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ABSTRACT

Heating, ventilation, and air conditioning (HVAC) is an indoor environmental
technology that is extensively instrumented for large-scale buildings. Among all
subsystems of buildings, the HVAC system dominates the energy consumption and
accounts for 57% of the energy used in U.S. commercial and residential buildings.
Unfortunately, the HVAC system may fail to meet the performance expectations due
to various faults, including not only complete hardware failures, but also non-optimal
operations. These faults waste more than 20% of the energy HVAC consumes.
Therefore, it is of great potential to develop automatic, quick-responding, intelligent,
and reliable monitoring and diagnosis tools to ensure the normal operations of HVAC
and increase the energy efficiency of buildings.

To achieve these goals, increasing attentions have been attracted to two re-
search areas, i.e., models that monitor the indoor thermal environment, and fault
detection and diagnosis (FDD) tools that capture abnormal HVAC performance.
Despite contributions of the existing works, there are still many challenges in these
two areas. For the thermal models, the major concerns lie in 1) most of the models
are determined empirically, 2) optimal structures and orders of the models are often
determined through simulations, 3) the predictions of the models degrade quickly
over longer time intervals, and 4) a lack of studies to incorporate architectural para-
meters and control variables into the models. For the FDD, we face the challenges of
1) the inherent complexity, coupled hardware and software, and increasing scale of
HVAC significantly complicate the nature of faults, 2) faults occur at different levels
with various degrees of impacts on upper-level HVAC units, 3) practical FDD tools
at the system-level are scarce, and 4) the computational efficiency and calibration
onerousness of the simulation-based FDD is a concern.

In this thesis, we address these challenges by innovating a system-level mon-
itoring and diagnosis tool for HVAC. For the monitoring, we study and establish
a parametric modeling approach to present indoor air temperature and thermal
comfort. The resulting models take advantages of both analytical and numerical
modeling techniques. These models have a two-stage regression structure, and ex-
plicitly include both architectural parameters and control variables as its predictors.
As a result, they allow parametric studies of influence of the building envelope on
indoor thermal behavior, serve as an efficient foundation for intelligent HVAC con-
trol design, and help optimize the design of and the material selection for office

xxi



buildings. For the diagnosis, we innovate and develop a system-level FDD archi-
tecture for detecting faults across different levels of the HVAC system. Specifically,
this architecture monitors and detects faulty HVAC units in a top-down manner.
By monitoring HVAC units at higher level, instead of lower level components, the
proposed FDD strategy reduces the computational effort in real-time monitoring of
the HVAC system, obtains a system-level view of the HVAC operation, and pro-
vides a way to integrate the existing methods for component fault detection when
needed. Based on extensive data collected from an office building on the campus of
the University of California at Merced, numerical validations of the models, and ex-
amples of detected faults demonstrate the effectiveness of the proposed monitoring
and diagnosis tool.
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Chapter 1

INTRODUCTION

1.1 Background
1.1.1 What is Building HVAC

Heating, ventilation, and air conditioning (HVAC) is a technology of indoor
environmental comfort. HVAC is usually instrumented for large office and industrial
buildings such as university classrooms, hospitals, skyscrapers to maintain thermal
comfort, and create healthy indoor air quality with relative low cost and high energy
efficiency.

Ever since the invention of its components during the industrial revolution,
HVAC has gradually evolved to a highly interdisciplinary and complex system.
Numerous new components, advanced sensing technologies, advanced control al-
gorithms, and artificial intelligence have been introduced into HVAC to meet oper-
ational objectives in different types of buildings worldwide. Consequently, HVAC
systems have been extensively deployed in the fields of both developed and develop-
ing countries. Take the United States as an example. HVAC systems are currently
conditioning a total area of nearly 3.1 billion square feet in buildings [1]. Many reg-
ulating and standards organizations such as HARDI, ASHRAE, SMACNA, ACCA,
Uniform Mechanical Code, International Mechanical Code, and AMCA have been
established to support the HVAC industry, maintain high standards, and promote
innovations.

1.1.2 HVAC Energy Consumption
Due to rapid global population growth and urbanization, more and more

large-scale buildings are being built. Buildings have become one of the fastest grow-
ing energy consuming facilities on the earth. According to the U.S. Department of
Energy 2009 Building Energy Databook, buildings use 72% of nation’s electricity,
and 38.9% of nation’s total energy consumption, valued at $392 billion [2—4]. Cur-
rently, HVAC systems account for 57% of the energy used in U.S. commercial and
residential buildings [2—4].
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1.1.3 HVAC Faults
Unfortunately, as its scale and complexity evolve, HVAC becomes more fault-

prone. Here, faults include not only complete equipment failures, but also non-
optimal operations, e.g., occupant discomfort, energy inefficiency, poor choice of
operating targets, sensor calibration errors, poor controller tuning. HVAC may
fail to meet the performance expectations due to these faults, thus wasting more
than 20% of the energy it consumes. Therefore, it is of great potential to develop
automatic, quick-responding, accurate and reliable fault detection and diagnosis
(FDD) schemes to ensure the normal operations of HVAC in order to save energy.
According to the National Institute of Standards and Technology (NIST), FDD
methods have a potential to save 10-40% of HVAC energy consumption [5], valued at
$233 billion annually in the United States [2—4]. An FDD package for HVAC can help
establish construction and renovation standards for new and existing buildings. In
light of the worldwide energy crisis and increasing environmental awareness, and the
current limited usage of renewable energy in buildings [6], FDD for HVAC is critical
to increase the energy efficiency of buildings. Since the 1980s, HVAC researchers
and manufacturers worldwide have been striving to improve the energy efficiency of
the system due to rising energy cost and increased awareness of environment.

1.1.4 Thermal Modeling
Mathematical models of HVAC units provide bases for detecting faults, up-

grading control strategies, and improving commissioning, and thus have a potential
to reduce energy consumption of HVAC systems by 20% to 30% [7]. Consequently,
thermal modeling has been a very active field and attracted many researchers for the
past two decades. Among all topics, the models of indoor temperature and thermal
comfort have been particularly popular.

The indoor temperature characterizes the thermal condition of a room, as
is the case in the predicted mean vote (PMV) model [8, 9], the ASHRAE Stan-
dard 55 [10] and the ISO Standard 7730 [11]. Ascione et al. need precise room
temperature estimation to evaluate the strict thermo-hygrometric environment in
museums [12]. Balaras et al. require the accurate knowledge of the room temper-
ature to examine the indoor environment in hospitals [13]. The room temperature
is also required for the analysis of thermal performance, indoor air quality [14], and
for the evaluation of the indoor environment in naturally ventilated buildings [15].
Furthermore, a robust model that accurately predicts the room temperature is im-
portant for control design. Engdahl and Johansson have studied optimal supply air
temperature in a variable air volume (VAV) system [16]. Yang and Kim predict the
time of room temperature variations [17]. Orosa has investigated the thermal com-
fort based control strategy [18]. Tanimoto and Hagishima have developed a Markov
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model for the on-off cooling schedule control [19]. Accurate, robust, simple-to-
implement indoor temperature models therefore become indispensable for detecting
faults, upgrading control strategies, and improving commissioning.

According to the studies conducted by Wyon [20], Djongyang and colleagues
[21], and the World Health Organization [22], an unpleasant thermal sensation dis-
tracts people from work by reducing their satisfaction, concentration, and motiva-
tion, which leads to decreased productivity. In the developed countries, more than
90% of people spend most of their time indoor. Levels of pollutants indoor may be
two to five times higher than those outdoor [23]. For certain places like hospitals,
well regulated and maintained thermal comfort becomes even more vital in order to
provide patients an ideal environment for recovery. Ensuring the comfort and health
of the occupants has therefore been one of the primary goals for HVAC operation.
A fundamental issue of the thermal comfort control is to establish indices that relate
human comfort to physical parameters of the indoor environment.

1.1.5 Current FDD Practice of HVAC
The challenges for widespread deployment of FDD systems for HVAC lie in:

1) insufficient information on the possible energy and labor saving from automated
FDD leads to weak demand from the building operation and maintenance commu-
nity, 2) lack of adequate sensors installed in buildings due to the high cost leads to
significant barriers to thoroughly assessing the operation of the HVAC system, 3)
lack of easy access to real-time data because FDD is not yet integrated into building
automation systems, particularly for old buildings, 4) lack of infrastructure to gather
data from existing building automation systems (BASs) for add-on applications, and
finally 5) lack of a top-down energy based FDD strategy.

Due to these difficulties, the current practice of HVAC FDD in the field
involves a fair amount of manual inspection. Most manually detectable faults are
obvious failures of certain equipment [24]. The collected data are overwhelming,
as there is little effort to consolidate the information into a coherent searchable
database describing the equipment status. For large-scale HVAC systems, which
contain thousands of sensors and actuators, a complete inspection cycle takes a long
time and the labor cost is too high. Non-optimal operations caused by inadequate
operating targets, poor controller tuning, inaccurate sensor calibration, software
error, etc., could also be faults and are even more difficult to detect by manual
inspection.

1.2 Challenges
1.2.1 Inherent Complexity of HVAC

HVAC is a complex and highly integrated system. For example, the HVAC
system for buildings on the UC Merced campus has a three-level structure with a
top level bridge, a middle level air handling unit (AHU) and air distributors at lower
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level, called variable air volume (VAV) unit. Each level includes a large number of
components, such as sensors, controllers, actuators and air dampers. The hardware
and software of the HVAC system are coupled across different levels. Environmental
and architectural factors lead to different energy consumptions among units at the
same level. A single component may have a fault which degrades the entire system
performance [25]. Even more challenging, HVAC faults include not only complete
equipment failures, but also non-optimal operations, e.g., occupant discomfort, en-
ergy inefficiency, poor choice of operating targets, sensor calibration errors, poor
controller tuning. The inherent complexity and various natures of faults greatly
increase the difficulty for FDD of the HVAC system.

1.2.2 Lack of System-Level FDD of HVAC
Over the last two decades, there has been considerable research and develop-

ment on developing FDD methods for HVAC equipment at the component level.
Within VAV, Qin and Wang adopted a hybrid approach utilizing expert rules

to detect ten types of faults in VAVs [26]. Song et al. invented a handy tool
to detect faults in VAVs based on indoor temperature fluctuations [27]. Yang et
al. used fractal correlation dimension to detect relatively small bias component
faults under noisy conditions [28]. Cho et al. considered the transient pattern
of fan, sensor, and damper faults [29]. By setting proper thresholds learned from
trainings, Du et al. could detect flow sensor faults in air dampers and VAV terminals
[30, 31]. As for AHU, Schein et al. found twenty-eight rules to detect five typical
faults in AHUs [5, 32]. Ghiaus developed a bond graph to detect faults in the air
conditioning system [33]. Chen et al. developed an easy-to-implement FDD method
for detecting faults in rooftop air conditioners [34]. Wang and Xiao applied the
principal component analysis (PCA) to detect sensor faults in AHUs [35—37]. There
are also relevant researches such as Carling and Haves compared three fault detection
methods with the field data [38]. Norford et al. evaluated fault detection methods
on the basis of their sensitivity, robustness, the number of required sensors, and ease
of implementation [39]. Research on FDD for other HVAC units such as chillers and
cooling towers can be also found in the work by Namburu et al. [40], Haves and
Khalsa [41], Castro and Remington [42], Han et al. [43], Navarro et al. [44], Bailey
and Kreider [45], Khan et al. [46] and Weyer et al. [47].

Simulations can also be used to develop FDD strategies for component faults.
Wang developed a recurrent cerebellar model articulation controller (RCMAC) to
learn the normal characteristics of heating and cooling coil valves [48, 49]. Re-
searchers from Lawrence Berkeley National Laboratory have been working on Mod-
elica and EnergyPlus simulation tools for years [50].

Nevertheless, deployed FDD packages at the system-level are still few. Two
most successful packages are the Automated FDD (AFDD) developed by NIST [51]
and the Whole Building Diagnostician (WBD) innovated by the Pacific Northwest
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National Laboratory (PNNL) [52]. The AFDD detects faults by evaluating a set
of rules. It is sufficiently simple that it can be embedded into the local controllers,
and operates within the processor and memory limitations of commercial HVAC
systems [53]. However, the AFDD lacks an effective means to establish the fault
detection thresholds and statistical parameters. The WBD implements the decision
tree for the diagnosis. This approach can detect abnormal behaviors of the outdoor-
air economizer and whole-building energy consumption. However, the WBD does
not have the ability to detect faults across different levels, and needs an accurate
baseline performance of the building energy consumption, which is difficult to obtain.
When the building contains numerous components of various types, the complexity,
instability, and cost of the decision tree approach become a concern [54].

1.2.3 Limitations of Simulation-Based FDD
The simulation approach calculates and predicts the normal operations. The

predication forms the basis for fault detection. Clarke et al. developed a simulation-
assisted control to simulate and test the response of building energy management
systems (BEMS) [55]. Djuric et al. reviewed the possibilities and necessities for
building lifetime commissioning and estimated the heating system performance using
optimization tools and BEMS data [56, 57]. Song et al. investigated the feasibility
of implanting the simplified simulation program into the energy management and
control system (EMCS) [58]. Pedrini et al. applied the EnergyPlus simulation tool
to develop a methodology for monitoring the energy performance of a commercial
building in Brazil [59]. Researchers from Lawrence Berkeley National Laboratory
have been working on Modelica and EnergyPlus simulation tools for years [50]. Since
the HVAC system is inherently complex, and some thermal models need further
optimization, the computational efficiency and calibration onerousness of simulation
approach is a concern.

1.2.4 Limitations of Existing Temperature Models
As discussed previously, accurate, robust, simple-to-implement models of

HVAC units provide bases for detecting faults, upgrading control strategies, and im-
proving commissioning. Modeling HVAC thermal properties, e.g., temperature, has
consequently been an active research field for decades. Popular software tools such
as EnergyPlus [59], DOE-2, TRANSYS, Modelica [50], etc. make use of the ther-
modynamics models, incorporate architectural parameters, and provide the most
comprehensive description of the thermal process in the building with accurate es-
timation of various system outputs. The analytical models allow parametric studies
of influence of the building envelope on indoor thermal behavior. This is very impor-
tant because architectural and material parameters of a building greatly influence its
thermal performance. Extensive parametric studies will help us optimize the design
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of and the material selection for buildings. However, various simplifying assump-
tions to deal with complexity of thermal interactions, unmeasured disturbances,
uncertainty in thermal properties of structural elements and other parameters make
it quite a challenge to obtain reliable analytical models [60].

The difficulties in thermodynamics models motivates the development of
black-box models, e.g., ARMAX and neural networks, which build a relationship
between inputs and outputs of the system by using measurements only. These
numerical models can also help us understand the behavior of HVAC systems, sim-
ulate and predict the HVAC response, and conduct fault detection and diagnosis.
Lowry and Lee investigated the response of internal temperature in an office building
and discovered that the output-error (OE) model provides the best prediction [60].
Frausto and colleagues found that the linear auto regression model with external
input (ARX) and the ARMAX model are suitable to describe the greenhouse be-
havior [61]. Ríos-Moreno et al. demonstrated that the ARX model can be adopted
to predict classroom indoor air temperature with very high coefficients of determi-
nation [62]. Boaventura et al. [63] used a recursive identification technique to obtain
a second-order model to predict the inside air temperature of a greenhouse. Musta-
faraj et al. compared various numerical models of room temperature in an office,
and found that the Box-Jenkins (BJ) model outperforms ARX and ARMAX [64].
Loveday and Craggs developed a BJ model including the external disturbances such
as outside temperature and solar irradiance to analyze the thermal behavior of a
full-scale occupied building [65]. Yiu and Wang studied the optimal order of a mul-
tiple input multiple output (MIMO) ARMAX model to forecast the performance of
an air conditioning system of an office building in Hong Kong [66]. Peitsman and
Bakker developed a multiple input single output (MISO) ARX model to evaluate
the performance of a VAV unit [67]. Yoshida and Kumar studied the ARX model
for off-line FDD of an AHU. They concluded that the model can be used to detect
most of the faults [68]. Kumar et al. improved the single input single output (SISO)
recursive auto regressive with exogenous input (RARX) model to detect faults in
an AHU [69]. Jiménez et al. constructed an ARMAX model and obtained the
physical interpretation of model parameters by comparing the ARMAX model with
an equivalent physical model [70]. Although these numerical models are computa-
tionally efficient due to their simple structures, they are heavily dependent on the
measurements, which implies poor generalization of the model in some parameter
space.

To further improve flexibility, semi-physical models or grey-box models are
constructed based on both insight into the underlying system physics and experi-
mental data. Ghiaus et al. conducted the grey-box identification of constant air
AHU elements [71]. Braun and Chaturvedi [72] developed a grey-box model to in-
vestigate the transient building load. Wang and Xu [73] implemented the genetic
algorithm to identify the parameters of a simplified building model for building

6



thermal performance estimation in different weather conditions. Zhou et al. [74] in-
tegrated air temperature, relative humidity, and solar radiation prediction modules
within a grey-box model to predict the building thermal load in the next day. Zheng
and Li developed a physics-based model of a fan to relate its power consumption
to fan speed and airflow [75]. Déqué and colleagues have implemented the grey-box
technique to simulate the temperature variation in a ground floor flat [76]. Based
on the physical laws, Wen and Smith have applied the grey-box approach to model
the room temperature in VAVs [77]. Leephakpreeda has combined the grey predic-
tion model and the adaptive comfort theory model to estimate the indoor comfort
temperature [78]. Nevertheless, the grey-box models are numerical and therefore
don’t include architectural parameters.

Building architectural parameters impose strong impacts on building ther-
mal performance. Tsilingiris has studied the influence of structural parameters of
a wall on the heat loss [79]. Devgan et al. [80] and Aste et al. [81] have inves-
tigated the influence of external wall and window construction parameters on the
building overall heat transfer and energy performance of well insulated buildings.
By exploring the optimal dimensions of walls and glasses, Hwang and Shu [82], and
Sozer [83] have tried to improve the thermal comfort, and the energy efficiency of
buildings. Korolija et al. has concluded that it is not possible to form a reliable
judgement about the building energy performance without considering the architec-
tural parameters [84]. Numerical models without including the building parameters
do not reveal the relationship between the building thermal performance and the
parameters.

Some other features of the modeling research also emerge from the literature
studies. First, most numerical models of HVAC systems are determined empirically.
Choices of input and output variables are dependent on their temporal, geographical,
and architectural changes of effect on room temperature [61—64]. Second, optimal
structure and order of the model are often determined through intensive numerical
simulations [61, 64]. Third, the prediction error of the model can increase quickly
as the prediction extends over a longer time interval [60, 62, 64]. Fourth, although
some researchers have developed their models using long-period data collected from
a real building [61,64,85], the majority of numerical models are trained using either
simulation data or limited measurements from a small number of HVAC units [60,
62,63,65—69].

1.2.5 Limitations of Existing Thermal Comfort Indices
Common thermal comfort indices include the PMV index [8,9], the simplified

thermal comfort model [86] and the neural computing thermal comfort index [87],
etc. Among those indices, the PMV is widely adopted as the principal index [21], and
has multiple adaptations for different circumstances. Fanger and Toftum established
an extension of the original PMV index to non-air-conditioned buildings in warm
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climates [88]. Kulkarni and Hong employed the PMV model to evaluate the comfort
level in transient pull downs [89]. Brager and de Dear concluded that, during the
winter, a slight positive adjustment is needed when the original PMV index is being
applied to office buildings in San Francisco [90]. There is a lack of studies of the
PMV model to relate it to architectural parameters and control variables of office
buildings.

The PMV model was initially established by Fanger in 1970 to determine
the condition of human internal thermal neutrality, i.e. feeling neither too cold
or too hot [8]. It was developed by considering heat conduction, convection, ra-
diation, and evaporative heat loss between the occupant and the surrounding. It
predicts the mean response of a large group of people according to the ASHRAE
thermal sensation scale. The original PMV model includes many variables in two
categories: environmental variables and personal variables. The environmental vari-
ables consist of air temperature, mean radiant temperature, relative air velocity, air
relative humidity, convectional heat transfer coefficient. The personal variables in-
clude metabolism, external work, thermal resistance of clothing, ratio of fully clothed
body surface area to nude body surface area, surface temperature of clothing, etc.
Due to the inherent complexity of the heat transfer process and unavailability of
certain variables, the original PMV model is not desirable for design purposes [91],
nor is efficient for real-time control systems [92].

This difficulty leads to several empirical models that express the PMV in
terms of variables easily measurable from the environment. An empirical equation
describing the PMV index as a function of only the temperature and partial vapor
pressure is developed at the Kansas State University and adopted by ASHRAE [93].
The study was based on a field study of 1600 school-age students. Hamdi et al.
developed a predictive thermal sensation index that avoids the iterative solution
process and serves as an objective function for feedback control of HVAC systems
[92]. Atthajariyakul and Leephakpreeda studied the explicit functional relationship
between the PMV index to four accessible control variables, namely, indoor air
temperature, humidity, velocity, and outdoor airflow rate and two personal variables
[87,94]. Chen and colleagues applied the fuzzy adaptive network to express the PMV
index as a function of air temperature and relative humidity [95].

The architectural parameters of a building and control variables of HVAC
greatly influence the thermal performance of the building. Hwang and Shu found
that glazing types, depths of overhang, and glazing areas have significant effect
on thermal comfort [82]. Wang and colleagues discovered that the window-to-wall
ratio plays an important role of determining thermal comfort in naturally ventilated
residential buildings in Singapore [96]. By using neural networks and computational
fluid dynamics, Stavrakakis et al. investigated the optimal sizes of windows, and
building direction for maximizing the occupational comfort and hygiene [97—99]. Yu
et al. conducted a systematic evaluation on energy and thermal performance for

8



residential envelops index, and concluded that the architectural parameters, such
as room volume, areas and heat transfer coefficients of external wall, window, and
roof, shape coefficient of the building, influence greatly the energy consumption and
thermal comfort of the building [100]. With regard to the control variables, Ghaddar
et al. [101], Prianto and Depecker [102], and Ho et al. [103] studied buildings located
in different climates and found that by regulating the circulation speed of the supply
air, the thermal comfort can be increased. Clearly, there is a need for developing an
empirical PMV model that relates to the architectural parameters and the control
variables.

1.3 Our Approach
There is room for improvement and a need to achieve a system-level mon-

itoring and diagnosis of HVAC. The proposed method should be computationally
efficient and less onerous from a calibration perspective compared to most compu-
tational model based approaches. It should be able to monitor and detect both
hardware failures and non-optimal operations. To accomplish these objectives, two
parts of work are studied in this thesis: 1) thermal models for monitoring; 2) a
system-level FDD architecture for diagnosis.

For the monitoring, we propose and study a parametric modeling approach
to present indoor air temperature and thermal comfort. The resulting models take
advantages of both analytical and numerical modeling techniques. And they have
a two-stage regression structure, and explicitly include both the architectural pa-
rameters and control variables as its predictors. As a result, these models allow
parametric studies of influence of the building envelope on indoor thermal behavior,
serve as an efficient foundation for intelligent HVAC control design, and will also
help us optimize the design of and the material selection for office buildings.

For the diagnosis, there is a need to develop a FDD architecture for detecting
faults across different levels of the HVAC system with a focus on energy consump-
tion. Specifically, this architecture monitors and detects faulty HVAC units in a
top-down manner. By monitoring HVAC units such as bridges and AHUs at higher
level, instead of lower level components such as fans and motors, the proposed FDD
strategy reduces the computational effort in real-time monitoring of the HVAC sys-
tem, obtains a system-level view of the HVAC operation, and provides a way to
integrate the existing methods for component fault detection when needed.

Several key technologies developed in this thesis include 1) an energy flow
model that can capture abnormal energy consumption irrespective to the nature of
faults, 2) a spatial and temporal partition strategy that enables top-downmonitoring
and diagnosis of HVAC, 3) a top-down FDD structure, 4) a physics-based modeling
approach of indoor temperature, 5) a multi-stage regression modeling approach of
indoor temperature; and 6) a parametric modeling approach of thermal comfort.
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1.3.1 Energy Flow Model
HVAC faults trigger abnormal energy density of the flow across an AHU or

a VAV. A stuck damper or a leaking air duct in a VAV unit, for example, requires
more cooling or heating supply air from its upper-level AHU. A frozen zone temper-
ature sensor in a VAV below the cooling setpoint may demand less cooling supply
air. A fouled air pipe in an AHU may require more supply air to compensate the
reduced volume capacity. Since faults in HVAC systems trigger abnormal energy
consumption, we develop an energy flow model that can capture these abnormal
energy consumption irrespective to the nature of faults.

1.3.2 Spatial and Temporal Partition
HVAC units have certain patterns of flow energy consumption over time

domain varying with environmental conditions, architectural factors, human occu-
pancy and control setpoints. We create a spatial and temporal partition strat-
egy [104] to group these units such that the ones in a group share a similar pattern
of flow energy consumption over different time intervals. The units in the a group
can be monitored with the same and tighter threshold for fault detection.

1.3.3 A Top-Down FDD Architecture
With the energy flow model and spatial and temporal partition strategy, we

develop a system-level FDD structure that can capture abnormal energy consump-
tion irrespective to the nature of faults. Bymonitoring energy flow and consumption,
the FDD strategy can detect faulty HVAC units in a top-down manner. By mon-
itoring the energy flow fluctuations of HVAC units such as bridges and AHUs at
higher level, instead of lower level components such as fans and motors, the pro-
posed FDD strategy reduces the computational effort in real-time monitoring of the
HVAC system, obtains a system-level view of the HVAC operation, and provides a
way to integrate the existing methods for component fault detection when needed.

1.3.4 Physics-Based ARMAX Modeling Approach
A physics-based ARMAX (pbARMAX) modeling approach is proposed to

present the room temperature. Thermodynamic equations help us decide the struc-
ture and order of this proposed pbARMAX model. We have access to extensive
measurements over a long period of time involving a large number of HVAC units.
The data are used to develop and validate the pbARMAX model. The parameters
of the numerical model are related to architectural and environmental factors. We
propose to use the pbARMAX model to predict the thermal behavior of the rooms
by room temperature prediction. The pbARMAX model also provides an analytical
foundation of the spatial and temporal partition strategy.
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1.3.5 Multi-Stage Regression ARMAX Modeling Approach
We propose two new multi-stage regression, physics-based linear parametric

(mpbARMAX) models of the room temperature to take the advantages of both
analytical and numerical modeling approaches [105, 106]. In other words, we build
a two-stage regression structure into the mpbARMAX model to explicitly include
building geometries and control variables.

1.3.6 Parametric PMV Model
It is a difficult task to incorporate the architectural parameters and control

variables in the PMV model in an analytical manner. We propose a grey-box nu-
merical modeling approach to develop such an empirical PMV model by following
the regression method in [107]. The resulting empirical parametric PMV model
(epPMV) has a two-stage regression structure, and explicitly includes both the ar-
chitectural parameters and control variables as its predictors. As a result, it allows
parametric studies of influence of the building envelope on indoor thermal behavior,
serves as an efficient foundation for intelligent HVAC control design, and will also
help us optimize the design of and the material selection for office buildings.

1.3.7 Highlights
The research in this thesis utilizes existing sensors and controller hardware,

takes advantage of data-rich performance surveillance in buildings, and employs ar-
tificial intelligence, deductive modeling, and statistical methods to automatically
detect and diagnose deviations between actual and optimal HVAC system perfor-
mance.

Potential benefits of the research in this thesis include 1) reduction of energy
consumption, 2) reduction of maintenance cost, 3) improvement of occupant com-
fort, and 4) longer equipment life and reduced unscheduled equipment down time.
This system-level monitoring and diagnosis tool of HVAC systems will contribute to
the long term goal of net zero energy, net zero waste, and net zero carbon footprint
for office buildings.

Highlights of the research in this thesis include:

• A holistic data-driven approach at the system-level to monitor and diagnose
building HVAC operations;

• Able to detect hardware failures as well as non-optimal operations;
• Integratibility with existing FDD works;
• Expandability to other machine learning and data mining techniques;
• Adaptability to hardware widely deployed in the field;
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• Complies with industrial standards;
• Relatively low computational demand.

The rest of the thesis consists of six chapters. Chapter 2 presents the paramet-
ric modeling approach of temperature and thermal comfort. Chapter 3 demonstrates
the model validation based on real data collected from a building on the campus of
the University of California at Merced. Chapter 4 implements sensitivity analysis to
further investigate the statistical reliability of the thermal comfort model. Chapter
5 presents the system-level FDD scheme, application examples of which are demon-
strated in Chapter 6. Finally, Chapter 7 concludes the thesis. Nomenclature and
model parameters are defined in Appendices A and B respectively.
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Chapter 2

THERMAL MODELS

2.1 Energy Flow Model
2.1.1 Introduction

In order to capture different faults in a uniform manner, we define a feature
that is capable of reflecting various faults at the component level, and is a common
characteristic shared by all HVAC units.

2.1.2 Thermodynamical Foundation
HVAC faults trigger abnormal energy density of the flow across an AHU or a

VAV. A stuck damper or a leaking air duct in a VAV unit, for example, requires more
cooling or heating supply air from its upper-level AHU. A frozen zone temperature
sensor in a VAV below the cooling setpoint may demand less cooling supply air. A
fouled air pipe in an AHU may require more supply air to compensate the reduced
volume capacity. Since faults in HVAC systems trigger abnormal energy consump-
tion, we adopt the energy consumption of HVAC units as the feature. The normal
operations of the HVAC system preserve certain patterns of energy consumption as
a function of time and location. We may detect faulty HVAC units using the energy
consumption feature.

Consider the energy transfer and consumption of hardware at different levels.
The boiler and condenser supply the building with heating and chilling water. The
pump transfers the water. The VFD fan produces a pressure difference in the
supply air. The energy supplied to the HVAC system is eventually converted to
flow of either air or water with a certain temperature, velocity, static pressure and
humidity. All HVAC units share a common property: they have input and output
flows as shown in Figure 2.1. According to Bernoulli’s principle, the energy of the
flow through a unit is given by

E = V (CvT +
1

2
ρv2 + SP ), (2.1)

where the Cv and ρ are both known functions of temperature and pressure. This is
a well-established model in thermal fluids [108]. The difference between input and
output energies of the unit represents its energy ‘consumption’.
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Figure 2.1: HVAC units with input and output flows of air or water.

Figure 2.2: A typical AHU with two input and output air flows respectively.

2.1.3 The Model
A VAV takes the supply air from an AHU as input and return air as output.

The energy change across the VAV is given by

∆EV AV = ERA − ESA

= VRA(CvTRA +
1

2
ρv2RA + SPRA)− VSA(CvTSA +

1

2
ρv2SA + SPSA). (2.2)

In terms of the measured data, the above energy change can be rewritten as

∆EV AV = QSAt[a(CvTRM +
1

2
ρ(aQSA/ARA)

2 + SPBLD)

− (CvTSA +
1

2
ρ(QSA/ASA)

2 +
1

4

4P
i=1

SP i
SA)], (2.3)

where
a = QRF/QSF . (2.4)

Following the same approach, we can compute the energy change across an
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AHU unit, as shown in Figure 2.2, with two inputs and two outputs

∆EAHU = QRAt(CvTRM +
1

2
ρ(QRA/ARA)

2 + SPRA) + (QSA − (1− b)QRA)

· t(CvTOA +
1

2
ρ((QSA − (1− b)QRA)/AOA)

2 + SPOA)

−QSAt(CvTSA +
1

2
ρ(QSA/ASA)

2 +
1

4

4P
i=1

SP i
SA)

− bQRAt(CvTEA +
1

2
ρ(bQRA/AEA)

2 + SPRA), (2.5)

where
b = DEA/(DRA +DEA). (2.6)

2.2 Physics-Based Temperature Model
2.2.1 Introduction

The change of the room temperature Trm is caused by both internal and
external sources, e.g., cooling and heating air, solar radiation, heat conduction
through walls, and human factors. To develop the pbARMAX model, we start
with a well-studied ordinary differential equation (ODE) governing the evolution of
room temperature under the influence of all these factors.

2.2.2 Thermodynamical Foundation
The energy balance of a room in steady-state can be expressed as [63,70,71],

ρiV Cv
dTrm
dt

= ṁCp(Tdisch − Trm) + hwaiSwa(Twai − Trm)

+ hwdiSwd(Twdi − Trm) + φ+∆Eh,d, (2.7)

where Trm, Tdisch, Twai, and Twdi represent the room, the discharge air, the inside
wall surface, and the inside window surface temperatures respectively; V , Swa, and
Swd denote the room geometries, i.e., room volume, surface area of the wall, and
surface area of the window; ρi, Cv, Cp, hwai, and hwdi are discharge air density,
volumetric heat capacity of air, and heat capacity of air at constant pressure; φ, and
∆Eh,d represent the heat gain from solar flux, and from internal human and device.
All the temperatures should be viewed as an average of the media. The equation
states that the internal thermal energy change of a room equals to the summation
of its heat gain from the discharged air from the HVAC system, through the walls,
through the windows, from the solar flux, and from the heat generated by human
and devices. Note that in this equation, we don’t include the latent heat because
there is a very low level of variations in humidity during the period of experiments
reported later. However, the proposed model can readily take the latent heat into
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consideration when the humidity data are available. Another simplification in the
model is that the heat transfer through walls between rooms controlled by the same
VAV with the same thermostat setpoint is neglected. This is based on the fact that,
according to the data collected, the temperature difference between the room and
the outside air is 2200% larger than the difference between two rooms on average.
Therefore, the heat convection between the room and the outside air dominates
the thermal interaction between the room and its surrounding. Nevertheless, our
approach allows incorporating the heat convection between rooms into Eq. 2.7.

In the following, we make several simplifying assumptions about the heat
transfer through walls and windows. Take the wall as an example. We assume
that the thermal conductivity of the wall is constant, and that the heat conduction
through the wall is one dimensional in steady-state. The temperature in the wall
Twa is a linear function of the thickness coordinate,

Twa =
Twao − Twai

Lwa
xwa + Twai , (2.8)

where Twao is the outside wall surface temperature, Lwa is the thickness of wall, and
xwa is the distance from inside wall surface. Thus, the gradient of Twa along the
thickness direction is a constant.

We further assume that in the thermal equilibrium, the heat convection on
both the inside and outside surfaces of the wall is equal to the heat conduction
through the wall [108]. This gives us

−kwadTwa
dxwa

= hwai(Trm − Twai) = hwao(Twao − Toa), (2.9)

where kwa is the thermal conductivity coefficient of wall, and Toa is the outside air
temperature.

Eqs. 2.8 and 2.9 suggest that Twai can be expressed as a linear function of
Trm and Toa, i.e.,

Twai = P1Trm + P2Toa, (2.10)

where the coefficients P1 and P2 are defined in Appendix B.
Following the same arguments, we obtain an expression for Twdi as

Twdi = P3Trm + P4Toa, (2.11)

where P3 and P4 are defined in Appendix B.
With these simplifications, Eq. 2.7 now reads,

dTrm
dt

= PrmTrm + PdischTdisch + PoaToa +∆E, (2.12)

where Prm, Pdisch, Poa and ∆E are defined in Appendix B.
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2.2.3 The Model
Let∆t be a sample interval and Trm(n) denote the sampled value of Trm(t) at

time t = n∆t where n is a positive integer. Applying the central difference scheme
to Eq. 2.12 leads to the pbARMAX model as

Trm(n+1) = Trm(n− 1) + 2∆t [PrmTrm(n) + PdischTdisch(n) + PoaToa(n) +∆E(n)] .
(2.13)

The coefficients of the pbARMAX model are determined by the properties
of the architectural and control variables. The architectural parameters include the
room volume, wall and window thickness, window-to-wall ratio, and heat conduction
and convection constants. Since the control variables include the air mass flow rate
and discharge temperature, the proposed pbARMAX model enables us to study
the effect of these architectural and control variables in a numerical model. This
aspect, however, is not discussed further in this section, and will be addressed in
the following sections.

From the computational point of view, the pbARMAXmodel has the simplest
structure with the least number of parameters when compared to a general ARMAX
model without quantitative reference to thermodynamics [64]. According to the
determination and validation criteria suggested by Norlén, a model with simplicity
is preferred in order to increase the robustness of models [109].

We should also point out that the thermal inertia of the room temperature
introduces certain time delay from model input to output [61, 110]. The proposed
pbARMAX model can accommodate such a time delay by incorporating certain
previous steps of measurements of inputs, e.g., Trm, Tdisch, Toa, into the right part
of Eq. 2.13.

2.3 Multi-Stage Regression Temperature Model
2.3.1 Introduction

In order to enable parametric study of building envelope parameters’ impact
on room temperature, we further enhance the pbARMAX model to have a multi-
stage regression structure to include not only building envelope parameters but also
control variables.

2.3.2 First-Stage Regression Model
In the physics-based temperature model presented in Eq. 2.13, there are four

independent coefficients to determine, i.e., Prm, Pdisch, Poa and ∆E. The model
does not explicitly include all local control variables such as the air flow rate ṁ.
This makes it difficult to use the model for control design. We can improve the
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pbARMAX model by rearranging the coefficients so that ṁ explicitly appears in
the model. Referring to the definition of Prm in Appendix B, we rewrite it as

Prm = −P5Swa(hwaiP2 + hwdiζP4)− P5ṁCp

= −Poa − Pdisch, (2.14)

and substitute Eq. 2.14 into Eq. 2.13. We have

Trm(n+ 1) = Trm(n− 1) + 2∆ta · (Toa(n)− Trm(n))

+ b · ṁ(n)(Tdisch(n)− Trm(n)) +∆E(n)], (2.15)

where a and b are in general functions of architectural parameters. Another way to
arrange parameters can lead to a different form of the same model as

Trm(n+ 1) = Trm(n− 1) + 2∆t [c · (Tdisch(n)− Trm(n)) + d · Toa(n) +∆E(n)] ,
(2.16)

where c and d are also functions of architectural parameters.
For brevity, we shall refer to the models in Eqs. 2.15 and 2.16 as pbARMAX1

and pbARMAX2, respectively. We shall use a large set of measurements from VAVs
involving a wide range of architectural parameters to determine the pbARMAX1,2
models. This results in a collection of coefficients a, b, c and d.

2.3.3 Second-Stage Regression Model
With the help of the expressions in Appendix B, we can derive the following

linear relationships for the coefficients a, b, c and d,

a = p11/V + p12 · Swa/V + p13 · Swd/V, (2.17a)

b = p21/V + p22 · Swa/V + p23 · Swd/V, (2.17b)

c = p31/V + p32 · Swa/V + p33 · Swd/V, (2.17c)

d = p41/V + p42 · Swa/V + p43 · Swd/V, (2.17d)

where V is the volume of the room, Swa is the area of the wall, Swd is the area of the
windows, and pij (1 ≤ i ≤ 4, 1 ≤ j ≤ 3) are constants. It should be noted that these
coefficients are also dependent on other geometrical and material parameters. In the
present work, we shall focus on 1/V , Swa/V and Swd/V . In fact, the surface-area-
to-volume ratios Swa/V and Swd/V are the driving forces to the thermodynamic
processes that minimize the free energy [111,112].

Substituting these linear relationships into Eqs. 2.15 and 2.16, we obtain
two-stage regression models of the room temperature, denoted as mpbARMAX1,2.

Trm(n+ 1) = Trm(n− 1) + 2∆t[(p11/V + p12 · Swa/V + p13 · Swd/V )
· (Toa(n)− Trm(n)) + (p21/V + p22 · Swa/V + p23 · Swd/V )
· ṁ(n)(Tdisch(n)− Trm(n)) +∆E(n)], (2.18)
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and

Trm(n+ 1) = Trm(n− 1) + 2∆t[(p31/V + p32 · Swa/V + p33 · Swd/V )
· (Tdisch(n)− Trm(n)) + (p41/V + p42 · Swa/V + p43 · Swd/V )
· Toa(n) +∆E(n)]. (2.19)

It should be noted that the mpbARMAX1,2 models can be identified with
one-stage regression by directly using Eqs. 2.18 and 2.19. However, the two-stage
regression has its merits.

1. According to Baguley [113], Ahn [114] and Kristjansson et al. [115], it is ben-
eficial to separate regression modeling of fixed and random effects. Here, the
architectural parameters are fixed, and the temperature variations are ran-
dom. The variability of temperature measurements from different VAVs is
usually greater than the variability of the measurements from the same VAV.
The regressions in two stages tackle these two variabilities separately and ef-
fectively [116].

2. The number of independent data sets of 1/V , Swa/V and Swd/V is signifi-
cantly smaller than that of the temperatures Tdisch(n), Toa(n) and Trm(n). By
separating these variables in two stages of regression, the samples in each stage
have similar distributions, thus improving the so-called compound symmetry
of samples as discussed in [117,118]. This usually leads to better predictions.

3. Compared to the one-stage regression, the ratio of training samples to predic-
tors in the two-stage regression increases more than 200%. This reduces the
potential of overfitting [119,120].

2.4 Parametric PMV Model
2.4.1 Introduction

We first present a further improved energy balance equation in a room with
consideration of both sensible and latent heat. Then, we develop a regression rep-
resentation of an ASHRAE empirical PMV model [93]. The regression model has
a two-stage structure with coefficients that are explicit functions of architectural
parameters and control variables.

2.4.2 Thermodynamical Foundation
Consider the rate of energy change in a room with the effects of latent heat,

heat conduction, convection, and radiation.

ρiV Cv
dTrm
dt

= ṁ(Hdisch −Hrm) + hwaiSwa(Twai − Trm)

+ hwdiSwd(Twdi − Trm) + φ+∆Eh,d, (2.20)
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where Trm, Twai and Twdi represent the temperature of the room, inside wall surface,
and inside window surface; V , Swa and Swd denote the room volume, surface area
of the wall, and surface area of the window; ρi, Cv, hwai and hwdi are the indoor
air density, volumetric heat capacity of the indoor air, and heat convection coeffi-
cients on the inside surfaces of wall and window; φ, and ∆Eh,d represent the heat
gain from solar flux, and from internal human and device, Hdisch, and Hrm denote
the specific enthalpy of discharge air and room air. Since enthalpy includes both
sensible and latent heat, this energy balance equation is able to handle the dehu-
midification process which covers a significant portion of energy consumed by many
HVAC systems [121]. This equation represents an improvement of the pbARMAX
and mpbARMAX models without latent heat by describing the thermal process of
HVAC systems more comprehensively.

Several assumptions are made for the energy balance equation including a) All
the temperatures should be viewed as an average of the media; b) The heat transfer
through walls between rooms controlled by the same VAV with the same thermostat
setpoint is neglected. This is based on the fact that, according to the data collected,
the average temperature difference between the rooms and the outside air is 2.49 ◦C.
While the average temperature difference between adjacent rooms is merely 0.11 ◦C.
Therefore, the heat convection between the room and the outside air dominates the
thermal interaction between the room and its surrounding.

The specific enthalpy of the humid air can be calculated as [122—124]

H = CpaT + α(CpwT +Hwe), (2.21)

where Cpa is the specific heat capacity of air at constant pressure, Cpw is the specific
heat of water vapor at constant pressure, and Hwe is the evaporation heat of water.
Cpa, Cpw and Hwe can be taken as constants 1.006 kJkg−1 ◦C−1, 1.84 kJkg−1 ◦C−1

and 2501 kJkg−1 respectively. α is the humidity ratio given by

α = 0.62198
pw

pa − pw
, (2.22)

where pw is the partial pressure of water vapor in the moist air, and pa is the
atmospheric pressure of the moist air and can be taken as a constant of 101325 Pa.
pw can be calculated as

pw =
R

103
ed(T ), (2.23)

where R is the relative humidity of the moist air in percentage, and the function
ed(T ) represents the partial vapor pressure at dew point given by [125]

ed(T ) = exp

∙
−6096.9385

T
+ 21.2409642

− 2.711193

100
T +

1.673952

105
T 2 + 2.433502 log T

¸
. (2.24)
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From Eqs. 2.21, 2.22, 2.23, and 2.24, we obtain the specific enthalpy as a
function of the temperature and relative humidity

H = CpaT + 0.62198
pw(CpwT +Hwe)

pa − pw
. (2.25)

Hence, Eq. 2.20 reads

ρiV Cv
dTrm
dt

= ṁ

∙
Cpa(Tdisch − Trm) +

pwdisch(CpwTdisch +Hwe)

pa − pwdisch

− pwrm(CpwTrm +Hwe)

pa − pwrm

¸
+ hwaiSwa(Twai − Trm)

+ hwdiSwd(Twdi − Trm) + φ+∆Eh,d. (2.26)

We assume that the thermal conductivity of the wall and window is constant,
the heat conduction through the wall and window is one dimensional in steady-state,
and the heat convection on both the inside and outside surfaces of the wall and
window is equal to the heat conduction through the wall [107], the inside surface
temperatures of wall and windows can be expressed as

Twai = P1Trm + P2Toa,

Twdi = P3Trm + P4Toa, (2.27)

where P1, P2, P3, and P4 are listed in Appendix B.
With Eqs. 2.27, Eq. 2.26 eventually arrives at

dTrm
dt

= Pdisch(Tdisch − Trm) + Poa(Toa − Trm)

+ Pf [F (Tdisch, Rdisch)− F (Trm, Rrm)] +∆E. (2.28)

where Prm, Pdisch, Poa, Pf , and F (T,R) are listed in Appendix B.
Let ∆t be a sample interval, and Xn denote the sampled value of X(t) at

time t = n∆t where n is a positive integer. We apply central difference scheme to
the left side of Eq. 2.28 leading to

Tn+1
rm = T n−1

rm + 2∆t{a(Tn
oa − Tn

rm) + b(T n
disch − Tn

rm) + cṁn(T n
disch − Tn

rm)

+ d[F (Tn
disch, R

n
disch)− F (T n

rm, R
n
rm)] +∆En}, (2.29)

where coefficients a, b, c, and d are defined in Appendix B.
It should be noted that other finite difference schemes, e.g., forward differ-

ence, can also be adopted to discretize the derivative of room temperature. However,
as briefly discussed later in Section 3.4.3.2, central difference produces slightly more
accurate prediction results than forward difference for our model.
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Table 2.1: Coefficients of the ASHRAE empricial PMV model in Eq. 2.30.

Period Occupants β1 β2 β3
1 hour men 0.220 0.233 −6.673

women 0.272 0.248 −7.245
both 0.245 0.248 −6.475

2 hours men 0.221 0.270 −6.024
women 0.283 0.210 −7.694
both 0.252 0.240 −6.859

3 hours men 0.212 0.293 −5.949
women 0.275 0.255 −8.620
both 0.243 0.278 −8.802

2.4.3 The Model
We adopt an empirical PMV model from the ASHRAE Handbook [93],

PMV = β1T + β2pw + β3, (2.30)

where β1, β2 and β3 are constants listed in Table 2.1. Since pw is a nonlinear function
of T given in Eq. 2.23, PMV is also nonlinear in T . Here, we use Eq. 2.29 to develop
a parametric model of the PMV. In particular, we employ the two-stage regression
method discussed in Section 2.3 to relate the PMV to the envelope parameters and
control variables of the building.

2.4.3.1 First-Stage Regression
We rearrange the function F (T,R) in Appendix B as an explicit function of

the PMV as,
F (T,R) = F1PMV − F2, (2.31)

where F1,2 are defined in Appendix B.
By substituting Eq. 2.31 into Eq. 2.29, we have

T n+1
rm = Tn−1

rm + 2∆t[a(Tn
oa − T n

rm) + b(T n
disch − Tn

rm) + cṁn(T n
disch − Tn

rm)

+ d(Fn
1disch

PMV n
disch − F n

1rmPMV n
rm + Fn

2rm − Fn
2disch

) +∆En]. (2.32)
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Then, we substitute Eq. 2.32 into Eq. 2.30. After rearranging the terms, we
obtain an equation governing the evolution of PMV, which we shall refer to as the
epPMV model,

PMV n
rm = β1T

n−2
rm + β2p

n
wrm + x1

PMV n−1
rm

pa − pn−1wrm

+ x2(T
n−1
oa − T n−1

rm )

+ x3(T
n−1
disch − T n−1

rm ) + x4ṁ
n−1(Tn−1

disch − T n−1
rm ) + x5

PMV n−1
disch

pa − pn−1wdisch

+ x6
1

pa − pn−1wrm

+ x7
pn−1wrm

pa − pn−1wrm

+ x8
1

pa − pn−1wdisch

+ x9
pn−1wdisch

pa − pn−1wdisch

, (2.33)

where xi (i = 1 · · · 9) are functions of architectural parameters and material con-
stants. The terms multiplied xi excluding PMV are available measurements. Hence,
the format of Eq. 2.33 is good for regression when xi are taken as the regression
coefficients. We shall use the collected data to obtain xi with the least square
method. A collection of the regression coefficients xi will be obtained for a large
number of rooms in the building with different architectural parameters. This step
is called the first-stage regression. All the local control variables such as discharge
air temperature, relative humidity, and air flow rate are the predictors of the epPMV
model.

2.4.3.2 Second-Stage Regression
With the collection of the regression coefficients xi on hand for a large number

of rooms in the building with different architectural parameters, we seek for the
functional relationships between the regression coefficients and the architectural
parameters. The analytical expressions listed in Appendix B suggest the following
linear functions in three terms 1

V
, Swa

V
and Swd

V
,

x̂i = pi1
1

V
+ pi2

Swa
V
+ pi3

Swd
V

, (2.34)

where x̂i are the estimate of xi, V is the volume of the room, Swa is the area of the
wall, Swd is the area of the windows, and pi1, pi2, and pi3 (i = 1 · · · 9) are functions
of the material and air properties. pi1, pi2, and pi3 are treated as constant for a
given building, and are determined with the collection of coefficients xi for various
parameter combinations of V , Swa and Swd by the least square method. This is the
second-stage of regression.

In the present work, we shall focus on the three architectural terms 1/V ,
Swa/V and Swd/V . In fact, the surface-to-volume ratios Swa/V and Swd/V are
the driving forces to the thermodynamic processes that minimize the free energy
[111,112].
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Eq. 2.34 together with Eq. 2.33 defines the empirical parametric PMV
(epPMV) model as an explicit function of architectural parameters, control vari-
ables, and environmental conditions.
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Chapter 3

MODEL EVALUATION

3.1 Building Description
Extensive past and current measurements of the HVAC system in the Science

and Engineering (SE) building of UC Merced are available to us. The SE building
is instrumented with a network of sensors and controls for the HVAC system. Such
a highly instrumented building serves as an ideal living laboratory to support the
research on energy efficiency. The SE building is a four-floor, southwest orientation,
19, 666 gross square meter building with primary use as office and laboratory. Two
heating and cooling water bridges, nine unit heaters and ten AHUs work together
with sixty-one VAVs to control and regulate 374 rooms and spaces in the building.

There are two major types of rooms, i.e., the faculty office and the conference
room. The geometrical dimensions of the faculty office, and the conference room are
3.2004×4.4714×3.0480 (length×width×height) cubic meters, and 9.6012×5.1816×
3.0480 cubic meters respectively. Figure 3.1 shows the third floor map of the SE
building with detailed distribution of VAV units. Table 3.1 presents the geometries
of the rooms regulated by VAVs under AHU 10 (A10). It should be noted that the
volumes are calculated based on the room heights measured from the floor to the
suspended ceiling. Some rooms have no surface exposed to the outside.

Merced, located in the San Joaquin Valley of California, is in the Mediter-
ranean Steppe eco-region. Its climate exhibits rich variations during a year. The
summer is hot and dry from June to August, and the winter is cold and rainy from
November to April. The measurements of the HVAC system have rich dynamics.

As for the local control systems, the chilling plant has a lead-lag-standby
setup of three chillers, and the heating plant consists of three, dual fuel boilers.
The pump speeds of both the plants are modulated by PID controls to maintain
differential pressures at discharge. The AHU units apply PID controls to regulate
the supply fan variable-frequency drive (VFD), return fan VFD, and supply air
temperature. These control loops maintain the duct pressure, return fan discharge
pressure, and supply air temperature according to the setpoint. The VAV units
implement two separate control loops, i.e., the cooling loop and the heating loop,
to keep the temperature at setpoint. Both of the loops apply PI controls with three
operational modes: heating, cooling and deadband.
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Figure 3.1: The distribution of VAVs on the third floor of the SE building on UC
Merced campus.

Table 3.1: The geometriies of the rooms or spaces controlled by VAVs of AHU 10.

VAV Swa (m
2) Swd (m

2) V (m3) VAV Swa (m
2) Swd (m

2) V (m3)

V 351 11.9 19.0 78.7 V 251 7.6 50.5 151.6
V 352 3.0 15.5 78.7 V 252 1.2 20.2 80.8
V 353 8.1 24.3 75.1 V 253 5.2 24.3 43.6
V 354 13.5 9.4 73.9 V 254 8.2 9.4 58.1
V 355 1.4 4.7 181.9 V 255 2.0 1.8 208.7
V 356 6.7 4.7 50.2 V 256 0 0 94.9
V 357 0 0 97.4 V 257 0 0 61.9
V 359 13.6 6.8 132.4 V 258 13.6 6.8 132.4
V 360 8.1 48.6 244.7 V 259 2.4 35.9 165.0
V 361 19.0 10.2 130.8 V 260 19.0 10.2 130.8
V 362 19.0 10.2 130.8 V 261 19.0 10.2 130.8
V 363 8.8 30.4 101.0 V 262 8.8 30.4 101.0
V 364 4.8 24.5 151.5 V 263 4.8 24.5 151.5
V 365 0.4 46.7 151.5 V 264 0.4 46.7 151.5
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3.2 Physics-Based Temperature Model
3.2.1 Data Preprocessing

Measurements from sixty-one VAVs controlled by two AHUs are available for
the development of the pbARMAX model. From May 31 to September 16, 2010,
measurements of Trm, Tdisch, and Toa from each VAV have been collected over 109
days with a sampling interval of five minutes, resulting in 31, 392 samples. The
samples are divided into a training set and a validation set.

3.2.2 Model Validation
We identify the three parameters Prm, Pdisch, and Poa with the method of

least squares by using Eq. 2.13 where ∆E is treated as an unknown disturbance.
The least square solution of those three parameters is obtained by using the back-
slash operator in MATLAB [126]. This process is commonly referred to as training
of the model. We have numerically determined the optimal number of samples for
parameter identification by following steps: 1) For a particular VAV, we identify dif-
ferent sets of the regression parameters Prm, Pdisch, and Poa with training sets by an
increment of days; 2) For each set of regression parameters, we form a corresponding
pbARMAX model, and use it to predict temperature of the following six weeks after
the training set; 3) We evaluate the prediction residuals for all pbARMAX models
obtained in the last step. The training length yielding the least residual determines
the optimal number of samples for parameter identification of the VAV.

The local building energy management system applies different thermostat
setpoints during the day from 5am to 1am of the next day, and the night from
1am to 5am. Most of the occupants work during the day. There is no significant
difference in occupancy between weekdays and weekends. We divide the data by
day and night. This is consistent with the temporal partition that will be discussed
in Chapter 5. Figure 3.2 gives an example in which the optimal training length for
a VAV (V 351) is determined. The change of the training length leads to varied sets
of parameters Prm, Pdisch, and Poa. The overall effect of such parameter changes
influences the prediction of the pbARMAX model. It is clear that as the training
length increases, prediction errors in both the day and night drop gradually until
reaching their minimum at Day 26 and Day 25 respectively. After reaching their
minimums, the prediction errors increase due to overfitting [119]. This pattern is
clearly shared by all VAVs involved. Also, the order of magnitude of prediction error
during the day is on average 102 times smaller than that during the night. This is
because: a) samples in the day time are six times of those at night, and b) due to a
87% tighter thermostat setpoints, the HVAC system operates more often during the
day than at night. This yields much richer dynamics in the data in the day time,
which is better for numerical modeling.

To validate the model, we first select a metric for evaluating the accuracy of
prediction. In the literature [61, 127—130], it is common to use the mean absolute
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Figure 3.2: The mean square prediction vs. the length of the training data. For
V 351, and most of the other sixty VAVs, the optimal length of the
training data during the summer is between twenty to thirty days.

error (MAE), mean squared error (MSE), the root mean squared error (RMSE),
coefficient of determination (r2) and maximum absolute error (MaxAE). These are
defined as

MAE =
1

m

mX
i=1

|Xi −X∗
i | , (3.1)

MSE =
1

m

mX
i=1

(Xi −X∗
i )
2, (3.2)

RMSE = [
1

m

mX
i=1

(Xi −X∗
i )
2]1/2, (3.3)

r2 =
(m
P

XiX
∗
i − (

P
Xi)(

P
X∗

i ))
2

(m(
P

X2
i )− (

P
Xi)2)(m(

P
X∗2

i )− (
P

X∗
i )
2)
, (3.4)

MaxAE = max
i
|Xi −X∗

i | , (3.5)

where Xi, and X∗
i are the estimated values and measurements of a particular at-

tribute in time domain respectively, and m is the total number of measurements.
Figures 3.3 and 3.4 present three-day room temperature prediction of V 351.

The optimal training lengths, i.e., 26 days for the day partition, and 25 days for
the night partition are used to train the models respectively during the day and
night. And the resulting models are implemented to predict temperature in the
following three days after training sets. It is observed that, the prediction not only
matches well with the measured Trm during the night when the HVAC system has
less dynamics, but also captures abrupt fluctuations during the day. The residual
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Figure 3.3: The short-term temperature prediction in room V 351 during the day
with the pbARMAX model. The prediction tracks well the measured
temperature both when it is relatively smooth or when it changes
rapidly.

of prediction remains within a small range with no significant increase as prediction
length extends from one day to three days.

We also conduct parameter identifications for the other sixty VAVs. The
residuals of three-day predictions for all VAV models are of the same order of mag-
nitude as V 351. In fact, all the VAV models can predict the room temperature over
more than ten weeks with MaxAE less than 0.08. Take V 352 as an example. The
optimal training length for this VAV is eleven days. The model predictions of the
following ninety-four days keep a MaxAE less than 0.065. Figure 3.5 shows part of
this long-term prediction. It is clear that while the room temperature demonstrates
different fluctuation patterns, the residual of prediction remains consistent and does
not increase significantly.

To investigate the relationship between the prediction error and time duration
quantitatively, we take V 201 as an example. The model is trained with the data
over one day only. The predictions over one to five weeks are shown in Table 3.2.
It can be seen that as the prediction extends over time, the error increases slowly.
However, the order of magnitude of the error remains small.

We find that the models trained with one day of data for all VAVs during the
day can still achieve predictions over as long as ten weeks with an optimal MaxAE
less than 0.08. Tables 3.3 and 3.4 show the model parameters and validation results
for fourteen VAVs located on the third floor of the SE building. When compared
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Figure 3.4: The short-term temperature prediction in room V 351 at night with
the pbARMAX model. The prediction tracks well the measured tem-
perature despite there is poor dynamics present in the measurements
at night.
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Figure 3.5: The long-term temperature prediction in room V 352 with the pbAR-
MAX model. The room temperature exhibits different patterns and
fluctuations. Nevertheless, the prediction residual remains consis-
tently small and does not increase significantly.
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Table 3.2: The errors of the room temperature prediction over five weeks with the
pbARMAXmodel for V 201. The data over one day is used for training.

Prediction (weeks) MSE MAE r2 MaxAE

1 3.4344e-4 0.0155 0.9998 0.0444
2 4.2113e-4 0.0169 0.9998 0.0568
3 4.8388e-4 0.0184 0.9980 0.0519
4 5.8464e-4 0.0205 0.9981 0.0520
5 5.8800e-4 0.0205 0.9980 0.0501

to the prediction of the model with the optimal training data set as shown in Table
3.2, the prediction errors in terms of all validation metrics increase, but remain low:
the average MSE is 0.019; the average MAE is 0.097; and the average r2 is 0.985
during the day. The prediction errors are further reduced if optimal training data
are applied.

3.2.3 Comparison with an ARMAX Model
Black-box linear parametric models such as ARX, ARMAX, BJ, OE, etc.

have been successfully implemented to model HVAC units. In a recent work [64],
ARMAX has been claimed to be very effective to model room temperature with
relatively small prediction errors in the summer and fall; the same periods when our
data were collected.

We select the ARMAX of order [na = 1, nb = 1, nc = 1, nk = 3], or ARMAX1113
for short. The parameters na, nb, and nc are defined in Appendix B. This model
is the same as one of the examples studied in [64]. The structure of the model
ARMAX1113 is

Trm(n) =
B1(q)

A(q)
ṁ(n− nk) +

B2(q)

A(q)
Tdisch(n− nk) +

B3(q)

A(q)
Tclg(n− nk)

+
B4(q)

A(q)
Toa(n− nk) +

B5(q)

A(q)
Thtg(n− nk) +

B6(q)

A(q)
Hdisch(n− nk)

+
B7(q)

A(q)
Hoa(n− nk) +

C(q)

A(q)
e(n), (3.6)

where Tclg, and Thtg present the temperatures of cooling water, and heating water;
Hdisch, and Hoa denote the relative humidities of the discharge air, and outside air;
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Table 3.3: Model parameters and prediction error over ten weeks for fourteen VAVs
during the day. The data over one day is used for training.

VAV Prm Pdisch Poa MSE MAE r2 MaxAE

V 351 −0.0075 0.0044 0.0031 0.0025 0.0420 0.9973 0.2018
V 352 −0.0073 0.0052 0.0021 0.0010 0.0264 0.9992 0.1231
V 353 −0.0085 0.0048 0.0037 0.0032 0.0482 0.9973 0.1672
V 354 −0.0116 0.0094 0.0022 0.0218 0.1228 0.9898 0.8632
V 355 −0.0017 0.0008 0.0007 0.0001 0.0108 0.9996 0.0313
V 356 −0.0093 0.0078 0.0016 0.0115 0.0671 0.9767 0.4189
V 357 −0.0090 0.0079 0.0011 0.0423 0.1784 0.9757 0.5129
V 359 −0.0070 0.0060 0.0010 0.0079 0.0768 0.9920 0.2542
V 360 −0.0039 0.0028 0.0011 0.0021 0.0397 0.9985 0.1207
V 361 −0.0067 0.0055 0.0012 0.0028 0.0437 0.9948 0.1586
V 362 −0.0085 0.0071 0.0015 0.0416 0.1797 0.9769 0.5203
V 363 −0.0145 0.0129 0.0017 0.0612 0.2106 0.9200 0.6651
V 364 −0.0067 0.0054 0.0014 0.0431 0.1785 0.9785 0.7097
V 365 −0.0112 0.0088 0.0026 0.0272 0.1422 0.9897 1.6662
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Table 3.4: Model parameters and validation results of ten-week prediction with
one-day training for fourteen VAVs at night.

VAV Prm Pdisch Poa MSE MAE r2 MaxAE

V 351 −0.0143 0.0083 0.0060 0.0271 0.1475 0.9726 0.3740
V 352 −0.0115 0.0095 0.0019 0.0040 0.0429 0.9969 0.2971
V 353 −0.0097 0.0056 0.0041 0.0061 0.0467 0.9891 0.4040
V 354 −0.0152 0.0148 0.0003 0.0023 0.0323 0.9957 0.2352
V 355 −0.0041 0.0022 0.0019 0.0048 0.0407 0.9886 0.2628
V 356 −0.0143 0.0116 0.0027 0.0072 0.0589 0.9667 0.4656
V 357 −0.0142 0.0155 −0.0013 0.0103 0.0793 0.9767 0.3527
V 359 −0.0126 0.0129 −0.0002 0.0007 0.0213 0.9990 0.1152
V 360 −0.0094 0.0084 0.0010 0.0013 0.0232 0.9967 0.1916
V 361 −0.0110 0.0104 0.0005 0.0008 0.0202 0.9985 0.1392
V 362 −0.0162 0.0164 −0.0001 0.0299 0.1471 0.9950 0.3508
V 363 −0.0203 0.0184 0.0019 0.0032 0.0393 0.9936 0.2734
V 364 −0.0180 0.0168 0.0012 0.0033 0.0461 0.9936 0.1711
V 365 −0.0015 0.0032 −0.0018 0.0012 0.0255 0.9986 0.1604
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Table 3.5: The short-term prediction errors by the pbARMAX model and the
ARMAX1113 model. The pbARMAX model has much smaller errors.

Models MSE MAE r2 MaxAE

ARMAX (day) 6.2e-3 0.0529 0.9846 0.6922
pbARMAX (day) 6.9233e-5 0.0064 0.9998 0.0588
ARMAX (night) 2.28e-2 0.0946 0.9421 1.2653
pbARMAX (night) 3.5470e-4 0.0150 0.9995 0.0537

A(q), Bi(q), and C(q) are polynomials in q defined in Appendix B. Within Eq. 3.6,
variables not included in the pbARMAX model are dropped when we compare the
pbARMAX model with the ARMAX1113 model.

First, we compare the short-term predictions. We use one-week data to train
both ARMAX1113 and pbARMAX models and then apply them to predict the room
temperature in the following three days. Table 3.5 takes V355 as an example,
and compares the prediction results from both models. The pbARMAX model
shows better validation results in all criteria selected. For instance, the orders of
magnitude of MSE of the pbARMAX model are 10−2 smaller than those of the
ARMAX1113 model both during the day and the night. For the rest sixty VAVs,
although the ARMAX1113 model performs pretty well in terms of the validation
metrics, the pbARMAX model performs better than the ARMAX1113 model. For
all the VAVs involved, when compared to the ARMAX1113 model, the prediction of
the pbARMAX model shows an average 95.3% decrease in MSE, 84.1% decrease
in MAE, 91.0% decrease in MaxAE, and 1.6% increase in r2 during the day, while
96.5% decrease in MSE, 85.6% decrease inMAE, 95.8% decrease inMaxAE, and
6.5% increase in r2 at night. Take V 255 as an example. Figure 3.6 shows that
the pbARMAX model outperforms the ARMAX1113 model during the day when the
room temperature fluctuates a lot, and at night when the system dynamics is poorly
represented in the data and the room temperature is smooth.

Next, we study the long-term predictions. We use the data of an opti-
mal training length to obtain the model parameters for both the pbARMAX and
ARMAX1113 model, and use them to predict the room temperature over a duration
of ten weeks. Figure 3.7 and Table 3.6 show the comparison results for V 255. Fig-
ure 3.7 suggests that while the prediction residual of the ARMAX1113 model starts
to increase as the prediction extends over time, the pbARMAX model is still able
to maintain its residual at a much lower level. Table 3.6 indicates that compared
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Figure 3.6: Comparison of the short-term predictions with the pbARMAX model
and the ARMAX1133 model. The pbARMAX model consistently out-
performs the ARMAX1133 model. during the day (upper subplots),
and at night (lower subplot).

to the ARMAX1113 model, the pbARMAX model prediction has a 93% smaller in-
crease in MSE over time, a 90% smaller increase in MAE, a 77% smaller increase
in MaxAE, while a 99.6% less decrease in r2. This observation of model accuracy
is similar for the rest of sixty VAVs.

It should be noted that other sampling intervals, i.e., one minute, ten minutes,
fifteen minutes, and thirty minutes, are also tested for developing the pbARMAX
model. The one-minute sampling interval is achieved by linearly interpolating the
original data, while the rest sampling intervals are obtained by deleting extra sam-
ples accordingly. Sampling intervals longer than thirty minutes are not tested in
order to obtain enough training samples for the night partition, which is of only
four hours per day. On one hand, for tested sample intervals no less than five
minutes, the corresponding pbARMAX models demonstrate insignificant difference
(less than 5%) in validation results of all metrics selected. The pbARMAX model
developed with the five-minute sampling interval produces, on average, the best
validation results for all VAVs involved. On the other hand, the pbARMAX model
developed with one-minute sampling interval produces worse results than all the rest
sampling intervals. This is mostly because the linear interpolation has altered the
underlying system physics recorded in the original data. Considering all these facts,
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Figure 3.7: Comparison of long-term predictions with the pbARMAX model
and the ARMAX1113 model. While the prediction residual of the
ARMAX1113 model starts to increase as the prediction time becomes
longer, the pbARMAX model still maintains its residual at a lower
level.

Table 3.6: The long-term prediction errors over six weeks by the pbARMAX
model (PB) and the ARMAX1113 model (NPB). The pbARMAXmodel
demonstrates better performance consistently.

MSE MAE r2 MaxAE
Weeks PB / NPB PB/ NPB PB / NPB PB / NPB
1 2.9898e-5/6.4025e-4 0.0046/0.0153 0.9999/0.9954 0.0138/0.1182
2 5.3093e-5/7.7538e-4 0.0058/0.0167 0.9998/0.9948 0.0213/0.2327
3 5.4892e-5/8.8781e-4 0.0059/0.0179 0.9998/0.9965 0.0181/0.2867
4 5.7200e-5/0.0075 0.0060/0.0596 0.9996/0.9859 0.0187/0.3781
5 5.9827e-5/0.0089 0.0062/0.0669 0.9995/0.9140 0.0204/0.5245
6 6.0906e-5/0.0091 0.0063/0.0719 0.9994/0.8878 0.0276/0.6149

104% ↑/1416% ↑ 37% ↑/369% ↑ 0.04% ↓/10% ↓ 100% ↑/420% ↑
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we choose the five-minute sampling interval for developing the pbARMAX model
for the SE building.

3.2.4 On Spatial and Temporal Partition
The potential applications of the pbARMAX model include building oper-

ation simulation and prediction, intelligent control design, HVAC fault detection
and diagnosis, etc. Since the model includes architectural factors, it can be used
for building design and optimization as well. Here, we discuss the implications of
the present model to the proposed spatial and temporal partition strategy [104],
which will be discussed in Chapter 5. The spatial and temporal partition strategy
proposes to group VAVs with similar energy performance patterns to achieve tighter
thresholds for fault detection. We can use the pbARMAX model to quantitatively
assess the partition strategy.

Recall the solar flux term φ that is included in ∆E in Eq. 2.13. By ne-
glecting the effect of clouds, and heat loss of the window, the heat gain φ can be
approximately expressed as

φ = ψ sin θsζSwa, (3.7)

where ψ is the solar heat flux density, θs is the local solar elevation angle, and ζ is the
window-to-wall ratio. It should note that Eq. 3.7 is a highly simplified expression
for the perpendicular heat flux projection onto a window. It is proven later to
be adequate for providing an analytical foundation for the spatial and temporal
partition strategy.

To investigate the relationship between ψ sin θs and Toa, we first collect solar
heat flux measurements from the California Irrigation Management Information
System [131] during the same period when the building data are collected. The
station providing the data is located only 4.7 miles away from the SE building.
Then, by neglecting the effect of atmospheric refraction, we approximate sin θs based
on the equation [132]

sin θs = cos θh cos δ cosΦ+ sin δ sinΦ, (3.8)

where θh is the hour angle in the local solar time, δ is the sun declination, and Φ
is the local latitude. With the measurements of Toa collected from the campus, we
evaluate the correlation between ψ sin θs and Toa. The results shows that ψ sin θs is
linearly correlated with Toa during the day with a correlation coefficient around 0.8.
We therefore assume

ψ sin θs = aToa + b, (3.9)

where a and b are in general functions of time. Substituting Eq. 3.9 into Eq. 2.13,
we obtain a modified pbARMAX model as

Trm(n+ 1) = Trm(n− 1) + 2∆t(PrmTrm(n) + PdischTdisch(n) + (Poa + P5ζSwaa)Toa(n)

+ (∆E + P5bζSwa)), (3.10)
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where P5 is defined in Appendix. Eq. 3.10 indicates that the solar flux influences
the coefficient of Toa(n) in the pbARMAX model. For a room without direct sun
exposure, the coefficient of Toa(n) is smaller. The measurements support this obser-
vation.

Consider the rooms (V 356-V 359) next to the hallway without direct sun
exposure in the dean’s suite shown in Figure 3.1. The coefficient Poa is on average
65% smaller than that for the rooms (V 351-V 354) directly exposed to the sun in the
same suite. This difference in the coefficient Poa, due to the architectural feature
of the room, provides a basis for spatial partition of VAVs in the building. Tables
3.3 and 3.4 show the model parameters of forty-seven VAVs during the day and at
night. It is observed that the average of Poa at night drops 62% from its value during
the day. This variation of the coefficient Poa is of course due to the change of sun
exposure over time. The temporal partition proposed is based on this fact.

In summary, with the present modeling approach, the explicit functional
relationship of the system parameters in Eq. 3.10 to various architectural properties
and environmental factors can help, to some extend, create spatial and temporal
partitions of VAVs. Hence, the present modeling method provides an analytical
foundation for the spatial and temporal partition strategy.

3.3 Multi-Stage Regression Temperature Model
3.3.1 Data Preprocessing

We use measurements collected from the same two AHUs and during the
same period of time as indicated in Section 3.2. We add the supply air flow rate
ṁ to the original data set of Trm, Tdisch, and Toa. We also exclude three VAVs
with intermittent sensor measurements, i.e., fifty-eight VAVs are involved in data
collection. This results in 31, 392 samples with 232 attributes.

The samples are divided into a training set and a validation set. The identified
regression model is verified by the validation set of the VAVs not included in the
training set. The training set includes all VAVs controlled by AHU 9 (A9) and VAVs
controlled by A10 on the third floor. The validation set includes VAVs controlled
by A10 on the second floor. This yields 44 VAVs for training, and 14 VAVs for
validation with 31 and 12 different combinations of the parameters 1/V , Swa/V and
Swd/V in each set.

3.3.2 Model Identification
3.3.2.1 First-Stage Regression Model

We use RMSE,MAE, r2, andMaxAE to quantify the modeling and predic-
tion accuracy of the multi-stage regression models [120]. These metrics are defined
in the previous section.

An optimal length of time duration exists for a given training set. We deter-
mine the optimal number of training samples for each VAV by changing the training
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Figure 3.8: The root mean square error (RMSE) of prediction vs. the length of
the training data. For V 201, and most of the other fifty-seven VAVs,
the optimal training length for the proposed pbARMAXmodels during
the summer is between forty to fifty days.

length in the increment of days to find the smallest prediction error over the longest
predictive period. Figure 3.8 shows an example of how the optimal training length
during the day for a VAV (V 201) is determined. With these optimal training lengths,
we determine the regression models in Eqs. 2.15 and 2.16 with the method of least
squares, resulting in a set of model coefficients a, b, c and d. These model coefficients
are listed in Tables 3.7 and 3.8.

Figure 3.9 shows an example of the modeling of the room temperature over
two days by the pbARMAX1 model for V351. The modeling error is negligible with
RMSE and r2 being 0.0057 and 0.9998 during the day, and 0.0378 and 0.9983 during
the night. We have found that both the pbARMAX1 and pbARMAX2 models have
a similar modeling accuracy for all the VAVs.

3.3.2.2 Second-Stage Regression Model
The first stage of regression produces 31 sets of model coefficients a, b, c and

d. The second stage of regression finds the linear expressions in Eqs. 2.17 that
relate the coefficients a, b, c and d to the architectural parameters 1/V , Swa/V and
Swd/V . The second stage continues to use VAVs in the training set. The method
of least squares is used to determine the regression coefficients pij which are listed
in Table 3.9. Table 3.10 lists the goodness-of-fit of the second stage regression. The
average RMSE of all four model coefficients is as small as 1.0291e-4.
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Table 3.7: The coefficients of the pbARMAX1 model and prediction errors over
four weeks during the day for 14 VAVs in the training set.

VAV a b RMSE MAE r2 MaxAE

V 351 0.0040 −2.6179e-5 0.1442 0.1010 0.9797 1.7669
V 352 4.6931e-4 −3.6583e-5 0.1238 0.0898 0.9837 0.8897
V 353 9.0462e-5 −1.7770e-5 0.1377 0.0859 0.9811 1.4507
V 354 3.8409e-5 −1.0488e-5 0.1014 0.0678 0.9910 1.0675
V 355 −7.8922e-7 −1.7027e-7 0.0599 0.0358 0.9877 0.5005
V 356 −1.8222e-5 1.1515e-5 0.1529 0.0881 0.9552 1.4381
V 357 −2.5264e-4 6.9368e-5 0.1391 0.1090 0.9683 1.1035
V 359 −6.3169e-5 3.3502e-5 0.1040 0.0735 0.9793 1.2149
V 360 −1.3155e-5 6.6516e-6 0.0812 0.0532 0.9904 0.6809
V 361 −1.5193e-5 9.5484e-6 0.0725 0.0398 0.9830 1.3269
V 362 −3.6004e-5 1.1201e-5 0.0888 0.0586 0.9939 0.8215
V 363 −5.2251e-5 1.1045e-5 0.1593 0.0865 0.9077 2.5716
V 364 −1.8862e-4 3.1082e-5 0.1285 0.0934 0.9816 1.2174
V 365 −9.1219e-5 8.8934e-6 0.1725 0.1346 0.9747 1.7140
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Figure 3.9: The pbARMAX1 model has small modeling errors for one example
VAV during both the day and night. The RMSE and r2 are 0.0057
and 0.9998 during the day, and 0.0378 and 0.9983 during the night.
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Table 3.8: The coefficients of the pbARMAX2 model and prediction errors over
four weeks during the day for 14 VAVs in the training set.

VAV c d RMSE MAE r2 MaxAE

V 351 −2.2778e-4 1.3034e-4 0.1432 0.1004 0.9785 2.0819
V 352 −0.0023 0.0019 0.1088 0.0706 0.9867 1.0351
V 353 −0.0011 8.7864e-4 0.1355 0.0866 0.9822 1.4643
V 354 −7.1563e-4 5.7748e-4 0.1005 0.0670 0.9910 1.0565
V 355 0.0038 −0.0033 0.0874 0.0643 0.9781 0.5594
V 356 −0.0033 0.0028 0.1092 0.0696 0.9770 1.4521
V 357 −6.4945e-4 5.3243e-4 0.0758 0.0478 0.9843 0.9054
V 359 −7.4673e-4 6.1395e-4 0.0801 0.0512 0.9837 1.1594
V 360 −0.0020 0.0016 0.0781 0.0524 0.9909 0.6482
V 361 −0.0011 8.9718e-4 0.0677 0.0384 0.9844 1.3188
V 362 8.7483e-5 −8.4688e-5 0.0749 0.0443 0.9945 0.7711
V 363 −4.3001e-4 3.4604e-4 0.1486 0.0791 0.9145 2.3908
V 364 −0.0019 0.0016 0.0886 0.0547 0.9865 0.9269
V 365 −4.0561e-5 1.1577e-5 0.1565 0.1214 0.9774 1.5981

Table 3.9: The second stage regression coefficients identified from VAVs in the
training set.

pi,j j = 1 j = 2 j = 3

i = 1 0.0283 0.0005 0.0008
i = 2 −0.1200 0.0003 0.0008
i = 3 1.7832 −0.0329 −0.0097
i = 4 −1.4488 −0.0269 −0.0080

Table 3.10: Goodness-of-fit of the second stage regression of the model coefficients.

ba bb bc bd
RMSE 3.6497e-5 5.6382e-6 2.0870e-4 1.7075e-4
MaxAE 1.0639e-4 8.9216e-6 3.6774e-4 3.0310e-4
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Table 3.11: The four-week prediction errors generated by the mpbARMAX1 model
for the example VAVs in the training set.

RMSE MAE r2 MaxAE

V 351 0.3541 0.3204 0.9752 2.0186
V 352 0.1273 0.0890 0.9894 1.2364
V 353 0.2591 0.2330 0.9888 1.5983
V 354 0.4786 0.4695 0.9916 1.3024

For the VAVs in the training set, we conduct four-week predictions by using
the mpbARMAX models in Eqs. 2.18 and 2.19. The coefficients pij and the archi-
tectural parameters in Table 3.1 are used in the models. Take the mpbARMAX1
model as an example, Table 3.11 shows the goodness-of-fit of such predictions for
four VAVs in the dean’s suite on the third floor, which have distinct combinations
of the architectural parameters 1/V , Swa/V and Swd/V . We can also compare the
predictions of the two-stage and one-stage regression models by examining Table
3.11 and Table 3.7 (Table 3.7 and 3.8 also include the goodness-of-fits of long-term
predictions of pbARMAXmodels which will be explained in Section 3.3.3. It is clear
that the mpbARMAX1 model is slightly less accurate than the one-stage model. The
mpbARMAX2 model demonstrates the similar performance in accurate long-term
predictions.

3.3.3 Model Validation
We first validate the pbARMAX1,2 models, which merely serves to assure

that the appropriate models are chosen for the room temperature so that the
mpbARMAX1,2 models are based on a solid foundation.

We use the pbARMAX1,2 models to conduct four-week long-term predictions
with the data from the training set. Take fourteen VAVs in the short wing on the
third floor as examples. Tables 3.7 and 3.8 in the previous Section 3.3.2.1 present
the goodness-of-fits for the pbARMAX1,2 models. The average RMSE, MAE, r2,
and MaxAE of the predictions are 0.12, 0.07, 0.97 and 1.26 for the pbARMAX1
model, while 0.10, 0.06, 0.98 and 1.24 for the pbARMAX2 model. Compared to
the modeling errors presented in Section 3.3.2.1, the prediction demonstrates an
increase in RMSE, and a slight decrease in r2. Nevertheless, the overall predictions
of the pbARMAX1,2 models are accurate.
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Figure 3.10: The short-term prediction of the two-stage regression mpbARMAX2
model over the validation set of VAVs demonstrates goodness-of-fits
nearly as good as those over the training set.

We can now validate the mpbARMAX models with the validation set. We
form the models by using the coefficients ba, bb, bc, and bd from Eqs. 2.17 with only
pij and architectural parameters, and use them to conduct both short-term and
long-term predictions.

As an example, Figure 3.10 shows the one-day prediction of V255 with the
mpbARMAX2 model. The prediction not only matches well the measured temper-
ature eTrm when it fluctuates within the thermostat setpoints, but also tracks nicely
when the VAV brings the room temperature back within the setpoints.

Goodness-of-fits of the four-week long-term predictions are presented in Table
3.12. For the four VAVs in the dean’s suite on the second floor, the average RMSE
and r2 of the predictions are 0.2572 and 0.9568, respectively. Compared to the single-
stage regression models, the validation errors of the two-stage regression models
demonstrate no significant difference. For all fourteen VAVs in the validation set,
the average RMSE and r2 of the predictions of the one-stage regression models are
15% more and 3% less than those of the two-stage regression models. These results
show that the proposed models can indeed capture the underlying thermodynamics
of the system.

3.3.4 Comparison with an ARMAX Model
According to Schunn and Wallach [120], one cannot apply absolute standards

in assessing the quality of a particular goodness-of-fit value. Each goodness-of-fit

43



Table 3.12: The four-week prediction errors generated by the mpbARMAX2 model
for the example VAVs in the validation set.

RMSE MAE r2 MaxAE

V 251 0.3431 0.3009 0.9281 1.4529
V 252 0.1462 0.1035 0.9800 1.1708
V 253 0.2557 0.1986 0.9264 2.1889
V 254 0.2839 0.2755 0.9930 0.9272

should be compared to those obtained by previous models in the same domain. To
this end, we shall compare the mpbARMAX1,2 models with existing models of the
room temperature. Many linear parametric models such as ARX, ARMAX, BJ,
OE, etc. have been successfully implemented to model the room temperature in
HVAC units. In a recent work [64], an ARMAX model has been claimed to be very
effective to predict the room temperature with relatively small errors in the summer
and fall, the same periods when our data were collected.

Following the modeling approach in [64], we test different combinations of
na, nb, nc and nk, in which na, nb and nc range from 1 to 10 and nk ranges from
1 to 6. And we find that the ARMAX of order [na = 1, nb = 1, nc = 1, nk = 3],
or ARMAX1113 for short, produces the best validation results on the SE building.
This model is the same as one of the examples studied in [64]. The structure of the
model ARMAX1113 is

Trm(n) =
B1(q)

A(q)
ṁ(n− nk) +

B2(q)

A(q)
Tdisch(n− nk) +

B3(q)

A(q)
Tclg(n− nk)

+
B4(q)

A(q)
Toa(n− nk) +

B5(q)

A(q)
Thtg(n− nk) +

B6(q)

A(q)
RHdisch(n− nk)

+
B7(q)

A(q)
RHoa(n− nk) +

C(q)

A(q)
e(n),

where Tclg and Thtg present the temperatures of cooling water, and heating water;
RHdisch and RHoa denote the relative humidities of the discharge air and outside
air; A(q), Bi(q) and C(q) are polynomials in q defined in Appendix B. The vari-
ables in Eq. 3.6 that don’t appear in the mpbARMAX models are dropped in the
comparison.

The VAVs in the validation set are used for the comparison. The mpbARMAX1,2
models are formed as discussed previously. The ARMAX1113 model uses the his-
torical data to train the model and obtains the optimal parameters. We apply the
optimal training lengths for both approaches.
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Figure 3.11: The mpbARMAX1 model in the four-week long-term predictions over
an example VAV outperforms the ARMAX1113 model in terms of all
four validation metrics.

We consider the prediction of the room temperature over a period of four
weeks. Take V259 as an example. Figure 3.11 compares the predictions from both
models. The ARMAX1113 model performs well by providing a small RMSE as
0.0992, and a large r2 as 0.9712. The mpbARMAX1 model demonstrates an even
better prediction with a 85.5% decrease in RMSE to 0.0143, and a 1.7% increase in
r2 to 0.9878. Furthermore, the mpbARMAX1 model behaves better especially when
the temperature is oscillating around the cooling set point. The observed MAE of
the mpbARMAX1 model is 79.9% smaller than that of the ARMAX1113 model. For
other thirteen VAVs in the validation set as well as the mpbARMAX2 model, we
have observed the similar results.

Table 3.13 compares the average goodness-of-fit of both the mpbARMAX1,2
model and the ARMAX1113 model for all VAVs in the validation set. Compared
to the ARMAX1113 model, the mpbARMAX1,2 models have a 19.5% smaller in-
crease in RMSE over the four weeks, a 29.6% smaller increase in MAE, a 48.0%
smaller increase in MaxAE, while a 90.9% less decrease in r2. This illustrates that
the mpbARMAX1,2 models produce more accurate long-term predictions than the
ARMAX1113 model.
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Table 3.13: The long-term prediction errors over four weeks by the mpbARMAX
models (MR) and the ARMAX1113 model (AR). The mpbARMAX
models demonstrate better performances consistently.

RMSE MAE r2 MaxAE
Weeks MR / AR MR / AR MR / AR MR / AR
1 0.0420/0.0672 0.0382/0.0351 0.9995/0.9876 0.2414/0.6020
2 0.0541/0.1373 0.0384/0.0612 0.9980/0.9807 0.3335/1.1166
3 0.0591/0.1498 0.0431/0.0700 0.9974/0.9724 0.3984/1.1812
4 0.0908/0.1643 0.0806/0.0895 0.9959/0.9587 0.4853/1.7723

116% ↑/144% ↑ 110% ↑/154% ↑ 0.36% ↓/3.92% ↓ 101% ↑/194% ↑

3.4 Parametric PMV Model
3.4.1 Data Preprocessing

Based on the measurements collected in Section 3.3, we further include
twelve measurements of mixture air temperature, return air temperature, supply
air temperature, return air damper position, outside air damper position, exhaust
air damper position, mixture air flow rate, return air flow rate, return air relative
humidity, outside air relative humidity, outside air temperature, preliminary filter
partial pressure drop of moisture, and final filter partial pressure drop of moisture
of two AHUs at the upper level over the same 109 days. This results in 31, 392
samples with 928 attributes. The measurements collected at the AHU level are used
to estimate the supply air relative humidity Rsa.

The local building energy management system (BEMS) applies different ther-
mostat setpoints during the day from 5am to 1am of the next day, and the night
from 1am to 5am. Most of the occupants work during the day. There is no signifi-
cant difference in occupancy between weekdays and weekends. We divide the data
by day and night. This is consistent with the idea of temporal partition proposed
in [133].

The samples are divided into a training set and a validation set in the same
way as in Section 3.3.

3.4.2 Model Identification
3.4.2.1 First-Stage Regression Model

An optimal length of time duration exists for a given training set. We deter-
mine the optimal number of training samples for each VAV by changing the training
length in the increment of days to find the smallest prediction error over the longest
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Figure 3.12: Comparison of the measured PMV of V 364 during the day with the
modeled PMV using the epPMV model obtained after the first-step
regression. The overall goodness-of-fit of the modeling is excellent in
terms of both root mean square error and coefficient of determination.

predictive period. With these optimal training lengths, we determine the regres-
sion models in Eq 2.33 with the method of least squares, resulting in a set of the
coefficients xi.

Take V 364 as an example. Figures 3.12 and 3.13 show the modeling results
over two days by the epPMV model after the first-stage regression. The modeling
errors are negligible with RMSE and r2 being 0.0234 and 0.9883 during the day,
and 0.0066 and 0.9967 during the night. We have found that the epPMV model
after the first-stage regression has a similar modeling accuracy for all the VAVs.

3.4.2.2 Second-Stage Regression Model
The first stage of regression produces 31 sets of the coefficients xi. The

second stage of regression finds the linear expressions in Eqs. 2.34 that relate xi to
the architectural parameters 1/V , Swa/V and Swd/V . The second stage continues
to use VAVs in the training set. The method of least squares is used to determine
the regression coefficients pij which are listed in Table 3.14. The average RMSE of
all nine model coefficients xi and x̂i is as small as 0.0881.

Figure 3.14 shows the model fitting of the PMV data for V 352 over four days.
The RMSE and r2 are 0.0215 and 0.9786 respectively. Other VAVs in the training
set demonstrate similar modeling accuracy.
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Figure 3.13: Comparison of the measured PMV of V 364 during the night with the
modeled PMV using the epPMV model obtained after the first-step
regression. The overall goodness-of-fit of the modeling is as excellent
as during the day.

Table 3.14: The second stage regression coefficients identified from VAVs in the
training set.

pij j = 1 j = 2 j = 3

i = 1 6.4778e+5 0.1590e+5 0.1889e+5
i = 2 0.1661 0.0020 0.0111
i = 3 7.6342 0.0519 −0.0305
i = 4 −0.0055 0.0001 0.0001
i = 5 −3.1559e+5 −0.0980e+5 0.1024e+5
i = 6 −4.8772e+5 −0.1250e+5 −0.1473e+5
i = 7 −2.9799e+8 −0.0592e+8 −0.0013e+8
i = 8 1.1356e+6 0.0251e+6 0.0132e+6
i = 9 −1.1554e+9 0.0039e+9 −0.0017e+9
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Figure 3.14: Comparison of the measured PMV of V 352 during the day with the
modeled PMV using the epPMV model obtained after the second-
step regression. The overall goodness-of-fit of the modeling is excel-
lent with RMSE as 0.0215 and r2 as 0.9786.

3.4.3 Model Validation
3.4.3.1 First Stage

We first validate the epPMV model obtained from the first-stage regression
with the validation data set. This merely serves to assure that the appropriate
models are chosen for the indoor PMV so that the final epPMV model is based on
a solid foundation.

Take V 364 as an example. Figure 3.15 shows three-day prediction generated
by the model obtained in the first-step regression. Compared to the model fitting
with the training set, the prediction has a minor increase in RMSE and decrease
in r2.

For long-term predictions over four weeks, Table 3.15 lists goodness-of-fits of
fourteen VAVs in the training set. The average of RMSE is as small as 0.0241, and
the average of r2 is as large as 0.9728. The goodness-of-fit of prediction (denoted
as Pr in the table) is almost as good as the training result (denoted as Tr in the
table).

From the practical point of view, the daily average value of PMV provides
operators a system-level and also more useful view of the thermal comfort in the
building. The proposed model has even better goodness-of-fit of the prediction of
daily averages of PMV. On average, the order of magnitude of RMSE is reduced
by a factor of 102, while r2 is increased by 5%. Figure 3.16 shows an example of
three-week daily average PMV prediction of V 351.
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Figure 3.15: Comparison of the measured PMV of V 364 during the day with
the predicted PMV using the epPMV model obtained after the first-
step regression. The overall goodness-of-fit of the prediction is as
excellent as the modeling in terms of both root mean square error
and coefficient of determination.

Table 3.15: The RMSE and r2 of the epPMV model for fourteen VAVs in the
training set after the first-stage regression.

Tr/Pr RMSE r2

V 351 0.0353/0.0369 0.9747/0.9743
V 352 0.0263/0.0468 0.9792/0.9896
V 353 0.0265/0.0296 0.9914/0.9906
V 354 0.0198/0.0202 0.9827/0.9874
V 355 0.0124/0.0161 0.9841/0.9888
V 356 0.0234/0.0299 0.9720/0.9776
V 357 0.0141/0.0189 0.9782/0.9744
V 359 0.0124/0.0148 0.9910/0.9756
V 360 0.0145/0.0168 0.9937/0.9920
V 361 0.0180/0.0140 0.9882/0.9647
V 362 0.0148/0.0148 0.9933/0.9922
V 363 0.0239/0.0252 0.9461/0.8710
V 364 0.0176/0.0196 0.9767/0.9553
V 365 0.0276/0.0340 0.9669/0.9860
Mean 0.0205/0.0241 0.9799/0.9728
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Figure 3.16: Comparison of the measured daily averages of PMV of V 351 with the
modeled and predicted daily averages PMV using the epPMVmodel.
The goodness-of-fit of the prediction is further improved in terms of
both root mean square error and coefficient of determination.

3.4.3.2 Second Stage
We can now validate the epPMV model obtained from the two-state regres-

sion procedure. The epPMV model contains the coefficients pij, the architectural
parameters and control variables. We use the model to conduct both short-term
and long-term predictions of the PMV index with the validation set.

Figure 3.17 shows a short-term prediction of PMV over three days for V 252.
The goodness-of-fit of the prediction is as good as those of VAVs in the training set.
The RMSE is 0.0251, and the r2 is 0.9765. The PMV predictions of other thirteen
VAVs in the validation set have similar accuracies, and will not be presented here
for the sake of space.

Figure 3.18 shows long-term predictions of PMV for V 254 over four weeks.
The prediction accuracy is good with a RMSE of 0.0111, and a r2 of 0.9919. Fur-
thermore, the prediction tracks fast fluctuations of PMV or moderate variations in
a small range equally well. This indicates that the epPMV model is able to cap-
ture the rich dynamics of PMV in the field. Table 3.16 lists the goodness-of-fits of
four VAVs in the validation set. The average RMSE, MAE, r2, MaxAE for the
long-term predictions are 0.0438, 0.0290, 0.9614, and 0.3550.

Similar to the first-step regression, the prediction of daily average PMV
demonstrates improved accuracy. Figure 3.19 shows the prediction of PMV for
V 251 over four weeks.
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Figure 3.17: Comparison of the measured PMV of V 252 in the validation set with
the predicted PMV using the epPMV model. The goodness-of-fit is
almost as excellent as VAVs in the training set.
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Figure 3.18: Comparison of the measured PMV of V 254 in the validation set
with the predicted PMV using the epPMV model. This four-week
prediction is able to track nicely the rich dynamics of the measured
PMV.
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Table 3.16: The metrics of the goodness-of-fit of four-week predictions of four
VAVs in the validation set.

Pr RMSE MAE r2 MaxAE

V 251 0.0640 0.0385 0.9385 0.3996
V 252 0.0174 0.0196 0.9839 0.2778
V 253 0.0826 0.0404 0.9315 0.5615
V 254 0.0111 0.0173 0.9919 0.1812
Mean 0.0438 0.0290 0.9614 0.3550

As for different finite difference schemes as discussed in Section 2.4.2, the
corresponding prediction results demonstrate insignificant differences. Take V 251
to V 254 as examples, the average RMSE and r2 of long-term predictions when
forward difference is adopted are 1.2% larger and 0.8% smaller than those when
central difference is adopted. Mathematically, central difference produces slightly
more accurate prediction results than forward difference for our model.
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Figure 3.19: Comparison of the measured daily averages of PMV of V 251 in
the validation set with the predicted daily averages PMV using the
epPMV model. The goodness-of-fit of the prediction is further im-
proved in terms of both root mean square error and coefficient of
determination.
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Chapter 4

SENSITIVITY ANALYSIS

4.1 Introduction
In Chapter 2, we have studied the empirical predicted mean vote (epPMV)

regression model. This chapter presents a sensitivity analysis of the epPMV model
with respect to its parameters, and demonstrates a statistical confirmation of the
model.

Sensitivity analysis estimates the rate of change in the output of a model
with respect to changes of model parameters. It has been a useful tool in model
development and evaluation in many fields [134—136]. In the field of building mod-
eling and simulation, sensitivity analysis has also been applied widely. For example,
in one of their pioneering works, Lomas and Eppel investigated and compared three
sensitivity analysis techniques for building thermal simulation. They suggested that
the differential sensitivity analysis is suitable for obtaining the sensitivities of pre-
dictions to individual input parameter uncertainties, and the Monte Carlo analysis
is preferable when calculating the total sensitivities in the predictions [137]. Bala-
gangadhar and Roy performed sensitivity analysis to optimize steady fluid-thermal
systems, results of which are successfully applied to the heat exchanger fin and duct
designs for heating, ventilation and air conditioning (HVAC) systems [138]. Eisen-
hower and colleagues increased the dimension of sensitivity analysis by studying
the influence of about one thousand parameters. They innovated a method to de-
compose the pathway as uncertainty flows through the dynamics, identified which
internal processes transmit the most uncertainty to the final output [139]. By im-
plementing a Monte Carlo approach, Burhenne and colleagues analyzed how a sensi-
tivity analysis could provide a decision support for the optimization of the building
operation [140]. Corrado and Mechri performed sensitivity analysis on European
Building Energy Rating and discovered that the data uncertainties have only slight
impact on the asset energy rating, and the importance of associating an operational
energy rating to the asset rating in order to show the influence of user behavior
on building energy performance [141]. With an emphasis on quantifying modeling
uncertainties, de Wit and Augenbroe demonstrated and justified respectively how
uncertainty in building performance assessments can be used in, and is essential to
rational design decision [142]. For Building Performance Simulation (BPS), Hopfe
and Hensen analyzed uncertainties in physical, scenario, and design parameters, and
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demonstrated how to effectively integrate uncertainty analysis in BPS for design in-
formation [143]. Mara and Tarantola brought the analysis of variance-based global
sensitivity analysis to building thermal modeling with an emphasis on the methodol-
ogy that is computationally cheap but provides more information [144]. Heiselberg
and colleagues implemented one-at-a-time sensitivity analysis to the early design
stage of an office building in Denmark. They found that lighting control and the
amount of ventilation during winter are the two most important parameters that
have the largest effect on the energy use, and concluded that sensitivity analysis
can reveal the important parameters during the early stage of design [145]. All
of these works demonstrate that sensitivity analysis is essential for evaluating the
confidence, examining the robustness, revealing insights, thus assuring the overall
quality of statistical modeling [134,146,147]. Consequently, it is important and also
necessary for us to conduct such an analysis to evaluate the epPMV model.

As discussed in Chapters 2 and 3, the epPMVmodel is constructed by regres-
sion in two stages. In the first-stage regression, the model has eleven independent
predictors and nine regression coefficients. In the second-stage regression, the co-
efficients of the first-stage model are further regressed as functions of architectural
parameters. This leads to twenty-seven second-stage regression coefficients. These
regression coefficients are the parameters of the epPMV model. The output PMV of
the model has variabilities due to uncertainties in all the parameters that are mainly
caused by measurement noise, occupancy uncertainty, and environmental changes.
The epPMV model is a linear model in both stages. Statistics of the model para-
meters and the output can be obtained from extensive measurements of the HVAC
system over a long period of time.

The objectives of sensitivity analysis in this chapter are to determine: (1)
Variability of the PMV predictions when the model parameters contain random
uncertainties; (2) Model parameters to which the model output is most and least
sensitive; (3) The probabilistic distribution of the model output. We choose the
so-called local one-at-a-time (OAT) method [148—150] to compute the parameter
sensitivity of the epPMV model. Although the OAT method does not fully explore
the input space [134], it is much less computationally demanding, and increases the
comparability of results [151]. These advantages suit the structure of the epPMV
model and the purpose of our sensitivity analysis.

The rest of this Chapter is organized as follows. In Section 4.2, we present
the mathematical background of sensitivity analysis. In Section 4.3, we present the
sensitivity analysis of the epPMV model with extensive data from the SE building.
Finally, Section 4.4 discusses the findings and Section 4.5 presents the conclusions.
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4.2 Mathematical Background
Recall the epPMV model that represents the PMV of a room as

PMVrm =
9X

i=1

aixi + b1x10 + b2x11 ≡ Y (a), (4.1)

where xi (i = 1 . . . 11) are model predictors that are either sensor measurements
or combinations of sensor measurements as listed in Eq. 2.33 and Appendix B, b1
and b2 are constants, and ai (i = 1 . . . 9) are nine model parameters. a denotes the
vector consisting of ai. Eq. 4.1 is determined with the help of the regression analysis.
This is called the first-stage regression in [152]. ai can be identified as functions of
architectural parameters by means of the so-called second-stage regression,

ai =
3X

j=1

pijyj, (i = 1 . . . 9), (4.2)

where yj (j = 1 . . . 3) are grouped architectural parameters [152], and pij (i =
1 . . . 9, j = 1 . . . 3) are the coefficients of the second-stage regression. In the following,
we study the sensitivity of all the regression coefficients in both stages.

We consider two sensitivity functions to assess the quality of the epPMV
model. One is the Bode sensitivity [153], the other is a revised Bode sensitivity with
a statistical focus.

Let Ȳ = Y (ā) where ā is a when all the parameters ai take their nominal
values āi. The Bode sensitivity of Y with respect to ai for a given index i, i.e. the
sensitivity of the first-stage epPMV model, is defined as

SȲ
ai
= lim

∆ai→0
∆Yi/Ȳ

∆ai/āi
=

āi
Ȳ

∂Y

∂ai

¯̄̄̄
ā

=
āi
Ȳ
xi, (4.3)

where ∆Yi is the variation of the model output when āi is subject to a small per-
turbation ∆ai. The Bode sensitivity is often used in control studies [154]. The
sensitivity of āi with respect to pij can be defined in the same way as

Sāi
pij
= lim

∆pij→0
∆ai/āi
∆pij/p̄ij

=
p̄ij
āi

∂āi
∂pij

=
p̄ij
āi
yj. (4.4)

By the chain rule of differentiation, we can show that the Bode sensitivity of Y with
respect to pij, is given by

SȲ
pij
= SȲ

ai
· Sāi

pij
. (4.5)

In this research, we call SȲ
ai
as the first-stage sensitivity, and SȲ

pij
as the total-stage

sensitivity of the epPMV model.
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Note that the Bode sensitivity is normalized by the ratio Ȳ /āi, which does
not reveal the statistical relationship between the model parameters and output.
To include the statistical information in the sensitivity function, we define a revised
Bode sensitivity [135] as

Z Ȳ
ai
=

σai
ΣY

∂Y

∂ai

¯̄̄̄
ā

=
σai
ΣY

xi, (4.6)

where σY and σai are the standard deviations of Y and ai. For the second-stage
regression, we have

Zai
pij
=

σpij
Σai

∂ai
∂pij

¯̄̄̄
p̄

=
σpij
Σai

yj. (4.7)

Both ΣY and Σai are normalization constants to be determined. The revised Bode
sensitivity does not obey the chain rule same as in Eq. 4.5. Nevertheless, we choose
the values of ΣY and Σai such that it still obeys the chain rule in the form. The
total-stage revised Bode sensitivity of the output Y with respect to pij is defined as

Z Ȳ
pij
= Z Ȳ

ai
· Zai

pij
. (4.8)

Assume that ai in the epPMV model of Eq. 4.1 are normally distributed,
a v N(aav,Raa) where am is the mean of a, and Raa is the correlation matrix of a.
Y will also be normally distributed. The squared sum of the revised Bode sensitivity
Z Ȳ
ai
for all i is given by, X

i

³
Z Ȳ
ai

´2
=

1

Σ2Y

X
i

x2iσ
2
ai
. (4.9)

Let
Σ2Y =

X
i

x2iσ
2
ai
. (4.10)

We have X
i

³
Z Ȳ
ai

´2
= 1. (4.11)

Because the squares of all sensitivities add to one, the revised Bode sensitivity
Z Ȳ
ai
with respect to ai represents its fractional contribution to the output variance

of the first-stage model. This property of the revised Bode sensitivity motivates
us to define a measure of the fractional contribution to the output variance of the
first-stage model. It is called the sensitivity weight Wai for the model parameter ai,

Wai =

¡
Z Ȳ
ai

¢2X
j

³
Z Ȳ
aj

´2 = ³Z Ȳ
ai

´2
. (4.12)
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The above properties also hold for Zai
pij
of the second-stage model when

Σ2ai =
X
j

y2jσ
2
pij
. (4.13)

From a control perspective, both the nominal value and variance of the HVAC
output are important objectives. The nominal value of the PMV should be main-
tained at zero so that an average occupant feels neutral in terms of the thermal
comfort, while the variance of the output needs to be minimized in order to reduce
the fluctuation of human thermal sensation. The Bode sensitivity evaluates the out-
put variation of the nominal model output due to the parameter uncertainty, while
the revised Bode sensitivity examines the variance variation of the model output.

Both the sensitivity functions are dependent of the measurement xi, which
can change randomly over time. For this reason, the sensitivities need to be averaged
over time. Within the same season, if there is no substantial environmental change,
the collected measurements of the HVAC system repeat daily with small variations.
Consequently, the HVAC system behaves like a slowly varying periodic dynamic
system. Hence, it is reasonable to average the sensitivities over a day or a week in
a season.

4.3 Case Study
4.3.1 Data Preprocessing

We use the same measurements collected in Section 3.4. The samples are
still divided into a training set and a validation set. The parameter uncertainty
is identified with the training set. The parameter sensitivity is evaluated with the
validation set and the identified parameter uncertainty. The training set includes all
VAVs controlled by AHU 9 and VAVs controlled by AHU 10 on the second floor.
The validation set includes VAVs controlled by AHU 10 on the third floor. This
yields 44 VAVs for training, and 14 VAVs for validation with 31 and 12 different
combinations of second-stage regression predictors yj (j = 1 . . . 3) in each set.

4.3.2 Random Data
The probability distributions of the model parameters ai and pij are needed in

the sensitivity analysis. Since the model parameters are determined with the train-
ing data that contain disturbances and uncertainties, they contain uncertainties as
well. In this study, we consider two different schemes to process the measurements
separately in order to calculate the mean and standard deviation of the model pa-
rameters.

Scheme (a) takes the measurement of one week as a sample. It is intended to
reveal the periodic patterns in the measurements, and study the random variations
over a long time. Scheme (b) recognizes the slowly varying periodic behavior of the
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Figure 4.1: Identified first-stage parameter a6 of V 364 under both training schemes
demonstrate strong normal distributions. While results under scheme
(b) are more normally distributed than those obtained under scheme
(a) due to more training samples being used.

HVAC system with period equal to one day, and takes the measurement of one day
as a sample to study the statistical variations of the HVAC dynamics.

4.3.3 Statistical Analysis
The model parameters ai (i = 1 . . . 9) in the first-stage regression are deter-

mined with the data prepared with both the schemes. Take parameter a6 for V 364,
a faculty office, as an example. Figure 4.1 shows the Quantile-Quantile plot results
by comparing the identified parameter a6 under both the schemes to standard nor-
mal distributions. To quantitatively verify the parameter normality, we conduct the
Sharpiro-Wilk test [155]. With a significance level of 0.05, none of the identified
parameters can reject the null hypothesis that they are normally distributed. Table
4.1 lists the mean and standard deviation of the first-stage parameters of all VAVs.

According to the results of the Sharpiro-Wilk test, the average p-values are
0.78 and 0.81 for the model parameters identified with scheme (a) and (b) respec-
tively. This indicates that the model parameters obtained with scheme (a) have a
slightly higher probability to reject the hypothesis that they are normal than the
parameters obtained with scheme (b). This may be due to the fact that scheme (b)
involves more samples than scheme (a).

For each VAV, we have two sets of the first-stage regression parameters ai
with the two schemes. These parameters are taken as the output of the second-stage
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Table 4.1: Statistical properties of identified first-stage parameters of VAVs in the
training set.

Parameter μ (scheme a) σ (scheme a) μ (scheme b) σ (scheme b)
a1 −2.0495e+3 4.9504e+3 1.2968e+5 2.1817e+6
a2 0.0010 5.5515e-4 0.0011 6.3658e-4
a3 −0.0045 0.0062 0.3126 5.2832
a4 2.7902e-5 3.3590e-5 6.8389e-5 2.0299e-4
a5 −1.3271e+3 2.2193e+3 −1.3535e+5 2.1797e+6
a6 97.1731 5.0227e+3 −3.7038e+4 5.4051e+5
a7 −3.1059e+5 9.4207e+4 −3.0876e+5 4.0493e+4
a8 2.9550e+3 2.8894e+3 3.7478e+4 5.4042e+5
a9 −3.5190e+5 9.2800e+4 −3.5345e+5 3.9609e+4

regression in Eq. 4.2. The second-stage regression identifies the parameters pij. We
now examine their uncertainties.

Take p2j (j = 1 . . . 3) as examples. Figure 4.2 shows the probability plots of
p2j with the two schemes respectively. With a significance level of 0.05, the Sharpiro-
Wilk test results show high probabilities, with an average p-value as 0.32, that the
hypothesis that these second-stage parameters are normally distributed cannot be
rejected. Table 4.2 takes p1j, p2j, p3j, and p4j (j = 1 . . . 3) as examples and shows
the results for all VAVs under consideration and lists their statistical properties.

Under both schemes, all second-stage parameters demonstrate normality.
Neither clustered nor segmented distributions have been observed. Results obtained
under scheme (b) still fit normal distribution slightly better than those under scheme
(a). This is consistent with the observed statistics of the first-stage regression pa-
rameters.

4.3.4 Sensitivity of First-Stage Model
4.3.4.1 Bode Sensitivity

Consider the Bode sensitivity function and scheme (a). Figure 4.3 shows the
average sensitivities for nine first-stage parameters ai (i = 1 . . . 9) over two months
for V 359, as an example. The model output is most sensitive to a7 and a9, and least
sensitive to a1 and a2. Table 4.3 lists the average sensitivities over two months in
descending order for all VAVs in the validation set.
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Figure 4.2: All second-stage parameters identified under two training schemes
demonstrate strong normal distributions.

Table 4.2: Statistical properties of the second-stage parameters of VAVs in the
training set.

Parameter μ (scheme a) σ (scheme a) μ (scheme b) σ (scheme b)
p11 −3.2979e+5 5.3903e+6 8.3531e+8 4.4930e+9
p12 −9.8586e+4 1.0961e+5 −8.9591e+6 1.0143e+8
p13 9.2234e+3 4.5954e+4 9.7172e+4 5.4315e+6
p21 1.0295 1.0121 0.9003 2.1244
p22 0.0049 0.0065 0.0020 0.0101
p23 0.0103 0.0060 0.0136 0.0096
p31 −15.4584 36.9036 2.0264e+3 1.0866e+4
p32 −0.0309 0.1993 −21.4176 245.2422
p33 −0.0132 0.1121 0.0828 13.1325
p41 0.3105 0.5430 0.2132 0.2048
p42 −0.0011 0.0027 −3.6927e-4 0.0010
p43 −6.7366e-4 0.0014 −4.0807e-4 5.0296e-4
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Figure 4.3: By implementing the Bode sensitivity function and training scheme
(a), the identified first-stage parameter sensitivities of V 359 indicates
that the model output is most sensitive to two parameters a7 and a9
that relate to local control variables.

Table 4.3: Identified first-stage parameter sensitivies of VAVs in the validation set
under the Bode sensitivity function and two training schemes (a/b).
Three parameters a9, a7, and a5 related to local control variables con-
sistently appear at the top of the list under both training schemes.

Rank Parameter SȲ
ai

Wai (%)
1 a9 / a9 +16.6648 /+ 18.5364 78.97 / 51.16
2 a7 / a7 +8.5959 /+ 15.1589 21.01 / 41.85
3 a5 / a5 −0.2013 /− 1.0116 1.1522e-2 / 2.79
4 a8 / a3 −0.1651 /+ 0.7413 7.7508e-3 / 2.05
5 a4 / a6 0.0790 /+ 0.2557 1.7746e-3 / 0.71
6 a6 / a1 −0.0199 /+ 0.2302 1.1261e-4 / 0.64
7 a2 / a8 −0.0170 /− 0.2053 8.2177e-5 / 0.57
8 a3 / a4 −0.0166 /+ 0.0784 7.8355e-5 / 0.22
9 a1 / a2 −0.0075 /− 0.0107 1.5995e-5 / 0.01
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It is interesting to point out that the model is less sensitive to parameters
a7 and a9 for some VAVs with larger windows, e.g., V 351 and V 352 in the dean’s
suite, than other VAVs with smaller windows. Since parameters a7 and a9 are
closely coupled to local control variables, this indicates that the dominant influence
of control variables on the thermal comfort is slightly reduced for these VAVs with
larger windows. This observation agrees with the spatial partition found in our
previous work [133].

Consider scheme (b) now. Table 4.3 lists the sensitivities for all VAVs over
the same period of time. The top three parameters that cover more than 95% total
sensitivity weight are identical to those under scheme (a). However, their total
sensitivity weight slightly decreases by 4.18%. Meanwhile, the sensitivities with
respect to the parameters that are related only to environment conditions increase
nearly eight times on average. This indicates that scheme (a) reveals the influence
of local control variables better than scheme (b).

4.3.4.2 Revised Bode Sensitivity
Consider now the revised Bode sensitivity in Eq. 4.6. The revised Bode

sensitivities are more consistent between the two schemes than the Bode sensitivities.
Figure 4.4 shows daily average sensitivities of the V 351 model output over

the same period of time with respect to the parameters. The magnitude and rank-
ing of the revised Bode sensitivities are almost identical with two schemes. The
average sensitivities computed with two schemes for all VAVs in the validation set
are presented in Table 4.4. Eight out of nine parameters show similar sensitivity
levels. Recall the Bode sensitivities. We conclude that although the first-stage
model output has different sensitivities with respect to the parameters near their
nominal values, the variance of the model output has a similar sensitivity to most
of the parameters. In terms of the revised Bode sensitivity, the model is still most
sensitive to parameters a7 and a9, and least sensitive to parameter a2. This pattern
is consistent with that in terms of the Bode sensitivity.

4.3.5 Total-Stage Sensitivity
4.3.5.1 Bode Sensitivity

We consider Bode sensitivity and scheme (a) and evaluate total-stage sensi-
tivities in Eq. 4.5 for the model involving all the VAVs in the validation set. Figure
4.5 shows the results for V 359 as an example.

Similar to the sensitivities of the first-stage model, the second-stage model is
found to be most sensitive to some parameters, e.g. p9j and p7j (j = 1 . . . 3), and
least sensitive to others, e.g. p2j and p1j (j = 1 . . . 3). According to Eq. 4.2, p9j and
p7j (j = 1 . . . 3) are independent predictors of parameters a7 and a9, and p2j and
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Figure 4.4: By implementing the revised Bode sensitivity function, the majority of
first-stage parameters of V 351 demonstrate similar sensitivities. The
results obtained under two schemes are almost identical to each other.

Table 4.4: Identified first-stage parameter sensitivies of VAVs in the validation set
under the revised Bode sensitivity function illustrate that their frac-
tional contributions to the variance of model output are similar.

Rank Parameter Z Ȳ
ai

Wai (%)
1 a6 +0.3794 14.40
2 a8 +0.3752 14.08
3 a7 +0.3739 13.98
4 a9 +0.3680 13.54
5 a5 −0.3652 13.34
6 a4 −0.3621 13.11
7 a3 −0.3556 12.64
8 a1 −0.2146 4.61
9 a2 −0.0554 0.30
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Figure 4.5: By implementing the Bode sensitivity function, the identified second-
stage parameter sensitivities (presented in the order of p1j, p2j, . . .,
p9j (j = 1 . . . 3)) with training scheme (a) are consistent among obser-
vations of different lengths in terms of both magnitude and ranking.

p1j (j = 1 . . . 3) are independent predictors of parameters a1 and a2. Therefore, the
total-stage sensitivity results are in line with the first-stage results.

The models for all VAVs demonstrate consistent results between the two
stages of regression when scheme (b) is adopted. For this reason, we don’t discuss
scheme (b) further.

4.3.5.2 Revised Bode Sensitivity
With the same VAVs and data sets, the revised Bode sensitivities in Eq. 4.8

of the total model to most second-stage parameters are of similar level, as shown in
Figure 4.6. Sensitivities to 77.8% of the second-stage parameter are almost identical
with absolute values around 0.2. This is consistent with the results in Section 4.3.4.2
where the revised Bode sensitivities to eight out of nine first-stage parameters are
similar. This also suggests that the uncertainties of the second-stage parameters
almost evenly contribute to the variance of the model output.

After substituting Eq. 4.2 into 4.1, it becomes clear that the second-stage
parameters directly determine the epPMV model. The quality of the PMV predic-
tions depends on the second-stage parameters. We have found that the second-stage
parameters are normally distributed. Table 4.2 lists their means and standard de-
viations.

To evaluate the model output due to variations of the second-stage parame-
ters, we varied one second-stage parameter around its nominal value by two times of
its identified standard deviation, while keeping other second-stage parameters fixed
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Figure 4.6: Similar total parameter sensitivities (presented in the order of p1j,
p2j, . . ., p9j (j = 1 . . . 3)) indicate that the second-stage parameters’
fractional contributions to the variance of model output are nearly
evenly distributed.

at their nominal values. With this setup, we formed the model, calculated and eval-
uated the model output for each parameter. Table 4.5 lists the standard deviations
of the model prediction over one month for VAVs in the validation set. The average
standard deviation is 2.63. The largest standard deviations of the model output are
most sensitive to perturbations of p5j and p3j (j = 1 . . . 3), and least sensitive to
perturbations of p2j (j = 1 . . . 3).

4.4 Discussions
1. The probability distributions of the epPMV model parameters depend on
many factors. We have found that all model parameters with both schemes
are normally distributed.

2. Two different Bode sensitivities lead to slightly different ranking of parameters
for the models of the two stages. However, parameters that are related to
local control variables consistently are ranked high. Disagreement of the lower
ranking is not of practical concern since these parameters have much less
influence on the model output [135].

3. The data used in this study were sampled at five-minute interval. The parame-
ter sensitivities of the models are studied with five and thirty minute intervals.
We have tested shorter and longer sampling intervals by linearly interpolating
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Table 4.5: Standard deviations of the epPMV model output due to variations of
second-stage parameters.

Parameter Output Stdv. Parameter Output Stdv. Parameter Output Stdv.
p11 2.3700 p41 0.0847 p71 1.8833
p12 0.6845 p42 0.0532 p72 1.1411
p13 1.7576 p43 0.0484 p73 1.3105
p21 0.0008 p51 13.2396 p81 1.4428
p22 0.0007 p52 3.7963 p82 0.4593
p23 0.0008 p53 9.7294 p83 1.1311
p31 10.8216 p61 2.1912 p91 1.7620
p32 3.3777 p62 0.6649 p92 1.2260
p33 7.8832 p63 1.5466 p93 1.2941

the original data or by deleting the extra data points. The resulting parameter
sensitivities of the models have less than 3.4% change on average. However,
the sensitivity ranking under different sampling intervals are identical.

4. The epPMV model used for sensitivity analysis in this chapter is data-driven
and needs to be updated when significant changes occur in the HVAC system
including control strategies, major equipment and operation profiles.

4.5 Conclusions
We have investigated the parameter sensitivity of the epPMV model with

the help of the Bode sensitivity and revised Bode sensitivity. We first study the
sensitivity of the first-stage regression model and have identified the parameters to
which the model is most and least sensitive. Top two parameters are discharge air
temperature and discharge air relative humidity. These parameters suggest control
inputs that have high authority to influence the human comfort. The least sensitive
parameter relates to outside environmental conditions, which could be potentially
excluded in the epPMV model for model simplification.

We have also found that the parameters to which the second-stage regression
model is most and least sensitive are coupled to the parameters to which the first-
stage model is most and least sensitive. The parameters of both the first- and
second-stage models are found to be nearly normal. Hence, the output of the model
is also normal due to its linear structure.
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Finally, we have evaluated the effect of different length of the data series used
in the regression modeling, and found that the parameters to which the models are
most and least sensitive are independent of the different length of the data series.
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Chapter 5

FAULT DETECTION AND DIAGNOSIS

5.1 Top-Down Approach with Cross-Level Detection Ability
With the energy flow model and temporal-spatial partition strategy, we de-

velop a system-level FDD structure that can capture abnormal energy consumption
irrespective to the nature of faults. By monitoring energy flow and consumption,
the FDD strategy can detect faulty HVAC units in a top-down manner. By mon-
itoring the energy flow fluctuations of HVAC units such as bridges and AHUs at
higher level, instead of lower level components such as fans and motors, the pro-
posed FDD strategy reduces the computational effort in real-time monitoring of the
HVAC system, obtains a system-level view of the HVAC operation, and provides a
way to integrate the existing methods for component fault detection when needed.

The proposed FDD method consists of off-line training and real-time appli-
cation steps as shown in Figure 5.1. The off-line training needs a large number
of normal data as well as data with known faults. We propose to use the energy
feature extracted from the measurements. The spatial and temporal partitions are
created based on architectural, environmental and human factors of the rooms. The
off-line training sessions establish the thresholds for normal operation of various
units. In the real-time application, the measurement integrity of the sensors are
first checked [35—37]. The thresholds calculated from the off-line training are ap-
plied to detection algorithm and confirmation of faulty HVAC units. We can further
narrow down the faults to the component level. Finally, the real-time application
data can be used to update the thresholds identified off-line.

The proposed FDD is reliable and scalable. The top-down strategy can detect
and respond to various hardware and software faults, unsatisfactory thermal comfort
and abnormal fluctuations of the energy flow, examples of which are discussed in
the following Chapter.

5.2 Spatial and Temporal Partition Strategy
HVAC units have certain patterns of flow energy consumption over time

domain varying with environmental conditions, architectural factors, human occu-
pancy and control setpoints. We group these units such that the ones in a group
share a similar pattern of flow energy consumption over different time intervals. And
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Figure 5.1: Schematics of the proposed top-down FDD.

units in the a group can be monitored with the same and tighter threshold for fault
detection.

5.2.1 Spatial Partition
Figure 5.2 shows a floor map of fifteen VAVs (V 351-V 365) installed on the

third floor of the SE building. We use the sensor data collected from May 1 to
May 28 in 2009. As a spatial partition strategy, we investigate the daily correlation
between individual VAV’s energy performance with the outside temperature, and
use the correlation level as the basis to divide these VAVs into different groups.

The sun exposure is one of the factors that influences the energy performance
of VAVs, especially in California. Human occupation also plays an important role.
Based on these two factors, we can divide these fifteen VAVs into four groups: office
suite (OS), faculty office (FO), suite connection (SC) and stairs (S). The office
suite has two walls directly exposed to the sun. The stair way has only one large
glass wall receiving the sun light. The faculty office also has only one window facing
the sun. The suite connection has no direct sun exposure. There are always people
walking on the stairs. Students sometimes pass the suite connection. Most of the
time, the faculty office is occupied only by one person. The office suite is occupied
by the dean with occasional visitors. The correlation analysis seems to suggest
that the sun exposure influences the correlation level on average, while the human
occupation contributes to fluctuations in the correlation.
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Figure 5.2: VAV distributions on the third floor of Science and Engineering Build-
ing on UC Merced campus.
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Table 5.1: Groupings of VAVs on the third floor of Science and Engineering Build-
ing on UC Merced campus, and the influences of the sun exposure and
human occupation.

Group VAVs Included Sun Exposure Occupancy
Office suite V351-V358 strongest least complicated
Faculty office V359, V361-V365 strong less complicated

Stairs V360 strong most complicated
Suite connection V355 weak complicated

Table 5.2: Numerical results of correlation analysis and PCA for the groups of
VAVs.

Group Correlation Coefficient (u/σ) Projection Angles of PCA (u/σ)
Office suite 0.79/0.05 48.8◦/5.3◦

Faculty office 0.51/0.15 45.4◦/7.1◦

Stairs 0.31/0.49 20.0◦/34.5◦

Suite connection 0.15/0.25 -8.7◦/27.1◦

The architectural design determines the correlation among certain VAVs.
Take the dean’s suite as an example. VAVs within the suite are thermally coupled
because the air flows freely among the rooms in the suite. On the other hand, the
faculty offices with V 365 and V 361 are more independent because no direct thermal
interaction exists between them. Table 5.1 summarizes the influences of the sun
exposure and human occupation on the four groups of VAVs.

We compute the flow energy consumption of the VAVs in these four groups
and the correlation of flow energy consumption with the outside temperature. Table
5.2 shows the mean (u) and standard deviation (σ) of correlation coefficients for the
four groups in May, 2009. We also conduct the PCA of each group of VAVs. The
mean and standard deviation of the projection angle between the outside tempera-
ture TO and the flow energy consumption of each group of VAVs are also presented
in Table 5.2. The statistical analysis supports the proposed spatial partition scheme.
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Table 5.3: Flow energy consumption of AHU 9 and its VAVs during day and night.

Group Day (u/σ) Night (u/σ)
AHU9 6.1e+4/3.2e+4 9.2e+3/1.8e+3

VAVs of AHU9 4.4e+5/1.0e+5 2.8e+4/1.6e+4

The VAV group serves as another level between AHU and individual VAVs
to improve the efficiency of narrowing down a VAV fault from its upper-level AHU.

5.2.2 Temporal Partition
Temporal conditions, such as day and night, weekday and weekend, and

seasons are related to different environmental conditions and human occupancy
profiles. The temperature setpoints are different during the day and night. Take
the SE building as an example. The difference between the cooling setpoint and
heating setpoint during the night is 30◦F , while during the day it is 4◦F . The larger
difference leads to less operation of VAVs. Table 5.3 presents the mean and standard
deviation of the flow energy consumption of AHU 9 (A9) and total flow energy
consumption of its VAVs. The data indicate a lower mean and smaller variation
during the night (nearly straight line around zero) than the day (fluctuating line
above zero).

To demonstrate the effect of temporal partition, we consider thirty-two VAVs
of AHU 9 (A9) on the third floor of the SE building. The average daily correlation
coefficients between the energy consumption of sixteen VAVs and TOA for day and
night are shown in Figure 5.3. 16128 samples from 56 days in May and July 2009
are used. The figure shows that all VAVs keep higher mean levels during the day
than at night. Variations of energy consumption can also be observed as the season
changes as shown in Figure 5.4.

For those HVAC units in certain spatial partitions, we further divide them
in different temporal partitions. Specifically, we create summer and spring, day and
night partitions with different FDD thresholds for each partition.

The above partition strategies provide two benefits. First, both spatial and
temporal partitions increase the FDD sensitivity by providing smaller standard devi-
ation of the correlation coefficients during the normal operation. Table 5.4 compares
the mean (u) and standard deviation (σ) of the correlation coefficients in Figures 5.3
and 5.4 with or without temporal partition. Without day and night partition (DTP )
or seasonal partition (STP ), both standard deviations are 100% bigger than that
with temporal partition. Second, the spatial partition makes the top-down strategy
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Figure 5.3: The correlation between the energy consumption of VAVs and the
outside temperature. The average level of correlation is higher during
the day than at night.

0 5 10 15
0

0.2

0.4

0.6

0.8

1

C
or

re
la

ti
on

 C
oe

ff
ic

ie
nt

Time (day)

Spring (March, 2009)

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Time (day)

Summer (July, 2009)

Figure 5.4: The correlation between the energy consumption of A9 and the outside
temperature. The average level is higher in the summer than in the
spring.
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Table 5.4: The mean (u) and standard deviation (σ) of the correlation coefficients
in Figures 5.3 and 5.4 with or without temporal partition.

Day Night Without DTP Spring Summer Without STP
u 0.50 0.26 0.40 0.36 0.74 0.55
σ 0.13 0.12 0.21 0.11 0.13 0.23

more effective. We shall further demonstrate the advantage of the partition in the
following Chapter with examples of detected faults.

5.3 Absolute and Relative References
The difference between the outside temperature and room temperature is

one of the driving forces of flow energy consumption. Meanwhile the environmental
factors such as solar radiation, internal heat gain, outside humidity in summer etc.
also influence the flow energy consumption. Under the influence of these factors,
the flow energy consumption of an HVAC unit assumes a certain level of correlation
with the outside temperature. The correlation fluctuates in a certain range. An
unexpected fluctuation outside a threshold of variations of the correlation is con-
sidered abnormal. The units with abnormal flow energy consumption in reference
to the outside temperature may be faulty. In this sense, we refer to the outside
temperature as an absolute reference in a statistical sense.

To confirm the fault, we compare the flow energy consumption of the possibly
faulty unit with that of other units at the same level or with a mathematically
equivalent measure. This comparison provides a relative reference. Specifically, we
investigate the correlation between the suspicious unit and other units at the same
level or a mathematically equivalent measure. An example of the mathematically
equivalent measure is the flow energy consumption of an AHU (EAH) and the sum
of flow energy consumption of all its lower-level VAVs (EV S).

We provide a validation example for the relative reference. We apply the
energy flowmodel to sixty-one VAV units and two corresponding AHU units installed
in SE building, and calculate the flow energy consumptions of each AHU and its
VAVs for 2016 samples in one week. Figure 5.5 shows that EAH provided by A10 and
EV S track each other well. A further correlation analysis shows that the correlation
coefficient between EAH and EV S for A10 is 0.94, with an even higher value 0.98 for
the AHU 9 (A9). This justifies that the EV S can be used as the relative reference
to EAH .
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Figure 5.5: Mathematically equivalent measurements show a very high correlation
between their flow energy consumption.

5.4 Statistical Analysis
Once spatial and temporal partitions are created, we apply various meth-

ods to analyze and recognize the flow energy consumption patterns under normal
conditions to obtain corresponding FDD thresholds. In the current work, we select
PCA [156—158] and correlation analysis [159] as examples.

In the PCA approach, we project the principal components onto a sub-space
spanned by the measurements of interest. Since the principal components are cal-
culated from the whole data set in the higher dimensional space, their projections
onto the sub-space contain physical interactions with all other measurements.

As an example, consider a sub-space spanned by two measurements M1 and
M2. The projection of the principal component into the sub-space is illustrated in
Figure 5.6. The measurements are related as

M1 = k ·M2, (5.1)

where the slope is k = tan θ and θ is the projection angle. When 0 ≤ θ ≤ π/2, M1

andM2 are linearly and positively correlated within the principal component. When
π/2 ≤ θ ≤ π, M1 and M2 are linearly and negatively correlated. We postulate that
the projection angle changes with the conditions of the HVAC system, particularly
when a fault occurs.
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Figure 5.6: The projection of the dominant principal component onto the 2-
dimensional plane spanned by two measurements of interest.
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Let θn denotes the nominal value of the projection angle between the mea-
surements M1 and M2 when the system is in normal operational condition. How
much deviation of θ from θn would signal the existence of a fault? We need a large
number of measurement data and various faulty incidents to train an algorithm in
order to establish the threshold for θ statistically.

As for the correlation analysis, we propose to use the correlation between
the energy performance of VAVs and the outside temperature TO as the criteria to
evaluate whether VAVs are operating at normal condition.
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Chapter 6

FDD EXAMPLES

6.1 Detection of Thermostat Setpoint Variation
In summer of 2010, UC Merced participated in the Demand Response pro-

gram to reduce energy consumption during “critical peak” periods. System-wide
thermostat setpoints were raised by four degrees during three peak periods in the
afternoon on July 16, August 24 and 25. Since the setpoint related faults are one
of the ten typical HVAC faults [26], this demand response program provided us a
chance to test our algorithm.

We selected A10 and its twenty-nine VAVs, calculated their energy consump-
tion for one hundred and five days from June until the middle of September 2010.
A matrix consisting of three measurements: TOA, EAH and EV S is then formed. We
computed the dominant principal component of this matrix, and projected it onto
2-dimensional planes formed by two of the three measurements. Temporal partition
of day and night is applied to the data set. With 24192 normal samples in day
partition, we obtained the mean (θ̄) and standard deviation (σθ) of the projection
angle (θ). Finally, we considered the 95% probability interval of projection angle
[θ̄ − 1.96σθ, θ̄ + 1.96σθ] as the normal range based on the Gauss distribution as-
sumption, and proposed to use ±1.96σθ from the mean as the threshold for fault
detection. This threshold is adopted for the next numerical example also.

Figure 6.1 (top) presents the projection angle of daily observations on the
plane spanned by EAH and TOA. The projection angles of Day 45 (July 16), Day 83
(August 24) and Day 84 (August 25) went beyond the threshold. Furthermore, the
projection angles onto the plane spanned by EV S, the mathematically equivalent
measure to EAH , and TOA also went beyond the threshold during the same periods,
while the correlation between the mathematical equivalents EAH and EV S remains
normal. These results indicate that a system-wide abnormal energy performance
had occurred during those three periods of time.

On the other hand, if we do not implement the temporal partition of day
and night, the entire data set including days and nights has a much larger standard
deviation σθ, and thus a larger threshold. The same correlation analysis then would
not be able to identify the abnormal behavior of the HVAC system during those
periods. The result is shown in Figure 6.1 (bottom).
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Figure 6.1: The daily average projection angle (solid line with squares) between
EAH and TOA. Three abnormal variations of thermostat setpoints
are captured beyond the threshold (dash-dot line with triangles) by
the proposed FDD with temporal partition (top). Without temporal
partition (bottom), the abnormal variations of the thermostat are not
detected. The average of daily projection angle is represented as the
dash line.

6.2 Frozen Supply Fan of an AHU
A10 has twenty-nine lower-level VAVs installed in SE building We use the

sensor data collected from May 1 to May 28, and June 15 to July 12 in 2009, apply
the energy flow model to calculate the flow energy consumption for all involved
units, and use FDD thresholds in the summer day temporal partition introduced in
Section 5.2.2.

We construct a matrix consisting of three measurements: TO, EAH and EV S.
We compute the dominant principal component of this matrix, and project it onto
2-dimensional planes formed by two of the three measurements.

We consider the weekly performance of the system. Figures 6.2, 6.3 and 6.4
show the results of projections of the principal component for four weeks (weeks 1-3:
magenta dashed line, blue dotted line and green dashdot line. week 4: solid line) in
June to July. Figure 6.2 shows projections on 2-dimensional plane spanned by the
AHU flow energy consumption EAH and the mathematically equivalent measure,
i.e. the total flow energy consumption EV S of its lower-level VAVs. The projection
angles of weeks 1, 2 and 3 are close to each other at nearly 45◦. The projection
angle of week 4 is nearly 160◦, far away from that of the other three weeks.

From a physics point of view, every pair of the three measurements TO, EAH

and EV S should be linearly and positively correlated. In weeks 1, 2 and 3, the
projection angles are near 45◦ indicating a linear and positive correlation. The
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Figure 6.2: The projection angle indicates that the AHU flow energy consumption
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is physically unreasonable.
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Figure 6.3: All four weekly projections of the dominant principal component are
closely clustered in the first quadrant, which suggests that all the VAVs
were operating normally in weeks 1-4.
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Figure 6.4: AHU flow energy consumption in week 4 is negatively correlated with
the mathematically equivalent measure, which confirms the fault.

projection angle of week 4 is 160◦ indicating a negative correlation. Figure 6.2
suggests that during weeks 1, 2 and 3, the AHU behaved normally as its flow energy
consumption is positively correlated with the absolute reference TO. However, during
week 4, a fault may have occurred, which caused abnormal flow energy consumption.

Recall that the mathematically equivalent measure of the flow energy con-
sumption of an AHU is the sum of flow energy consumption of all its lower-level
VAVs. Figure 6.3 shows that the projection angles of all four weeks are in the first
quadrant around 45◦, which verifies that all the VAVs were functioning normally
because the sum of their flow energy consumption EV S correlates positively with
TO. Hence, the sum of flow energy consumption of all the VAVs can serve as a
relative reference for the AHU.

Figure 6.4 compares the AHU energy EAH with the relative reference EV S.
It is clear that the projection angle of week 4 deviates significantly from that of the
other three weeks, and this indirectly confirms the fault detected in Figure 6.2.

We have confirmed with the building manager that the supply fan of the
AHU was frozen for the entire week in July as shown in Figure 6.5. Meanwhile the
return fan of the AHU was working normally. So it was the frozen supply fan that
caused the abnormal flow energy consumption for the AHU in week 4 recorded in
the June-July data set.

Given the knowledge of the fault, let us now try to determine thresholds of
the projection angle. We use four weeks of data in May and the first three weeks in
the June-July data set when the system was under normal condition. We compute
the standard deviation of the projection angle, and consider the 90% probability
interval of the projection angle [θ̄ − 1.644σθ, θ̄ + 1.644σθ] where θ̄ is the average
projection angle and σθ is the standard deviation. The probability is computed
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Figure 6.5: The supply fan of A10 was frozen for week 4 in June to July.

based on the Gauss distribution assumption. We propose to use ±1.644σθ from the
average as the threshold for fault detection.

Figure 6.6 shows the projection angle of eight weekly observations. It can
be seen from the figure that the projection angles of the seven weeks when the
system was normal are close to the average value, and the projection angle of week
4 in the June-July data set goes out of the lower boundary of the threshold (the
90% probability thresholds with ±1.644σθ are marked by red dashdot lines with
triangular symbols, the average projection angle by black dashed line, and the blue
line with square symbols denotes the actual projection angle of the week).

We present the same analysis with daily observations in Figure 6.7 (legends
of Figure 6.7 and following figures are the same as in Figure 6.6). The figure shows
a considerable number of samples going beyond the threshold in the last six days,
specifically in the first and third subplots where the flow energy consumption of the
AHU is compared with the absolute reference TO and the relative reference, i.e. the
mathematically equivalent measure EV S.

6.3 Sensor Fault
We apply the same method as in Section 6.2 to A9 in the same building and

its thirty-two VAVs from May 31 to July 18 in 2010. During the summer night
temporal partition on June 19, shown as Day 20 in Figure 6.8 and Day 12 in Figure
6.9, projection angles on both planes spanned by EV S and TO, EAH and TO jump
dramatically between ±45◦ as shown in Figure 6.8. The flow energy consumption
of HVAC units during the night should be relatively stable with smaller variations.
This fluctuation indicates two possible faults. One is that both A9 and all thirty-two
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Figure 6.6: The projection angle of week 4 in the June-July data set indicates
a possible fault during that time. This fault is verified as the frozen
supply fan shown in Figure 6.5.
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Figure 6.7: Daily observations also show that the projection angles exceed the
threshold for three to four days in the last week.
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Figure 6.8: Daily projection angles exceed the threshold on June 19 indicating a
possible fault during that time.

VAVs encountered some faults simultaneously. The other is that the outside air tem-
perature sensor was broken thus providing inaccurate measurements of the reference
TO. By checking the correlation coefficients between flow energy consumption and
outside temperature for all thirty-two VAVs during the same period, we find that 31
out of 32 (97%) VAVs display an out-of-threshold sample during Day 20 as shown
in Figure 6.10. This implies that there is a high possibility that the fault is rooted
from the inaccurate measurements of outside temperature.

In order to confirm whether the fault is caused by the outside air temperature
sensor, we conduct trend analysis on the data recorded by the sensor. Considering
that the fluctuation of temperature in the central valley of California is relatively
large during the summer time, we use data from six days before June 19 and six
days after June 19 as our training data to calculate the threshold under normal
condition. We select two properties as the basis. The first one is the temperature
difference between the last sample and the first sample in the night partition. We
choose this property because during the summer night, temperature has a steady
drop from 1 a.m. to 5 a.m. The other one is the slope of the first-order fitting
curve of temperature during each night. This property shows the average trend
of temperature during the night partition. In Figure 6.9, we notice that both the
properties go beyond the thresholds on June 19. Figure 6.11 shows the sensor data
in time domain. It is clear that while the rest twenty days demonstrate a steady
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Figure 6.9: Trend analysis of the outside temperature sensor confirms abnormal
deviation of the measurements on June 19.
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Figure 6.10: Two samples of individual VAVs with the correlation coefficients
exceeding the threshold on June 19.
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Figure 6.11: Intermittent abnormal fluctuations of the outside temperature sensor
during June 19.

temperature drop, temperature reading of June 19 not only shows unreasonable
fluctuations, but also displays a flat trend.

6.4 Blockage of Supply Air Inlet
In the same monitored data as in Section 6.3, we apply the spatial partition

strategy to create four VAV groups. For the data of the summer day temporal
partition, we calculate the total flow energy consumption of all VAVs within each
group as our monitoring objects. Then we reserved VAV 201 (V 201) within VAV
group 1 for two weeks from May 31 to June 13 to conduct experiments when there
was no human occupancy. In June 14 and 15, we blocked the supply air inlet with
air-tight paper as shown in Figure 6.12 to simulate a common VAV hardware fault
- a stuck damper.

We monitor the energy performance on the AHU level. In the daily observa-
tions of the projection angle on the plane spanned by EV S and TO shown in Figure
6.13, we notice the samples of day 13 and 14, which are June 14 and 15, go beyond
the threshold obtained by training data under normal condition from May 31 to
June 12. This indicates during June 14 and June 15, a fault occurred and triggered
abnormal total flow energy consumption of all the VAVs. At the same time, projec-
tion angles on the plane spanned by EAH and TO remain within the threshold for all
observations. This illustrates the flow energy consumption of A9 was normal during
this period of time. So we speculate that the fault should come from the VAVs.
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Figure 6.12: The supply air inlet of VAV201 was artificially blocked to simulate a
stuck damper.

2 4 6 8 10 12 14 16 18
−20

0
20
40
60

θ
(T

O
,E

A
H

)

 

 

2 4 6 8 10 12 14 16 18
−20

0
20
40
60

θ
(T

O
,E

V
S
)

 

 

2 4 6 8 10 12 14 16 18
−20

0
20
40
60

Time (day)

θ
(E

A
H

,E
V

S
)

 

 

Figure 6.13: Daily observations of projection angles exceed the threshold in June
14 and 15.
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Figure 6.14: Only correlation coefficients of VAV group 1 exceed the threshold in
June 14 and 15.

To track down this fault, we check the correlation coefficients between the
VAV group’s flow energy consumption and the outside temperature. In Figure 6.14,
we detect that only VAV group 1 has two samples beyond threshold in June 14 and
15. So we narrow the fault from thirty-two VAVs to eight VAVs within VAV group
1.

Finally, Figure 6.15 shows the results of individual VAVs within VAV group
1. It is clear that only V 201 manifests two out-of-threshold samples on June 14 and
15. Thus, we successfully detect the fault in a VAV by monitoring its upper-level
AHU. Also, since we have only conducted thirteen instances of FDD (one at AHU
level, four at VAV group level, and eight at VAV level), the computation is reduced
by 60% compared to directly monitoring all 32 VAVs involved. In fact, the more
VAVs an AHU has, the more efficient the cross-level FDD is. As more and more
skyscrapers being constructed, the cross-level fault detection holds a great potential
for practical real-time FDD.
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Figure 6.15: Only correlation coefficients of VAV 201 exceed the threshold in June
14 and 15.
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Chapter 7

SUMMARY AND FUTURE WORK

7.1 Concluding Remarks
To leverage the untapped capabilities of modern building automation and

control systems, we have developed a system-level monitoring and diagnosis tool of
HVAC system. Works in this thesis focus on two functionalities, i.e., monitoring
and diagnosis. For monitoring, we have combined the strength of both analyti-
cal and data-driven approaches, established a parametric modeling approach that
incorporates building envelope parameters and control variables in the developed
models of room temperature and the PMV index. For diagnosis, we have created
a top-down FDD architecture. This FDD architecture utilizes rich performance
surveillance of existing sensors and controller hardware in buildings. By employing
deductive modeling, statistical analysis, and artificial intelligence, the proposed FDD
can automatically detect and diagnose abnormal HVAC system performance. The
resulting monitoring and diagnosis tool of HVAC system detect hardware failures,
non-optimal operations, and energy inefficiencies, and can be applied on system-
wide scales to optimize overall system performance and help achieve the goal of zero
energy consumption.

7.1.1 Monitoring
We have developed a physics-based linear parametric room temperature model

from the thermodynamic equations. The proposed model has a proper order and
much less variables compared to a fully numerical model. Trained with the data
over a relatively short time, the proposed model is capable of predicting the room
temperature in both short and long terms with a high accuracy. For example, for
all sixty-one VAVs involved, the corresponding pbARMAX models trained with the
data of optimal length can predict the room temperature over ten weeks with mean
squared errors less than 0.01 and coefficients of determination above 0.99 on average.
We have also shown that the proposed model provides an analytical foundation for
the spatial and temporal partition strategy. With the help of the partition strategy,
the proposed temperature model further improves its prediction performance, and
could be a basis for intelligent control design of HVAC systems.

Based on the physics-based linear parametric room temperature model, we
have further developed a new strategy to incorporate the architectural parameters
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into linear parametric regression models of the room temperature. The regression
model is developed in two stages. In the first stage, linear parametric regression mod-
els of the room temperature based on the thermodynamic equations are developed
with the data from VAVs involving different architectural parameters. The collec-
tion of the parameters of the regression models are then related to the architectural
parameters with the help of another set of linear regression relationships. This is
called the second stage regression. The model developed this way has been validated
with the data in the validation set. We have found that the two-stage regression
models are able to predict the room temperature in both short and long terms with a
high accuracy. Furthermore, the proposed models demonstrate improved goodness-
of-fit compared to a representative ARMAX model in the literature which has been
proved to be very effective in the same application.

To monitor the thermal comfort in a practical approach, we have also devel-
oped a strategy to incorporate the architectural parameters and control variables to
the empirical PMV model. The epPMV regression model is developed in two stages
of regression. The epPMV model has been validated with the data in the validation
set. We have found that the two-stage regression models are able to predict the
PMV in both short and long terms with high accuracy.

To investigate the statistical reliability of these models developed, we have se-
lected and investigated the parameter sensitivity of the epPMV model with the help
of the Bode sensitivity and revised Bode sensitivity. We first study the sensitivity
of the first-stage regression model and have identified the parameters to which the
model is most and least sensitive. Top two parameters are discharge air temperature
and discharge air relative humidity. These parameters suggest control inputs that
have high authority to influence the human comfort. The least sensitive parameter
relates to outside environmental conditions, which could be potentially excluded in
the epPMV model for model simplification. We have also found that the parameters
to which the second-stage regression model is most and least sensitive are coupled
to the parameters to which the first-stage model is most and least sensitive. The
parameters of both the first- and second-stage models are found to be nearly normal.
Hence, the output of the model is also normal due to its linear structure. Finally, we
have evaluated the effect of different length of the data series used in the regression
modeling, and found that the parameters to which the models are most and least
sensitive are independent of the different length of the data series.

The proposed models are data-driven. Change of the HVAC control strate-
gies, major equipment, and operation profiles may lead to changes of the system
dynamics. In this case, the model needs to be updated with the new measurements.
One can even periodically update the model. This leads to an adaptive model-
ing strategy of HVAC systems. Nevertheless, the mathematical procedure of the
modeling remains the same, and could be also extended to other types of buildings
equipped with similar HVAC systems.
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It should be noted that the proposed model could also be used to predict
other parameters of interest in HVAC simulations, e.g., the relative humidity. How-
ever, we limit the implementation of the proposed model on the prediction of room
temperature only in this thesis due to the unavailability of relative humidity mea-
surements of indoor air. Nevertheless, we believe that the proposed method will be
valid when the humidity data becomes available. We are currently trying to manage
a way to estimate the relative humidity based on the available measurements at the
AHU level. In our future work, we will expand the proposed model to include such
important parameters.

7.1.2 Diagnosis
We have innovated and established a system-level FDD architecture on build-

ing HVAC systems. Energy description of HVAC units and temporal and spatial
partition strategy are two key elements of the method. The energy flow model ex-
tract a unique feature shared by HVAC units at different levels. This energy feature
reflects abnormal operations caused by faults of different natures, and consequently
serves as a foundation for monitoring the HVAC performance in a uniform manner.
With the temporal and spatial partition strategy, the proposed FDD monitors the
energy performance of HVAC units in groups and at different levels over well-defined
time periods. As a result, we have tight thresholds for the HVAC units in the same
group, and gain the ability to detect faults by navigating intelligently across different
levels of HVAC. We have implemented the PCA in a unique way to extract correla-
tions between signals of interest while preserving interactions among all the related
measurements. The concept of absolute and relative references for fault detection
has also been introduced, which provides the rationale for logic decisions.

With these core techniques, the resulting FDD is able to detect most typical
HVAC faults uniformly. The algorithm can trace down HVAC faults on the lower
levels from monitoring the units on the upper levels. This top-down strategy in-
creases the efficiency of fault detection. With the limited real-time data, we have
studied the threshold for detecting three typical faults in HVAC systems. Examples
of detected hardware failures as well as non-optimal operations from the HVAC sys-
tem in the SE building have been presented to demonstrate the effectiveness of the
proposed FDD. More measurements and extensive studies are needed to establish
thresholds for various faults at different levels. It should be noted that the above
discussion on the threshold is limited by the availability of the measurements with
known faults, and should not be generalized. Also, a too small fault may not be
able to trigger enough abnormal performance detectable on the upper level.
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7.2 Future Work
7.2.1 Modeling

There are three major operational objectives of building HVAC systems, i.e.,
occupant comfort, energy efficiency, and low utility bill. Practically, it is desir-
able that models of these objectives include HVAC control variables, architectural
parameters, occupancy, and environmental conditions. With such models, we can
optimize the HVAC operation by adjusting control inputs to address various archi-
tectural, occupancy, and environmental conditions. However, the mapping between
end-use HVAC energy consumption and control inputs, especially from the data
driven approach, is still unclear. We shall further our modeling work by exploring
this topic and taking advantage of the rich historical data of the entire UC Merced
campus. Ideally, the resulting models will reveal not only both local and global
relationships between end-use energy consumption and control variables, but also
the link between energy consumption and thermal comfort.

7.2.2 Fault Detection and Diagnosis
We shall expand and enhance our FDD techniques by exploring other ma-

chine learning techniques. Due to various natures of HVAC faults, an optimal FDD
algorithm may exist for a particular type of faults. It is necessary and beneficial to
establish some performance metrics to systematically evaluate the effectiveness of
applying certain machine learning techniques on detecting certain HVAC faults. Ide-
ally, these evaluation metrics should assist the FDD tool select the optimal machine
learning technique for a particular HVAC fault in terms of detection sensitivity, ac-
curacy, and robustness. Besides, machine learning techniques can also be utilized to
enhance and provide further support for some key features we have developed. For
example, the cluster analysis can be used to provide more insights into the spatial
and temporal partition strategy.

We shall expand the fault detection thresholds to include all major HVAC
faults that lead to energy consumption inefficiency. This can be achieved by using
data involving either identified real faults or artificially simulated faulty environ-
ment. For different faults that lead to similar abnormal system performance, a
further fault isolation functionality, consisting of more than one machine learning
techniques, is also needed in the future.

For some faults that cannot impose detectable abnormal system performance
on the high level, a fault detection technique with extraordinary detection sensitivity
is critical and indispensable for maintaining and enhancing the cross-level fault
detection capability of the proposed FDD in the future.

We shall also complete the entire fault management lifecycle of the proposed
FDD. Figure 7.1 shows the workflow of a complete fault management lifecycle of
building HVAC systems. Specifically, we need to develop and add three modules
to the existing FDD. First, we need to develop an automatic data acquisition and
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Figure 7.1: The complete workflow of the system-level fault management of build-
ing HVAC systems in the future.

pre-processing module. This module will be developed base on widely adopted indus-
trial protocols, such as the Simple Object Access Protocol (SOAP), to automatically
collect and store original sensor measurements over the net. The stored measure-
ments will be updated intelligently by considering the past operational records and
environmental conditions. Digital filters will be also designed to reduce the measure-
ment noise. Second, we need to develop a graphical user interface (GUI) to present
the FDD results in a user-friendly and informative manner. As shown in Figure
7.2, this GUI will describe the distribution of HVAC units, and use different colors
to indicate the level of alarm, determined by the FDD algorithm running behind
the GUI with the stored measurements. It will also provide other information for
fault management including the fault impact prediction, recommended mitigation
actions, and thermal comfort evaluation. The information would assist building op-
erators to make better decision in dealing with faults.. Third, we need to develop a
postmortem analysis module to identify the failure modes in the HVAC system af-
ter some faults have been detected. The postmortem analysis involves a systematic
manual confirmation of the underlying physical failure and the root cause. Changes
can then be made in the HVAC design, maintenance practice and even thresholds
in the FDD algorithm.

We have applied the top-down FDD strategy to investigate faults in one
AHU and the groups of VAVs connected to it. We need to scale up the study to
handle as many AHUs and groups of VAVs as in a classroom or office building, or
even the entire campus. Since the FDD algorithms can be executed in real time
on the web, programming efforts will be focused on the development of web-based
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Figure 7.2: A sample GUI of the system-level FDD of building HVAC systems in
the future.

software for computing and analyzing the data. Matlab Simulink, MapleSim running
Modelica and National Instruments VI offer good options for combining the desktop
computing power with the Internet connectivity. This part of the research to scale
up the top-down FDD strategy will involve intensive programming effort in one of
the three software environments.

7.2.3 Control Design and Optimization
The models we have developed link important indoor thermal properties to

HVAC control variables. The simple linear structures of those models pave the
way for practical control design and optimization. For example, we can use these
models to form objective functions for a multi-objective control design problem,
which maximizing the occupant comfort while minimizing energy consumption.

Intelligent lighting and shading plays an important roles in increasing energy
efficiency in buildings. We shall explore this area and include its fault detection and
diagnosis in our existing FDD. The Social Science and Management (SSM) Building
at UC Merced has equipped with intelligent lighting and shading hardware, which
provides the access for future research on this topics.

7.2.4 Commercialization
The proposed top-down FDD technology and its software implementation

in the office building have a significant potential for commercialization. During the
course of its future development, we shall file patents to protect the key technologies
and shall license the technologies to private companies.
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Appendix A

NOMENCLATURE

∆Eh,d Internal heat generated by human and devices (W )
α humidity ratio (%)
ρ Air density (kgm−3)
ζ Window-to-wall ratio (%)
φ Heat gain from solar flux (W )
h Heat convection coefficient (Wm−2K−1)
k Thermal conductivity coefficient (Wm−1K−1)
ṁ Mass flow rate (kgs−1)
n Time sequence of measurements
t Time
flt Pressure drop of moisture filter (Pa)
AHU Air handling unit
Cv Volumetric heat capacity of air (kJkg−1K−1)
D Damper position (%)
H Specific enthalpy (kJkg−1)
L Thickness of wall or window (m)
P Parameter group
R Relative humidity (%)
S Surface area exposed to sun (m2)
T Temperature (K)
V Volume of room (m3)
X An attribute
V AV Variable air volume unit
Subscripts
i inside
o outside
ea exhaust air
ma mixture air
oa outside air
ra return air
rm room
wa wall
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wd window
clg cooling water
htg heating water
fin final
pre preliminary
surf surface
disch discharge
Superscriptbestimated values
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Appendix B

MODEL PARAMETERS

B.1 Physics-Based and Multi-Stage Regression Temperature Models
The parameters involved in the pbARMAX and mpbARMAX models are

defined as follows.

P1 =
hwaiLwa

kwa + hwaiLwa

µ
1 +

k2wa
kwaLwa(hwai + hwao) + L2wahwaihwao

¶
, (B.1)

P2 =
kwahwaoLwa

kwaLwa(hwai + hwao) + L2wahwaihwao
, (B.2)

P3 =
hwdiLwd

kwd + hwdiLwd

µ
1 +

k2wd
kwdLwd(hwdi + hwdo) + L2wdhwdihwdo

¶
, (B.3)

P4 =
kwdhwdoLwd

kwdLwd(hwdi + hwdo) + L2wdhwdihwdo
, (B.4)

P5 =
1

ρiV Cv
, (B.5)

Prm = P5(Swa(hwai(P1 − 1) + hwdiζ(P3 − 1))− ṁCp), (B.6)

Pdisch = P5ṁCp, (B.7)

Poa = P5Swa(hwaiP2 + hwdiζP4), (B.8)

∆E = P5(φ+∆Eh,d). (B.9)

The polynomials of the transfer functions in the ARMAX1113 model are given
by

A(q) = 1 + a1q
−1 + a2q

−2 + · · ·+ anaq
−na , (B.10)

Bi(q) = 1 + b1,iq
−1 + b2,iq

−2 + · · ·+ bnb,iq
−nb, i = 1, 2, · · · , 7 (B.11)

C(q) = 1 + c1q
−1 + c2q

−2 + · · ·+ ancq
−nc , (B.12)

where na, nb, and nc are the orders of the polynomials in q.
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B.2 Parametric PMV Model
The parameters involved in the epPMV model are defined as follows:

P1 =
hwaiLwa

kwa + hwaiLwa

µ
1 +

k2wa
kwaLwa(hwai + hwao) + L2wahwaihwao

¶
, (B.13)

P2 =
kwahwao

kwa(hwai + hwao) + Lwahwaihwao
, (B.14)

P3 =
hwdiLwd

kwd + hwdiLwd

µ
1 +

k2wd
kwdLwd(hwdi + hwdo) + L2wdhwdihwdo

¶
, (B.15)

P4 =
kwdhwdo

kwd(hwdi + hwdo) + Lwdhwdihwdo
, (B.16)

P5 =
1

ρiV Cv
, (B.17)

Prm = P5{Swa[hwai(P1 − 1) + hwdiζ(P3 − 1)]− ṁCpa + 0.62198Cpw}, (B.18)

Pdisch = P5(ṁCpa − 0.62198Cpw), (B.19)

Poa = P5Swa(hwaiP2 + hwdiζP4), (B.20)

Pf = 0.62198paP5, (B.21)

F (T,R) =
CpwT +Hwe

pa − pw
, (B.22)

F1(T,R) =
Cpw

β1(pa − pw)
, (B.23)

F2(T,R) =
Cpw

β2
β1
pw −Hwe − Cpw

β1
β3

pa − pw
, (B.24)

∆E = P5(φ+∆Eh,d), (B.25)

a = Poa, (B.26)

b = 0.62198CpwP5, (B.27)

c = P5Cpa, (B.28)

d = Pf . (B.29)
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