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Berkeley, CA 94720-3140, U.S.A. jgschraiber@berkeley.edu
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Department of Statistics, 1 South Parks Road, Oxford OX1 3TG, U.K. griff@stats.ox.ac.uk

Steven N. Evans
Department of Statistics, University of California, 367 Evans Hall #3860, Berkeley, CA
94720-3860, U.S.A. evans@stat.berkeley.edu

Abstract
We investigate the properties of a Wright-Fisher diffusion process started from frequency x at time
0 and conditioned to be at frequency y at time T. Such a process is called a bridge. Bridges arise
naturally in the analysis of selection acting on standing variation and in the inference of selection
from allele frequency time series. We establish a number of results about the distribution of
neutral Wright-Fisher bridges and develop a novel rejection sampling scheme for bridges under
selection that we use to study their behavior.

1. Introduction
The Wright-Fisher Markov chain is of central importance in population genetics and has
contributed greatly to the understanding of the patterns of genetic variation seen in natural
populations. Much recent work has focused on developing sampling theory for neutral sites
linked to sites under selection (Smith and Haigh, 1974; Kaplan et al., 1989; Nielsen et al.,
2005; Etheridge et al., 2006). Typically, the site under selection is assumed to have
dynamics governed by the diffusion process limit of the Wright-Fisher chain, in which case
the genealogy of linked neutral sites can be constructed using the framework of Hudson and
Kaplan (1988). However, due to the complicated nature of this model, analytical theory is
necessarily approximate and the main focus is on simulation methods. In particular, a
number of simulation programs, including mbs (Teshima and Innan, 2009) and msms
(Ewing and Hermisson, 2010) have recently appeared to help facilitate the simulation of
neutral genealogies linked to sites undergoing a Wright-Fisher diffusion with selection.

Simulations of Wright-Fisher paths under selection can be easily carried out using standard
techniques for simulating diffusions. Frequently, however, it is necessary to simulate a
Wright-Fisher path conditioned on some particular outcome. For example, to simulate the
path of an allele under selection that is currently at frequency x, a time-reversal argument
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shows that it is possible to simulate a path starting at x conditioned to hit 0 eventually
(Maruyama, 1974). However, more complicated scenarios, including the action of natural
selection on standing genetic variation, require more elaborate simulation methods (Peter et
al., 2012).

The stochastic process describing an allele that starts at frequency x at time 0 and is
conditioned to end at frequency y at time T is called a bridge between x and y in time T or a
bridge between x and y over the time interval [0, T]. Wright-Fisher diffusion bridges appear
naturally in the study of selection acting on standing variation because it is necessary to
know the path taken by an allele at current frequency y that fell under the influence of
natural selection at a time T generations in the past when it was segregating neutrally at
frequency x. Wright-Fisher diffusion bridges are also of interest for their application to
inference of selection from allele frequency time series (Bollback et al., 2008; Malaspinas et
al., 2012; Mathieson and McVean, 2013; Feder et al., 2013). In particular, analysis of
bridges can help determine the extent to which more signal is gained by adding further
intermediate time points.

In addition to their applied interest, there are interesting theoretical questions surrounding
Wright-Fisher diffusion bridges. For alleles conditioned to eventually fix, Maruyama (1974)
showed that the distribution of the trajectory does not depend on the sign of the selection
coefficient; that is, both positively and negatively selected alleles with the same absolute
value of the selection coefficient exhibit the same dynamics conditioned on eventual
fixation. It is natural to inquire whether the analogous result holds for a bridge between any
two interior points. Moreover, the degree to which a Wright-Fisher bridge with selection
will differ from a Wright-Fisher bridge under neutrality is not known (in connection with
this question, we recall the well-known fact that the distribution of a bridge for a Brownian
motion with drift does not depend on the drift parameter, and so it is conceivable that the
presence of selection has little or no effect on the behavior of Wright-Fisher bridges). Lastly,
the characteristics of the sample paths of the frequency of alleles destined to be lost in a
fixed amount of time are not only interesting theoretically but may also have applications to
geographically structured populations (Slatkin and Excoffier, 2012).

Here we investigate various features of Wright-Fisher diffusion bridges. The paper is
structured as follows. First, we establish analytical results for neutral Wright-Fisher bridges.
Then, we derive a novel rejection sampler for Wright-Fisher bridges with selection and use
it to study the properties of such processes. For example, we estimate the distribution of the
maximum of a bridge from 0 to 0 under selection and investigate how this distribution
depends on the strength of selection.

2. Background
A Wright-Fisher diffusion with genic selection is a diffusion process {Xt, t ≥ 0} with state
space [0, 1] and infinitesimal generator

(2.1)

When γ = 0, the diffusion is said to be neutral; otherwise, the drift term captures the strength
and direction of natural selection.

The corresponding Wright-Fisher diffusion bridge,  is the stochastic
process that results from conditioning the Wright-Fisher diffusion to start with value x at
time 0 and end with value z at time T. Denote by f(x, y; t) the transition density of the
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diffusion corresponding to (2.1). By the Markov property of the Wright-Fisher diffusion, the
bridge is a time-inhomogeneous diffusion and the transition density for the bridge going
from state u at time s to state v at time t is

(2.2)

The time-inhomogeneous infinitesimal generator of the bridge acting on a test function g at
time s is

(2.3)

An obvious method for simulating a Wright-Fisher bridge would be to simulate the
stochastic differential equation (SDE) corresponding to this infinitesimal generator. There
are two obstacles to this approach. Firstly, analytic expressions for the transition density f
are only known for the neutral case, and even there they are in the form of infinite series.
Secondly, note that the first order coefficient in the infinitesimal generator becomes
increasing singular as s ↑ T; consequently, an attempt to simulate the bridge by simulating
the SDE would be quite unstable because the drift term in the SDE would explode at times
close to the terminal time T. It is because this naive approach is infeasible that we need to
consider the more sophisticated simulation methods explored in this paper.

In addition to conditioning the process to obtain a particular value at a particular time, it is
possible to condition a process’s long term behavior. The transition densities of the
conditioned process, fh(x, y; t) are related to to the transition densities of the unconditioned
process by the usual Doob h-transform formula,

The h-transformed process has infinitesimal generator

(2.4)

Note that the finite dimensional marginal distribution at times 0 ≤ t1 ≤ … ≤ tn ≤ T of the
Wright-Fisher diffusion bridge starting at x at time 0 and ending at y at time T has density
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whereas the analogous density for the corresponding bridge of the h-transformed process is

Thus, the the bridges for the two processes have the same distribution.

Typical h-transforms include the conditioning a process to eventually hit a particular value,
and for the sake of future reference we recall from standard diffusion theory (Rogers and
Williams, 2000) that the probability that the Wright-Fisher diffusion started from x
eventually hits y is

(2.5)

where S is the scale function given by

Thus,

(2.6)

when γ ≠ 0

(2.7)

3. Analytic theory for neutral bridges
3.1. Transition densities for the neutral Wright-Fisher diffusion

When there is no natural selection (i.e., γ = 0), the transition densities of the Wright-Fisher
diffusion can be expressed

(3.1)
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where the ql(t) are the transition functions of a death process starting at infinity with death

rate  when n individuals are left alive and β(·; α, β) is the density of the Beta
distribution with parameters α and β (Ethier and Griffiths, 1993). That is, ql(t) is the
probability that a Kingman coalescent tree with infinitely many leaves at time 0 has l
lineages present t units of time in the past. In the Appendix we present a related pair of
eigenfunction expansions of the transition density.

Let  be a sequence of independent exponential random variables with rates

. We think of Tj as the length of time in a Kingman coalescent tree when j

lineages are present. Thus,  is the time to l – 1 lineages being present. Write hl(t) for
the density of this sum. The Laplace transform of hl is

(3.2)

Because

we see that

(3.3)

Thus, the Laplace transform of f(x, y; ·) is

(3.4)

To construct bridges with 0 as their initial or final points, we need to consider the behavior
of the transition density f(x, y; t) as x ↓ 0. Discarding terms that are O(x2), (3.4) is
asymptotic to

(3.5)

Note that

(3.6)

is the Laplace transform of the density of
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(3.7)

where N - 2 is distributed as the number of failures before the first success in a sequence of
i.i.d. Bernoulli trials with success probability y.

3.2. Bridge from 0 to 0 over
[0, T]. For x, y ∉ {0, 1}, it follows from (2.2) that the density of Xt given that X0 = x and XT
= z is

(3.8)

In the second line of (3.8) we used reversibility (before hitting 0 or 1) with respect to the
speed measure z−1(1 - z)−1. From (3.4) we know the asymptotic form of (3.8). The limit of

as x ↓ 0 is

(3.9)

If z ↓ 0 as well, then the limit is

(3.10)

Therefore,

(3.11)

The density hl is given by

(3.12)

where a(b) := a(a + 1) ⋯ (a + b − 1). In addition, an eigenfunction expansion of the
transition density in the Appendix shows that

(3.13)
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It is clear from the above that the random variable  has the same distribution as

 for 0 ≤ t ≤ T, and an elaboration of this argument using (2.2) to compute the finite
dimensional distributions of the process X0,0,[0,T] shows the following invariance under
time-reversal

where  denotes equality in distribution.

As T → ∞, the density of  for a fixed t > 0 converges to

(3.14)

By a similar calculation, we find that, centering around T/2, the limiting density of XT/2+t for
−T/2 < t < T/2 fixed is just 6y(1 - y), independent of t.

Moreover, from (2.2) we see that the transition densities of  satisfy

(3.15)

For fixed 0 < s < t, this transition density converges to

(3.16)

the transition density of the neutral Wright-Fisher diffusion conditioned on non-absorption,
a process with infinitesimal generator

(3.17)

For fixed −∞ < s < t < ∞, the transition density f0,0,[0,T](u, v; T/2 + s, T/2 + t) converges as
T → ∞ to the same limit, and so the finite-dimensional distributions of the process

 converge to those of the stationary Markov process indexed by
the whole real line that is obtained by taking the neutral Wright-Fisher diffusion conditioned
on non-absorption in equilibrium.

3.3. Bridge from x to 0 over [0, T]
The density of Xt given that X0 = x and XT = 0 is

(3.18)
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The derivation of (3.18) is similar to that of (3.11). Note from (2.3) that Xx,0,[0,T] is a time
inhomogeneous diffusion with time inhomogeneous infinitesimal generator

(3.19)

The transition densities of Xx,0,[0,T] are the same as those of X0,0,[0,T], and so they converge
as T → ∞ to those of the neutral Wright-Fisher diffusion conditioned on non-absorption. As
one would expect, the first order coefficient in (3.19) converges as T → ∞ to (1 – 2y), the
first order coefficient in the infinitesimal generator of the neutral Wright-Fisher diffusion
conditioned on non-absorption.

3.4. First passage time distribution
To determine the density of the maximum in a Wright-Fisher diffusion bridge, we will
require the first passage time densities of the Wright-Fisher diffusion. Let g(·; x, y) be the
first passage time density from x to y. Note that because the Wright-Fisher diffusion starting
at x may be absorbed before hitting y, the density g(·; x, y) is improper; that is,

Taking the Laplace transform of the identity

we see that the Laplace transform of g(·; x, y) is

(3.20)

Although the Laplace transform (3.20) is easy to evaluate, it appears to be difficult to invert
it explicitly because of the denominator.

To gain more insight into first passage times, we consider moments of the first passage time
from x to y conditioned on hitting y. By (2.7), the first passage time distribution, conditioned
on hitting y, has Laplace transform

Combined with (3.20), the limit of this Laplace transform as x ↓ 0 is

(3.21)

It follows that
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(3.22)

exists and gives the density of the limit as x ↓ 0 of the first passage time from x to y
conditional on y being hit. For later use, we record the definition

(3.23)

We can now use (3.21) to calculate the mean first passage time from 0 to y conditioned on
hitting y. The transition density satisfies the backward equation

Take y > x, multiply by t, integrate from 0 to ∞, and use integration-by-parts to get

(3.24)

Set

Use the fact that  to rewrite (3.24) as

This ordinary differential equation has the general solution

(3.25)

Differentiating (3.5) and sending λ ↓ 0, we find that asymptotically as x ↓ 0,

Thus,

for small x, and hence
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(3.26)

To find the mean first passage time from 0 to y conditional on y being hit (or, more
correctly, the mean of the limit as x ↓ 0 of the first passage time from x to y conditional on y
being hit), differentiate (3.21), set λ = 0, and recall that f*(y, y, 0) = 2 to get

(3.27)

Note that this mean increases monotonically from 0 to 2 as y goes from 0 to 1.

3.5. Joint density of a maximum and time to hitting in a bridge
For the class of diffusions with inaccessible boundaries, Csáki et al. (1987) studied the joint
density of a maximum and it’s hitting time. This theory is not directly applicable to the
Wright-Fisher diffusion because of the absorbing boundaries. However, we may condition
the Wright-Fisher process to not be absorbed, thereby making the boundaries inaccessible.
By an argument similar to that made in Section 2 for h-transforms, the bridges of this
process are the same as the bridges of the unconditioned process. The transition density, f̃(x,
y; t) and infinitesimal generator, ℒ̃ of the conditioned process are given in (3.16) and (3.17),
respectively. We will also need the first passage time density for the conditioned process,

along with its scale density,

and speed density

Applying the formula in Theorem A of Csáki et al. (1987), we find that the joint density of
the maximum and time of hitting for an arbitrary bridge from x to z in time T is

Taking limits as x, z ↓ 0, we see that joint density for a bridge from 0 to 0 is
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3.6. Maximum in a bridge

Let Mx,z,[0,T] be the maximum of the bridge , where 0 ≤ x, z ≤ 1.

The occurrence of the event {Mx,z,[0,T] ≥ y} is equivalent to the Wright-Fisher diffusion
making a first passage from x to y at some time t ∈ [0, T] and then going on to hit z at time
T. Recalling that g(·; x, y) is the density of the first passage from x to y, for 0 < x, z < 1 we
have

(3.28)

We wish to obtain an expression for ℙ{M0,0,[0,T] ≥ y}. Multiply the numerator and
denominator of the right-hand side of (3.28) by x−1, re-write the numerator using the
relationship

that follows from the reversibility of the neutral Wright-Fisher process with respect to the
speed measure y−1(1 – y)−1 dy, and x, y ↓ 0 to get

where g◇ was defined in (3.23) and the sequence of polynomials  are defined in the
Appendix.

The Laplace transform of t ↦ g#(t; y) = yg◇(t; y) is given by (3.21). Although the numerator
and denominator of (3.21) can be computed accurately using the orthogonal function
expansion, however there is not a simple way to invert the Laplace transform of the first
passage time.

If we write the Laplace transform of g # (t; y)

(3.29)

we see that the numerator and denominator are both Laplace transforms of probability
distributions because Green function of the neutral Wright-Fisher diffusion is given by

Equation (3.29) can be rewritten as
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which implies the convolution equation

(3.30)

The easiest way to solve this equation numerically is by discretization. Take ε > 0 and
positive integer K. Let Pε, K and Qε, K be the discrete probability distributions on the set {0,
ε, 2ε, …} given by

and

Note that the quantities  can be computed accurately using orthogonal function
expansions.

Equation (3.30) implies that if Rε,K is the probability distribution on the set {0, ε, 2ε, …}
given by

then Pε,K should be approximately the convolution Qε,K * Rε,K. That is, Pε,K ({kε}) should
be approximately ck for 0 ≤ k ≤ K, where c0, …, cK is the solution of the system of equations

Therefore, c0 = a0/b0 and we obtain c1, …, cK recursively by
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(3.31)

Thus,

(3.32)

where

3.7. Numerical calculations
The infinite series in (3.32) was approximated using the first 3000 terms. The step size in the
discrete first passage time approximation was taken to be ε = 0.001 and the number of points
was taken to be K = 5000.

Distribution function of the maximum in a bridge M.

T 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.5 0.0 0.02 0.17 0.43 0.66 0.83 0.92 0.96 0.99 0.99

1.0 0.0 0.02 0.09 0.21 0.36 0.52 0.66 0.77

1.5 0.0 0.01 0.03 0.08 0.17 0.28 0.40

2.0 0.0 0.02 0.04 0.09 0.17

T 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.0

0.5 1.0

1.0 0.85 0.91 0.95 0.97 0.99 0.99 1.0

1.5 0.52 0.63 0.73 0.82 0.88 0.93 0.96 0.99 1.0

2.0 0.26 0.37 0.48 0.59 0.70 0.97 0.87 0.93 0.97 1.0

T 0.01 0.02 0.03 0.04 0.05 0.06

0.1 0.00 0.01 0.14 0.37 0.59 0.76

T 0.07 0.08 0.09 0.10 0.11 0.12

0.1 0.86 0.93 0.96 0.98 0.99 1.0

The distribution function behaves as expected. If T is 0.1 the maximum is very small, with
the distribution function shown in a separate table with a small scale. M is less than 0.06
with probability 0.76 and less than 0.12 with probability 1.0. If T =0.5 the maximum is still
small, but larger than when T = 0.1, with a probability of 0.17 of being greater than 0.3 and a
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probability of 1.0 of being less than 0.55. If T = 1.0, 1.5, 2.0 the maximum is increasingly
larger with respective probabilities of exceeding 0.5 of 0.23, 0.60, 0.83 and when T = 2 the
probability of exceeding 0.75 is 0.30. Recall that the mean to coalescence of a population to
a single ancestor is 2 time units.

4. Rejection sampling Wright-Fisher bridge paths
4.1. General framework

When selection is incorporated into the Wright-Fisher model, there is no known series
formula for the transition density akin to (3.1) (but see Kimura (1955) and Kimura (1957)
for attempts using perturbation theory, as well as Song and Steinrücken (2012) and
Steinrücken et al. (2012) for methods of approximating an eigenfunction expansion
computationally). Therefore, analytical results for distributions associated with the
corresponding bridge like those we obtained in the neutral case are not available. Instead, we
develop a rejection sampling method that can sample paths of Wright-Fisher diffusion
bridges with genic selection efficiently for the purpose of investigating their properties. In
this work, we focus on a diffusion with genic selection, instead of general diploid selection,
for analytical convenience. The following approach would apply even in the more general
case.

Before we explain how rejection sampling can be used to sample paths of a Wright-Fisher
bridge, we first describe the analogous, but simpler, method for sampling paths of diffusion
bridges that have distributions which are absolutely continuous with respect to that of a
Brownian bridge. Fix x, z ∈ ℝ and T > 0. Let be the distribution of Brownian bridge from
x to z over the time interval [0, T], and let ℙ be the distribution of the path of a bridge from x
to z over the time interval [0, T] for a diffusion with infinitesimal generator

(4.1)

It follows from Girsanov’s theorem (see, for example, Rogers and Williams (2000)) that the
probability measure ℙ is absolutely continuous with respect to with Radon-Nikodym
derivative (that is, density)

(4.2)

for the path ω, where the first integral in (4.2) is an Itô integral – see Beskos and Roberts
(2005) for the details of the disintegration argument that concludes this fact about Radon-
Nikodym derivatives with respect to the Brownian bridge distribution from the usual
statement of Girsanov’s theorem, which is about Radon-Nikodym derivatives with respect to
the distribution of Brownian motion. Because a Brownian bridge can be constructed using a
simple transformation of a Brownian motion (namely, if B is a standard Brownian motion,

then the process  has the distribution , it is
computationally feasible to obtain fine-grained samples of the Brownian bridge. Once we
have a sequence of Brownian bridge paths, (4.2) can be used to compute a likelihood ratio,
and a standard rejection sampling scheme can then be utilized to obtain realizations of
diffusion bridge paths; see Beskos and Roberts (2005) for examples of extensions to this
approach.
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This method is not immediately applicable to the Wright-Fisher bridge because its
infinitesimal generator is not of the form (4.1). However, it was shown on pp 119–120 of
Wright (1931) that if X is the Wright-Fisher process with infinitesimal generator (2.1), then
the transformation

(4.3)

suggested in Fisher (1922) produces a diffusion process Y on the state space [0, π] with
infinitesimal generator

Because Y has absorbing boundaries at 0 and π, sampling paths of bridges for Y by sampling
Brownian bridges can involve extremely high rejection rates. More specifically,

and so the likelihood ratio (4.2) becomes extremely small for paths that spend a significant
amount of time near 0. A similar phenomenon occurs near π.

To overcome the difficulty near 0, we develop a rejection sampling scheme where the
proposals are realizations of a process other than the Brownian bridge.

As a first step, consider the Wright-Fisher diffusion conditioned to be eventually absorbed at
1. By the argument given in Section 2, this process has the same bridges as the
unconditional process. It follows from (2.6) and (2.7) with y = 1 that the probability the
process starting from×is absorbed at 1 is

The transition densities of the conditioned process, fh(x, y; t), are related to the unconditional
transition densities by the usual Doob h-transform formula

The corresponding infinitesimal generator is

(4.4)

Applying the transformation (4.3) to the process with infinitesimal generator (4.4) results in
a process with infinitesimal generator
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(4.5)

Note that

(4.6)

and

(4.7)

Moreover, if ℚ is the distribution of a bridge from x to z over the time interval [0, T] for
some diffusion with infinitesimal generator

and ℙ is the distribution of a bridge from x to z over the time interval [0, T] for the diffusion
with infinitesimal generator (4.1), then

This suggests that a better rejection sampling scheme for bridges of the process Y with end
points close to zero will result when the proposals come from a diffusion with an
infinitesimal generator having a first order coefficient with a singularity at zero matching the
one appearing in both (4.6) and (4.7).

For such a modified scheme to be feasible, it is necessary to work with a proposal diffusion
for which it is easy to simulate the associated bridges. We now introduce such a process.
The 4-dimensional Bessel process is the radial part of a 4-dimensional Brownian motion.

That is, if  is a vector of 4 independent one-dimensional Brownian
motions, then

is a 4-dimensional Bessel process (see Revuz and Yor (1999, Section XI.1) for a thorough
discussion of Bessel processes). The 4-dimensional Bessel process is a diffusion with
infinitesimal generator
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Letting ℙ (resp.  be the distribution of the bridge for the process with infinitesimal
generator (4.5), and hence the distribution of the transformed Wright-Fisher diffusion Y,
(resp. the 4-dimensional Bessel bridge) from x to z over the time interval [0, T], we have

(4.8)

We next explain how to simulate a 4-dimensional Bessel bridge. We can construct the
bridge from u ∈ ℝ 4 to v ℝ ℝ4 over the time interval [0, T] for the 4-dimensional Brownian
motion as

where B0 = 0. The distribution of u + BT conditional on |u + BT | = z has density proportional
to w ↦ exp(w · u/T) with respect to the normalized surface measure on the sphere centered
at the origin with radius y, where w · u is the usual scalar product of the two vectors w, u ∈
ℝ4. Hence, a 4-dimensional Bessel bridge from x to z over the time interval [0, T] is given
by

where B0 = 0, u ∈ ℝ4 is any vector with |u| = x, and V is random vector taking values on the
sphere centered at the origin with radius z that is independent of B and has a density with
respect to the normalized surface measure that is proportional to w ↦ exp(w · u/T). Note that
the random vector V/z, which takes values on the unit sphere centered at the origin, has a
Fisher – von Mises distribution with mean vector u/x and concentration parameter xz/T (see,
for example, Mardia et al. (1979, Ch. 15)).

Increasing the strength of natural selection causes the Wright-Fisher bridge to move faster
for intermediate frequencies, but the method proposed above uses the same 4-dimensional
Bessel bridge regardless of the value of the selection parameter γ, and so the rejection rate
can become very high for large values of γ. To deal with this phenomenon, we introduce the
following further refinement to the proposal process. With ℙ the distribution of the
transformed Wright-Fisher bridge from x to z over the time interval [0, T] as above, let ωε :

[0, T] → [0, π], > 0, be the path with  that maximizes

Then, ωε converges as ε ↓ 0 to a path ω*. Heuristically, we can think of ω* as the path that
has “maximum probability” or is “modal” for ℙ. This path is sometimes called an Onsager-
Machlup function and it can be found by solving a certain variational problem – see, for
example, Ikeda and Watanabe (1989). For the transformed Wright-Fisher bridge, an analysis
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of the variational problem shows that the maximum probability path satisfies the second
order ordinary differential equation

(4.9)

with boundary conditions 

With a solution to (4.9) in hand, it is possible to construct a better proposal distribution by
linking together bridges that are “close” to the maximum probability path. First, choose a
number of discretization points N and take times 0 < t1 < … < tN < T. Then, sample
independent random variables U1, U2, …, UN with densities g1, g2, …, gN to be specified
later. Put t0 = 0, tN+1 = T, U0 = x and UN+1 = z. Build conditionally independent 4-
dimensional Bessel bridges from Ui to Ui+1 over the time intervals [ti, ti+1]. The distribution
of Ui should be chosen so that Ui is close to the maximum probability path at time ti; we
choose re-scaled Beta distributions with mode at the solution of (4.9) at time ti. More
specifically, we set Ui = πXi, where Xi has the Beta distribution with parameters

for some free parameter θ. We used the particular value θ = 50 for the examples in this
paper, but other value of θ could be used in a given situation in an attempt to optimize the
frequency of rejection.

By stringing these bridges together, we get a path going from x to z over the time interval [0,
T]. However, the distribution of this path is certainly not that of the 4-dimensional Bessel
bridge because of the manner in which we have chosen the endpoints of the component
bridges.

Therefore, we can’t simply use the Radon-Nikodym derivative (4.8) as it stands to construct
a rejection sampling procedure. Rather, if we let ℚ be the distribution of the path built by
stringing the bridges together, then we must accept a path ω with probability proportional to

(4.10)

Note that

(4.11)

where

(4.12)

is the transition density of the 4-dimensional Bessel process with Iv the modified Bessel
function of the first kind.
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To demonstrate the effectiveness of the rejection sampling scheme, Figure 7.1 shows Q-Q
plots of the one-dimensional marginal at time t of a Wright-Fisher bridge with genic
selection as estimated using the rejection sampler compared to an approximation that uses
the method of Song and Steinrücken (2012) to compute the cumulative distribution function
of the marginal. For both rows, the bridge goes from x = .2 to z = 0.7 over the time interval
[0, T] = [0, 0.1]. The left panels correspond to t = 0.03 and the right panels correspond to t =
0.07. The top row corresponds to γ = 10 and the bottom row to γ = 50, demonstrating the
effectiveness of the rejection sampling scheme over a wide range of selection coefficients.

Figure 7.2 demonstrates the behavior of a Wright-Fisher diffusion bridge as the selection
coefficient increases. A bridge from x = 0.01 to z = 0.8 over the time interval [0, T] = [0, 0.1]
is shown for γ = 0, γ = 50 and γ = 100. As the selection coefficient increases, the proportion
of time the bridge spends near the boundary also increases, because the Wright-Fisher
diffusion moves faster when it is away from the boundaries. In addition, the paths that the
bridge takes become more tightly centered around the most probable path as the selection
coefficient increases. Being able to sample Wright-Fisher bridge paths makes it very easy to
numerically approximate the distribution and expectation of various functionals of the path.
As an example, Figure 7.3 shows the density of the maximum in a bridge from x = 0 to z = 0
over the time interval [0, T] = [0, 0.1] for γ = 0, γ = 50 and γ = 100. Note that the maximum
in the bridge decreases as the strength of selection increases, and also becomes more tightly
concentrated around its expectation. To gain a more quantitative understanding of the extent
to which a bridge for an allele experiencing natural selection looks different from the bridge
for a neutral allele, it is possible to compute the Radon-Nikodym derivative (i.e. the
likelihood ratio) of the distribution under selection against the distribution under neutrality.
Using an argument similar to that which led to (4.8), the likelihood ratio is

(4.13)

where the constant of proportionality only depends on the endpoints. A few things are
immediately evident from (4.13). First of all, the likelihood ratio does not depend on the
sign of the selection coefficient, only the magnitude. This is analogous to the result
Maruyama (1974) that, conditioned on eventual fixation, the sign of the selection coefficient
is irrelevant to the distribution of the Wright- Fisher diffusion path. Also apparent is that
bridges with strong natural selection will be more likely to be found near the boundary than
bridges under neutrality. Finally, because 0 ≤ sin2 (x) ≤ 1, we see that, very loosely, a bridge
will look approximately neutral if

(4.14)

5. Discussion
We have examined the behavior of Wright-Fisher diffusion bridges under both neutral
models and models with genic selection. Although various conditioned Wright-Fisher
diffusions have been studied in the past, Wright-Fisher diffusions conditioned to obtain a
specific value at a predetermined time have not been studied extensively. We have
elucidated some of the properties of Wright-Fisher bridges using a combination of analytical
theory and simulations.

In contrast to Brownian motion with drift, for which the distribution of a bridge does not
depend on the magnitude of the drift coefficient, the distribution of a Wright-Fisher bridge
does depend on the magnitude of the selection coefficient. As one might expect, bridges
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under strong selection are more constrained than neutral bridges. This can clearly be seen in
Figure 7.2, in which the bridge with γ = 0 has a broad range, but when γ = 100 the paths of
the bridge are highly likely to be confined near the boundary at 0 until quite late in the
bridge. A similar conclusion can be drawn from Figure 7.3 which shows the density of the
maximum in a bridge from 0 to 0 over the time interval [0, T] = [0, 0.1]. The expected
maximum of a neutral bridge is much higher than one with strong selection, and there is
significantly more variance about that maximum under neutrality.

Much of the behavior of Wright-Fisher bridges under selection can be understood in terms
of the likelihood ratio (4.13). Because sin(x) takes its smallest values for x ≈ 0 and x ≈ π,
very strong selection will confine a bridge of the transformed process Y to near these
boundaries. Intuitively, this is because the Wright-Fisher diffusion has the largest magnitude
of drift and diffusion coefficients at x = 0.5, and thus the diffusion moves “faster” when it is
away from the boundaries 0 and 1. In order for a diffusion with a large selection coefficient
to reach an interior point after a large amount of time, it must spend most of that time near
the boundary.

However, these differences between selection and neutrality are mostly apparent in cases of
extreme selection coefficients or very long times. This has important implications for
maximum likelihood inference of selection coefficients from allele frequency time series.
Because the realizations are likely to be quite similar for a selected allele and a neutral allele
when the selection coefficient is moderate, most of the information about the selection
coefficient comes from the end-points. This is consistent with the work of Watterson (1979),
who showed that even with the whole sample path, it is difficult to reject neutrality when
selection is weak. Therefore, in many cases increasing the time-density of samples may not
provide much additional information about the selection coefficient. Because many allelic
time-series are obtained via costly ancient DNA techniques, this is an important
consideration for the many researchers who are interested in the history of selection acting
on a particular allele.

In addition to results directly concerning bridges, we have made several technical advances
in the analysis of the Wright-Fisher diffusion. We have developed the theory of first passage
times of a neutral Wright-Fisher diffusion starting from low frequency and we were able to
provide a closed-form for the density of the maximum in a neutral bridge that goes from 0 to
0.

While our rejection sampling scheme is similar to that of Beskos and Roberts (2005) in
some regards, there are several differences. Primarily, we do not provide exact samples, in
the sense that Beskos and Roberts (2005) does. Because we store a discrete representation of
our proposal bridges in computer memory, the calculation of (4.8) is necessarily an
approximation, and hence the samples are only approximate. However, Figure 7.1 shows
that they are extremely accurate. Also, because we are concerned with a specific model, we
used 4-dimensional Bessel bridges, instead of Brownian bridges, in our proposal
mechanism. This choice is superior for the Wright-Fisher diffusion because both the Bessel
bridge and the Wright-Fisher bridge have boundaries at 0 with asymptotically equivalent
singularities in the drift coefficient, while the Brownian bridge can assume negative values
and hence result an unacceptably high rejection rate when it is used as a proposal
distribution. Ideally, we would sample from a proposal distribution that describes a diffusion
that was also bounded above and had a suitable singularity in its drift coefficient at the upper
boundary; however, we have not yet discovered an appropriate diffusion for which it is easy
to sample the corresponding bridges. Finally, we make use of the “most likely” bridge path
as a means of guiding samples of bridges that are likely to be extremely different from those
generated by the 4-dimensional Bessel bridge proposal distribution. This modification is
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akin to shifting the mean of a proposal distribution when doing rejection sampling of a 1-
dimensional random variable, and it greatly increases the efficiency of sampling.
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7. Appendix

7.1. Eigenfunction expansions of the transition density
Eigenfunction expansions of the Wright-Fisher transition densities in the case of no
mutation were first explored in Kimura (1957).

The form given in Crow and Kimura (1970) is

where  is the Gegenbauer polynomial  with λ = 3/2.

An explicit formula for the Gegenbauer polynomial is

The generating function for the sequence  is
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Note that

and the right-hand side is (n + 1)(n + 2)/2 when λ = 3/2.

The sequence of polynomials  satisfies the three-term recurrence

with initial conditions . It is convenient in computations to

use the scaled polynomials  which are bounded in modulus by
unity on the interval [−1, +1]. The corresponding three-term recurrence for the sequence

 is

with initial conditions P0(x) = 1 and P1(x) = x.

The transition density written with the scaled polynomials is

The asymptotic form of the transition density as x ↓ 0 is

(7.1)

Also,

We also use a form of the expansion that is formally equivalent to the one above – see
Griffiths and Spanó (2010). The expansion is

(7.2)

where
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(7.3)

and

(7.4)

Note that

as x ↓ 0. Therefore,

(7.5)

which is equal to (3.9). To calculate

we observe that

(7.6)

Therefore,

(7.7)
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Figure 7.1.
Q-Q plot showing the accuracy of the rejection sampling scheme. Theoretical quantiles were
calculated using the method of Song and Steinrücken (2012) and sample quantiles are
determined from 1000 bridges simulated using the method described in the text. The bridge
goes from x = 0.2 to z = 0.7 over the time interval [0, T] = [0, 0.1]. The left panels
correspond to t = 0.03 and the right panels correspond to t = 0.07. The top row corresponds
to γ = 10 and the bottom row to γ = 50.
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Figure 7.2.
Plot showing the properties of bridge paths as the strength of selection increases. Each
bridge is from x = 0.01 to z = 0.8 over the time interval [0, T] = [0, 0.1]. The successive
selection coefficients are γ = 100. For each selection coefficient, pointwise 0%, 25%, 50%,
75% and 100% quantiles are calculated. Solid line is the 50% quantile, dashed line indicates
25% and 75% quantiles, and the dotted line indicates 0% and 100% quantiles.
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Figure 7.3.
Densities of the maximum in a 0 to 0 bridge over the time interval [0, T] = [0, 0.1] for the
selection strengths γ= 0, γ = 50 and γ = 100.
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