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Population encoding of stimulus features along the visual
hierarchy
Luciano Dyballaa ID , Andra M. Rudziteb , Mahmood S. Hoseinic ID , Mishek Thapab,d , Michael P. Strykerc,e,1 ID , Greg D. Fieldb,d , and Steven W. Zuckera,f,1 ID

Contributed by Michael P. Stryker; received October 12, 2023; accepted December 13, 2023; reviewed by Tobi Delbruck and Spencer Smith

The retina and primary visual cortex (V1) both exhibit diverse neural populations
sensitive to diverse visual features. Yet it remains unclear how neural populations
in each area partition stimulus space to span these features. One possibility is
that neural populations are organized into discrete groups of neurons, with each
group signaling a particular constellation of features. Alternatively, neurons could
be continuously distributed across feature-encoding space. To distinguish these
possibilities, we presented a battery of visual stimuli to the mouse retina and
V1 while measuring neural responses with multi-electrode arrays. Using machine
learning approaches, we developed a manifold embedding technique that captures
how neural populations partition feature space and how visual responses correlate with
physiological and anatomical properties of individual neurons. We show that retinal
populations discretely encode features,whileV1populations provide amore continuous
representation. Applying the same analysis approach to convolutional neural networks
that model visual processing, we demonstrate that they partition features much more
similarly to the retina, indicating they are more like big retinas than little brains.

computational neuroscience | encoding manifold | retina | visual cortex | deep networks

The output of the mouse retina is formed by a set of about 40 distinct types of retinal
ganglion cells (RGCs) (1, 2). These RGC types exhibit distinct morphologies, gene
expression profiles, and visual responses. This has generated a coherent perspective on
retinal output: Distinct cell types signal distinct visual features to downstream brain
areas. How are these distinct features organized in the cortex? Many studies have focused
on parallel pathways in sensory systems and in the visual system in particular (3, 4). One
possibility is that the visual features signaled by parallel pathways originating from the
different RGC classes would be combined to produce new groupings of features in the
cortex (5, 6). An alternative possibility is that visual cortical organization is a continuum,
fundamentally different from that of the retina, despite the mounting evidence for
distinct neuronal identities in V1, with cortical cell types of different morphologies,
transcriptomes, and intrinsic physiological properties (7).

To determine whether stimulus features are represented similarly over the parallel
pathways between the retina and visual cortex, we have devised the “neural encoding
manifold”—an analysis of the organization of neurons signaling a wide range of visual
response features. We have applied it to both retina and V1 using matched stimulus
ensembles across the two populations of neurons. Our conclusion is that the population-
level representations of stimulus features are fundamentally different between the retina
and visual cortex, the former organized as distinct clusters while the latter as a continuum.

An Ensemble of Grating and Flow Stimuli. To identify the degree of similarity between
population-level neural representations of stimuli in the retina and V1, we performed
multi-electrode array (MEA) recordings in both areas utilizing matched stimuli and
analysis procedures. MEAs were used to measure the responses of mouse RGCs ex vivo,
and responses of mouse V1 neurons in vivo (Fig. 1 A and B). Sinusoidal drifting gratings
and optical flow stimuli were presented at matched spatial frequencies and contrasts in
the retina and V1 experiments (Fig. 1C). Drifting gratings were presented at two spatial
frequencies and drifted in eight directions. Flow stimuli were presented at two contrasts
(positive and negative), consisting of dots and oriented line segments, and drifted in eight
directions. Flow stimuli were chosen because they mimic certain features of naturalistic
stimuli, and previous work has shown that they engage nonlinearities in V1 that are
not predicted based on the responses to gratings (8). In addition, flow and grating
stimuli were spatially isotropic (or repeating), allowing us to study response properties
independent of receptive field location. Individual neuronal responses were summarized
by a two-dimensional response map, where each row shows the response to a particular
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Fig. 1. Experimental set-up and stimulus ensemble. (A and B) MEA measurements from mouse RGCs and V1 neurons. Spikes from drifting stimuli are trial-
averaged and collected into response maps. Examples shown from an ON-center RGC (A) and an orientation-selective cell in V1 (B). (C) The stimulus ensemble
consists of low and high spatial frequency gratings and positive or negative contrast flow patterns composed of either single dots or 3-dot oriented line
segments moving in eight directions separated by 45◦ (Materials and Methods). The illustrated 3×2 arrangement will be used throughout. (D) Two example RGC
(Top) and V1 (Bottom) response profiles illustrating the diverse response dynamics to the different stimuli. Left cells identical to (A and B). (E) Rasters showing
population responses: neurons × spike trains. (F) Left: Example of standard embedding approaches (9–12) arranges trials in neural coordinates and enables
“decoding,” i.e., inferring the stimulus from the neural state (top is retina, bottom is V1). Each point represents the response of the neural population to a given
stimulus on a trial in a low-dimensional space determined by principal components analysis (Materials and Methods); colors indicate the different stimuli. Right:
Principal value spectrum associated with the principal components for RGCs (Top) and V1 (Bottom): Although stimulus decoding is clear in both, the cortex
appears to require more dimensions to capture variability in the responses.

stimulus direction of motion; one such map was produced for
each neuron and for each of the six stimuli presented (Fig. 1D).

Organizing Neurons, Stimuli, and Responses
via the Encoding Manifold
To investigate and compare the organization of retinal and V1
population responses, we sought to organize the population
responses on a manifold. Previous work has taken a “stimulus
perspective” on these responses (10, 11, 13–16), producing a
low-dimensional representation that organizes stimuli by the
population response to each trial (Fig. 1E), allowing one to decode
the identity of the stimulus that gave rise to the constellation of
responses to a single stimulus trial. While these approaches are
useful, our goal was distinct; we sought to identify how individual
neurons contributed to signaling different stimulus features with
respect to the entire neural population. Thus, we switched
from the stimulus-based “decoding” perspective used previously
(Fig. 1 E and F) to a neuron-based “encoding” perspective by
developing an “encoding manifold” (Fig. 2). Each point on this
encoding manifold is a neuron, not a stimulus, so it reveals
how neurons are distributed in stimulus/response space. Thus
neurons are organized by how they respond to features within
the stimulus ensemble. These features included positive versus
negative stimulus contrasts, high versus low spatial frequencies,

motion in different directions, orientation, and any other features
present in the stimulus set that drive different responses across
the neural population. Neurons with similar feature selectivity
and response dynamics will be nearby on the manifold, while
neurons responding to different stimulus features or with distinct
dynamics will be far apart on the manifold. Thus, the axes of
this space are related to both stimulus features and temporal
response characteristics. This approach differs substantially from
the conventional one, which focuses solely on the stimulus
selectivity of neurons. Here, we give equal emphasis on the
dynamics of visual responses as to their stimulus selectivity. This
dual focus is important for understanding how the brain processes
visual input because the differences in dynamics are sufficiently
large (tens of ms) that processing in higher visual areas will be
strongly affected (22).

To illustrate the encoding manifold approach and validate
that it 1) recovers the underlying functional structure of a neural
population and 2) organizes these neurons appropriately on a
manifold, we used the popular artificial ring model of orientation
tuning (21, 23) (Fig. 2F and Materials and Methods). In this
model, neurons tuned to nearby orientations excite one another
while those tuned to different orientations inhibit each other.
Equilibria of the network are the points on a ring (the space
of possible orientations). We simulated responses of artificial
neurons to low-frequency gratings drifting in eight different
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Fig. 2. Illustration of the encoding manifold algorithm applied to an artificial example. (A) Suppose we are given an unknown circuit of orientation-selective
neurons (Left). Stimulating it with orientated gratings yields responses; a spike train for each neuron for each stimulus trial (Middle). The goal is to use these
data in an unsupervised manner to organize the neurons into a manifold: Each point on the manifold is a neuron and nearby neurons respond similarly in
time to the stimulus ensemble (Right). (B and C) The manifold inference proceeds in two stages. (B) Stage 1: nonnegative tensor factorization (17) is used to
multi-cluster groups of neurons by stimuli and by response. For this artificial example, all temporal responses are identical, so different neurons are organized
by the different stimuli. Since eight orientations are used, eight latent components emerge (a procedure for selecting the number of components is described
in Materials and Methods). (C) Stage 2: The neural factors are gathered into a matrix whose dimensions are #neurons×#factors; a row in this matrix represents
the loading of each neuron in each factor fi , i = 1,2, . . . ,8. Equivalently, each row defines a vector in a stimulus/response-space, encoding the response of each
neuron to each stimulus. A weighted data graph is then built from an iterated adaptive neighborhood similarity kernel (18) in this space and used with diffusion
maps for manifold inference (19, 20). For this artificial example, the manifold is a ring in which neurons tuned to nearby orientations are neighbors. (D and E)
Actual data are more complicated. To illustrate conceptually, five example RGCs and their responses to the stimuli are shown (D). Note that i and k respond
similarly, so they should be close on the encoding manifold (E); neurons i and j respond differently, so they are distant on the manifold. Although m responds
to the same stimuli as j and l, its response dynamics are different, so it is distant from the others. The underlying data graph is shown superimposed on the
manifold. (F ) The manifold produced from the artificial example (A) provides insight into the artificial problem we set up, namely the artificial ring model of
orientation tuning from ref. 21.

directions (Fig. 2A), each with the same dynamics. The encoding
manifold was constructed in a two-stage procedure with no
knowledge of the model’s underlying circuitry (Fig. 2B andC and
Materials and Methods): First, nonnegative tensor factorization
(17) was used to relate stimuli to neural responses across the
population of recorded cells. A neural encoding space was then
constructed by bundling the neural factors into a matrix, in

which a similarity kernel (18) could be defined. From this,
diffusion maps—a non-linear inference algorithm (19, 20)—
yielded the manifold. Expressed in diffusion coordinates, the ring
emerged solely from the responses, even though the algorithm
knew nothing of the underlying circuit organization.

In general, neural data will be more complex than that
produced by a simple ring model (Fig. 2D), with many neurons
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exhibiting mixed selectivity (8, 24). As such, the manifold is
likely to be richer than the ring, but the idea generalizes: Neurons
with similar response profiles will be nearby on the manifold. A
population of neurons with distinct responses will be far from
other neurons on the manifold (Fig. 2E).

Comparing Retina and V1. We first applied the encoding mani-
fold approach to MEA recordings from 1149 mouse RGCs (Fig. 3
and Movie S1). Results from individual retinas were sufficiently
similar that data from three retinas were combined to embed all
data at once (SI Appendix, Fig. S3D). The resulting manifold
exhibited clusters of neurons, with the cells in each cluster
exhibiting similar response dynamics to similar stimuli. Other
clusters, with different stimulus/response profiles, were relatively
separated, so that following a trajectory along the manifold would
reveal a population of nearly similar cells followed by an abrupt
transition to another, different group of cells. See Discussion for
further analysis of this manifold.

RGCs with nearly identical response properties would be
expected to be nearby on the manifold. Since MEAs record large
numbers of RGCs of some cell types more effectively and in
larger numbers than other types (25, 26), we do not expect
the number of clusters on the manifold to perfectly reflect the
number of RGC types. Nevertheless, clear clusters from these
data on the manifold did in fact correspond to distinct RGC
types. To verify this, we examined the spatial receptive field
locations of RGCs from individual retinas within each cluster by
calculating the spike-triggered average to a checkerboard noise

stimulus (27); this revealed that RGCs in a given cluster exhibited
a mosaic-like organization (Fig. 3 F–I and SI Appendix, Fig. S4).
Mosaic organization is the hallmark of individual cell types in
the retina (28–30), confirming that the manifold embedding
could uncover many distinct RGC types. This observation serves
further to validate, beyond the artificial ring model, the utility of
the encoding manifold to reveal structure in a neural population.

We next applied the encoding manifold approach to MEA
recordings from 640 mouse V1 neurons (Fig. 4 and SI Appendix,
Fig. S5D and Movie S2). The encoding manifold of V1 was quite
different from that derived from the retina. Instead of clusters
separated by abrupt changes, the V1 neurons were distributed
relatively uniformly and continuously across the manifold (Dis-
cussion). To emphasize this difference, for the V1 encoding
manifold, we speak of “neighborhoods” of cells, rather than
distinct clusters, since preferred stimulus/response characteristics
now vary smoothly from neighborhood to neighborhood.

While there are global coordinates (particular diffusion di-
mensions) that organize, e.g., contrast (Fig. 4C), a deeper picture
emerges by following paths over the manifold. For example,
Path 1 starts in a neighborhood of cells that respond to all
stimuli before traversing an “arm” of cells selective only for
low spatial frequency gratings (Fig. 4B). The origin of this path
is a neighborhood populated primarily by fast-spiking putative
inhibitory neurons (Fig. 4G), consistent with the observation that
inhibitory neurons are broadly tuned (31). Excitatory neurons
in layers 2/3 vs. layer 5 predominate in different regions on
the manifold (Fig. 4H), consistent with the observations of
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Fig. 3. The encoding manifold formed by RGCs is clustered and organized by cell types. (A) Projection of the encoding manifold formed by RGCs onto the first
three diffusion coordinates (n = 1,149 RGCs). (B) Three example RGCs from the purple cluster in A: Each sextet of PSTHs exhibits a delayed response to positive
flows compared to negative flows and gratings (stimuli follow the same arrangement as in Fig. 1D). (C–E) Example individual RGC responses to the six stimuli
from other locations on the manifold indicated by lines; they exhibit distinct response profiles, e.g., no response to negative flows (C) or direction-tuned (E).
(F–I) The spatial receptive fields from each group of colored points form a mosaic-like arrangement that tiles space, confirming their identification as members
of single classes of RGCs. Left panels show the 1-SD contour to a two-dimensional Gaussian fit to the spatial receptive fields estimated by computing the
spike-triggered average to a checkerboard stimulus: Colors correspond to the points on the manifold in A, hexagon shows the outline of the electrode array.
Middle panels show the temporal receptive fields from the spike-triggered average from the same cells in the Left panels. Right panels show an example sextet
of PSTHs from a neuron in each mosaic to compare how the responses to the different stimuli vary across the different RGC types.
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identifying clusters (as in Fig. 3), we follow paths over the manifold. Starting from the neuron indicated with ?, along path 1 (red arrow) cells transition from
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waveforms, see Materials and Methods) shows that physiological properties are also well-organized on the manifold. Different regions exhibit laminar specificity
for both putative excitatory (H) and putative inhibitory (I) neurons, correlating with particular visual features from B–E. Neurons in F–I have color and size
proportional to the local density of like-types in the data graph (Materials and Methods).

mutual antagonism between these layers (32). For other aspects
of how the manifold organization relates to neuroanatomy and
physiology, see SI Appendix, Figs. S6 and S7.

The low spatial frequency arm is special; it consists mainly of
excitatory neurons in layers 4 and 6, both of which, along with
other layers, receive input from the lateral geniculate nucleus of
the thalamus in the mouse (33). Because these cells are known to

be tuned to orientation or direction of motion, we can ignore this
feature, making the manifold insensitive to their actual direction
preferences. This approach allows us to focus on other, less
explored, properties. For that reason, we factored out direction
preference with a permuted tensor factorization (Materials and
Methods). This can readily be undone: When we isolated V1
neurons that responded primarily to low frequency gratings and
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that were orientation tuned, our embedding approach recovered
a ring-like organization (SI Appendix, Fig. S8), reminiscent of the
ring model of orientation tuning (Fig. 2F). This illustrates that
we are sampling a wide assortment of orientation-tuned neurons
in V1 and that they organize with similar orientations supporting
each other. However, we emphasize that these neurons accounted
for only 35% of the population, and only 17% of the population
had low frequency gratings as the sole stimulus eliciting a
statistically significant response (Materials and Methods).

The results above indicate that retinal output samples stimulus
features in a relatively discrete manner, while V1 is substantially
more continuous (SI Appendix, Fig. S10 A and B). This implies
that cell diversity in the two circuits have conceptually different
roles. In the retina, each RGC type produces a distinct selectivity
for a constellation of visual features. In the cortex, cells appear to
produce a continuum of stimulus selectivity that is relatively
uniform across stimulus and response space, as one might
expect either from a highly interconnected network or from a
complete mixing of the parallel inputs from the retina. We discuss
implications of, and caveats to, this interpretation below.

Encoding Manifold for Convolutional Neural Networks. Re-
cently, convolutional neural networks (CNNs) have been widely
used to model visual processing in the retina and cortex. While
they recapitulate at least some features of visual processing, such as
a hierarchical architecture that explicitly represents progressively
more complex features in visual scenes, they also lack the dense
recurrent connectivity present in most neural circuits (34–37),
(38–40). If CNNs were to accurately represent the way that
populations of neurons encode visual features (41), the structure
of their encoding manifolds should be similar to those found
in biology. To test this, we constructed encoding manifolds
from units in two popular deep CNNs: ResNet50 (42) (Fig. 5
and SI Appendix, Fig. S9 and Movie 3) and VGG16 (43)
(SI Appendix, Fig. S10D). Since these networks were trained
on ImageNet (44), we first established that our stimuli were
classifiable and that they exhibited comparable activation levels
across layers (Fig. 5B). Unlike V1, the encoding manifolds
produced from CNNs were remarkably discrete (clustered) in
their organization, even more so than the retina. For CNNs,
most clusters corresponded to a feature map (set of units
spanning position and sharing identical weights), reminiscent
of RGC mosaics (Fig. 5E), revealing that activity patterns across
feature maps were largely uncorrelated. These results indicate
that CNNs do not encode visual feature space as neurons in
V1 (and presumably other cortical areas) do, suggesting a crucial
limitation to the use of CNNs for understanding cortical function
(Discussion).

Discussion
We began with a seemingly simple question: Whether pop-
ulations of RGCs and cortical neurons sample visual space
similarly. We developed a data-driven approach for topologically
organizing how neurons in a circuit represent or encode stimuli
by producing an “encoding manifold.” In this manifold, each
point is a neuron and those with similar selectivity and response
dynamics are nearby on it (Fig. 2). Remarkable topological
differences emerged between the retina and V1: The retinal
manifold was clustered (Fig. 3) while the cortical manifold
was much more continuous (Fig. 4). When comparing these
manifolds to that of CNNs, popular models of cortical visual
processing, we found that CNNs exhibited a topology quite

distinct from that of V1 and more clustered than that of the
retina (Fig. 5). A density-based hierarchical clustering algorithm
(Materials and Methods) confirms this qualitative assessment
(SI Appendix, Fig. S10 A–C).

Differing Functional Consequences of Cell Type Diversity in the
Retina and V1. Experiments beginning with Kuffler, Hubel, and
Wiesel have demonstrated important differences in the responses
of the retina and V1 (45, 46). However, those investigations
have largely focused on differences in the optimal features
that drive the cells (e.g., orientation tuning). Our purpose was
different: to identify how stimulus space is sampled across each
neural population and to develop a method to visualize and
quantify these differences. As such, we have not focused on
the stimuli that generate peak responses, but instead we have
used the response dynamics of each neuron to a battery of
stimuli to learn how the population collectively samples stimulus
space. For example, it is possible that the retina and V1, while
being sensitive to different visual features, could organize the
encoding of these features similarly and thereby exhibit similarly
clustered (or continuous) encoding manifolds. Furthermore, in
the retina and V1, a revolution has recently occurred in our
understanding of cell type diversity, driven by connectomics and
transcriptomics (2, 47–51). In both retina and V1, there appear
to be a large number of genuinely distinct cell types, rather than
a continuum of morphologic and/or transcriptomic profiles. In
the retina, it is clear these transcriptomic and morphologic cell
types correspond (at least) nearly one-to-one with functionally
distinct types (2). Our analysis recapitulates a “clustered” view in
the retina, but produces a very different view of V1. Despite
cell type diversity in both structures, the encoding manifold
reveals a nearly continuous sampling of visual features in V1,
while it produces a more clustered or discrete sampling in the
retina. In the retina, the elongated clusters reveal only modest
quantitative changes in the relative magnitudes of responses to the
different stimuli, without changing the selectivity (SI Appendix,
Fig. S4). In V1, on the other hand, there are several dimensions
through which stimulus selectivity and response dynamics vary
qualitatively and smoothly (SI Appendix, Fig. S6 and Materials
and Methods, section 5); in contrast to the classical categor-
ical distinction often imposed between simple and complex
cells (52–54).

A potential caveat to the above conclusions is the choice
of visual stimuli. We used stimuli spanning spatial frequency,
contrast polarity, direction of motion, and orientation. Except
for temporal frequency, this accounts for possibly the most
commonly explored features in the vision literature. There are
potentially a huge range of visual stimuli (Ns) to which one
might measure responses and, of course, there are a large number
of neurons that might respond variously to the different stimuli
(Nn). In principle, there might beNs×Nn distinct response types
and because responses are extended in time this number is much
larger. The encoding manifold is a simplified representation
of this huge range of potential variation. To the extent that
trajectories across the manifold correspond to distinct properties
of visual stimulation, properties that we can make sense of,
the manifold embodies an understanding of the real range of
variation encoded in the neural circuit. This, combined with the
fact that the stimuli we used also produced strong responses from
artificial networks trained on natural scenes (Fig. 5B), leads us
to conjecture that the topological differences we found should
remain, even with richer stimulus ensembles. Nevertheless,
expanding the stimulus set is an important direction for future
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Fig. 5. Encoding manifold of deep convolutional networks. (A) ResNet50 is a popular CNN pre-trained on ImageNet for image classification. (B) When applied
to ResNet50, our stimuli (Fig. 1) generate similar levels of activation as those from natural scenes, and are also classified with confidence. (C) Encoding manifold
computed from neuronal units from Stage 4, sampled at random in proportion to their activation (n = 2,000, Materials and Methods; other stages are shown
in SI Appendix, Fig. S9). Color labels identify feature maps, showing that most neurons that share weights are grouped into well-defined clusters. (D) Although
most individual neurons exhibit response profiles similar to those from V1, the topology of the manifold obtained is strikingly different (compare with Fig. 4).
(E) Five examples of the spatial receptive fields (small squares) and (F ) response profile centroids of groups of neurons belonging to the same feature map.
These form clusters that tile visual space (cf. RGC types, Fig. 3) and have very specific feature selectivity, as expressed by their distinct response profiles.

research. One challenge is to produce stimuli that are at least
approximately isotropic in space like flow stimuli (to mitigate
the impact of cells having receptive fields at different retinotopic
locations), yet retain naturalist structure (8). Features that could
be added to our stimulus ensemble in a relatively straightforward
way are 1) flow stimuli that temporally vary in their contrast
or mean luminance, 2) superimposing flow stimuli moving at
different speeds to mimic depth and parallax when animals move
through natural scenes, and 3) including chromatic content.
These stimulus variations would allow exploring how populations
of neurons are organized with respect to contrast and luminance
adaptation, depth, and chromatic tuning, all of which are exciting
avenues for future work.

Relationship between Manifolds and Neural Circuits. We have
established the relationship between encoding manifolds and
the response properties of neurons to multiple stimuli via
the construction of the data graph from our similarity kernel
(Fig. 2C). Connections in this graph therefore represent similarity
between neurons in response to the multiple visual stimuli. To
illustrate what kinds of connectivity may lead to such different
topologies, we consider the stochastic block model (55, 56) from
social networks, a random model in which edges are more likely to
be drawn between nodes belonging to the same “community”—
or circuit (Fig. 6). If circuits are completely disjoint, the adjacency
matrix (dimensions of which are neurons× neurons) has a block-
diagonal structure: Units within a block are connected; those in
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section 5).

different blocks are not (Materials and Methods). The resulting
manifold embedding then consists of completely disconnected
components, or clusters, as in most of our CNN examples (Fig. 5
and SI Appendix, Figs. S9 and S10D). As connections begin
to couple these circuits, the manifold embedding begins to join
components, until the connections become sufficiently numerous
to mimic the more continuous V1 manifold. We should note that
the stochastic block model perspective is only a start for guiding
intuition; it is limited because it explicitly assumes the presence
of blocks with uniform connection probability (57).

While our similarity kernel provides some information about
potential connectivity, we emphasize it should not necessarily
be one-to-one with the anatomical connectivity. The manifold
represents neural activity, i.e., the responses to the stimulus
ensemble; how such responses relate to the anatomical connec-
tivity remains complex. For example, when neurons are nearby
on the encoding manifold, it may be because those neurons
receive common input (e.g., RGCs of the same type) or because
they are synaptically connected to neurons with similar tuning
and dynamics (e.g., the ring model), or both. Nevertheless,
population-level inferences do arise from the encoding manifolds:
Fig. 4H and I and SIAppendix, Fig. S7 show a concrete example of
how position on the manifold may relate to a specific anatomical
location, such as the cortical layer.

Comparison with Artificial Networks. Recently there has been
great interest in assessing how artificial deep networks compare to

biological networks (58). This interest is motivated by the ability
of CNNs to mimic many features of, for example, hierarchical
visual processing found in macaques (34–40, 59). However,
the process of building an encoding manifold revealed a very
important difference between CNNs and V1. While individual
units in a CNN may exhibit tuning like typical cortical cells,
their encoding topology is completely distinct from a population
perspective: instead of being nearly continuous like V1, they are
highly clustered, where each cluster typically identifies with a
feature map (akin to RGC mosaics). Surprisingly, even feature
maps across successive layers are largely uncorrelated in their ac-
tivity patterns, which explains the lack of continuity in the CNN
encoding manifolds (SI Appendix, Figs. S9 and S10D). We have
also applied this approach to two state-of-the-art CNNs used to
model the mouse’s visual system: MouseNet (60), a network that
is modeled directly on mouse neuroanatomy, and AlexNet(RI)
(61), trained using contrastive learning. Although both studies
reported high similarity with the population responses of neurons
in the mouse cortex, the neural encoding manifolds produced for
these networks (SI Appendix, Fig. S12) show clear concentrations
of neurons (typically from the same feature map) interspersed
by sparse regions. Therefore, their topologies are closer to
those of other CNNs (SI Appendix, Figs. S9 and S10) and
the retina (Fig. 3) than they are to V1. In future studies, the
encoding manifold could be used for directly testing how further
modifications to artificial networks, such as recurrence, may
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affect their encoding topology and similarity to V1 and/or other
visual areas.

Conclusion
In 1962, Hubel and Wiesel (46) noted that two novel response
properties, not present in its inputs from the retina and dLGN,
emerged in the visual cortex of the cat: orientation selectivity and
binocularity. These properties were thought to be the product
of the cortical circuit in combining the inputs it received. The
absolute novelty of visual cortical responses is less clear in the
mouse, with some degree of orientation selectivity and possibly
binocularity in its inputs (62). However, the encoding manifold
of mouse V1 reveals that, rather than preserving the qualitative
distinctions evident in RGC responses, the cortex combines its
parallel inputs to create a novel mode of organization: carpeting
stimulus space, rather than discrete sampling.

The best way to compare visual areas within species, across
species, or with artificial networks has been an important
question. Our encoding manifold introduces a way to do this
by providing a global as opposed to pairwise (63) view of how
populations of neurons are organized to encode diverse stimuli.
As we showed, it is applicable across areas and species.

Previous work claims similarity between CNNs and visual
cortex, while our approach reveals qualitative differences. The dis-
tinct conclusions arise from differences in how the comparisons
are made. Prior work compared response correlations among
neurons to those among CNN units and found similar correlation
structures (64). Our approach directly compares response dynam-
ics across the population of neurons or the population of units in
the CNN. When taking this perspective, real neural populations
in the visual cortex are smoothly distributed in stimulus–response
space, while units from CNNs are much more clustered.

Furthermore, labeling the neurons on the manifold with
known anatomical properties permits inferences about how phys-
iology correlates with visual feature selectivity; see SI Appendix,
Fig. S7. Next questions implied by our results concern the dLGN
and whether it is topologically more like the retina or the cortex,
as well as extrastriate areas, for which there may be important
differences in dimensionality and geometric properties. We
believe this approach will also be useful for analyzing gene
networks and the structure of other high-dimensional datasets.

Materials and Methods
Retina Experiments.
Animal procedures. All retinal experiments were approved by the Duke
University Animal Care and Use Committee. Adult mice (2 to 6 mo, C57Bl/6J,
Jackson Laboratories, 000664) of both sexes were used. Animals were kept on
a 12-h light/dark cycle with ad lib access to food and water. Prior to use, animals
were dark-adapted overnight by placing the animal in a light-shielded box
fitted with an air pump for circulation. Dissections were performed in complete
darkness using infrared converters and cameras. Mice were decapitated, eyes
enucleated, and placed into oxygenated room-temperature Ames solution
(Sigma, A1420) during retinal dissection and vitrectomy as described previously
(65).
MEA recordings. A∼1.5×1.5-mm piece from the dorsal retina was placed RGC
side down on a MEA of 519 electrodes with 30-μm spacing (66–68). Oxygenated
Ames solution perfused the retina throughout the experiment at a rate of 6 to
8 mL/min, heated to 32 ◦C. Hexagonal retinal recording array size in Fig. 3 and
SI Appendix, Fig. S4 is 0.49 mm across and subtends about 15 degrees of visual
angle.
Spike sorting. Raw voltage traces from the MEA were spike sorted using YASS
followed by manual curation (69, 70). Briefly, spikes were identified by events
that crossed a threshold set to four SDs from the mean voltage. The electrical

event 0.5 ms preceding and 1.5 ms following this threshold was extracted from
the recording. These events were accumulated on each electrode. Projection
pursuit was used to reduce the dimensionality of these signals and identify
clear clusters of spikes. Putative cells with a spike rate >0.1 Hz and with <10%
contamination estimated from refractory period violations were retained for
further analysis.
Visual stimuli and receptive field measurements. The image from a gamma-
calibrated OLED display (Emagin, SVGA + XL Rev3) was focused onto
photoreceptors using an inverted microscope (Nikon, Ti-E) and 4x objective
(Nikon, CFI Super Fluor x4). Checkerboard stimuli were created and presented
using custom Matlab code and presented for 30 min to estimate spatial and
temporal receptive fields. The checkerboard stimuli were presented at a photopic
light level (about 10,000 Rh*/rod/s), and a new checkerboard pattern was
presented every 33 ms. Each square in the checkerboard stimulus was 75× 75
μm. Custom software was used to present drifting gratings and flow stimuli at
60-Hz refresh rate, described below. RGC responses to checkerboard noise were
used to estimate the spatial and temporal components of the spike-triggered
average (STA) (27). The STA estimates the spatial and temporal integration of
visual stimuli by the receptive field. Spatial receptive fields were fit with a two-
dimensional Gaussian function to estimate the spatial extent of the receptive
field center. A 1-SD contour of this fit was used to summarize the size and location
of receptive fields of each RGC. The mean intensity of the grating and flow stimuli
was also about 10,000 Rh*/rod/s.
RGC classification. The time course of the temporal receptive fields, the
autocorrelation function of the spiking dynamics and spatial receptive field
size information were used to classify RGCs into different types, as described
previously (68). Distinct functional types were confirmed by the formation of
receptive field “mosaics” (30, 71): receptive fields that uniformly tile space and
overlap at their 1-SD contour.

Cortex Experiments.
Animal procedures. Experiments were performed on adult C57BL/6J mice
(age 2 to 6 mo) of either sex. All protocols and procedures are approved
by the University of California–San Francisco Institutional Animal Care and Use
Committee. Animals were maintained on a 12 h light/12 h dark cycle. Recordings
were performed during the dark, more active phase of the cycle.
Preparation of mice for extracellular recording on the spherical treadmill.
Recordings were done on alert mice free to run on a polystyrene ball (200-mm
diameter, Graham Sweet Studios) floating on an air stream from a single inlet at
the bottom of a hemispherical bowl of slightly greater inside diameter. During
recordings, the animal’s head is fixed to a rigid crossbar above the floating ball by
screwing a titanium or stainless steel headplate cemented to the animal’s skull
before recording using surgical procedures as described by Niell and Stryker
(72). Following recovery from surgery for headplate attachment, the animal is
allowed to habituate to the recording setup and learn to control the ball. Eye
movements were captured under infrared illumination by a camera at the video
frame rate of the stimuli (60 Hz). The centroid of the pupil was used to determine
eye position.
Visual stimuli. Visual stimuli were presented with gamma-corrected video
display (Nanao Flexscan, 30 × 40 cm, 60 Hz refresh rate, 32 cd/m2 mean
luminance, or Dell Ultrasharp 38 cd/m2 mean luminance) placed 25 cm from
the mouse, subtending 60◦ to 75◦ of visual space. For current source density
(CSD) analysis, we present a contrast-reversing square checkerboard (0.04 cpd,
square-wave reversing at 1 Hz). Other visual stimuli were the same as those
described for the retina experiments, and are described below. All stimuli
variations were repeated 20 to 25 times according to a randomized sequence.
Extracellular recording in awakemice. To carry out microelectrode recordings,
a craniotomy was performed under brief isoflurane anesthesia, and the skull
was thinned over a 1 to 2 mm diameter centered above the monocular zone of
V1 (2.5 to 3 mm lateral to midline, 1 to 2 mm anterior to lambda). At least 1 h
after full recovery from anesthesia, this small opening allowed insertion of a 1.1-
mm-long double-shank 128-channel probe (73), fabricated by the Masmanidis
laboratory through the NSF NeuroNEX program (University of California–Los
Angeles). The electrode was placed at an angle of 30◦ to 45◦ to the cortical
surface and inserted to a depth of 500 to 1,000μm below the cortical surface. An
additional period of 30 min to 1 h was allowed to pass before recording began.
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For each animal, the electrode was inserted no more than twice. Microelectrode
and stimulus synchronization data were acquired using an Intan Technologies
RHD2000Series.
Single-neuron analysis. Single units in earlier experiments were identified
using MountainSort (74), or in later experiments Kilosort 3 (75), in both cases
followed by manual curation. For a few experiments in which the raw data that
had been sorted with Mountainsort were later sorted with Kilosort, Kilosort found
more than 90% of the same units plus 10 to 60% of additional well-isolated
units. Data from 323 units from five experiments in three mice of the (8) report
were combined with data from 317 units from 12 experiments in 12 mice to
create the dataset used in the present report. Individual neurons were classified
into broad spiking (putative excitatory) or narrow spiking (putative inhibitory)
based on their extracellular spike waveform (ref. 76).
Cortical layer. The cortical layer containing each isolated unit was determined
using current source density (CSD) analysis on data collected during presenta-
tions of contrast-reversing square checkerboard. Briefly, extracellular voltages
sampled at 20 kHz are bandpass filtered between 1 and 300 Hz to obtain
local field potentials (LFPs) and then averaged across all 1 s positive-phase
presentations of the checkerboard. Second spatial derivative of the average
LFP traces along the length of the silicon probe provides us with the profile of
CSD. The borders between layers 2/3 to 4, 4 to 5, and 5 to 6 are identified by
spatiotemporal patterns of sinks and sources in the CSD plot (for example see
figure 1C of ref. 77).

Stimulus Ensemble. To characterize neural responses with single-unit record-
ings, we presented interleaved drifting square-wave grating stimuli and flow
stimuli moving in eight directions at a temporal frequency of 4 cycle/s and
50% contrast, with a trial duration of 1.25 s. Spatial frequencies used for
gratings included 0.04, 0.15, 0.24, and 0.5 cycle/deg. As in ref. 8, we used

flow stimuli with two different geometries. The first were nonoriented single-dot
flows, and the other were oriented flow elements with three collinear dots.
Both oriented and nonoriented variations had one version with positive contrast
(white dots against a gray background), and another with negative contrast
(black dots against a gray background). Dominant spatial frequency contents of
0.15, 0.24, and 0.5 cycle/deg were used, corresponding to the following dot
diameters, in degrees of visual angle (respectively, approximate dot spacings,
in multiples of diameter): 2.1 (2), 2 (1), 1 (1) for single dots; for 3-dot flows,
diameter was divided by

√
3 to preserve the total area of each flow element.

Because the flow stimuli were stochastic (in position and velocity), we presented
at least three different instances of each variation, which were repeated to
account for the desired number of total trials (at least 10 for the retina, and
20 for V1).

Data, Materials, and Software Availability. See supporting information,
Materials and Methods for additional methods. Code for methods described
in this paper and data used in this study are available at https://github.com/
dyballa/NeuralEncodingManifolds (78).
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