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Abstract

This paper describes Tabletop, a computer
progam that models human analogy-making in
a microworld consisting of a small table
covered with ordinary table objects. We argue
for the necessity, even in this simple domain, of
an  architecture that builds its own
representations by means of a continual
interaction between an associative network of
fixed concepts (the Slipnet) and simple low-level
perceptual agents (codelets), that relies on local
processing and (simulated) parallelism, and
that is fundamentally stochastic. Several
problems solved by the Tabletop program are
used to illustrate these principles.

Introduction

Tabletop, the program described in this paper, is
a computer model of analogy-making. Unlike many
analogy programs, it does not attempt to discover
analogies between political situations, concepts in
science, or plots in literature. Rather, it operates in a
microdomain, the Tableworld, consisting of ordinary
table objects on an ordinary table. Imagine there are
two people, Henry and Eliza, seated at a table facing
each other. They play the following game: Henry
touches some object on the table and says to Eliza,
“Do this!” Eliza must respond by doing “the same
thing”. In other words, she must find the object that,
from her vantage point, seems to correspond most
closely to the object that Henry touched. In a sense,
this is analogy-making at its most prosaic. And yet,
the psychological mechanisms that underlie human
analogy-making in this microdomain are, we believe,
of the same kind and complexity as in any real-world
situation.

Competing pressures

A human Eliza intuitively takes into account a
number of factors when determining her choice.
These factors include: the positions of the objects on
the table, the category to which they belong, their
size, and their functional association with other
objects (for example, cups and saucers are related in
away (hat cups and plates are not). Each of these
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factors exerts some pressure on her decision. Some
pressures, such as the ones just mentioned (except for
position), are relatively context-independent. Other
pressures are evoked by the situation itself and cannot
reasonably be anticipated either by a human Eliza or
by a program simulating Eliza. Rather, they emerge
gradually as the person or program develops a
representation of the configuration of objects on the
table.

Consider the three table configurations in Figure
1. In the simplest situation (Figure 1la), the two
competing pressures are category membership and
position on the table. In this situation, the chances
are good that Eliza would touch the cup in the
diagonally opposite corner of the table. But when
both the touched cup and the glass directly opposite
it are surrounded by several objects, this changes the
pressures (Figure 1b). The similar groups of objects
around the touched cup and the glass generate
contextual pressures that make it considerably more
likely that Eliza will touch the glass instead of the cup.
This probability is strongly enhanced by the fact thata
glass is conceptually similar to a cup. Now what if we
modified these pressures further, by replacing the
glass by a saucer? Would this shift the balance of
pressures to favor the isolated cup? Probably, but not
necessarily; this is because even though cups and
saucers, strictly speaking, do not belong to the same
category, they are conceptually related as “objects that
are used together”, in much the same way that knives
and forks are normally thought of as being used
together. Finally, what if the saucer were replaced by a
salt shaker (Figure 1¢)? This time the pressures seem
sufficiently in favor of the isolated cup that Eliza
would probably touch it

Tabletop is an attempt to model the way humans
respond to these (and other) pressures in the
Tableworld. We have argued in detail elsewhere
[Chalmers, French, & Hofstadter 1991] that a
satisfactory computer model of analogy-making must
be able to build its own representation of the
situation that it is faced with. We have also argued
against the possibility of a separate “representation
module” that would act as a preprocessor to an
“analogy-making module”. In accordance with these
precepts, the processes of representation-building
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significant departure from current analogy-making
programs [e.g., Burstein & Adelson 1987; Kedar-
Cabelli 1988; Falkenhainer et al. 1989; Thagard et
al. 1991] with the exception of Copycat [Mitchell
1990; Hofstadter & Mitchell 1991].

We will begin our description of Tabletop with
a brief discussion of its architecture. We then
explain why we believe this type of architecture to
be essential to models of analogy-making. We
conclude with several runs of the program to
illustrate how it develops representations of
situations and uses them to make analogies. We
argue that preprogramming explicit mechanisms to
handle the kinds of difficulties posed by these
situations is psychologically implausible. Rather,
implicit pressures should emerge that accomplish
the same things as explicit mechanisms. Our
architecture allows this to happen.

High-level perception and the architecture
of Tabletop

We define high-level perception as that stage
of perceptual processing where concepts begin to
play a significant role. High-level perception
ranges from our ability to recognize objects to our
capacity to grasp grasp relationships among objects
and, ultimately, includes our ability to understand
entire complex situations, such as a love affair or a
war [Hofstadter 1985; Chalmers, French, &
Hofstadter 1991]. Tabletop simulates this range of
high-level perception in a number of ways,
including how it scans the table looking for objects
and groups of objects, how it discovers rela-
tionships among objects and, finally, how it
gradually builds up a coherent view of a complete
situation.

perceptual abilities. Before illustrating several runs
of the program we will briefly focus our discussion
on these features, which are:

e continual interaction between the asso-
ciative concept network (the
Slipnet)and many low-level perceptual
agents (codelets) whose job it is to ex-
amine and structure the Tableworld;

e local processing and (simulated) paral-
lelism;

e stochastic mechanisms.

There are other features — most significantly,
computational temperature mechanisms [Mitchell
& Hofstadter 1989] — that distinguish Tabletop
from other models of analogy-making. However,
in this paper we will restrict ourselves to a
discussion of the three features above.

Interaction between the Slipnet and codelets
Tabletop, like Copycat [Hofstadter 1984;
Mitchell 1990; Hofstadter & Mitchell 1991] before
it, has an associative concept network, called the
Slipnet, and a Workspace filled with simple
perceptual agents, called codelets, responsible for
observing the Tableworld and building the
structures needed to understand it. The division of
the program into these two aspects reflects the
traditional philosophical distinction between types
and tokens: the Slipnet contains Platonic concepts,
while the Workspace contains instances of those
concepts, which codelets observe and manipulate.
Examples of codelets include agents that look for
groups of objects on the table; agents that look for
neighbors of a particular object; agents that, given
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a particular group of objects, look for the same
type of group eclsewhere on the table; and so on.
These perceptual agents are low-level observers and
builders in the sense that they do not have a global
view of the table at any time.

The Slipnet and the Workspace continually
interact with one another.  The Slipnet is
reminiscent of a typical spreading-activation
concept network [Collins & Loftus 1975] with a
number of differences, possibly the most significant
being that the distances between concepts in the
Slipnet vary according to pressures evoked by the
situation (and conveyed to the Slipnet by codelets).
In a reciprocal manner, the numbers and types of
active perceptual agents are governed by the
activations of concepts in the Slipnet.

Local processing and (simulated) parallelism

At no time does any codelet have a global view
of the table. At the start of a run, the program
knows only which object was touched by Henry and
where on the table that object is located. The
initial codelets that run may be thought of as scouts
examining the table for information (e.g., finding
an object in a particular location, discovering the
neighbor of a particular object, etc.) and looking
for various structures (e.g., groups of objects) that
might be useful to its subsequent understanding of
the Tableworld. Depending on their relation to
the touched object, certain areas of the table are
given preference and will generally be examined
first. This can be thought of as a visual scan of the
table, a scan with top-down control, one in which
the salience of objects preferentially determines
which objects will be attended to first, and,
significantly, one in which some objects, or even
groups of objects, might sometimes be altogether
ignored.

Consider, for example, group-finding scout
codelets. Suppose that the object touched is in the
left-hand corner of the far side of the table: then
these codelets will preferentally (but not
deterministically) look in the corner of the table
diagonally opposite the touched object to
determine if there are any groups of objects there.
This bias is built into the program deliberately in
order to imitate typical human behavior.

It is important to note that group-finding
codelets, like all codelets, neither have an overview
of the table that would allow them to immediately
spot all of the groups of objects, nor do they
conduct a systematic search for groups, say from
the upper left to the lower right-hand corner of the

table. Instead, they search the table
probabilistically. Codelets are biased to look at
different parts of the table with different

probabilities. Factors influencing the probability of
an area being looked at include the presence of
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objects known to be conceptually similar to the
touched object and being diagonally or directly
opposite the touched object.

One might object that such a probabilistic
scarch technique might allow the program to
overlook some structure that could be uscful later.
This is true, but there is a trade-off — namely, it
allows the program to focus its resources on
avenues that seem most promising. The ultimate
reason for this strategy is to make the program
psychologically  realistic; in  particular, its
mechanisms should remain valid in scaled-up
situations. True real-world situations are generally
far more complex than these simple caricatural
situations, and brute-force search techniques are
entirely inappropriate. There have to be strong
pressures that serve to focus resources on
promising avenues. Any probabilistic search
technique is a risk-taking strategy and as such,
sacrifices guaranteed success for greater efficiency.

Active concepts in the Slipnet dispatch agents
to look for instances of themselves. For example, if
the “group” concept is active, codelets will be
dispatched that search for groups in the
Tableworld. If one of these codelets succeeds in
finding a group, this causes more activation to be
sent to the concept “group” in the Slipnet. This
amounts to a signal to the system to hunt for even
more groups; thus more codelets are sent out to
look for groups. However, as the rate of group-
finding falls (i.e., the rate of change of activation of
“group” decreases), proportionately fewer codelets
are sent out to look for groups. Eventually, the
program concludes that there are probably no
more groups to be found on the table.

This process is rather like a person who wants
to pick all of the apples from a tree. Initially, it is
easy to see the apples. She will look first in the
most salient places on the tree (e.g., on the outer,
leafy branches). The sight of apples remaining in
the tree will encourage her to look for more. As
the number of apples in the tree gets smaller, she
will start to look in less likely places (e.g., on the
lower branches, closer to the main trunk).
Gradually, as fewer and fewer apples remain, it
becomes harder to determine if there are any left
at all. Ultimately, there will come a point when she
will peer into the tree several times and decide that
she has gotten all the apples. But did she really get
them all? Probably, but not necessarily.
Ultmately, though, the energy (to say nothing of
the eye-strain) involved in attempting to find any
additional apples becomes prohibitive, and she
stops looking.

The group-finding codelets find groups on the
table in a similar way. It is true that some groups
may be missed, but, on the other hand, the
program does not expend needless energy covering



every last square centimeter of the table 1o make
sure that every single group is found, even those
that have very little chance of playing any role in a
potential analogy. In such a local approach, as
more group-finding codelets fail to find groups,
fewer of these codelets run, until finally none run
atall. The program has then “decided” — without
any given codelet seeing the whole table, any more
than the person could take in the entire apple tree
at one time — that it has found all of the groups on
the table, or at least all groups worth looking for.

This might seem somewhat strange at first
blush. Why not allow the program to search the
table systematically to make sure that it has gotten all
instances of groups of objects? The answer is that
such a brute-force technique would lead to
unacceptable and psychologically unrealistic
performance in scaled-up situations. Tabletop’s
strategy of having a multitude of small processes
running in parallel provides an eflicient focusing
mechanism that allows the program’s attention to
be probabilistically shifted to promising areas of
exploration.

A fundamental assumption behind Tabletop is
that high-level cognitive processes are the
emergent result of myriad low-level, quasi-
independent processes. It is our belief that it is the
interaction of these low-level processes that give
cognition its flexibility. Itis therefore important to
attempt, insofar as possible, to model analogy-
making by relying on low-level processes to
gradually build up the high-level structures
necessary to solve an analogy problem.

In Figure 2, we give some examples of
Tabletop configurations where a particular
structure — in  this case, a diagonal
correspondence — unexpectedly blocks a very
reasonable answer. There are, however, no special
“blockage-checking mechanisms”  built into
Tabletop to deal with such situations. It would be
unreasonable to have a mechanism that invariably
looked for blockages of this type. This illustrates a
general principle about Tabletop — namely, the
lack of special-purpose mechanisms. Building in a
raft of diverse special-purpose mechanisms all of
which invariably get “wheeled out” for every
situation not only is psychologically implausible but
also poses severe problems of scaling-up. Rather
than routinely invoking special-purpose
mechanisms, Tabletop evokes context-dependent
pressures that accomplish the same results but
without brute-force techniques.

Justification for stochastic mechanisms

One of the most surprising features of the
Tabletop architecture is that, at all levels, almost all
of the processes are stochastic. Hofstadter and
Mitchell have argued for the necessity of stochastic
mechanisms [Hofstadter & Mitchell 1991] in
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emergent  architectures modeling  cognitive
processes. Two significant advantages of stochastic
mechanisms for exploration and structure-building
are the following:

¢ they allow, on average, promising
avenues to be explored before less
promising ones;

¢ they also, on occasion, allow improbable
paths to be explored, whereas in normal
heuristic search, these paths might
never be chosen at all.

In the language of traditional artificial
intelligence, the stochastic mechanisms in Tabletop
are reminiscent of probabilistic heuristic search. In
deterministic heuristic search, if the program must
chose between action A, which will give an
estimated result of 60, and action B, which will give
40, the program will invariably select action A. In
probabilistic heuristic search, by contrast, A would
be selected 60 percent of the time, B 40 percent.

Why is this sensible? Shouldn’t the program
always explore the most promising paths first? The
answer is: no, sometimes it should not. Tabletop
problems in particular, and analogy problems in
general, have the property that often several
solutions of different levels of quality exist
Pathways that don’t look promising at the outset
may conceal very high-quality answers, and
conversely, pathways that look very promising at the
outset may lead to mediocre answers. A strategy
that always pursued the most promising avenues
until it found a solution would therefore miss any
hidden high-quality solutions (if they existed). On
the other hand, it would not be wise to totally
ignore the estimated promise of pathways.
Standard Al strategies would deterministically
explore a vast number of possible pathways, leading
to many, if not all, answers, and then would select
the best answer. This type of strategy is appealing;
however, once again, it poses severe scaling-up
problems in realworld situations.  Tabletop’s
strategy is poised between these two deterministic
types of strategy — it will sometimes choose less
promising routes, but the less promising the route,
the less often it will be chosen. This probabilistic
technique leaves all routes at least theoretically
open and so, on some runs of the program, the
hidden gems (if they exist) will be uncovered,
although on most runs the most obvious solutions
will be chosen. This non-deterministic strate-
gyavoids any combinatorial explosion while at the
same time avoiding the trap of always following the
most obvious pathways. Note that in the
microdomain we could have opted for a brute-force
solution; however, since our research aims for
psychological realism, we eschewed this technique.
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Three analogy problems illustrating these
mechanisms

In the second section of this paper we discussed
some of the competing pressures in the Tabletop
world that are involved in decidiry which table
objects and relationships among objects are
examined and which structures are built in order
to arrive at an answer to the “Do this!” challenge.
These pressures include object category; whether
or not an object is in a group; what the neighbors
of an object are; whether or not the object is on the
edge of a group; whether there are other similar or
identical objects elsewhere on the table, especially
if they are in salient positions with respect to the
touched object (in particular, diagonally or directly
opposite it); whether an object or group of objects
is close to a particularly salientobject or group of
objects; and so on. These groupings, descriptions,
and relations are discovered only after the program
has begun scanning the table. Descriptions
(neighbors, in a group or not, ctc.) are gradually

attached to the various objects, groups of objects,
and correspondences.

In order for the program to give an answer, it
needs to have built up one or more mappings
between objects or groups of objects across the
table (called comespondences). However, the
erection of such structures is not separated in time
from the buildup of other representations
(descriptions, groupings, etc.); rather, it is part and
parcel of a single high-level perceptual process, in
which correspondences can become elements of
descriptions of objects and, conversely, descriptions
become the underpinning of new
correspondences. This fusion of representation-
building with correspondence-building marks a
fundamental difference with many other current
analogy-making programs.

In Figure 2 we illustrate three separate
Tabletop problems. In all three problems,
Tabletop is capable of producing more than one
distinct answer, but in the first and third problems,
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there is one answer that swamps the others in
frequency, so it is almost as if there is just one
answer. However, in the second problem, there are
two distinct answers both of which are produced
with fairly high frequency. These three problems
illustrate  how an unanticipated pressure can
emerge that will significantly bias the program’s
responses.

In the first problem, the program, like people,
will usually touch the glass opposite the cup that
Henry touched. This is quite straightforward.

In the second problem, a single glass is added
in the upper right-hand corner of the table. Even
though one would not a priori expect it to affect the
description of any of the objects (e.g., it is not the
neighbor of any object; it is not part of a group of
objects; it is not in a particularly salient location on
the table with respect to the touched object, etc.),
its presence nonetheless significantly biases the
choice of the second object to be touched. As the
program  runs, it sometimes builds a
correspondence between the two glasses (Figure 25,
part if). When it does so, the new pressure that this
creates will often be enough to cause Eliza to touch
the very cup that Henry touched. Of course, had
the second glass not been on the table, such a
choice would seem rather strange.

In the final example, there are two glasses in
the lower left-hand corner and two in the upper
righthand comer of the table. The
correspondence between these two groups of glasses
is very salient and very strong, usually strong
enough to cause the program to touch the cup that
Henry touched.

Thirty-one human subjects were given these
three problems and, like the program, in the
second configuration, more subjects touched the
cup in the upper left-hand corner than in the first
configuration (40% vs. 33%); in the final
configuration, twice as many touched the touched
cup (66% vs. 33%).

Conclusion

We have described a microdomain for
computer analogy-making consisting of ordinary
objects on an ordinary table. This world has a
decidedly more “real-world” feel to it than the only
other program of its kind, Copycat [Hofstadter &
Mitchell 1991; Mitchell 1990]. We argue that it is
necessary, even in this simple domain, to use a
model that builds its own representations by means
of a continual interaction between an associative
network of fixed concepts and simple low-level
perceptual agents, that relies on local processing
and (simulated) parallelism, and that is
fundamentally stochastic.
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