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Abstract

Mobile health tools that enable clinicians and researchers to monitor the type, quantity, and quality of everyday activities of 
patients and trial participants have long been needed to improve daily care, design more clinically meaningful randomized 
trials of interventions, and establish cost-effective, evidence-based practices. Inexpensive, unobtrusive wireless sensors, 
including accelerometers, gyroscopes, and pressure-sensitive textiles, combined with Internet-based communications and 
machine-learning algorithms trained to recognize upper- and lower-extremity movements, have begun to fulfill this need. 
Continuous data from ankle triaxial accelerometers, for example, can be transmitted from the home and community via 
WiFi or a smartphone to a remote data analysis server. Reports can include the walking speed and duration of every bout 
of ambulation, spatiotemporal symmetries between the legs, and the type, duration, and energy used during exercise. For 
daily care, this readily accessible flow of real-world information allows clinicians to monitor the amount and quality of 
exercise for risk factor management and compliance in the practice of skills. Feedback may motivate better self-management 
as well as serve home-based rehabilitation efforts. Monitoring patients with chronic diseases and after hospitalization or 
the start of new medications for a decline in daily activity may help detect medical complications before rehospitalization 
becomes necessary. For clinical trials, repeated laboratory-quality assessments of key activities in the community, rather 
than by clinic testing, self-report, and ordinal scales, may reduce the cost and burden of travel, improve recruitment and 
retention, and capture more reliable, valid, and responsive ratio-scaled outcome measures that are not mere surrogates 
for changes in daily impairment, disability, and functioning.
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A white paper from the National Institute of Child Health 
and Human Development’s Diagnostics and Therapeutics 
Vision Workshop1 examined issues that are vital for prog-
ress in daily clinical care and clinical trials in neurological 
diseases and neurorehabilitation. One of the common 
themes was “the need for novel and accurate diagnostics, 
and for more precise, low-cost, and practical methods for 
tracking intervention outcomes . . . for an individual illness 
episode and for tracking disease in impaired populations 
across the lifespan.” The white paper suggested, “New, 
low-cost, portable sensors may ultimately replace prevail-
ing clinical instruments used for outcome assessments. 
Existing clinical assessment instruments lack reliability and 
sensitivity, and their relationship to mechanisms of recov-
ery needs to be established. Advanced technology/sensors 
must be developed to establish better tracking of compli-
ance and clinical outcomes, at several ICF [International 

Classification of Functioning, Disability, and Health2] 
levels.”

Referred to as mobile health (mHealth) or wireless 
health, the notion of portable internal and wearable sensors 
to monitor health is quickly becoming a reality. Sensors can 
transmit biochemical (glucose, chemistries) and physiologi-
cal (electroencephalogram, blood pressure, heart rate, elec-
trocardiogram, cardiac output, and weight) information 
from the home to remote sites. Wearable mHealth sensors 
are beginning to be able to measure the type, quantity, and 
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quality of daily activity, movement and balance (http//:www 
.wirelesshealth.ucla.edu)3-8 This issue of Neurorehabilita-
tion and Neural Repair includes an example of an acceler-
ometry device that monitors people with Parkinson disease 
at home.9 Potential mHealth devices include (1) accelerom-
eters to measure accelerations/decelerations, velocity, and 
displacement of the body segments to which they are 
attached; (2) gyroscopes that sense angular velocity, which 
are often joined with accelerometers to measure rotation of 
the body or a limb during actions; (3) vector magnetometers 
to reveal spatial orientation; (4) goniometers attached to 
joints to measure range of motion; (5) piezoelectrode and 
textile pressure sensors in a thin glove to report grasp and 
pinch forces or in insoles to record foot contact time and 
pressure distribution; (6) electromyography to reveal the 
amount and timing of muscle activation; (7) tilt/bend sen-
sors across a joint such as the wrist to report flexion or 
extension angle change; and (8) global positioning satellite 
(GPS) signals to indicate geographic location and calculate 
walking distance and velocity for continuous gait. These 
and other combinations of sensor arrays are becoming so 
small and flexible that they may become ubiquitous, either 
woven into clothing10 or laminated onto ultrathin skin inter-
faces and placed anywhere on the body.11

By processing data from multiple, unobtrusive sensors 
using algorithms trained to recognize movement patterns 
of the legs, upper extremities, and trunk, clinicians and 
researchers may solve many of the problems that continue 
to limit the quality of daily care and clinical trials. 
Inexpensive sensors will communicate via Bluetooth, 
ZigBee, or another transmission source to a cell phone or 
Wifi connection, then over the Internet to an automated 
analytic system. Certain types of data will be analyzed on 
chips in the sensors. These platforms will provide rapid 
feedback to users or clinicians, enable access to expert care 
from the home, give clinicians real-world data to better 
monitor their patients, increase compliance with a medical 
or rehabilitation regimen, and support telerehabilitation 
efforts. For clinical trials, sensing platforms may provide 
low-cost, remote recruitment and management of partici-
pants, increase retention by reducing visits to clinic sites, 
and enable continuous monitoring and outcome assess-
ments that make manifest the clinical meaningfulness of the 
interventions being tested.

The Problem
Daily Care

Some of the frequent problems faced by clinicians who care 
for patients with chronic diseases such as stroke, Parkinson 
disease, and multiple sclerosis include measuring gains and 
losses of daily functioning over time, assessing the effects 
of the timing and dose of a medication on target symptoms 

related to physical functioning, being allowed to order 
enough physical therapy to maintain or improve daily 
activities, assessing compliance with instructions for exer-
cise and skills practice, providing adequate feedback about 
performance of that practice, and being able to update 
instructions more frequently than only at the time of an 
office visit.

Access to rehabilitation services. Examples of daily care con-
founders can be found for any neurological disease as well as 
in the chronic pain, cardiovascular, pulmonary, and cancer 
literature. Stroke will serve as an exemplar. After inpatient 
stroke rehabilitation, outpatient training is needed by most 
patients. A 2005 Centers for Disease Control survey found 
that only 31% of stroke survivors received outpatient reha-
bilitation,12 significantly fewer than expected if clinical 
guidelines were followed.13,14 Even when offered, these ser-
vices are often unstructured, difficult to obtain, and not 
driven by progressive goals to enable independent walking in 
the community and functional use of an affected upper 
extremity or to lessen deconditioning.15,16 Not only in the 
United States, but around the world, access to rehabilitation 
is very uneven, and expertise in solving problems related to 
sensorimotor impairments and disabilities seems limited. 
Some efforts are under way to develop affordable inpatient 
and outpatient systems that can reach more patients,17-19 but 
new strategies for less expensive and more relevant home-
based care are urgently needed to reduce disability after 
stroke as well as for most other neurological diseases.

Availability of home-based therapies. Home-based thera-
pies after stroke usually lack coordination and a focus on 
higher levels of functioning. During a home-based thera-
peutic program directed by verbal instruction, physicians 
and therapists are unable to weigh a patient’s progress in 
terms of actual time and effort spent on prescribed activi-
ties, such as the number of repetitions and the quality of 
practiced movements. The ability of patients to self-monitor 
rehabilitation practice is probably even less reliable when 
more technical information is given about practice parame-
ters, such as advice about ways to reduce gait deviations 
that impede balance. Counseling alone about the benefits of 
practice and physical activity has not been effective.20 For 
neurological diseases such as stroke, “the best and most 
cost effective way of increasing physical activity has not 
been found.”21,22 On the other hand, the efficacy of highly 
supervised and rather intensive training to improve balance, 
walking speed, fitness, or use of the affected upper extrem-
ity after stroke is evident.16,23,24 Indeed, a progressive, 
home-exercise program managed by therapists in the Loco-
motor Experience Applied Post-Stroke (LEAPS) clinical 
trial revealed walking-related gains that were equivalent to 
a much more walking-intensive physical therapy provided 
at clinics.16 The problem is how to inexpensively make 
direct supervision available. In addition, although exercise 
for fitness and more functional mobility25,26 may reduce 



790  Neurorehabilitation and Neural Repair 25(9)

falls, moderate the cardiovascular risk profile, and enable 
greater participation in usual roles,27-31 outpatient therapy 
for these goals is usually not covered by medical insur-
ance.15,32,33 Wireless health strategies that enable monitor-
ing and feedback by professionals from their offices as 
patients practice skills, walking, strengthening, and fitness 
in the home may be an efficient and effective alternative 
strategy for the delivery of needed care.

Complications of impairment and disability. Many motor-
related errors of omission and commission can add to mor-
bidity after stroke, such as contractures, pain, decubitus 
ulcers, nonuse of an upper extremity, and falls. For example, 
in the first year after stroke, 60% of disabled people suffer 
falls,34 and half have multiple falls16 with frequent injuries 
and bone fractures.35 Fear of falling leads to a decline in 
physical activity followed by greater risk for cardiovascular 
morbidity and further loss of quality of life. Clearly, better 
recognition of mechanisms underlying imbalance and falls 
and more effective interventions are needed.36 Falls, of 
course, are common among older people and most of those 
with neurological diseases that cause ataxia or paresis.37-40 
Measurements by wearable sensors of balance during real-
world activities and at the time of a fall may offer a more 
promising mechanistic approach to prevention.

Spasticity has many treatments, but their effect on impair-
ment and disability in actual use of the hand, arm, or leg is 
unclear and not revealed by existing measures of outpatient 
activities.41-47 Indeed, some studies question the clinical 
meaning of measures of spasticity, especially the Ashworth 
Scale.48 Measures for the upper extremity usually do not 
assess changes in voluntary movement.49,50 Could assess-
ment of the quantity and quality of purposeful everyday use 
of the affected arm or leg add a reliable measure of the effi-
cacy of interventions?

Clinical Trials
Some of the confounders that limit interpretation of the 
results of randomized clinical trials include the use of 
highly selected patient samples that may not represent the 
disease population at large; slow recruitment and failure to 
retain participants; the inability to monitor the fidelity of a 
physical intervention within subjects and across sites; 
uncertainty in accounting for what participants may or may 
not be practicing outside of the research interventions; the 
acquisition of outcomes that are only surrogates for changes 
in daily impairment, disability, and functioning; and use of 
outcome measurements that are not recognized by commu-
nity clinicians or patients to be meaningful, so that the 
results of a positive trial may not be accepted into practice 
and disseminated.

Limitations of assessment tools. Clinical researchers 
have been limited to performing assessments in the clinic or 
laboratory. Laboratory measures in most clinical trials 

indirectly assess the outcomes that are most meaningful to 
the investigators and perhaps to the participants. Indeed, the 
extent to which the limitations of existing rating scales are 
to blame for the failure of clinical trials to deliver better 
treatments, while unknown, is a source of discomfort for all 
trialists.51 Researchers have long sought direct, ecologically 
valid measures of upper- and lower-extremity activities. 
Inexpensive interval and ratio measures of real-world func-
tioning could offer higher face validity for valued outcomes 
than ordinal, self-reported scales or timed laboratory tasks. 
Optimal activity-based outcome measures would also be 
agnostic, in the sense that they would not be disease centric. 
Rather, the tools would help integrate the domains of senso-
rimotor impairment, disability, activity, and participation, 
regardless of pathology.

Walking. Everyday sensing measures may offer greater 
validity and accuracy about outcomes of interventions 
than laboratory-based tests, which must be supplemented 
by questionnaires of self-reported daily activity to discern 
real-world behavior. For example, short-distance (6-15 
m) walking speed on a flat indoor surface is the primary 
outcome measure of most clinical trials of interventions to 
improve walking after stroke, multiple sclerosis, Parkin-
son disease, and spinal cord injury and for neuropediat-
rics.16,52-63 Walking capacity, that is, the distance walked 
in 3 to 6 minutes, is a common secondary outcome and 
may serve as an indicator of overall health, at least in 
older people.64 These walking tasks under ideal condi-
tions cannot, however, reveal how much, how fast, and 
how well people ordinarily walk in the home and com-
munity when faced with the constraints of their environ-
ments and impairments. Pedometers can count the number 
of steps, but no more. On the other hand, wireless sensor 
data about the range of walking speeds used in the home 
and community, distances walked in each bout, actual leg 
exercise time and energy expended on a stationary bicy-
cle, and alterations in spatiotemporal parameters of gait 
under varying demands could complement laboratory 
tests and ordinal scales of walking, disability, and activ-
ity-related quality of life.

Functional use of the upper extremity. Ordinal scales of 
upper-extremity impairment and disability are commonly 
used but are limited by floor and ceiling effects, examiner 
expertise and bias, interrater reliability across trial sites, and 
uncertain face validity.51 Timed tasks such as the Wolf 
Motor Function Test (WMFT) are often used as the primary 
outcome in clinical trials of rehabilitation interventions 
such as constraint-induced movement therapy, bimanual 
therapy, and brain stimulation.24,65-75 The WMFT and com-
plementary ordinal scales are the de facto outcomes for 
most robotic, functional neuromuscular stimulation, and 
neurostimulation trials as well.76-84 Interpretation of the 
WMFT improves when combined with a structured inter-
view, such as the Motor Activity Log, about the amount of 
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upper-extremity activity.85 Like all self-report tools, the 
Motor Activity Log has some inherent weaknesses, includ-
ing recall bias, subjectivity, demand characteristics, and 
experimenter bias. Thus, available tools do not give an 
investigator a direct measure of the variety and quantity of 
purposeful movements performed in everyday reaching, 
self-care, skills practice, and exercise.

The Solutions
mHealth

mHealth is a rapidly growing field, increasingly sup-
ported by the computer and communications industry, the 
National Institutes of Health (http://commonfund.nih.gov/
strategicplanning/), the National Science Foundation, and 
charitable foundations. Wireless mHealth requires a range 
of engineering and computer science development (http://
sensornets.org/). These include types of sensors, sensor 
networking software and architectures, hardware (eg, tech-
nology standards, design, fabrication, packaging, reliabil-
ity, electronic noise, power management and energy 
efficiency, connectivity and communications, and interop-
erability of platforms), signal processing (eg, routing tech-
niques, statistical and adaptive processing, multimedia, 
coding and compression of data, data fusion, neural net-
works, fault detection, and data mining), cloud computing, 
security, infrastructure, research funding, economic viabil-
ity, and other issues. For neurology and rehabilitation, the 
most important recent technological advancement is in the 
systematic and flexible merging of sensor data and trans-
mission hardware with software programs for ease of use 
by participants and researchers. In addition, algorithms are 
becoming available to remotely recognize the type, quan-
tity, and aspects of quality of purposeful movements.

Sensors. Single biaxial accelerometers have been com-
mercially available (Actigraph, RT3, and Omron) to count 
movements of the arm or leg during reaching or step-
ping.55,86,87 Several types of biaxial and triaxial accelerom-
eters have also been used in laboratory-based research.86 A 
triaxial piezoresistant accelerometer, fastened over the L3 
spinous process (DynaPort MiniMod, McRoberts) can 
define gait stance and swing times as well as walking speeds 
>0.5 m/s.88 A system of 5 wired biaxial accelerometers 
(IDEEA, Minisun) placed over the thigh, sole, and sternum 
can quantify spatiotemporal aspects of gait and discriminate 
between specific activities, such as walking versus stair 
climbing, but the algorithms do not detect walking speeds 
<0.4 m/s.89,90 The intraclass correlation coefficient for 
repeatability and reliability of acceleration-based gait anal-
ysis, however, is very high for detecting cadence, speed, 
step length, and asymmetry in stance and swing times along 
with irregularities associated with turns and changes in 
speed in healthy participants and hemiparetic patients after 

stroke.91 A central problem for the deployment of commer-
cial devices by rehabilitation researchers is that they use 
proprietary data analysis systems to detect a small reper-
toire of movements, mostly in healthy individuals. In addi-
tion, they are too expensive to be distributed widely among 
outpatients for trials, with prices ranging from $1000 (Bio-
Sensics) per accelerometer to $4000 (MiniSun) for a set.

Research groups are beginning to publish reports of sensor-
based algorithms that better identify purposeful upper-
extremity and walking movements for highly impaired reaching 
and walking.7,8,92 Other pilot studies found that wearable 
accelerometers can substitute for traditional force-plate mea-
sures to reveal postural sway and anticipatory postural adjust-
ments.93-95 Chest and waist triaxial accelerometers, using 
threshold-based algorithms, can discriminate between a fall 
and daily activities.94,96,97 In general, these devices have only 
been put to use in a laboratory setting.

The Wireless Health Institute at the University of 
California Los Angeles developed and tested a complete 
architecture for activity pattern recognition, called the 
Medical Daily Activity Wireless Network (MDAWN).5,98,99 
The MDAWN includes components for automated sensor 
data collection, transport to a remote and secure repository, 
individualized subject modeling, and activity state classifi-
cation based on multiple sensor, data-fusion methods.99 
Data obtained from triaxial accelerometers (Gulf Coast 
Data Concepts, $230 per set) placed just above each lateral 
malleolus are uploaded to a computer by USB port or to a 
smartphone by Bluetooth, then sent opportunistically via 
WiFi or cell connection to the MDAWN server. Analyzed 
data are automatically sent to a clinical trial database or to a 
participant for feedback.

Machine-learning algorithms in MDAWN primarily use 
Bayesian sensor fusion to generate an individual activity 
template based on the movements of interest made by each 
participant.99-101 About 10 repetitions of a movement or 2 
timed walks of 10 m at more than 1 speed fulfill the require-
ments for pattern recognition to identify walking or calcu-
late walking or exercise parameters.5,102 The template is a 
set of statistically unique features derived from frequencies, 
amplitudes, waveforms, time average of acceleration, and 
derivatives of these across all 3 gravity-sensitive axes from 
both ankles. The training data take into account the pecu-
liarities of each person’s movements and motor control. 
Once a person’s template has been defined, further data col-
lections during everyday activities are evaluated by the 
MDAWN system for periods of activity with features that 
match it.5,103,104

Sensor-derived algorithms can potentially be trained to 
recognize most real-world daily activity patterns, such as 
reaching, eating, washing, exercising with equipment, 
standing up, walking at any speed, and climbing stairs. The 
optimal placement of the accelerometers depends on the 
activities to be captured. By merging the activity data with 
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GPS, voice notation, or on-demand photo/video using a tiny 
camera hanging from the neck, the environs of the partici-
pant or the object/task being managed can be distinguished. 
In addition, for less than $15, torque sensors and Bluetooth 
can be integrated into inexpensive exercise equipment such 
as elastic resistance bands and cycling apparatus to add the 
capability of recording and transmitting the actual forces or 
repetitions exerted by participants. An important next step 
is to test existing sensors in real-world settings across neu-
rological diseases to demonstrate their reliability, validity, 
and responsiveness to measure purposeful activities at sev-
eral ICF levels.

Data analyses. The use of Bayesian fusion to combine 
data from multiple body sites and different types of sensors 
provides the opportunity to implement a wide range of ana-
lytic techniques to compare community-based activities 
with laboratory- or clinic-based testing. For example, the 
coefficient of variation of stride-to-stride fluctuations can 
be assessed with an accelerometer on each ankle,90 Other 
promising methods for modeling fluctuations in spatiotem-
poral and foot pressure measurements during stance and 
gait,105,106 such as high stride and swing time variances, may 
help predict falls across neurological diseases as well as 
freezing of gait in Parkinson disease.107 mHealth technol-
ogy also offers repeated measures that are easy to acquire, 
enabling researchers to use time-series methodology to single-
participant and group data. Additional analytic tools such as 
trend estimation, structural modeling, and bioinformatics 
will also lend themselves to the large clinical and sensor 
data sets obtained in trials.

Daily Clinical Care
For wireless health, translation is the process of converting 
scientific knowledge into practitioner-friendly products that 
can be implemented to improve health care and research.108 
This stage of progress has been anticipated by the NIH 
(http://commonfund.nih.gov/InnovationBrainstorm/post/
Innovative-Mobile-and-Wireless-Technologies-%28m 
Health%29-to-Improve-Health-Research-and-Health-Out 
comes.aspx) and by industry (http://www.wirelesshealth 
2011.org) but not yet demonstrated convincingly for  
dissemination.

Sensors offer potential solutions to the problems 
described earlier regarding daily care. Remote monitoring 
enables access by patients to a therapist for instruction 
about exercise and motor skills anywhere within reach of 
the Internet. Compliance with practice and exercise can be 
assessed daily and the information of interest made imme-
diately available to a therapist or physician. Feedback about 
performance from accumulated sensor data collected over 
weeks can be provided by graphs and text over anyone’s 
cell smartphone or computer. Indeed, real-time interactions 
using a camera built into a cell phone, electronic tablet, or 

computer for face-to-face contact or as an inexpensive way 
to watch a patient perform a task may emerge as another 
tool for better care and feedback. The therapist can make 
corrections, then monitor home-based practice through sen-
sors. Thus, sensor platforms will likely better enable and 
complement telerehabilitation strategies.109-111

Sensor platforms also provide an opportunity to assess 
the longitudinal impact of health care. For example, to com-
ply with recent Center for Medicare Services rules for reim-
bursement coverage for hospitals, one strategy may be to 
monitor the amount and quality of mobility for the 30-day 
transition from hospital or inpatient rehabilitation to home. 
Remote monitoring of daily activity may serve as a physi-
ological measure of wellness or decline in health.64 A toxic-
metabolic complication, fear of falling, and other confounders 
may be recognizable by abrupt alterations in the usual 
amount, type, or quality of walking, balance, exercise, and 
everyday activities.

Generic data about daily activity will lead to age and 
gender norms in healthy persons and perhaps serve to seg-
ment the neurological disease population into levels of 
activity-related severity that can be compared with the 
norms. With an electronic medical record that receives a 
summary of daily sensor data, data mining across disease 
populations may allow rigorous retrospective analysis of 
patient response to treatments. By this means, each patient, 
if agreeable, also becomes a research participant, which 
will maximize data mining. Indeed, bioinformatic tech-
niques will be needed to create individual prediction mod-
els, so that sensor data can guide tailored prevention and 
therapeutic interventions. For Medicare and other large 
insurers, all these individual data may also help predict the 
need for rehospitalization or discern between valued and 
adverse effects of drugs by their impact on daily activity.

Clinical Trials
Remote sensing may enable researchers to recruit and fol-
low patients without transporting them to a research setting. 
This advantage should increase geographical access to 
potential participants and improve retention in trials by 
lessening burdens on patients who are disenfranchised by 
their disability, geography, or social and economic disad-
vantages.112 In turn, study samples may be more representa-
tive, the quantity and quality of community-based follow-up 
data may increase, and duration and costs may be reduced.

Remote sensing could monitor the fidelity of a physical 
intervention across trial sites as well as inform researchers 
about how much or how little participants are practicing on 
their own. Informal practice or exercise may augment or 
reduce the effects of an assigned randomized con-
trolled trial (RCT) intervention and confound the results. 
Researchers also cannot readily assess what participants 
practice from the time the experimental intervention stops 
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until final outcome measures are performed, often 3 to 6 
months later. This variation in participant activity and 
intensity of informal practice may confound the interpreta-
tion of gains attributed to the type and dose of the interven-
tion itself. Sensing can provide this critical information. 
Indeed, a RCT is in progress—the Stroke Inpatient 
Rehabilitation Reinforcement of ACTivity (SIRRACT; 
ClinTrials.gov #NCT01246882)—that monitors daily for-
mal and informal lower-extremity activities via wireless 
ankle accelerometers and the MDAWN platform during 
inpatient therapy, at 16 international sites. One arm receives 
feedback 3 times a week about the daily range of walking 
speeds and distances achieved, duration of exercises, and 
time spent in formal therapy and informal practice. The 
other arm only gets feedback about average daily walking 
speed. The RCT’s hypothesis is that enhanced feedback 
about performance will lead to more activity and practice 
and, thus, improve walking-related outcomes at the time of 
discharge.113,114 The goal is to detect what has never been 
feasible: that is, the type, quantity, and quality of all lower-
extremity activity using technology that can be used in the 
community within the context of daily care.

Measurement of the actual dose of exercise and daily 
mobility will be essential to future trials that aim to assess, 
for example, the effects of exercise on cognition after 
stroke115,116 or for aging and dementia.117 Real-world mea-
sures of impairment and functional use enabled by sensors 
could also lead to better brain–behavior correlations in 
studies of neuroplasticity118,119 as well as reveal the effects 
of fatigability on bouts of daily activity.120-122 In addition, 
reliable, serial ratio-scale measurements should improve 
the ability of investigators to discern the dose–response and 
effects over time of therapeutic augmentation of skills by 
pharmacological,123,124 neural-stimulation,125,126 and neural-
repair127-129 interventions for neurorehabilitation.

With ratio-scale monitoring and outcome mHealth tools, 
pilot studies of new interventions may be able to develop 
more exact dose–response data to optimize the intensity of 
a therapy prior to conducting a RCT.130,131 For example, the 
trajectory of gains over time can be assessed immediately 
before, during, and after a day’s intervention and as often as 
desired throughout the course of treatment and follow-up. 
For studies of patients with chronic impairments and dis-
abilities, multiple baseline measurements of activities of 
interest can be quantified to assess their stability prior to the 
start of a RCT;132 or the stability of these baseline tests can 
be perturbed by providing a brief task-related therapy to see 
if that alters the baseline level of activity. This strategy may 
reduce the number of outliers who respond to a control or 
experimental therapy simply because the participants have 
latent function that any form of motivation or practice can 
rapidly restore. Baseline differences in activities of interest 
to investigators, serving as a measure of the severity of dis-
ease symptoms or disability, could also be used to stratify 

participants prior to randomization.133 The capacity to col-
lect repeated measures for weeks at a time at almost no cost 
to a trial also allows the option of obtaining longitudinal 
outcomes well beyond the formal end of a trial. These con-
venient repeated assessments may also improve our under-
standing of the trajectories of motor learning, compensation, 
and recovery following an injury or rehabilitation.134,135

The development of standardized sensor measures should 
promote common monitoring and outcome tools and meth-
odologies across trials. By using reliable, clinically mean-
ingful generic measurements of arm or leg activity across 
relevant RCTs, the use of meta-analysis for evidence-based 
practices will become more valid. Common measurements 
will also improve and encourage data sharing. Ratio-scaled 
data may also improve the conceptual basis for what is con-
sidered to be a meaningful change in function—that is, give 
greater substance to notions such as the minimal detectable 
change and the minimal clinically important difference for 
walking speed or functional use of the upper extremity.136-139 
In addition, sensor data can contribute to more novel clinical 
trial designs, especially to help overcome the relative con-
straints of small participant sample sizes. The availability of 
repeated measurements, for example, is well suited to adap-
tive or Bayesian designs.140

Conclusion
The rapid evolution of low-cost, energy-efficient wireless 
sensing and processing platforms is a long-awaited opportu-
nity for health care services, clinical practice, and research. 
The integration of wireless technologies requires a founda-
tion of evidence about reliability, validity, and responsive-
ness for each application across the range of disease- and 
injury-related impairments and disabilities. To gather evi-
dence quickly, sensors could be added to applicable clinical 
trials funded by the NIH, so that rapid comparisons can be 
made between sensing data and conventional tools for moni-
toring and outcome measurements. Researchers could work 
with Medicare, large insurers or group practices, and health 
maintenance organizations to test the utility of community-
acquired sensor data about daily activity levels as a predictor 
of health status in patients with chronic diseases that are 
associated with repeated hospitalizations. As these trials 
proceed, attention must also focus on ways to make devices 
more user-friendly and acceptable to patients and clinicians.

Collaboration between clinicians, engineers, and the 
wireless industry is essential for the design and optimiza-
tion of inexpensive wireless systems that are based on clini-
cal needs. Funding organizations need to create strategic 
ways to bridge the present gap in making grants that involve 
both engineering design and clinical application. Growth of 
the field and new applications will be spurred by joint training 
of young engineers and clinicians who want to contribute to 
national and global health care. The great promise of 



794  Neurorehabilitation and Neural Repair 25(9)

mHealth is to enable evidence-based practices to wirelessly 
reach into the homes and communities of people who can-
not readily or affordably access health care.
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