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A recent study by Burke et al. [Burke M, Miguel E, Satyanath S,
Dykema J, Lobell D (2009) Proc Natl Acad Sci USA 106(49):20670–
20674] reports statistical evidence that the likelihood of civil wars
in African countries was elevated in hotter years. A following
study by Buhaug [Buhaug H (2010) Proc Natl Acad Sci USA 107
(38):16477–16482] reports that a reexamination of the evidence
overturns Burke et al.’s findings when alternative statistical mod-
els and alternative measures of conflict are used. We show that
the conclusion by Buhaug is based on absent or incorrect statistical
tests, both in model selection and in the comparison of results
with Burke et al. When we implement the correct tests, we find
there is no evidence presented in Buhaug that rejects the original
results of Burke et al.

climate change | temperature | security

Understanding whether climate change may elevate levels of
human conflict is a major scientific question with critical

implications for society. In a pivotal and controversial article,
Burke et al. (1) exploit year-to-year variation in countries’ tem-
perature and precipitation to identify the causal effect of these
variables on the incidence of civil war in sub-Saharan countries
during 1981–2002. In their preferred specification, Burke et al.
(1) report that a 1 °C increase in average temperature elevates
the probability of civil war by 0.043, a 39% increase relative to
the average rate of war during the period. Subsequent studies
have obtained similar findings in modern Africa for intergroup
conflict at local scales (2–4) and civil conflict at the continental
scale (5), as well as at various scales elsewhere around the world
(6, 7). However, work by Buhaug (8, p. 16480) reports that the
original findings by Burke et al. “do not hold up to closer in-
spection.” This disagreement is widely cited by the media, policy-
makers, and other researchers (9–11) as statistical evidence that
climatic conditions might not influence modern human conflict
in sub-Saharan Africa. The extremity and persistence of this
disagreement has recently prompted Solow (12, p. 180) to “call
for peace on climate and conflict [research],” suggesting that
“such disagreements indicate that a deeper look behind the
statistics is warranted.”
Here we take a deeper look behind the statistics and reconcile

the contradictory findings of Burke et al. (1) and Buhaug (8) by
correcting the model selection and model comparison proce-
dures used in Buhaug—both of which require formal statistical
tests that are absent from the original analysis but are needed to
draw the conclusions stated in Buhaug. We address four key
errors made in the original analysis of Buhaug: i) controls for
unobserved time-invariant confounders (country-fixed effects)
and time-variant confounders (country-specific trends) are dis-
carded without testing for their joint significance in the model;
ii) qualitatively and quantitatively different conflict variables are
compared with each other without first standardizing their units
of measure; iii) the original results of Burke et al. are rejected
based on comparisons of a new model with a null hypothesis of
zero effect, rather than comparisons of the new model with the
original results; and iv) coefficients and SEs in a logit regression

are not converted to units of conflict risk before they are
evaluated. When we correct for these errors, we find that the
results of Buhaug are not distinguishable from findings in Burke
et al. Although we do not attempt to verify whether the finding
of Burke et al. is correct here (we refer readers to refs. 6 and 7
for evaluations of Burke et al.), our findings invalidate the claim
that the analysis of Buhaug overturns Burke et al. as well as
Buhaug’s stronger statement that “[C]limate characteristics and
variability are unrelated to short-term variations in civil war risk
in sub-Saharan Africa” (8, p. 16481).

Results
In a multipronged critique of Burke et al. (1), Buhaug (8) dis-
plays 12 alternative estimates (models 2–13 in Buhaug) pre-
sented across three tables that are incorrectly compared with
Burke et al.’s benchmark model (model 1 in Buhaug). Of the
four critical errors listed above, i invalidates Buhaug’s inferences
based on Buhaug’s table 1 (denoted BT1), ii and iii invalidate
Buhaug’s inferences based on Buhaug’s table 2 (denoted BT2),
and i, ii, iii, and iv invalidate Buhaug’s inferences based on
Buhaug’s table 3 (denoted BT3). We replicate and examine BT1–
BT3 separately and respectively in Tables 1–3 of this article.
In BT1, Buhaug (8) removes country-fixed effects and country-

specific trends from the statistical model used in Burke et al. (1),
terms that were included in the original analysis to account for
all time-invariant and linearly trending confounding variables.
Buhaug infers from BT1 that the finding of Burke et al. is in-
correct because the parameter estimates of the model change in
magnitude and in significance; however, this interpretation does
not logically follow from the results in BT1. Drawing inferences

Significance

Whether climatic changes affect civil conflicts has been the
subject of intense academic debate. Much of this controversy
originates from a highly cited dispute between a previous
PNAS paper—which finds that civil war incidence in sub-
Saharan Africa is associated with increasing local temperature—
and a subsequent rebuke of this result, also published in PNAS.
We reexamine this apparent disagreement by comparing the
statistical models from the two papers using formal tests. When
we implement the correct statistical procedure, we find that the
evidence presented in the second paper is actually consistent
with that of the first. We conclude that the original grounds for
the dispute over whether the climate–conflict relationship exists
were erroneous.
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from a model without fixed effects and trends requires stronger
assumptions about African countries than were originally as-
sumed by Burke et al. Specifically, it assumes that the average
rate of conflict is the same for all countries in sub-Saharan Africa
and that the conflict rate do not exhibit a trend (common or
country-specific) over time. Thus, Buhaug’s approach in BT1
implicitly requires the assumption that all countries in sub-
Saharan Africa are comparable over space and time in the factors
that influence conflict risk, which may include cultural patterns,
geopolitics, natural resources, colonial history, international trade
patterns, government policies, and geographic constraints. This
assumption is not tested by Buhaug. A formal test of Buhaug’s
assumption that countries have the same average risk of conflict
and/or trends in conflict (i.e., country-fixed effects and/or country-
specific trends all equal zero) is the calculation of a F-statistic that
jointly tests whether average conflict risk and/or trends in conflict
are statistically different from zero (13, pp. 150–157). In Table 1
we replicate the results in BT1 and conduct this test on the rele-
vant terms in the benchmark model of Burke et al. We reject the
null hypotheses that country-fixed effects are jointly zero (P <
0.0001), that country-specific trends are jointly zero (P < 0.0001),
and that country-fixed effects and country-specific trends are
jointly zero (P < 0.0001). (Because of limited degrees of freedom,
we are mechanically unable to conduct joint F-tests with SEs
clustered at the country level. However, estimates using country-
clustered SEs are nearly identical in magnitude to heteroscedastic-
robust SEs. By necessity, we use these latter values to conduct a
F-test. The replication file is provided in Supporting Information.)
These results strongly reject the assumption that models 2–4 in
BT1 are correctly specified. The misspecification of these models
is likely to alter Buhaug’s parameter estimates relative to the
Burke et al. finding regardless of whether or not the Burke et al.
result is correct, so the observation that these parameter estimates
differ from Burke et al. does not provide grounds to reject the
Burke et al. result.
In BT2, the definition of conflict used in Burke et al. (1), the

incidence of war years, is compared with models that examine
alternative definitions of conflict incidence and various measures
of conflict outbreak. No justification is provided for why these
alternative variables should respond to temperature similarly to
the incidence of war years. However, if we assume that such a
justification exists, then this comparison should be made prop-
erly. The coefficients presented in BT2 represent changes in the
probability of observing a conflict event; however, the different

types of conflict events occur with very different likelihoods (Table
2) and thus must be standardized before changes in these like-
lihoods can be compared. The most likely form of conflict is
termed “incidence 25+” in Buhaug (8) and occurs with an un-
conditional probability of 0.254 in the sample (roughly once
every 4 y), whereas the least likely is termed “outbreak +1000”
and occurs with probability 0.012 (roughly once every 100 y).
Comparing changes in probability for events that differ this much
in their underlying likelihood is an apples-to-oranges comparison,
because a probability change of 0.01 for incidence 25+ is a 4%
change in the average risk of this event, whereas a 0.01 probability
change for outbreak +1000 is an 83% change. We correct for the
large differences in the underlying risk of these different forms of
conflict by converting Buhaug’s results into units of percentage
change in the likelihood of conflict per 1 °C change in temperature.
We do this by dividing each dependent variable by its average
likelihood of occurring before running the regressions in BT2, es-
sentially converting outcomes into units of relative risk that permit
a valid apples-to-apples comparison across different outcome
measures (6). We replicate the results of BT2 in Table 2 following
this standardization. Standardization makes it clear that the results
in Buhaug exhibit very large uncertainties, with two 95% confidence
intervals that span effects ranging from −100% to +100% per 1 °C.
This high level of sampling variability might explain why none of
these coefficients were statistically significant in Buhaug; how-
ever, this uncertainty must also be accounted for when comparing
these results to Burke et al., as we do below.
In Table 2, we test whether the results in each of these models

is different from the main result presented in Burke et al. (1)
using seemingly unrelated regression (SUR), an approach that
allows us to formally test whether or not two different regression
models return statistically different results (14) (also 15, p. 153).
Intuitively, this approach asks whether the “regression lines”
describing the relationship between temperature and conflict in
Burke et al.’s and Buhaug’s (8) analyses are statistically different
from one another, while taking into account the fact that the
studies are using related conflict outcomes where disturbances
may be correlated. This test is necessary because it is extremely
unlikely that any two studies using different data sets will recover
identical results, due to sampling variability, even if the true
underlying relationship is the same for both studies—so ob-
serving that two regression results are not identical is not suffi-
cient evidence to conclude that the underlying relationship is
different. Instead, we must ask whether the difference in the

Table 1. Testing model validity

Burke et al. (1)
war years 1000+

Buhaug (8) model 2
war years 1000+

Buhaug model 3
war years 1000+

Buhaug model 4
war years 1000+

Temperaturet 0.043 −0.001 0.013 0.011
(0.022) (0.019) (0.030) (0.016)

Observations 889 889 889 889
R-squared 0.657 0.341 0.460 0.012
Country-fixed effects Yes No Yes No
Country trends Yes Yes No No

Testing if Additional Model Assumptions Are Rejected Using F-Test
Assumption[s] All countries have

same intercept
Countries have

no trend
All countries have
same intercept
and no trend

F-test (P value) 0.0000 0.0000 0.0000

This table replicates Buhaug table 1. The first column replicates Burke et al’s benchmark model, which is also model 1 in Buhaug. Models 2–4 in Buhaug
remove elements of this model (country-specific fixed effects and/or trends), implicitly making new assumptions about the data’s structure. Bottom panel
presents P values from a F-test under a null hypothesis that the omitted fixed effects and/or trends are all equal to zero in the benchmark model. Standard
error in parentheses.
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regression results is large enough that it is unlikely to be caused
by sampling variability alone. This approach differs markedly
from the analysis in Buhaug, where it was claimed that new
results overturned the findings of Burke et al. without conducting
any formal statistical comparisons between the two sets of
models. We correct this error by testing whether the effect of
current temperature, the effects of current and lagged temper-
ature (jointly), and the effects of all weather variables (jointly) on
alternative conflict measures from Buhaug differ significantly
from the result reported in Burke et al. As shown in Table 2, of
these 15 comparisons, only one (the effect of current tempera-
ture on incidence 1000+) is marginally significant at the 10%
level. Thus, we fail to reject the hypothesis that Buhaug’s results
are different from Burke et al.’s result because the magnitude of
observed differences would be expected based on sampling var-
iability alone. We conclude that once the variables in BT2 are
standardized and intermodel comparisons are correctly imple-
mented, the results in BT2 provide no support for the claim that
the results of Buhaug are different from those of Burke et al.
In BT3, a logistic regression lacking country-fixed effects and

country-specific trends is presented using an alternative measure
of conflict. The effect of temperature is again not directly com-
pared with the results of Burke et al. (1). Furthermore, the effect
of temperature is displayed in raw coefficients from a nonlinear
logit regression, which are difficult to interpret in terms of conflict
risk and across conflict measures with different underlying like-
lihoods. To make the effect on this alternative conflict measure
comparable and interpretable in terms of conflict risk, we replicate
the main results from BT3 but report the estimated effects of

temperature in terms of relative risk ratios in Table 3. This con-
version makes it immediately clear that the results reported in
BT3 are not statistically different from the benchmark result in
Burke et al., because the Burke et al. result is contained within all
four confidence intervals reported in BT3. Moreover, under all
four models the upper bound of the 95% confidence interval for
the effect of +1 °C dramatically exceeds the estimate reported in
Burke et al., indicating that the relative risk for conflict may rise as
much as 547 (model 12, the lowest upper bound) and 14.5 duo-
decillion (model 13, the highest upper bound). We think it is
implausible that the true effect of temperature on conflict can be
as large as these upper bounds suggest. Rather it seems more
likely that the models in BT3 are not properly specified. Re-
gardless, these estimates do not indicate that the relative risk ratio
of 1.39 implied by Burke et al. is too large.

Discussion
We find that the disagreement in findings between Buhaug (8)
and Burke et al. (1) vanishes after applying the appropriate set of
model selection and model comparison tests. The large statistical
uncertainty reported in Buhaug causes the results to not be
statistically different from the findings reported in Burke et al.
Furthermore, the high statistical uncertainty reported in Buhaug
indicates that Buhaug’s statistically precise conclusion “Climate
not to blame for African civil wars” (8, p. 16477) is inconsistent
with the evidence presented.
It is important to note that our findings neither confirm nor

reject the results of Burke et al. (1). Our results simply reconcile
the apparent contradiction between Burke et al. and Buhaug (8)

Table 2. Testing for disagreement between results when alternative conflict variables are used

Burke et al. (1)
war years 1000+
(standardized)

Buhaug (8) model 5
incidence 1000+
(standardized)

Buhaug model 6
outbreak 1000+
(standardized)

Buhaug model 7
incidence 25+
(standardized)

Buhaug model 8
outbreak 25+
(standardized)

Buhaug model 9
outbreak 100+
(standardized)

Probability of occurrence 0.110 0.190 0.012 0.254 0.052 0.030

Temperaturet 0.390 −0.030 −0.408 0.060 −0.165 0.532
(0.197) (0.110) (1.046) (0.156) (0.504) (0.790)

Temperaturet−1 0.120 −0.130 −0.755 −0.121 −0.083 −0.598
(0.211) (0.147) (1.233) (0.128) (0.505) (0.581)

Precipitationt −0.209 0.326 −1.001 0.508 1.065 −0.455
(0.471) (0.318) (4.212) (0.281) (1.316) (2.465)

Precipitationt−1 0.227 0.296 0.205 0.093 0.352 −0.321
(0.443) (0.324) (2.847) (0.271) (1.370) (2.017)

Observations 889 889 889 889 889 769
R-squared 0.657 0.765 0.090 0.652 0.130 0.099

Testing Whether Coefficients Differ from Burke et al. using SUR (P value)
Temperaturet 0.0558 0.4388 0.1299 0.2638 0.8558
Tempt, tempt−1 0.1392 0.4563 0.1598 0.4276 0.3700
All four variables 0.1290 0.2843 0.1453 0.4429 0.4333

This table replicates Buhaug table 2. All regressions contain country fixed effects and country-specific trends with standard errors clustered by country,
shown in parentheses. The unconditional probability of occurrence is shown and is used to standardized each conflict outcome. For regression coefficients
shown, a 0.1 effect implies a 10% change relative to average risk levels. We estimate Buhaug models 5–9 simultaneously with the Burke et al. model using
seemingly unrelated regression (SUR) to test a null hypothesis that coefficients from the two models are the same in bottom panel.

Table 3. Relative risk ratio from +1 °C

Burke et al. (1) implied
war years 1000+

Buhaug (8) model 10
outbreak 25+

Buhaug model 11
outbreak 25+

Buhaug model 12
outbreak 25+

Buhaug model 13
outbreak 25+

Upper bound effect (95% CI) 8:62× 106 7:10×104 546.9 1:45× 1040

Average effect of temperature 1.39 0.0199 3:27× 10−6 5:73× 10−9 2:46× 10−57

Lower bound effect (95% CI) 4:60× 10−11 1:51× 10−16 6:01× 10−20 4:20×10−154

This table replicates Buhaug table 3. Estimates are relative risk ratios from +1 °C. Models described in Buhaug. CI, confidence interval.
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by demonstrating that Buhaug does not provide evidence that
contradicts the results reported in Burke et al. Notably, however,
other recent analyses obtain results that largely agree with Burke
et al. (2–5), so we think it is likely that analyses following our
approach will reconcile any apparent disagreement between these
other studies and Buhaug.
Finally, we argue that the statistical procedures and reasoning

used to obtain our conclusions are broadly applicable and should
form the basis for future comparisons between statistical findings
in applied research. As such, formal statistical tests must be used
in order for a new study to overturn a previous result.

Materials and Methods
Data and regression models are detailed in Burke et al. (1) and Buhaug (8).
Replication code and data are available in the Supporting Information.

The benchmark model in Burke et al. (1) (model 1 in Table 1) is

yit = c+ βTit + γTi,t−1 + δPit + ηPi,t−1 + μi + θiyeart + eit [1]

where yit is 1 if a conflict occurs in country i in year t and zero otherwise, Tit is
current local temperature, Ti,t−1 is lagged local temperature, Pit is current
local precipitation, Pi,t−1 is lagged local precipitation, μi is a vector of country-
specific constants (fixed effects), θi is a vector of country-specific time trends,
and eit are disturbances. In Table 1, we test the assumption of Buhaug (8)
models 2–4 that components of Eq. 1 are not statistically significant. For
model 2 we test the assumption that μi = 0 for all i, for model 3 we test the
assumption that θi = 0 for all i, and for model 4 we test the assumptions that
both μi = 0 and θi = 0 for all i. Each test is implemented using a F-test that
allows us to simultaneously test these multiple-condition hypotheses.

Buhaug (8) models 5–9 in Table 2 are directly compared against the
benchmark model in Burke et al. (1) using SUR. This procedure allows
cross-model restriction tests when there may be correlation in the error
structure across models and/or samples (14, 15). This procedure is necessary
because it is likely that the various conflict outcomes considered in BT2 by
Buhaug are closely related events and thus may induce correlation across
samples and fittedmodels. For example, a country–year event passing the 1,000
battle-deaths threshold used in Burke et al. will necessarily pass the 25 battle-
deaths threshold used in Buhaug model 7. By using SUR, we characterize the
extent of correlation between models and account for this structure when
determining whether two models provide statistically different results. In
Table 2 we compare parameter estimates using the Burke et al. benchmark
definition of conflict y1it and alternative definitions y2it provided by Buhaug.
Both outcomes are assumed to have similar underlying structure, although
the parameters describing this structure may differ between outcomes

y1it = c1 + β1Tit + γ1Ti,t−1 + δ1Pit + η1Pi,t−1 + μ1i + θ1i yeart + e1it [2]

y2it = c2 + β2Tit + γ2Ti,t−1 + δ2Pit + η2Pi,t−1 + μ2i + θ2i yeart + e2it [3]

and we are interested in testing the following three hypotheses:

H1:    β1 = β2 [4]

H2:   β1 = β2, γ1 = γ2 [5]

H3:  β1 = β2, γ1 = γ2, δ1 = δ2, η1 = η2 [6]

while also accounting for the fact that e1it and e2it are correlated. H1 tests
whether the current temperature term is different across the two models.
H2 jointly tests for differences across models for the current and lagged
temperature terms while H3 jointly tests for differences across models for all
four weather terms. To test H1–H3 while accounting for this cross-outcome
correlation using SUR, we stack two samples (one from each study) and es-
timate a single equation

y1∪2it = c1 + cDD+ β1Tit + βDTitD+ γ1Ti,t−1 + γDTi,t−1D+ δ1Pit + δDPitD

+ η1Pi,t−1 + ηDPi,t−1D+ μ1i + μDi D+ θ1i yeart + θDi yeartD+ eit′
[7]

where D is a dummy variable equal to 1 if an observation comes from the
second sample (Eq. 3), and the vector of outcomes is

y1∪2it =
�
y1it
y2it

�
[8]

which enables us to test H1 by examining the statistical significance of βD

and likewise for H2 and H3. Our estimated uncertainty in the estimate of
βD accounts for correlation between e1it and e2it .

Buhaug (8) models 10–13 in Table 3 are directly compared against the
benchmark model in Burke et al. (1) by converting the marginal effect es-
timated in a logistic regression into relative risk ratios

Δy + y
y

[9]

where Δy is the change in conflict risk for a +1 °C warming and y is the
average conflict risk in the sample.
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