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ABSTRACT OF THE DISSERTATION

Uncertainty, portability and ancestry in polygenic scoring

by

Yi Ding

Doctor of Philosophy in Bioinformatics

University of California, Los Angeles, 2024

Professor Bogdan Pasaniuc, Chair

Polygenic score (PGS) is a tool for understanding an individual’s predisposition to certain

diseases or complex traits based on its genetic profile. In the burgeoning era of genomic

medicine, PGS has emerged as a promising tool in advancing precision healthcare, demon-

strating versatile utility such as patient risk stratification, disease risk prediction, and disease

subtyping. However, its real application in clinical settings is limited by its uncertainty, bias,

and low portability across diverse populations. For example, an individual may receive differ-

ent genetic risk reports from different providers, and the score for a non-European individual

may be less accurate than for a European individual. To fully understand and partially ad-

dress these limitations, I first developed a Bayesian method to quantify the uncertainty in

PGS at the individual level. I find trait-specific genetic architecture such as larger poly-

genicity and lower heritability combined with a small training sample size will lead to large

uncertainty in PGS estimate, which in turn results in unreliable patient stratification in

downstream analysis. Next, I expanded this approach to encompass individuals from varied

genetic ancestry backgrounds. I find that the PGS performance varied from individual to in-

dividual with genetic distance playing a key role in impacting the performance of PGS; larger

genetic distance from training data correlates with higher uncertainty and lower accuracy

in testing individuals. These findings highlight the necessity of integrating individual-level

PGS metrics in personalized medicine and the need for increasing genetic research diversity
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to ensure equitable and responsible use of PGS in clinical settings.
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2.2 Framework for Extracting Uncertainty from Bayesian Methods for

Probabilistic PRS-Based Stratification. (a) Procedure to obtain uncer-

tainty from LDpred2. LDpred2 uses MCMC to sample from the posterior causal
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3.1 Illustration of population-level versus individual-level PGS accuracy.(a)

Discrete labelling of GIA with PCA-based clustering. Each dot represents an

individual. The circles represent arbitrary boundaries imposed on the genetic

ancestry continuum to divide individuals into different GIA clusters. The colour

represents the GIA cluster label. The grey dots are individuals who are left unclas-

sified. (b) Schematic illustrating the variation of population-level PGS accuracy

across clusters. The box plot represents the PGS accuracy (for example, R2)

measured at the population level. The question mark emphasizes that the PGS

accuracy for unclassified individuals is unknown owing to the lack of a reference

group. Grey dashed lines emphasize the categorical nature of GIA clustering.

(c) Continuous labelling of everyone’s unique position on the genetic ancestry

continuum with a PCA-based GD. The GD is defined as the Euclidean distance

of an individual’s genotype from the centre of the training data when projected

on the PC space of training genotype data. Everyone has their own unique GD,

di, and individual PGS accuracy, r2i . (d) Individual-level PGS accuracy decays

along the genetic ancestry continuum. Each dot represents an individual and

its colour represents the assigned GIA label. Individuals labelled with the same

ancestry spread out on the genetic ancestry continuum, and there are no clear

boundaries between GIA clusters. This figure is illustrative and does not involve

any real or simulated data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

xiii
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1.96 s.e.m. (c) Individual PGS accuracy decreases with GD. For each dot, the y-
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and the error bars represent ± 1.96 s.e.m. (d) Population-level metrics of PGS

accuracy recapitulate the decay in PGS accuracy across the genetic continuum.
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their GD. The x -axis is the average GD for the bin, and the y-axis is the squared

correlation between genetic liability and PGS estimates for the individuals within

the bin. The dot and error bars represent the mean and ± 1.96 s.e.m from 100
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PGS accuracy. The colour represents the GIA cluster. (b) Individual PGS ac-

curacy decreases across the entire ATLAS. (c) Population-level PGS accuracy

decreases with the average GD in each GD bin. All ATLAS individuals are di-

vided into 20 equal-interval GD bins. The x -axis is the average GD within the

bin, and the y-axis is the squared correlation between PGS and phenotype for

individuals in the bin; the dot and error bar show the mean and 95% confidence

interval from 1,000 bootstrap samples. R and P refer to the correlation between
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3.4 The correlation between individual PGS accuracy and GD is pervasive

across 84 traits across ATLAS and the UKBB. (a) The distribution of
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individuals are divided into 20 equal-interval GD bins. Bins with fewer than 50

individuals are not shown owing to large s.e.m. All panels share the same layout:
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CHAPTER 1

Introduction

Human traits are broadly classified into two major categories based on the number of genes

influencing them: Mendelian (or monogenic) traits and complex traits [1]. Mendelian traits,

like cystic fibrosis, typically result from mutations in a single gene. These mutations are

highly penetrant and rare, leading to traits or diseases with direct and predictable mani-

festations. In contrast, complex traits exhibit a“polygenic” nature. They emerge from the

cumulative impact of many genetic variants, each contributing a subtle effect to the overall

phenotype. Unlike the more straightforward inheritance patterns of Mendelian traits, the

polygenic basis of complex traits leads to less predictability and greater diversity in how

these traits manifest in individuals. Most common diseases such as Type 2 diabetes (T2D)

and cardiovascular disease follow such polygenic genetic patterns. Understanding the genetic

component of these complex traits is crucial for predicting, preventing, and intervening of

these diseases.

Polygenic score (PGS) is an estimate of an individual’s genetic predisposition by aggre-

gating the small effects of multiple variants across the genome [2]. The development of PGS

begins with Genome-Wide Association Studies (GWAS), where researchers scan the genome

of participants with diverse phenotype presentations (such as varying height) or different

disease statuses (such as the diagnosis of T2D or not) to find genetic variants that are asso-

ciated with specific traits or diseases[3]. Following GWAS, a set of genetic variants is selected

with their effects inferred based on the GWAS results, which constitute a PGS model. To

ensure accuracy and reliability, this model may be further validated in a dataset that is

similar to the target dataset. The PGS for an individual is then calculated by summing the

effects of selected genetic variants, which represents the individual’s genetic predisposition

1



to a certain trait or disease.

The ever-increasing GWAS sample sizes have significantly enhanced the predictive ac-

curacy of PGS for a wide range of complex traits and diseases, establishing it as a promis-

ing tool in both genomic research and clinical decision-making[2, 4–12]. Numerous studies

have demonstrated the versatile utility of PGS in patient stratification[13], personalized

treatment[14], disease risk prediction[15], and prognosis assessment[4, 16]. This broad util-

ity of PGS has drawn considerable attention from both academic and industrial sectors.

In the healthcare industry, companies such as 23andMe, AncestryDNA, and Invitae offer

direct-to-consumer genetic testing services for predicting disease predisposition to a vari-

ety of diseases, with certain conditions approved by FDA regulation[17]. Concurrently, in

academia, consortia like the PRIMED Consortium[18], eMERGE Network[19], and INTER-

VENE project[20] are at the forefront of investigating the clinical applications of PGS, aiming

to unlock their full potential in healthcare and to ensure responsible integration of PGS into

clinical practice[21].

As enthusiasm for PGS surges, several concerns have emerged. First, PGS exhibits no-

table variability for a given individual, which has raised doubts about the reliability and

reproducibility of PGS[17, 22, 23]. Many customers have expressed concerns about receiving

different or even opposite results from different companies. The potential causes for the

inconsistency include the use of different genetic variants and variations in the populations

used for model training. However, the degree of variation and the underlying causes are

not fully understood yet. It is important to quantify the individual-level PGS variation and

investigate the factors contributing to this variation across a wide range of diseases/traits

for the confident and responsible use of PGS in clinical application. Second, PGS exhibits

significant accuracy gaps between ancestries, raising concerns over health disparities[24]. De-

spite the increasing PGS accuracy due to the growing GWAS sample size, this improvement

disproportionately favors populations of European ancestry, which constitute over 85% of

GWAS data. PGS models trained on datasets overrepresented by European ancestries are

less predictive when applied to non-European populations. Such bias, if unaddressed, could
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potentially worsen existing health disparities if PGS becomes a standard tool in healthcare

systems.

Driven by these two main challenges, my thesis focuses on evaluating the performance of

PGS at the individual level among patients with diverse genetic backgrounds. First, I devel-

oped a general Bayesian framework to assess the uncertainty (variation) of PGS estimates at

the individual level when PGS are trained and applied to individuals of European ancestries.

By applying this framework to real data, I discovered a large uncertainty in PGS scores which

leads to unreliable patient stratification and ranking in the downstream analysis. Second,

I expanded the method to include scenarios where testing individuals come from a diverse

genetic ancestry background which may differ from the original training population. In this

enhanced method, I introduced a way to convert uncertainty to accuracy which is a more

intuitive metric for PGS evaluation. I investigated the variation of PGS accuracy across a

continuous genetic ancestries and found increased genetic distance corresponds to a lower

PGS accuracy. This trend is significant even among so-called ”homogenous” populations

like European Americans and more evident among admixed populations like Hispanic Latino

Americans. These findings highlight the importance of incorporating individual-level PGS

performance metrics in personalized medicine, emphasizing the need for tailored approaches

in diverse populations.

The projects described above are organized into the following thesis chapters:

1. Large uncertainty in individual polygenic risk score estimation impacts PRS-based risk

stratification.

2. Polygenic scoring accuracy varies across the genetic ancestry continuum.
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CHAPTER 2

Large uncertainty in individual polygenic risk score

estimation impacts PRS-based risk stratification

2.1 Introduction

PRSs have emerged as the main approach for predicting the genetic component of an individ-

ual’s phenotype and/or common-disease risk (that is, genetic value (GV)) from large-scale

genome-wide association studies (GWASs). Several studies have demonstrated the util-

ity of PRSs as estimators of genetic values in genomic research and, when combined with

nongenetic risk factors (for example, age, diet), in clinical decision-making [25–27]—for ex-

ample, in stratifying patients [13], delivering personalized treatment [14], predicting disease

risk [15], forecasting disease trajectories [4, 16] and studying shared etiology among traits

[28, 29]. Increasingly large GWAS sample sizes have improved the predictive value of PRS

for several complex traits and diseases [2, 4–12], thus paving the way for PRS-informed

precision medicine.

Under a linear additive genetic model, an individual’s GV is the sum of the individual’s

dosage genotypes at causal variants (encoded as the number of copies of the effect alleles)

weighted by the causal allelic effect sizes (expected change in phenotype per copy of the

effect allele). In practice, the true causal variants and their effect sizes are unknown and

must be inferred from GWAS data. Existing PRS methods generally fall into one of three

categories based on their inference procedure: (1) pruning/clumping and thresholding (P +

T) approaches, which account for linkage disequilibrium (LD) by pruning/clumping variants

at a given LD and/or significance threshold and weight the remaining variants by their

4



marginal association statistics [3, 30]; (2) methods that account for LD through regularization

of effect sizes, including lassosum [31] and BLUP prediction [32, 33]; and (3) Bayesian

approaches that explicitly model causal effects and LD to infer the posterior distribution of

causal effect sizes [33–36].

Both the bias and the variability of a PRS estimator are critical to assessing its practical

utility. Given that most PRS methods select variants and estimate their effect sizes, there

are two main sources of uncertainty: (1) uncertainty about which variants are causal (that is,

have nonzero effects) and (2) statistical noise in the causal effect estimates due to the finite

sample size of GWAS training data and the presence of LD between variants. The impacts

of sample size and LD on causal variant identification have been thoroughly investigated in

the statistical fine-mapping literature, with uncertainty increasing as the strength of LD in

a region increases and the sample size of the GWAS training data decreases [37, 38]. This

uncertainty about which variant is causal propagates into uncertainty in the weights used for

PRS, which can lead to different estimates of genetic value in a target individual. Evaluat-

ing how this uncertainty propagates to individual PRS estimation may improve subsequent

analyses such as PRS-based risk stratification.

Unfortunately, studies that have applied PRS and/or examined PRS accuracy have

largely ignored uncertainty in PRS estimates at the individual level [25], focusing instead

on cohort-level metrics of accuracy such as R2. Therefore, the degree to which uncertainty

in causal variant identification impacts individual PRS estimation and subsequent analyses

(for example, stratification) remains unclear. In contrast, in livestock breeding programs,

prediction error variance (PEV) of estimated breeding values has been used for decades to

evaluate the precision of individual estimates [39–41]. PEV can be directly computed by

inverting the coefficient matrix of mixed-model equations [39, 42–48]. The uncertainty in

other biomarkers and nongenetic risk factors has also been well studied [49]. For exam-

ple, smoothing methods and error-correction methods are performed before biomarkers and

nongenetic risk factors are included in predictive models [50, 51].

Motivated by potential clinical applications of PRS in personalized medicine, we focused
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on evaluating uncertainty in PRS estimates at the level of a single target individual. Our goal

was to quantify the statistical uncertainty in individual PRS estimates (P̂RSi) conditional

on the data used to train the PRS. First, we extended the Bayesian framework of LDpred2

(ref. [33]) to sample from the posterior distribution of an individual’s GV (GVi) to estimate

(1) the posterior s.d.(P̂RSi) and (2) ρ-level credible intervals for the genetic value (ρGVi-CI)

for different values of ρ. Second, we introduced an analytical form for the expectation across

individuals of s.d.(P̂RSi) as a function of heritability, number of causal variants and training

data sample size, and showed that the analytical form is accurate in simulations and real

data. Third, we show in simulations that ρGVi-CI is well calibrated when the target sample

matches the training data and that s.d.(P̂RSi) increases as polygenicity (number of causal

variants) increases and heritability and GWAS sample size decrease [52]. Analyzing 13 real

traits in the UK Biobank, we observed large uncertainties in individual PRS estimates that

greatly impacted the interpretability of PRS-based ranking of individuals. For example, on

average across traits, only 0.2% (s.d.= 0.6%) of individuals with PRS point estimates in the

top 1% also have corresponding 95% GVi-CI fully contained in the top 1%. Individuals with

PRS point estimates at the 90th percentile in a testing sample were ranked anywhere between

the 34th and 99th percentiles in the same testing sample after their 95% credible intervals

(CIs) were taken into account. Finally, we explored a probabilistic approach to incorporating

PRS uncertainty in PRS-based stratification and demonstrated how such approaches can

enable principled risk stratification under different cost scenarios.

2.2 Results

2.2.1 Sources of uncertainty in individual PRS estimation

Under a standard linear model relating genotype to phenotype (Methods), the estimand of

interest for PRS is the genetic value of an individual i, defined as GVi = x⊤
i β, where xi is

an M × 1 vector of genotypes and β is the corresponding M × 1 vector of unknown causal

effect sizes [53] (Methods). Different PRS methods vary in how they estimate causal effects
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β̂ to construct the estimator P̂RSi = x⊤
i β̂. Inferential variance in β̂ propagates into the

variance of P̂RSi. In this work, we focus on quantifying the inferential uncertainty in P̂RSi

and assessing its impact on PRS-based stratification.

To illustrate the impact of statistical noise in β̂ on P̂RSi, consider an example of a trait

for which the observed marginal GWAS effects at three SNPs are equal (Fig. 2.1). The trait

was simulated assuming that SNP1 and SNP2 are causal with the same effect, whereas SNP3

is not causal but tags SNP2 with high LD (0.9). The expected marginal effect is higher at

SNP2 than at SNP3, thus implying that GWAS with infinite sample size would correctly

identify the true causal variants and their effects. However, finite GWAS sample sizes induce

statistical noise in the observed marginal effects. For example, the marginal effect at SNP3

(tag SNP) is higher than at SNP2 (true causal SNP) in 12-30% of GWASs simulated with

sample size n = 100, 000 under the LD structure of Fig. 2.1. Thus, the key challenge is that,

given only GWAS marginal effects and LD, there is more than one plausible causal effect-size

configuration. In Fig. 2.1, the observed marginal effects could be driven by SNPs (1 and 2)

or (1 and 3) or (1, 2 and 3); in fact, (1 and 2) and (1 and 3) are equally probable in the

absence of other information. In such situations, one can generate different PRS estimates

for a given individual from the same training data. For example, P + T PRS methods and

lassosum, which assume sparsity, would probably select either SNPs (1 and 2) or (1 and 3),

whereas BLUP or Bayesian approaches would probably take an average over the possible

causal configurations, splitting the causal effect of SNP2 between SNPs (2 and 3). Thus, in

such cases, an individual with the genotype xi = (0, 1, 0)⊤ can be classified as being above

or below a prespecified threshold, depending on the approach/assumptions used to estimate

causal effects.

We explored inferential uncertainty in P̂RSi through two synergistic approaches. First,

we provided a closed-form approximation for the expected s.d.(P̂RSi) under simplifying as-

sumptions. Second, we sampled from the posterior distribution of the causal effects under the

framework of LDpred2 to estimate s.d.(P̂RSi) and compute credible intervals (CIs) for GVi

at prespecified confidence levels (for example, ρ = 95%) (Figure 2.2). As an example of the
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utility of such measures of uncertainty, we explored a probabilistic approach to PRS-based

risk stratification that estimates the probability that GVi is above a given threshold t (Fig.

2.2) and demonstrated how this probability can be used in conjunction with situation-specific

cost functions to optimize risk stratification decisions.

2.2.2 Analytical derivation of individual PRS uncertainty

We focus on evaluating PRS uncertainty within a general Bayesian framework, where the

posterior mean of the genetic effects conditional on a given GWAS, β̂ ≡ E(β|D), is used

to estimate the genetic value of a given individual, x⊤
i β̂ ≡ E(x⊤

i β|D,xi) (D = (X,y) with

access to individual-level genotypes X and phenotypes y or D = (β̂GWAS, R̂) with access to

marginal association statistics and LD). We define PRS uncertainty for individual i as the

posterior variance of its genetic value, var(x⊤
i β|D,xi). This quantity is an approximation to

the PEV of estimated breeding values in livestock genetics[41, 43], which are analogous to

genetic values in human genetics.

Assuming that every SNP has a nonzero causal effect drawn i.i.d. (independent and

identically distributed) from βj ∼ N
(
0,

h2
g

M

)
, one can derive a closed-form approximation to

the expectation across individuals of the posterior variance of genetic value. Given a GWAS

discovery dataset of N unrelated individuals drawn from a given population, the expected

PRS uncertainty for a test individual i randomly drawn from the same population is:

Exi

[
var
(
x⊤
i β|D, h2

g

)]
≈
(

1

h2
g

+
N

M

)−1

(2.1)

Under an infinitesimal model, the analytical form is an approximately unbiased estimator

of the expected posterior variance, even in the presence of LD (Fig. 2.3). Under noninfinites-

imal models, the analytical form underestimates the expected posterior variance, albeit by

a relatively small amount. Notably, across 13 phenotypes in the UK Biobank, the ana-

lytical form provides relatively accurate estimates of the empirical average of the standard

deviation s.d.(P̂RSi) computed from LDpred2 posterior sampling (R2 = 0.79 across traits;
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Fig. 2.3). Thus, the analytical form captures the interplay among SNP heritability, sample

size, and number of causal variants, and provides a useful approximation to individual PRS

uncertainty when posterior samples are unavailable.

2.2.3 Factors impacting individual PRS uncertainty in simulations

Next, we quantified the degree to which different parameters contribute to uncertainty in

individual PRS estimates in simulations starting from real genotypes of unrelated ẃhite

British’ individuals in the UK Biobank (UKBB, N = 291, 273 individuals (Ntrain = 250, 000,

Nvalidation = 20, 000, Ntest = 21, 273) and M = 459, 792 SNPs; Methods section).

First, we assessed the calibration of the ρ-level confidence intervals (CIs) for GVi esti-

mated by LDpred2. We compared the empirical coverage of the ρGVi-CIs (proportion of

individuals in a single simulation replicate whose ρGVi-CI overlaps their true GVi) with the

expected coverage (ρ) across a range of values of ρ. We find that, overall, the ρGVi-CIs are

well calibrated, albeit slightly miscalibrated in high-heritability, low-polygenicity simulations

(Fig. 2.4a). For example, across ten simulation replicates where h2
g = 0.25 and pcausal = 1%,

the 90% GVi-CIs have an average empirical coverage of 0.92 (s.e.m. = 0.005) (Fig. 2.4a).

The ρGVi-CIs estimated by LDpred2 are also robust to training cohort sample size. As indi-

viduals with large PRS estimates might have a larger number of effect alleles and therefore

accumulate more inferential variance, we investigate whether individual PRS uncertainty

varies with respect to their true genetic value, and find no significant correlation between an

individual’s standard deviation s.d.(P̂RSi) and their true genetic value (Fig. 2.4b).

We next assessed the impact of trait-specific genetic architecture parameters (heritability

and polygenicity) on individual PRS uncertainty, defined as the posterior standard deviation

(s.d.) of genetic value. First, we fixed heritability and varied polygenicity and found that

the standard deviation s.d.(P̂RSi) increases from 0.10 to 0.50 when the proportion of causal

variants increases from 0.1% to 100% (Fig. 2.4c). Second, we varied the heritability while

keeping polygenicity constant. As different heritabilities lead to different variances explained

by the PRS in the test sample, we scaled the individual s.d. (s.d.(P̂RSi)) by the s.d. of
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PRS point estimates across all tested individuals; we refer to this quantity as ’scaled s.d.’

(Methods). We found that the scaled s.d. decreases with heritability and sample size (Fig.

2.4d). For example, when h2
g = 0.05 and pcausal = 0.1%, a fivefold increase in training data

sample size (from 50,000 to 250,000) reduces scaled s.d. by threefold (from 1.50 to 0.56);

when h2
g = 0.05 and pcausal = 1%, the same increase in training data sample size reduces

the scaled s.d. by fourfold (from 1.10 to 0.39). Although the two simulation settings yield

the same expected variance per causal variant under our simulation framework (that is,

h2
g/(M × pcausal), Methods), we observe lower uncertainty across all sample sizes for h2

g = 0.5

and pcausal = 1%, further emphasizing the impact of trait-specific genetic architecture on

individual PRS uncertainty.

Next, we investigated the impact of different types of model misspecification on CI cal-

ibration and PRS uncertainty in simulations based on a set of 124,080 SNPs (the union of

36,987 UKBB array SNPs and 93,767 HapMap3 SNPs) on chromosome 2. First, we assessed

the impact of imperfect tagging of causal variants by simulating phenotypes from the set

of HapMap3 + UKBB SNPs (h2
g = 0.02, pcausal = 0.01, 0.001) and training the PRS on (1)

124,080 SNPs (HapMap3 + UKBB) and (2) 36,987 SNPs (UKBB only). The ’HapMap3 +

UKBB’ model contains all causal SNPs whereas the ’UKBB-only’ model excludes approx-

imately 70% of the causal SNPs, thus representing imperfect tagging of causal effects. As

expected, the empirical coverage of the CIs is biased downward across a range of values of

ρ when only the UKBB SNPs are used to train the model. This downward bias is less pro-

nounced when polygenicity is higher (for example, pcausal = 0.01 versus 0.001) because the

UKBB SNPs tag a larger proportion of heritability due to the increased causal SNP density.

Second, to assess whether the coexistence of large and small causal effects impacts PRS

uncertainty, we compared three simulation scenarios: (1) large effects only (pcausal = 0.001,

h2
g = 0.02), (2) small effects only (pcausal = 0.01, h2

g = 0.02), and (3) a ’mixture of normal’

model (pcausal = 0.0055, h2
g = 0.02 in total) composed of large effects (pcausal = 0.0005,

h2
g = 0.01) and small effects (pcausal = 0.005, h2

g = 0.01). We found that the presence of a

large number of small effects increases the uncertainty in individual PRS estimates. For ex-

10



ample, the average standard deviation s.d.(P̂RSi) among the 21,273 test individuals is 0.050,

0.087, and 0.11 for simulations (1), (2), and (3), respectively. In simulation (3), both PRS

uncertainty and accuracy (squared Pearson’s correlation between GV and PRS: R2
GV = 0.90,

0.51, 0.68 for (1), (2), and (3)) are approximate averages of simulations (1) and (2). Despite

the LDpred2 model being misspecified in the ’mixture of normal’ simulation, the GV-CIs

remain well calibrated. Third, we compared PRSs obtained using external reference LD (a

subsample of either 1,000 or 2,000 individuals held out from the UKBB training data) to

those obtained using in-sample LD (all 250,000 individuals in the training data) and found

similar degrees of PRS uncertainty and CI calibration.

2.2.4 Individual PRS Uncertainty in Real Data in the UK Biobank

We investigated individual PRS uncertainty across 13 traits in the UKBB: hair color, height,

body mass index (BMI), bone mineral density in the heel (BMD), high-density lipoprotein

(HDL), low-density lipoprotein (LDL), cholesterol, insulin growth factor 1 (IGF-1), creati-

nine, red blood cell count (RBC), white blood cell count (WBC), hypertension, and self-

reported cardiovascular disease (CVD). First, we focused on PRS-based stratification. As

most traits analyzed in the present study are not disease traits, we used ’above-threshold’

and ’below-threshold’ when referring to the results of stratification. We classified test indi-

viduals as above-threshold if their PRS point estimate (the posterior mean of their genetic

value) exceeded a prespecified threshold t (that is, P̂RSi > t), where t is set to the 90th

PRS percentile obtained from the test-group individuals. This threshold was chosen arbi-

trarily to provide an example of how one can compute and interpret PRS uncertainty; in

practice, choosing a threshold requires careful consideration of various trait-specific factors

such as prevalence and the intended clinical application. We then partitioned the above-

threshold individuals into two categories: individuals whose ρGVi-CIs are fully above the

threshold t (’certain above-threshold’) and individuals whose ρGVi-CIs contain t (’uncertain

above-threshold’). Similarly, we classified individuals with PRS estimates that lie below

a prespecified threshold into ’certain below-threshold’ and ’uncertain below-threshold’ cat-
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egories (Fig. 2.5a). At t = 90th percentile and ρ = 95%, only 0.8% (s.d. = 1.6%) of

above-threshold individuals (averaged across traits) were certain above-threshold; the re-

maining above-threshold individuals had 95% GVi-CIs that overlap t (Fig. 2.5b and Table

1). On the other hand, 21% (s.d. = 17.8%) of below-threshold individuals had 95% GVi-CIs

that do not overlap t. Consistent with simulations, we found that uncertainty is higher for

traits that are more polygenic [54] (Table 2.1 and 2.2), with the average standard deviation

s.d.(P̂RSi) ranging between 0.23 and 0.46 across the studied traits. We assessed the impact

of quantile normalization of phenotypes and verified that, for mildly skewed distributions,

the impact on uncertainty is small.

For completeness, we investigated the impact of the threshold t and credible level ρ on

PRS-based stratification uncertainty, defined as the proportion of above-threshold individ-

uals classified as ’certain above-threshold’ for a given trait. As expected, the proportion of

certain above-threshold classifications decreases as ρ increases (Fig. 2.6a). For traits with

higher average uncertainty (scaled s.d.), we observed lower rates of certain classifications

across all values of ρ. For example, at t = 90th and ρ = 95%, the proportion of above-

threshold individuals classified with certainty is 0% for BMI (average scaled s.d. = 1.54)

and 6.2% for hair color (average scaled s.d. = 0.62) (Fig. 2.6a). Height and HDL have simi-

lar average levels of uncertainty (average scaled s.d. of 0.95 for height and 0.96 for HDL) and

similar proportions of above-threshold individuals classified with certainty (0.9% for height

and 0.8% for HDL) (Fig. 2.6a and Table 2.1 and 2.2). Using a more stringent threshold t

amplified the effect of uncertainty on PRS-based stratification (Fig. 2.6b). For example, for

BMI and hair color, the proportion of certain classifications among above-threshold individ-

uals dropped for all values of ρ when we increased the threshold from t = 90th percentile to

t = 99th percentile (Fig. 2.6b).

We also quantified the impact of inferential variance in P̂RSi on PRS-based ranking of

the test-group individuals. Using two random samples of genetic effects, we generated two

independent rankings for all individuals in the test data and quantified the correlation in the

rankings (Fig. 2.5c and Methods). We observed large variability in the rankings across the
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test data, with the correlation of rankings ranging from 0.25 to 0.78 across the 13 traits. We

also estimated 95% CIs for the rankings of individuals at a given percentile (for example,

90th) (Table 2.3, Methods) and found high variability in the rankings. For example, in the

case of HDL, an individual at the 90th (99th) percentile based on their PRS point estimate

can lie within the 41st and 99th percentiles (72nd-99th) with 95% probability when the

inferential variance in PRS estimation is taken into consideration (Table 2.3).

2.2.5 Integrating uncertainty into PRS-based stratification

In contrast to current PRS-based stratification practices, which compare an individual’s PRS

point estimate, P̂RSi, to a given threshold t, in the present study, we explored the use of the

posterior probability that GV for individual i is above the threshold (that is, Pr(GVi > t)).

We estimated Pr(GVi > t) using Monte Carlo integration within the LDpred2 framework

and showed in simulations that the probability is well calibrated for different causal effect-size

distributions, despite slight miscalibration when polygenicity is high or when causal variants

are not present in the training SNP panel(Methods).

As expected, for traits with higher PRS uncertainty, we observed a smaller proportion

of testing individuals with deterministic classification (Pr(GVi > t) = 0 or 1). We also

found a tight correlation between P̂RSi and Pr(GVi > t) across individuals in the test data.

This is probably due to the relatively high polygenicity of the traits in the analysis; a lower

correlation is expected for traits with lower polygenicity.

However, Pr(GVi > t) also contains information about individual-level false-positive

(FP) and false-negative (FN) probabilities which, given a situation-specific cost function,

can be used to calculate the expected cost of an above-threshold versus below-threshold

classification (Methods). The cost functions for FP and FN should be carefully specified in

the context of the clinical application; for example, in the case of bone density scans, the

cost functions will depend on the actual cost of a low bone density versus risks associated

with exposure to low-dose X-rays. Consider three cost functions that relate the relative

costs of FP versus FN diagnoses: (1) equal cost for each FP and FN diagnosis (CFP =
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CFN = 1); (2) 3× higher cost for FP diagnoses (CFP = 3, CFN = 1); and (3) 3× higher

cost for FN diagnoses (CFP = 1, CFN = 3). For an individual with Pr(GVi > t) = 0.6,

the probability of a FP versus FN diagnosis is 0.4 versus 0.6, respectively. The expected

costs of FP diagnoses (Pr(FP ) × CFP ) under each scenario are (1) 0.4, (2) 1.2, and (3)

0.4; the expected costs of FN diagnoses (Pr(FN) × CFN) are (1) 0.6, (2) 0.6, and (3) 1.8.

Therefore, the classification for this individual that minimizes the expected cost under each

scenario is (1) above-threshold, (2) below-threshold, and (3) above-threshold. More notably,

as Pr(GVi > t) is well calibrated, we can estimate the expected cost for a population using

the individual probabilities of being above-threshold. As a demonstration, in simulations,

we generated the estimated cost curve on testing individuals (Methods) and found that it

is very close to the true cost curve despite slight inflation (Fig. 2.6c). The estimated cost

curves for the above-described cost functions achieve minimum cost at threshold = 0.5, 0.25,

and 0.75, respectively, which is close to the minima of the true cost curves (0.5, 0.25, 0.7;

Fig. 2.6c).

2.3 Discussion

In the present study, we demonstrated that uncertainty in PRS estimates at the individual

level can have a large impact on subsequent analyses such as PRS-based stratification and

can be complementary to cohort-level metrics of PRS accuracy such as R2. We proposed a

general procedure for obtaining estimates of individual PRS uncertainty that can be applied

to a wide range of existing PRS methods. Among 13 traits in the UKBB, we found that

even with GWAS sample sizes on the order of hundreds of thousands of individuals, there

is considerable uncertainty in individual PRS estimates that can impair the reliability of

PRS-based stratification. We proposed a probabilistic approach to stratification that can be

used in conjunction with situation-specific cost functions to help inform PRS-based decision-

making, noting that such an approach is not necessarily useful for all downstream applications

of PRS. As PRS must be combined with nongenetic risk factors (for example, age, lab values)

to evaluate an individual’s absolute risk for a given disease, the practical utility of PRS,
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including measures of uncertainty in PRS, is highly dependent on disease-specific factors

such as heritability, age of onset and the costs/risks that would be incurred by initiating

treatment, among many others [25, 27]. We note that this work focuses on estimating

genetic value rather than predicting the phenotype; uncertainty in predictions of phenotype

will be larger than the results reported here by 1 − h2
g due to the addition of uncertainty

in nongenetic factors [55], which can be further modeled and integrated [27, 50, 56–58]. We

conjecture that measures of individual PRS uncertainty will be most useful for characterizing

individuals whose combined risk scores (genetics + nongenetics factors) are at or close to

the decision threshold for medical intervention; we leave an investigation of uncertainty in

combined risk scores for future work.

We conclude with several caveats and future directions. First, we quantified individual

PRS uncertainty by extending LDpred2 (ref. [33]), which is just one of many existing

Bayesian methods that can be adapted for the same purpose [36, 59, 60]. Extensions of other

methods, including analogous procedures for P + T [61] and regularization-based approaches

[31, 32], could also be investigated. Overall, our methods produced well-calibrated CIs in

realistic simulation parameter ranges, albeit with slight miscalibration when polygenicity is

low and heritability is high. We hypothesized that this is due to several approximations

employed in LDpred2 for computational efficiency. We leave investigation of the impact of

approximation on calibration for future work.

Second, we proposed an analytical form to estimate the expected PRS uncertainty as a

function of GWAS sample size, the number of causal SNPs, and SNP heritability. Although

our analytical formula did provide a good approximation, systematic biases were observed,

largely due to the omission of causal configuration uncertainty induced by LD. In practice,

we recommend using samples from the posterior distribution, the properties of which are

validated in our simulation studies.

Third, although we found broad evidence that both trait-specific genetic architecture

parameters (for example, heritability, polygenicity) and individual-specific genomic features

(for example, the cumulative number of effect alleles) can impact individual PRS uncer-
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tainty, both sources of uncertainty merit further exploration. For example, we performed

simulations under a model in which each causal variant explained an equal portion of total

SNP heritability but, in reality, genetic architecture can vary substantially among different

traits. We did not find a correlation between an individual’s cumulative number of effect

alleles and their individual PRS uncertainty. This was primarily due to the high polygenic-

ity of the traits being tested. Consequently, we observed a tight correlation between P̂RSi

and Pr(GVi > t) in most simulation scenarios except those with low polygenicity. Extend-

ing these analyses to traits with a wider range of genetic architectures, for example, traits

with both monogenic and polygenic disease risk factors, will be of interest [62, 63]. It is

also important to investigate the relative contributions of LD and small effect sizes to PRS

uncertainty under various genetic architectures. We leave methods development for PRS

uncertainty decomposition for future study.

Fourth, although we showed that our approach was robust to certain types of model

misspecification (for example, mixture of normal effect-size distributions, imperfect tagging

of causal effects), we do not exclude the possibility of nonlinear interaction effects such

as GxE, GxG, and dominance effects [64–67]. An investigation of the impact of genotype

imputation on uncertainty also merits further exploration. We leave a full investigation of

these questions for future work.

Last, in the present study, we did not investigate individual PRS uncertainty in transeth-

nic or admixed population settings. Causal variants, causal effect sizes, allele frequencies,

and LD patterns can vary substantially across populations [68, 69]. Moreover, PRS pre-

diction accuracy (measured via cohort-level metrics) is well known to depend heavily on

the ancestry of the individuals in the GWAS training data [22, 70]. We leave a detailed

exploration of individual PRS uncertainty with respect to ancestry for future work.
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2.4 Methods

2.4.1 Individual PRS uncertainty

2.4.1.1 Definition of individual PRS uncertainty

Let yi be a trait measured on the ith individual, xi anM×1 vector of standardized genotypes

and β anM×1 vector of corresponding standardized effects for each genetic variant. Under a

standard linear model, the phenotype model is yi = x⊤
i β+ ϵi, where ϵi ∼ N(0, σ2

e). The goal

of the PRS methods is to predict genetic value for individual i GVi = x⊤
i β of the phenotype.

In practice, the genetic effects β are unknown and need to be inferred from GWAS data

as β̂. Therefore, the inferential variance in β̂ propagates to the estimated genetic value

of individual i P̂RSi = x⊤
i β̂. In the present study we studied the inferential variance in

P̂RSi = x⊤
i β̂ as a noisy estimate of GVi = x⊤

i β.

2.4.1.2 Connection between PEV and posterior variance

PEV, a widely used concept in the animal breeding literature, is defined as varβ,y

[
x⊤
i β̂ − x⊤

i β
]
,

where xi is the genotype of individual i and β̂ = Eβ|y [β] is the posterior mean of the causal

effects. This variance is with respect to the randomness of both the prior β and phenotype

y, conditional on a fixed genotype matrix X. Furthermore, assumptions can be made on X,

to incorporate the randomness in X. PRS uncertainty with X fixed, which we derive here,

will be a lower bound for PRS uncertainty with random X.

It follows from the law of total variance that varβ,y [β] = Ey

[
varβ|y [β]

]
+ vary

[
Eβ|y [β]

]
.

Using the fact that varβ,y

[
β̂ − β

]
= varβ,y [β]− varβ,y

[
β̂
]
(from ref. [40]), we have:

varβ,y

[
β̂ − β

]
= varβ,y [β]− varβ,y

[
β̂
]

= Ey

[
varβ|y [β]

]
+ vary

[
Eβ|y [β]

]
− varβ,y

[
β̂
]

= Ey

[
varβ|y [β]

]
.

Finally, by multiplying a fixed genotype vector xi to both sides, we have:
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varβ,y

[
x⊤
i β̂ − x⊤

i β
]
= Ey

[
varβ|y

[
x⊤
i β
]]

.

Therefore, the posterior variance is an unbiased estimator of prediction error variance.

We also noted that under the infinitesimal model setting, the posterior variance of genetic

value has the same matrix form as the inversion of coefficient matrix of the mixed-model

equation for BLUP ([39, 40]).

2.4.2 PRS uncertainty analytical form under infinitesimal model

To facilitate understanding of PRS uncertainty, we derived an analytical estimator of PRS

uncertainty under simplified assumptions: (1) allM SNPs are independent and causal and (2)

effect sizes are i.i.d. and drawn from an infinitesimal model, βj ∼ N
(
0,

h2
g

M

)
for j = 1, . . . ,M ,

where h2
g is the total heritability and M is the number of causal variants. Without loss of

generality, we assume that genotypes are standardized to have mean zero and unit variance

in the population, that is E (xij) = 0 and var (xij) = 1, where xij is the genotype at SNP j

for individual i. Under this assumption, following Appendix A in ref. [35], the least squares

estimate of the GWAS marginal effect β̂GWAS,j was approximately distributed as:

β̂GWAS,j|βj ∼ N

(
βj,

1

N

(
1−

h2
g

M

))
.

As the per-SNP heritability in this model,
h2
g

M
, is small, the variance 1

N

(
1− h2

g

M

)
can be

approximated as 1
N
. The posterior distribution of βj|β̂GWAS,j then becomes:

βj|β̂GWAS,j ∼ N

((
1 +

M

h2
gN

)−1

β̂GWAS,j,
1

N

(
1 +

M

h2
gN

)−1
)
.

Therefore, the posterior variance of genetic value for an individual with the genotype xi

can be approximated as:

var
(
x⊤
i β|xi,X,y, h2

g

)
≈

M∑
j=1

x2
ijvar

(
βj|β̂GWAS,j

)
=

∑M
j=1 x

2
ij

N

(
1 +

M

h2
gN

)−1

,
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where the approximation is based on the fact that βj and βk are approximately indepen-

dent in the posterior distribution.

Recalling that genotype is standardized so that E
(
x2
ij

)
= 1, the expected posterior

variance of genetic value in the population can be approximated by:

Exi

(
var
(
x⊤
i β|xi,X,y, h2

g

))
≈

ME
(
x2
ij

)
N

(
1 +

M

h2
gN

)−1

=

(
1

h2
g

+
N

M

)−1

.

2.4.3 Estimating individual uncertainty in Bayesian PRS models

2.4.3.1 Overview of the framework for estimating individual uncertainty

Next, we showed how Bayesian models for estimating P̂RSi can be extended to evaluate the

variance of its estimate. We focused on LDpred2, a widely used method, although a similar

approach could be incorporated in most Bayesian approaches. LDpred2 assumes that causal

effects at SNP j are drawn from a mixture distribution with spike at 0 as follows:

βj ∼


N
(
0,

h2
g

Mpcausal

)
, with probability pcausal

0, with probability 1− pcausal

where M is the total number of SNPs in the model, h2
g is the heritability of the trait,

and pcausal is the proportion of causal variants in the model (that is, polygenicity). Let

β̂GWAS and R̂ represent GWAS marginal effects and LD matrix computed from GWAS

samples. By combining the prior probability p(β|h2
g, pcausal) and the likelihood of observed

data p(β̂GWAS|β, R̂), we can compute a posterior distribution as p(β|β̂GWAS, R̂, h2
g, pcausal).

The posterior distribution is intractable and therefore LDpred2 uses Markov Chain Monte

Carlo (MCMC) to obtain posterior samples from p(β|β̂GWAS, R̂, h2
g, pcausal). For simplicity,

we used β̃ ∼ p(β|β̂GWAS, R̂, h2
g, pcausal) to refer to the samples from the posterior distribution,

and p(β̃) to refer to p(β|β̂GWAS, R̂, h2
g, pcausal) whenever the context was clear. The posterior

samples of the causal effects are summarized using the expectation E
[
β̃
]
=
∫
β̃p
(
β̃
)
dβ̃,

leading to P̂RSi = x⊤
i E
[
β̃
]
.

19



Unlike existing methods that summarize the posterior samples of causal effects into the

expectation and then estimate P̂RSi, we sampled from the posterior of PRSi to construct

a ρGVi-CI for each individual. The Bernstein-von Mises theorem provides the basis that,

under certain conditions, such constructed Bayesian CI will asymptotically be of coverage

probability ρ[71]. This property of the Bayesian CI provides an intuitive explanation of the

uncertainty. Concretely, we obtain B MCMC samples from the posterior distribution of

causal effects p(β̃): β̃(1), β̃(2), . . . , β̃(B). Then we computed a PRS estimate for individual i

from each sample of p(β̃): x⊤
i β̃

(1),x⊤
i β̃

(2), . . . ,x⊤
i β̃

(B) to approximate the posterior distribu-

tion of PRSi. From the B samples of posterior, we obtained empirical 1−ρ
2

and 1+ρ
2

quantiles

as lower and upper bound estimates of ρGVi-CI. As B goes to infinity, such MCMC esti-

mates converge to the
[
Q(1−ρ)/2

(
x⊤
i β̃
)
, Q(1+ρ)/2

(
x⊤
i β̃
)]

, where Qα

(
x⊤
i β̃
)

represents the

α-quantile (here, α = (1− ρ)/2, (1+ ρ)/2) for the distribution of p(x⊤
i β̃). Similarly, we sum-

marized the posterior samples using the second moment to estimate s.d.(P̂RSi) = s.d.(x⊤
i β̃).

In practice, we used B = 500 because this leads to stable results. We investigated the

autocorrelation statistics and found no evidence of autocorrelation at various lags in our

experiment. We recommend checking autocorrelation in practice. The MCMC samplings

should be thinned when there is strong evidence of autocorrelation, which will otherwise lead

to underestimation of variance.

Although in the present study we focused on LDpred2, the above-described procedure is

generalizable to a wide range of Bayesian methods (for example, SBayesR[36], PRS-CS[59],

and AnnoPred[60]). Methods that are not based on Bayesian principle could potentially use

Bootstrap to obtain individual uncertainty intervals[72].

2.4.3.2 PRS analysis using LDpred2

We ran LDpred2 for both simulation and real data analysis with the following settings. We

calculated the in-sample LD with functions provided by the LDpred2 package, using the

window size parameter of 3 cM. We estimated the heritability h2
chri

, i = 1, . . . , 22 for each

chromosome with built-in constrained LD score regression[73] function. We ran LDpred2-
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grid per chromosome with a grid of 17 polygenicity parameters pcausal from 10−4 to 1 equally

spaced in log(space), three heritability parameters {0.7h2
chri

, 1.0h2
chri

, 1.4h2
chri

}, and with the

sparsity option both enabled and disabled, as recommended by LDpred2. We chose the model

with the highest R2 between the predicted posterior mean and the (adjusted) phenotype on

the validation set as the best model to apply to testing data. We extracted 500 posterior

samples of causal effects β̃(1), β̃(2), . . . , β̃(500) after 100 burn-in iterations from the MCMC

sampler of the model to approximate the posterior distribution of causal effects. For each

individual with genotype xi, we calculated x⊤
i β̃

(1),x⊤
i β̃

(2), . . . ,x⊤
i β̃

(500) to approximate the

GV posterior distribution for the individual i. We then calculated summary statistics of GV

posterior distribution, including the posterior mean P̂RSi, ρGVi-CI, and the probability of

above-threshold t (Pr(GVi ¿ t)).

2.4.3.3 Software implementation

Our method was implemented in the LDpred2 package. In the function ‘snp ldpred2 grid‘’,

setting the option ‘return sampling betas = TRUE‘ will output B posterior samples of the

causal genetic effects. Posterior samples of an individual’s GV were obtained by multiplying

the individual’s genotype by the M × B weight matrix. One could subsequently obtain the

posterior mean, posterior variance, and other quantities of interest from the posterior of the

GV. We noted that the time required to estimate the causal effects remains the same; the

only additional computational costs came from storing the M × B weight matrix and from

multiplying the genotype vector by an M × B matrix rather than an M × B vector. The

memory required to store 500 samples of causal effects for 459,792 SNPs is approximately 2

GB. Given the B posterior samples of causal effects, the runtime for computing the posterior

distribution of genetic value for 10,000 testing individuals was less than 5 minutes.
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2.4.4 Simulation experiments on PRS uncertainty under various genetic archi-

tecture

2.4.4.1 Simulation setup

We designed simulation experiments in various settings and different sample sizes to under-

stand the properties of uncertainty in PRS estimates. We used simulation starting from

genotypes in UKBB[74]. We excluded SNPs with minor allele frequency < 0.01 and geno-

type missingness > 0.01, and those SNPs that fail the Hardy-Weinberg test at significance

threshold 10−7, which left us 459,792 SNPs. We preserved ‘white British individual’, with

self-reported British white ancestry, and filtered pairs of individuals with kinship coefficient

< 1
2(9/2)

[74]. We further filtered individuals who were outliers for genotype heterozygosity

and/or missingness, and obtained 291,273 individuals for all analyses.

Given the genotype matrix X, heritability h2
g, proportion of causal variants pcausal, stan-

dardized effects and phenotypes are generated as follows:

βj ∼


N
(
0,

h2
g

Mpcausal

)
, cj = 1, with probability pcausal

0, cj = 0, with probability 1− pcausal

(y1, . . . , yN)
⊤ ∼ N(Xβ, (1− h2

g)IN)

Finally, given the phenotypes y = (y1, . . . , yN)
⊤ and genotypes X, we simulated the

GWAS marginal association statistics with β̂GWAS = 1
N
X⊤y. We simulated the data using a

wide range of parameters, h2
g ∈ {0.05, 0.1, 0.25, 0.5, 0.8}, pcausal ∈ {0.001, 0.01, 0.1, 1}, a total

of 20 simulation settings, with each repeated 10 times. The total population of individuals

is randomly assigned to 250,000 individuals as the training population, 20,000 individuals as

the validating population, and the remaining 21,273 individuals as the testing population,

following the usual practice for the PRS model-building process. When investigating how

sample sizes in the training cohort change PRS uncertainty, we varied the sample sizes in

the training population to 20,000, 50,000, 100,000, 150,000, and 250,000, while holding the

validation population and testing population intact, to enable a fair comparison between
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sample sizes.

2.4.4.2 Calculating and evaluating the coverage

We evaluated the coverage properties of ρGVi-CI in simulation: we checked whether

P
(
x⊤
i β ∈

[
Q(1−ρ)/2

(
x⊤
i β̃
)
, Q(1+ρ)/2

(
x⊤
i β̃
)])

= ρ. To evaluate this property, for each sim-

ulated dataset, we calculated the frequency of the true genetic risk lying in the predicted

interval, that is, the frequency of x⊤
i β ∈

[
Q(1−ρ)/2

(
x⊤
i β̃
)
, Q(1+ρ)/2

(
x⊤
i β̃
)]

for every indi-

vidual in the testing population, for ρ ∈ {0.1, 0.2, . . . , 1.0}. This property provided us an

intuitive understanding of the predicted interval: for an individual with a predicted interval[
Q(1−ρ)/2

(
x⊤
i β̃
)
, Q(1+ρ)/2

(
x⊤
i β̃
)]

, its true genetic risk was expected to be in this interval

with a probability ρ.

2.4.4.3 Scaled s.d. in individual PRS estimates

To compare the relative order of s.d. across different genetic architecture, especially across

genetic architecture with different heritability, we defined the quantity, scaled s.d., in indi-

vidual PRS estimates (scaled s.d.(P̂RSi)), to enable fair comparison. The quantity is defined

for every individual i, as s.d.β̃

[
x⊤
i β̃
]
/s.d.xi

[
x⊤
i β̂
]
, where the numerator term s.d.β̃

[
x⊤
i β̃
]

refers to the s.d. due to the posterior sampling of β̃ of the ith individual. Recalling that

x⊤
i β̂ = E

[
x⊤
i β̃
]
, the denominator term s.d.xi

[
x⊤
i β̂
]
refers to the variation of the point

estimate across individuals in the population.

2.4.5 Real data analysis

We performed real data analysis with 13 real traits from UKBB, including hair color, height,

BMI, BMD, HDL, LDL, cholesterol, IGF-1, creatinine, RBC and WBC, hypertension, and

CVD. The genotype was processed in the same way as the simulation study, where we have

459,792 SNPs and 291,273 individuals. We randomly partitioned the total of 291,273 indi-

viduals into 250,000 training, 20,000 validation, and 21,273 testing groups. Training samples
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were used to estimate PRS weights; validation samples were used to estimate hyperparam-

eters (for example, heritability and polygenicity) for LDpred2, and testing samples were

used to evaluate accuracy and uncertainty. The random partition was repeated five times

to average the randomness of results due to sample partition. For each round of random

partition of the individuals, we calculated marginal association statistics between genotype

and quantile-normalized phenotype in the training group with PLINK, using age, sex, and

the first 20 genetic principal components as the covariates. Then we applied LDpred2 to

obtain the individual posterior distribution of the genetic value, as described above. We

regressed out covariates from the phenotypes to obtain adjusted phenotypes, where the re-

gressing coefficients were first estimated from the training population, and then applied to

the phenotype from training, validation, and testing populations, respectively. We evaluated

the accuracy of PRS estimates in validation and testing groups using Pearson’s correlation

between PRS estimates and adjusted phenotypes.

2.4.6 Posterior individual ranking interval

The relative rank of individual PRS x⊤
i β̃

(b) in the population x⊤
j β̃

(b), j = 1, . . . , N var-

ied across different MCMC samplings of posterior causal effects. To evaluate the uncer-

tainty of ranking for individual i, we computed r
(b)
i as the ranking of x⊤

i β̃
(b) in the pop-

ulation x⊤
j β̃

(b), j = 1, . . . , N for each of the b = 1, . . . , B posterior samples to approxi-

mate posterior distribution of the relative rank. We could obtain ρ-level CIs of ranking as[
Q(1−ρ)/2 (ri) , Q(1+ρ)/2 (ri)

]
for each individual i. To assess the uncertainty of ranking for

individuals at the 90th (99th) percentile threshold based on PRS estimates, we selected indi-

viduals within 1 percentile of thresholds (89.5-90.5%, 98.5-99.5%) and computed mean and

s.d. for lower and upper bounds of ρ = 95% posterior ranking interval, across the selected

individuals.

With the B posterior causal effect samples β̃(1), β̃(2), . . . , β̃(B) after burn-in and N in-

dividuals in the testing population x1,x2, . . . ,xN , we computed PRS for each individual,

x⊤
1 β̃

(b), . . . ,x⊤
N β̃

(b) and its relative rank in the population r
(b)
1 , . . . , r

(b)
N for each posterior
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sample β̃(b). Then, for each pair of different b1th and b2th posterior samples, β̃(b1), β̃(b2),

we calculated Spearman’s correlation between r
(b1)
1 , . . . , r

(b1)
N and r

(b2)
1 , . . . , r

(b2)
N , representing

the variability of the ranks across MCMC samplings. We computed the rank correlation for

1,000 pairs of different MCMC samplings, and got the distribution of the rank correlation.

2.4.7 Probabilistic risk stratification

We defined the notion of probabilistic framework for risk stratification based on the posterior

distribution of GVi. Given a prespecified threshold t, for every individual, we could calculate

the posterior probability of the genetic risk larger than the given threshold t, Pr (GVi > t),

with MCMC integration as:

Pr (GVi > t) =
1

B

B∑
b=1

I(x⊤
i β̃

(b) > t).

We used the previous simulation settings to show that this probability is well calibrated.

For each simulation, we divided the individuals based on their posterior probability of being

at above-threshold into ten bins with {0, 0.1, . . . , 1.0} as breaks. For each bin, we calculated

the proportion of individuals with true genetic risk higher than the threshold as the empirical

probability, and the average posterior probability as theoretical probability. The empirical

probability was expected to be the same as theoretical probability.

The individualized posterior distribution of genetic value provided extra information

for patient stratification. We considered a scenario where there is a cost associated with

the decision that classifies (1) an individual with low genetic risk into a high genetic risk

category, CFP, and (2) an individual with high genetic risk into a low genetic risk category,

CFN. For an individual with posterior probability Pr(GVi > t), we wanted to decide an

action, whether to classify this individual to be at high genetic risk, and perform further

screening. If we classified this individual as above-threshold, we would have probability

1−Pr(GVi > t) that this individual was in fact below-threshold, inducing an expected cost

CFP(1 − Pr(GVi > t)). Conversely, if we classified this individual as below-threshold, we
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would have probability Pr(GVi > t) that this individual will be in the high genetic risk,

inducing an expected cost CFN Pr(GVi > t). To minimize the expected cost, we would

decide according to which action leads to the least cost. The critical value in this scenario

was CFN

CFP+CFN
: if Pr(GVi > t) > CFN

CFP+CFN
, we would choose to classify this individual as

above-threshold, otherwise below-threshold. For Fig. 6c, given the cost parameters CFP

and CFN, and a threshold t, for every decision threshold, we calculated the estimated cost

by summing up CFP(1 − Pr(GVi > t)) for those individuals classified as high genetic risk

category, and CFN Pr(GVi > t) for those individuals classified as low genetic risk category in

the testing data. Correspondingly, for every decision threshold, we also calculated the true

cost based on the ground truth of genetic values in the simulation.

2.5 Figures
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Figure 2.1: LD and finite GWAS sample size introduce uncertainty into PRS

estimation. We simulated a GWAS of N individuals across 3 SNPs with LD structure R

(SNP2 and SNP3 are in LD of 0.9 whereas SNP1 is uncorrelated with other SNPs), where

SNP1 and SNP2 are causal with the same effect size βc = (0.016, 0.016, 0) such that the

variance explained by this region is var(xTβc) = 0.5/1000, corresponding to a trait with

total heritability of 0.5 uniformly distributed across 1,000 causal regions. The marginal

effects observed in the GWAS, β̂GWAS, have an expectation of Rβc and variance-covariance

(σ2
e/N)R, thus showcasing the statistical noise introduced by finite sample size of GWAS

(N). For example, the probability of the marginal GWAS effect at tag SNP3 exceeding the

marginal effect of true causal SNP2, although it decreases with N , remains considerably high

for realistic sample and effect sizes (12% at N = 100, 000 for a trait with h2
g = 0.5 split across

1,000 causal regions). Given such an observation, in addition to the true causal effects βc,

other causal configurations are probable: β1 = (0.016, 0, 0.016) or β2 = (0.016, 0.008, 0.008).

An individual with genotype xi = (0, 1, 0)⊤ will attain different PRS estimates under these

different causal configurations. Most importantly, in the absence of other prior information,

β1 and βc are equally probable given the data, thus leading to different PRS estimates for

individual xi = (0, 1, 0)⊤.
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Figure 2.2: Framework for Extracting Uncertainty from Bayesian Methods for

Probabilistic PRS-Based Stratification. (a) Procedure to obtain uncertainty from LD-

pred2. LDpred2 uses MCMC to sample from the posterior causal effect distribution given

GWAS marginal effects and LD. It outputs the posterior mean of the causal effects for

estimating the posterior mean genetic value (the PRS point estimate). The density plot

represents the posterior distribution of GV for an individual. The shaded area represents

a ρ-level CI. The dot represents the posterior mean. (b) Probabilistic PRS-based stratifi-

cation framework. Given a threshold t, probabilistic PRS-based stratification assigns each

individual a probability of being above-threshold Pr(GVi > t).
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Figure 2.3: Expected standard deviation (s.d.(P̂RSi)) estimated as a function of

heritability, polygenicity, and training GWAS sample size is highly correlated

with average standard deviation (s.d.(P̂RSi)) across testing individuals. (a) The

analytical form provides approximately unbiased estimates of expected s.d.(P̂RSi) in simu-

lations when pcausal = 1. The x axis is the average s.d.(P̂RSi) in testing individuals. The

y axis is the expected s.d.(P̂RSi) computed from equation (1). Each dot is an average of

ten simulation replicates for each h2
g ∈ {0.05, 0.1, 0.25, 0.5, 0.8}. The horizontal whiskers

represent ±1.96 standard deviation of average s.d.(P̂RSi) across ten simulation replicates.

The vertical whiskers represent ±1.96 standard deviation of expected s.d.(P̂RSi) across ten

simulation replicates. (b) The analytical estimator of expected s.d.(P̂RSi) is highly cor-

related with estimates obtained via posterior sampling for real traits. The x axis is the

average s.d.(P̂RSi) in testing individuals. The y axis is the expected s.d.(P̂RSi) computed

from equation (1), where M is replaced with the estimated number of causal variants and

heritability is replaced with estimated SNP heritability.
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Figure 2.4: Genetic architecture (polygenicity, pcausal; SNP heritability, h2
g) and

GWAS sample size impact uncertainty in PRS estimates in simulations. (a) In-

dividual confidence intervals (CIs) are well calibrated (h2
g = 0.25, pcausal = 1%). Empirical

coverage is calculated as the proportion of individuals in a single simulation whose ρ-level

CIs contain their true genetic risk. The dots and error bars represent the mean ±1.96 stan-

dard error of the mean (s.e.m.) of the empirical coverage calculated from ten simulations.

(b) Correlation between uncertainty and true genetic value (h2
g = 0.25, pcausal = 1%). Each

dot represents an individual. The x axis is the true genetic value; the y axis is the standard

deviation of the individual PRS estimate. (c) Distribution of individual PRS uncertainty

estimates with respect to polygenicity. (d) Distribution of individual PRS uncertainty es-

timates with respect to heritability. Each violin plot represents scaled standard deviation

for 21,273 testing individuals across ten simulation replicates. (e) Distribution of individual

uncertainty estimates with respect to training GWAS sample size. Each violin plot repre-

sents scaled standard deviation of individual PRS for 21,273 testing individuals across ten

simulation replicates.
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Figure 2.5: Uncertainty in real data and its influence on PRS-based stratification.

(a) Example of posterior PRS distributions for individuals with certain below-threshold

(dark blue), uncertain below-threshold (light blue), uncertain above-threshold (light yellow)

and certain above-threshold (dark yellow) classifications for HDL. Each density plot is a

smoothed posterior PRS distribution of an individual randomly chosen from that category.

The solid vertical lines are posterior means. The shaded areas are 95% CIs. The red dotted

line is the classification threshold. (b) Distribution of classification categories across 13

traits (t = 90%, ρ = 95%). Each bar plot represents the frequency of testing individuals who

fall into each of the four classification categories for one trait. The frequency is averaged

across five random partitions of the whole dataset. (c) Correlation of PRS rankings of test

individuals obtained from two MCMC samplings from the posterior of the causal effects. For

each trait, we drew two samples from the posterior of the causal effects, ranked all individuals

in the test data twice based on their PRS from each sample, and computed the correlation

between the two rankings across individuals. Each violin plot contains 5,000 points (1,000

pairs of MCMC samples and five random partitions).
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Figure 2.6: Stratification uncertainty at different thresholds t and credible set

levels ρ. (a) Proportion of above-threshold classifications that are ‘certain’ for four rep-

resentative traits. The x axis shows ρ varying from 0 to 1 in increments of 0.05. The

stratification threshold t is fixed at 90%. (b)Proportion of above-threshold classifications

that are ‘certain’ for two representative traits and two stratification thresholds (t = 90th

and t = 99th percentiles). (c)Flexible cost optimization with probabilistic individual strat-

ification under various cost functions. Each color corresponds to one cost function: equal

cost for each FP and FN diagnosis (CFP = CFN = 1, green); 3 × higher cost for FP diag-

noses (CFP = 3, CFN = 1, blue); and 3 × higher cost for FN diagnoses (CFP = 1, CFN =

3, orange). The probability threshold for classification varies along the x axis. Solid lines

represent cost calculated using true genetic risk, and dotted lines represent cost estimated

from the probability of an individual being above-threshold. Diamond symbols represent

the optimal classification threshold for each curve (the minima). Simulation parameters are

fixed to h2
g = 0.25, pcausal = 1%.
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2.6 Tables

Table 2.1: PRS-based individual stratification uncertainty across 13 complex traits in UKBB

at 90th percentile stratification threshold

Trait PRS < t (’below-threshold’) PRS > t (’above-threshold’)

No. of certain

(s.d.)

% of certain

(s.d.)

No. of certain

(s.d.)

% of certain

(s.d.)

Hair color 18,398.6 (208.4) 87.4 (1.0) 4.4 (1.5) 2.1 (0.7)

Height 14,442.6 (147.6) 68.6 (0.7) 0.6 (0.9) 0.3 (0.4)

BMI 5,254.4 (739.1) 24.9 (3.5) 0.2 (0.4) 0.1 (0.2)

HDL 14,167.6 (691.4) 67.3 (3.3) 0.2 (0.4) 0.1 (0.2)

LDL 15,615.8 (448.1) 74.1 (2.1) 0.6 (0.5) 0.3 (0.3)

Cholesterol 14,793.2 (668.3) 70.2 (3.2) 0.2 (0.4) 0.1 (0.2)

IGF-1 11,049.2 (597.9) 52.5 (2.8) 0.2 (0.4) 0.1 (0.2)

Creatinine 8,337.2 (702.7) 39.6 (3.3) 0 (0) 0 (0)

RBC 1,1532.8 (1,056.9) 54.8 (5.0) 0 (0) 0 (0)

WBC 8,496.6 (370.7) 40.3 (1.8) 0 (0) 0 (0)

BMD 7,816.0 (511.1) 37.1 (2.4) 0.0 (0) 0.0 (0)

Hypertension 2,378.8 (390.7) 11.3 (1.9) 0 (0) 0 (0)

CVD 1,506.6 (512.3) 7.2 (2.4) 0 (0) 0 (0)

Average 1,0291.5 (5,220.4) 48.9 (24.8) 0.49 (1.2) 0.2 (0.6)
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Table 2.2: PRS-based individual stratification uncertainty across 13 complex traits in UKBB

at 99th percentile stratification threshold

Trait PRS < t (’below-threshold’) PRS > t (’above-threshold’)

No. of certain

(s.d.)

% of certain

(s.d.)

No. of certain

(s.d.)

% of certain

(s.d.)

Hair color 18,398.6 (208.4) 87.4 (1.0) 4.4 (1.5) 2.1 (0.7)

Height 14,442.6 (147.6) 68.6 (0.7) 0.6 (0.9) 0.3 (0.4)

BMI 5,254.4 (739.1) 24.9 (3.5) 0.2 (0.4) 0.1 (0.2)

HDL 14,167.6 (691.4) 67.3 (3.3) 0.2 (0.4) 0.1 (0.2)

LDL 15,615.8 (448.1) 74.1 (2.1) 0.6 (0.5) 0.3 (0.3)

Cholesterol 14,793.2 (668.3) 70.2 (3.2) 0.2 (0.4) 0.1 (0.2)

IGF-1 11,049.2 (597.9) 52.5 (2.8) 0.2 (0.4) 0.1 (0.2)

Creatinine 8,337.2 (702.7) 39.6 (3.3) 0 (0) 0 (0)

RBC 1,1532.8 (1,056.9) 54.8 (5.0) 0 (0) 0 (0)

WBC 8,496.6 (370.7) 40.3 (1.8) 0 (0) 0 (0)

BMD 7,816.0 (511.1) 37.1 (2.4) 0.0 (0) 0.0 (0)

Hypertension 2,378.8 (390.7) 11.3 (1.9) 0 (0) 0 (0)

CVD 1,506.6 (512.3) 7.2 (2.4) 0 (0) 0 (0)

Average 1,0291.5 (5,220.4) 48.9 (24.8) 0.49 (1.2) 0.2 (0.6)
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Table 2.3: Average 95% posterior ranking CIs for individuals at two stratification thresholds

for 13 traits

Trait t = 90th percentile t = 99th percentile

Lower bound

(s.d.)

Upper bound

(s.d.)

Lower bound

(s.d.)

Upper bound

(s.d.)

Hair color 57.9 (1.8) 97.9 (0.22) 88.0 (2.2) 99.8 (0.05)

Height 43.4 (2.1) 98.6 (0.18) 74.9 (3.4) 99.9 (0.04)

BMI 22.9 (2.1) 99.0 (0.17) 45.8 (4.0) 99.8 (0.04)

HDL 41.3 (2.8) 98.7 (0.18) 72.3 (4.1) 99.9 (0.04)

LDL 49.1 (2.4) 98.6 (0.19) 77.7 (3.5) 99.9 (0.04)

Cholesterol 45.1 (2.8) 98.6 (0.19) 74.9 (3.8) 99.9 (0.04)

IGF-1 33.2 (2.4) 98.8 (0.17) 63.0 (4.1) 99.9 (0.04)

Creatinine 28.0 (2.4) 98.9 (0.17) 54.7 (4.3) 99.9 (0.04)

RBC 34.5 (2.7) 98.8 (0.17) 64.4 (4.5) 99.9 (0.04)

WBC 28.2 (2.0) 98.9 (0.17) 56.0 (3.9) 99.9 (0.04)

BMD 26.0 (2.2) 98.9 (0.18) 52.5 (4.1) 99.9 (0.04)

Hypertension 17.7 (1.8) 99.0 (0.17) 36.6 (3.4) 99.8 (0.05)

CVD 15.5 (1.9) 99.0 (0.18) 32.3 (3.8) 99.8 (0.06)

Average 34.2 (12.9) 98.8 (0.03) 61.0 (16.6) 99.9 (0)

Note: We estimated the 95% posterior ranking CIs for individuals at the 90th and 99th

percentiles of the testing population PRS estimates. Mean and s.d. were calculated from

the 95% posterior ranking intervals of individuals whose point estimates lay within 0.5% of

the stratification threshold (213 individuals between the 89.5th and 90.5th percentiles for

t = 90th percentile and between the 98.5th and 99.5th percentiles for t = 99th percentile).
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CHAPTER 3

Polygenic scoring accuracy varies across the genetic

ancestry continuum

3.1 Introduction

Polygenic scores (PGSs) have limited portability across different groupings of individuals

(for example, by genetic ancestries and/or social determinants of health), preventing their

equitable use[70, 75, 76]. PGS portability has typically been assessed using a single aggregate

population-level statistic (for example, R2)[2], ignoring inter-individual variation within the

population. Here, using a large and diverse Los Angeles biobank (ATLAS, n = 36, 778)[77]

along with the UK Biobank[74] (UKBB, n = 487, 409), we show that PGS accuracy decreases

individual-to-individual along the continuum of genetic ancestries[78] in all considered popu-

lations, even within traditionally labelled ‘homogeneous’ genetic ancestries. The decreasing

trend is well captured by a continuous measure of genetic distance (GD) from the PGS

training data: Pearson correlation of −0.95 between GD and PGS accuracy averaged across

84 traits. When applying PGS models trained on individuals labelled as white British in the

UKBB to individuals with European ancestries in ATLAS, individuals in the furthest GD

decile have 14% lower accuracy relative to the closest decile; notably, the closest GD decile of

individuals with Hispanic Latino American ancestries show similar PGS performance to the

furthest GD decile of individuals with European ancestries. GD is significantly correlated

with PGS estimates themselves for 82 of 84 traits, further emphasizing the importance of

incorporating the continuum of genetic ancestries in PGS interpretation. Our results high-

light the need to move away from discrete genetic ancestry clusters towards the continuum of
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genetic ancestries when considering PGSs. Using two large biobank datasets, a study shows

that the accuracy of polygenic scores decreases as a function of relatedness at the individual

level when modeling genetic ancestry as a continuum.

PGSs—estimates of an individual’s genetic predisposition for complex traits and diseases

(that is, genetic liability; also referred to as genetic value)—have garnered tremendous atten-

tion recently across a wide range of fields, from personalized genomic medicine[2, 25, 26, 79]

to disease risk prediction and prevention[4, 14, 15, 80] to socio-genomics[21, 76]. However, the

variation in PGS performance across different genetic ancestries and/or socio-demographic

features (for example, sex, age, and social determinants of health)[75] poses a critical equity

barrier that has prevented widespread adoption of PGSs. Similar portability issues have also

been reported for non-genetic clinical models[81–83]. The interpretation and application of

PGSs are further complicated by the conflation of genetic ancestries with social constructs

such as nationality, race, and/or ethnicity. Here we investigate PGS performance across

genetically inferred ancestry (GIA), which describes the genetic similarity of an individual

to a reference dataset (for example, 1000 Genomes[84]) as inferred by methods such as prin-

cipal component analysis (PCA); GIAs do not represent the full genetic diversity of human

populations.

Genetic prediction and its accuracy (or reliability) have been extensively studied in agri-

cultural settings with a focus on breeding programs[85–88]. At the population level, PGS

accuracy can be expressed as a function of heritability, training sample size, and the number

of markers used in the predictor in single[52, 89, 90] or multi-population settings with or

without effect size heterogeneity[91]. At the individual level, accuracy of genetic prediction

from pedigree data[39, 92, 93] can be derived as a function of the inverse of the coefficient ma-

trix of mixed-models equations, whereas accuracy of genetic prediction using whole-genome

genetic data can be derived similarly, with the pedigree matrix replaced with the genomic

relationships matrix[86–88, 91, 94, 95] among training and testing individuals. Simulations

guided by dairy breeding programs showcase that genomic prediction accuracy varies with

genetic relatedness of the testing individual to the training data[96, 97] as well as across
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generations, owing to the decay of genetic relationships[98].

In humans, PGS performance evaluation has traditionally relied on population-level accu-

racy metrics (for example, R2) [2, 75]. PGS accuracy decays as the target populations become

more dissimilar from the training data using either relatedness [99, 100] or continental or sub-

continental ancestry groupings [22, 70, 101, 102]; the decay may be explained by differences

in linkage disequilibrium, minor allele frequencies and/or heterogeneity in genetic effects due

to gene–gene and gene–environment interactions [69]. However, population-level metrics of

accuracy provide only an aggregate (average) metric for all individuals in the population,

thus implicitly assuming some level of homogeneity across individuals [2, 75, 103]. Homo-

geneous populations are an idealized concept that only roughly approximate human data;

human diversity exists along a genetic ancestry continuum without clearly defined clusters

and with various correlations between genetic and socio-environmental factors [68, 78, 103–

106]. Grouping individuals into discrete GIA clusters obscures the impact of individual vari-

ation on PGS accuracy. This is evident among individuals with recently admixed genomes

for which genetic ancestries vary individual-to-individual and locus-to-locus in the genome.

For example, a single population-level PGS accuracy estimated across all African Ameri-

cans overestimates PGS accuracy for African Americans with large proportions of African

GIA [102]; likewise, coronary artery disease PGS performs poorly in Hispanic individuals

with high proportions of African GIA [107]. The genetic ancestry continuum affects PGS

accuracy even in traditionally labelled ’homogeneous’ or ’non-admixed’ populations. For

example, PGS accuracy decays across a gradient of subcontinental ancestries within Eu-

rope as the target cohorts become more genetically dissimilar from the PGS training data

[101, 106]. Assessing PGS accuracy using population-level metrics is further complicated

by technical issues in assigning individuals to discrete clusters of GIA. Different algorithms

and/or reference panels may assign the same individual to different clusters [101, 103, 108],

leading to different PGS accuracies. Moreover, many individuals are not assigned to any

cluster owing to limited reference panels used for genetic ancestry inference [77, 101], leaving

such individuals outside PGS characterization. This poses equity concerns as it limits PGS
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applications only to individuals within well-defined GIAs.

Here we leverage classical theory [39, 92, 93] and methods that characterize PGS perfor-

mance at the level of a single target individual [109] to evaluate the impact of the genetic

ancestry continuum on PGS accuracy. We use simulations and real-data analyses to show

that PGS accuracy decays continuously individual-to-individual across the genetic contin-

uum as a function of GD from the PGS training data; GD is defined as a PCA projection

of the target individual on the training data used to estimate the PGS weights. We leverage

a large and diverse Los Angeles biobank at the University of California, Los Angeles [77]

(ATLAS, n = 36, 778) along with the UK Biobank [74] (UKBB, n = 487, 409) to investigate

the interplay between genetic ancestries and PGS for 84 complex traits and diseases. The

accuracy of PGS models trained on individuals labelled as white British (WB; see Meth-

ods for naming convention used in this work) in the UKBB (n = 371, 018) is negatively

correlated with GD for all considered traits (average Pearson R = −0.95 across 84 traits),

demonstrating pervasive individual variation in PGS accuracy. The negative correlation re-

mains significant even when restricted to traditionally defined GIA clusters (ranging from

R = −0.43 for East Asian GIA to R = −0.85 for the African American GIA in ATLAS).

On average across the 84 traits, when rank-ordering individuals according to distance from

training data, PGS accuracy decreases by 14% in the furthest versus closest decile in the

European GIA. Notably, the furthest decile of individuals of European ancestries showed

similar accuracy to the closest decile of Hispanic Latino individuals. Characterizing PGS

accuracy across the continuum allows the inclusion of individuals unassigned to any GIA (6%

of all ATLAS), thus allowing more individuals to be included in PGS applications. Finally,

we explore the relationship between GD and PGS estimates themselves. Of 84 PGSs, 82

show significant correlation between GD and PGS with 30 showing opposite correlation (GD,

trait) versus (GD, PGS); we exemplify the importance of incorporating GD in interpretation

of PGSs using height and neutrophils in the ATLAS data. Our results demonstrate the need

to incorporate the genetic ancestry continuum in assessing PGS performance and/or bias.
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3.2 Results

3.2.1 Overview of the Study

PGS accuracy has conventionally been assessed at the level of discrete GIA clusters using

population-level metrics of accuracy. Individuals from diverse genetic backgrounds are rou-

tinely grouped into discrete GIA clusters using computational inference methods such as

PCA [110] and/or admixture analysis [111] (Fig. 3.5a). Population-level metrics of PGS

accuracy are then estimated for each GIA cluster and generalized to everyone in the cluster

(Fig. 3.5b). This approach has three major limitations: the inter-individual variability within

each cluster is ignored; the GIA cluster boundary is sensitive to algorithms and reference

panels used for clustering; and a substantial proportion of individuals may not be assigned

to any GIA owing to a lack of reference panels for genetic ancestry inference (for example,

individuals of uncommon or admixed ancestries).

Here we evaluate PGS accuracy across the genetic ancestry continuum at the level of a

single target individual. We model the phenotype of individual i as yi = xT
i β + ϵi, in which

xi is an M × 1 vector of standardized genotypes for M variants, β is an M × 1 vector of

standardized causal effects, and ϵi is random noise. Under a random effects model, genetic

liability gi = xT
i β and its PGS estimate ĝi = E(xT

i β|D) are random variables for which the

randomness comes from β and training data D = (Xtrain, ytrain). We define the individual

PGS accuracy as the correlation of an individual’s genetic liability and PGS estimate with

the following equation in consistency with classical theory[41, 92, 95]:

r2i (gi, ĝi) =
covβ,D(gi, ĝi)

2

varβ(gi)varβ,D(ĝi)
= 1−

ED(varβ|D(x
T
i β))

varβ(xT
i β)

(3.1)

Under an infinitesimal assumption for which all variants are causal and drawn from a

normal distribution N(0, σ2
β), the analytical form of PGS accuracy can be derived as:

r2i (gi, ĝi) = 1−
σ2
e

∑J
j=1

1
λj
xT
i vjv

T
j xi

σ2
βx

T
i xi

= 1− σ2
e

σ2
β

∑J
j=1

1
λj
xT
i vjv

T
j xi

xT
i xi
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in which σ2
β is per single nucleotide polymorphism (SNP) heritability; σ2

e is the variance of

residual environmental noise; vj and λj are the jth eigenvector and eigenvalues of training

genotype data, and J is the total number of eigenvectors.
∑J

j=1
1
λj
xT
i vjv

T
j xi is the squared

Mahalanobis distance of the testing individual i from the center of the training genotype

data on its principal component (PC) space, and xT
i xi is the sum of squared genotypes

across all variants. Empirically, the ratio of the squared Mahalanobis distance to the sum

of squared genotypes is highly correlated with the Euclidean distance of the individual from

the training data on that PC space (R = 1, P < 2.2 × 10−16 in the UKBB). Given that

this metric of accuracy is highly dependent on the GD from the training data, we term

it the panel distance r2i . In practice, we use LDpred2 to estimate ED(varβ|D(x
T
i β)) (refs.

[33, 109]) and approximate varβ(x
T
i β) as the heritability of the phenotype[93] (Methods).

As a continuous GD, we use di =
√∑J

j=1(x
T
i vj)

2 with J set to 20 (Fig. 1c,d and Methods).

We note two caveats of individual PGS accuracy: first, the genetic effects are assumed to

be the same for all individuals regardless of their genetic ancestry background; second, the

SNPs used for PGS training may not fully capture trait heritability. Therefore, the metric

we proposed here is an upper bound of genetic prediction accuracy.

3.2.2 PGS performance is calibrated in simulations

First, we evaluated calibration of the posterior variance of genetic liability ED(varβ|D(x
T
i β))

estimated by LDpred2 for individuals at various GDs from the UKBB WB training data

by checking the calibration of the 90% credible intervals (Fig. 3.5a). We simulated 100

phenotypes at heritability h2
g = 0.25 and proportion of causal variants pcausal = 1% for all

individuals in the UKBB, assuming shared causal variants and homogeneous causal effect

sizes for individuals from various genetic backgrounds (Methods). Overall, the 90% credible

intervals are approximately well calibrated (that is, the 90% credible interval overlaps with

the true genetic liability across 90 of 100 replicates, for all individuals, regardless of their GD

from the training population or GIA labels; Fig. 3.5a). For example, when individuals are

binned into 10 deciles based on their GD from the training population, the average empirical
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coverage of the 90% credible intervals is 89.7% (s.d. 2.6%) for individuals from the closest

decile (composed of 96.9% individuals labelled as WB, 3.1% labelled as PL under a discrete

view of ancestries; see detailed naming convention in) compared to the average empirical

coverage of 82.4% (s.d. 4.6%) for individuals from the furthest decile (composed of 19.9%

individuals labelled as CB and 80.1% labelled as NG).

Next, we investigated the impact of GD on individual-level PGS accuracy. As expected,

the width of the credible interval increases linearly with GD, reflecting reduced predictive

accuracy for the PGS (Fig. 3.5b). The average width of the 90% credible interval is 1.83

in the furthest decile of GD, a 1.8-fold increase over the average width in the closest decile

of GD. In contrast to the credible interval width, the individual-level PGS accuracy r̂2i

decreases with GD from the training data (Fig. 3.5c); the average estimated accuracy of

individuals in the closest decile GD is fourfold higher than that of individuals in the furthest

decile. Even among the most homogeneous grouping of individuals traditionally labeled as

WB, we observe a 5% relative decrease in accuracy for individuals at the furthest decile

of GD as compared to those in the closest decile. Similar results are observed when using

a population-level PGS metric of accuracy, albeit at the expense of binning individuals

according to GD; we find a high degree of concordance between the average r̂2i within the

bin and the population-level R2 estimated within the bin (Fig. 3.5d). Similarly, we observe

a high consistency between average r̂2i and squared correlation between PGS and simulated

phenotypes (R = 0.86, P < 10−10). Taken together, our results show that the 90% credible

intervals remain calibrated for individuals that are genetically distant from the training

population at the expense of wider credible intervals, and r̂2i captures the PGS accuracy

decay across GD.

To demonstrate that the continuous accuracy decay is not specific to PGS models trained

on European ancestries, we conducted further analyses using a non-European training dataset

composed of individuals of NG and CB GIAs (we grouped the two GIAs to attain sufficient

sample size for simulations). We simulated a high signal-to-noise trait by setting h2
g = 0.8

and proportion of causal variants pcausal = 1% and 0.1% with 56,539 SNPs on chromosome 10
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alone. We trained PGS models on 5,000 individuals from the NG and CB GIA clusters and

applied the models to the remaining testing individuals. The coverage of the 90% credible

intervals was invariant to GD despite slight miscalibration. The 90% credible interval width

increased and individual PGS accuracy decreased when the testing individual was further

away from the training data. This trend is consistent with the observed decrease in empirical

accuracy computed as squared correlation between PGS and genetic value as GD increases.

We further evaluated the impact of the number of PCs used for calculating GD on its

ability to capture accuracy decay. We varied the number of PCs (J) from 1 to 20 and observed

that the correlation between GD and individual accuracy (−cor(di, r
2
i (gi, ĝi))) increases when

more PCs are used for computing GD, but no further improvement is observed when J > 15

for any GIA clusters or the whole biobank. Therefore, we set J = 20 for simplicity. We also

explored average squared genetic relationship from training data as an alternative metric

of GD and found that it is a better prediction of accuracy decay within each GIA cluster.

However, because this metric relies on individual-level training data that are usually not

available, we choose to use PCA-based GD for convenience.

3.2.3 PGS accuracy across the genetic continuum

Having validated our approach in simulations, we next turn to empirical data. For illustra-

tion purposes, we use height as an example, focusing on the ATLAS biobank as the target

population with PGS trained on the 371,018 WB individuals from the UKBB . Other traits

show similar trends and are presented in the next sections. PGS accuracy at the individ-

ual level varies with GD across the entire biobank as well as within each GIA cluster (Fig.

3.5). For example, GD strongly correlates with PGS accuracy of individuals in the GIA

cluster labeled as Hispanic Latino American (HL, R = −0.84) and African American (AA,

R = −0.88) in ATLAS. Notably, GD correlates with PGS accuracy even in non-admixed

GIA clusters with correlations as −0.66, −0.66, and −0.35 for European American (EA),

South Asian American (SAA), or East Asian American (EAA) GIA clusters, respectively.

Similar qualitative results are also observed when applying PGS to test data from the UKBB;
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significant negative correlations are found between GD and individual PGS accuracy in all

of the subcontinental GIA clusters in the UKBB, with correlation coefficients ranging from

R = −0.031 for the WB cluster to R = −0.62 for the CB cluster.

This trend is consistent with the observed decrease in empirical accuracy computed as

squared correlation between PGS and genetic value as GD increases.

We further evaluated the impact of the number of PCs used for calculating GD on its

ability to capture accuracy decay. We varied the number of PCs (J) from 1 to 20 and observed

that the correlation between GD and individual accuracy (−cor(di, r
2
i (gi, ĝi)) increases when

more PCs are used for computing GD, but no further improvement is observed when J > 15

for any GIA clusters or the whole biobank. Therefore, we set J = 20 for simplicity. We also

explored average squared genetic relationship from training data as an alternative metric

of GD and found that it is a better prediction of accuracy decay within each GIA cluster.

However, because this metric relies on individual-level training data that are usually not

available, we choose to use PCA-based GD for convenience.

3.2.4 PGS accuracy varies across the genetic continuum

Having validated our approach in simulations, we next turn to empirical data. For illustra-

tion purposes, we use height as an example, focusing on the ATLAS biobank as the target

population with PGS trained on the 371,018 WB individuals from the UKBB (Methods);

other traits show similar trends and are presented in the next sections. PGS accuracy at the

individual level varies with GD across the entire biobank as well as within each GIA cluster

(Fig. 3.5). For example, GD strongly correlates with PGS accuracy of individuals in the GIA

cluster labelled as Hispanic Latino American (HL, R = −0.84) and African American (AA,

R = −0.88) in ATLAS. Notably, GD correlates with PGS accuracy even in non-admixed

GIA clusters with correlations as −0.66, −0.66, and −0.35 for European American (EA),

South Asian American (SAA), or East Asian American (EAA) GIA clusters, respectively.

Similar qualitative results are also observed when applying PGS to test data from the UKBB;

significant negative correlations are found between GD and individual PGS accuracy in all
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of the subcontinental GIA clusters in the UKBB.

Next, we focused on the impact of GD on PGS accuracy across all ATLAS individuals

regardless of GIA clustering (R = −0.96, P < 10−10; Fig. 3.5b). Notably, we find a strong

overlap of PGS accuracies across individuals from different GIA clusters demonstrating the

limitation of using a single cluster-specific metric of accuracy. For example, when rank-

ordering by GD, we find that the individuals from the closest GD decile in the HL cluster

have similar estimated accuracy to the individuals from the furthest GD decile in EA cluster

(average r̂2i of 0.71 versus 0.71). This shows that GD enables identification of HL individuals

with similar PGS performance to the EA cluster thus partly alleviating inequities due to

limited access to accurate PGS. Most notably, GD can be used to evaluate PGS performance

for individuals that cannot be easily clustered by current genetic inference methods (6%

of ATLAS; Fig. 3.5b) partly owing to limitations of reference panels and algorithms for

assigning ancestries. Among this traditionally overlooked group of individuals, we find the

GD ranging from 0.02 to 0.64 and their corresponding estimated PGS accuracy r̂2i ranging

from 0.63 to 0.21. In addition to evaluating PGS accuracy with respect to the genetic

liability, we also evaluated accuracy with respect to the residual height after regressing out

sex, age and PC1-10 on the ATLAS from the actual measured trait. Using equally spaced

bins across the GD continuum, we find that correlation between PGS and the measured

height tracks significantly with GD (R = −0.92, P = 1.1× 10−8; Fig. 3.5c).

3.2.5 PGS accuracy decay is pervasive

Having established the coupling of GD with PGS accuracy in simulations and for height, we

next investigate whether this relationship is common across complex traits using PGSs for a

broad set of 84 traits (Supplementary Table 1). We find consistent and pervasive correlations

of GD with PGS accuracy across all considered traits in both ATLAS and the UKBB (Fig.

3.4). For example, the correlations between GD and individual PGS accuracy range from

-0.71 to -0.97 with an average of -0.95 across the 84 PGSs in ATLAS with similar results

observed in the UKBB. Traits with sparser genetic architectures and fewer non-zero weights
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in the PGS have a lower correlation between GD and PGS accuracy; we reason that this is

because GD represents genome-wide genetic variation patterns that may not reflect a limited

number of causal SNPs well. For example, PGS for lipoprotein A (log lipoA) has the lowest

estimated polygenicity (0.02%) among the 84 traits and has the lowest correlation in ATLAS

(-0.71) and the UKBB (-0.85). By contrast, we observe a high correlation between GD and

PGS accuracy (>0.9) for all traits with an estimated polygenicity >0.1%.

Next, we show that the fine-scale population structure accountable for the individual PGS

accuracy variation is also prevalent within the traditionally defined genetic ancestry group.

For example, in ATLAS we find that 501 of 504 (84 traits across 6 GIA clusters) trait-ancestry

pairs have significant associations between GD and individual PGS accuracy after Bonferroni

correction. In the UKBB, we find 572 of the 756 (84 traits across 9 subcontinental GIA

clusters) trait-ancestry pairs have significant associations between GD and PGS accuracy

after Bonferroni correction. We also find that a more stringent definition of homogeneous

GIA clusters results in a lower correlation magnitude. Empirical analyses of PGS accuracy

show a similar trend. When averaging across 84 traits, we find that the empirical accuracy

decreases with increased GD across GIA clusters as reported by previous studies[33]. Further

analyses based on GD bins show the decreasing trend at a finer scale.

3.2.6 PGS varies across the genetic continuum

We have focused so far on investigating the relationship between GD (di) and PGS accuracy

(r̂2i ). Next, we evaluate the impact of GD on PGS estimates (ĝi) themselves. We find a

significant correlation between GD and PGS estimates for 82 of 84 traits, with correlation

coefficients ranging from R = −0.52 to R = 0.74; this broad range of correlations is in

stark contrast with the consistently observed negative correlation between GD and PGS

accuracy. To better understand whether the coupling of PGS with GD is due to stratification

or true signal, we compared the correlation of GD with PGS estimates (cor(di, ĝi)) to the

correlation of GD with measured phenotype values (cor(di, yi)). We find a wide range of

couplings reflecting trait-specific signals; for 30 traits, GD correlates in opposite directions
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with PGS versus phenotype; for 40 traits, GD correlates in the same directions with PGS

versus phenotype but differs in correlation magnitudes. For example, GD shows opposite and

significantly different correlations for PGS versus trait for years of education (years of edu,

cor(yi, di) = 0.03, cor(ĝi, di) = -0.18). Other traits, such as hair colour, show a highly

consistent impact of GD on PGS versus trait (darker hair, cor(yi, di) = 0.59, cor(ĝi, di) =

0.74), whereas for monocyte percentage, GD shows different magnitudes albeit with the same

directions (monocyte perc, cor(yi, di) = -0.03, cor(ĝi, di) = -0.52). Moreover, GD correlates

with PGS and phenotype even within the same GIA cluster, and the correlation patterns

vary across clusters.

The correlation of GD with phenotype and PGS is also observed in ATLAS. For example,

both height phenotype and height PGS vary along GD in ATLAS (Fig. 3.5); this holds true

even when restricting analysis to the EA genetic ancestry cluster (Supplementary Fig. 1).

This is consistent with genetic liability driving difference in phenotypes but could also be

explained by residual population stratification. For neutrophil counts, phenotype and PGS

vary in opposite directions with respect to GD across the ATLAS (Fig. 3.5), although the

trend is similar for phenotype and PGS in the EA GIA clusters (Supplementary Fig. 1).

This could be explained by genetic liability driving signal in Europeans with stratification for

other groups. Neutrophil counts have been reported to vary greatly across ancestry groups

with reduced counts in individuals of African ancestries [112]. In ATLAS, we observe a

negative correlation (-0.04) between GD and neutrophil counts in agreement with the pre-

vious reports, whereas GD is positively correlated (0.08) with PGS estimates—genetically

distant individuals traditionally labeled as African American having higher PGS than av-

erage. The opposite directions in phenotype–distance and PGS–distance correlations are

partly attributed to the Duffy-null SNP rs2814778 on chromosome 1q23.2. This variant

is strongly associated with neutrophil counts among individuals traditionally identified as

African ancestry, but it is rare and excluded in our training data. This exemplifies the po-

tential bias in PGS due to non-shared causal variants and emphasizes ancestral diversity

in genetic studies. As PGS can vary across GD either as a reflection of true signal (that
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is, genetic liability varying with ancestry) or owing to biases in PGS estimation ranging

from unaccounted residual population stratification to incomplete data (for example, partial

ancestry-specific tagging of causal effects), our results emphasize the need to consider GD

in PGS interpretation beyond adjusting for PGS r2i .

3.3 Discussion

In this work, we have shown that PGS accuracy varies from individual to individual and

proposed an approach to personalize PGS metrics of performance. We used a PCA-based

GD [101] from the centre of training data to describe an individual’s unique location on

the genetic ancestry continuum and showed that individual PGS accuracy tracks well with

GD. The continuous decay of PGS performance as the target individual becomes further

away from the training population is pervasive across traits and ancestries. We highlight

the variability in PGS performance along the continuum of genetic ancestries, even within

traditionally defined homogeneous populations. As the genetic ancestries are increasingly

recognized as continuous rather than discrete [68, 78, 103–106], the individual-level PGS

accuracy provides a powerful tool to study PGS performance across diverse individuals to

enhance the utility of PGS. For example, by using individual-level PGS accuracy, we can

identify individuals from Hispanic Latino GIA who have similar PGS accuracy to individuals

of European GIA, thus partly alleviating inequities due to lack of access to accurate PGS.

Simulation and real-data analyses show that individual PGS accuracy is highly correlated

with GD, in alignment with existing works showing that decreased similarity (measured by

relatedness, linkage disequilibrium and/or minor allele frequency differences, fixation index

(Fst) and so on) [69, 113] between testing individuals and training data is a major contributor

to PGS accuracy decay. However, practical factors that may affect transferability, such as

genotype–environment interaction and population-specific causal variants, are not modelled

in the calculation of individual PGS accuracy and this is left for future work.

Our results emphasize the importance of PGS training in diverse ancestries [114] as it can
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provide advantages for all individuals. Broadening PGS training beyond European ances-

tries can lead to improved accuracy in genetic effect estimation particularly for variants with

higher frequencies in non-European data. It can also increase PGS portability by reducing

the GD from target to training data. However, increased diversity may also bring challenges

to statistical modelling; for example, differences in genetic effects may correlate with envi-

ronment factors and could bias genetic risk prediction. To address these challenges, more

sophisticated statistical methods are needed that can effectively leverage ancestrally diverse

populations to train PGS [76, 115–117]. Concerted global effort and equitable collaborations

are also crucial to increase the sample size of underrepresented individuals as part of an

effort to reduce health disparities across ancestries [114, 118].

We highlight the pervasive correlation between PGS estimates and GD of varying mag-

nitude and sign as compared to the correlation between phenotype and GD. This provides

a finer resolution of the mean shift of PGS estimates across genetic ancestry groupings [22].

The correlation between GD and PGS estimates can arise from bias and/or true biological

difference, and more effort is needed to investigate the PGS bias in the context of genetic

ancestry continuum.

We note several limitations and future directions of our work. First, our proposed indi-

vidual PGS accuracy is an upper bound of true accuracy and should be interpreted only in

terms of the additive heritability captured by SNPs included in the model. Missing heritabil-

ity [119, 120] and misspecification of the heritability model along with population-specific

causal variants and effect sizes may further decrease real accuracy. For example, the pre-

diction accuracy for neutrophil count is overestimated among African American individuals

because the Duffy-null SNP rs2814778 [112] is not captured in the UKBB WB training data.

Future work could investigate the impact of the population-specific components of genetic

architecture on the calibration of PGS accuracy. Second, we approximate the variance of

genetic liability in the denominator of equation (1) with heritability and set a fixed value for

all individuals. Preliminary results show that replacing the denominator with a Monte Carlo

estimation of genetic liability variance recapitulates the accuracy decay in estimated PGS
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accuracy, albeit the correlation is slightly reduced. Third, individual PGS accuracy evalu-

ates how well the PGS estimates the genetic liability instead of phenotype. Quantifying the

individual accuracy of PGS with respect to phenotype can be achieved by also modelling

non-genetic factors for proper calibration. Fourth, limited by sample size, we combined GIA

groups as a training set in simulation experiments to replicate PGS accuracy decay; this is

not an optimal strategy for data analysis as the population structure in the training data may

confound the true genetic effects and reduce prediction accuracy. We leave a more compre-

hensive investigation of non-European PGS training data for future work. Sixth, although

we advocate for the use of continuous genetic ancestry, we trained our PGS models on a

discrete GIA cluster of WB because current PGS methods rely on discrete genetic ancestry

groupings. We leave the development of PGS training methods that are capable of modelling

continuous ancestries as future work. Finally, we highlight that, just like PGS, the tradi-

tional clinical risk assessment may suffer from limited portability across diverse populations

[83]. For examples, the pooled cohort equation overestimates atherosclerotic cardiovascular

disease risk among non-European populations [81]; and a traditional clinical breast cancer

risk model developed in the European population in the USA overestimated the breast can-

cer risk among older Korean women [82]. Here we focus on genetic prediction portability

owing to the wide interest and attention from both the research community and society. We

emphasize that improving the portability of traditional clinical risk factor models in diverse

populations is an essential component of health equity and requires thorough investigation.

3.4 Methods

3.4.1 Individual PGS accuray

3.4.1.1 Model setup

We model the phenotype of an individual with a standard linear model yi = x⊤
i β+ϵi, in which

xi is anM×1 vector of standardized genotypes (centred and standardized with respect to the

allele frequency in the training population for both training and testing individuals), β is an
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M ×1 vector of standardized genetic effects, and ϵi is random noise. Under a random effects

model, β is a vector of random variable sampled from a prior distribution p(β) that differs

under different genetic architecture assumptions[120] and PGS methods[33, 36, 59, 121]. The

PGS weights β̂ = Eβ|D(β) are estimated to be the posterior mean given the observed data

D (D = (Xtrain, ytrain) with access to individual-level genotype, Xtrain, and phenotype, ytrain;

or D = (β̂GWAS, R̂) with access to marginal association statistics β̂GWAS and LD matrix R̂,

in which GWAS stands for genome-wide association study). The genetic liability (gi = xT
i β)

of an individual i is estimated to be ĝi = Eβ|D(x
T
i β), the uncertainty of which is estimated

as the posterior variance of genetic liability var(ĝi) = varβ|D(x
T
i β) (ref. [109]).

3.4.1.2 Definition of individual PGS accuracy

We define individual PGS accuracy as the squared correlation between an individual’s genetic

liability, gi, and its PGS estimate, ĝi, following the general form in ref. [92]:

r2i =
covβ,D(gi, ĝi)

2

varβ,D(gi)varβ,D(ĝi)
=

varD(x
⊤
i β̂)

2

varβ(x⊤
i β)varD(x

⊤
i β̂)

(3.2)

Here we are interested in the PGS accuracy of a given individual; therefore, the genotype

is treated as a fixed variable, and genetic effects are treated as a random variable. We note

that a random effects model is essential; otherwise, covβ,D(gi, ĝi) and varβ,D(gi) are 0. Under

a random effects model, both the genetic liability and PGS estimate for individual i are

random variables. The randomness of gi = x⊤
i β comes from the randomness in β, and the

randomness of ĝi = x⊤
i β̂ comes from the randomness of both β and the training data D.

Individual PGS accuracy measures the correlation between gi and ĝi, which can be computed

with the following equation:

r2i = 1−
ED(varβ|D(x

⊤
i β))

varβ(x⊤
i β)

In which varβ|D(x
⊤
i β) is the posterior variance of genetic liability given the training data,

and varβ(x
⊤
i β) is the genetic variance. The equation is derived as follows.
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First, we show that under the random effects model, covβ,D(x
⊤
i β̂, x

⊤
i β) = varD(x

⊤
i β̂) (in

which β̂ = Eβ|D(β)) following equation 5.149 in ref. [40]:

covβ,D(β̂, β
⊤) = Eβ,D(β̂β

⊤)− Eβ,D(β̂)Eβ,D(β
⊤)

= ED(Eβ|D(β̂β
⊤))− ED,β(β̂)ED(Eβ|D(β

⊤))

= ED(Eβ|D(Eβ|D(β)β
⊤))− ED(Eβ|D(β))ED(Eβ|D(β

⊤))

= ED(Eβ|D(β)Eβ|D(β
⊤))− ED(Eβ|D(β))ED(Eβ|D(β

⊤))

= varD(Eβ|D(β))

= varD(β̂)

Multiplying xi on both sides of the equation, we obtain:

x⊤
i covβ,D(β̂, β)xi = x⊤

i varD(β̂)xi

covβ,D(x
⊤
i β̂, x

⊤
i β) = varD(x

⊤
i β̂) (3.3)

Equation (3) also implies the slope from regression of observed phenotypic values (or true

genetic liability) on the estimated PGS equal to 1, which offers an alternative way to assess

the calibration of PGS as done in refs. [36, 40].

slope =
cov(x⊤

i β̂, yi)

var(x⊤
i β̂)

=
cov(x⊤

i β̂, x
⊤
i β + ϵi)

var(x⊤
i β̂)

=
var(x⊤

i β̂)

var(x⊤
i β̂)

= 1

Next, by applying the law of total variance, we show that:

varβ,D(gi) = varβ,D(x
T
i β) = ED(varβ|D(x

T
i β)) + varD(Eβ|D(x

T
i β))

varD(x
⊤
i β̂) = varβ,D(x

⊤
i β)− ED(varβ|D(x

⊤
i β)) (3.4)

Third, we derive the correlation between gi and ĝi as:
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r2i =
covβ,D(gi, ĝi)

2

varβ,D(gi)varβ,D(ĝi)

=
varD(x

⊤
i β̂)

2

varβ(x⊤
i β)varD(x

⊤
i β̂)

by applying equation (3)

=
varD(x

⊤
i β̂)

varβ(x⊤
i β)

=
varβ,D(x

⊤
i β)− ED(varβ|D(x

⊤
i β))

varβ(x⊤
i β)

by applying equation (4)

= 1−
ED(varβ|D(x

⊤
i β))

varβ(x⊤
i β)

The above equation is widely used in animal breeding theory to compute the reliability

of estimated breeding value for each individual [93]. In this work, we use individual PGS

uncertainty var(ĝi) = varβ|D(x
⊤
i β) as an unbiased estimator of ED(varβ|D(x

⊤
i β)). We also

use estimated heritability to approximate varβ(x
⊤
i β) in simulations in which the phenotype

has unit variance. In real-data analysis, as the phenotype does not necessarily have unit

variance, we approximate varβ(x
⊤
i β) by scaling the estimated heritability with the residual

phenotypic variance in the training population after regressing GWAS covariates including

sex, age, and precomputed UKBB PC1-16 (Data-Field 22009).

3.4.1.3 Analytical form of individual PGS accuracy under infinitesimal assump-

tion

Without loss of generality, we assume a prior distribution of genetic effects as follows:

p(β|σ2
β) = MVN(0, σ2

βIM)

where M is the number of genetic variants. With access to individual genotype, Xtrain, and

phenotype, ytrain, data, the likelihood of the data is

p(ytrain|Xtrain, β, σ
2
e ) = MVN(Xtrainβ, σ

2
eIN)
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where N is the training sample size. The posterior distribution of genetic effects given the

data is proportional to the product of the prior and the likelihood:

p(β|Xtrain, ytrain, σ
2
β, σ

2
e ) ∝ p(β|σ2

β)p(ytrain|Xtrain, β, σ
2
e )

∝ MVN(0, σ2
βIM)MVN(Xtrainβ, σ

2
eIN)

∝ MVN(µβ, σβ)

in which µβ = ( σ
2
e

σ2
β
IM +X⊤

trainXtrain)
−1X⊤

trainytrain and Σβ = σ2
e (

σ2
e

σ2
β
IM +X⊤

trainXtrain)
−1. This

form is equivalent to the solution of random effects in the best linear unbiased prediction

with the pedigree matrix or genetic relationship matrix[39, 95].

For a new target individual, the posterior variance of the genetic liability is:

var(x⊤
i β|xi, Xtrain, ytrain, σ

2
β, σ

2
e ) = x⊤

i Σβxi = σ2
ex

⊤
i

(
σ2
e

σ2
β

IM +X⊤
trainXtrain

)−1

xi

After carrying out eigendecomposition on X⊤
trainXtrain =

∑J
j=1 λjvjv

⊤
j , we can rewrite(

σ2
e

σ2
β

IM +X⊤
trainXtrain

)−1

=

(
σ2
e

σ2
β

IM +
J∑

j=1

λjvjv
⊤
j

)−1

=
J∑

j=1

(
σ2
e

σ2
β

+ λj

)−1

vjv
⊤
j

in which λj and vj correspond to the jth eigenvalue and unit-length eigenvector of the

training genotype, Xtrain.

Thus, we can rewrite the posterior variance of genetic liability as

var(x⊤
i β|xi, Xtrain, ytrain, σ

2
β, σ

2
e ) = σ2

e

J∑
j=1

(
σ2
e

σ2
β

+ λj

)−1

x⊤
i vjv

⊤
j xi

ReplacingED(varβ|D(x
⊤
i β)) in equation (2) with the analytical form of var(x⊤

i β|xi, Xtrain, ytrain, σ
2
β, σ

2
e ),

we get

r2i = 1−
var(x⊤

i β|xi, Xtrain, ytrain, σ
2
β, σ

2
e )

var(x⊤
i β)

= 1−
σ2
e

∑J
j=1

(
σ2
e

σ2
β
+ λj

)−1

x⊤
i vjv

⊤
j xi

σ2
βx

⊤
i xi

As the eigenvalue of X⊤
trainXtrain increases linearly with training sample size N (ref. 68), at

the UKBB-level sample size (for example, N = 371, 018 for our UKBB WB training data),

the eigenvalues for the top PCs are usually larger than the ratio of environmental noise
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variance and genetic variance σ2
e

σ2
β
. Thus, we can further approximate the analytical form

with:

r2i = 1−
σ2
e

∑J
j=1

1
λj
x⊤
i vjv

⊤
j xi

σ2
βx

⊤
i xi

= 1− σ2
e

σ2
β

∑J
j=1

1
λj
x⊤
i vjv

⊤
j xi

x⊤
i xi

The term
∑J

j=1
1
λj
x⊤
i vjv

⊤
j xi is the squared Mahalanobis distance of the testing individual i

from the centre of the training genotype data on its PC space and x⊤
i xi is the sum of squared

genotype across all variants. Empirically, the ratio between the two is highly correlated with

the Euclidean distance of the individual from the training data on that PC space (R = 1, P

value < 2.2× 10−16 in the UKBB).

3.4.2 Genetic distance (GD)

3.4.2.1 Definition of GD

The GD is defined as the Euclidean distance between a target individual and the centre of

training data on the PC space of training data.

di =

√√√√ J∑
j=1

(x⊤
i vj − x̄trainvj)2 =

√√√√ J∑
j=1

(x⊤
i vj)

2

in which di is the GD of a testing individual i from the training data, xi is an M×1 standard-

ized genotype vector for testing individual i, vj is the jth eigenvector for the genotype matrix

of training individuals, x̄train is the average genotype in the training population (x̄trainvj = 0

given that the genotypes are centred with respect to the allele frequency in the training

population), and J is set to 20.

3.4.2.2 GD from PGS training data

To compute the GD of testing individuals from the training population, we carry out PCA on

the 371,018 UKBBWB training individuals and project the 48,586 UKBB testing individuals

and 36,778 ATLAS testing individuals on the PC space. We start from the 979,457 SNPs

that are overlapped in UKBB and ATLAS. First, we carry out LD pruning with plink2

(--indep-pairwise 1000 50 0.05) and exclude the long-range LD regions. Next, we carry
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out PCA analysis with flashpca2[122] on the 371,018 UKBB WB training individuals to

obtain the top 20 PCs. Then, we project the remaining 48,586 UKBB individuals that

are not included in the training data and 36,778 ATLAS individuals onto the PC space

of training data by using SNP loadings (--outload loadings.txt) and their means and

standard deviations (--outmeansd meansd.txt) output from flashpca2. In the end, we

compute the GD for each individual as the Euclidean distance of their PCs from the centre

of training data with the equation

di =

√√√√ 20∑
j=1

(pcij)
2

in which pcij is the jth PC of individual i.

3.4.3 Ancestry ascertainment

3.4.3.1 Ancestry ascertainment in UKBB

The UKBB individuals are clustered into nine subcontinental GIA clusters—WB (white

British), PL (Poland), IR (Iran), IT (Italy), AS (Ashkenazi), IN (India), CH (China), CB

(Caribbean) and NG (Nigeria)—based on the top 16 precomputed PCs (Data-Field 22009) as

described in ref.[33]. First, UKBB participants are grouped by country of origin (Data-Field

20115) and the centre of each country on the PC space is computed as the geometric median

for all countries, which serves as a proxy for the centre for each subcontinental ancestry. The

centre of Ashkenazi GIA is determined using a dataset from ref.[101]. Second, we reassign

each individual to one of the nine GIA groups on the basis of their Euclidean distance to the

centres on the PC space, as the self-reported country of origin does not necessarily match an

individual’s genetic ancestry. The genetic ancestry of an individual is labelled as unknown if

its distance to any genetic ancestry centre is larger than one-eighth of the maximum distance

between any pairs of subcontinental ancestry clusters. We are able to cluster 91% of the

UKBB participants into 411,018 WB, 4,127 PL, 1,169 IR, 6,499 IT, 2,352 AS, 1,798 CH,

2,472 CB and 3,894 NG. GIAs are not necessarily reflective of the full genetic diversity of a

particular region but reflect only the diversity present in the UKBB individuals.
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3.4.3.2 Ancestry Ascertainment in ATLAS

The ATLAS individuals are clustered into five GIA clusters—European Americans (EA),

Hispanic Latino Americans (HL), South Asian Americans (SAA), East Asian Americans

(ESA) and African Americans (AA)—as described in ref. [108] on the basis of their prox-

imity to 1000 Genome super populations on the PC space. First, we filter the ATLAS-

typed genotypes with plink2 by Mendel error rate (plink --me 1 1 -set-me-missing),

founders (--filter-founders), minor allele frequency (-maf 0.15), genotype missing call

rate (--geno 0.05) and Hardy-Weinberg equilibrium test P value (-hwe 0.001). Next,

ATLAS genotypes were merged with the 1000 Genomes phase 3 dataset. Then, linkage

disequilibrium (LD) pruning was carried out on the merged dataset (--indep 200 5 1.15

--indep-pairwise 100 5 0.1). The top 10 PCs were computed with the flashpca2 (ref.

[122]) software with all default parameters. Next, we use the super population label and PCs

of the 1000 Genome individuals to train the K-nearest neighbours model to assign genetic

ancestry labels to each ATLAS individual. For each ancestry cluster, we run the K-nearest

neighbours model on the pair of PCs that capture the most variation for each genetic an-

cestry group: the European, East Asian and African ancestry groups use PCs 1 and 2, the

Admixed American group uses PCs 2 and 3, and the South Asian group uses PCs 4 and

5. In each analysis, we use tenfold cross-validation to select the k hyper-parameter from

k = 5, 10, 15, 20. If an individual is assigned to multiple ancestries with probability larger

than 0.5 or is not assigned to any clusters, their ancestry is labelled as unknown. We label

the five 1000 Genome super population as EA for Europeans, HL for Admixed Americans,

SAA for South Asians, AA for Africans and ESA for East Asians. We can cluster 95% of

the ATLAS participants into 22,380 EA, 6,973 HL, 625 SAA, 3,331 EAA and 1,995 AA, and

the ancestry of 2,332 individuals is labelled as unknown.
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3.4.4 Simulations

3.4.4.1 Simulation setup

We use simulations on all UKBB individuals with 1,054,151 UKBB HapMap 3 SNPs to

investigate the impact of GD from training data on the various metrics of PGS. We fix the

proportion of causal SNPs pcausal = 0.01 and heritability as h2
g = 0.25. The simulated genetic

effects and phenotype are generated as follows. First, we randomly sample

βm ∼


N
(
0,

h2
g

var(xm)Mpcausal

)
cj = 1,with probability pcausal

0 cj = 0,with probability 1− pcausal

(3.5)

in which var(xm) is the variance of allele counts for SNP m among all UKBB individu-

als. Second, we compute the genetic liability for each individual as gi =
∑M

m=1 ximβm and

randomly sample environmental noise ϵi ∼ N(0, 1 − h2
g). Third, we generate phenotype as

yi = gi + ϵi. We repeat the process 100 times to generate 100 sets of genetic liability and

phenotypes.

3.4.4.2 Calibration of credible interval in simulation

We run the LDpred2 model on 371,018 WB training individuals for the 100 simulation repli-

cates. In each simulation, for individual with genotype xi, we compute xT
i β̃

(1)
r , xT

i β̃
(2)
r , . . . , xT

i β̃
(B)
r

to approximate their posterior distribution of genetic liability, generate a 90% credible

interval CI − gir (90% credible interval of genetic liability of the ith individual in rth

replication) with 5% and 95% quantile of the distribution and check whether their ge-

netic liability is contained in the credible interval I(gir ∈ CI − gir). We compute the

empirical coverage for each individual as the mean across the 100 simulation replicates

coveragei =
1

100

∑100
r=1 I(gir ∈ CI− gir).
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3.4.5 LDpred2 PGS model training

The PGS models were trained on 371,018 UKBB individuals labelled as WB with the LD-

pred2 [33] method for both simulation and real-data analysis. For simulation analysis, we

use 1,054,151 UKBB HapMap 3 variants. For real-data analysis, we use 979,457 SNPs that

are overlapped in UKBB HapMap 3 variants and ATLAS imputed genotypes.

First, we obtain GWAS summary statistics by carrying out GWAS on the training individ-

uals with plink2 using sex, age and precomputed PC1-16 as covariates. Second, we calculate

the in-sample LD matrix with the function snp cor from the R package bigsnpr[123]. Next,

we use the GWAS summary statistics and LD matrix as input for the snp ldpred2 auto

function in bigsnpr to sample from the posterior distribution of genetic effect sizes. Instead

of using a held-out validation dataset to select hyperparameters p (proportion of causal vari-

ants) and h2 (heritability), snp ldpred2 auto estimates the two parameters from data with

the Markov chain Monte Carlo (MCMC) method directly. We run 10 chains with different

initial sparsity p from 10−4 to 1 equally spaced in log space. For all chains, we set the ini-

tial heritability as the LD score regression heritability[73] estimated by the built-in function

snp ldsc. We carry out quality control of the 10 chains by filtering out chains with estimated

heritability that is smaller than 0.7 times the median heritability of the 10 chains or with

estimated sparsity that is smaller than 0.5 times the median sparsity or larger than 2 times

the median sparsity. For each chain that passes filtering, we remove the first 100 MCMC

iterations as burn-in and thin the next 500 iterations by selecting every fifth iteration to

reduce autocorrelation between MCMC samples. In the end, we obtain an M × B matrix

[β̃(1), β̃(2), ..., β̃(B)], in which each column of the matrix β̃(b) is a sample of posterior causal

effects of the M SNPs. Owing to the quality control of MCMC chains, the total number of

posterior samples B ranges from 500 to 1,000.
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3.4.6 Calculation of PGS and accuracy

We use the score function in plink2 to compute the PGS for 48,586 and 36,778 testing

individuals in UKBB and ATLAS, respectively. For each β̃(b), we compute the PGS for

each individual i as x⊤
i β̃

(b) with plink2 (--score). For each individual with genotype xi,

we compute x⊤
i β̃

(1), x⊤
i β̃

(2), ..., x⊤
i β̃

(B) to approximate its posterior distribution of genetic

liability. The genotype x⊤
i is centred to the average allele count (--read-freq) in training

data to reduce the uncertainty from the unmodelled intercept. We estimate the PGS with

the posterior mean of the genetic liability as ĝi = Eβ|D(x
⊤
i β) =

1
B

∑B
b=1 x

⊤
i β̃

(b). We estimate

the individual-level PGS uncertainty as var(ĝi) = varβ|D(x
⊤
i β) =

1
B

∑B
b=1(x

⊤
i β̃

(b) − ĝi)
2. The

individual-level PGS accuracy is calculated as r̂2i = 1 − var(ĝi)
h2
g

for simulation (h2
g is the

heritability estimated by the LDpred2 model) and as r̂2i = 1− var(ĝi)
h2
gvar(ytrain−ŷtrain)

for real-data

analysis, in which var(ytrain − ŷtrain) is the variance of residual phenotype in training data

after regressing out GWAS covariates.

3.5 Figures
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Figure 3.1: Illustration of population-level versus individual-level PGS accu-

racy.(a) Discrete labelling of GIA with PCA-based clustering. Each dot represents an

individual. The circles represent arbitrary boundaries imposed on the genetic ancestry con-

tinuum to divide individuals into different GIA clusters. The colour represents the GIA clus-

ter label. The grey dots are individuals who are left unclassified. (b) Schematic illustrating

the variation of population-level PGS accuracy across clusters. The box plot represents the

PGS accuracy (for example, R2) measured at the population level. The question mark em-

phasizes that the PGS accuracy for unclassified individuals is unknown owing to the lack of

a reference group. Grey dashed lines emphasize the categorical nature of GIA clustering. (c)

Continuous labelling of everyone’s unique position on the genetic ancestry continuum with

a PCA-based GD. The GD is defined as the Euclidean distance of an individual’s genotype

from the centre of the training data when projected on the PC space of training genotype

data. Everyone has their own unique GD, di, and individual PGS accuracy, r2i . (d) Individ-

ual-level PGS accuracy decays along the genetic ancestry continuum. Each dot represents

an individual and its colour represents the assigned GIA label. Individuals labelled with

the same ancestry spread out on the genetic ancestry continuum, and there are no clear

boundaries between GIA clusters. This figure is illustrative and does not involve any real or

simulated data.
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Figure 3.2: PGS performance is calibrated across GD in simulations using UKBB

data. (a) The 90% credible intervals of genetic liability (CI-g i) are well calibrated for testing

individuals at all GDs. The red dashed line represents the expected coverage of the 90%

CI-g i. Each dot represents a randomly selected UKBB testing individual. For each dot,

the x -axis is its GD from the training data, the y-axis is the empirical coverage of the 90%

CI-g i calculated as the proportion of simulation replicates for which the 90% CI-g i contain

the individual’s true genetic liability, and the error bars represent the mean ± 1.96 standard

error of the mean (s.e.m.) of the empirical coverage calculated from 100 simulations. (b)

The width of the 90% CI-g i increases with GD. For each dot, the y-axis is the average

width of the 90% CI-g i across 100 simulation replicates, and the error bars represent ±

1.96 s.e.m. (c) Individual PGS accuracy decreases with GD. For each dot, the y-axis is the

average individual-level PGS accuracy across 100 simulation replicates, and the error bars

represent ± 1.96 s.e.m. (d) Population-level metrics of PGS accuracy recapitulate the decay

in PGS accuracy across the genetic continuum. All UKBB testing individuals are divided

into 100 equal-interval bins based on their GD. The x -axis is the average GD for the bin,

and the y-axis is the squared correlation between genetic liability and PGS estimates for

the individuals within the bin. The dot and error bars represent the mean and ± 1.96 s.e.m

from 100 simulations, respectively.
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Figure 3.3: The individual-level accuracy for height PGS decreases across the ge-

netic ancestry continuum in ATLAS. (a) Individual PGS accuracy decreases within

both homogeneous and admixed genetic GIA clusters. Each dot represents a testing in-

dividual from ATLAS. For each dot, the x -axis represents its distance from the training

population on the genetic continuum; the y-axis represents its PGS accuracy. The colour

represents the GIA cluster. (b) Individual PGS accuracy decreases across the entire AT-

LAS. (c) Population-level PGS accuracy decreases with the average GD in each GD bin. All

ATLAS individuals are divided into 20 equal-interval GD bins. The x -axis is the average GD

within the bin, and the y-axis is the squared correlation between PGS and phenotype for

individuals in the bin; the dot and error bar show the mean and 95% confidence interval from

1,000 bootstrap samples. R and P refer to the correlation between GD and PGS accuracy

and its significance, respectively, from two-sided Pearson correlation tests without adjust-

ment for multiple hypothesis testing. Any P value below 10−10 is shown as P < 10−10. EA,

European American; HL, Hispanic Latino American; SAA, South Asian American; EAA,

East Asian American; AA, African American.
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Figure 3.4: The correlation between individual PGS accuracy and GD is pervasive

across 84 traits across ATLAS and the UKBB. (a) The distribution of correlation

between individual PGS accuracy and GD for 84 traits in ATLAS. (b) The distribution

of correlation between individual PGS accuracy and GD for 84 traits in the UKBB. Each

box plot contains 84 points corresponding to the correlation between PGS accuracy and

GD within the GIA group specified by the x -axis for each of the 84 traits. The box shows

the first, second and third quartiles of the 84 correlations, and the whiskers extend to the

minimum and maximum estimates located within 1.5 x IQR from the first and third quartiles,

respectively. Numerical results are reported in Supplementary Tables 2 and 3.
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Figure 3.5: Measured phenotype, PGS estimates and accuracy vary across AT-

LAS. (a) Variation of height phenotype, PGS estimates and accuracy across different GD

bins in ATLAS. (b) Variation of log neutrophil count phenotype, PGS estimates and accu-

racy across different GD bins in ATLAS. The 36,778 ATLAS individuals are divided into 20

equal-interval GD bins. Bins with fewer than 50 individuals are not shown owing to large

s.e.m. All panels share the same layout: the x axis is the average GD within the bin; the y

axis is the average phenotype (top), PGS (middle) and individual PGS accuracy (bottom);

the error bars represent ± 1.96 s.e.m.
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CHAPTER 4

Conclusion

In my thesis, I focus on evaluating the performance of PGS at the individual level by assessing

individual PGS uncertainty (Chapter 2) and accuracy (Chapter 3), without relying on any

arbitrary population discretizations. Furthermore, I also demonstrate that it is the increased

genetic distance, rather than population membership, that primarily leads to the observed

decrease in PGS performance (Chapter 3).

The first part of my research suggests that despite the potential utility of PGS at the

population level, such as in cancer screening programs, the substantial uncertainty at the

individual level poses challenges in utilizing PGS for informed clinical decision-making in

personalized medicine. For instance, consider an individual whose PGS for cardiovascular

disease falls at the 90th percentile of a reference population, its true genetic risk may range

widely from the 15th to the 99th percentile. To address this issue, we proposed a proba-

bilistic approach to stratification, which enhances PGS-based decision-making by optimizing

stratification and downstream medical treatment based on individual-specific cost functions.

Importantly, the second part of my research reveals a continuous decay in PGS per-

formance (marked by increased individual level uncertainty and decreased individual level

accuracy) as targets diverge genetically from the training population. Although the limited

portability of PGS across different ancestral populations has been demonstrated by many

previous studies, our study reveals, for the first time, the striking individual-to-indiviudal

decerease of PGS performance along the genetic ancestry continumm, even within tradition-

ally labelled ‘homogeneous’ genetic ancestries. Through theoretical derivations and empirical

analyses, we further demonstrate that the increased genetic distance of a target individual
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is the cause of decrased accuracy rather than population membership. For example, when

applying PGS models trained on individuals labelled as white British in the UKBB to in-

dividuals with European ancestries in ATLAS, individuals in the furthest genetic distance

decile have 14% lower accuracy relative to the closest decile; while the Hispanic Latino Amer-

ican individuals situated at a similar genetic distance to this group of European individuals

displayed comparable PGS performance.

To conclude, while PGS is increasingly recognoized as a promising tool for personalized

medicine, my reasearch underscores the critical need of evaluating and interpreting PGS at

the individual level - the core unit in the realm of personalized medicine, for its appropriate

and equitable application. Our findings of continuous variation of PGS accuracy whithin

and across groupings challenge the traditional assumptions of inter-group heterogeneity and

within-group homogeneity prevalent in population-based methods, highlight the importance

of conceptulazing individual based on its unique profiles (as opposed to population labels)

in healthcare and call for the increased diversity in genetic studies to ensure more accurate

and inclusive healthcare solutions.
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Paul L Auer, Päivi Auvinen, Myrto Barrdahl, Laura E Beane Freeman, Matthias W

Beckmann, Sabine Behrens, Javier Benitez, Marina Bermisheva, Leslie Bernstein,

Carl Blomqvist, Natalia V Bogdanova, Stig E Bojesen, Bernardo Bonanni, Anne-

Lise Børresen-Dale, Hiltrud Brauch, Michael Bremer, Hermann Brenner, Adam Brent-

nall, Ian W Brock, Angela Brooks-Wilson, Sara Y Brucker, Thomas Brüning, Barbara
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Sáenz, Mia M Gaudet, Vassilios Georgoulias, Graham G Giles, Irina R Gilyazova,

Gord Glendon, Mark S Goldberg, David E Goldgar, Anna González-Neira, Grethe I
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