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Abstract
Proficient readers typically fixate near the center of a word,
with a slight bias towards word onset. We explore a novel
account of this phenomenon based on combining information-
theory with perceptual constraints in a connectionist model of
visual word recognition. This account posits that the amount
of information-content available for word identification varies
across fixation locations and across languages. These differ-
ences contribute to the overall fixation location bias in differ-
ent languages, make the novel prediction that certain words
are more readily identified when fixating at an atypical fixa-
tion location, and predict specific cross-linguistic differences.
We tested these predictions across several simulations in En-
glish and Hebrew, and in a behavioral experiment. The results
confirmed that the bias to fixate closer to word onset aligns
with reducing uncertainty in the visual signal, that some words
are more readily identified at atypical fixation locations, and
that these effects vary across languages.
Keywords: visual word recognition; computational mod-
elling; connectionism; information theory; fixation location

Introduction
The fundamental aim of visual word recognition is to iden-
tify a word based on its constituent letters. Considerable
computational and behavioral evidence from studying iso-
lated visual word recognition, which typically involves see-
ing a single word presented at the center of visual fixation,
suggests that a graded constraint satisfaction process selects
a candidate that fits with the lower-level (visual/orthographic)
and higher level representations (e.g., lexical information,
McClelland & Rumelhart, 1981). In contrast to this method-
ology, in more naturalistic studies of reading via eye-tracking,
considerable evidence suggests that readers tend to fixate
more frequently near the middle of words, typically with a
bias towards beginning of a word, with some variation across
languages (see Figure 1, for example distributions from ini-
tial fixations during natural reading in English and Hebrew
Siegelman et al., 2019).

A key question from considering this body of work, then,
is how and why the visual system of a proficient reader tends
to fixate at particular positions in a word, and on a related
front, why these fixation distributions vary as a function of
the language. Classic accounts focused on the low-level op-
erations of the occulomotor system do not appear to offer

a ready explanation of these effects, particularly in terms
of cross-linguistic differences (see McConkie, Kerr, Reddix,
Zola, & Jacobs, 1989 for a review of occulomotor theories;
also Reichle, Rayner, & Pollatsek, 1999; Engbert, Nuthmann,
Richter, & Kliegl, 2005). Accounts that hold more promise
in this regard consider higher-level factors (e.g., morphology;
Deutsch & Rayner, 1999).

Here, we explore an alternative more general account based
on information theory in the visual signal and how it maps
onto lexical representations. This work shares some concep-
tual similarity with prior work by Brysbaert and Nazir (2005),
although the latter did not quantify information in the formal
terms that we do, which may, as outlined in the discussion,
explain some discrepancies between their results and ours. In
our first study we examined the differences in information
distributions as a function of fixation location in Hebrew and
English, and found that these distributions shared key char-
acteristics of the human fixation location distributions. In
our second study, we instantiated a feed-forward connection-
ist model with a psychophysically-derived constraint on let-
ter identification as a function of distance (eccentricity) from
the target fixation. This model allowed us to examine how
different amounts of information content can be extracted at
different fixation locations in different languages during word
recognition. If it succeeded in doing so, it could explain why
there is a preferred fixation location in different languages
due simply to how low-level constraints interact when identi-
fying a word, in the absence of higher-level constraints (e.g.,
morphology, semantics). This model also served as a test-bed
for probing whether words exist in different languages that,
due strictly to the information content available at different
fixation locations, are, perhaps counter-intuitively, more effi-
ciently recognized by looking at fixation locations other than
the overall preferred location in the language. These pre-
dictions were corroborated in a pilot behavioral experiment.
Taken together, this research highlights how maximizing in-
formation in the visual signal could be a major driver of many
behaviors observed within and between languages. It also of-
fers specific predictions for broadening this account in future
work, for instance, in maximizing information across words

83



Figure 1: Distribution of fixation locations for 7-letter words
in English and Hebrew. 1=start of word (left in English, right
in Hebrew)

rather than within the processing of single words.1

Study 1: Information-content in the early
visual-orthographic representation.

In our first study, we explored how much information-
content was available for word recognition in the early visual-
orthographic signal when fixating at different locations in the
word. This was achieved computationally by passing the vi-
sual representation of a word at a particular fixation loca-
tion through a visual filter that reflects how more visual in-
formation is extracted from the fixated location in a word
and less information is extracted as a function of eccentricity
(distance) from this location. We applied this procedure to
samples of words from English and Hebrew, which belong to
different language families, to gain insight into the language-
specific versus language-general nature of the results.

Data We analyzed the 50,000 highest frequency words
from the OpenSubtitles translated movie subtitle database
(Tiedemann, 2012)2. We removed all words that contained
foreign alphabet characters. For simplicity, we selected for
our study only 7-letter words, because we predicted that
strong effects of fixation location and information content
would be more readily detected in longer words that could
nevertheless be perceived with a single fixation. The resulting
lists contains 5565 words in Hebrew, and 8145 in English.3

Architecture To simulate the constraints on visual percep-
tion imposed by the early visual perception system, we passed
the representation of each word in each language through per-
ceptual filters adapted from McConkie et al. (1989). In the
original formulation of this model of perceptual filtering, the
fixated letter was perceived with 100% accuracy, and the like-
lihood of successful perception fell off linearly as a function
of eccentricity (see Figure 2, for examples from fixating letter
2 or letter 6 in a 7-letter word). The exact slope of this func-
tion, as exemplified by the drop = 0.1 and drop = 0.25 lines

1The code for our models and analyses is released at
https://github.com/rgalhama/nnfixrec cogsci2019.

2From https://github.com/hermitdave.
3We ruled out the possibility that vocabulary size drove any of

our simulated behavioral effects by down-sampling the English cor-
pus to be the same size as the Hebrew corpus in our simulations.

in the figure, leads to an initial linear change in the amount of
extracted information, which eventually reaches floor.

In the original paper, the authors noted that the optimal
value of the drop parameter remained to be determined.
Thus, for this initial work, we opted to use a drop param-
eter of 0.25. This value was selected so as to capture most
but not all the letters in a word when perceived from the start
or end of the word, which we predicted would lead to rel-
atively high, but below ceiling, recognition rates (confirmed
and described in a later section) and substantial differences in
information as a function of fixation location.

Figure 2: Probability of recognizing the constituent letters in
a word when fixating letter position 2 (left) and letter position
6 (right) in a word according to the McConkie model.

Procedure We tested for how the fixation location could
impact the information content extracted from the perceived
word. For simplicity, and to test for strong modulations in
word recognition due to the perceived information, here we
focused on the information content extracted from a fixation
near the beginning of a word (at the second letter position)
and near the end of a word (at the sixth letter position). Af-
ter passing each word through the McConkie filter, for each
word, we calculated the remaining amount of uncertainty on
the identity of the word after fixating at each of these fixation
locations (a proxy of the information content in each loca-
tion4). The measure of uncertainty we used was entropy, as
proposed in Shannon (1948). Concretely, given the letters re-
trieved after fixating on a word, we computed the remaining
entropy as H = −∑

m
w=1 pwlog2(pw), where the words w be-

longed to the set of words m that have a perfect match with
the identified letters, both in letter identity and letter posi-
tion (e.g. the word ‘therapy’ would be in the set of matching
words for the recognized letters ‘ther - - -’). The probability
of a matching word pw was estimated as its relative frequency

4Note that, throughout our paper, we use the term “information
content” of a fixation location to quantify the contribution of the
observed letters in minimizing the uncertainty on the identity of the
word. This should not be confused with the surprisal conveyed by
the letters in a fixation location. The former concerns a probabilistic
models for words (based on word frequency and component letters),
while the latter would be based on a probabilistic model of letter
strings.
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in the corpora.5 To test whether information was distributed
evenly across the beginning and end of all words in each lan-
guage, we subtracted the entropy for each word at fixation
location 2 from that at fixation location 6. If entropy were
evenly distributed, these values should cluster around 0.

Additionally, from the distribution of entropy difference
scores, we identified 100 words with the most extreme pos-
itive (50 words) and negative (50 words) values.6 We refer
to the words with more information content when fixating at
position 2 (i.e. negative entropy differences) as the maxIC(2)
words, and the words with more information content at po-
sition 6 (i.e,. positive entropy differences) as the maxIC(6)
words. These words served as test items in Study 2.

Results
The difference in entropy values when a word was perceived
at fixation location 2 versus fixation location 6 are plotted in
Figure 3. It clearly shows that entropy information is not uni-
formly distributed across words, as in both English and He-
brew there are more negative scores. It also shows a relatively
wide range of entropy values, with both languages containing
words with entropy difference scores ranging from approxi-
mately -5 to 3. Further, the Hebrew scores tend to be more
negative than the English scores.

Figure 3: Distribution of entropy differences for 7-letter
words.

To give a more concrete intuition into the magnitude of
the difference scores and their relationship to successful vi-
sual word recognition, consider the case of the word “zoom-
ing”, which has an entropy difference score of -5.1. If the fix-
ated letter and the two letters on either side of this letter are
preceived correctly, there is a 100% likelihood of successful
recognition of this word when fixated at position 2 (i.e. when
perceiving ‘zoo-’). However, there is only a 3% success rate
when fixated at position 6 (i.e. when perceiving ‘-ing’).

Next, we selected 100 words per language with “extreme”
entropy difference scores for use in Study 2. These items had

5An alternative approach is to compute these values over word
types rather than word tokens. Control simulations showed that both
of these approaches were highly correlated in both languages, r >
.72, and that the correlations between entropy differences over types
or tokens and word frequency were extremely small, |r|< .04

6We filtered some items to avoid the over-representation of letter
combinations like “-ing” and to eliminate extremely low and high
frequency items.

mean difference scores, for maxIC(2), of -2.68 in English and
-3.32 in Hebrew, and for maxIC(6), it was 2.19 in English and
2.58 in Hebrew.

In additional simulations, not reported in detail due to
space constraints, we also confirmed that varying the exact
shape of the McConkie function and the value of the drop pa-
rameter did not qualitatively alter these trends unless only the
nearest items to the fixation location, or nearly all the words
in the word, were perceived with 100% accuracy.

Discussion
The first simulation substantiated our predictions that differ-
ent amounts of information content can be extracted by fix-
ating at different locations in a word. Overall, there appears
to be more information content present at the start of words
in both languages, providing initial evidence for a language-
general trend. Thus, the fixation distributions in different lan-
guages may at least be partially attributed to a system that at-
tempts to minimize entropy in the visual signal in service of
word recognition. This claim is further bolstered by the fact
that the Hebrew distribution was even more shifted to contain
more information when fixating at the beginning of a word,
consistent with the stronger preference to fixate earlier in He-
brew words in behavioral data (see Figure 1). The broad dis-
tribution of values in each language also enabled us to select
items with “extreme” entropy difference scores across fixa-
tion locations. This enabled us to test whether some words
are more readily identified by fixating at a location other than
the overall preferred fixation of the language (which is off-
center, nearer to the beginning of the word).

Having thus established that the perceptual input to the
word recognition system contains major differences in en-
tropy based on fixation location, we next explored how these
inputs could shape processing in a connectionist model of
word recognition.

Study 2: A perceptually-constrained
connectionist model of visual word recognition

The previous study focused on the distribution of informa-
tion contained in the languages. In this study, we employed a
connectionist model and a coordinated pilot behavioral exper-
iment to investigate whether a learning model of word recog-
nition is sensitive to these information patterns. This allowed
us to develop new predictions about how performance in dif-
ferent fixation locations evolves in relation to reading profi-
ciency: although it is beyond our goals to align model train-
ing (in epochs) with human reading experience —which is a
non-trivial question–, our learning model provided us with in-
sights into novel emergent processing dynamics that are not
visible from an information-theoretic approach. In partic-
ular, we focused on whether the model and the human par-
ticipants displayed an interaction between fixation location
and the location of maximum information content in our “ex-
treme” items selected in Study 1. Because some of the imple-
mentational decisions for the model were made to increase
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the similarity between the simulated task and the pilot behav-
ioral task, we provide a brief overview of the behavioral task
and findings before turning to the details of the simulation
(for the complete report of this experiment, see Siegelman et
al., 2019).

Overview of the behavioral task. A total of 23 native
speakers of Hebrew (14 females, age range: 22-30, mean:
24.9) were presented with the a set of words including the 100
words with extreme information differences described previ-
ously, and an additional selection of 100 words (also of length
7)7 with intermediate entropy differences, which we treat as
fillers for the purpose of this paper.8 In the task, participants
first focused on a fixation cross for 1000 ms, and then were
presented with a word for 100 ms. This brief presentation
prevented multiple fixations and was expected to lower per-
formance below ceiling. Critically, the word was presented in
different locations, including cases wherein the letter at posi-
tion 2 or position 6 appeared at the same location as the fixa-
tion cross (i.e., the word was left- or right-shifted from screen
center where participants were fixating). Participants were
then instructed to say or guess the word that had been pre-
sented. Responses were coded either as correct or incorrect.
All words were presented in both fixation locations simulated
in the model (i.e., fixation at position 2 vs. position 6). Words
were presented in a random order.

The results are presented in Figure 4. The pattern of re-
sults indicated that accuracy was highest when a word was
fixated at the location which contained the most informa-
tion content, and lower at the location which contained less
information content. Critically, this was true not only for
words that had more information content early in the word,
but also for words that contained more information content
near the end of the word: a logistic mixed-effect model (with
condition, fixation location, and their interaction as fixed ef-
fects, trial number and log-transformed frequency as control
variables, by-subject and by-item random intercepts, and by-
subject random slope for condition) revealed a significant in-
teraction (B = 0.59, SE = 0.05, p < 0.001 and a significant
main effect of fixation location (B = -0.23, SE = 0.05, p <
0.001). Thus, these findings do not simply reflect a preference
to process words in the more frequently fixated location in a
given language, which our prior study showed contains, on
average, more information content. The presence of numer-
ically larger differences across fixation locations for words

7All the words we use are multisyllabic. This could create con-
founds in the modelling work if we mapped the input with phono-
logical representations, but we intentionally focused only on ortho-
graphic factors, since our goal is to find out what structure exists in
the orthographic signal alone in the absence of phonological consid-
erations. Future work may investigate how these visual representa-
tions interact with phonological representations, similar to a classic
“triangle” model (Seidenberg & McClelland, 1989).

8Although we did not test these items in the model, the behav-
ioral results indicated that items with intermediate entropy differ-
ence scores were relatively unaffected by whether they were fixated
near onset or offset, as predicted by the account.

Figure 4: Mean correct responses of participants in the four
conditions. Error bars = SEM.

with more information content near the start of a word rel-
ative to near the end of a word may suggest a more subtle
interaction between information content and frequency of ex-
posure to different locations, however. Additionally, averag-
ing across the four experimental conditions, overall accuracy
was significantly below ceiling.

Simulating the behavioral experiment
Model Architecture We implemented a feed-forward con-
nectionist model that mapped perceptually-constrained dis-
tributed input of a word’s constituent letters onto a localist
representation of each word in the training vocabulary, as il-
lustrated in Figure 5. There were 7 letter input slots, one for
each position in a 7-letter word. Each of these slots had one
unit for every letter in the alphabet and coded for the pres-
ence (1) or absence (0) of a given letter in that position (i.e., a
binary one-hot coding). The distributed representation of the
visual word was then input to a McConkie filter set to per-
ceive the word at a particular fixation location (the procedure
for specifying fixation locations is described later). Thus, the
one-hot vectors would be down-scaled (using a drop param-
eter, d, of 0.25) to reduce the activity of having perceived a
given letter as a function of eccentricity from the fixation lo-
cation, as quantified in Equation 1:

x(i) = x(i)∗max(0,1− eccentricity(i)∗d) (1)

Thus, the activity of the fixated letter remained unchanged,
the activity of letters more than four slots distant from the fix-
ated letter was set to 0, and activity in each letter-slot would
decrease linearly between these two bounds.

To simulate the noisy nature of perceptual inputs in the
human visual system, we next injected normally-distributed
random noise (µ = 0.2, σ2 = 0.05) into the unit activations
(clipping activations to [0,1]). We assumed that the activity
after these processing steps was analogous to what would be
available in an early visual-orthographic representation (“per-
ceived input” in the Figure).

Next, we mapped the perceived input onto a one-hot log-
softmax target output representation for each word in the vo-
cabulary through a pool of 125 hidden units. The output of
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the hidden units was determined first by computing the sig-
moidal function of their net input, followed by the injection of
uniform random (output) noise (mean = 0, range = 0.05). All
the weights in the network were randomly initialized from a
uniform distribution in the range [ −1√

f an out ,
1√

f an out ], where
f an out was the number of units in the subsequent layer of
the model.

Figure 5: Model architecture. The implemented model per-
ceived 7-letter words; here, we illustrate the model processing
a 3-letter word (BAY) for simplicity. Full (1) and no (0) ac-
tivity are shaded in black and white; intermediate values are
shaded in grey.

Determining fixated locations in a word We evaluated
several methods for selecting how often a word was perceived
from a different fixation location, which we term “fixation lo-
cation distribution schemes”. One model sampled each fixa-
tion location equally (hereafter, the uniform fixation model).
This provided an estimate of the impact of the entropy at dif-
ferent fixation locations that was unconfounded with how of-
ten humans typically fixate at each location, and how those
distributions varied across the two languages under study.
Another model employed the language-specific behaviorally-
derived fixation distributions illustrated in Figure 1 (here-
after, the behavioral fixation model). A third model averaged
these two fixation distribution schemes (hereafter, the 50/50
model). This “blended” model allowed us to interpolate be-
tween these two previously described schemes and simulated
a case where a model was sensitive to frequency of exposure,
but not necessarily to the raw values. The logic here was that
a good model might standardize frequency information to en-
sure low-frequency information is also learned.

Training The model was trained by presenting a 7-letter
word at a particular fixation location and computing the cross-
entropy error between the output and the target representa-
tion. Error was accumulated in batches in which every seven-
letter word in the target language was presented 20 times,
with the likelihood of fixating at a particular location de-
termined by the fixation distribution sampling scheme. Er-
ror was then backpropagated to adjust the weights between
the perceived input and the output layer (learning rate =

.005; weight decay = .0001) using stochastic gradient descent
for the first 10 epochs, and the Adam algorithm thereafter
(Kingma & Ba, 2014). The model was trained for 200 epochs
(runs through each batch).

All models reached a stable high level of overall word
recognition accuracy (near 80%) for approximately the last
50 epochs of training. The vast majority of the incorrect re-
sponses originate from words perceived at a suboptimal—and
where applicable, less frequent—fixation location. Figure 6
provides representative data for the Hebrew words with ex-
treme entropy values using the uni f orm model. (space con-
straints prevented the inclusion of plots from the other mod-
els, which were broadly similar). The presence of different
effects during early training than at the end of training also
makes novel predictions for future developmental studies.

Figure 6: Accuracy for the uni f orm model trained on Hebrew
for the words with extreme entropy difference scores. Error
bars = SEM.

Testing We froze the weights on the trained models be-
fore testing them in a manner analogous to the behavioral
experiment. In the test, we presented all the maxIC(2) and
maxIC(6) words at both fixation location 2 and fixation lo-
cation 6. We also tested several methods of bringing per-
formance in the task below ceiling as in the behavioral ex-
periment, including dimming model inputs (multiplying all
input letter activations by a value less than 1), and increas-
ing variance of the noise applied to the perceptual input (cf.
Lambon Ralph, Lowe, & Rogers, 2007). These methods
yielded similar overall results, so here we report only the re-
sults of dimming (dimming parameter = .35). We ran this
simulation twice on models initialized with different random
weights and report the average results.

Results
The results for the uni f orm, 50/50, and behavioral fixation
models of English and Hebrew are presented in Figure 7.
First, in contrast to the non-dimmed model at the end of train-
ing (see Figure 6), our testing procedure clearly succeeded in
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Figure 7: Results of testing the different fixation location distribution models in Hebrew [top] and English [bottom]. Error bars
= SEM.

lowering overall accuracy to a level similar to that in the be-
havioral experiment.

The most critical finding was that, with the exception of the
Hebrew behavioral fixation model, every one of these models
produced a qualitatively similar interaction between fixation
location and whether more information content was located
at the beginning or end of a word, as in the behavioral results.
The Hebrew simulations also show more pronounced effects
for the maxIC(2) items overall, as in the behavioral data. The
reduced effects in English make for novel predictions for an
experiment in that language.

Moving from the uni f orm model through the 50/50 model
to the behavioral model, the effects of the behavioral fixation
sampling scheme, which fixates words at position 2 more of
then than position 6, is more apparent in Hebrew than in En-
glish. This is reflected by the fact that max(IC2) words are
perceived more accurately when fixating at position 2 in He-
brew and less accurately when fixating at position 6 when
moving toward the behavioral fixation scheme.

The exceptional Hebrew behavioral fixation model appears
to be an exaggerated extension of the effects of fixation lo-
cation frequency outlined above. In the case of this model,
even the maxIC(6) words were responded to more accurately
when fixating earlier in the word. The presence of this pattern
only in Hebrew is at least partially explained by the more ex-
treme differences in fixation location sampling distributions
in Hebrew than in English. These results also suggest that the
human visual recognition system may at least partially nor-
malize the effects of fixation location frequency, given that

the 50/50 and uni f orm fixation models produced qualitative
results more similar to those in the behavioral experiment.

Discussion
The results of the second set of simulations largely paralleled
those of the behavioral experiment, with both exhibiting an
interaction between fixation location and the location with
most information content. The simulations also showed the
influence of the behavioral fixation location distributions in
enhancing the perception of words at the most frequent fix-
ation location, and suggest that the word recognition system
normalizes the fixation location distribution to some degree.
Further, although the qualitative findings were similar across
languages, suggesting that a general principle is at play, at
a quantitative level there were some differences between the
two target languages. These differences align with the rela-
tively higher information content at the beginning of Hebrew
words and the greater likelihood of fixating at the beginning
of words. Collectively, this work therefore indicates that the
word recognition system is sensitive to the information con-
tent in different locations in a word, as constrained by the
perceptual system.

These results are only in partial agreement with past work
(Brysbaert & Nazir, 2005). In that work, participants were
presented with partial word information for 5-letter words
and asked to “guess” the word. The distribution of “guesses”
relative to the correct response was then taken as their mea-
sure of uncertainty. Their results showed similar effects as in
our study at word onset, but no effects at word offset. These
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findings were interpreted as suggesting that the effects of in-
formation content were only present at the preferred fixation
location. A combination of factors likely explain the discrep-
ancy between their claims and ours, including a more ade-
quate formal quantification of information content and the use
of longer words that may be more sensitive to perceptually-
constrained information content effects.

The success of this work at the individual word level also
points to important directions for future work. One major
question raised by this work is how these principles could
generalize to the multi-word level. Can a preceding word
provide top-down context and reduce the uncertainty (i.e. the
average information content) on the set of upcoming words
so as to not only facilitate processing, but also alter the lo-
cation of an upcoming fixation? If so, this result could help
explain the relatively broad fixation distributions obtained in
different languages, because the optimal location to fixate in
a word may deviate from the average location from the lan-
guage as a function of context. The somewhat broad overall
fixation location distributions may therefore in actuality re-
flect the averages of narrower fixation location distributions
that are conditioned by the preceding word.

Our work shows that the observed behavioral effects in
word recognition can be explained based on low-level in-
formation structures in the visual signal, without the need
to resort to higher-level morphological structures. Higher-
level structures can enter the visual-orthographic system in
two ways: first, in shaping the word forms of a language,
and second, as representations that mediate word recogni-
tion. The former is subsumed in our information-theoretic
approach, which encompasses all the constraints that pro-
vided word forms with their actual shape, providing us with a
quantitative comparative framework for a crosslinguistic per-
spective. The latter cannot be completely ruled out: although
our model does not require morphological representations to
succeed, the contribution of these representations should be
assessed with more targeted experiments that aim to tease
apart the visual/orthographic from morphological (e.g. look-
ing at performance for regular and irregular morphemes such
as brothel/broth, corner/corn, farmer/farm, Rastle, Davis, &
New, 2004).

To sum up, this work offers a language-general and par-
simonious account of how a specific type of statistical in-
formation drives performance in the perceptually-constrained
word recognition system, complementing accounts based on
the operation of the occulomotor system, as well as comple-
menting or or subsuming accounts based on higher-level in-
formation. In so doing, this work reinforces the importance
of studying how the structure of language itself interacts with
the perceptual constraints of the visual/orthographic system
(Lerner, Armstrong, & Frost, 2014) in shaping reading be-
haviors, and opens new avenues for combining isolated word
and naturalistic reading research.
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