

classification layers, which is called the base network [36].

In this work, MobileNetV1 and MobileNetV2 are used as

base networks for the SSD detection models. The

elimination of region proposal and pixel/feature resampling

stages helps to improve the processing speed of the model

compared to two-stage techniques such as Faster-RCNN

with a small trade-off in the model’s accuracy, which

enables the implementation of real-time object detection

with high accuracy on embedded system for yellow fly

detection problem.

3.3.2. MobileNetV1

The approach was first proposed in [37] by A. Howard et al.

and was described as a lightweight deep neural network for

mobile and embedded system applications with an efficient

trade-off between latency and accuracy. The model is based

on depth wise separable convolution including depth wise

convolution layer which is used to apply a single filter per

input channel, and pointwise convolution layer, which

creates a linear combination of the output of the depth wise

layer. In addition, to construct the model further less

computationally expensive, width multiplier, which is used

to thin the network uniformly at each layer, and resolution

multiplier, which is applied to input images and the internal

representation of each layer, were introduced as a

hyperparameter to tune, and choose the size of the model.

Figure 2. Flow chart of the trap system.

Journal of Computational and Cognitive Engineering Vol. XX Iss. XX yyyy

__

 6

3.3.3. MobileNetV2

The MobileNetV2 approach was first presented in [38] by

M. Sandler et al. The approach is built based on

MobileNetV1; therefore, it also makes use of the depth wise

separable convolution architecture which consists of depth

wise convolution layer and 1x1 pointwise convolution layer.

In addition, the approach also utilizes linear bottleneck

layers in convolutional blocks to optimize the neural

architecture [38]. Moreover, inverted residual design is also

used in the model to implement shortcuts between

bottlenecks with the purpose of improving the ability of

gradient propagation across the multiplier layers.

Nevertheless, the implementation of the inverted design also

showed better performance and significantly more memory

efficiency in the work [38].

The training and evaluation of the SSD with MobileNetV1

and MobileNetV2 base networks is based on the pre-trained

models provided in the Object Detection API in TensorFlow

Model Garden [39]. The models were also trained on the

Google Colab Pro environment to utilize the provided GPUs

for the training purpose.

3.3.4. YOLOv4-tiny

The YOLOv4 model is a method for detecting objects that

was developed from the YOLOv3 model proposed in [40].

The YOLOv4 approach was created by Alexey

Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao

[41]. It is twice as fast as EfficientDet in terms of

performance. Furthermore, when compared to YOLOv3, AP

(Average Precision) and FPS (Frames Per Second) in

YOLOv4 have increased by 10% and 12%, respectively.

This is because a CSPDarknet53 backbone and a PANet

path-aggregation neck along with the YOLOv3 head make

up for the YOLOv4 architecture. YOLOv4-tiny [42] is the

compressed version of YOLOv4. Based on YOLOv4, it is

suggested that the network topology should be simplified,

and parameters should be reduced so that it may be

implemented on mobile and embedded devices. The

YOLOv4-tiny model can be trained in a shorter time than the

YOLOv4.

4. Evaluation

The proposed models, YOLOv4-tiny, SSD-MobileNetV1,

and SSD-MobileNetV2, were evaluated by using

performance metrics such as precision, recall, F1 score,

mean IoU, and average precision (or AP). In addition, the

models’ processing time was also evaluated to check for

real-time application feasibility. The processing time of the

models was calculated while they were run on CPU, GPU,

and TPU hardware. The hardware provided by Colab Pro

service was Tesla V100-SXM2-16GB, TPU V2, and Intel(R)

Xeon(R) CPU @ 2.30GHz, which were used to find the

average processing time of the models on GPU, TPU, and

CPU respectively. Moreover, besides the regular test set, the

models were also checked with synthetic test images

originating from the original test set. The augmentation

effects were implemented to simulate disturbances that can

be captured in practice, such as leaf, insect, dust, and flaring

effect. We also make the dataset available in [43].

4.1 Training Dataset

The contributed 200 images of fruit flies in the trap are

consolidated into two parts, namely training dataset and test

dataset, with the proportion of 75% and 25%, respectively.

Therefore, there are 150 images being used to train the

models incorporated in this paper. The remaining 50 images

are responsible for evaluating the performance of such

models.

4.2 Test Dataset

For the evaluation of the proposed models, the original test

set, which includes 50 images, was used along with other

four synthetic datasets generated from the original test

images. The synthetic datasets were used to simulate the

common disturbances which could be captured in real-life

scenarios such as blurry, dust, salt-pepper, and flaring effect.

Therefore, in general, the total test set has 250 images, in

which 50 images come from the original dataset and the

other 150 images are copies of them with augmentation

effects. An example of an original image and its synthetic

versions are shown in Figure 3.

The synthetic images with dust and salt-pepper

augmentation are to simulate the disturbances coming from

the weather and environmental conditions, while the blurring

augmentation is used to simulate foggy or out-of-focus

issues captured by the camera in the field and maybe disrupt

the classification of the targeted object class.

Figure 3. An example of an original image and its synthetic
versions with a) original image, b) blurry filter c) adding salt-
pepper disturbance, and d) adding dust disturbance.

Journal of Computational and Cognitive Engineering Vol. XX Iss. XX yyyy

__

 7

4.3 Evaluation Metrics

The performance of the trained detectors was evaluated by

being tested with a test dataset. The true positive (TP), false

positive (FP), and false negative (FN) were counted from the

detection results and used to find the precision, recall, and

F1 score metrics. TP is the number of correctly detected

objects, while FP shows the amount of the falsely detected

object and FN informs the number of targeted objects which

were missed during the detection process. The three metrics

can then be used to evaluate further aspects of the models’

performance such as precision, recall, F1-Score, and average

precision, which were also used for model evaluation in this

work. In addition, the average processing time of the models

during the detection process was also measured and used as

another evaluation criterion, and Mean IoU was also used to

evaluate the localization of the detection.

4.3.1. Precision

Precision is an evaluation metric calculated with true

positives and false positives. The metric indicates how

accurate the detector’s performance is by showing the

percentage of correctly detected objects out of the total

detected objects. The relationship between the precision, true

positive and false positive numbers can be expressed as the

following:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

𝑇𝑃

𝐴𝑙𝑙 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
 (1)

4.3.2. Recall

Recall is an evaluation metric calculated with counted true

positives and false negatives. The recall value decreases

when the number of false negatives is increased. The metric

measures how many objects are missed by the evaluated

detector by showing the percentage of correctly detected

objects out of the total true objects. The relationship between

the recall and true positive and false negative numbers can

be expressed as the following:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝑇𝑃

𝐴𝑙𝑙 𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ𝑠
 (2)

4.3.3. F1-score

F1-Score is an evaluation metric calculated with both

precision and recall metrics, or with all counted true

positives, false positives, and false negatives. The F1-Score

metric combines both precision and recall with equal weight

to show the balance and relative relation between the

precision and recall metrics. The mathematical expression of

the F1-Score metric regarding other evaluation metrics is

shown as:

𝐹1 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

=
𝑇𝑃

𝑇𝑃 +
1
2

(𝐹𝑃 + 𝐹𝑁)

(3)

4.3.4. Average Precision (AP)

By adjusting the confidence score threshold, the precision

and recall will also be changed accordingly. Calculating the

mean value of the precision score corresponding to the

confidence score threshold varied from 0 to 1, average

precision, or AP for short, can be found.

4.3.5. Mean IoU

IoU stands for intersection over union. The intersection can

be understood as the over-lapping area between a ground-

truth bounding box and its corresponding detected bounding

box, while the union is the total area of the ground-truth

bounding box and the corresponding detected bounding box

with the omission of the overlapping area. The graphical

representation of the mentioned definition is shown in Figure

4.

Then, the IoU is the ratio of the intersection area over the

area of union of the two bounding boxes. The higher the

value of the IoU, the more matched the two bounding boxes

are. Therefore, the mean IoU, which is the mean value of the

IoU values of all available pairs of detected bounding boxes

and their corresponding ground-truth bounding boxes,

shows the localization of the examined algorithm. The

mathematical relation between the IoU, the area of

intersection, and the area of union can be expressed with the

following formula:

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 (4)

4.3.5. Processing Time

To examine the feasibility of real-time implementation of the

trained models, the models’ processing time was also

Figure 4. Area of Intersection (left) and Area of Union
(right) examples.

Journal of Computational and Cognitive Engineering Vol. XX Iss. XX yyyy

__

 8

measured and used as an evaluation metric. The processing

speed of a detector is found by calculating the mean

processing speed of the detector during its detection

operation over 250 test images.

4.4 Experimental Results

4.4.1. Precision, Recall, F1-score, mean IoU,

and AP evaluation

In this work, the models were evaluated for F1-score, mean

IoU, and AP evaluation metrics with different choices of IoU

threshold value. The following shows the performance tables

of the trained detectors through different testing scenarios

with IoU threshold values of 0.25, 0.50, and 0.75, which may

reflect the performance of the algorithms with different

localization demands. Additionally, in this paper, the result

performance of the models in normal testset or disturbance-

free is further discussed.

a) Normal Testset

In the normal test case with no augmented and synthetic

disturbances, it can be observed in all IoU thresholds that

YOLOv4-tiny is the model having the best performance in

all aspects among the three examined algorithms, YOLOv4-

tiny, SSD-MobileNetV1, and SSD-MobileNetV2.

Especially, for IoU threshold values 0.25 and 0.5, the

YOLOv4-tiny model achieved perfect F1-Score, and AP

metrics with the value of 1.0. Moreover, with high

localization constraints, YOLOv4-tiny still has a good F1-

score which is 0.847. In addition, the detection from the

YOLOv4-tiny model also has great localization based on the

mean IoU metric, which is 0.834 for IoU threshold 0.25 and

0.50, and 0.857 for IoU threshold 0.75. Nevertheless, SSD-

MobileNetV2 also has comparable performance to the

performance of YOLOv4-tiny, since for IoU threshold 0.25

and 0.5, SSD-MobileNetV2 also achieved a great F1-Score,

and AP metrics with the values of 0.969 and 1.0 respectively.

In the extreme case of IoU threshold 0.75, SSD-

MobileNetV2 can also have good performance with values

of 0.751 for F1-score, and 0.69 for AP metric. In addition,

SSD-MobileNetV2’s detection also has similar localization

compared to YOLOv4-tiny, which are 0.811 for IoU

threshold 0.25 and 0.50 and 0.847 for IoU threshold with the

value of 0.75. The SSD-MobileNetV1 also has good

performance for IoU threshold 0.25 and 0.50; however, with

IoU threshold of 0.75, the model’s performance was heavily

compromised. Moreover, in all three IoU threshold cases, the

SSD-MobileNetV2 has better performance than SSD-

MobileNetV1 in all aspects. The performance results on

different localization constraints are shown in Figure 5.

b) Blurry Testset

In Blurry testset, a Box filter of size 30x30 is convolved over

the images in the Normal testset to create the blur effect

which aims to replicate the foggy weather inside the trap or

the out-of-focus issue of the camera. Generally, this testset

changes the overall features of the fruit flies because of the

averaging effect of the filter; therefore, the models might not

work as expected, which is clearly shown via the results of

SSD-MobileNetV2. However, According to Figure 6,

YOLOv4-tiny still performs stably on the testset.

Specifically, YOLOv4-tiny can maintain its metrics values

in the variation range of 0.2 throughout three IoU thresholds;

whereas SSD-MobileNetV2 is totally collapsed when the

IoU threshold increases and SSD-MobileNetV1

significantly drops in F1-Score and AP by a value of 0.6 at

the extreme case IoU threshold.

c) Salt-pepper Testset

The salt-pepper disturbances imply the appearance of

unwanted tiny fraction of leaves or other insects that are

Figure 6. Evaluation results on Blurry test set.

Figure 5. Evaluation results on Normal test set.

Figure 7. Evaluation results on Salt-pepper test set.

Journal of Computational and Cognitive Engineering Vol. XX Iss. XX yyyy

__

 9

accidentally flown into the trap by the wind. It is named

“Salt-pepper” because the effect looks visually like salt and

pepper on a dish, which is not related to the salt-and-pepper

noise in image processing point of view. It can be observed

from Figure 7 that YOLOv4-tiny, with extreme localization

constraint, IoU threshold 0.75, the model outperformed other

models, and it also has best mean IoU in all IoU threshold

constraints. However, adding the Salt-pepper disturbance

makes all three models’ performance worse than their

performance on the remaining testsets. Specifically, SSD-

MobileNetV1 suffers the most where in the extreme case,

both its F1-Score and AP drop to 0.

d) Dust Testset

With test images with added dust disturbance, it can be

observed in all IoU thresholds that YOLOv4-tiny has the

best performance in all aspects. Nevertheless, compared to

its performance with the normal dataset, it can be observed

that the disturbance effect did compromise the performance

of the model based on the F1-score. The same conclusion

can also be drawn for SSD-MobileNetV1 and SSD-

MobileNetV2 models based on their performance on the

testset. In addition, the dust disturbance also proves to have

a great negative effect on the SSD-MobileNetV2 model

when the extreme localization constraint is applied, since

while in the Salt-pepper testset with IoU threshold of 0.75,

the SSD-MobileNetV2 could still perform well with an F1-

Score value of 0.38, while with dust disturbance, the model

can only achieve 0.251 in F1-Score. Based on the mean IoU

metric, the dust disturbance also decreases the localization

of all three models’ detection results.

4.4.2. Processing time evaluation

In this work, the model candidates are examined with CPU,

GPU, and TPU hardware. Moreover, the SSD-MobileNetV1

and SSD-MobileNetV2 models with TFLITE convert

support were also converted into TFLITE format which is

compatible with TPU and can exploit the advantage of the

hardware. Table 1 shows the processing time of each model

on CPU, GPU, and TPU hardware. It can be observed that

SSD models have a faster processing time than the

YOLOv4-tiny model on GPU, CPU, or TPU hardware.

Moreover, the TFLITE version of SSD-MobileNetV1 and

SSD-MobileNetV2 models run on TPU is much faster than

SSD-MobileNetV1, SSD-MobileNetV2, and YOLOv4-tiny

inference graphs run on the same device. In addition, we

show the processing speed in FPS for TFLITE models with

SSD-MobileNetV1 and SSD-MobileNetV2 architecture on

a TPU device. TPU processors can be found in edge device

such as Google Coral Dev board, and by comparing the

processing speed of the models in TFLITE format in TPU

shown in this work and the processing speed of the models

in Raspberry Pi, it can be shown that with the same

architectures, the TFLITE models’ processing speed on a

TPU device is approximately 6 times faster than the

inference models on Raspberry Pi. This shows that TFLITE

model on TPU edge device would be a more feasible for real-

time application implementation.

Table 1. Comparisons of the processing time of the trap
object detection system between different types of
processing units

Models

CPU

Intel(R)

Xeon(R)

CPU @

2.30GHz

GPU

Tesla

V100-

SXM2-

16GB

TPU

Google

TPU v2

SSD-

MobileNetV1
3.414 FPS 29.140 FPS 1.025 FPS

SSD-

MobileNetV2
3.485 FPS 21.000 FPS 1.024 FPS

SSD-

MobileNetV1

TFLITE

_ _ 8.743 FPS

SSD-

MobileNetV2

TFLITE

_ _ 10.058 FPS

YOLOv4-

tiny
1.282 FPS 1.207 FPS 0.545 FPS

5. Discussion

The assessments in this research are dedicated to search for
the most appropriate object detection method among the
current state-of-the-art algorithms which have been
implemented for insect and fly recognition under our
hardware constraints and problem definition. As we only
target one type of fruit flies that particularly causes harm to
the citrus fruits, we have replaced the yellow sticky paper
with a white disc containing the special attractant as a hard
refinement to pick up only the flies we are interested in. The
object detection problem is then simplified to only one-class
object detection, which eases the need for exhausting feature
extraction. However, the general constraints, such as
correctness and fastness, for an object detection task on an
edge-device still hold since early detection and separation of
the infected areas are extremely important to the fruit yield.

Figure 8. Evaluation results on Dust testset.

Journal of Computational and Cognitive Engineering Vol. XX Iss. XX yyyy

__

 10

Ultimately, SSD-MobileNetV1, SSD-MobileNetV2 and
YOLOv4-tiny are the best candidates for these requirements
because they utilize extracted features from a backbone
classification model to automatically propose object-related
regions instead of using a region-proposal module to pool
the related regions before classifying them as many two-
stage object detection models, such as Fast-RCNN and
Faster-RCNN.

Table 2. Overall assessment of the models, SSD-
MobileNetV2 TFLITE and YOLOv4-tiny based on F1-
Score and inference time.

Models

F1-Score

(Normal Testset

with 0.75 IoU

threshold)

Inference Time

(TPU

Google TPU v2)

SSD-

MobileNetV2

TFLITE

0.751 10.058 FPS

YOLOv4-

tiny
0.847 0.545 FPS

Regarding the correctness, YOLOv4-tiny clearly

outperforms the two SSD models over all the evaluations on

four different types of testset with very high and stable

results. This could make YOLOv4-tiny become the most

probable candidate, because YOLOv4-tiny demonstrates a

robust testing performance towards citrus fruit fly detection

although it has been fine-tuned only on a training dataset

without augmentation effects. SSD-MobileNetV2 shows

appropriate robustness given its small number of trainable

parameters by yielding good results in two over four testsets,

while SSD-MobileNetV1 only works with the original

testset. Nevertheless, SSD-MobileNetv2 fails dramatically

with the Blurry testset, which simulates a very frequent event

that could happen in a fruit field. YOLOv4-tiny is no doubt

the chosen one among the three methods if we would not

have taken other aspects into account.

Conventionally, highly accurate object detection methods

trade their processing speed for its better performance due to

the employment of more parameters in their architecture.

YOLOv4-tiny is not an exception where its processing speed

is far from real-time (1.2 FPS compared to 30 FPS). While

missing a fraction of time could lead to undetectable events

in which the flies appear, our second choice, which is the

SSD-MobileNetV2 model, should be considered. To realize

this choice after extensive performance analysis with four

different testsets, SSD-MobileNetV2 must have been fine-

tuned with more augmented versions of the original training

dataset before going to production to leverage its robustness

to the level of YOLOv4-tiny while retaining its processing

speed. Moreover, TFLITE version of SSD-models are also

tested on a cloud TPU Google engine, TPUv2, for the

feasibility of edge-device deployment. The overall

assessment table for YOLOv4-tiny and SSD-MobileNetV2

(TFLITE) is shown in Table 2 in terms of F1-Score and

inference time.

4. Conclusion

Experimental results show that the Raspberry Pi system

successfully gained environmental data and number of

counted pests which were transferred to email addresses

through the 4G network. The full YOLO version cannot run

in real time on Raspberry Pi which poses the need of a lighter

object detection algorithm for future research.

From the results, it can also be concluded that in general,

YOLOv4-tiny, with 0.847 F1-Score for IoU threshold 0.75,

has the best performance among the three model candidates.

Nevertheless, SSD-MobileNetV2 also has a comparable

performance, 0.751 F1-Score for IoU threshold 0.75, to the

YOLOv4-tiny model. Moreover, the SSD-MobileNetV2

model also outperforms the YOLOv4-tiny model in some

test scenarios with synthetic disturbances. In addition, SSD

models, especially SSD-MobileNetV2 model with 10.058

FPS on TPU, have a clear advantage over YOLOv4-tiny,

with 0.545 FPS on TPU, in processing time criterion, which

makes real-time detection application with high accuracy

feasible. Furthermore, the TFLITE versions of SSD models

also process faster than the SSD models’ inference graph on

TPU hardware, suggesting a feasibility of real-time

implementation of the SSD models on edge devices with

TPU processors such as Google Coral Dev Board with edge

TPU.

Recommendations

In the future work, Google Coral Dev Board will be

implemented on the system, which can be used to compare

with the Raspberry Pi 3b+’s in accuracy and processing time

aspects. In addition, in-field operation of the system will be

tested to check the system’s practicability and for further

improvement. From the test result with the synthetic test sets,

the SSD family models were susceptible to disturbance and

noise compared to the YOLOv4-tiny model. Our next

attempt is also to improve the SSD models’ performance

training the detectors with augmented and synthetic data

synthesized from the original dataset. Moreover, by building

several trap devices, we will try to apply federated learning

on the multiple on-field traps so that the detection algorithm

can be trained, and improved while being applied on the

field. Hence, the detection performance of the traps can be

further boosted. Moreover, the performance of the detection

models can also be enhanced with the implementation of

wavelet analysis due to the preservation of detailed features.

This has been proposed and tested in [44]. Furthermore, we

also would like to further develop our detection solution to

other types of insects so that it may not only enhance the

yellow fly detection performance but also make the solution

applicable for other insect detection problems. To achieve

the goal, we will need to expand our dataset so that it would

contain other types of insects.

Funding Support

Journal of Computational and Cognitive Engineering Vol. XX Iss. XX yyyy

__

 11

This research received no external funding.

Ethical Statement

This study does not contain any studies with human or

animal subjects performed by any of the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest in

this work.

Data Availability Statement

The data that support the findings of this study are openly

available in AlertTrap-Dataset at

https://github.com/a11to1n3/AlertTrap-

Dataset?tab=readme-ov-file.

References

[1] Song, N. V., Phuong, N. T., Cuong, H. N., Diep, N. X.,
Diep, D. T., Huyen, V. N., Huyen, V. T., Tiep, N. C., &
Trang, T. T. (2020). Vietnamese agriculture before and
after opening economy. Modern Economy, 11(04),
894–907. https://doi.org/10.4236/me.2020.114067.

[2] Martinez, D. A., Loening, U. E., Graham, M. C., &
Gathorne-Hardy, A. (2021). When the medicine feeds
the problem; do nitrogen fertilisers and pesticides
enhance the nutritional quality of crops for their pests
and pathogens? Frontiers in Sustainable Food Systems,
5. doi:10.3389/fsufs.2021.701310.

[3] Liu, H., Wang, X., Chen, Z., & Lu, Y. (2022).
Characterization of cold and heat tolerance of
Bactrocera Tau (walker). Insects, 13(4), 329.
doi:10.3390/insects13040329.

[4] Deguine, J.-P., Aubertot, J.-N., Flor, R. J., Lescourret,
F., Wyckhuys, K. A. G., & Ratnadass, A. (2021).
Integrated Pest Management: Good intentions, hard
realities. A Review. Agronomy for Sustainable
Development, 41(3). doi:10.1007/s13593-021-00689-
w.

[5] Jacquet, F., Jeuffroy, M.-H., Jouan, J., Le Cadre, E.,
Litrico, I., Malausa, T., Reboud, X., & Huyghe, C.
(2022). Pesticide-free agriculture as a new paradigm for
Research. Agronomy for Sustainable Development,
42(1). https://doi.org/10.1007/s13593-021-00742-8.

[6] Dara, S. K. (2019). The new Integrated Pest
Management Paradigm for the modern age. Journal of
Integrated Pest Management, 10(1).
doi:10.1093/jipm/pmz010.

[7] Tudi, M., Daniel Ruan, H., Wang, L., Lyu, J., Sadler,
R., Connell, D., Chu, C., & Phung, D. T. (2021).
Agriculture Development, pesticide application and its
impact on the environment. International Journal of
Environmental Research and Public Health, 18(3),
1112. https://doi.org/10.3390/ijerph18031112.

[8] Mamai, W., Maiga, H., Gárdos, M., Bán, P., Bimbilé
Somda, N. S., Konczal, A., Wallner, T., Parker, A.,
Balestrino, F., Yamada, H., Gilles, J. R., & Bouyer, J.
(2019). The efficiency of a new automated mosquito

larval counter and its impact on larval survival.
Scientific Reports, 9(1).
https://doi.org/10.1038/s41598-019-43333-0.

[9] Zhong, Y., Gao, J., Lei, Q., & Zhou, Y. (2018). A
vision-based counting and recognition system for flying
insects in intelligent agriculture. Sensors, 18(5), 1489.

[10] Kalamatianos, R., Karydis, I., Doukakis, D., &
Avlonitis, M. (2018). DIRT: The Dacus Image
Recognition Toolkit. Journal of Imaging, 4(11), 129.

[11] Xia, D., Chen, P., Wang, B., Zhang, J., & Xie, C.
(2018). Insect Detection and Classification Based on an
Improved Convolutional Neural Network. Sensors, 18,
4169.

[12] Yasmin, R., Das, A., Rozario, L. J., & Islam, Md. E.
(2023). Butterfly Detection and classification
techniques: A Review. Intelligent Systems with
Applications, 18, 200214.
https://doi.org/10.1016/j.iswa.2023.200214.

[13] Doitsidis, L., Fouskitakis, G., Varikou, K., Rigakis, I.,
Chatzichristofis, S., Papafilippaki, A., & Birouraki, A.
(2017). Remote monitoring of the Bactrocera oleae
(Gmelin) (Diptera: Tephritidae) population using an
automated McPhail trap. Computers and Electronics in
Agriculture, 137, 69-78.

[14] Kumar, N., Nagarathna, & Flammini, F. (2023). Yolo-
based light-weight deep learning models for insect
detection system with field adaptation. Agriculture,
13(3), 741.
https://doi.org/10.3390/agriculture13030741.

[15] Batz, P., Will, T., Thiel, S., Ziesche, T. M., & Joachim,
C. (2023). From identification to forecasting: The
potential of image recognition and artificial intelligence
for aphid pest monitoring. Frontiers in Plant Science,
14. https://doi.org/10.3389/fpls.2023.1150748.

[16] Mamdouh, N., & Khattab, A. (2021). Yolo-based deep
learning framework for olive fruit fly detection and
counting. IEEE Access, 9, 84252–84262.
https://doi.org/10.1109/access.2021.3088075.

[17] Casson, A., Beghi, R., Giovenzana, V., Fiorindo, I.,
Tugnolo, A., & Guidetti, R. (2020). Environmental
advantages of visible and near infrared spectroscopy for
the prediction of intact olive ripeness. Biosystems
Engineering, 189, 1–10.
https://doi.org/10.1016/j.biosystemseng.2019.11.003.

[18] Velásquez, C., Aleixos, N., Gomez-Sanchis, J., Cubero,
S., Prieto, F., & Blasco, J. (2024). Enhancing
anthracnose detection in Mango at early stages using
hyperspectral imaging and machine learning.
Postharvest Biology and Technology, 209, 112732.
https://doi.org/10.1016/j.postharvbio.2023.112732.

[19] Adedeji, A. A., Ekramirad, N., Rady, A.,
Hamidisepehr, A., Donohue, K. D., Villanueva, R. T.,
Parrish, C. A., & Li, M. (2020). Non-destructive
technologies for detecting insect infestation in fruits
and vegetables under postharvest conditions: A critical
review. Foods, 9(7), 927.
https://doi.org/10.3390/foods9070927.

[20] Diller, Y., Shamsian, A., Shaked, B., Altman, Y.,
Danziger, B.-C., Manrakhan, A., Serfontein, L., Bali,
E., Wernicke, M., Egartner, A., Colacci, M., Sciarretta,
A., Chechik, G., Alchanatis, V., Papadopoulos, N. T.,
& Nestel, D. (2022). A real-time remote surveillance
system for fruit flies of economic importance:
Sensitivity and image analysis. Journal of Pest Science,
96(2), 611–622. https://doi.org/10.1007/s10340-022-
01528-x.

[21] Sciarretta, A., Tabilio, M. R., Amore, A., Colacci, M.,
Miranda, M., Nestel, D., Papadopoulos, N. T., &
Trematerra, P. (2019). Defining and evaluating a
decision support system (DSS) for the precise pest
management of the Mediterranean fruit fly, Ceratitis

https://github.com/a11to1n3/AlertTrap-Dataset?tab=readme-ov-file
https://github.com/a11to1n3/AlertTrap-Dataset?tab=readme-ov-file

Journal of Computational and Cognitive Engineering Vol. XX Iss. XX yyyy

__

 12

capitata, at the farm level. Agronomy, 9(10), 608.
https://doi.org/10.3390/agronomy9100608.

[22] Miranda, M. Á., Barceló, C., Valdés, F., Feliu, J. F.,
Nestel, D., Papadopoulos, N., Sciarretta, A., Ruiz, M.,
& Alorda, B. (2019). Developing and implementation
of decision support system (DSS) for the control of
olive fruit fly, Bactrocera oleae, in Mediterranean olive
orchards. Agronomy, 9(10), 620.
https://doi.org/10.3390/agronomy9100620.

[23] Lello, F., Dida, M., Mkiramweni, M., Matiko, J., Akol,
R., Nsabagwa, M., & Katumba, A. (2023). Fruit fly
automatic detection and monitoring techniques: A
Review. Smart Agricultural Technology, 5, 100294.
https://doi.org/10.1016/j.atech.2023.100294.

[24] Wang, J., Chen, X., Hou, X., Zhou, L., Zhu, C., & Ji, L.
(2016). Construction, implementation and testing of an
image identification system using computer vision
methods for fruit flies with economic importance
(Diptera: Tephritidae). Pest Management Science, 73,
1511-1528.

[25] Böckmann, E., et al. (2021). Rapid and low-cost insect
detection for analyzing species trapped on yellow sticky
traps. Scientific Reports, 11(1), 1-13.

[26] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A.
(2016). You Only Look Once: Unified, Real-Time
Object Detection. 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[27] Yun, W., et al. (2022). Deep learning-based system
development for black pine bast scale detection.
Scientific Reports, 12(1), 1-10.

[28] Lin, T.-Y., et al. (2014). Microsoft COCO: Common
Objects in Context. European Conference on Computer
Vision. Springer, Cham.

[29] Nguyen, Q. M., Pham, D. A., Pham, D. T., Le, A. D.,
H. Vo, N. Q., & Vo, H. B. (2023). SmartTrap: An on-
field insect monitoring system empowered by edge
computing capabilities. 2023 RIVF International
Conference on Computing and Communication
Technologies (RIVF).
https://doi.org/10.1109/rivf60135.2023.10471810.

[30] Pham, D., Le, A., Pham, D., & Vo, H. (2021).
AlertTrap: On Designing an Edge-Computing Remote
Insect Monitoring System. 2021 8th NAFOSTED
Conference on Information and Computer Science
(NICS) (NICS'21).

[31] Chen, P.-H., Wu, W.-J., & Hsu, J.-C. (2019). Detection
of male oriental fruit fly (Diptera: Tephritidae)
susceptibility to naled-and fipronil-intoxicated methyl
eugenol. Journal of Economic Entomology, 112(1),
316-323.

[32] Wu, F., & Li, Y. (2023). Lightweight field insect
recognition and classification model based on improved
deep learning under complex background. Security and
Communication Networks, 2023, 1–9.
https://doi.org/10.1155/2023/6560747.

[33] Xue, A., Li, F., & Xiong, Y. (2019). Automatic
identification of butterfly species based on gray-level
co-occurrence matrix features of image block. Journal
of Shanghai Jiaotong University (Science), 24(2), 220–
225. https://doi.org/10.1007/s12204-018-2013-y.

[34] Rajeena P. P., F., Orban, R., Vadivel, K. S.,
Subramanian, M., Muthusamy, S., Elminaam, D. S.,
Nabil, A., Abulaigh, L., Ahmadi, M., & Ali, M. A.
(2022). A novel method for the classification of
butterfly species using pre-trained CNN Models.
Electronics, 11(13), 2016.
https://doi.org/10.3390/electronics11132016.

[35] Almryad, A. S., & Kutucu, H. (2020). Automatic
identification for field butterflies by Convolutional
Neural Networks. Engineering Science and

Technology, an International Journal, 23(1), 189–195.
https://doi.org/10.1016/j.jestch.2020.01.006.

[36] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed,
S., & Berg, A. (2016). SSD: Single Shot MultiBox
Detector. Computer Vision – ECCV 2016, 21-37.

[37] Howard, A., Zhu, M., Chen, B., Kalenichenko, D.,
Wang, W., Weyand, T., ... & Adam, H. (2017).
MobileNets: Efficient Convolutional Neural Networks
for Mobile Vision Applications. ArXiv,
abs/1704.04861.

[38] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., &
Chen, L. (2018). MobileNetV2: Inverted Residuals and
Linear Bottlenecks. 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition.

[39] Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara,
A., Fathi, A., ... & Murphy, K. (2017). Speed/Accuracy
Trade-Offs for Modern Convolutional Object
Detectors. 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

[40] Redmon, J., & Farhadi, A. (2018). YOLOv3: An
Incremental Improvement. ArXiv, abs/1804.02767.

[41] Bochkovskiy, A., Wang, C., & Liao, H. Y. M. (2020).
YOLOv4: Optimal Speed and Accuracy of Object
Detection. ArXiv, abs/2004.10934.

[42] Jiang, Z., Zhao, L., Li, S., & Jia, Y. (2020). Real-time
object detection method based on improved YOLOv4-
tiny. ArXiv, abs/2011.04244.

[43] A11TO1N3/Alerttrap-Dataset: A dataset of fruitflies
images captured by Alerttrap. (n.d.). Retrieved from
https://github.com/a11to1n3/AlertTrap-
Dataset?tab=readme-ov-file.

[44] Le, A. D., Jin, S., Bae, Y. S., & Nguyen, T. (2023). A
novel learnable orthogonal wavelet unit neural network
with perfection reconstruction constraint relaxation for
image classification. 2023 IEEE International
Conference on Visual Communications and Image
Processing (VCIP).
doi:10.1109/vcip59821.2023.10402772.

https://doi.org/10.1109/rivf60135.2023.10471810
https://github.com/a11to1n3/AlertTrap-Dataset?tab=readme-ov-file
https://github.com/a11to1n3/AlertTrap-Dataset?tab=readme-ov-file

