
Physics in Medicine & Biology
     

PAPER

Joint correction of attenuation and scatter in image space using deep
convolutional neural networks for dedicated brain 18F-FDG PET
To cite this article: Jaewon Yang et al 2019 Phys. Med. Biol. 64 075019

 

View the article online for updates and enhancements.

This content was downloaded from IP address 128.218.42.102 on 04/04/2019 at 18:45

https://doi.org/10.1088/1361-6560/ab0606
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/281613721/Middle/IOPP/IOPs-Mid-PMB-pdf/IOPs-Mid-PMB-pdf.jpg/1?


© 2019 Institute of Physics and Engineering in Medicine

J Yang et al

Printed in the UK

075019

PHMBA7

© 2019 Institute of Physics and Engineering in Medicine

64

Phys. Med. Biol.

PMB

1361-6560

10.1088/1361-6560/ab0606

7

1

11

Physics in Medicine & Biology

IOP

4

April

2019

Joint correction of attenuation and scatter in image space using 
deep convolutional neural networks for dedicated brain 18F-FDG 
PET
Jaewon Yang1,3,4 , Dookun Park2, Grant T Gullberg1 and Youngho Seo1

1 Physics Research Laboratory, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, 
CA, United States of America

2 Microsoft, Bellevue, WA, United States of America
3 UCSF Physics Research Laboratory, 185 Berry Street, Suite 350, San Francisco, CA 94143-0946,  

United States of America
4 Author to whom any correspondence should be addressed.

E-mail: jaewon.yang@ucsf.edud

Keywords: brain FDG PET, attenuation correction, scatter correction, convolutional neural network, deep learning

Supplementary material for this article is available online

Abstract
Dedicated brain positron emission tomography (PET) devices can provide higher-resolution images 
with much lower doses compared to conventional whole-body PET systems, which is important to 
support PET neuroimaging and particularly useful for the diagnosis of neurodegenerative diseases. 
However, when a dedicated brain PET scanner does not come with a combined CT or transmission 
source, there is no direct solution for accurate attenuation and scatter correction, both of which 
are critical for quantitative PET. To address this problem, we propose joint attenuation and scatter 
correction (ASC) in image space for non-corrected PET (PETNC) using deep convolutional neural 
networks (DCNNs). This approach is a one-step process, distinct from conventional methods that 
rely on generating attenuation maps first that are then applied to iterative scatter simulation in 
sinogram space. For training and validation, time-of-flight PET/MR scans and additional helical 
CTs were performed for 35 subjects (25/10 split for training and test dataset). A DCNN model 
was proposed and trained to convert PETNC to DCNN-based ASC PET (PETDCNN) directly in 
image space. For quantitative evaluation, uptake differences between PETDCNN and reference 
CT-based ASC PET (PETCT-ASC) were computed for 116 automated anatomical labels (AALs) 
across 10 test subjects (1160 regions in total). MR-based ASC PET (PETMR-ASC), a current clinical 
protocol in PET/MR imaging, was another reference for comparison. Statistical significance was 
assessed using a paired t test. The performance of PETDCNN was comparable to that of PETMR-ASC, 
in comparison to reference PETCT-ASC. The mean SUV differences (mean  ±  SD) from PETCT-ASC 
were 4.0%  ±  15.4% (P  <  0.001) and  −4.2%  ±  4.3% (P  <  0.001) for PETDCNN and PETMR-ASC, 
respectively. The overall larger variation of PETDCNN (15.4%) was prone to the subject with the 
highest mean difference (48.5%  ±  10.4%). The mean difference of PETDCNN excluding the subject 
was substantially improved to  −0.8%  ±  5.2% (P  <  0.001), which was lower than that of PETMR-ASC 
(−5.07%  ±  3.60%, P  <  0.001). In conclusion, we demonstrated the feasibility of directly producing 
PET images corrected for attenuation and scatter using a DCNN (PETDCNN) from PETNC in image 
space without requiring conventional attenuation map generation and time-consuming scatter 
correction. Additionally, our DCNN-based method provides a possible alternative to MR-ASC for 
simultaneous PET/MRI.
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1. Introduction

Positron emission tomography (PET) enables an understanding of biochemical changes in the brain at early 
stages of disease prior to structural changes or clinical symptoms. PET neuroimaging is particularly useful in 
the diagnosis of neurodegenerative diseases (e.g. Alzheimer’s disease, frontotemporal dementia, dementia with 
Lewy bodies, Parkinson’s disease, and Huntington’s disease) such as diseases associated with significant changes 
in brain metabolism (Silverman and Alavi 2005). The most commonly used tracer in clinical brain PET imaging 
is 18F-fluorodeoxyglucose (FDG) but the development of other radiotracers such as dopaminergic, amyloid 
plaque and tau imaging agents is still an active development area (Brown et al 2014).

To keep pace with the expanding demand for PET neuroimaging, dedicated high-resolution brain PET sys-
tems such as high-resolution research tomographs (HRRTs) (Wienhard et al 2002) and CareMiBrain (Onco-
vision) have been introduced in the market for human brain imaging, supporting significantly improved high-
resolution images typically with a lower dose compared to a conventional whole-body PET system. Additionally, 
wearable PET scanners such as ambulatory micro-dose PET (AM-PET) (Melroy et al 2017) and helmet-PET 
(Tashima and Yamaya 2016) have been developed and are being evaluated for functional brain research. How-
ever, these dedicated or wearable PET systems do not provide direct solutions for attenuation and scatter correc-
tion (ASC). These systems are not combined with computed tomography (CT) or magnetic resonance imaging 
(MRI) that can provide attenuation maps used for ASC. Thus, a challenge for dedicated brain PET systems is to 
develop a practical and robust method for accurate ASC without an additional imaging modality, such as CT or 
MRI.

ASC is critical for quantitative accuracy as well as image quality in PET (Meikle and Badawi 2005). Attenuated 
and scattered events occur due to photoelectric effects and Compton scattering induced by the presence of dense 
material along lines of response (LORs). Without attenuation correction, regions near the skin appear darker 
(emitting more photons) and regions surrounding brain tissues appear brighter (emitting less photons). The 
scatter fraction can reach 50% to 60% of LORs recorded in whole-body 3D PET and, without scatter correction, 
LORs recorded outside an object boundary due to scatter contribute noise in image reconstruction. Therefore, 
it is important to compensate for attenuation and scatter for quantitative PET. In a hybrid PET/CT or PET/MR 
imaging, the current implementation for attenuation correction is to transform CT (Lonn et al 2003) or MR-
derived pseudo-CT images into attenuation maps (Wollenweber et al 2013, Berker and Li 2016, Yang et al 2017b); 
while the current implementation for scatter correction is to estimate scatter iteratively by a 3D-model-based 
simulation using down-sampled attenuation and emission images (Watson et al 2004, Iatrou et al 2006, Zaidi 
and Montandon 2007). Both ASCs are separately performed due to the difference in photoelectric effects and 
Compton scattering (Meikle and Badawi 2005) in sinogram space where LORs are conventionally recorded as 
counts according to their locations and orientations and then reconstructed to PET images by an ordered subset 
expectation maximization (OSEM) algorithm (Defrise et al 2005).

Recently, deep convolutional neural networks (DCNNs) have been widely applied to medical imaging based 
on the success of deep learning to computer vision tasks (Ronneberger et al 2015). DCNN demonstrated the 
direct conversion to pseudo-CT from T1-weighted MR (Liu et al 2018a), Dixon and Zero-TE MR (Gong et al 
2018) or non-attenuation-corrected PET (Liu et al 2018b) for attenuation correction in PET neuroimaging. Also, 
DCNNs have been demonstrated to improve the quality of noisy attenuation maps generated by simultaneous 
maximum-likelihood reconstruction of activity and attenuation by time-of-flight (TOF) information (Hwang 
et al 2018).

In this paper, we propose a new approach for joint ASC in image space using only non-corrected PET images 
without depending on another imaging modality and performing a scatter simulation. Since brain tissues and 
their boundaries (e.g. white and gray matters, skin, bone, etc) are perceptible in non-corrected PET, DCNNs can 
extract important patterns successfully for joint ASC in PET neuroimaging. The proposed joint ASC is a one-step 
process, distinct from conventional methods that rely on generating attenuation maps first that are then applied 
to iterative scatter simulation in sinogram space.

2. Methods

2.1. Patient information
The patient study was approved by the Institutional Review Board, and all patients signed an informed consent 
form before the examinations. Thirty-five patients (16 male and 19 female) underwent whole-body 18F-FDG 
PET/MRI and helical CT scans. The average patient age was 57.7  ±  11.5 y (range 29–76 years), the average weight 
was 73.7  ±  17.4 kg (range 39.5–109.8 kg), and the average administered dose of 18F-FDG was 308.5  ±  74.6 MBq 
(range 170.2–468.1 MBq). The average scan duration of the whole brain was 227.2  ±  137.5 s (range 135–900 s), 
and the average time difference between injection and scan was 150.8  ±  24.5 min (range 111.0–190.1 min). A 
tumor was observed in the head for only one subject who was included in the test set (figure 1).
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2.2. PET/MRI and CT data acquisition
TOF PET/MRI examinations were performed on a SIGNA PET/MR scanner (GE Healthcare). PET had a 
600 mm transaxial field of view (FOV) and 250 mm axial FOV, with a TOF timing resolution of approximately 
400 ps and average measured sensitivity of 22.65 cps kBq−1. While PET data were acquired, Dixon MR (FOV 
500  ×  500  ×  312 mm; resolution 1.95  ×  1.95 mm; slice thickness 5.2 mm; slice spacing 2.6 mm; scan time 18 s) 
sequences were acquired for MR-based attenuation and scatter correction (MR-ASC), using the head and neck 
coil array. Helical CT images of the patients were acquired on a Discovery PET/CT (GE Healthcare) or Biograph 
HiRez 16 (Siemens Healthcare) scanner with variable parameter settings (120 kVp; 105–599 mA; rotation time 
0.5 s; pitch 0.98 and 0.75; rotation 39.37 and 34.45 mm; axial FOV 700 and 500 mm; slice thickness 3.75 and 
5.00 mm; matrix size 512  ×  512; and voxel sizes 2.73  ×  2.73  ×  3.75 and 1.95  ×  1.95  ×  5.00 mm3 for GE and 
Siemens systems, respectively) for CT-based attenuation and scatter correction (CT-ASC). The methodology 
described in our previous work (Yang et al 2017a, 2017b) was used for CT image preprocessing and coregistration 
to MR images: MR and CT image pairs were coregistered using the vendor-developed registration toolkit or 
Advanced Normalization Tools (Avants et al 2009) based on the Insight Segmentation and Registration Toolkit 
(Kitware, Clifton Park, NY).

2.3. PET image reconstruction
As depicted in figure 1, non-corrected PET (PETNC) and CT-based attenuation/scatter-corrected PET  
(PETCT-ASC) images were reconstructed by a TOF OSEM algorithm (four iterations; 28 subsets; axial FOV 350 mm; 
matrix size 256  ×  256  ×  89; voxel size 1.37  ×  1.37  ×  2.78 mm3; 4.0 mm in-plane Gaussian filter followed by axial 
3-slice 1:4:1 filtering) in the offline PET/MR toolbox (REL_1_28, GE Healthcare). Also, MR-based attenuation/
scatter-corrected PET (PETMR-ASC) images were reconstructed as a silver standard for evaluation, providing the 
bottom line of a clinically acceptable performance limit. Corrections including normalization, dead time, decay, 
point-spread function, and randoms were applied during the reconstruction.

2.4. Deep convolutional neural networks (DCNNs)
The aim of this work is to develop a DCNN model that can transform PETNC to PETCT-ASC directly in image space 
(PETDCNN), without generating attenuation maps and performing an iterative scatter simulation.

Figure 1. Schematic of conventional ASC performed in sinogram space during PET image reconstruction (left) compared with 
proposed DCNN-based ASC performed in image space (NC: non-corrected). A lesion is observed at the border of the brain. Note 
that the RF brain coil and the couch were included in the attenuation sinogram and that the scanner geometry effects (gaps between 
detector panels) were added to the scatter simulation, so that the scatter sinogram contains the same effects that are found in the 
emission sinogram.

Phys. Med. Biol. 64 (2019) 075019 (11pp)
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2.4.1. DCNN architecture
The proposed DCNN consists of five encoder-decoder stages symmetrically concatenated with skip connections 
(figure 2) based on the U-Net (Ronneberger et al 2015). In each stage, convolution (Conv) with 3  ×  3 kernels, 
batch normalization (BN) (Ioffe and Szegedy 2015), and rectified linear unit (ReLU) is sequentially performed 
twice. Between stages, the downsampling and upsampling are done by 2  ×  2 max pooling and bilinear 
interpolation (Xu et al 2017), respectively. In order to preserve local information and resolution of the image, skip 
connections transfer the 2nd convolution layer of the encoder, performed prior to the BN and ReLU activation, 
to the decoder after upsampling at the same stage (Liu et al 2018b).

2.4.2. Preprocessing
PETNC and PETCT-ASC images were utilized as paired input and output for training/testing our proposed DCNN 
architecture. For each training dataset, PET raw values (Bq/ml) were scaled down (to kBq/ml) to reduce the 
dynamic range of input/output values, and PET slices above the top of the head and below the cerebellum were 
removed to focus on the brain. Also, activities out of the head were considered as noise and removed by binary 
masking.

2.4.3. Model training
The DCNN model was trained with a three-slice input to provide volumetric information due to attenuation and 
scatter in the axial direction. Training multi-slice inputs can provide higher efficiency with fewer parameters than 
training with depth-wise operation of 3D convolution (Xu et al 2017). Before being fed into the model, the input 
was randomly rotated (−10–10°), flipped horizontally, and translated horizontally (<50 pixels in FOV) for data 
augmentation to simulate a larger dataset and to avoid overfitting. Model training was performed with the mean 
squared error (or L2 loss) and RMSprop optimizer (Hinton et al) with a learning rate initialized by 0.001, which 
halved automatically if the loss did not decrease in ten epochs. Weights for convolution were initialized with 
truncated Gaussian distributions with zero mean and standard deviation of 0.02. All biases were initialized with 
zero. A mini-batch of 32 input/output patches (1375 patches in total) was used for training and the loss was 
converged in 140 epochs.

2.4.4. Computation
Training and testing our proposed DCNN were performed on a Ubuntu server with a single Tesla P100 (NVIDIA) 
graphics processing unit. The proposed model was implemented using Tensorflow (version 1.9.0 with CUDA 
9.1) and Keras libraries (version 2.2.0). Model training takes approximately 160 min to reach stability, which 
occurred at approximately 5880 iterations (140 epochs  ×  42 iterations per epoch). At that point, the training was 
stopped. After training the model, it took only 0.4 s on average to generate PETDCNN volumetric images (89 slices) 
with the single Tesla P100.

2.5. Evaluation metrics
2.5.1. Quantitative analysis
All PET images were spatially registered to a brain template with 116 automated anatomical labels (AALs) for a 
generalized regional analysis. Dixon MRAC T1 images simultaneously acquired with PET were registered to the 
T1 brain template provided by the Montreal Neurological Institute (MNI) (Tzourio-Mazoyer et al 2002) using 
Advanced Normalization Tools (Avants et al 2009). The derived registration parameters were applied to deform 
PET images to the template. Absolute and relative (%) differences (mean  ±  SD) of standardized uptake values 

Figure 2. Deep convolution neural network (DCNN) architecture (Conv: convolution; BN: batch normalization; ReLU: rectified 
linear unit).

Phys. Med. Biol. 64 (2019) 075019 (11pp)
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(SUV  =  image-derived uptake [MBq/ml]/injection dose [MBq]  ×  patient’s weight [g]) between PETDCNN and 
reference PETCT-ASC were computed for 116 AAL regions across ten test subjects (1160 regions in total) as follows:

Difference (SUV) = mean (voxels of PETDCNN in AAL#)

−mean(voxels of PETCT-ASC in AAL#)

Difference (%) = [mean (voxels of PETDCNN in AAL#)

−mean(voxels of PETCT-ASC in AAL#)]

/mean(voxels of PETCT-ASC in AAL#)× 100.

The distributions of the differences were presented in Bland–Altman plots. A difference between PETMR-ASC and 
PETCT-ASC was also calculated as a reference for comparison. Statistical significance was assessed using a paired t 
test and a P value  <  0.05 was deemed statistically significant.

Additionally, to evaluate a performance variation of DCNN between subjects, subject-specific SUV differ-
ences across 116 AAL regions were computed separately. Also, to assess a performance variation of DCNN in the 
brain regions, SUV differences were calculated in eight merged regions: the cerebellum, temporal lobes, occipital 
lobes, parietal lobes, frontal lobes, thalamus, putamen, and caudate nucleus.

2.5.2. Qualitative analysis
PETCT-ASC, PETDCNN and their difference images were illustrated for three representative test subjects: subject 
1 with the longest scan duration (900 s) selected for presenting the effect of a scan time variation (mean scan 
duration: 227.2  ±  137.5 s); subject 2 with a tumor in the head chosen for presenting the effect of a pathological 
variation; and subject 3 with outliers selected for presenting the visual effect of a large difference.

2.5.3. Voxelwise analysis
A joint histogram was used to show the distribution of voxel-based PET uptake correlation between PETDCNN 
and reference PETCT-ASC within the SUV range of 0.5–20.0 (g ml−1). Also, an error histogram was used to show 
the distribution of voxel-based PET uptake differences within the same SUV range.

All the processing and analyses above were performed in MATLAB (MathWorks).

3. Results

The average difference between PETDCNN and PETCT-ASC was 0.20  ±  0.92 (3.98%  ±  15.42%, P  <  0.001) and the 
average difference between PETMR-ASC and PETCT-ASC was  −0.31  ±  0.31 (−4.24%  ±  4.29%, P  <  0.001) (table 
1). PETDCNN was slightly overestimated (4.0%; range, −13.4 ~  +63.1%) with a larger variation (15.4%), while 
PETMR-ASC was slightly underestimated (−4.2%; range, −28.8 ~  +9.3%) with a smaller variation (4.3%). In 
the Bland–Altman plot (figure 3), most of the differences (circles) with DCNN are positioned within  ±10%, 
whereas most of the differences (triangles) with MR-ASC were prone to negative areas within  ±10%. Box plots 
of 116 AAL regions across test subjects are available in supplementary figure 1 (stacks.iop.org/PMB/64/075019/
mmedia).

Because the overall larger variation of DCNN (15.4%) was mostly due to the outliers between 40%–60% 
differences in the Bland–Altman plot (figure 3), we calculated subject-specific differences across 116 regions 
to evaluate a performance variation of DCNN across subjects. Figure 4(a) demonstrates that subject 3 with the 
highest mean difference contributed the outliers to the Bland–Altman plot of DCNN. In order to derive a more 
generalized result without the outliers, the average differences of PETDCNN and PETMR-ASC from PETCT-ASC were 
recalculated after excluding subject 3 and the updated results are summarized in table 2. The average difference 
of DCNN was substantially reduced from 4.0% to  −0.8% without the outliers, which is much smaller than the 
average difference of MR-ASC (−5.1%). However, the SD of DCNN (±5.2%) was still slightly higher than the SD 
of MR-ASC (±3.6%).

Also, the average differences were calculated in eight merged regions to assess a regional performance vari-
ation of DCNN. Figures 4(b) and (c) compare the generalized regional differences with and without subject 3 

Table 1. Uptake differences (SUV and %) of PETDCNN and PETMR-ASC from reference PETCT-ASC across 116 regions  ×  ten test subjects 
(1160 regions in total).

Difference

PSUV %

PETDCNN 0.20  ±  0.92 3.98  ±  15.42 <0.001

PETMR-ASC −0.31  ±  0.31 −4.24  ±  4.29 <0.001

Differences are mean  ±  SD. A paired t test was performed for the pair of PETCT-ASC and PETDCNN.

Phys. Med. Biol. 64 (2019) 075019 (11pp)
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(outliers), which was also consistent with the overall result above. For example, the average difference of DCNN 
was substantially reduced from 6.2% to 0.4% for the cerebellum after excluding subject 3. The reduced differ-
ence of DCNN (0.4%) was much smaller than the recalculated difference of MR-ASC (−7.1%), while the SD of 
DCNN (±11.3%) was still higher than the SD of MR-ASC (±7.1%).

Next, figure 5 illustrates the qualitative differences of PETDCNN and PETMR-ASC from reference PETCT-ASC 
with examples of three representative subjects (subject 1, 2, and 3). The examples show the overall similarity 
between PET images with different ASC methods (reference CT-ASC, DCNN, and MR-ASC) and the voxel-
based difference patterns of DCNN and MR-ASC from CT-ASC. In figure 5(a) (subject 1), the major difference 
between DCNN and MR-ASC is that DCNN differences are randomly distributed with a mixture of over- and 

Figure 3. Bland–Altman plots of (a) PETDCNN and (b) PETMR-ASC for uptake differences (%) from reference PETCT-ASC across 116 
regions  ×  ten test subjects (1160 regions in total). In (a), the isolated cloud of circles in the range of 40%–60% belongs to subject 3.

Figure 4. Box plots of PET uptake differences (%) of DCNN and MR-ASC from CT-ASC: (a) ten test subjects across 116 AAL 
regions, (b) eight merged regions across ten test subjects, (c) eight merged regions across nine subjects without subject 3. Subject 3 
has the highest mean  ±  SD difference (48.52%  ±  10.36%) for DCNN.

Phys. Med. Biol. 64 (2019) 075019 (11pp)
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under-estimated patterns, while MR-ASC differences depict overall slight underestimation across the brain but 
a strong underestimation near the skull. In figure 5(b) (subject 2), the SUVmax of the tumor with DCNN was 
underestimated by  −13.5%, while the SUVmax of the tumor with MR-ASC was underestimated by  −6.7%, com-
pared to the SUVmax with CT-ASC. In figure 5(c) (subject 3), both PETDCNN (structural similarity index (SSIM) 
(Wang et al 2004)  =  0.9670) and PETMR-ASC (SSIM  =  0.9968) are qualitatively similar to PETCT-ASC, though 
PETDCNN was substantially overestimated across the brain in the result of figure 4(a) (48.5%  ±  10.4% versus 
4.0%  ±  4.1%).

Further voxelwise evaluation was performed by the joint histogram (figure 6) and error histogram (figure 7). 
The analysis shows the voxel-wise similarity between PETDCNN and reference PETCT-ASC with the slope of 1.01 
and R2 of 0.98 (figure 6(a)). PETDCNN achieved higher accuracy for lower uptake voxels with smaller variation but 
lower accuracy for larger uptake voxels with larger variation, whereas PETMR-ASC achieved smaller variation with 
a trend of underestimation with the slope of 0.97 and R2 of 0.99 (figure 6(b)), which was consistent with the result 
of the error histograms of PETDCNN and PETMR-ASC (figure 7).

4. Discussion

Our results demonstrate that a DCNN can achieve joint ASC that converts PETNC to PETASC directly in image 
space without depending on a conventional approach that performs ASC separately in sinogram space. To our 
knowledge, this is the first work to investigate the feasibility of performing ASC simultaneously in image space 
through a DCNN. In this study, the DCNN demonstrated comparable quantitative (−0.83%  ±  5.20% difference 
without outliers) and qualitative results compared to conventional CT-ASC or MR-ASC performed in sinogram 
space using CT or MR-derived attenuation maps and time-consuming iterative scatter correction.

Encouragingly, the results demonstrate the great potential of DCNN-based joint ASC to promote the clinical 
feasibility for a dedicated brain PET system such as a small-FOV PET or a wearable PET (Tashima and Yamaya 
2016, Melroy et al 2017). Since it is technically difficult and not practical to combine such small PET systems with 
an additional CT or MR system, it is important to devise a practical and robust method for ASC without requir-
ing additional anatomical imaging. Additionally, it is encouraging to provide a possible alternative to MR-based 
attenuation correction (MRAC) in simultaneous PET/MRI. Although the solutions for MRAC of simultaneous 
brain PET/MRI have been improved (Ladefoged et al 2017), these solutions are still not regarded as on the same 
level as CT-based attenuation correction. The comparison of PETDCNN and PETMR-ASC (−0.83% versus  −5.07% 
difference without subject 3) demonstrate that DCNN could be a potential alternative for MRAC, which was the 
motivation of using PET/MR data instead of PET/CT data in this study.

The DCNN-based ASC approach is fully automated and fully data-driven: PETNC is directly converted to 
PETASC in image space almost in real time (0.4 s on average for 89 volumetric images) without requiring addi-
tional anatomical information or time-consuming scatter correction. In the offline toolbox, scatter simulation 
took approximately 150 s and TOF-PET reconstruction with ASC took 147.8 min – 2.2 times longer than the 
processing time without ASC (67.8 min) in our workstation (Intel i7 CPU with 3.40 GHz  ×  8 cores and 31.4 GB 
memory). Scatter correction increased overall processing time substantially in the course of image reconstruc-
tion, but we can overcome this issue by applying our DCNN to reconstructed images without ASC. In general, 
DCNN applications for PET are more challenging than those for MR and CT due to the low resolution and 
noise characteristics of PET. Nevertheless, the success of low-dose FDG PET reconstruction demonstrated the 
capability of DCNN to deal with noisy FDG PET data (Xu et al 2017) and the feasibility study of DCNN-based 
conversion from FDG PETNC to pseudo-CT demonstrated the perceptibility of brain tissues and their bounda-
ries in FDG PETNC (Liu et al 2018b). Therefore, it is not surprising to expect the successful result of our proposed 
DCNN-based joint ASC for FDG PET. In our study, the pattern differences were derived from how ASC changes 
uncorrected image patterns simultaneously, which enabled our proposed DCNN to predict attenuation/scatter-
correction patterns for corrected images.

For the model training, we did not consider the information about the table couch and external head coils 
that should be always included in attenuation maps derived from CT or MR for accurate attenuation correction 

Table 2. PET uptake differences (SUV and %) of DCNN and MR-ASC from reference PETCT-ASC across 116 regions  ×  nine subjects 
(excluding subject 3).

Difference

PSUV %

PETDCNN −0.08  ±  0.33 −0.83  ±  5.20 <0.001

PETMR-ASC −0.36  ±  0.27 −5.07  ±  3.60 <0.001

Differences are mean  ±  SD. A paired t test was performed for the pair of PETCT-ASC and PETDCNN.

Phys. Med. Biol. 64 (2019) 075019 (11pp)
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and scatter simulation. Surprisingly, however, the omitted information was not problematic since the attenua-
tion information caused by the external materials could be embedded in training images themselves. For this 
reason, it is important not to perform vertical flipping for data augmentation because the back of the head was 
always positioned near the couch in the field of view and brain tissues near the couch were more attenuated in this 
setting.

Figure 5. PET examples of representative subjects for CT-ASC, DCNN, and MR-ASC: (a) subject 1 with the longest scan duration 
(900 s), (b) subject 2 with a head tumor, and (c) subject 3 with the highest mean difference.

Phys. Med. Biol. 64 (2019) 075019 (11pp)
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The proposed DCNN achieved the high accuracy (−0.83% difference) on average except for one test subject 
(subject 3) who seemed to be not represented in the training cohort. To clarify, since the average skull density is 
685.6  ±  61.1 HU (min: 569.6 HU, max: 805.1 HU) in our data set (34 subjects except subject 3), such a low skull 
density (e.g. subject 3: 475.1 HU) is not common. The low bone density of subject 3 was qualitatively and quanti-
tatively presented in additional supplementary figures 2 and 3. Although the quantitative difference (48.5% dif-
ference) of this subject was clinically not acceptable, we expect that this overall overestimation problem might 
not be problematic for diagnostic purposes because the relative contrast was consistent for both DCNN and 
standard approaches for subject 3 (figure 5). Therefore, it may be acceptable to use our DCNN for quantifying 
pre- and follow-up scans if a DCNN is consistently used for an outlier such as subject 3, since the values would be 
consistently overestimated with an acceptable contrast.

Despite the promising results, our study has several limitations. First, the amount of training and test data 
(25/10 data split) may not be enough to derive a fully generalized optimal DCNN model. Since the generaliza-
tion power of DCNN is largely dependent on the amount of data, we performed data augmentation to simulate 
a larger dataset and to avoid overfitting. Nevertheless, as shown in the result of subject 3, the model substanti-
ally overestimated PETDCNN compared to reference PETCT-ASC (figure 4(a)), though the qualitative similarity 
between them was still high (figure 5(c)). Additionally, the training set did not include pathological subjects, 
which resulted in the relatively larger difference (−13.5%) of DCNN than the difference of MR-ASC (−6.7%) 
for the tumor uptake in subject 2. Therefore, in order to deal with any pathological pattern in our DCNN model, 
it is very important to include the variety of pathological patterns that may include a similar pattern for a tar-
get pathology in our extended training set. With the addition of an increased number of subjects with various 
pathologies in the training dataset, we expect that our model should be robust to a potential source of bias or 

Figure 6. Joint histogram of PET voxels within SUV range of 0.5–20.0 (g ml−1): (a) PETDCNN versus PETCT-ASC and (b) PETMR-ASC 
versus PETCT-ASC. Note that the counts were log-scaled (i.e. log10(counts)) to visualize small counts.

Figure 7. Error histogram of PET voxels (PETDCNN—PETCT-ASC and PETMR-ASC—PETCT-ASC) within SUV range of 0.5–20.0  
(g ml−1).
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variation. Second, the model has not been tested for other radiotracers with different mean/maximum positron 
ranges (18F, 0.66/2.63 mm; 11C, 1.27/4.46 mm; 13N, 1.73/5.57 mm; 15O, 2.97/9.13 mm; 68Ga, 3.56/10.27 mm; 82Rb, 
7.49/18.6 mm in water (Champion and Le Loirec 2007, Le Loirec and Champion 2007)) or biological distribu-
tions that can change image resolution and visually recognized brain patterns. Radiotracer-specific model train-
ing is likely necessary to evaluate the radiotracer-specific performance variation of our DCNN. Third, we have 
not investigated the performance of our DCNN for dynamic scans. Neuroreceptor studies potentially done with 
a dedicated brain PET system may be performed as dynamic scans, and the image patterns of such a study change 
continuously from the perfusion phase to the final image of neuroreceptor binding. Basically, since the theory 
of ASC is consistent for static and dynamic PET, the DCNN model could derive dynamic-imaging-specific ASC 
patterns if enough dynamic brain PET data were used to train the model. As discussed above, the flexibility of our 
DCNN model is substantially dependent on the amount of pattern information in the training data as well as the 
network architecture, so we may need to tailor our model architecture and retrain the model, considering data 
diversity such as inter-patient variation (pathological and anatomical difference) and inter-radiotracer variation 
(positron-range and biological distribution). Finally, there were large variations between PET protocols for the 
brain (e.g. scan duration, post-injection scan time, etc) since the brain PET scan was taken from a whole-body 
scan. However, DCNN-based joint ASC performed considerably well in spite of the variation, considering the 
result of subject 1 with the longest scan duration (900 s for subject 1, 227.2  ±  137.5 s for the others).

In future work, substantially increasing training data is our most important task to derive a fully generalized 
model that can interpret inter-patient and inter-radiotracer variations. Since many clinical and research PET/CT 
and PET/MR scans are ongoing in our department, we will access archived data and prospectively acquired data 
to increase our training/validation data set. We can increase the training/validation data set using PET/CT and 
PET/MR data simultaneously; however, it may be necessary to train the model according to PET/CT and PET/
MR data separately and to compare their results, since PET system resolution and reconstruction details are dif-
ferent between PET/CT and PET/MR systems. For future validation, it will be worthwhile to use cross validation 
to perform a more generalized evaluation in a large cohort study. Second, although subjects with a very low bone 
density such as subject 3 are generally not likely, it is still important to control this potential problem to avoid 
an unexpectedly large quantitative error. To address this problem, it is probably feasible to develop a peripheral 
DCNN that might be able to derive a mean skull density for preventing unacceptable over/under estimation by 
training bone-specific voxel pairs of noncorrected PET and corrected PET, which is not a voxel-by-voxel con-
version but a regression that might be resolved by DCNN. Third, we may increase the confidential level of our 
DCNN using conditional generative adversarial networks (c-GANs). The c-GANs include a generator network 
and a discriminator network which are trained simultaneously in order to guarantee the predicted output is 
close to the ground truth (Wang et al 2018). Finally, we plan to investigate a trade-off between image-based (our 
DCNN) and sinogram-based (Liu et al 2018b) approaches using only PET data in terms of robustness and prac-
tice in a large cohort study.

5. Conclusion

We demonstrated the feasibility of directly producing PET images corrected for attenuation and scatter using 
DCNN (PETDCNN) from noncorrected PET (PETNC) in image space without requiring additional anatomical 
imaging and time-consuming scatter correction. This approach is a one-step process, distinct from conventional 
methods that rely on generating attenuation maps first that are then applied to iterative scatter simulation in 
sinogram space. In particular, DCNN-based joint ASC has great potential to promote the clinical feasibility of a 
dedicated brain PET system that needs a practical and robust way for ASC without requiring anatomical imaging. 
Additionally, our DCNN-based method provides a possible alternative to MR-ASC for simultaneous PET/MRI.
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