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We present a measurement of the decay amplitudes in B ! J�cK��892� channels using 20.7 fb21

of data collected at the Y�4S� resonance with the BABAR detector at PEP-II. We measure a P-wave
fraction R� � �16.0 6 3.2 6 1.4�% and a longitudinal polarization fraction �59.7 6 2.8 6 2.4�%. The
measurement of a relative phase that is neither 0 nor p , fk � 2.50 6 0.20 6 0.08 radians, favors a
departure from the factorization hypothesis. Although the decay B ! J�cKp proceeds mainly via
K��892�, there is also evidence for K�

2 �1430� and Kp S-wave contributions.

DOI: 10.1103/PhysRevLett.87.241801 PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh
241801-3 241801-3



VOLUME 87, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 10 DECEMBER 2001
The decay B0 ! J�cK�0 with K�0 ! K0
s p0 allows a

measurement of the CP violation parameter sin2b that is
theoretically as clean as for B0 ! J�cK0

s [1]. However,
due to the presence of even �L � 0, 2� and odd �L � 1�
orbital angular momenta in the J�cK� system, there can
be CP-even and CP-odd contributions to the decay rate. If
the information contained in the decay angles is ignored,
the measured time-dependent CP asymmetry is reduced
by the dilution factor D� � 1 2 2R�, where R� is the
fraction of the P-wave. If the angular information is used,
the CP components can be separated [2].

The angular analysis also provides a test of the factor-
ization hypothesis, the validity of which is in question for
color-suppressed modes [3,4]. In this scheme, the weak de-
cay is described by a product of J�c and B ! K� hadronic
currents, and final state interactions are neglected. If fac-
torization holds, the decay amplitudes should have relative
phase 0 or p.

The decay B ! J�cK��892� is described by three am-
plitudes. In the transversity basis [2,5] used by CLEO [6]
and CDF [7], the amplitudes Ak, A0, and A� have CP
eigenvalues 11, 11, and 21, respectively. A0 corresponds
to longitudinal polarization, and Ak and A�, respectively,
to parallel and perpendicular transverse polarizations of the
vector mesons; R� is defined as jA�j

2. For a DI � 0
transition, all K� ! Kp channels involve the same am-
plitudes, and so the data for different decay modes can
be combined.

The transversity frame is defined in the J�c rest frame.
The K� direction defines the negative x axis. The Kp

decay plane defines the �x, y� plane, with y such that
py �K� . 0. The z axis is the normal to this plane, and the
coordinate system is right handed. The transversity angles
utr and ftr are defined as the polar and azimuthal angles
of the positive lepton from the J�c decay; uK� is the K�

helicity angle defined as the angle between the K direction
and the direction opposite the J�c in the K� rest frame.
The normalized angular distribution g�cosutr, cosuK� , ftr�
is

g �
1
G

d3G

d cosutr d cosuK� dftr

� f1jA0j
2 1 f2jAkj

2 1 f3jA�j
2

1 f4Im�A�
kA�� 1 f5Re�A�

0Ak� 1 f6Im�A�
0A�� ,

(1)
with

f1 � �9�32p� 3 2 cos2uK��1 2 sin2utr cos2 ftr� ,

f2 � �9�32p� 3 sin2uK� �1 2 sin2utr sin2 ftr� ,

f3 � �9�32p� 3 sin2uK� sin2 utr ,

f4 � �9�32p� 3 sin2 uK� sin2utr sinftr ? z ,

f5 � 2�9�32p� 3 �1�
p

2� sin2uK� sin2utr sin 2ftr ,

f6 � �9�32p� 3 �1�
p

2� sin2uK� sin 2utr cos ftr ? z .
(2)
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When the final state is not a CP eigenstate, z is 11
for B1 and B0, and 21 for B2 and B

0. For the CP
mode K0

Sp0, z �B0� � 2z �B0� � 1��1 1 x2
d�, where

xd � DmBd �GBd � 0.73; however, since flavor is not
determined in the present analysis, z averages to zero for
this mode. We define the relative phases of the amplitudes
as f� � arg�A��A0� and fk � arg�Ak�A0�.

In this Letter, we present a measurement of the
decay amplitudes in the decays B0 ! J�cK�0 and
B1 ! J�cK�1, where the K�0 and K�1 are recon-
structed in the modes K0

Sp0, K1p2 and K0
Sp1, K1p0,

respectively [8]; only J�c decays to e1e2 and m1m2

are considered. The data sample corresponds to 20.7 fb21

collected at the Y�4S� in 1999–2000 with the BABAR
detector at the PEP-II asymmetric B factory, and contains
�22.7 3 106 B meson pairs.

The BABAR detector is described elsewhere [9].
Charged particle track parameters are obtained from
measurements in a 5-layer double-sided silicon vertex
tracker and a 40-layer drift chamber located in a 1.5 T
magnetic field; both devices provide dE�dx information.
Additional charged particle identification (PID) informa-
tion is obtained from a detector of internally reflected
Cherenkov (DIRC) light consisting of quartz bars that
carry the light to a volume filled with water, and equipped
with 10 752 photomultiplier tubes. Electromagnetic show-
ers are measured in a calorimeter (EMC) consisting of
6580 CsI(Tl) crystals. An instrumented flux return (IFR),
containing multiple layers of resistive plate chambers,
provides m identification.

Electrons are identified by requiring that shower shape
and energy deposition in the EMC be compatible with
those expected for an electron of the measured momentum;
dE�dx measurements must also be compatible with the
electron hypothesis. Muon candidates must penetrate at
least two interaction lengths in the detector, and generate
a small number of hits per layer in the IFR. If a muon
candidate traverses the EMC, its energy deposition must
be consistent with that of a minimum ionizing particle.
Kaon candidates must survive a pion veto based on DIRC
and dE�dx information.

Charged tracks are required to be in regions of polar
angle for which the PID efficiency is well measured. For
electrons, muons, and kaons the acceptable ranges are 0.41
to 2.41 rad, 0.3 to 2.7 rad, and 0.45 to 2.5 rad, respectively.
J�c candidates consist of a pair of identified leptons that
form a good vertex. The lepton pair invariant mass must
be between 3.06 and 3.14 GeV�c2 for muons and 2.95
and 3.14 GeV�c2 for electrons. This corresponds to a
63s interval for muons, and accounts for the radiative
tail due to bremsstrahlung for electrons. K0

S candidates
consist of vertexed pairs of oppositely charged tracks with
invariant mass between 489 and 507 MeV�c2. In the plane
perpendicular to the beam line, the K0

S flight length must
be greater than 1 mm, and its direction must form an angle
with the K0

S momentum vector in this plane that is less
241801-4
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FIG. 1. Beam-energy substituted mass spectra for the four Kp
modes. The curves are from fits using the G�mES� and F�mES�
functions described in the text.

than 0.2 rad. A photon is defined as a neutral cluster of
energy greater than 30 MeV in the EMC that agrees in
lateral shower shape with an electromagnetic shower. A
p0 candidate consists of a pair of photons with invariant
mass in the interval 106–153 MeV�c2. The J�c, K0

S , and
p0 are constrained to the corresponding nominal masses
[10]. K� candidates must have Kp invariant mass within
100 MeV�c2 of the nominal K��892� mass [10].

B mesons are formed from J�c and K� candidates. For
B ! J�c�Kp0��, cosuK� is required to be smaller than
0.667. This reduces the cross feed (CF) from J�c�Kp6��

modes, where the p6 is lost, and the self-cross feed (SCF)
due to a wrongly reconstructed p0. The (S)CF is the most
important background source since it tends to peak in the
signal region.

The signal region is defined using two variables. The
first is the difference DE � E�

B 2 E�
beam between the can-

didate B energy and the beam energy, in the Y�4S� rest
frame. The second is the beam-energy substituted mass
mES � �E2

exp 2 �p2
B�1�2 where, in the laboratory frame,

Eexp � �s�2 1 �pB. �pi��Ei is the B candidate expected en-
ergy, �pB is its measured momentum, and �Ei , �pi� is the
e1e2 initial-state four-momentum.

p
s is the center of

mass energy. For the signal region, DE is required to be
between 270 and 150 MeV for channels involving a p0,
241801-5
TABLE I. Fitted parameter values for the individual Kp modes. The uncertainties are statis-
tical only.

Quantity K0
Sp0 K1p2 K0

Sp1 K1p0

jA0j
2 0.65 6 0.13 0.60 6 0.04 0.58 6 0.07 0.55 6 0.06

jA�j
2 0.07 6 0.11 0.17 6 0.05 0.17 6 0.05 0.15 6 0.08

jAkj
2 0.28 6 0.14 0.23 6 0.05 0.25 6 0.07 0.30 6 0.08

f� �rad� · · · 20.1 6 0.2 0.0 6 0.3 20.4 6 0.4
fk �rad� 2.1 6 0.7 2.5 6 0.3 2.8 6 0.4 2.6 6 0.5
and within 630 MeV otherwise. If several B candidates
are found in an event, the one having the smallest jDEj is
retained. The corresponding mES distributions are shown
in Fig. 1.

With the signal region defined by mES . 5.27 GeV�c2

and the above DE ranges, the B reconstruction efficiencies
are 9.9%, 23.9%, 17.2%, and 13.8% for the K0

Sp0, K1p2,
K0

Sp1, and K1p0 modes, respectively, with correspond-
ing total yields of 43, 547, 135, and 216 events. The CF
(SCF) contamination levels, obtained from a full simula-
tion of the BABAR detector, are 9.9�15.8�%, 1.2�2.4�%,
2.4�3.0�%, and 8.1�15.7�% of the pure signal, respectively.

The fit maximizes an unbinned likelihood that uses a
probability density function (pdf) that depends on angular
and mES information. From the observed mES value, a
signal probability is computed with a Gaussian G�mES� to
describe the signal and a phase-space background function
[11] F�mES�.

The pdf gobs � g� �vj� ? e� �vj���e� is used to describe
signal events; �vj represents the angular variables
cosutr, cosuK� , ftr for event j, and e� �vj� is the efficiency
at �vj . Rewriting Eq. (1) as g �

P6
i�1 fiAi , where the

Ai �i � 1, . . . , 6� represent jA0j
2, jAkj

2, jA�j
2,

Im�A�
kA��, Re�A�

0Ak�, and Im�A�
0A��, the mean effi-

ciency is �e� �
R

ge d �v �
P6

i�1 Aiji, where the ji �R
fie d �v are constants. The signal part of the log

likelihood, lnLsignal �
PNobs

j�1 ln�gobs� �vj��, where Nobs

is the number of observed events, becomes lnLsignal �PNobs

j�1 ln�g� �vj �� 1
PNobs

j�1 ln�e� �vj�� 2 Nobs ln�
P6

i�1 Aiji�.
Since the e� �vj� are constants, the second term can be dis-
carded. Only the coefficients ji are required, and detailed
representation of the acceptance is unnecessary [12].

The coefficients ji are evaluated with a Monte Carlo
simulation. Separate sets of ji are used for each channel,
and for � � e, m. The values of ji �i � 1, 2, 3� are close
to that of �e�; j1 is always smallest, especially in channels
involving a p0, because of the requirement on cosuK� .
The values of ji �i � 4, 5, 6�, which are related to the
interference terms, are compatible with zero.

The angular dependence of combinatorial background
events, gobs

B , is described by a pdf similar to that in Eq. (1)
with amplitudes Bi , i � 0, k, �, and corresponding
terms Bi�i � 1, . . . , 6�.

The angular distribution of the (S)CF background is am-
plitude dependent. We correct for the effect of this back-
ground by evaluating the modified values j̃i of the ji by
241801-5
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TABLE II. Fitted parameter values for the combined data
samples. The first uncertainty is statistical, and the second is
systematic. Note that �f�, fk� ! �p 2 f�, 2fk� is also a
solution.

Quantity Value

jA0j
2 0.597 6 0.028 6 0.024

jA�j
2 0.160 6 0.032 6 0.014

jAkj
2 0.243 6 0.034 6 0.017

f� �rad� 20.17 6 0.16 6 0.07
fk �rad� 2.50 6 0.20 6 0.08

including the (S)CF events, in the mES signal region, in
addition to the signal [12]. In contrast to the ji , the j̃i

depend on the amplitudes used in the simulation, but the
maximum effect on the fitted amplitudes is found to be on
the order of 1023. The complete log likelihood is

lnL �
NobsX
j�1

ln�xG�mESj �g� �vj�

1 �1 2 x�F�mESj �gB � �vj��

2 Nobs ln

µ 6X
i�1

j̃i�xAi 1 �1 2 x�Bi�
∂

2 N ,

where x is the fraction of signal integrated over the mES

range 5.2 5.3 GeV�c2. The normalization of g and gB is
relaxed in an extended likelihood approach [13], with con-
vergence to the required condition a2 � jA0j

2 1 jAkj
2 1

jA�j
2 � 1 imposed through the additional term N �

Nobsa2 while jB0j
2 1 jBkj

2 1 jB�j
2 � a2 holds by con-

struction. The fit parameters are the mean and width of
G�mES�; the shape parameter of F�mES�; the fraction x;
the signal amplitudes and phases jAkj

2, jA0j
2, jA�j

2, f�,
and fk; and the corresponding background amplitudes
and phases.

The agreement among the results for the individual
decay channels is shown in Table I, while the fit result
for the combined sample is summarized in Table II.
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FIG. 2. The angular distributions for the channels without (top)
and with (bottom) a p0 for mES . 5.27 GeV�c2. The data
have been background subtracted and acceptance corrected. The
curves correspond to the fit.
241801-6
TABLE III. Systematic uncertainties described in the text.

jA0j
2 jA�j

2 jAkj
2 f� fk

Simulation stat. 0.006 0.006 0.007 0.04 0.06
Backgrounds 0.002 0.005 0.006 0.06 0.05
Tracking and PID 0.002 0.006 0.004 0.00 0.02
Kp S-wave 0.023 0.010 0.014 0.02 0.02

Total 0.024 0.014 0.017 0.07 0.08

A partial representation of the fit is given by the one-
dimensional projections of the angular distribution in
Fig. 2. As a check of the fit quality, fits were performed
to Monte Carlo samples with the angular distribution and
number of events observed in the data. The maximum
likelihood in the data is 1.35 standard deviations below the
mean obtained from the Monte Carlo fits. The probability
of obtaining a lower likelihood is 8.8%.

Systematic uncertainties are detailed in Table III. Lim-
ited simulation statistics (32 000 events per mode) give rise
to a systematic uncertainty in the acceptance and (S)CF
corrections (first row). Monte Carlo simulation has been
used to estimate uncertainties due to the assumed form
for the mES angular distributions of the background (sec-
ond row). In particular, this accounts for any possible ab-
sorption of the S(CF) background by the F�mES� function.
The differences between simulated tracking and PID effi-
ciencies and measurements obtained with control samples
in the data lead to systematic uncertainties (third row)
through their impact on acceptance corrections.

The Kp S-wave systematic uncertainty (fourth row) is
obtained as follows. Although the Kp mass distribution
for B ! J�cKp is dominated by the K��892� [Fig. 3(a)],
a significant number of candidates are at higher mass with
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FIG. 3. (a) The background-subtracted Kp mass distribution
for the K1p2 channel. The fit is to Breit-Wigner line shapes
having nominal K��892� and K�

2 �1430� parameters [10] and
a second-order polynomial (dotted line). (b) Enlargement of
the 1 1.6 GeV�c2 region of (a); the dashed curve denotes the
sum of the Breit-Wigner contributions. (c) The background-
subtracted J�c helicity cosine distribution for events with
1.1 , m�K1p2� , 1.3 GeV�c2; the curve represents the fit of
a sin2�uJ�c � distribution to the data.
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TABLE IV. Comparison with other experiments. Statistical and systematic uncertainties are
added in quadrature.

jA0j
2 jA�j

2 f� fk

CLEO [6] 0.52 6 0.08 0.16 6 0.09 20.11 6 0.46 3.00 6 0.37
CDF [7] 0.59 6 0.06 0.1310.13

20.11 20.56 6 0.54 2.16 6 0.47

BABAR 0.60 6 0.04 0.16 6 0.03 20.17 6 0.17 2.50 6 0.22
a clear peak at �1.4 GeV�c2. The states in this region that
couple strongly to Kp are the K�

0 �1430� and the K�
2 �1430�

[10]. Since it has width �300 MeV�c2, the K�
0 �1430�

alone would yield significantly more events above and be-
low the peak than are observed. The K�

2 �1430� alone de-
scribes the high mass region but, when combined with the
K��892� tail, yields too few events in the 1.1 1.3 GeV�c2

range [Fig. 3(b)]. This suggests a significant S-wave con-
tribution, in which case the recoil J�c has a helicity
angle distribution � sin2�uJ�c �. The observed behavior
[Fig. 3(c)] agrees with this conjecture. This, together with
the absence of the S-wave above 1.5 GeV�c2, is consis-
tent with the mass dependence of the S-wave Kp scat-
tering amplitude [14]. If the Kp S-wave in B decay
behaves like this, a coherent S-wave amplitude should also
be present in the K��892� region; S-P interference should
occur, which, if ignored, can affect the P-wave amplitudes
extracted from the data.

The effect of the S-wave in the K��892� region has been
estimated by including a scalar term in the total ampli-
tude. This yields a more complicated angular distribu-
tion gS, with ten fi functions. A fit of gS to the data
in the 1.1 1.3 GeV�c2 region yields an S-wave fraction
of �62 6 9�%, in agreement with the failure of a P- and
D-wave fit to describe the mass spectrum. By repeating
the analysis using gS , we find the S-wave contribution in
the K��892� region to be �1.2 6 0.7�%. The differences
in the P-wave results with and without S-wave are taken
as estimates of systematic uncertainty (Table III, fourth
row) since, with the present statistics, the presence of the
S-wave in the K��892� region cannot be confirmed.

Table IV compares our results to those of CLEO [6] and
CDF [7]. They are consistent, but the present measurement
is significantly more precise. Longitudinal polarization is
seen to dominate and the P-wave intensity is small. If
sin2b were measured in the B ! J�cK0

Sp0 channel from
the decay-time information only, the value of the dilution
from the present measurement, D� � 0.68 6 0.07, would
contribute a 10% uncertainty.

Finally, we find that jfkj differs significantly from p.
This agrees with the CDF measurement, and indicates a
departure from the factorization of the hadronic currents.
In addition, there is evidence that S- and D-wave ampli-
tude contributions are necessary for a description of the
Kp mass spectrum from B ! J�cKp decay.
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