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Abstract 

Topological Inspirations in Photonic Devices 
by   

Zilun Gong 

Doctor of Philosophy in Materials Science and Engineering 

University of California, Berkeley 

Professor Jie Yao, Chair 

Material topology is an exotic degree of freedom in the condensed matter physics. It was initially 
proposed to explain the electron transportation in ferroelectric materials in 1954, and eventually 
made its way to the 2016 Nobel Prize in Physics. In recent decades, researchers are dedicated to 
transplanting the concepts in the condensed matter to the optics and photonics realm. Nowadays, 
the field of topological photonics is thriving, which allows us to mimic the behaviors of the 
electrons using photons and discover phenomena exclusive to the Bosonic systems.  
In this dissertation, I present my work to show how we can get inspirations from the electronic 
system, then design the photonic device with new functionalities. Chapter 1 is dedicated to the 
cornerstone of material topology: geometric phase. The geometric phase determines the 
topological invariant in a crystal, but we can also use this concept to engineer the phase front in 
the diffractive optics devices. I show the first-ever metasurface for ultra-violet wavelengths using 
the geometric phase. In Chapter 2, I discuss the one-dimensional topological insulator and how to 
realize it in an optical waveguide array. Besides, I reveal the relation between the one-dimensional 
model and the topological edge states in the two-dimensional nanoribbons. It deepens our 
understanding of topological behaviors and the Bloch theorem. Finally, in Chapter 3, I investigate 
the bound-state-in-continuum, which is a topological singularity in the photonic crystals. Then I 
show the photonic integrated circuits that utilize this concept and result in a versatile optical 
filter. All the devices proposed are made of silicon, which is a promising material choice in 
terms of fabrication and scalability. 
In general, I introduce the essential concepts in topological photonics and explain the physical 
pictures to my best knowledge, in the hope of inspiring readers to explore this field and design 
novel photonic devices. 
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Introduction 
 
In 2016, the Nobel prize of physics was awarded to three scientists for their contributions to the 
topological theory in solids1. The discovery of the topological insulator has been one of the biggest 
topics in the last decade2. The root of the topological phenomena, however, was discussed decades 
ago when people were trying to understand the abnormal electron velocity in the ferromagnetic 
materials3. The geometric phase, later referred to as the Berry phase, was proposed as an extra 
phase beside the propagation phase. People at that time did not realize that this concept would 
completely change the landscape of physics, materials science, even photonics in the twenty-first 
century4. 
The geometric phase is the extra phase that electrons pick up during an adiabatic process in the k-
space. Originally, it was considered to be gauge-dependent and thus not observable. However, a 
closed-loop evolution gives rise to the gauge-independent Berry phase, which directly links to the 
“monopoles” of Berry flux in the reciprocal space5. This discovery defines a new degree of 
freedom in the energy band that is characterized by the topological invariant, i.e., the number of 
those “monopoles.” The topological insulators with non-zero topological invariants support 
conducting channels on the edges of the material, even though the bulk material is an insulator6,7. 
Numerous researches have been dedicated to understanding different classes of topology based on 
symmetry arguments8, observing various quantum Hall effects based on the theoretical 
predictions9–14, and proposing devices with novel functionality such as ferroelectric conducting 
channels15. It is fair to say that the discussions of the material topology are one of the greatest 
topics in the last decade. 
The photonic system, as a bosonic counterpart to the condensed matter, joined the cause as well16–

18. In experiments, it is usually more convenient to construct an artificial lattice for photons since 
their wavelengths range from hundreds of nanometers to several microns. In a more general 
definition of electromagnetic waves, the microwave signals are also photons with centimeter-order 
wavelengths. Indeed, some early demonstrations of the topological photonics used metallic lattices 
for microwaves19,20. Later, more devices working at visible and near-infrared frequencies were 
proposed based on optical lattices21–24. In the wake of the photonic integrated circuit technology, 
it is reasonable to believe that topological devices will finally enter the realm of practical electrical 
engineering25.   
Throughout my Ph.D. researches, I have had the chance to investigate many topological behaviors 
in the photonic systems. In this dissertation, I will break down different aspects of my researches 
and how the topology arguments in the condensed matter could bring about new opportunities in 
photonic devices. 
Chapter 1 will focus on the fundaments of topological phenomena, which is the geometric phase. 
I will discuss how to engineer the geometric phase of photons via optical antennas. The major 
result is a metasurface that works for ultraviolet frequencies. Based on the phase modulation, I will 
show applications, including beam steering and hologram. In this chapter, a circuit model will be 
proposed to explain the material choice and provide clues to enhance the efficiency of optical 
antennas. 
Chapter 2 is about the central concepts of topology, which is the topological phase and edge states. 
Specifically, I will show a particular type of optical lattices, i.e., waveguide arrays, that can 
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demonstrate the one-dimensional topological insulator. Then a formalism will be introduced that 
maps the one-dimensional lattice to two-dimensional nanoribbon, with a realization of optical 
waveguide arrays. Essentially, it is an approach to connect physical systems with different 
dimensions. It provides a powerful tool to study some exotic behaviors in the solids with a 
controlled environment using photonic devices.  
Chapter 3 is an attempt to generalize the topological phase in photonics and design a practical 
device. The typical topological phase originates from the singularity of the Berry flux. However, 
people have shown that the polarization singularities in the photonic crystal slabs, i.e., the “bound 
states in the continuum,” also carry the topological charges similar to the topological insulators26. 
This chapter contains discussions of such bound states in the photonic crystal slabs and their 
realizations in the silicon photonics. Eventually, I want to show the feasibility of applying the 
concept of topology in an integrated photonics device. 
I choose to touch upon a wide range of topics without getting too deep and buried with technical 
details. Overall, this dissertation is dedicated to providing clear physical pictures to readers who 
are hoping to carry out researches on topological photonics. Throughout three chapters, I will 
introduce many essential concepts and models, such as the Berry phase, the optical antenna model, 
the topological phase, the Su-Schrieffer-Heeger model, the optical waveguide array, photonic 
crystals, group theory, bound states in the continuum, and the coupled-mode theory. Hopefully, I 
shall give clear and accurate explanations to the best of my knowledge, provide thorough 
references, so that it could become a good starting point for the readers’ future reading and study. 
Also, it is worth mentioning that all the devices involved are based on silicon. Because of the 
constant development and refinement in silicon processing technologies, it is the best choice to 
design photonic devices using silicon or silicon-on-insulator wafers. This material is not only 
compatible with the “complementary metal oxide semiconductor” technology for mass 
productions but also has a transparency window in the near-infrared band, which is ideal for 
communication applications. Generally, silicon is the “future-proof” material for photonics. 
At last, I sincerely hope that my knowledge, experiences, and results can inspire the readers to 
perform their own researches. In that case, all my efforts would be quite worthwhile. 
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Chapter 1: Control the Geometric Phase of Light 
 

§1.1 Introduction of the geometric phase in crystals 
In recent years, the topological properties of materials have attracted much attention to the research 
community1–10. The pioneers of this field also won the 2016 Nobel Prize in Physics11–17. The field 
of topology was substantially developed in mathematics in the 20th century. The first successful 
implementation of topology in condensed matter physics is related to the explanation of anomalous 
velocity of Bloch electrons. From the Bloch theorem, the semiclassical motion of electron follows 
the velocity of Bloch wavepacket18: 

𝒗𝒗(𝒌𝒌) = 𝒓̇𝒓 =
1
ℏ
∇𝒌𝒌𝐸𝐸𝑛𝑛(𝒌𝒌) 

where k is the wavevector, En is the nth electron band. However, Karplus and Luttinger pointed out 
that in ferromagnetic materials, there is an additional term, i.e., anomalous velocity, to the 
equation19,20. The complete equation of motion is: 

𝒗𝒗(𝒌𝒌) = 𝒓̇𝒓 =
1
ℏ
∇𝒌𝒌𝐸𝐸𝑛𝑛(𝒌𝒌) + 𝒌̇𝒌 × (∇𝒌𝒌 × 𝑨𝑨𝒌𝒌) 

where Ak is defined by  

𝑨𝑨𝒌𝒌 =
1
𝑖𝑖
� 𝑑𝑑3𝒓𝒓
Ω

∙ 𝑢𝑢𝒌𝒌∗(𝐫𝐫)∇𝒌𝒌𝑢𝑢𝒌𝒌(𝒓𝒓) 

where uk is the Bloch function, and the integral is taken over the unit cell Ω. 
The anomalous velocity explains the extraordinary Hall coefficient of ferromagnetic materials. 
Phenomenologically, Ak is an effective vector potential in the k-space similar to that of an external 
magnetic field in real space: 𝑩𝑩 = ∇ × 𝑨𝑨. Besides the extraordinary Hall coefficient, this result has 
more profound indications. 
In 1995 and 1996, Chang and Niu re-derived the anomalous velocity of Bloch electrons21. They 
pointed out that Ak is an important quantity called “Berry connection.” It is related to the geometric 
phase, i.e., Pancharatnam–Berry phase, or “Berry phase,” that the electron picks up in the nth 
electron band during an adiabatic process22,23: 

𝛾𝛾𝑛𝑛 = � 𝑑𝑑𝒍𝒍 ∙ ∇𝒌𝒌 × 𝑨𝑨𝒌𝒌
𝒍𝒍

 

where l is an adiabatic path in the parameter space (specifically the k-space). It is worth noting that 
local Ak is a gauge-dependent quantity; therefore, it is not observable. However, if l is a closed-
loop c in the parameter space, the Berry phase becomes observable and well-defined. The real-
space counterpart of the Berry phase gives rise to the famous Aharonov–Bohm effect24, where the 
geometric phase is observable from interference when electrons travel around a magnetic flux.  
The most extraordinary feature of the geometric phase in the condensed matter is quantization. 
Specifically, Berry phase γn is an integer multiple of 2π, 𝛾𝛾𝑛𝑛 = 𝑚𝑚 ∙ 2𝜋𝜋, and m is the topological 
invariant of the nth electron band. In other words, the geometric phase one electron picks up in the 

(1-1) 

(1-2) 

(1-3) 

(1-4) 
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closed-loop adiabatic process is only determined by the topology of the band. This discovery 
opened up a whole field of topological insulators, topological classifications, and corresponding 
bandstructure engineering25. 

Following the thriving discussions of topological properties in the condensed matter physics, 
people also turned to the photonic system for their counterparts, and the natural platform is 
photonic crystals26. Photonic crystals are artificial periodic structures that mimic the periodic 
potentials in condensed matter. Because of the periodic scattering of the light, the photons behave 
similarly as electrons in crystals, while the resonance mode is the counterpart of the Bloch state. 
As a result, photonic crystals have their own “bandstructure” as well, which can be engineered 
thanks to the long wavelengths of photons compared to electrons. 
If we engineer the bandstructure of the photonic crystals, potentially, we can create the non-trivial 
topological states at the boundary of the photonic crystals, similar to topological insulators. There 
have been many successful demonstrations of the edge states in photonic crystals. Readers can 
refer to the topological photonics review and the references therein27–29. We need to point out that 
there are some fundamental differences between photonic crystals and solid-state crystals, mainly 
because electrons are fermions while photons are bosons. It affects some important symmetry 
arguments that are utterly important for the topological phenomena. For example, the spin quantum 
Hall effect in electronic systems is protected by the time-reversal symmetry. Breaking of the time-
reversal symmetry will lead to the breaking of spin channels and the emergence of charge channels 
at the boundary. On the contrary, photonic crystals must break, or effectively break, the time-
reversal symmetry to demonstrate the spin quantum Hall effect, where circular polarizations are 
pseudo-spins of photons. 
 

§1.2 Metasurface and phase control using geometric phase 
Besides the Berry phase hidden in the bandstructure of photonic crystals, another application of 
the geometric phase in photonic systems is metasurface30,31. In general, metasurface refers to a 
category of devices that encode spatially varying optical response in a thin layer. The target results 
include amplitude, polarization, and phase manipulation, while the phase control is the most 
common scenario to date. Optical engineers have been engineering the phase front since the first 

Figure 1-1 | a. The geometric phase γAB is a path-dependent phase when system evolves from 
A to B in the k-space. ζ is the gauge-dependent phase. b. The geometric phase is observable 
(gauge independent) if the path forms a closed-loop. 
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optical lens was made. One of the primary missions of the metasurface is to thin down the bulky 
lens and other optical components, so that beam steering, imaging, or even hologram can be 
achieved compactly. Readers can refer to the review papers and references therein. We would like 
to limit the following discussions to the phase control. 
The general idea of phase control via metasurface is realized by discrete “meta-atoms” that are 
usually subwavelength in size. Each meta-atom introduces a local phase shift as a function of 
incident polarization by design; therefore, the metasurface creates an artificial wavefront. Note 
that the meta-atoms are not supposed to crosstalk or “see” each other in a metasurface; otherwise, 
the device would be working as a photonic crystal or photonic crystal slab. 
Since each meta-atom works independently, we can model one meta-atom using a Jones matrix of 
a conventional, linearly birefringent wave plate32: 

𝐽𝐽 = 𝑅𝑅(−𝜃𝜃) �𝑒𝑒
𝑖𝑖𝜑𝜑𝑥𝑥 0
0 𝑒𝑒𝑖𝑖𝜑𝜑𝑦𝑦

� 𝑅𝑅(𝜃𝜃) 

where R is the rotation matrix, θ is the angel between local coordinates of the meta-atom and the 
laboratory coordinates. The meta-atom imposes phase shift of φx and φy on light linearly polarized 
along its “fast” and “slow” optical axis, respectively. This Jones matrix assumes the basis of 
orthogonal polarizations, which can be two linear polarizations, two circular polarizations, or even 
two elliptical polarization if they are orthogonal. 
From the Jones matrix, there are two approaches to meta-atom construction: control rotation angle 
and control local phase shift, which bring about geometric phase shift and propagation phase shift, 
respectively. Table.1-1 summarizes the differences between these two approaches. We should 
point out that these two approaches are not exclusive to each other. One can combine those two 
methods to achieve versatile functionalities32.   
 

Propagation Phase Control Geometric Phase Control 

Change φx and φy Change θ 
Independent control over two linear 

polarization incidence 
Equal and opposite control over two circular 

polarization incidence 
Based on resonance inside meta-atom Based on geometric (Berry) phase 

Oval-shape cross-section, waveguide-like 
along the propagation direction 

Bar-shape cross-section, negligible depth 
along the propagation direction 

The propagation phase control is equivalent to introducing local delay lines at each meta-atom 
position. One can engineer the geometry of each meta-atom to construct the desired phase profile 
for a particular linear polarization incidence. The geometric phase control, on the other hand, takes 
advantage of the Berry phase upon polarization change33,34. In contrast to the Berry phase in the 

Table 1-1 | The comparison between propagation phase control and geometric phase control 
in metasurfaces. 

(1-5) 



 

4 
 

condensed matter, where the electron evolves in the k-space, here the parameter space is the 
polarization space of light, which can be visualized using the Poincaré sphere.  

 

The Poincaré sphere is a parameter space that represents all possible polarizations of light, where 
the completely polarized states lie on the surface of the sphere. The north pole and south pole 
represent right-hand circular polarization (RCP) and left-hand circular polarization (LCP), 
respectively. These two polarizations span the parameter space in a similar way to the spin 
representation in quantum mechanics. RCP and LCP are two bases of the Poincaré sphere so that 
we can use two base vectors 𝑒𝑒1�  and 𝑒𝑒2�  to represent them, respectively. Then polarization status 
can be written using the spherical coordinates35: 

𝑒̂𝑒 = sin (2χ) ∙ 𝑒𝑒1� + 𝑒𝑒𝑖𝑖(2𝜙𝜙)cos (2𝜒𝜒) ∙ 𝑒𝑒2�  

where 2χ and 2ϕ are azimuthal angle and polar angle, respectively. The factors of two correspond 
to the fact that any polarization ellipse is indistinguishable from one rotated by 180°. If the meta-
atoms we use are bar structures that only respond to the polarization aligned with itself, then the 
polar angle ϕ is exactly the rotation angle θ of the meta-atom relative to the laboratory coordinates. 
The function of the meta-atoms on the geometric-phase metasurface is to change the polarization 
of incident light from one pole to the other via a specific point on the equator. The rotation angle 
θ of that meta-atom determines the path of polarization change, that polar angle ψ must match θ. 
If we can design the spatial distribution of meta-atoms, we can control the path of polarization 
change at each point. According to the theory of Pancharatnam–Berry phase, two different paths 
(polar angle difference being 2θAB) will introduce a phase difference, which is precisely half of the 
solid angle of the enclosed surface33: 

𝛾𝛾𝐴𝐴𝐴𝐴 =
1
2
Ω𝐴𝐴𝐴𝐴 =

1
2
�

𝑑𝑑𝑑𝑑
𝑟𝑟2

=
1
2
∙

2𝜃𝜃𝐴𝐴𝐵𝐵 ∙ 4𝜋𝜋𝑟𝑟2

2𝜋𝜋 ∙ 𝑟𝑟2
= 2𝜃𝜃𝐴𝐴𝐴𝐴 

Figure 1-2 | a. The angle between local coordinates of the meta-atom and the laboratory 
coordinates is θ. b. The Poincaré sphere allows us to describe any polarization using the 
spherical coordinates ϕ and χ. c. Two meta-atoms with θA and θB result in the polarization going 
through point A and B on the equator of the Poincaré sphere, respectively. The relative 
geometric phase equals half of the solid angle of the shaded area, the polar angle of which is 
2|θA – θB| = 2θAB. 

(1-6) 

(1-7) 
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In conclusion, the phase difference between two meta-atoms is simply twice the rotation-angle 
difference. It brings much convenience to device designs. 
From a mathematic perspective, the phase shift imposed by a meta-atom should have π difference 
between φx and φy. Without loss of generality, we can assume the overall Jones matrix is: 

𝐽𝐽(𝜃𝜃) = � 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� �

𝑒𝑒0 0
0 𝑒𝑒𝑖𝑖𝑖𝑖

� �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 � = � 𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃 −𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃

−𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 −𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃� 

The LCP and RCP polarization under cartesian coordinates are: 

⎩
⎨

⎧|𝐿𝐿⟩ =
1
√2

�
1

+𝑖𝑖�

|𝑅𝑅⟩ =
1
√2

�
1
−𝑖𝑖�

 

Therefore, imposing the Jones matrix to the circular-polarized light yields: 

𝐽𝐽(𝜃𝜃) ∙
1
√2

�
1

±𝑖𝑖�
=

1
√2

�
𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃 ∓ 𝑖𝑖 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃
∓𝑖𝑖 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃 − 𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃

� = 𝑒𝑒∓𝑖𝑖∙2𝜃𝜃
1
√2

�
1
∓𝑖𝑖�

 

Or: 

�𝐽𝐽(𝜃𝜃)|𝐿𝐿⟩ = 𝑒𝑒−𝑖𝑖∙2𝜃𝜃|𝑅𝑅⟩
𝐽𝐽(𝜃𝜃)|𝑅𝑅⟩ = 𝑒𝑒+𝑖𝑖∙2𝜃𝜃|𝐿𝐿⟩

 

In other words, the meta-atom can change the polarization with a 2θ additional phase. LCP and 
RCP incidence will have opposite phase delay/advance. This result is consistent with that derived 
from the Poincaré sphere. 
 

§1.3 The plasmonic response of optical antennas 
Because the meta-atoms scatter light, in other words, they “radiate” energy, we shall refer to them 
as optical antennas. Firstly, we need to understand how optical antennas work under external drive.  
Optical antennas are antennas for light. The term “antenna” was directly borrowed from the 
familiar radio frequency (RF) antennas. We shall first examine a typical RF dipole antenna36 in 
Figure 1-3. 

Figure 1-3 | a. Half-wave dipole antenna model for RF. b. Optical antenna model with effective 
wavelength scaling. 

(1-8) 

(1-9) 

(1-10) 

(1-11) 
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The dipole antenna is made of two metallic arms, with a total length of half the wavelength of the 
free-space electromagnetic (EM) wave. Note that here we only consider air as the environment, as 
the dielectric loading will increase the effective length of the antenna37. Therefore, the resonance 
condition can be satisfied with the current maxima at the center, where the feed connects to a 
coaxial cable. However, this description has a significant yet less discussed assumption, that the 
wavelength of electron resonance on the antenna equals the wavelength of EM wave in the free 
space. Unfortunately, this assumption is only correct conditionally. 
We must understand this behavior from the plasma perspective. When the incident radiation 
reaches the antenna, it drives the free electrons in the metal. Typically, the free electron gas has its 
characteristic plasma frequency as a function of electron density n: 

𝜔𝜔𝑝𝑝 = �
𝑛𝑛𝑒𝑒2

𝑚𝑚∗𝜀𝜀𝑜𝑜
 

where e is the electron charge, m* is the electron effective mass, and εo is the dielectric constant 
of vacuum38. For a typical metal, the plasma frequency is at the order of 1016 Hz or 104 THz, far 
beyond the RF frequency that usually ranges from 0.1 GHz to 10 GHz.  
The plasma frequency describes how well the electron “keeps up” with the incident EM wave. 
When the incident frequency is very low compared to plasma frequency, such as the RF antenna 
case, the electrons in the metal can completely keep up with the incident wave. It is worth noting 
that under low-frequency condition (DC-limit), the metal behaves as a “good conductor” because 
induced current J and incident electric field Ein has π/2 phase difference, so the dissipation energy 
power is 1

2
𝑅𝑅𝑅𝑅(𝑱𝑱∗ ∙ 𝑬𝑬𝒊𝒊𝒊𝒊) = 0. 

However, when the driving frequency increases, the electrons will have trouble “keeping up” with 
the driving field because of their inertia, and the phase difference will decrease. Therefore, the 
dielectric loss will emerge (here we still refer to this dissipation as “dielectric loss” even though 
the object is metallic because we intend to include the behavior into the complex permittivity). If 
we refer to the dissipation power equation above, the two vectors are no longer perpendicular to 
each other. Eventually, if the driving frequency reaches the plasma frequency of the free electron 
gas, the phase difference becomes 0, all incident energy will be lost to heat dissipation. 

(1-12) 

Figure 1-4 | Dispersion of surface plasma polariton (blue curve) assuming environment is 
vacuum. Black dashed line is the dispersion in free space.  
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To be more specific, the electron oscillation on the antenna is called surface plasma polariton, or 
SPP39. It describes the collective oscillation, i.e., quasi-particle, on the surface of metal when 
coupled with EM wave. SPP is different from bulk plasma, where the electrons oscillate inside the 
metal body, mainly because of the dispersion relation. From the schematic dispersion plot shown 
in Figure 1-4, at the long-wavelength limit, the SPP mode is very close to the free space dispersion 
line. Therefore, it explains why the wavelength of SPP on the RF antenna equals the wavelength 
of the EM wave in the free space. 
However, as the frequency rises, the SPP dispersion deviates from the free space and approaching 
the asymptote, which the surface plasma frequency ωsp: 

𝜔𝜔𝑠𝑠𝑠𝑠 =
𝜔𝜔𝑝𝑝

�1 + 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒
 

where εenv is the relative permittivity of the environment. If we assume the environment is air, then 
the relation is simply 𝜔𝜔𝑠𝑠𝑠𝑠 = 𝜔𝜔𝑝𝑝

√2
 . 

It shows that when the frequency approaches ωsp, the propagation constant can be huge, and the 
SPP wavelength is significantly smaller than λo. Thus, if we design a “half-wave antenna” in the 
optical frequency with metals, the antenna length should be smaller than λo/2. In the hope of 
carrying out the same methodology as in RF antenna design, the optical antenna community came 
up with an empirical approach called “effective wavelength scaling”40. It considers the inertia of 
electron at high frequency and scales the λo to an effective wavelength λeff: 

𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑐𝑐1 + 𝑐𝑐2(
𝜆𝜆𝑝𝑝
𝜆𝜆𝑜𝑜

) 

where λp is the plasma wavelength, c1 and c2 are fitting parameters.  
This method was well-received, especially when designing metallic optical antennas for near-
infrared and visible frequencies. However, it fails to deliver a physical picture in terms of how the 
change of permittivity affects the wavelength scaling. Also, dielectric materials were not included, 
which makes this method less universal. The RF antenna theory is beyond just half-wave resonance. 
In our works, we intend to build a more generic and specific model that is based on the RF antenna 
theory but works for both metal and dielectric across the spectrum. Hopefully, it provides a new 
perspective for optical antenna modeling. 
Before we discuss the antenna model, it is beneficial to clarify the conventions of complex (relative) 
permittivity and complex conductivity. They both can be written in forms of the real part and the 
imaginary part: 

𝜀𝜀 = 𝜀𝜀𝑟𝑟 + 𝑖𝑖𝜀𝜀𝑖𝑖 ;  𝜎𝜎 = 𝜎𝜎𝑟𝑟 + 𝑖𝑖𝜎𝜎𝑖𝑖 
In general, the goal is to describe the electrons’ response under EM excitations. As discussed 
earlier in this section, the response can be separated into two parts: one is called “displacement 
current” that has π/2 phase difference with the incident field, and it does not introduce loss; the 
other is called “conduction current” that is in-phase with the incident field, and it causes conduction 
and energy dissipation. 

(1-13) 

(1-14) 

(1-15) 
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There are three conventions to describe this behavior, and they can be readily converted to each 
other using Ampere’s law: 

 
 εr εi σr σi 

Convention 1 Displacement 0 Conduction 0 
Convention 2 Displacement 𝜀𝜀𝑖𝑖 = 𝜎𝜎𝑟𝑟/(𝜔𝜔 ∙ 𝜀𝜀𝑜𝑜) 0 0 

Convention 3 0 0 Conduction 𝜎𝜎𝑖𝑖 = 𝜔𝜔𝜀𝜀𝑜𝑜(1 − 𝜀𝜀𝑟𝑟) 

 
First, use εr to describe displacement current, use σr to describe conduction current. It is the most 
intuitive method. Second, use εr to describe displacement current, use εi to describe conduction 
current. It is convenient for dielectrics where the loss is small. Third, use σi to describe 
displacement current, use σr to describe conduction current. It is popular among studies of metals 
under low frequency, where the conduction dominates. Table 1-2 summarizes the three 
conventions and their conversions. We will use the second convention throughout the following 
discussions. 
 

§1.4 The circuit model of optical antennas 
Achieving a high-performance metasurface requires investigating the scattering efficiency of an 
optical antenna41, and we need a mathematical model to do so. The optical antenna model we 
investigate has the shape of a nanorod. Assuming the cross-section is small compared to length, 
we can apply the thin-wire antenna model borrowed from RF antennas36. 

 

(1-16) 

Table 1-2 | The three conventions describing displacement and conduction currents. 

Figure 1-5 | a. The circular-polarization can be modeled as linear-polarization along the 
antenna under thin-wire model. b. The circuit model of the optical antenna in the shape of a 
nanorod.  
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Since the cross-section is small (thin-wire), we shall only consider the responses to the electrical 
field that is aligned with the bar. As discussed in previous sections, the incident light is circular-
polarized. Because the circular-polarized light can be decomposed to two linear-polarized light, it 
is equivalent to consider the excitation with linear-polarized incidence Ex (Figure.1-5(a)). The 
scattered Ex will have a π phase delay and become the cross-polarization of the output (with the 
un-modulated Ey component). Therefore, the total efficiency of the optical antenna is the scattering 
efficiency of the Ex component. In this section, we will only consider linear excitation. 

Parameter Definition 

Cenv Capacitance from the environment 
Rrad Radiation resistance 
Lf Self-inductance 

Zmat Material impedance 
Zo Vacuum impedance, 377 Ω 

Prad Radiation (Scattering) power 
l, w, h Length, width, and height of nanorod 

a Lattice constant in metasurface 

 
To simplify the derivation, we define all the parameters in Table.1-3. The circuit model42 for the 
optical antenna is shown in Figure.1-5. In general, we inherit the radiation resistance and self-
inductance as in the RF antenna circuit model. The critical modification is the material impedance 
since now the antenna material is no longer a good conductor nor a lossless dielectric. We have to 
include a more general term Zmat to describe the material response. 
The incident field is equivalent to an AC voltage source applied to the nanorod: 

V = 𝑙𝑙 ∙ 𝐸𝐸𝑥𝑥 

Rrad and Lf are only determined by the antenna geometry43: 

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑍𝑍𝑜𝑜

2𝜋𝜋𝑠𝑠𝑠𝑠𝑠𝑠2(𝑘𝑘𝑘𝑘2 )
�𝛾𝛾𝑒𝑒 + ln(𝑘𝑘𝑘𝑘) − 𝐶𝐶𝐶𝐶(𝑘𝑘𝑘𝑘) +

1
2 sin(𝑘𝑘𝑘𝑘) [𝑆𝑆𝑆𝑆(2𝑘𝑘𝑘𝑘) − 2𝑆𝑆𝑆𝑆(𝑘𝑘𝑘𝑘)] +

1
2 cos (𝑘𝑘𝑘𝑘)[𝐶𝐶𝐶𝐶(2𝑘𝑘𝑘𝑘) − 2𝐶𝐶𝐶𝐶(𝑘𝑘𝑘𝑘) + 𝛾𝛾𝑒𝑒 + 𝑙𝑙𝑙𝑙 �

𝑘𝑘𝑘𝑘
2 �]� 

𝐿𝐿𝑓𝑓 =
𝑍𝑍𝑜𝑜

2𝜋𝜋𝜋𝜋𝑠𝑠𝑠𝑠𝑠𝑠2(𝑘𝑘𝑘𝑘2 )
�𝑆𝑆𝑆𝑆(𝑘𝑘𝑘𝑘) +

1
2 cos(𝑘𝑘𝑘𝑘) [2𝑆𝑆𝑆𝑆(𝑘𝑘𝑘𝑘) − 𝑆𝑆𝑆𝑆(2𝑘𝑘𝑘𝑘)] +

1
2 sin (𝑘𝑘𝑘𝑘)[𝐶𝐶𝐶𝐶(2𝑘𝑘𝑘𝑘) − 2𝐶𝐶𝐶𝐶(𝑘𝑘𝑘𝑘) + 𝐶𝐶𝐶𝐶 �

2𝑘𝑘𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒2

𝑙𝑙 �]� 

where Si(x) and Ci(x) are sine and cosine integral functions, respectively, γe is the Euler’s constant 
(𝛾𝛾𝑒𝑒 = 0.57721566 …), reff is the effective radius of the nanorod that can be fitted, k is the 
wavevector in the vacuum. We can also combine these two parts as radiation impedance:              

𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑖𝑖𝑖𝑖𝐿𝐿𝑓𝑓 

(1-17) 

(1-18) 

(1-19) 

Table 1-3 | The definitions of parameters used in the circuit model. 
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The material impedance (i.e., complex resistance) is calculated from complex conductivity:           

∇ × 𝑯𝑯 = −𝑖𝑖𝑖𝑖𝜀𝜀0𝜀𝜀𝑬𝑬 = −𝑖𝑖𝑖𝑖𝜀𝜀0𝑬𝑬 + 𝜎𝜎𝑬𝑬 
Therefore,  

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 =
1
𝜎𝜎
∙
𝑙𝑙
𝐴𝐴

=
𝑖𝑖

𝜔𝜔(𝜀𝜀 − 1)
∙

𝑙𝑙
𝑤𝑤 ∙ ℎ

 

where A is the nanorod cross-section, Re(Zmat) is the familiar Ohmic resistance from εi, while 
Im(Zmat) can be positive or negative depends on εr. If εr>1, the material is capacitive, which is 
typical for dielectrics; if εr<1, the material is inductive, which is typical for metals. Therefore, this 
circuit model accommodates for both metal and dielectrics, which is better than effective 
wavelength scaling.  
The power scattered from the nanorod is equal to the power “dissipated” at Rrad, which is: 

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 = (
𝑉𝑉

𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚
)2 ∙ 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟 = (

𝐸𝐸𝑥𝑥 ∙ 𝑙𝑙
𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚

)2 ∙ 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟 

In the real device, the substrate is silica with a refractive index of 1.5. According to Fermi’s Golden 
Rule18, the scattering probability is proportional to the refractive index of the environment. 
Correcting that factor gives us the forward scattering power to the air: 

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = (

𝐸𝐸𝑥𝑥 ∙ 𝑙𝑙
𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚

)2 ∙ 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟 ∙
1

2.5
 

The incident power on each unit cell can be calculated from the time-averaged Poynting vector: 

𝑃𝑃𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
1
𝑍𝑍𝑜𝑜
𝐸𝐸𝑥𝑥2 ∙ 𝑎𝑎2 

The total forward scattering efficiency: 

𝜂𝜂𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑃𝑃𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
=

1
2.5

× �
𝑙𝑙
𝑎𝑎�

2

∙
𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟 ∙ 𝑍𝑍𝑜𝑜

(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚)2
 

ηforward is also the expected conversion efficiency of the metasurface. 
We can also express the efficiency of a single antenna in terms of scattering cross-section: 

𝜎𝜎𝑠𝑠 =
𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟
=

1
2.5

×
𝑙𝑙
𝑤𝑤
∙

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟 ∙ 𝑍𝑍𝑜𝑜
(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚)2

 

where is Prod is the incident power on the footprint of the antenna: 

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 =
1
𝑍𝑍𝑜𝑜
𝐸𝐸𝑥𝑥2 ∙ 𝑙𝑙 ∙ 𝑤𝑤 

 

§1.4 Choice of material and fabrication 
Previously, the metasurface based on the geometric phase had many successful implementations 
targeting a broad spectrum range from THz to visible44–49. The primary materials of choice are 
metals with good conductivity, such as gold (Au), silver (Ag), and aluminum (Al). From the 

(1-20) 

(1-21) 

(1-22) 

(1-23) 

(1-24) 

(1-25) 

(1-26) 

(1-27) 
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plasmonic perspective, high electron density leads to high plasma frequency, which needs to be 
significantly higher than the incident light to result in functional efficiency. However, this formula 
does not work for ultraviolet (UV) light (λ<400 nm) because of material limitations. Gold has an 
interband transition that makes it very absorbing for light whose wavelength is short than 500 nm. 
Silver has deteriorated performance for wavelengths small than 310 nm as well. Al potentially has 
a better performance for UV, but it suffers from oxidation-induced degradation and fabrication 
challenges because of large grain size50. Therefore, the demonstration of metasurface for UV based 
on the geometric phase was lacking. 
Based on the circuit model argument, however, the high efficiency does not require a metallic 
material. If a dielectric material with εr>1 but has a low overall impedance Zmat, then the radiation 
power will still be high. Without loss of generality, we use the circuit model to calculate the 
scattering cross-section of a single antenna as a function of material permittivity ε. Note that the 
incident wavelength is 380 nm, the length, width, and height of the nanorod are 130 nm, 30 nm, 
and 30 nm, respectively. These parameters are chosen to represent the actual device used in the 
experiment. 

 
We can observe a trend that a dielectric material with large εi can potentially have high efficiency. 
It is a bit counter-intuitive because the εi usually has a positive correlation with loss in dielectrics. 
We should understand this behavior using the overall impedance. The actual parameter responsible 
for dielectric loss is Ohmic resistance. From Equation 1-21, the rigorous expression for Ohmic 
resistance is: 

𝑅𝑅Ω = 𝑅𝑅𝑅𝑅(𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚) =
𝜀𝜀𝑖𝑖

(𝜀𝜀𝑟𝑟 − 1)2 + 𝜀𝜀𝑖𝑖2
∙

𝑙𝑙
𝜔𝜔 ∙ 𝑤𝑤ℎ

 

The positive correlation between εi and RΩ is valid when εr >> εi. However, if εr is small, the 
correlation can be negative, which functions in our favor. 
Fortunately, for the wavelength range of interest, single-crystal silicon (Si) happens to be the right 
candidate. Figure 1-6 shows the permittivity of single-crystal Si in UV, which has clear Lorentz 
peaks because of the interband transition. Also, the processing of Si is very convenient in modern 
cleanrooms, which makes the device more feasible. 

Figure 1-6 | a. The scattering cross-section plot as the function of material permittivity. b. The 
permittivity dispersion of single-crystal Si in the wavelength range of interest. The scatters are 
measured results, while the curves are Lorentz model fits. 

(1-28) 



 

12 
 

However, there is still one technical challenge remains: how to obtain a single crystal Si film on a 
UV-transparent substrate, e.g., fused silica? We developed a transfer process like that used in the 
2D-material community to address this issue51. The schematic figure in Figure 1-7 shows the key 
steps in the transfer process. We started from a transmission electron microscope grid (SiMPore 
Inc), which was back-etched on a silicon-on-insulator (SOI) wafer to form a suspending single-
crystal Si film (~35 nm thickness). We punctured the corners of the Si window with tungsten probe 
tips, then applied a poly(dimethylsiloxane) (PDMS) stamp under controlled temperature. The Van 
der Waals force between PDMS and Si is large enough that we can mechanically break the film at 
the window boundaries. Then the film is transferred to a quartz substrate. The size of the 
transferred Si film is approximately 90 um by 90 um. Figure 1-7 also shows an optical image of 
the sample after this transfer process. Subsequently, standard electron beam lithography (EBL) 
and reactive ion etching (RIE) were used to pattern the nano-antennas with the optimized 
parameters. 

 

§1.5 Si metasurface for the ultraviolet light 
We demonstrated two metasurface devices for broad-band UV applications51. The first is a beam 
steering device; the second is a hologram phase plate. In the demonstration of UV beam steering, 
each unit cell of the metasurface is composed of eight optimized Si antennas with different 
orientation angles lying on a quartz substrate, as illustrated in Figure 1-8(a). The distance between 
the centers of adjacent antennas is 160 nm. The length, width, and height of the fabricated Si 
antenna are 140±2 nm, 30±2 nm, and 35±2 nm, respectively.  

Figure 1-7 | The transfer process of single-crystal Si membrane. 

Figure 1-8 | a. The schematic of beam-steering metasurface. Insert shows the SEM image of 
the actual sample. The white dashed box shows one unit cell with eight antennas. b. Beam 
steering image for different wavelengths. c. efficiency plot with circuit model fitting. 



 

13 
 

 
Each unit cell creates 2π phase gradience along one direction, leading to a bending angle of 
approximately 13.1 degrees at 290 nm wavelength and 17.3 degrees at 380 nm. The measured 
bending angle for different wavelength follows the theory well (Figure 1-9).  
The conversion efficiency, which is defined as the ratio of the power of the bent beam to the total 
incident power, coincides well with the circuit model calculations (Figure 1-8(c)) Over the 
wavelength range from 280 nm to 410 nm, the conversion efficiency maintains above 7% and the 
highest efficiency reaches around 15% at 380 nm. Following discussions in the literature, we also 
plot the “diffraction efficiency,” which is the ratio between the power of the bent beam over that 
of the unmodulated beam. It is a useful parameter when the loss on the device itself is not a big 
concern. Overall, it is the first successful demonstration of the beam steering of UV light based on 
the geometric phase. It proves the feasibility of using dielectric material with large permittivity, 
real and imaginary, as the scattering medium. 
Also, the manipulation of (relative) phase for each antenna allows the implementation of 
computer-generated holography (CGH). We demonstrated holographic lithography using UV 
metasurfaces. The device operated at the high-efficiency 380 nm wavelength, which is also close 
to the mercury i-line, allowing the utilization of various widely used photoresists (e.g., S1800 
series, SPR220 series, and AZ 7800 series). The target image is a “CAL” pattern (UC Berkeley 
logo), and the pixel resolutions of both the metasurface and the target image were designed to be 
300 × 300. An improved Gerchberg-Saxton algorithm was used to generate the discrete phase 
distribution (32 phase levels covering 2π)52. Figure 1-10(b) shows a high-resolution SEM image 
of the fabricated metasurface for holography. The optical setup is depicted in Figure 1-10(a), and 
a photoresist (S1805) was placed at the imaging plane of the sample. To effectively diminish laser 
speckle noises, we placed a 4f system in the optical path with a rotating diffuser in the Fourier 
plane. It reduces temporal coherence while maintaining spatial coherence. An imaging system was 
set up to image the hologram by a camera (Figure 1-10(e)). After development, the exposed pattern 
on S1805 showed high fidelity of the lithography process (Figure 1-10(f)), which further proves 
the feasibility of UV hologram using Si metasurface. 
 

Figure 1-9 | a. Beam steering schematic and simulation. b. The calculation of beam steering 
angle. λ is the wavelength, a is the lattice constant, which is 160 nm.  
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Figure 1-10 | a. Optical setup for holographic lithography. BP: band pass filter; L1 ~ L5: lenses; 
M1 & M2: mirrors; LP: linear polarizer; QWP: quarter wave plate; OL1 & OL2: objective lenses; 
PR: photoresist (S1805). b. SEM image of the metasurface sample. Scale bar is 500 nm. c. 
Phase distribution calculated with the improved Gerchberg-Saxton algorithm. Color bar is the 
phase. d. Calculated target pattern. e. Hologram imaged by camera. f. Pattern transferred to 
photoresist after development. Scale bar is 10 um.  

Figure 1-11 | a. Reflective metasurface design and efficiency plot. b. Double-bar metasurface 
design and efficiency plot.  



 

15 
 

It is worth mentioning that this device still has room for improvement in terms of efficiency. If 
process permits, one can design the Si metasurface to work at reflection mode46. Essentially, a 
resonance cavity with the carefully designed size is formed, and light can resonate and interact 
with the antenna multiple times. This design is achievable either via a reflective substrate (e.g., Al) 
where light resonates between the substrate and antenna layer or via a double-bar structure where 
light resonates between two antenna layers (Figure 1-11). We used numerical simulations to 
confirm high efficiency from both designs, which leaves an opportunity for future improvements. 
 

§1.6 Fluorescence enhancement with Si optical antennas 
In the previous sections, we elaborate on the applications of Si optical antennas used in the UV 
spectrum. Specifically, we take advantage of the geometric phase upon polarization conversion. 
In the final section of this chapter, we want to include another important application of optical 
antennas: near-field enhancement. This application is not related to the geometric phase, so this 
section serves as a supplementary part of this chapter and completes the discussion of Si optical 
antennas.  
One of the original motivations of optical antenna researches was to enhance light-matter 
interaction41,53. It is pivotal in applications such as surface-enhanced Raman spectroscopy (SERS) 
and surface-enhanced fluorescence. On the one hand, Raman scattering is the inelastic scattering 
between lattice phonon and probing photon, which is a weak interaction; on the other hand, many 
biomaterials have low intrinsic quantum efficiencies. Thus, it is usually challenging to observe 
such weak light-matter interactions, especially if the sample has a low damage threshold54. 
When appropriately designed, optical antennas can enhance the Raman or fluorescence signals by 
one to three orders55,56. From the field distribution perspective, optical antennas can focus the 
probe beam and creates a high field intensity at the location of interest. Besides, optical antennas 
provide a high (local) optical density of states, so that we can “pump out” more emitting photons. 
In the following discussion, we want to focus on the fluorescence enhancement with UV excitation. 
To understand the full picture of fluorescence enhancement, we need to borrow the concept of 
impedance matching in RF antennas36. In the transmission line theory, all the electrical 
components can be modeled using the complex impedance, so that energy reflection/ transmission, 
as well as phase shift, can be conveniently calculated. The typical coaxial cable has a characteristic 
impedance of 50 Ω or 75 Ω, while the characteristic impedance of vacuum is 𝑍𝑍𝑜𝑜 = 1

𝜀𝜀𝑜𝑜𝑐𝑐
= 377 Ω. 

This impedance mismatch would cause a significant energy reflection at the interface and low-
efficiency transmission. The device that mitigates this problem is the antenna. Therefore, the 
antenna should be considered as an impedance-matching device between two media. So what is 
precisely the antenna’s impedance? It depends on how one “looks” at it. If one looks into the (on-
resonance) antenna from the transmission line side, the antenna will appear to be a resistor with 
only the radiation resistance, which is close to the impedance of a transmission line. If one looks 
into the (on-resonance) antenna from the vacuum, then the antenna has a resistance of 377 Ω. It is 
like transformers where the voltage depends on the side one “looks into.” 
In the applications of fluorescence enhancement, optical antennas help match the impedance 
between the molecule and vacuum42,57,58. The emission of a typical fluorescence molecule is in the 
visible spectrum, but the size of the molecule is usually several nanometers. It can be modeled as 
a small oscillating dipole with the size of a few nanometers. The difference between the molecule 
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size and wavelength causes a considerable impedance mismatch. The molecule will have a 
minimal radiation resistance and a large imaginary impedance so that its fluorescence efficiency 
can be small. However, if an optical antenna is introduced, it increases the field intensity in the 
excitation process, while physically “enlarge” the size of the dipole in the emission process. Even 
with the cost of loss in the antenna itself, the overall fluorescence efficiency can be significantly 
enhanced. 
Unfortunately, many biomolecules need to be excited via mid- to deep-UV light. For example, 
tryptophan, as one of the building bricks of proteins, has excitation and emission peaks around 280 
nm and 370 nm, respectively (in polar solutions such as water)59. The tryptophan molecules in 
debris disintegrated from the protein can be the indicator of target protein in fluorescence 
measurements. However, the intrinsic quantum yield of tryptophan is not high enough compared 
to dedicated fluorescence dyes, so that using optical antennas to enhance its fluorescence without 
labeling have been highly desirable. 
Following the same argument in the previous sections, noble metals fail to work efficiently in the 
UV, while the Si can be a good candidate material. It is worth noting that there have been some 
demonstrations of using Al particles for enhancement60–63, but this solution remains less practical 
because of fabrication precision and material degradations. We will use the tryptophan as the target 
molecule and optimize the antenna geometry to enhance its overall fluorescence efficiency.  

 
Considering the feasibility of EBL fabrications, the width, height, and gap of the Si antenna are 
set to be 30 nm, 40 nm, and 15 nm, respectively. We established two circuit models for the 
receiving and emission processes, respectively42. Note that we rewrite the Re(Zmat) and Im(Zmat) as 
RΩ and Xmat, respectively, for the convenience of discussion. In the receiving circuit, the source is 
an AC voltage source, assuming the incident light is linear polarized, which is the same as the 
metasurface: 

𝑉𝑉𝑖𝑖𝑖𝑖 = 𝑙𝑙 × 𝐸𝐸𝑖𝑖𝑖𝑖 

In the emission circuit, the molecule is modeled as a current source42. This oscillating dipole 
induces current in the antenna body, hence emits photons. 

Figure 1-12 | a. Rendering of Si optical antenna with a tryptophan molecule in the gap. b. The 
circuit model for receiving and emission processes. Ccenter: the capacitance in the gap; Rspread: 
the spread resistance near the gap; xo: size of the molecule; g: gap size; q: electron charge; ω: 
emission frequency. The rest of the definitions can be found in Table 1-3. 

(1-29) 
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We shall follow the established formalism to calculate the fluorescence enhancement for receiving 
and emission processes64. For the receiving mode, enhancement is given by the electric power 
density: 

𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 =
|𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|2

|𝐸𝐸𝑖𝑖𝑖𝑖|2
 

where Ecenter is the electric field in the gap, and Ein is the incidence electric field.  
For the emission process, enhancement comes from the increase of quantum yield: 

𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒 =
𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟

𝑃𝑃𝑜𝑜�
𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟

𝑃𝑃𝑜𝑜� + 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠
𝑃𝑃𝑜𝑜� + (1 − 𝜂𝜂𝑜𝑜)

𝜂𝜂𝑜𝑜�
×

1
𝜂𝜂𝑜𝑜

 

where Prad is the radiation power, Ploss is the power lost in Rspread and RΩ, Po is the power radiated 
from the emitter without an antenna, ηo is the intrinsic quantum yield of the emitter, which is 0.2 
for tryptophan. The emitter in the gap is considered as a short dipole whose moment is aligned 
with the antenna. Additionally, the radiation efficiency of the emission process can also be defined 
conveniently: 

𝜂𝜂𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
 

Note that the fabricated Si rods have round tips, so does the model we used in the calculation. It 
reduces center capacitance and increases the corresponding center impedance compared to flat-
ends case. This structure will increase the voltage drop across the Ccenter in the receiving process, 
and the shunt current that goes through it in the emission mode is minimized. Overall, round tips 
in the dipole antennas are beneficial for fluorescence enhancement. 
Finally, the total fluorescence enhancement is: 

𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 × 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒 

We used CST Studio Suite® to simulate the fluorescence enhancement process. The Ecenter, Prad, 
Ploss, and Po can all be extracted from the simulations directly. We summarize the results given by 
the circuit model and CST simulations in Figure 1-13.  
The simulation results and the circuit model coincide very well. It shows that we can have accurate 
analytical predictions about antenna performance. The circuit model goes beyond the plasmonic 
model that is usually found in optical antenna literature. It applies to both dielectric and metallic 
materials and provides more insight into the physical origins behind antenna performance. 
When appropriately designed, the Si antenna can give ~90 times of total fluorescence enhancement 
to tryptophan. We also used Al antennas as a material benchmark and plotted in the same figure. 
Surprisingly, the Si outperforms Al even though it is less practical to fabrication Al nano-antennas 
in the first place. The peak emission efficiency of the Al antenna can be higher than the Si antenna, 
but the receiving enhancement dominates and crowns the Si. 
We can calculate the exact impedance of Si and Al at the receiving and emission wavelengths. The 
real and imaginary parts of normalized Zmat are listed in Table 1-4. 

(1-30) 

(1-31) 

(1-32) 

(1-23) 
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×102 (Ω∙nm) 
𝜆𝜆 = 280 𝑛𝑛𝑛𝑛 𝜆𝜆 = 370 𝑛𝑛𝑛𝑛 

𝑅𝑅Ω ∙ 𝐴𝐴 𝑙𝑙�   𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝐴𝐴 𝑙𝑙�   𝑅𝑅Ω ∙ 𝐴𝐴 𝑙𝑙�   𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝐴𝐴 𝑙𝑙�   

Si 3.74 2.22 2.49 -3.70 
Al 2.01 18.01 2.08 13.51 

 
From the table above, we can conclude, although the Al is less lossy than Si, its large reactance 
limits the induced current in the antenna arms and eventually compromises the enhancement. 
Another factor worth mentioning is that the Si is capacitive in the emission mode (Xmat<0). 
According to the effective wavelength scaling, the extra capacitance will increase the physical size 
of the antenna for a particular resonance wavelength40. Longer antenna length not only relaxes the 
fabrication requirement but also minimizes the Wheeler’s limit, which is inversely proportional to 
the antenna volume65. Wheeler’s limit gives the minimum achievable quality factor for the antenna. 

Table 1-4 | The normalized material impedances of Si and Al, where A is the cross-section of 
the nanorod, l is the length of the nanorod. 

Figure 1-13 | a. Optimizing the antenna length to achieve the maximum enhancement. b. Total 
enhancement factor of Si and Al antennas. c. Radiation efficiency of Si and Al antennas. d. 
Total enhancement factor of the Si antenna as a function of intrinsic quantum efficiency. 
Tryptophan (ηo=0.2) is marked by the red dot. 
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Lower the limit will result in larger antenna bandwidth. In Figure 1-13(c), the Si antenna has a 
much broader radiation efficiency peak than the Al antenna. It is of great importance when the 
excitation and emission wavelengths are far apart, that larger bandwidth will allow one antenna 
length to serve both processes better.  
Since the fluorescence enhancement is a function of the intrinsic quantum yield (Equation 1-31), 
it is necessary to investigate their relationship to get a complete picture of antenna performance. 
We fix the Si antenna length at 150 nm, which is the optimal length from previous calculations, 
then plot the total enhancement as a function of intrinsic quantum yield. In Figure 1-13(d), the 
orange shade represents emission enhancement, while the blue shade shows emission quenching. 
The dielectric loss in antenna arms could counteract the enhancement for the high-efficiency 
emitters (>60% in our case). When the intrinsic quantum yield drops, the enhancement factor 
increases rapidly. Potentially, our Si antenna can reach up to three orders of total fluorescence 
enhancement with very low efficient emitters. This result has practical implications59: first, the 
quantum yield of biomolecules, tryptophan included, is a function of solution pH, so that the 
change of enhancement provides extra information regarding the chemical environment; second, 
in the applications involving very inefficient emitters, such as DNA bases66, the Si optical antenna 
can be a potent tool. 
In conclusion, we investigate the application of Si optical antennas in this section. Our circuit 
model successfully predicts the performance of the antenna and provides quantitative explanations 
from the perspective of material properties. Overall, Si optical antennas can have great potential 
in fluorescence enhancement, where the UV light is required to excite the fluorophore. The 
fabrication convenience and biology compatibility would make it a more attractive approach. 
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Chapter 2: Topological States in Optical Waveguide Arrays 
 

§2.1 Topological states in Su-Schrieffer-Heeger model 
In Chapter 1, we have discussed engineering the wavefront of light using a metasurface, which can 
generate arbitrary geometric phase differences from the orientations of individual nano-antennas. 
However, in the crystals, the quantized geometric phase is usually the subject of investigations. As 
described in Figure.1-1, in an adiabatic process, the geometric phase acquired by the electron is 
gauge dependent, unless the process is a closed-loop in the parameter space.  
Specifically, in a 1D crystal, the geometric phase, i.e., the Zak phase67,68 should be an integer 
multiple of π if the electron evolves through a closed-loop: 

𝜑𝜑Zak = 𝑚𝑚 ∙ 𝜋𝜋 
where m is called the Chern number of the system, which is a topological invariant. We shall limit 
the following discussion to 1D and visualize the Chern number. 
The model we use here is the Su-Schrieffer-Heeger (SSH) model69,70. It is the simplest model with 
non-trivial topological states based on polyacetylene. Firstly, we shall consider a 1D crystal with 
carbon (C) atoms using the tight-binding model.  

If the atoms are equally spaced with a real hopping coefficient of w between nearest neighbors 
Figure 2-1(a), the dispersion relation is: 

𝐸𝐸(𝑘𝑘) = −2𝑤𝑤 ∙ cos (
𝑘𝑘𝑘𝑘
2

) 

Figure 2-1 | a. Equally spaced 1D atomic chain. b&c. Dimerized 1D atomic chain, 
corresponding to non-trivial and trivial topological states, respectively. d&e. The parameter 
spaces show the trace of vector d as k sweeps the Brillouin zone. In the non-trivial state (d), 
the trace encloses the origin, while in the trivial state (e) it does not. 

(2-2) 

(2-1) 
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However, because of Peierls instability, the system tends to go through a dimerization process 
(Peierls transition), where the atomic chain becomes Figure 2-1(b) or Figure 2-1(c). The new 
dispersion relation is: 

𝐸𝐸(𝑘𝑘) = ±�𝑣𝑣2 + 𝑤𝑤2 + 2𝑣𝑣𝑣𝑣 ∙ cos (𝑘𝑘𝑘𝑘) 

It opens an energy gap of 2|𝑣𝑣 − 𝑤𝑤| so that the occupied states below the Fermi level will have 
lower total energy. 
From the bulk crystal perspective or using the periodic boundary condition, Figure 2-1(b) and 
Figure 2-1(c) are the same. However, the topological states of them are different. We can set the 
on-site energy to be 0 and write down the Hamiltonian after dimerization: 

𝐻𝐻(𝑘𝑘) = � 0 𝑣𝑣 + 𝑤𝑤𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖
𝑣𝑣 + 𝑤𝑤𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 0

� 

Like any two-band model, we can also write down this Hamiltonian using Pauli matrices: 

𝐻𝐻(𝑘𝑘) = 𝒅𝒅 ∙ 𝝈𝝈 = 𝑑𝑑𝑥𝑥 ∙ 𝜎𝜎𝑥𝑥 + 𝑑𝑑𝑦𝑦 ∙ 𝜎𝜎𝑦𝑦 + 𝑑𝑑𝑧𝑧 ∙ 𝜎𝜎𝑧𝑧 

�
𝑑𝑑𝑥𝑥 = 𝑣𝑣 + 𝑤𝑤 ∙ cos (𝑘𝑘𝑘𝑘)
𝑑𝑑𝑦𝑦 = 𝑤𝑤 ∙ sin (𝑘𝑘𝑘𝑘)

𝑑𝑑𝑧𝑧 = 0
 

As the wavenumber k runs through the entire Brillouin zone (BZ), the endpoint of the vector d(k) 
traces out a closed circle of radius w on the dx, dy plane, centered at (v, 0). If v<w (Figure 2-1(b)), 
the path encloses the origin (Figure 2-1(d)); if v>w (Figure 2-1(c)), then the path excludes the 
origin (Figure 2-1(e)). The bulk winding number counts the number of times the loop winds around 
the origin of the dx, dy plane. The winding number is also the topological invariant (Chern number) 
of the system. Therefore, now we have two topological states: 
 
 

Note that in this derivation, we have assumed the crystal to have N unit cells with v as the hopping 
coefficient at the edges. When the atomic chain is terminated by a weak bond, we can expect it to 
be the non-trivial topological phase. From the argument of bulk-boundary correspondence, the 
non-zero bulk winding number indicates the existence of the edge states. 
Indeed, the edge atom can host a zero-state in the non-trivial case, that the exact energy is at the 
order of 𝑒𝑒−𝑁𝑁∙𝑙𝑙𝑜𝑜𝑔𝑔(𝑤𝑤𝑣𝑣 ) , and a characteristic decay length of 1/𝑙𝑙𝑙𝑙𝑙𝑙(𝑤𝑤

𝑣𝑣
) . Edge modes decay 

exponentially from the boundaries to the bulk: the left edge mode only exists on A sites, while the 
right edge mode only exists on B sites. The exact derivation of the edge mode can be found in the 
first chapter of the textbook70 or some helpful introductory papers71. In this chapter, we intend to 
focus on the realization of the topological states in the photonic systems. 
 

𝑣𝑣 < 𝑤𝑤 𝑣𝑣 > 𝑤𝑤 

Chern number: 1 Chern number: 0 
Topological non-trivial Topological trivial 

Table 2-1 | The comparison between two topological states. 

(2-3) 

(2-4) 

(2-5) 

(2-6) 
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§2.2 Topological states in the optical waveguide arrays 
Although polyacetylene is an excellent example in the SSH model, the experimental realization is 
very challenging in crystals. It comes down to the fact that we cannot manipulate the atomic bond 
conveniently. Fortunately, the photonic systems provide a viable approach to mimic the condensed 
matter. 

In our investigation of the SSH model, we can generalize it to a chain of coupled resonators. The 
energy is equivalent to the resonance frequency, while the coupling coefficient or bond strength 
can be converted to decay (coupling) rate, lifetime, or quality factor. 

�
𝐸𝐸(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) ⟺𝜔𝜔(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢)

𝑣𝑣(𝑜𝑜𝑜𝑜 𝑤𝑤)(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) ⟺
1
𝜏𝜏

(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) ⟺
1
𝑄𝑄

(𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) 

Naturally, we can set up a series of optical resonators to simulate a chain of atoms (Figure 2-2(a)). 
Each resonator has its resonance frequency ωi, which is the “on-site” energy. The nearest 
neighbors can crosstalk so that photons can hop between them, which is similar to chemical bonds. 
We can design and fabricate the resonators and their arrangement so that we would have full 

Figure 2-2 | a. Using a chain of coupled optical resonators to mimic a 1D crystal. b. Using an 
optical waveguide array to mimic a 1D crystal. c. An example of an optical waveguide array 
with non-trivial edge states. The top panel is the device set-up where the grey color is silica 
and purple color is silicon. The two edge states both decay exponentially where the red color 
is strong electric field while the blue color means no field. They share the same effective index 
which is also close to the “zero-energy” of the system. 
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control of the on-site energies and coupling coefficient, therefore the Hamiltonian. Coupled 
resonator arrays have been proven to be an effective way to simulate crystals72–75. Here we would 
like to introduce a special kind of “resonator,” which is the optical waveguide (Figure 2-2(b)). 
In contrary to a ring resonator or a cavity working at whispering-gallery mode, the photons in 
waveguides do not resonant at a particular frequency; instead, each frequency is associated with 
an effective mode index. The mode in the optical waveguide can be described by the paraxial 
approximation (linear medium)76: 

−𝑖𝑖
𝜕𝜕𝑬𝑬(𝑥𝑥,𝑦𝑦, 𝑧𝑧)

𝜕𝜕𝜕𝜕
= {

1
2𝑘𝑘𝑜𝑜

∇𝑇𝑇2 + 𝑘𝑘𝑜𝑜(𝑛𝑛(𝑥𝑥,𝑦𝑦) − 𝑛𝑛𝑜𝑜)}𝑬𝑬(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) 

where z is the propagation direction, ko is the wavevector in the free space, no is the refractive 
index of the environment, n(x,y) is the refractive index profile of the cross-section, ∇2 is the Laplace 
operator: ∇𝑇𝑇2= 𝜕𝜕2

𝜕𝜕2𝑥𝑥
+ 𝜕𝜕2

𝜕𝜕2𝑦𝑦
. We can rewrite the electric vector using the propagation constant βz: 

𝑬𝑬(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝑬𝑬(𝑥𝑥,𝑦𝑦)𝑒𝑒𝑖𝑖𝛽𝛽𝑧𝑧𝑧𝑧 = 𝑬𝑬(𝒓𝒓)𝑒𝑒𝑖𝑖𝛽𝛽𝑧𝑧𝑧𝑧 

Then the wave equation above immediately becomes the familiar Schrödinger’s 
equation with the following substitutions: 

�
𝑧𝑧 → 𝑡𝑡
𝛽𝛽𝑧𝑧 → 𝜔𝜔

𝑛𝑛(𝒓𝒓) → 𝑉𝑉(𝒓𝒓)
 

In other words, the propagation distance is the effective time, the propagation constant is effective 
frequency or energy, and the refractive index is the effective potential. Therefore, we can use a 
waveguide to simulate an atom. To simplify the discussion, we can even use the effective index of 
the mode as the effective energy for monochrome light, since 𝛽𝛽𝑧𝑧 = 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑘𝑘𝑜𝑜. 

It is convenient to set up an optical waveguide array as the 1D atomic chain used in the SSH model. 
Without loss of generality, the dynamic equation is: 

�
𝑖𝑖
𝜕𝜕𝑬𝑬𝑖𝑖,𝐴𝐴
𝜕𝜕𝜕𝜕

+ 𝛽𝛽𝐴𝐴𝑬𝑬𝑖𝑖,𝐴𝐴 + 𝑤𝑤𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑬𝑬𝑖𝑖−1,𝐵𝐵 + 𝑣𝑣𝑬𝑬𝑖𝑖,𝐵𝐵 = 0

𝑖𝑖
𝜕𝜕𝑬𝑬𝑖𝑖,𝐵𝐵
𝜕𝜕𝜕𝜕

+ 𝛽𝛽𝐵𝐵𝑬𝑬𝑖𝑖,𝐵𝐵 + 𝑤𝑤𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑬𝑬𝑖𝑖+1,𝐴𝐴 + 𝑣𝑣𝑬𝑬𝑖𝑖,𝐴𝐴 = 0
 

Where Ei is the electric field in the ith unit cell, βA(B) is the intrinsic propagation constant, i.e., the 
on-site energy. In the standard SSH model, A and B sites are made of identical waveguides, so that 
βA = βB. This equation will yield the bulk dispersion exactly as Equation 2-3. from the SSH model, 
we can expect that edge states would emerge if the system is topologically non-trivial. 
In Figure 2-2(c), we show an example of the topological edge states. The waveguides are made 
from the 220-nm silicon-on-insulator (SOI) wafer with a 450-nm width. The cladding is silica, and 
the working wavelength is 1550 nm. We can arrange the waveguide array so that the larger gap 
corresponds to the smaller coupling coefficient, and vice versa. We can immediately observe the 
edges states at the left and right boundaries, respectively. More importantly, the neff of the edge 
states are very close to the “zero energy,” which is the intrinsic neff of an isolated 450-nm 
waveguide (2.3563). This result further proves that the edge states are topological. 

(2-7) 

(2-8) 

(2-9) 

(2-10) 



 

24 
 

Note that the waveguide we use here is the “single-mode” waveguide for the wavelength of interest. 
Only fundamental modes, i.e., TE0 and TM0, can propagate. Without loss of generality, all the 
modes discussed here are TE modes, where Ex dominates over Ey. To be more specific, the TE and 
TE modes in a strip or ridge waveguide should be called “TE-like” and “TM-like” because the 
polarization cannot be purely transverse. Readers can refer to a textbook77 on this topic.  
 

§2.3 Mimicking topological states in the graphene nanoribbons 
Indeed, it is interesting to see the realization of the SSH model in an optical waveguide array, but 
the photonic system can be a much more powerful tool to study topological phenomena. 
Fundamentally, it provides a way to engineer the coupling coefficient at will, which brings about 
a lot of versatility. In this section, we want to demonstrate this point by introducing a mapping 
between the parameter space of the waveguide array to the k-space of a graphene nanoribbon. We 
will show that it is possible to mimic any momentum and the topological states in the nanoribbon 
using a waveguide array, while the Brillouin zone (BZ) of the nanoribbon can be reproduced in by 
a set of waveguide arrays. 
Since the discovery and production of single-layer graphene and other 2D materials, new 
opportunities have emerged from the material family of nanoribbons78,79. For instance, the finite 
termination of graphene along one direction results in quasi-1D nanoribbon structures. They are 
categorized based on the types of edges, namely zigzag or armchair, with a supercell across the 
width. In experiments, bottom-up synthesis can produce such nanoribbons with smooth edges80. 
Electronically, a graphene nanoribbon usually exhibits a subset of the 2D graphene band 
structure81.  
However, the zigzag graphene nanoribbon (ZGNR) possesses a unique feature that does not exist 
in 2D graphene: the edge states (flat bands) near the BZ boundary. This phenomenon was predicted 
theoretically82,83 and later observed by the scanning tunneling microscope (STM)84. The 
topological origin of such edge states was also discussed, that the Zak phase and Chern number 
become non-trivial when the momentum of the electron is large enough85,86. Despite the direct 
observation of edge states with sophisticated instruments, the study of such edge states remains 
challenging. Firstly, it requires skillful synthesis and expensive STM; secondly, one can only 
retrieve the energy information of the edge edges, but not the dispersion relation without angular-
resolved spectroscopy87; thirdly, some theoretically interesting structure, e.g., beard edge 
nanoribbons86, is too unstable to be produced. 
To address these challenges, researchers have found an approach to mimic solid-state matter with 
photonic systems. Explicitly, under paraxial approximation, the optical waveguide array can 
simulate a chain of atoms88. To study the intriguing edge states in graphene nanoribbons, Blanco-
Redondo et al. employed femtosecond laser writing techniques to construct a 2D waveguide array, 
with each waveguide representing one carbon atom in the nanoribbon model89. However, the 
fabrication of such optical waveguide arrays can be a challenge by itself. 
In this section, we propose a formalism that allows us to map the k-space of a nanoribbon system 
to the parameter space of a 1D diatomic chain. It also gives a perspective of connecting physical 
systems of different dimensions90. Such 1D systems can be realized by 1D optical waveguide 
arrays, which are compatible with fabrications on typical silicon-on-insulator (SOI) wafers. This 
approach provides an excellent tight-binding-model realization and allows us to reproduce the 
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band structures of nanoribbon models. We believe this formalism will also deepen our 
understandings of the topological nature in the nanoribbons and give predictions of novel 
phenomena. 

We shall first write down the 2N × 2N Hamiltonian of a ZGNR with 2N atoms in the supercell 
using the tight-binding model (Figure 2-3(a)): 

Figure 2-3 | a. Schematic drawing of the graphene nanoribbon and 1D optical waveguide array 
(diatomic chain model). �𝒂𝒂�⃑ is the lattice constant in the nanoribbon. In the 1D model, v and w 
are intracell and intercell hopping constants, respectively; d1 and d2 are intracell and intercell 
distances, respectively. b. Effective mode indices (eigenvalues) of directional couplers. The 
inset shows cross-section of the waveguides. c. The mapping relation between order 
parameter v/w and normalized wavevector as a function of d1. 
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𝐻𝐻𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍�𝑘𝑘𝑦𝑦� =

⎝

⎜
⎜
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0 𝑡𝑡𝑡𝑡
𝑡𝑡𝑓𝑓 0 𝑡𝑡
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⎟
⎟
⎟
⎞

where t is the hopping coefficient of nearest neighbors, f is the Bloch term: 𝑓𝑓 = 2 cos �𝑘𝑘𝑦𝑦𝑎𝑎
2
�, ky is 

the wavevector along the translation direction of the nanoribbon, a is the magnitude of the lattice 
vector. Note that we assume a proper gauge to make the hopping coefficient a real number, and 
we set on-site energy to be zero. 
Next, we shall write down the 2N x 2N Hamiltonian of a 1D diatomic chain with N unit cells (2N 
atoms) in real space70 (Figure 2-3(a)): 

𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆 =

⎝

⎜
⎜
⎜
⎜
⎛

0 𝑣𝑣
𝑣𝑣 0 𝑤𝑤

𝑤𝑤 0 𝑣𝑣
𝑣𝑣 0

⋱
0 𝑤𝑤
𝑤𝑤 0 𝑣𝑣

𝑣𝑣 0 ⎠

⎟
⎟
⎟
⎟
⎞

where v and w are intracell and intercell hopping coefficients, respectively. HZGNR and HSSH are 
equivalent if: 

�
𝑤𝑤 = 𝑡𝑡

𝑣𝑣 = 2𝑡𝑡 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐 �
𝑘𝑘𝑦𝑦𝑎𝑎

2
� 

Here we can draw an important conclusion: if we take an SSH model, fix the intercell hopping 
coefficient w, and change intracell hopping coefficient v in the range of 0 ≤ 𝑣𝑣 ≤ 2𝑤𝑤, we can 
effectively sweep the entire BZ of the ZGNR and reconstruct its band structure. It is essentially a 
mapping relation between a 1D diatomic chain and ZGNR model that each ky corresponds to an 
instance of the diatomic chain: 

𝑎𝑎 ∙ 𝑘𝑘𝑦𝑦 = 2 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐−1 �
𝑣𝑣

2𝑤𝑤
� 

It is effectively mapping the k-space in the nanoribbon to the parameter space (v/w) in the 1D 
diatomic chain. 
We can understand this mapping relation using the Bloch theorem. Along y-direction in the 
nanoribbon, the translation symmetry preserves. Because of the periodic scattering potential, the 
hopping coefficient of every other bond is modulated by the Bloch wave, with the first and last 
bonds subject to modulation. Therefore, changing ky is equivalent to physically changing the 
hopping coefficient of those modulated bonds in a 1D diatomic chain along the x-direction. 

(2-11) 

(2-12) 

(2-13) 

(2-14) 
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With this mapping relation, the topological origin of the edge states in ZGNR can be described by 
the standard SSH model. In the collection of all the SSH instances that constitute the BZ of ZGNR, 
the ones where 𝑣𝑣 < 𝑤𝑤 are topologically non-trivial with edge states. From Equation 2-14, this 
condition converts to |𝑎𝑎 ∙ 𝑘𝑘𝑦𝑦| > 2𝜋𝜋

3
 in ZGNR, which coincides with the theoretical calculations86,91. 

This mapping relation provides a powerful tool to reconstruct and study the topological states in 
the nanoribbons if one can artificially control the hopping coefficient between atoms. Indeed, it is 
not likely to arbitrary alter the chemical bonds in the solids, but optical waveguide arrays are a 
feasible platform.  
The mode propagation in a single-mode optical waveguide can be described by the paraxial 
approximation where the effective mode index (neff) is the “energy level” of the lattice88. We 
numerically retrieve the coupling coefficient p(d) as a function of the distance (d) between two 
waveguides (center to center) from the eigenvalues of the directional coupler Hamiltonian:  

𝐻𝐻𝐷𝐷𝐷𝐷(𝑑𝑑) = �
𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝(𝑑𝑑)
𝑝𝑝∗(𝑑𝑑) 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒

� 

where 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 is the effective index of the fundamental TE mode in one waveguide. 

Without loss of generality, we use silicon waveguides as “atoms,” which are 450 nm in width, 220 
nm in height, and surrounded by silica. The working wavelength is 1550 nm. This setup represents 
a typical single-mode silicon waveguide fabricated on an SOI wafer, which is also compatible with 
complementary metal oxide semiconductor (CMOS) technology92. Here we only consider the 
fundamental TE mode (𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 = 2.3563 ) and nearest-neighbor coupling. The simulations are 
carried out in Comsol Multiphysics®. 
The eigenvalues of directional couplers are plotted in (Figure 2-3(b)): the odd and even modes 
split apart when d decreases, and they converge to the single waveguide neff when 𝑑𝑑 ∞. The 
order parameter of the topological phase is v/w rather than the absolute value of v and w. So we 
choose 𝑤𝑤 = 𝑝𝑝𝑑𝑑=0.7𝜇𝜇𝜇𝜇 , then we normalize 𝑣𝑣 = 𝑝𝑝(𝑑𝑑) to w (Figure 2-3(c)). In other words, we fix 
the intercell distance 𝑑𝑑2 = 0.7 𝜇𝜇𝜇𝜇 while changing intracell distance d1. Finally, Equation 2-14 can 
give us the mapping relation between 𝑘𝑘𝑦𝑦

𝑒𝑒𝑒𝑒𝑒𝑒 ∙ 𝑎𝑎 and d1, as plotted in Figure 2-3(c). Note that we 
need to extrapolate at the region close to the BZ boundary because 𝑑𝑑1 ∞. The topological phase 
transition occurs at 𝑑𝑑1 = 𝑑𝑑2 = 0.7 𝜇𝜇𝜇𝜇 , where 𝑘𝑘𝑦𝑦

𝑒𝑒𝑒𝑒𝑒𝑒 ∙ 𝑎𝑎 = 2𝜋𝜋
3� . The right-hand side of the

boundary represents non-trivial topological states, while the left-hand side represents trivial states. 

Now we can construct the band structure of ZGNR. We sweep 𝑘𝑘𝑦𝑦
𝑒𝑒𝑒𝑒𝑒𝑒 ∙ 𝑎𝑎 from 0 to π (including 

extrapolation) by changing d1 to the corresponding values. The band structure with 15 unit cells is 
plotted in Figure 2-4(a), with edge states marked in red when |𝑘𝑘𝑦𝑦

𝑒𝑒𝑒𝑒𝑒𝑒 ∙ 𝑎𝑎| > 2𝜋𝜋
3� . This band

structure coincides very well with the tight-binding calculation of ZGNR86,91,93. There are two 
features of the band structure worth further discussion: first, the degeneracy at BZ boundary; 
second, the slight dispersion of “zero-modes” near the BZ boundary. 

At BZ boundary, where 𝑘𝑘𝑦𝑦
𝑒𝑒𝑒𝑒𝑒𝑒 ∙ 𝑎𝑎 = 𝜋𝜋 , 𝑑𝑑2 =  0.7 𝜇𝜇𝜇𝜇 , 𝑑𝑑1 ∞ , the optical waveguide array 

constitutes of N-1 pairs of waveguides (waveguides are separated by 0.7 um in each pair), and two 
stand-alone waveguides on both ends. Therefore, the system must degenerate into three 
eigenvalues that are marked with orange triangles in Figure 2-3(b). This configuration represents 

(2-15) 
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the fully dimerized SSH model (v=0), whose edge states are “exact” zero-modes rather than “near” 
zero-modes. It is true even if we include a non-negligible overlap integral in Schrodinger’s 
equation. This unique feature of the ZGNR model is usually overlooked, but it is easy to understand 
using our mapping method. The degeneracy at the BZ boundary indicates that the optical 
waveguide array system is a cleaner tight-binding model realization compared to graphene 
nanoribbon. Both density function theory (DFT) calculation and STM measurement confirmed 
that the degeneracy of at the BZ boundary in ZGNR is lifted due to Coulomb repulsion, spin 
interaction, and chemical potentials at the edge81,91,94.  

The slight dispersion of the zero-mode here is very similar to that in calculations of graphene91. 
Discussions attributed this phenomenon to second-nearest-neighbor hopping95. Nevertheless, we 
can consider this dispersion as a more general consequence of breaking particle-hole symmetry; 
that is, the upper and lower bands are not symmetrical with respect to “zero energy” (Figure 2-
4(a)). Adding second-nearest-neighbor hopping is one way to break particle-hole symmetry, but 
in a well-confined waveguide, this effect is weak. We believe the primary reason to break particle-

Figure 2-4 | a&b. The bandstructure of the ZGNR and BGNR models, respectively, 
constructed by optical waveguide arrays. c. Dispersion relation of a non-trivial 
waveguide array that corresponds to the black dashed line in panel a. d. Wavefunction of 
edge states marked by the red dot in panel c. The grey bars on horizontal axis are the 
positions of waveguides. 
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hole symmetry here is the substantial non-zero overlap integral between adjacent waveguides. This 
feature will be further discussed in the next section. 

To further prove that each 𝑘𝑘𝑦𝑦
𝑒𝑒𝑒𝑒𝑒𝑒 corresponds to an instance of the SSH model, we take a vertical 

slice in Figure 2-4(a) at 𝑘𝑘𝑦𝑦
𝑒𝑒𝑒𝑒𝑒𝑒 ∙ 𝑎𝑎 = 0.82𝜋𝜋, then replot all the eigenvalues in Figure 2-4(c). Now 

the x-axis is kx, which is the wavevector of the 1D diatomic chain. The delocalized modes fall 
entirely on the bulk bands, which are calculated using one unit cell and periodic Bloch boundary 
conditions. The (degenerate) edge states are marked with the red dot that appears in the bandgap. 
We can also plot the wavefunction of the two edge states in  Figure 2-4(d). The patterns are typical 
edge states, with exponential decay from the ends and finite electric field on every other site. 
Because the system is not large enough, we can also observe some coupling between the left and 
right edge states. It is a distinctive feature of the SSH model70. 
An essential advantage of the photonic system is allowing us to mimic electronic states that are 
challenging to be observed in solids. In the graphene nanoribbon system, researchers have 
considered a model with beard edges, i.e., dangling bonds that terminate the nanoribbon86 (Figure 
2-3(a)). This structure is unstable, so there is no report of its fabrication or measurement. The
Hamiltonian of the beard graphene nanoribbon (BGNR) is similar to HZGNR that we only need to
swap t and tf in Equation 11 because the bonds at both ends are not modulated by Bloch wave. To
map the BGNR model to a 1D optical waveguide array, we need to set 𝑣𝑣 = 𝑝𝑝𝑑𝑑=0.7𝜇𝜇𝜇𝜇  while
changing 𝑤𝑤 = 𝑝𝑝(𝑑𝑑) . In other words, now we fix 𝑑𝑑1 = 0.7 𝜇𝜇𝜇𝜇  and sweep d2. Naturally, the
condition for non-trivial topological states (�𝑘𝑘𝑦𝑦

𝑒𝑒𝑒𝑒𝑒𝑒 ∙ 𝑎𝑎� < 2𝜋𝜋
3� ) is the complement of that in ZGNR

to comply with the same requirement of non-trivial states (𝑣𝑣 < 𝑤𝑤 or equivalently 𝑑𝑑1 > 𝑑𝑑2). Again, 
the bandstructrue we calculated (Figure 2-4(b)) coincides very well with the tight-binding 
calculations in the literature86,93. The mapping method provides a clear and intuitive physical 
picture to understand nanoribbons with different edge types.  
While the ZGNR model promises for exact zero modes at the BZ boundary, it is not the case in 
the BGNR model. When a finite system is not fully dimerized, the zero-mode in the SSH model is 
not precisely zero energy70, but instead has an eigenvalue of 𝐸𝐸~ ± 𝑒𝑒−𝑁𝑁∙log�

𝑤𝑤
𝑣𝑣�. Besides, a finite 

overlap integral of adjacent orbitals can shift the energy band, which results in a shift of zero-
modes as well. In the BGNR model, there is no fully dimerized point, so the exact zero-mode does 
not exist. In Figure 2-4(b), the flat band does not cross the neff of the single waveguide, which is 
2.3563.  
Besides studying the hypothetical edge type, we can also construct nanoribbon models with 
artificial bonds using 1D optical arrays. Specifically, the ZGNR only has one carbon-carbon bond, 
and we use t as the only hopping coefficient (Figure 2-3(a) & Equation 2-11). Then the Bloch 
theorem determines the restriction that 0 ≤ 𝑣𝑣 ≤ 2𝑤𝑤 (Equation 2-13). However, the 1D optical 
array can simulate a ZGNR-like model with two chemical bonds (Figure 2-5(a)). If we generalize 
Equation 2-13 to:  

�

𝑤𝑤 = 𝑡𝑡2

𝑣𝑣 = 2𝑡𝑡1 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐 �
𝑘𝑘𝑦𝑦
𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎
2 � (2-16) 
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The topological phase transition condition (v=w) gives: 

cos�
𝑘𝑘𝑦𝑦
𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎
2 � =

𝑡𝑡2
2𝑡𝑡1

We can plot the phase transition boundary as a function of dimerization (𝑡𝑡1/𝑡𝑡2) in the supercell of 
the nanoribbon (Figure 2-5(b)). We also need to map the nanoribbon BZ to different ranges in the 
parameter space of the 1D system. The BZ center starts at different d1 values, while the BZ 
boundary always corresponds to 𝑑𝑑1 ∞ (Figure 2-5(c)). Therefore, a weaker t1 bond (compared 
to t2) will result in a larger range of ky where the topological states exist, and vice versa. Specifically, 
if 𝑡𝑡1 < 0.5𝑡𝑡2, topological states emerge across the entire BZ. These results are consistent with the 
theory work based on the black phosphorus nanoribbon model96. 

§2.4 Staggered waveguide arrays and control of topological phase transitions
The discussions above are all based on the ZGNR model, where on-site energy is set to zero since 
carbon is the only element. If we introduce a staggered waveguide array that consists of two kinds 
of waveguides, we can simulate a material with two elements, such as hexagonal boron nitride 
(hBN). hBN nanoribbon model has drawn a lot of attention recently79,97, but the difficulty of 
obtaining single-layer hBN limits the experimental explorations. 2D hBN is supposed to be an 

Figure 2-5 | a. ZGNR model with a dimerized supercell. b. Topological phase diagram as 
a function of supercell dimerization. The dashed lines denote the normal ZGNR model. c. 
The double-head arrows show the range of d1 needed to map the entire BZ under 
different supercell dimerization. Blue curves are the eigenstates of waveguide arrays, red 
curves are the edge states. Dashed lines are extrapolations. 

(2-17) 
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insulator, but zigzag hBN nanoribbon (ZBNNR) can theoretically show conducting edges similar 
to the ZGNR98,99. To simulate the band structure of ZBNNR, we use 420-nm-width waveguides to 
replace all the B sites in Figure 2-3(a); then, we repeat the process as in the ZGNR case. The 
resulting band structure is shown in Figure 2-6(b), with edge states marked in red.  
A significant feature of this band structure is that two edge states have different phase transition 
points: the upper edge states emerger when �𝑘𝑘𝑦𝑦

𝑒𝑒𝑒𝑒𝑒𝑒 ∙ 𝑎𝑎� > 0.4𝜋𝜋, but the lower edge states only 
appear when �𝑘𝑘𝑦𝑦

𝑒𝑒𝑒𝑒𝑒𝑒 ∙ 𝑎𝑎� > 0.88𝜋𝜋 . In other words, if 0.4𝜋𝜋 < 𝑘𝑘𝑦𝑦
𝑒𝑒𝑒𝑒𝑒𝑒 ∙ 𝑎𝑎 < 0.88𝜋𝜋 , this waveguide 

array will only have a one-side edge state. The calculation result of the ZBNNR already shows the 
“asymmetrical” edge states100. It is a consequence of breaking both chiral symmetry and particle-
hole symmetry. We can use this example to discuss the non-zero overlap integral in optical 
waveguide arrays. 

Figure 2-6 | a. ZBNNR model with staggered on-site energy. Red rectangle indicates the 
supercell. Hydrogen terminations are omitted here. b. The bandstructure of ZBNNR model 
constructed by the optical waveguide arrays. c. Tight-binding fitting of the waveguide array 
that corresponds to the black dashed line in the bandstructure. d & e. Coupling coefficient p 
(×3) and overlap integral s, respectively, as functions of waveguide distance d and B-sites 
waveguide width. The A-sites waveguide width is 450 nm. Inset shows schematic of simulation 
unit cell, where left and right boundaries are subject to Bloch boundary conditions. White dots 
show the parameters used in panel c. 
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The standard SSH model possessed the chiral symmetry:  

𝜎𝜎𝑧𝑧𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆𝜎𝜎𝑧𝑧 = −𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆 
where σz is the third Pauli matrix, which is the chiral operator here. If we only break chiral 
symmetry by adding the staggered on-site energy, it becomes the Rice-Mele model70. Note that 
the Rice-Mele model could bring about exotic phenomena such as Thouless pumping in the 
waveguide array101,102 and non-integer Chern number of the topological phase103, here we only 
want to focus on the topological phase transition. The resulting band structure will still be 
symmetrical100, and topological phase transition still happens at �𝑘𝑘𝑦𝑦

𝑒𝑒𝑒𝑒𝑒𝑒 ∙ 𝑎𝑎� = 2𝜋𝜋
3

. But the edge 
states will have non-zero eigenvalues. 
However, in the optical waveguide array system, the particle-hole symmetry is also broken by a 
finite overlap integral s. Similar to the coupling coefficient p between nearest neighbors, s is a 
function of distance d and on-site energy of waveguides. We apply periodic boundary condition to 
a unit-cell (inset of Figure 2-6(d)), which is described by the complete Schrodinger’s equation:  

𝐻𝐻𝑅𝑅𝑅𝑅 �
𝜑𝜑𝐴𝐴
𝑘𝑘𝑥𝑥
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𝑘𝑘𝑥𝑥
� = 𝐸𝐸𝑘𝑘𝑆𝑆𝑘𝑘 �

𝜑𝜑𝐴𝐴
𝑘𝑘𝑥𝑥
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where Δ is the on-site energy offset. Figure 2-6(d&e) show the fitting result of p and s under 
different conditions. The fitted parameters also give rise to an analytical band structure that 
coincides well with simulations (Figure 2-6(c)). Contradicting the norm in the electronic system, 
where s is usually significantly smaller than p, the overlap integral is not negligible here. Therefore, 
the band structure in Figure 2-6(b) is distorted (breaking the particle-hole symmetry). It is a unique 
feature in optical waveguide arrays because the modes in adjacent waveguides need to overlap so 
that the integral s can be substantial. It also indicates that overlap integral s could be a new degree 
of freedom in controlling topological phases in waveguide arrays. 
Moreover, we shall consider breaking particle-hole symmetry while preserving chiral symmetry. 
This case is the photonic realization of the ZGNR model (Figure 2-4(a)), where the fitted p and s 
are at the right-hand-side boundaries in Figure 2-6(d&e) (noted by black arrows). Similar to the 
staggered waveguide array, there is non-negligible overlap integral s, which distorts the bands and 
causes the dispersion of the flat band in the ZGNR model. However, the chiral symmetry forces 
the system to have a pair of edge states if there are any86. Intuitively, the two edges are not 
distinguishable under chiral symmetry, so that edge states must emerge/disappear simultaneously. 
We now can consider in a more general way that how the energy offset, the coupling coefficient, 
and the overlap integral together affect the topological phase transition point. The question we are 
trying to answer here is: for a bulk Hamiltonian and overlap matrix as the following, what is the 
topological phase transition condition for upper and lower band, respectively. 

(2-18) 

(2-19) 

(2-20) 
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In the simulations, we fix the width of A-site waveguides to be 450 nm and decrease the width of 
the B-site waveguides to tune the energy offset Δ. Note that a library of the width-neff relation 
should be acquired beforehand. Then we fix d2=700 nm while sweep d1, observing topological 
phase transition points for the left edge (high energy side) and the right edge (low energy side), 
respectively. From the result shown in Figure 2-6(d&e), we can translate the distance to the 
coupling coefficient and overlap integral. The result is summarized in Figure 2-7. 

When Δ=0, the topological phase transition occurs at v=w, which is anticipated from the SSH 
model. As the energy offset increases, the transition points on the parameter space v/w split 
between the high energy and low energy sides. The fitting indicates a linear relationship between 
the transition point and Δ. The plot of the energy integral s at the transition point follows a similar 
trend. A more rigorous derivation is necessary to understand this phenomenon further. It should 
be considered as a generalized SSH model, and we believe it could deepen our understanding of 
the topological phases. 
Finally, we want to remark on the more general on-site energy setting, which is complex on-site 
energies. By introducing PT-symmetry breaking in the optical waveguide array, it is possible to 
create exact zero-mode and eliminate coupling between two edge states104. We can also predict 

Figure 2-7 | a. Schematic of the waveguide array, where d2 is fixed at 700 nm, A-site 
waveguides have a fixed width of 450 nm. b&c. The order parameter v/w and overlap integral 
ratio at the topological phase transition as a function of energy offset ∆. The fitting indicate a 
linear relationship. 

(2-21) 
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that if a hypothetical ZGNR lattice has complex on-site energy that breaks PT-symmetry, the edge 
states should also be exact zero-modes without crosstalk. Although intriguing, the discussion of 
PT-symmetry is beyond the scope of this chapter. 
 

§2.5 Topological channels without crosstalk 
In this section, we would like to discuss a potential application of the staggered waveguide arrays. 
In the realization of the SSH model, the so-called energy states on both ends are degenerate, 
because they are both “zero-energy” state. There is an essential claim in the topological photonics 
community that we can use topologically protected states for communications. However, if the 
edge states can crosstalk when the decay length is comparable to the system size, the 
communication channel could be compromised. Conversely, an extensive array would defeat the 
purpose of photonic integration. Here we proposed to use the staggered waveguide array so that 
the degeneracy of the edge states is lifted. 
We begin by investigating a waveguide array with one kind of waveguide. It is similar to the 
system we used in section 2-3, but with a smaller size. Figure 2-8(a) is the schematic of the device 
on the 220-nm SOI wafer; the waveguide width is 450 nm, the cladding is silica, the working 
wavelength is 1550 nm.  

 
The edge state wavefunction in Figure 2-8(c)decays exponentially from the left edge, and mainly 
exists on the odd sites. However, there is a substantial mode profile at the right edge because the 

Figure 2-8 | a. Schematic of a compact waveguide array without energy offset. b. The bulk 
bandstructure of the array (blue curve) and the position of the edge state (red dot). c. The 
wavefunction plot of the left edge state. There is substantial energy couples to the opposite 
edge. 
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states on both edges are degenerate. In other words, this device allows the light lanched into one 
topological channel to bounce between two boundaries, which is not ideal for communications. 

 

 
Figure 2-9(a)shows the schematic drawing of the optical array with the staggered on-site energies. 
It is the same as the previous device except for we replacing all the even sites with 430-nm-wide 
waveguides. It supports edge states at the non-trivial topological phase (Figure 2-8(b)), but the 
energies of those two edge states are ±∆, respectively. The chiral symmetry of the SSH model is 

Figure 2-9 | a. Schematic of a compact waveguide array with energy offset. b. The bulk 
bandstructure of the array (blue curve) and the position of the edge states (red dot). Note that 
the two edge states decouple. c. The wavefunction plot of the left (orange) and right (blue) 
edge states. There is no crosstalk between the two edges. 
 

Figure 2-10 | The eigenvalues (neff) of the two topological states remain constant while 
decreasing the system size (number of unit cells). The field plot also confirms that the 
communication channels remain robust without crosstalk. 
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broken by staggered on-site energy, and the degeneracy of the edge states is lifted. As a result, 
those two edges states do not cross-talk (Figure 2-9(c)). It allows us to design a compact optical 
lattice and still preserve the topologically protected states. 
To demonstrate the feasibility of the topological states with a small footprint, we can reduce the 
size of the lattice (number of unit cells) and examine the edge states. Figure 2-10 shows that the 
mode indices of two edge states remain constant even we only have four unit cells. Their 
corresponding wavefunctions still demonstrate robust edges states when we decrease the system 
size. This result is promising for realizing topological states in a compact device. 
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Chapter 3: Bound-states-in-continuum on a Chip 
 

§3.1 Review of the photonic crystal and group theory 
In Chapter 1, we have discussed the continuous control of the geometric phase; in Chapter 2, we 
also investigated the realization of topological states in the photonic lattice as a counterpart of 
condensed matter. The non-trivial topological state is always associated with a non-zero 
topological invariant, which is the Chern number in the previous example. It counts the number of 
“charges” that causes the Berry flux, which is like the magnetic monopole in the reciprocal 
space27,29. If one energy band encloses one such “monopole” with a “charge” of +1, it means the 
band’s Chern number is +1, and so forth. In other words, the typical topological state is associated 
with the singularity of the Berry flux. Based on this conclusion, we can generalize the concept and 
look for other singularities. For example, the polarization singularities in the photonic crystal (PhC) 
slabs can also carry topological charges27,105. Those states are called “bound-states-in-continuum” 
or BICs.  
In general, BICs are confined resonances amid a continuous spectrum of radiating channels. This 
phenomenon was first proposed in the quantum mechanics but recently proven to be a much 
generic behavior of all physical waves106. Notably, the PhC slabs have become a promising 
platform for BIC studies107. Initially, the symmetry mismatch between some modes at high-
symmetry points, e.g., Γ points, of the PhC slabs, and the free space polarizations will introduce 
robust BIC states protected by the symmetry26. Recently, a fine-tuned BIC off the Γ point was 
proposed as a result of the perfect cancellation of out-going waves108.  
Besides giving birth to rich physics, BIC states and near BIC states are inherently high quality 
factor (high-Q) resonance modes, which bring about potential applications such as lasing109,110. 
Also, the nature of the polarization singularity at BIC states promises a lasing source with 
polarization vortex, which gives rise to a new degree of freedom in optical communications111,112. 
In this chapter, we will discuss the BICs in the photonic crystal and the realization in the silicon 
photonics. To better understand this phenomenon, we need to review the group theory and the 
symmetry arguments in PhCs. 
Photonic crystals are artificial structures that can scatter light periodically107. It uses the mode of 
resonance to mimic the Bloch wave in the conventional crystals. The periodic refractive index 
distribution provides the periodic potential for photons. Therefore, each photon frequency (energy) 
is associated with one or a few k-vectors (momentum), which results in the dispersion of the PhC. 
The 1D PhC is widely applied as the “Bragg reflector” or “dielectric mirror.” In other words, we 
use the bandgap of the 1D PhC to reflect light. Similar to semiconductors, we can introduce defects 
in the PhC and create defect modes. In the case of Bragg reflector, the defect layer can bring about 
a sharp transmission peak, and the device is called “Bragg filter”113. This idea can be extended to 
2D or 3D, where the refractive index has 2D or 3D periodicity. The defect in the PhC can also give 
rise to optical cavities, whose working frequency is in the bandgap of the matrix PhC114.  
We shall narrow our scope to 2D PhCs, where the BIC concept is most relevant. Figure 3-1(a) 
shows the cross-section view of the square lattice PhC. Typically the PhC consists of two materials 
with low and high indices, respectively. In the BIC applications, the two materials are both 
transparent at the frequency of interest, while in some microwave demonstrations, metal or water 
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can be used as high index materials115–117. In a 2D PhC, the index distribution is on the xy-plane, 
while the z-direction is assumed to be infinitely long. There are two ways to construct a 2D PhC, 
using the high index material as the matrix (background) and low index material as the pattern or 
vice versa. In a practical device at optical frequencies, it is often more convenient to start from a 
bulk matrix and etch into it rather than assembling high index wires. Therefore, without loss of 
generality, we shall focus on the cases where the high index material serves as a matrix. In terms 
of material choices, silicon (Si) or silicon nitride (SiN) are often used as high index media, while 
silica (SiO2) or air is the typical low index media. 
Before proceeding, we must define the polarization of the modes inside PhCs26. Based on the 
schematic, we shall call the xy-plane as “in-plane” while z-direction as “out-of-plane direction.” 
The electric field and magnetic field for TE and TM modes in the PhC are summarized in Table 
3-1. Note that rigorously these modes should be called TE-like and TM-like modes, as in the 
waveguides, because they are not purely transverse. For convenience, we shall just address them 
as TE and TM modes in the following context. 

 TE (like) TM (like) 

E-field In-plane (Ex, Ey) Out-of-plane (Ez) 
H-field Out-of-plane (Hz) In-plane (Hx, Hy) 

Other Names H-polarization E-polarization 

Next, we need to understand the role of symmetry in defining the modes in the PhC. Following 
the schematic of the square lattice, we shall plot all the symmetry operations of the lattice in Figure 
3-1(b). Together with the identity operation (basically no operation), all the symmetry operations 
constitute the symmetry group of the square lattice, which is C4v. 

𝐶𝐶4𝑣𝑣 = {𝐸𝐸,𝐶𝐶4,𝐶𝐶4−1,𝐶𝐶2,𝜎𝜎𝑥𝑥,𝜎𝜎𝑦𝑦,𝜎𝜎𝑑𝑑′ ,𝜎𝜎𝑑𝑑′′} 

A group is a set of elements that satisfy four fundamental properties: closure, associativity, the 
identity property, and the inverse property. The closure property means that the product of any two 

Figure 3-1 | a. Cross-section of a 2D photonic crytal with a square lattice. The matrix is made 
of high index material while the holes (cylindars) are low index. b. The symmetry operations 
in the square lattice. They all belong to the C4v group. 

Table 3-1 | The polarizations in the 2D photnic crystals. 

(3-1) 
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elements in the group is also an element in the group. The associativity means that the 
multiplication of elements is associative, just like matrix operations. The identity property means 
that there is an identity element in the group, multiply which with any element in the group results 
in the element itself. The inverse property means that any element in the group has its inverse 
element, which is also in the group. The product of one element and its inverse element is the 
identity element.  
Apparently, all the symmetry operations in the C4v group satisfy the properties. We can 
conveniently construct a multiplication table, describing the product of any two elements in the 
group based on the closure property (the first column and the first row are the first and second 
operations, respectively). 

𝐶𝐶4𝑣𝑣 𝐸𝐸 𝐶𝐶4 𝐶𝐶4−1 𝐶𝐶2 𝜎𝜎𝑥𝑥 𝜎𝜎𝑦𝑦 𝜎𝜎𝑑𝑑′  𝜎𝜎𝑑𝑑′′ 

𝐸𝐸 𝐸𝐸 𝐶𝐶4 𝐶𝐶4−1 𝐶𝐶2 𝜎𝜎𝑥𝑥 𝜎𝜎𝑦𝑦 𝜎𝜎𝑑𝑑′  𝜎𝜎𝑑𝑑′′ 

𝐶𝐶4 𝐶𝐶4 𝐶𝐶2 𝐸𝐸 𝐶𝐶4−1 𝜎𝜎𝑑𝑑′′ 𝜎𝜎𝑑𝑑′  𝜎𝜎𝑥𝑥 𝜎𝜎𝑦𝑦 

𝐶𝐶4−1 𝐶𝐶4−1 𝐸𝐸 𝐶𝐶2 𝐶𝐶4 𝜎𝜎𝑑𝑑′  𝜎𝜎𝑑𝑑′′ 𝜎𝜎𝑦𝑦 𝜎𝜎𝑥𝑥 

𝐶𝐶2 𝐶𝐶2 𝐶𝐶4−1 𝐶𝐶4 𝐸𝐸 𝜎𝜎𝑦𝑦 𝜎𝜎𝑥𝑥 𝜎𝜎𝑑𝑑′′ 𝜎𝜎𝑑𝑑′  

𝜎𝜎𝑥𝑥 𝜎𝜎𝑥𝑥 𝜎𝜎𝑑𝑑′  𝜎𝜎𝑑𝑑′′ 𝜎𝜎𝑦𝑦 𝐸𝐸 𝐶𝐶2 𝐶𝐶4 𝐶𝐶4−1 

𝜎𝜎𝑦𝑦 𝜎𝜎𝑦𝑦 𝜎𝜎𝑑𝑑′′ 𝜎𝜎𝑑𝑑′  𝜎𝜎𝑥𝑥 𝐶𝐶2 𝐸𝐸 𝐶𝐶4−1 𝐶𝐶4 

𝜎𝜎𝑑𝑑′  𝜎𝜎𝑑𝑑′  𝜎𝜎𝑦𝑦 𝜎𝜎𝑥𝑥 𝜎𝜎𝑑𝑑′′ 𝐶𝐶4−1 𝐶𝐶4 𝐸𝐸 𝐶𝐶2 

𝜎𝜎𝑑𝑑′′ 𝜎𝜎𝑑𝑑′′ 𝜎𝜎𝑥𝑥 𝜎𝜎𝑦𝑦 𝜎𝜎𝑑𝑑′  𝐶𝐶4 𝐶𝐶4−1 𝐶𝐶2 𝐸𝐸 

Based on the multiplication table, it is possible to find a set of eight matrices that satisfy the entire 
multiplication table. This set is called a representation of the group. There are infinitely many 
representations that a group has, but there are finite irreducible ones that are entirely made of 
irreducible matrices. We can summarize the irreducible representations and the trace of each 
matrix. The group theory tells us that the trace of the matrix is precisely the character of this 
operation under a particular representation. This table is called the character table of a group, where 
the first row lists all the elements in the group, and the first column lists all the irreducible 
representations. 
 
 
 
 
 
 

𝐶𝐶4𝑣𝑣 𝐸𝐸 2𝐶𝐶4 𝐶𝐶2 2𝜎𝜎𝑣𝑣 2𝜎𝜎𝑑𝑑 Functions 

𝐴𝐴1 1 1 1 1 1 𝑧𝑧, 𝑥𝑥2 + 𝑦𝑦2, 𝑧𝑧2 

𝐴𝐴2 1 1 1 -1 -1 𝑅𝑅𝑧𝑧 

𝐵𝐵1 1 -1 1 1 -1 𝑥𝑥2 − 𝑦𝑦2 

𝐵𝐵2 1 -1 1 -1 1 𝑥𝑥𝑥𝑥 

𝐸𝐸 2 0 -2 0 0 (𝑥𝑥,𝑦𝑦), �𝑅𝑅𝑥𝑥,𝑅𝑅𝑦𝑦�, (𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) 

Table 3-2 | The multiplication table of the C4v group. 

Table 3-3 | The character table of the C4v group. 
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Note that we have combined some operations for concise notations: two 90-degree rotations are 
combined, as well as two vertical (v) mirror reflections and two diagonal (d) mirror reflections. 
From the table, we shall see that there are five irreducible representations for the C4v group. Since 
the matrix representation of an identity operation E is always an identity matrix, the shaded column 
(the trace of the identity matrix) gives the information of matrix dimensions of each representation. 
Interestingly, all the representation except for E is one-dimensional, while E is two-dimensional. 
Note that we shall not confuse the identity operation E with the representation E. In the last column, 
we list some functions that “transform according to each representation.” It means that the function 
follows the spatial symmetry of that representation.  
Without loss of generality, we can use the TM mode as an example. The wave equation in the PhC 
is expressed as: 

ℒ𝑇𝑇𝑇𝑇𝐸𝐸𝑧𝑧(𝒓𝒓) = −
1

𝜀𝜀(𝒓𝒓)∇𝒓𝒓
2𝐸𝐸𝑧𝑧(𝒓𝒓) =

𝜔𝜔2

𝑐𝑐2
𝐸𝐸𝑧𝑧(𝒓𝒓) 

where ε is the permittivity, r is the in-plane position vector. It can be proved that all the symmetry 
operators commute with the ℒ𝑇𝑇𝑇𝑇. This result has very profound indications: ℒ𝑇𝑇𝑇𝑇 and symmetry 
operations share the eigenvalues and eigenvectors. In other words, we can assign each resonance 
mode with a unique irreducible representation, and the mode must follow the spatial symmetry of 
that representation, or transform according to that representation. 
Eventually, we want to investigate the symmetry of modes on the PhC dispersion curves, so instead 
of the group for the real space crystal, we must know the group in the reciprocal space. Figure 3-
2(a) shows a schematic reciprocal space of the 2D square lattice. The Γ point always retains all the 
symmetry operations as the real crystal, so its symmetry group is C4v. The high symmetry points 
Χ and M are C2v and C4v, respectively. The paths between the high symmetry groups are all C1h 
with lower symmetry. The irreducible representations are C2v={A1, A2, B1, B2}; C1h={A, B}. 

Next, we can assign the modes on the dispersion curves with one of the irreducible representations 
of that k-point. In Figure 3-2(b), we provide the example of the normalized TM bandstructure of 
the square lattice. The radius is 0.2; the lattice constant is 1. The low refractive index is 1.46 (SiO2); 

Figure 3-2 | a. The first Brillouin zone of the square lattice. Notations include the high 
symmetry points, paths, and their corresponding group. The red line is the path that used in the 
band structure calculation. b. The TM band structure of the 2D square lattice along the ∆ path. 
All the modes are assigned by their irreducible representations. 

(3-2) 
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the high refractive index is 2.02 (Si3N4). Simulations were performed with the finite-difference 
time-domain (FDTD) method, using an open-source software package Meep118. The code used in 
this calculation is in Appendix A. 
Any mode on the dispersion should follow the spatial symmetry of its unique irreducible 
representation, and it is also the way of assigning these representations. For example, the B1 mode 
should be symmetrical under C2 and σv operations, but anti-symmetrical under C4 and σd operations. 
More importantly, E representation is the only two-dimensional representation, so E modes must 
be doubly degenerate. Indeed, we need to assign two doubly degenerate modes as E modes. The 
degeneracy lifts as the mode departs from the Γ point because E mode is a degenerate 
representation in the C1h group and will reduce to A and B modes.  
The character table is a powerful tool to understand the symmetry in the PhCs. We need to point 
out that the symmetry argument is not exclusive to the PhC. On the contrary, this methodology is 
carried over from the condensed matter. The electronic states in the solid also need to transform 
according to the representations of their symmetry group, because the Hamiltonian commutes with 
symmetry operations. Nevertheless, this argument is so essential in PhCs, since an optical 
simulation can clearly show the symmetry of the mode, which enables convenient assignments of 
the representations. In the condensed matter, the symmetry argument cannot take into account 
effects such as Columb interactions, so the simulations might not reflect the characteristics 
predicted by symmetries. In the next section, we will discuss how the character table (Table 3-3) 
has already predicted the existence of BICs and their nature of polarization singularities. 
 

§3.2 Bound-states-in-continuum in the photonic crystal slabs 
In the last section, the majority of discussions are based on 2D PhCs, where the light always 
propagates inside the PhC. In other words, the modes are all “bound states,” and there is no 
coupling with the “continuum,” i.e., air, or any homogeneous medium. However, if we restrain the 
z-direction of the 2D PhC into a finite thickness h, the 2D PhC becomes the so-called 2D PhC slab, 
and there is a chance that light inside the PhC slab can leak into the environment, i.e., the 
continuum. 
We will keep using a square lattice as an example (Figure 3-3(a)). In the lateral view, any mode 
that propagates in the slab falls into one of the two categories: one (red arrows) is called “bound 
state,” where the light goes through total internal reflection, and there is no leakage to the 
continuum; the other (green arrows) is called “leaky mode,” where light can be refracted into the 
continuum. 
The boundary between the bound state and the leaky mode is determined by the critical angle in 
the total internal reflection. Here we would like to give a more straightforward approach. Assume 
the environment refractive index is nenv. The in-plane wavevector of the mode in the slab is k// with 
frequency ω. The bound state must have an evanescent out-of-plane wavevector in the 
environment, which means the k// must be larger than the total wavevector in the environment. So 
the condition of the bound state is: 

𝑘𝑘// >
𝜔𝜔 ∙ 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒

𝑐𝑐
 (3-3) 
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In other words, the boundary between leaky modes and the bound states in the bandstructure has 
a slope of c/nenv. In Figure 3-3(b), we use the shaded area to show this “light cone.”  The modes 
inside the light cone are leaky modes (finite decay rate, finite lifetime), while the ones outside the 
light cone are bound states (zero decay rate, infinite lifetime), assuming lossless materials. 
However, there are exceptions to the leaky modes, which are the BICs in the PhC slabs. These 
modes do not decay into the continuum despite that they are inside the light cone. 
The first kind of BIC is protected by symmetry or symmetry mismatch. It is common for modes at 
high-symmetry points, such as the Γ point. In the last section, we have shown that each mode at 
the Γ point must transform according to its representation. To leak (couple) from the PhC slab to 
the continuum, the symmetry of the mode must match the symmetry of light in the continuum. In 
other words, the mode in the slab and the refracted wave in the continuum must transform 
according to the same representation. In the case of the Γ point, the polarization vector of light in 
the continuum follows the function of (x, y), which means that it transforms according to the E 
representation in the square lattice26 (See Table 3-3 ). Therefore, all the modes at the Γ point inside 
the light cone cannot decay except for the one with E representation, i.e., the doubly degenerate 
modes. 
We plot the schematic TM0 and TM1 bands of the square lattice in Figure 3-3(b), and the TM1 
band has a mode of B1 representation at the Γ point. It results in a BIC protected by the symmetry 
(the left red dot in Figure 3-3(b)). The symmetry mismatch has further implications: the 

Figure 3-3 | a. The 2D PhC slab is created by limiting the z-direction to a finite thickness h. 
The lateral view shows the bound state propagation (green) and leak mode propagation 
(orange). b. The schematic TM band structure of the slab along the ∆ path. The shaded area is 
the light cone and the red dots are the BIC modes. c. The schematic Q factor of the modes on 
the TM1 band. Three ∞ points/region from left to right correspond to symmetry-protected BIC, 
accidental BIC, and modes outside the light cone. d. Lumerical FDTD simulation of the TM1 
band disperstion and the Q factor. Two BIC modes show exceptionally large Q. 
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polarization of such BIC is undefined. People have successfully demonstrated that the BIC point 
is the crossing of the two polarization nodal lines, where Ex=0 and Ey=0, respectively105. So the 
BIC point is the singularity of the polarization. We can define the topological charge of such 
singularity: 

𝑞𝑞 =
1

2𝜋𝜋
�𝑑𝑑𝒌𝒌 ∙ ∇𝒌𝒌𝜑𝜑(𝒌𝒌) , 𝑞𝑞 ∈ ℤ 

where φ is the polarization angle. If we substitute the gradient of φ with the Berry connection, then 
q is exactly the Chern number in topological insulators. This equation also means that in the 
reciprocal space, there is a polarization vortex around the BIC. It predicts the vortex-polarization 
lasing from the BIC modes111,112. 
Another type of BIC in the PhC slab is the accidental BIC, marked by the red dot in the middle of 
the TM1 band in Figure 3-3(b). There are two kinds of resonances that coexist in the PhC slab. The 
first is the Fabry–Pérot resonance from the homogeneous slab (with averaged refractive index), 
the second is the PhC modes. The former one can be considered as the background scattering, 
where the amplitude varies slowly with energy. However, the resonance of the PhC modes changes 
both magnitude and phase quickly. Those two resonance couples together to create so-called Fano 
resonance. 
It can be proved using the coupled-mode-theory (CMT)107 that if the decay rates above and below 
the slab are the same (by matching the refractive indices), it is possible that the outgoing waves 
entirely cancel out due to destructive interference. In this case, the radiative decay rate becomes 
zero, and the resonance mode becomes a bound state. 
The Fano feature equation can be expressed as108: 

𝑓𝑓(𝜔𝜔) =
𝑄𝑄𝑟𝑟−1

2𝑖𝑖 �1 − 𝜔𝜔
𝜔𝜔𝑜𝑜
� + 𝑄𝑄𝑟𝑟−1 + 𝑄𝑄𝑛𝑛𝑛𝑛−1

(𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 

where Qr is the quality factor of the resonance, Qnr is the quality factor due to intrinsic loss, ω is 
the probe beam frequency, ωo is the resonance frequency, rslab, and tslab are the reflectivity and 
transmissivity of a homogeneous slab, respectively. At the BIC condition, Qr ∞, f(ωo)0, the 
Fano feature disappears, the tilted incident light that matches the in-plane k-vector of BIC mode 
can only “see” a homogeneous slab, but not the mode of the PhC. Note that zero decay rate also 
means zero coupling rate, as required by time-reversal symmetry. This feature of the BIC is the 
principle of the device proposed in the next section. 
If we follow the TM1 band from Γ point to Χ point, the schematic Q factor will show three peaks 
(to infinity), as shown in Figure 3-3(c). The first peak is due to the symmetry-protected BIC, and 
the second peak is due to the accidental BIC. Then the band extends outside the light cone, and all 
the modes have infinite lifetimes. 
We should point out that the topological nature of symmetry-protected BICs is also true for 
accidental BICs105. BICs are robust topological charges and polarization singularities in the 
reciprocal space for both cases. By engineering the device, we can shift the position of accidental 
BICs, in which process the topological charges can be created or annihilated following the 
symmetry of the lattice, while the total charge remains conserved. Those features create 

(3-4) 

(3-5) 
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connections between the energy band topology and polarization of BICs, which is quite a fantastic 
physical picture. 
Finally, we can simulate the BIC mode using the FDTD method. The simulation is carried out in 
Lumerical FDTD, although the Meep package should have the capability to achieve similar results, 
as shown in papers cited in this section. The codes used to control the simulation is in Appendix 
B. Firstly, we need to use the 2D bandstructure result (Figure 3-2(b)) to define the frequency range 
for the TM1 band. Then, the FDTD solver scans the k-vector and find the eigenfrequency of each 
k. As we are concerned about the modes inside the light cone, the eigenfrequency should be a 
complex number except for BIC states: 

𝜔𝜔𝑇𝑇𝑇𝑇1 = 𝜔𝜔𝑟𝑟 + 𝑖𝑖𝜔𝜔𝑖𝑖 

where ωr is the resonance frequency, and ωi implies the decay rate. The Q factor is: 

𝑄𝑄 =
𝜔𝜔𝑟𝑟

2𝜔𝜔𝑖𝑖
 

It is worth mentioning that this method can be tricky around high-Q value modes. The FDTD 
solver excites mode using multiple dipoles, and monitor the lifetime of the mode, which can be 
translated to ωi. However, if the decay rate is very low, as in the BIC or near BIC states, the mode 
cannot “die out” at the end of the simulations time, which will create artifacts in the result. The 
solution is to track the slope of the electric field as a function of time, rather than waiting for the 
mode to dissipate completely. It requires careful apodization when processing the raw data,  
The specifications of the slab (square lattice), the TM1 band, and quality factor are all plotted in  
Figure 3-3(d). The dispersion agrees well with the 2D simulation, and we can see the two peaks of 
Q factors inside the light cone suggesting the two BIC states. Note that the Q factor peak for the 
accidental BIC is broader compared to the symmetry-protected BIC. People have used this feature 
to engineer the device with fabrication tolerances because near-BIC states still have very large Q 
values109,110. Also, one can merge multiple BIC states by engineering the PhC slab so that the 
resulting Q factor peak can be further broadened119. 
 

§3.3 Bound-states-in-continuum in silicon photonics 
To date, most of the photonic BIC demonstrations and its applications have been realized in the 
PhC slab systems. Although PhC slabs have their engineering flexibilities, such as material, lattice 
symmetry, and band structure engineering, the success of BIC realizations in PhC slabs requires a 
large area of low defect periodic structures108,120. It poses a substantial challenge to the application 
of BIC states in the photonic integrated circuits (PICs). Additionally, the dynamic tuning of PhCs 
remains impractical, which further shadows the feasibility of BIC applications. 
Besides the enhanced light-matter interaction in lasing applications, however, the high-Q nature 
of BICs also poses an opportunity of versatile filters, which is compatible with PIC and 
complementary metal oxide semiconductor (CMOS) technology92. By definition, high-Q modes 
have long lifetimes and low coupling rates (coefficients) to/from the radiation continuum. At the 
BIC or near-BIC point, the photon can hardly “see” the resonator system but instead passes 
through108, which would become the fundament of a transparency window.  

(3-6) 

(3-7) 
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In this section, we demonstrated such filter devices on the active PIC platform, where the existence 
of the transmission peak, together with the peak position, peak width (Q-factor), can all be 
independently and dynamically controlled. We believe it is a leap forward towards the practical 
applications of BIC states, and it provides new methodologies to PIC device designs.  
 

 
We utilize the Fabry–Pérot (FP) BIC states in this section106. Figure 3-4(a) shows a schematic 
structure of its realization: the two cascaded resonators have their intrinsic resonance frequencies 
ω1 and ω2, respectively. The two resonators do not crosstalk directly, instead they only couple 
through the radiation continuum (the bus waveguides). If we assume the coupling rates at all gaps 
are γc/2, and the intrinsic loss rate γi/2 is negligible, the Hamiltonian of the resonator system is: 

𝐻𝐻 = �𝜔𝜔𝑜𝑜 + ∆ 0
0 𝜔𝜔𝑜𝑜 − ∆� − 𝑖𝑖

𝛾𝛾𝑐𝑐
2 � 1 𝑒𝑒𝑖𝑖∆𝜑𝜑

𝑒𝑒𝑖𝑖∆𝜑𝜑 1
� (3-8) 

Figure 3-4 | a. The schematic model of the dual-resonator system that demonstrates Fabry–
Pérot BIC. A1~A8 are the electric field amplitudes in the bus near the coupling ports, a1 and a2 
are the amplitudes of the resonance modes at steady state. ω1, ω2 are the intrinsic resonance 
frequencies of the two resonators. The intrinsic decay rate is γi/2 for both resonators; the 
coupling rate is γc/2 at all the gaps. b. Schematic of a silicon photonics realization. Two ring 
resonators have slightly different radii (r1 & r2) coupling through two bus waveguides. The 
gaps (g) between rings and buses are of the same size to enforce same coupling rate γc(g)/2. 
Thermo-optic heaters (pink bars) tune ω1, ω2 and ∆φ with independent control voltages (V1, V2 
& Vt). c. Optical image from the fabricated dual-resonator device. White circles denote the ring 
resonators, red rectangles are the thermo-optic phase shifters. d - f. Energy level diagrams of 
Fabry–Pérot BIC, rigorous EIT analog, and indirectly coupled EIT, respectively. ∆ω is the 
frequency offset between two resonators, J is the direct coupling rate between two resonators, 
γc(γc’) is the coupling rate between ground state and excited states. g & h. Simulation of BIC 
& EIT-like (Fano resonance) transmission with zero energy offset (∆ω=0) between two 
resonators. 
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where ωo=(ω1+ω2)/2 is the center frequency, ∆= (ω1-ω2)/2 is the resonance detuning, ∆φ is the 
phase shift between the two resonators. Then we can further simplify the model by assuming ∆φ 
is an integer multiple of π, i.e., ∆φ=mπ, so that the round-trip satisfies the FP resonance condition 
(we shall call it “system on-resonance”). The eigenvalue of the resonator system is, therefore: 

𝜔𝜔± = 𝜔𝜔𝑜𝑜 − 𝑖𝑖
𝛾𝛾𝑐𝑐
2

± �∆2 −
𝛾𝛾𝑐𝑐2

4
 

If there is no resonance detuning, i.e., ∆=0, ωo is the real eigenvalue of the system. It means the 
life-time of this mode is infinitely long, and this is the FP BIC state106. 

However, if we allow a small frequency detuning compared to the coupling rate (γc/2≫∆), we can 
still write the eigenvalue as 

𝜔𝜔± ≈ 𝜔𝜔𝑜𝑜 − 𝑖𝑖
𝛾𝛾𝑐𝑐
2

± 𝑖𝑖
𝛾𝛾𝑐𝑐
2

 

Then ωo is a near-BIC state of the resonator system, which promises for high transmission. 
Now we can derive the transmission characteristics for the resonator system using the temporal-
coupled-mode theory121–123. The probe beam’s frequency is ω, and the detune frequencies between 
the probe beam and two resonators are ∆1(2)=ω-ω1(2), respectively. The intrinsic decay rate is γi/2 
for both resonators; the coupling rate is γc/2 at all the gaps. Following the electric field amplitude 
denoted in the schematic drawing (Figure 3-4(a)), we can describe the amplitude relations at steady 
state using a system of equations121: 

⎩
⎪
⎪
⎨

⎪
⎪
⎧�𝑖𝑖∆1 − �𝛾𝛾𝑖𝑖2 + 𝛾𝛾𝑐𝑐�� 𝑎𝑎1 − �𝛾𝛾𝑐𝑐𝐴𝐴1 − �𝛾𝛾𝑐𝑐𝐴𝐴6 = 0

�𝑖𝑖∆2 − �𝛾𝛾𝑖𝑖2 + 𝛾𝛾𝑐𝑐�� 𝑎𝑎2 − �𝛾𝛾𝑐𝑐𝐴𝐴3 = 0

𝐴𝐴3 = 𝐴𝐴2 = 𝐴𝐴1 + �𝛾𝛾𝑐𝑐𝑎𝑎1
𝐴𝐴6 = 𝐴𝐴7 = �𝛾𝛾𝑐𝑐𝑎𝑎2
𝐴𝐴4 = 𝐴𝐴3 + �𝛾𝛾𝑐𝑐𝑎𝑎2

 

The transmission is: 

𝑇𝑇 = �
𝐴𝐴4
𝐴𝐴1
�
2

= 𝑡𝑡2 

𝑡𝑡 =
−∆1∆2 − 𝑖𝑖 𝛾𝛾𝑖𝑖2 (∆1 + ∆2) + 𝛾𝛾𝑖𝑖2

4

−∆1∆2 − 𝑖𝑖(𝛾𝛾𝑐𝑐 + 𝛾𝛾𝑖𝑖
2 )(∆1 + ∆2) + 𝛾𝛾𝑐𝑐𝛾𝛾𝑖𝑖 + 𝛾𝛾𝑖𝑖2

4

 

If we assume γc≫∆≫γi0, at ω=ωo & ∆1=∆2=∆: 

𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵 =
∆2 + 𝛾𝛾𝑖𝑖2

4

∆2 + 𝛾𝛾𝑐𝑐𝛾𝛾𝑖𝑖 + 𝛾𝛾𝑖𝑖2
4

≈
∆2

∆2 + 𝛾𝛾𝑐𝑐𝛾𝛾𝑖𝑖
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Therefore, the transmission at the BIC point is protected, with T1. On the contrary, if the probe 
frequency coincides with one of the intrinsic resonance frequencies of the two resonators, we have:  

𝑡𝑡𝜔𝜔1(𝜔𝜔2) =
±𝑖𝑖𝛾𝛾𝑖𝑖∆ + 𝛾𝛾𝑖𝑖2

4

±𝑖𝑖𝛾𝛾𝑖𝑖∆ ± 2𝑖𝑖𝛾𝛾𝑐𝑐∆ + 𝛾𝛾𝑐𝑐𝛾𝛾𝑖𝑖 + 𝛾𝛾𝑖𝑖2
4

≈
1

1 + 2 𝛾𝛾𝑐𝑐𝛾𝛾𝑖𝑖
∓ 𝑖𝑖 𝛾𝛾𝑐𝑐∆

→ 0 

To summarize, in a cascaded resonator system, if we fine-tune the phase delay between two 
resonators to make the system on-resonance, the center frequency becomes a near-BIC point. 
Coupling into this mode from the continuum is difficult, which gives rise to high transmission. 
Additionally, the transmission at ω1 and ω2 is low. Therefore, we can obtain an artificial 
transparency window that can be fully controlled by ω1 and ω2: ωo determines the peak position, 
while ∆ controls the peak width and Q-factor. Besides, we can also turn the peak off by breaking 
the resonance condition or diminishing resonance detuning ∆. 
Note that these transmission characteristics are often referred to in the literature as the optical 
analog to the electromagnetically induced transparency (EIT) in atomic physics124–130. However, 
we believe this system is not a rigorous EIT analog. Figure 3-4(d) is the energy level diagram of 
the FP BIC. The two energy levels (resonators) have similar Q-factors that couple indirectly 
through the radiation continuum. The transmission window requires the energy offset ∆ω. Figure 
3-4(g) is the simulation result of the BIC state with two identical resonators (∆ω =0); both have a 
resonance wavelength of 1533 nm. The transmission spectrum shows total reflection at the BIC 
point. 
Figure 3-4(e) is the energy level diagram of the rigorous optical analog of EIT. A low-Q resonator 
couples to the radiation continuum, while a high-Q resonator only couples to the low-Q resonator 
with a coupling rate J. J is the analog of the Rabi frequency in the original EIT124. This system can 
be realized using two directly-coupled resonators and a single bus. EIT is a particular Fano 
resonance where two resonators have disparate Q-factors but the same resonance frequency. In 
other words, their energy levels should have zero offsets131,132. It is possible to construct an EIT 
analog with indirectly-coupled resonators. However, the system still needs to follow the Fano 
resonance condition. We can simulate this effect by tweaking the setup following the energy level 
diagram in Figure 3-4(f). We shall lower the Q-factor of the first resonator and reduce the coupling 
rate of the second resonator while fixing their resonance wavelengths at 1533 nm. Here the Fano 
resonance results in the transparency window (Figure 3-4(h)). The shape of the peak is affected by 
the Q-factor difference and symmetry of the feedback loop132.  
In summary, the transparency window in a rigorous EIT analog is a result of Fano resonance (with 
two overlapping resonances), which is not valid for the near-BIC state. Phenomenologically, we 
can refer to both systems as “EIT-like” in terms of transmission characteristics.  
Besides, we would like to address the seemingly contradicting phenomena that the exact-BIC state 
leads to total reflection while the near-BIC state has high transmission. BIC and near-BIC states 
are high-Q states where coupling from the radiation continuum is difficult (energy stays in the 
continuum), which does not guarantee the direction of the output energy. From Equation 3-14, the 
direction of output is a competing result between ∆ and γi: for exact BIC state ∆=0, so it shows 
high reflection; for near-BIC state ∆≫γi, so it shows high transmission instead. 

 

(3-15) 
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§3.4 Device realization in photonic integrated circuits 
From the discussions in the last section, we shall conclude the essential requirements for a versatile 
BIC filter: first, the intrinsic loss needs to be small, otherwise the height of the transmission peak 
decreases; second, the coupling rate between the resonator and the bus should be high enough to 
ensure γc≫∆; third, we need to fine-tune the intrinsic resonance frequencies and the phase delay 
between resonators.  
We designed the proposed device using the silicon photonics platform with 220-nm silicon-on-
insulator (SOI) wafers (Figure 3-4(b)). Two ring resonators have slightly different radii (r1=14.98 
um; r2=15 um), and they are controlled by thermo-optic heaters. (controlled by voltage V1 and V2). 
Thermo-optic phase shifters connect two ring resonators, and they are controlled by voltage Vt. 
The bus waveguides and resonator waveguides all have a base width of 300 nm. All the coupling 
gaps (g) between bus waveguides and ring resonators are 300 nm to enforce identical coupling 
rates (γc/2). AIM Photonics fabricated the device through the multi-project wafer (MPW) run133. 
The simulations were carried out in Lumerical MODE and INTERCONNECT134. Figure 3-4(c)is 
the optical image of the fabricated device. 

 

We simulated the coupling rate between a 15-um ring and a single bus waveguide in Figure 3-5(a) 
as a function of gap size (g) with the resonance wavelength being 1533 nm. The coupling rate 
increases exponentially as the gap size decreases. At g=300 nm, we can satisfy the condition that 
γc≫∆. In Figure 3-5(b), we show the ring heater’s capability by tuning a single ring device (r=15 
um) to cover most of the free spectrum range (FSR). It lays a solid foundation for the following 
demonstrations. Figure 3-5(c) is a photo of the measurement setup in the Rochester Institute of 
Technology. The fiber array and probe array are in the opposite direction of the silicon chip. 
The transmission characteristics of the device shown in Figure 3-5(c) are summarized in Figure 3-
6. The upper curve in Figure 3-6(a) is the example of a BIC filter, which is also the reference curve 
in other panels. Two rings have their intrinsic resonance wavelengths of 1532.4 nm and 1533.4 
nm, respectively. The phase delay between the two rings is tuned to make the system on-resonance. 
The transmission at intrinsic resonance wavelengths is low, while the center wavelength is the 

Figure 3-5 | a. Simulation of the coupling rate as a function of gap size using a 15-um-radius 
ring and a single bus. Waveguide width is 300 nm. Resoannce wavelength is 1533 nm. Dased 
lines are frequency detuning converted from wavelength detuning around 1533 nm. b. 
Measured transmission spectra of a single 15-um-radius ring resonator with double buses. The 
black arrow shows the same transmission dip under different ring heater voltages. c. Photo of 
the measurement setup. 
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protected near-BIC state with high transmission. This result coincides with the model very well. 
If we increase the phase delay between the two rings by increasing the voltage of the phase shifter, 
the FP resonance condition fails. The transparency window red-shifts and the peak becomes 
asymmetric. 
 

 

 
We can independently control the peak position and peak width by tuning two ring resonators. In 
Figure 3-6(b), we show that we can maintain the width of the transparency window while changing 
the position by red-shifting or blue-shifting two rings together. We can also change the width and 
Q-factor of the transmission peak while fixing the position (Figure 3-6(c)). Bringing two ring 
resonators closer in terms of resonance wavelengths results in a narrower transparency window 
(higher Q-factor), and vice versa. The height of the transmission peak is a function of both detuning 
and loss (Equation 3-14). Thus a high-Q transparency window may have lower overall 

Figure 3-6 | Transmission spectra of BIC filters. a. Tuning the phase delay between two rings. 
The first curve is the on-resonace case with a symmetrical transparency window. b. Tuning the 
peak position with the fixed width. c. Tuning the peak width (Q-factor) with the fixed position. 
Spectra in b and c are all on-resonance. Blue curves in a, b, and c are the same. Black arrows 
are used to guide eyes to the peaks of interest in each panel. All the curves are shifted vertically 
for clear illustration. d - f. Simulation reproduction of a, b, and c, respectively. 
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transmission. Designing the device with low-loss waveguides could mitigate this issue. Note that 
every scenario in Figure 3-6(b) and Figure 3-6(c) is on-resonance, so the phase shifters between 
two rings are tuned when we change the peak position. 
For a filter design involving a single resonator, the resonance wavelength and Q-factor are usually 
dependent on each other, because the change of loss often accompanies the tuning process. In the 
BIC filter, however, the transparency window is not the mode of an individual resonator, but the 
mode of the near-BIC state. Therefore, the position and width of the transparency window are 
independent of each other. This control flexibility is very desirable in the PICs135. 
If one intends to use the BIC filter as an optical switch, there are three approaches. We shall regard 
the first curve in Figure 3-6(a) as the “On” state for 1533 nm wavelength; then we can turn the 
transmission off by 1. breaking the FP resonance (Figure 3-6(a), 22 dB on-off ratio); 2. shifting 
the peak position (Figure 3-6(b), 25 dB on-off ratio); 3. constructing exact-BIC state (Figure 3-4 
(g) & Figure 3-6(f), 75 dB on-off ratio). 
 Figure 3-6(d), (e), (f) are the simulation results reproducing the experimental data. The 
simulations show apparent transmission dips indicating intrinsic resonance wavelengths of the 
rings. Note that the curvature near the peak is slightly different in the simulations compared to the 
experiments, which also result in larger Q-factors for the windows (Figure 3-6(f)). It is because of 
the additional loss in the fabricated device that causes the transmission to fall off quickly around 
near-BIC points. 

 

Figure 3-7 | a. The optical image of the triple-resonator device. White circles denote the ring 
resonators, red rectangles are the thermo-optic phase shifters. The upper and middle ring are 
the first loop, the middle and the lower ring are the second loop. b. Tuning the phase delay in 
the first loop. The first curve is the on-resonace case for both loops with two transmission 
peaks. c. Simulation reproduction of a. d. Tuning the right peak’s position with the fixed width 
while tuning the left peak’s width (Q-factor) with the fixed position. Spectra in d are all on-
resonance in both loops. Blue curves in c and d are the same. Black arrows are used to guide 
eyes to the peaks of interest in each panel. All the curves are shifted vertically for clear 
illustration.  
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Although the discussions above are based on dual-resonator systems, we can cascade more detuned 
resonators sharing the same buses so that the transmission spectrum will show a series of tunable 
peaks128. As a demonstration of concept, we designed the triple-resonator device with an additional 
ring (r3=15.02 um) shown in Figure 3-7(a). The two loops between two adjacent rings give rise to 
two transparency windows when the system is on-resonance (first curve in Figure 3-7(b)).  
In Figure 3-7(b), we show the effect when we fix the resonance wavelengths of three rings and the 
phase delay in the second loop while increasing the phase delay in the first loop. The second peak 
is fixed in place, but the first peak red-shifts until it merges into the right peak. It promises the 
ability to have two transparency windows or kill either one of them. Figure 3-7(c) is the simulation 
result of the same process, confirming the effect of tuning phase delay in one of the loops. 
Because of the thermal cross-talk in the fabricated device, we used simulation to demonstrate the 
potentials of individual peak tuning in Figure 3-7(d). Starting from two peaks with similar widths, 
we can control the resonances of three rings so that the center frequency in the first loop is constant 
while the detuning in the second loop remains fixed. The result is that the left peak has a fixed 
position but varying width, while the right peak has a fixed width at different positions. Note that 
every scenario here is on-resonance for both loops. This phenomenon follows the same principle 
of the dual-resonator device and further proves the versatility of the BIC filters. 
In conclusion, we have demonstrated the near-BIC state using the PIC platform. The cascaded 
resonators bring about the near-BIC state at the average resonance wavelength, which has high 
transmission and is used to construct a transparency window. We argue that this phenomenon fits 
the BIC formalism rather than the rigorous optical analog of EIT. The devices we demonstrated 
are versatile filters whose peak position and width can be independently controlled. They can also 
be used as optical switches. We believe the results could deepen our understandings of the general 
BIC concept and help lower the threshold of its applications. 
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Conclusions & Outlooks 
 
In conclusion, we have reviewed and discussed three aspects as to how the topological behaviors 
in solid-state physics can inspire the novel photonic devices. Fundamentally, those researches 
intend to build the connection between a Fermion system and a Boson system.  
In Chapter 1, the phase manipulation of light is based on the fact that the polarization of photons 
can directly translate to electron spins. Therefore, the solid angle on the Poincaré sphere describes 
the geometric phase of a photon. It allows us to bypass the propagation phase manipulation that 
requires a low loss scattering medium, which is a big obstacle in the ultraviolet frequency band. 
Instead, we managed to use processing-friendly silicon to fabricate a metasurface that works for 
ultraviolet light.  
This work implies that high-index dielectric materials could be candidates when metals fail to 
function. Our circuit model gives analytical results as to why the large imaginary permittivity of 
silicon does not necessarily lead to large dissipations. In the last section of Chapter 1, we proposed 
the silicon optical antenna for fluorescence enhancement of biomolecules, which requires 
ultraviolet light as the excitation source. Silicon antennas could be a promising future direction in 
optical antenna researches.  
In Chapter 2, we reviewed the one-dimensional topological insulator model, i.e., the Su-Schrieffer-
Heeger model, and how the topological phase transits. Then we investigated the photonic 
counterpart using a one-dimensional waveguide array, which allowed us to engineer the bonding 
strength and on-site energy. It leads to a clear mapping relation between the parameter space of 
the waveguide array and the k-space of a two-dimensional nanoribbon, which unveils the 
topological origins in the nanoribbons. Based on the formalism, we successfully reproduced and 
studied the topological edge states of the graphene nanoribbon and hexagonal boron nitride 
nanoribbon models, which coincide very well with tight-binding calculations.  
More importantly, this method allows us to make predictions about the electronic counterparts 
based on the phenomena in the photonic systems. For example, the introduction of PT-symmetry 
could bring about special zero modes in the hypothetical nanoribbon lattice. Also, the engineering 
of the on-site energy indicates a possible path to control the topological phase transition point, 
which is exciting both theoretically and experimentally.  
In Chapter 3, we discussed the group theory in the photonic crystals and the rise of the bound-
state-in-continuum in the two-dimensional photonic crystal slabs. The group theory predicts that 
those symmetry-protected bound states are polarization singularities. This feature carried on to the 
accidental bound-state-in-continuum and proved its universal topological nature. Later in the 
chapter, we proposed the silicon photonic device with cascaded resonators to realize such 
particular states on a chip. Along with the powerful technology of the photonic integrated circuit, 
the result is a versatile filter that can be electrically tuned in every aspect. The idea of utilizing the 
bound state can pave the way to novel devices in photonic integration. 
The idea of bound-state-in-continuum originates in quantum mechanics and has been well-
received in the crystals (both electronic and photonic). The principal value of our work is to 
generalize this concept into a more practical platform, such as silicon photonics. We are looking 
forward to more filters, modulators, optical switches based on this idea in the future. 
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Overall, this dissertation is dedicated to discussing some essential physical pictures in the 
topological phenomena, and how they inspired interesting photonic devices. Through three 
chapters, we can see the connections between electronic and photonic systems, between low 
dimension and high dimension systems, and between various topological invariants. One key goal 
of physics researches is to study the universality of physical laws, and topology might be the lastest 
and greatest approach to do that. 
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Appendix A 
 
#Meep code under Linux environment for calculation of 2D photonic crystal dispersion 
# Define data output path 
export PATH=/home/user/miniconda3/bin:$PATH 
source activate mp 
python 
 
# Estimated calculation time using Core i5-7260U: 1 min. 
import meep as mp 
from meep import mpb 
import math 
 
# number of energy bands need to be calculated 
num_bands=10 
# The path of k in the first Brillouin zone. Here we choose the ∆ path from Γ to Χ 
k_points = [mp.Vector3(), mp.Vector3(0.5)] 
# Number of k points need to be calculated 
k_points = mp.interpolate(19, k_points) 
# Define the low index cylinder 
geometry = [mp.Cylinder(radius=0.2, material=mp.Medium(epsilon=2.1316)) ] 
# Define the unit cell 
geometry_lattice = mp.Lattice(size=mp.Vector3(1, 1)) 
# Define geometry resolution 
resolution = 32 
# Define matrix (background) material 
default_material=mp.Medium(epsilon=4.08) 
# Define ModeSolver using all the parameters defined above 
ms = mpb.ModeSolver(num_bands=num_bands, k_points=k_points, geometry=geometry, 
geometry_lattice=geometry_lattice, resolution=resolution, default_material=default_material) 
 
ms.run_tm()      # Run simulation 
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Appendix B 
 
# Lumerical FDTD code for TM1 band and quality factor calculation. 
# This code is derived from the Lumerical Knowledge Base:                                                          
# https://apps.lumerical.com/diffractive_optics_pc_bandstructure.html                                          
# This script only calculate one band of interest, must know the band structure first                      
 
################################################# 
# preparation steps 
################################################# 
# simplify input variable names by removing spaces 
number_resonances = %number resonances%; 
make_plots = %make plots%; 
n_monitors = %n monitors%; 
resonance_trials = 4; # find three peaks fist then go to the lowest peak 
min_filter_width = 1; # min width of filter in units of resonance FWHM 
max_filter_width = 8; # min width of filter in units of resonance FWHM 
filter_width_test_points = 20; 
zero_pad = 2^17; # fft zero padding 
# Note fft zero pad should be a power of 2,  
# and larger gives more resolution in the  
#frequency domain. 
 
for(N=0; (N+1) <= n_monitors; 0)  
{  
N=N+1; 
} # up to the sum of # of monitors 
 
################################################# 
# get the monitor data for the first monitor 
################################################# 
t = getdata("m3","t"); 
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field0_t_Ex = pinch(getdata("m3","Ex")); 
field0_t_Ey = pinch(getdata("m3","Ey")); 
field0_t_Ez = pinch(getdata("m3","Ez")); 
 
################################################# 
# do fft to frequency domain for all monitors 
################################################# 
signal = 0; 
w = fftw(t,1,zero_pad); 
field_w = matrix(length(w),6*N); 
for(i=1:N)  
{ 
mname = "m" + num2str(i); 
for(j=1:6)  
{ 
if(almostequal(j,1))  
{  
component = "Ex";  
} 
if(almostequal(j,2))  
{  
component = "Ey";  
} 
if(almostequal(j,3))  
{  
component = "Ez";  
} 
if(almostequal(j,4))  
{  
component = "Hx";  
} 
if(almostequal(j,5))  
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{  
component = "Hy";  
} 
if(almostequal(j,6))  
{  
component = "Hz";  
} 
if(j > 3.5)  
{  
extra_factor = sqrt(mu0/eps0);  
} 
else  
{  
extra_factor = 1;  
} 
if(havedata(mname,component))  
{ 
signal = pinch(getdata(mname,component)); 
# signal = signal*exp( - 0.5*(t-max(t)*apod_center)^2/(apod_width*max(t))^2); 
field_w(1:length(w),6*(i-1)+j) = 2*extra_factor*( (1:length(w)) <=(length(w)/2+0.1)) * 
fft(signal,1,zero_pad); 
} 
} 
} 
 
################################################# 
# find resonant peaks, including all monitors, within the frequency of interest 
################################################# 
f_spectrum = sum(abs(field_w)^2,2); 
f1 = find(w, fmin_norm*3e8/period*2*pi); 
f2 = find(w, fmax_norm*3e8/period*2*pi); 
p = findpeaks(f_spectrum(f1:f2),number_resonances); 
p = p + f1 - 1; 
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f0 = w(p)/2/pi; 
 
# plot(w(f1:f2),f_spectrum(f1:f2)); 
# plot(w,f_spectrum); 
?"lowest frequency =" + "position:" + num2str(f1) + "omega:" + num2str(w(f1)); 
?"highest freqeuncy =" + "position" + num2str(f2) + "omega:" + num2str(w(f2)); 
?"peak position = " + num2str(p) + " frequency: " + num2str(f0) + "Hz"; 
 
################################################# 
# find quality factors 
################################################# 
# reserve memory for results 
peak_spectra = matrix(length(w),number_resonances); 
peak_filters2 = matrix(length(w),number_resonances); 
 
# calculate slope of decay using 20-80% of time signal 
tp1 = round(0.2*length(t)); 
tp2 = round(0.8*length(t)); 
t2 = t(tp1:tp2); 
log_field_all = matrix(tp2-tp1+1,number_resonances); 
 
Q = matrix(number_resonances); 
delta_Q = matrix(number_resonances)+1e300; 
 
# loop over each peak  
for(i=1:number_resonances)  
{ 
# find FWHM of peak 
peak_val = f_spectrum(p(i)); 
continue_search = 1; 
for(p1=p(i)-1; (p1>1) & continue_search ; 1)  
{ 
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if(f_spectrum(p1)<=peak_val/2)  
{  
continue_search = 0;  
} 
else  
{ 
p1 = p1-1; 
} 
} 
 
continue_search = 1; 
for(p2=p(i)+1; (p2<length(w))& continue_search; 1)  
{ 
if(f_spectrum(p2)<=peak_val/2)  
{  
continue_search = 0;  
}  
else 
{ 
p2 = p2+1; 
} 
} 
 
if(p1 < 1)  
{  
p1 = 1;  
} 
if(p2 > length(w))  
{  
p2 = length(w);  
} 
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FWHM = w(p2)-w(p1); 
for(filter_width=linspace(min_filter_width,max_filter_width,filter_width_test_points))  
{ 
# calculate the filter for the peak 
peak_filter = exp( -0.5*(w-w(p(i)))^2/(filter_width*FWHM)^2 ); 
# inverse fft to get data in time domain 
field2_t = 0; 
for(mcount=1:6*N)  
{  
field2_t = field2_t + abs(invfft(pinch(field_w,2,mcount)*peak_filter))^2; 
} 
field2_t = field2_t(tp1:tp2); 
log_field = log10(abs(field2_t)); 
 
# calculate slope and Q from the slope of the decay 
# estimate error from the slope 
slope = (log_field(2:length(t2))-log_field(1:length(t2)-1))/(t(2:length(t2))-t(1:length(t2)-1)); 
slope_mean = sum(slope)/length(slope); 
slope_delta = sqrt( sum((slope-slope_mean)^2)/length(slope) ); 
Q_test = -w(p(i))*log10(exp(1))/(slope_mean); 
delta_Q_test = abs(slope_delta/slope_mean*Q_test); 
if(delta_Q_test < delta_Q(i))  
{ 
Q(i) = Q_test; 
delta_Q(i) = delta_Q_test; 
 
# collect data for final plot 
peak_spectra(1:length(w),i) = f_spectrum * peak_filter^2; 
peak_filters2(1:length(w),i) = peak_filter^2; 
log_field_all(1:length(t2),i) = log_field; 
 
} 
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} 
# output summary of peak results to script window 
?"Resonance " + num2str(i) + ":"; 
?" frequency = " + num2str(w(p(i))/(2*pi)*1e-12) + "THz, or "+num2str(2*pi*c/w(p(i))*1e9)+" 
nm"; 
?" Q = " + num2str(Q(i)) +" +/- " + num2str(delta_Q(i)); 
} 
 
Q_matrix=Q; 
 
 
################################################# 
# create dataset and plot the results 
################################################# 
spectrum = matrixdataset("spectrum"); 
spectrum.addparameter("f",w/2/pi); 
spectrum.addattribute("spec",f_spectrum); 
 
band_count=matrix(number_resonances); 
band_count=[1:number_resonances]; 
 
bandstructure = matrixdataset("bandstructure"); 
bandstructure.addparameter("band_count", band_count); 
bandstructure.addattribute("freq",f0); #resonance position in absolute frequency 
bandstructure.addattribute("Q", Q_matrix); 
bandstructure.addattribute("dQ", delta_Q);  
 
if (make_plots)  
{ 
# # plot signal and envelope for first monitor  
field_t_Ex = invfft(pinch(field_w,2,1)); 
field_t_Ex = field_t_Ex(1:length(t)); 
field_t_Ey = invfft(pinch(field_w,2,2)); 
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field_t_Ey = field_t_Ey(1:length(t)); 
field_t_Ez = invfft(pinch(field_w,2,3)); 
field_t_Ez = field_t_Ez(1:length(t)); 
plot(t*1e15,field0_t_Ex,abs(field_t_Ex),field0_t_Ey,abs(field_t_Ey),field0_t_Ez,abs(field_t_Ez), 
"time (fs)","field envelope"); legend("field (Ex)","envelope (Ex)","field (Ey)","envelope 
(Ey)","field (Ez)","envelope (Ez)"); 
 
# plot the slopes of the decaying fields 
plot(t2*1e15,log_field_all,"time (fs)","log10(|field(t)|)","Decay for each resonance"); 
 
# plot spectra 
p1 = find(w,0.8*min(w(p))); 
p2 = find(w,1.2*max(w(p))); 
f = w/(2*pi); 
plot(f(p1:p2)*1e-12,peak_spectra(p1:p2,1:number_resonances)/max(f_spectrum),"frequency 
(THz)","Arbitrary units","Spectrum of resonances"); 
plot(f(p1:p2)*1e12,f_spectrum(p1:p2)/max(f_spectrum),peak_filters2(p1:p2,1:number_resonanc
es),"frequency (THz)","Arbitrary units","Spectrum and filters"); 
}  
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