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Principal Component Analysis for Extremes and Application to U.S. Precipitation
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ABSTRACT

We propose a method for analyzing extremal behavior through the lens of a most efficient basis of vectors. 
The method is analogous to principal component analysis, but is based on methods from extreme value 
analysis. Specifically, rather than decomposing a covariance or correlation matrix, we obtain our basis vectors 
by performing an eigendecomposition of a matrix that describes pairwise extremal dependence. We apply the 
method to precipitation observations over the contiguous United States. We find that the time series of large 
coefficients associated with the leading eigenvector shows very strong evidence of a positive trend, and there is 
evidence that large coefficients of other eigenvectors have relationships with El Niño–Southern Oscillation.

1. Introduction

There is great current interest in understanding pat-

terns and trends of extreme weather events. Of partic-

ular recent interest has been the quantification of the

influence of anthropogenic climate change on specific

individual extreme weather events (National Academies

of Sciences, Engineering, and Medicine 2016). Climate

change affects extreme weather locally through ther-

modynamically driven processes as well as nonlocally

through changes in the statistics of the large-scale me-

teorological patterns conducive to extreme weather.

This work proposes a new tool for exploring patterns

and trends of extreme weather; specifically, we propose an

extremes analog to principal component analysis (PCA).

To illustrate the method, we apply it to 3-day precipitation

data from continental U.S. (CONUS) weather stations

during hurricane season and investigate overall trends of

extreme precipitation as well as relationships to El Niño–
SouthernOscillation (ENSO).However, themethod is not

specific to precipitation studies and could be applied to

explore any climate variable of interest.

PCA (also, empirical orthogonal function analysis)

is a popular tool in climate science that reduces a large

set of variables into a smaller, more interpretable, set

(Wilks 2011, chapter 12). High-dimensional dependence

is viewed through the lens of the ordered basis of

eigenvectors of the covariance matrix. PCA is best suited

to variables that are approximately Gaussian and whose

dependence follows the elliptical contours of a Gaussian

density. Because short-term precipitation is positively

skewed and almost always contains a substantial fraction

of values that are exactly zero, PCA is more often ap-

plied to monthly or season precipitation (e.g., Uvo 2003;

He et al. 2017), although some PCA studies of shorter

duration precipitation have been performed (e.g.,

Widmann and Schär 1997).
More importantly, because it arises from the covari-

ance matrix, standard PCA is poorly suited to study

extreme behavior of any variable of interest. The co-

variance matrix describes dependence at the center of

the distribution and may not accurately capture depen-

dence in the joint tail. Also, when studying extreme

behavior, there is almost always a direction of interest;

for example, in our study we seek to learn about large

precipitation events, and are uninterested in this study in

small precipitation events. Covariance measures linear

dependence in both directions from center, and depen-

dence among stations for low precipitation likely differs

from that for high precipitation, as high precipitation is
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often very localized, whereas lack of precipitation is

generally more widespread.

Extreme value analysis is the branch of statistics

specifically aimed at describing the tail of the distribu-

tion. Extreme value theory classifies the upper tail of

a distribution as ‘‘bounded’’ (having a finite upper

bound), ‘‘light’’ (infinite upper bound and essentially

decreasing like an exponential function), or ‘‘heavy’’

(infinite upper bound and decreasing like a power

function). To focus on the tail, extremes methods use

only a subset of the extreme data and the rest are dis-

carded. When studying extremes for a single climate

variable, fitting the generalized extreme value (GEV)

distribution to the block maxima or fitting the general-

ized Pareto distribution (GPD) to large values over

some threshold have become a common practice in cli-

mate science (Wilks 2011, section 4.4.5).

Our method begins with the notion of tail dependence,

and a few studies in atmospheric science have investi-

gated tail dependence in the bivariate case. Timmermans

et al. (2019) use an extremal dependence measure to

compare extreme precipitation in gridded data products

for the continental United States, Weller et al. (2013) use

the same measure to compare the precipitation extremes

in the observational record to those produced by re-

analysis, and Kuhn et al. (2007) use a related measure to

describe the extremal dependence in precipitation ex-

tremes at different locations in South America. Ben

Alaya et al. (2018) use bivariate extreme value theory to

model the relationship between two components under-

lying a calculation of probable maximum precipitation.

There has also been an abundance of work developing

spatial models for extremes and applying them in various

settings; Davison et al. (2019) give a recent summary.

Spatial extremes models are parameterized by making

simplifying assumptions about the spatial behavior of

dependence and are well suited for modeling aggregated

effects across multiple locations of extreme events.

Spatial extremes models are typically used to model

local or regional extremes, but have not been applied on

the continental scale. Furthermore, these models be-

come difficult to fit as the number of locations increases.

The method we propose here differs in that it is pri-

marily for exploration of extremal behavior when the

dimension is very large: our application looks at over 1000

station locations spread over the continental United

States. Our method is rooted in multivariate extreme

value theory; specifically, our approach relies on the

framework of multivariate regular variation. There are

other representations for multivariate extremes such as

the multivariate extreme value distributions (de Haan

and Ferreira 2006, chapter 6) and the multivariate GPD

(Rootzén and Tajvidi 2006), but all have very closely

related dependence structures. Similar to traditional

PCA, we will summarize the tail dependence informa-

tion in amatrix of pairwise extreme dependencemetrics.

We then perform an eigendecomposition of this tail

pairwise dependencematrix (TPDM;Cooley and Thibaud

2019), and view extremal dependence through the lens of a

resulting eigenbasis.

2. Extremal dependence and eigendecomposition

a. A framework for multivariate extremes

The foundation of our method is the framework of

multivariate regular variation. Essentially, a random

vector that is multivariate regularly varying is one that is

heavy-tailed in all its dimensions. Importantly, the def-

inition of multivariate regular variation only describes

the upper tail; thus, like the GEV and GPD univariate

extremes models, the framework focuses on extreme

behavior and does not characterize the full distribution.

The probabilistic behavior of a multivariate regularly

varying random vector is most easily described after

polar transformation, as the magnitude and direction of

the vector are approximately independent for large

observations.

Let X be a regularly varying random vector taking

values on [0,‘)p.Wework on the p-dimensional positive

orthant, as this allows us to focus on the large values and

ignore the small values, which are of no interest. A

formal definition of regular variation requires ideas of

convergence; more details can be found in Cooley and

Thibaud (2019), and Resnick (2007) gives comprehen-

sive treatment of regular variation. For our purposes

here, it suffices to say that we assume if A is a set con-

sisting of large values (sufficiently far away from the

origin), then

P(X 2 A)}
~

ð
(r,w)2A

ar2a21 dr dH(w). (1)

Here, the symbol }
~

denotes ‘‘approximately propor-

tional to,’’ a . 0, r refers to the magnitude or radial

component of the location, w is a location on the unit

sphere S5 fw 2 R
p
1: kwk5 1g, and H is a measure on

the unit sphere S. The heavy-tailed nature of the distri-

bution is shown in that r in the integrand has power-law

behavior given by a. As a decreases, the tail becomes

heavier, and a is the reciprocal of j, the shape parameter

of GEV distribution in Coles (2001) and elsewhere.

Figure 1 illustrates regular variation’s polar represen-

tation in two dimensions.

Assuming (1), the probabilistic behavior of extreme

events is characterized by the tail index a and the



angular measureH, which describes tail dependence. In

two dimensions as in Fig. 1, dependence increases as the

mass ofH concentrates in the center of S, as this implies

that when the magnitude ofX is large, both components

tend to be large since values of w near the center of S

have roughly equal values.

Asymptotic independence is a fundamental notion of tail

dependence. Let x1(p) and x2(p) denote the pth quantile of

random variablesX1 andX2, respectively. Note thatX1 and

X2 are asymptotically independent if limp/1P[X2 . x2(p)j
X1. x1(p)]5 0, and asymptotically dependent if this limit is

greater than zero. If X1 and X2 are jointly regularly varying

and asymptotically independent, then the mass of H exists

only on the axes. The standard regular variation frame-

work we use here is most often used for describing de-

pendence in the asymptotically dependent setting and can

be extended to calculate probabilities associated with

jointly extreme events for asymptotically independent

regularly varying random variables (Resnick 2002). We

will comment about asymptotic dependence for the pre-

cipitation data we analyze in the discussion in section 4.

In relatively small dimensions, the angular measure

H can be modeled either parametrically or nonpara-

metrically. However, in large dimensions there are nei-

ther applicable models nor sufficient information in the

subset of extreme events to fit H. Rather than com-

pletely model the high-dimensional angular measure,

in the next section we summarize the dependence

contained in H via the TPDM, a matrix of bivariate

tail dependencies.

In the remainder of the paper, we will refer to the

‘‘scale’’ of the componentsXi, i5 1, . . . , p. Formally, we

say Xi has scale b if limx/‘P(Xi . x)/x2a 5 b. If Xi is

regularly varying with unit scale, then bXiwill have scale

b. In standard PCA, scale is described by variance, but

variance speaks about the scale of the random variable

from its center (mean), whereas scale here describes

behavior in the random variable’s tail.

The regular variation framework described above

requires that each of the variables is heavy-tailed with a

common tail index a. Often in extremes studies, the data

do not exhibit this property. Transforming the marginal

distributions is common to extremes studies and can be

defended by theoretical results [Resnick 1987, proposi-

tion (5.10)]. Furthermore, transforming the data is not

uncommon outside of extremes: in standard multivari-

ate analyses, data may be transformed to be approxi-

mately Gaussian, and modeling dependence via copulas

requires transformation to uniform marginals. Figure 2

shows data from two stations on the original scale, and

after a transformation has been applied so that the

marginals are regularly varying with a 5 2. Also shown

is a simple estimate of H, that is, a histogram of the

FIG. 1. Illustration of the polar form of regular variation in two

dimensions. As points become large, the magnitude given by the

radial component r becomes independent of the direction or an-

gular component w 2 S. Dependence information is contained in

the measure H that lives on S and can be thought of as a (perhaps

unnormalized) distribution of the angular components.

FIG. 2. Illustration ofmarginal transformation: (left) original precipitation data from two stations, (center) the data after transformation so

that each marginal is regularly varying with a 5 2, and (right) a histogram of the angular components of the largest 2% of the data.



angular components corresponding to exceedances of

the empirical 0.98 quantile.

b. Tail pairwise dependence matrix

We assume X 5 (X1, . . . , Xp)
T is a p-dimensional

regularly varying random vector with index a 5 2 and

angular measureH. The TPDM,SX, is the matrix whose

(i, j)th element is

s
i,j
5

ð
S

w
i
w

j
dH(w), i, j5 1, . . . , p . (2)

In the bivariate case si,j was defined by Larsson and

Resnick (2012) and referred to as the extremal depen-

dence measure.

Although it focuses on extremal dependence due to its

reliance on H, the construction of TPDM is similar to

that of standard covariance matrix and consequently it

has similar properties. Thus, ifXi has scale b then the ith

diagonal element si,i is b
2, and si,j 5 0 if and only if Xi

and Xj are asymptotically independent. Important for

PCA, SX is symmetric and positive definite, thus its ei-

genvectors are real and eigenvalues are positive. If the

marginal distributions are transformed to have a com-

mon scale of one, then the TPDM is like a correlation

matrix with diagonal entries of one. An additional

property not shared generally by covariance/correlation

matrices is that the TPDM is also completely positive:

there exists a p 3 q, with q $ p, nonnegative matrix B

such that SX 5 BBT. Although we do not use this

property in this work, complete positivity yields a con-

struction method for generating a random vector with a

given TPDM (Cooley and Thibaud 2019).

To estimate the TPDM, let xt, t5 1, . . . , nsamp be the

transformed observations for all stations on day t.

Elements of the TPDM are estimated using pairs of xt’s

elements. Define the radial component rt,ij 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2t,i 1 x2t,j

q
,

and let (wt,i, wt,j) 5 (xt,i, xt,j)/rt,ij. We estimate si,j as the

following:

ŝ
i,j
5 2n21

ij,exc �
nsamp

t51

w
t,i
w

t,j
I(r

t,ij
. r

0,ij
), (3)

where r0,ij is some high threshold for the radial compo-

nents, and nij,exc is the number of observations whose rij
is greater than the corresponding high threshold. The

indicator function I forces estimation to be based on the

pairs with the largest radial component r0;ij. Choosing it

involves the usual difficulties often found in choosing a

threshold in an extreme value analysis. The estimate ŝi,j

should be relatively constant for sufficiently high thresh-

olds; however, assessing when such a level has been

achieved is often done via diagnostic plots. When p is

large, viewing p-choose-2 diagnostic plots is not feasible.

We suggest viewing diagnostic plots for a number of the

possible ŝi,j, and then choosing r0,ij to correspond to a

common high quantile above which the examined ŝi,j

appeared to be relatively constant.

One issue with this pairwise estimate is that the esti-

mated ŜX is not guaranteed to be positive definite. Once

an initial matrix is estimated via (3), we use the nearPD

function in the R package Matrix to implement the

Higham (2002) method to find the positive definite

matrix nearest to the estimated ŜX in terms of the

Frobenius norm. In this study, we were motivated to

perform the pairwise estimation because of the spatial

extent of the CONUS study region and the localized

behavior of extreme precipitation; when studying pre-

cipitation for a small region of Switzerland, Cooley and

Thibaud (2019) thresholded in terms of the entire vector

of observations.

c. PCA decomposition for extremes

Critical to ordinary PCA is the fact that the eigen-

vectors of the covariance matrix form an orthonormal

basis for the p-dimensional reals, and this basis is or-

dered in importance by the eigenvalues that yield the

amount of variance explained by each eigenvector.

Critical to our method will be obtaining an ordered or-

thonormal basis for the p-dimensional positive orthant.

To have a basis, one must first have a vector space.

Cooley and Thibaud (2019) create a vector space for the

p-dimensional positive orthant by applying the trans-

formation x5 t(y)5 log{11 exp(y)} componentwise to

the vector y 2 R
p. The important characteristic of this

transformation is that t(y)’ y for large y, and therefore

the transformation has negligible effect on large values.

Vector addition and scalar multiplication of a vector are

defined via this transformation, and regular variation is

preserved by this particular transformation.

Further, Cooley and Thibaud (2019) show that ap-

plying this transformation to the eigenvectors of the

TPDM yields an orthonormal basis for the positive or-

thant. This basis is ordered by eigenvalues that yield the

scale explained by each eigenvector. Let SX 5 UDUT,

where D is a diagonal matrix of eigenvalues with l1 $

lp $ 0, and U is a matrix with columns ui, i 5 1, . . . , p

being the corresponding eigenvectors. The eigenvectors

for the positive orthant are ei 5 t(ui).

Let xt be the realization of the regularly varying ran-

dom vector X with TPDM SX at time t. Let

y
t
5UTt21(x

t
) . (4)

Then yt, a vector in the p-dimensional reals, is the vector

of principal components for xt; that is, it is the vector of

coefficients of the eigenbasis:



x
t
5 y

t,1
+e

1
4 � � �4y

t,p
+e

p
, (5)

where s and 4 are the transformed multiplication and

addition of Cooley and Thibaud (2019).

The PCA decomposition becomes useful from the

knowledge that most of the information in xt is con-

tained in the leading terms of (5). In a standard PCA

study, the leading eigenvectors are often visualized and

interpreted. Orthogonality implies that the eigenvectors

contain no redundant information, and interpretation is

done sequentially. Here, each eigenvector is the direc-

tion of greatest scale remaining after the scale accounted

for by the previous eigenvectors has been removed.

Time series of the leading principal components yt,i can

be investigated to find behavior in the often large-scale

effects described by the corresponding eigenvectors.

3. Analysis of U.S. extreme precipitation

a. Data description

We obtain daily precipitation data over the U.S.

continent between 1950 and 2016 from the Global

Historical Climatology Network (GHCN)-Daily dataset

(Menne et al. 2012). We limit our investigation to the

months of August, September, and October, which

roughly corresponds to the height of hurricane activity

in the Atlantic, although it is important to note that we

analyze all extreme precipitation regardless of whether

it was associated with a hurricane event. We select sta-

tions which have fewer than 5% missing values during

this period. There are 1140 stations and 6164 days in the

analyzed dataset.

b. Data preprocessing

We choose to analyze data that correspond to a 3-day

moving average of the daily precipitation amounts. That is,

let zt,i denote the observed precipitation on day t at station

i, and let x
(orig)
t,i 5 zt,i 1 zt11,i 1 zt12,i. The superscript sim-

ply denotes that x
(orig)
t,i is on the original scale before further

transformation as explained below. Selecting a 3-day

moving average to analyze alleviates some of the prob-

lem of a single extreme precipitation event being partially

recorded over two separate days; that is zt,i and zt11,i are

actually due to the same event. It also may help alignment

problems between stations, for instancewhere zt,i and zt11,i

are due to the sameevent.However, taking a 3-daymoving

average does induce dependence in the x
(orig)
t,i terms, which

must be accounted for in the subsequent analysis. Our

3-day average was motivated by the duration of the

events we wish to explore, but the extremal PCA analysis

could be applied to data of any duration of interest.

As explained in section 2a, the regular variation

framework leading to theTPDMassumes each univariate

marginal distribution is regularly varying with a 5 2.

Since this is not true of our data, further transformation is

required. We transform to obtain xt,i 5G21fF̂i[x
(orig)
t,i ]g,

whereG(x)5 exp(2x22) is the cumulative distribution

function (cdf) of a Frechét random variable with scale

1 and a 5 2 and F̂i is an estimated marginal cdf from

the data at location i. Choosing to additionally have a

common scale is analogous to performing standard

PCA analysis on the correlation matrix instead of the

covariance matrix. Whether it makes more sense to

work with data with a common scale depends on one’s

aim (Wilks 2011, section 12.1.4), but a consequence of

our doing so is that ‘‘extreme’’ precipitation is defined

relative to the climate of the location.

The simplest method for obtaining F̂ i is to use a rank

transform; however, extremes studies that aim to es-

timate probabilities of multivariate extreme events

beyond the range of the data require a parametric

model (usually GPD) to be fit to the upper tail. Here, a

parametric tail model is not required. Due to the

dependence induced in x
(orig)
t,i by the 3-day moving

average, a simple rank transform would ignore this

dependence. In the online supplemental information,

we provide the details of a method where we take the

average of three linearly interpolated cdf estimates

obtained from three lag-3 subsequences of x
(orig)
t,i . We

show that applying this estimate F̂i better retains

clustering in the generated xt,i.

As in a traditional PCA analysis, the transformed

data xt, t 5 1, . . . , 6164 are treated as independent and

identically distributed, and the estimated TPDM ŜX is

obtained as described in section 2b. After viewing sev-

eral diagnostic plots, we choose r0,ij to correspond to the

0.98 quantile.

c. Interpretation of eigenvectors

The eigenvectors ui, i 5 1, . . . , p obtained through

standard eigendecomposition of ŜX , are transformed

to ei 5 t(ui), which form an ordered orthonormal basis

for Rp
1. We will concentrate our attention on the first

six basis vectors, and ei, i 5 1, . . . , 6, are shown in

Fig. 3. Just as eigenvalues in standard PCA corre-

spond to the amount of variance explained by each

principal component, Cooley and Thibaud (2019)

show that the scales of the regularly varying principal

components are given by the eigenvalues, and the first

six explain 41% of the total scale. As in standard PCA,

the orthogonality of the basis vectors makes inter-

pretation of ei more difficult as i increases, and ei can

be thought of the direction of maximum scale after

accounting for the information contained in the pre-

vious basis vectors. Note in Fig. 3 that ei . 0, and the

origin in this vector space is log(2). Therefore, we will



refer to a value as ‘‘positive’’ if it is greater than log(2), and

‘‘negative’’ if it is less than log(2). Positive values are col-

ored red and negative values are colored blue in Fig. 3.

The first basis vector e1 has all positive values, which

is due to TPDM’s property of complete positivity.

Another noticeable feature is that there is little vari-

ation among the values over the contiguous United

States. In section 3d, we will see that during an ex-

treme event, this ‘‘continental’’ signal has a large

positive coefficient, resulting in elevated values for all

stations, and that subsequent eigenvectors further

allocate the extreme behavior to more local regions.

The second basis vector e2 shows large negative

values on the eastern third of the country and moder-

ately positive values in the midcontinent. If paired

with a negative coefficient, this basis would allocate

extreme behavior to the east. Vector e3 shows a strong

negative signal on the West Coast. This may seem

counterintuitive at a first, since August–October is a

season where the precipitation is typically not extreme

on the West Coast. However, recall that the TPDM is

estimated after each marginal is transformed to have a

common scale, and thus extreme is defined relative to

the climate for this region during this period.

The fourth basis vector e4 shows a narrower East Coast

signal compared to the pattern of e2, with the transition

between negative and positive roughly coinciding with the

location of the Appalachian mountains. Vector e5 shows a

contrast between the upper Midwest and south-central

United States, while e6 shows a contrast between the

Southeast and the Northeast. Since we were motivated by

hurricane season, our subsequent analysis will focus on the

East Coast, thus we will be particularly interested in e1, e2,
e4, and e6.

FIG. 3. Plots of the eigenvectors e1, . . . , e6. Each colored dot corresponds to a station location and areas lacking

stations are shown in black. Of particular interest are e1, which gives a continental signal and whose values are all

positive [.log(2)], e2 and e4, which give signals on the East Coast, with e4 more narrowly defined, and e6, which

contrasts the Northeast with the Southeast.



d. Time series of coefficients, partial basis reconstruction

Figure 4 gives the time series of the principal com-

ponents yt,i for i5 1, . . . , 6. Note that the scales of these

plots decrease according to their eigenvalues, which are

respectively 297.1, 47.9, 44.1, 29.5, 25.4, and 22.3.

For illustration, we examine the eigenbasis reconstruc-

tion as in (5) for the 3 days beginning 16 September 1999,

when Hurricane Floyd made its landfall in Cape Fear,

North Carolina, and then moved northward roughly fol-

lowing the coast. The first six coefficients yt,1, . . . , yt,6 for

this time are marked with a red 3 in Fig. 4, and the ob-

served precipitation (after transformation) is shown in the

top-left panel of Fig. 5. The coefficient yt,1 has a large

positive value of 99.9, which taken by itself would give

large values across the continent. Coefficients yt,2 and yt,4
have values of 2145.4 and 286.9, which have the largest

magnitudes in these respective time series. These negative

values, when combinedwith yt,1, allocate the precipitation to

the East Coast and diminish the signal for the rest of the

country. The coefficients yt,3 and yt,5 have moderate values

as the observed precipitation for this day generated little

signal either on the West Coast or in the upper Midwest/

south-central regions. The coefficient yt,6 has a large positive

value of 100.1 since the signal due to Hurricane Floyd was

seen in the Northeast rather than the Southeast.

Figure 5 shows panels of the reconstruction of the

Hurricane Floyd event via (5). It shows that the complete

reconstruction matches the observations. The truncated

reconstruction with 2, 6, 10, and 20 eigenvectors shows

the increased resolution of the event as the number of

eigenvectors increases. It is noteworthy that even with 20

eigenvectors included, one still does not see the fine detail

of the very high levels of rain in North Carolina. Because

very extreme precipitation tends to have a limited spatial

effect, it is not surprising that it would require a large

number of eigenvectors to see detailed effects such as this

event’s precipitation levels in North Carolina.

e. Further analysis of basis coefficients

One of the advantages of PCA is that the decomposition

allows one to examine and test the time series of the

principal components for temporal trends and also for

relationships with large-scale oscillations such as ENSO.

We begin with a 0.95 quantile regression of the first prin-

cipal component, which tests to see if there is a linear trend

in time in the continental signal. We chose 0.95 as it is high

enough to be commonly considered ‘‘extreme’’ but low

enough that an adequate amount of data remains to esti-

mate parameterswith acceptable levels of uncertainty. The

estimated slope of the 0.95 quantile is 0.0019 units per year

with a 95% confidence interval of (0.0011, 0.0027). Both

a standard test (which does not account for temporal

dependence) and a block-resample permutation test (which

does) give p values of less than 1/1000, and thus there is very

strongevidence for anupward trend in the large values of this

continental signal. The fitted 0.95 quantile regression line is

shown in the yt,1 panel of Fig. 4.

To assess relationships between the principal compo-

nents and ENSO, we obtain a yearly index by averaging

NOAA’s Oceanic Niño Index (ONI)1 data for August,

September, and October. We then shade the principal

component time series plots (Fig. 4) according to whether

ENSO is in its low (blue;,0.58C), high (red;.0.58C), or
neutral (gray) phase. Examining the plot of the second

principal component, we were struck by the appearance

that many of the large negative values (corresponding to

large precipitation events on the East Coast) appeared to

occur in the La Niña (low ENSO) phase. Setting a

threshold at the overall negated 0.95 quantile, we found

that the proportion of days that exceeded this threshold

during the La Niña phase was 0.067, which was greater

than the 0.043 found when in its neutral or high phase.

A test of whether these proportions are equal returns a

p value of 0.0003, giving strong evidence thatENSOaffects

thisEastCoast signal.We further tested if the distribution

of (negative) exceedances of this threshold differed with

ENSO phase. A likelihood ratio test ofH0, the negatively

large values follow a commonGPDover all phases versus

H1: the distribution of these values is different in that the

low phase rejects H0 with a p value of 0.0475, providing

some suggestion that not only do the exceedance rates

differ, but also the tails themselvesmight differ.Although

ours is a study of extreme precipitation and not exclu-

sively hurricanes, these results about principal compo-

nent 2 (PC2) are in accordance with other studies (e.g.,

Gray 1984; Patricola et al. 2014) showing that El Niño
inhibits the Atlantic tropical cyclone activity.

Figure 6 shows a bivariate scatterplot of PC2 (East

Coast signal) and PC6 (Northeast–Southeast contrast).

As a large negative values of PC2 indicate a large event

on the East Coast, we focus on the left side of the plot.

First, it can be seen that these two principal components

are not asymptotically independent as there are many

points with large negative values for PC2 and large

values (both positive and negative) for PC6. The points

are colored to indicate ENSO phase, with blue indicat-

ing low, red indicating high, and green indicating neu-

tral. Upon visual examination, we noticed that many of

the points with large negative value for PC2 and large

positive value for PC6 (indicating a large value in the

Northeast) appeared to occur in the low ENSO phase. To

perform a statistical test, we considered values in the two

1 See https://www.esrl.noaa.gov/psd/data/correlation/oni.data.

https://www.esrl.noaa.gov/psd/data/correlation/oni.data


FIG. 4. Time series of the principal component scores yt,i for i 5 1, . . . , 6; that is, the
coefficients corresponding to the first six eigenvectors. The date corresponding to Hurricane

Floyd, 16 Sep 1999, is marked with a red 3. The shading corresponds to ENSO phase with

blue, red, and gray indicating low, high, and neutral values, respectively. The dashed line for

yt,1 corresponds to the estimated 0.95-quantile regression line.



boxes shown that capture areas where both principal

components are large in magnitude. A chi-square test of

equivalence of proportions of ENSO phases in the two

boxes yields a p value of 0.0215. Thus, there is evidence

that the proportion of events in the upper box (indicating a

Northeast event) occurring during the low ENSO phase is

greater than the proportion of events in the lower box

during a low ENSO phase. We are unaware of any previ-

ous investigation that suggests that hurricane-season ex-

treme precipitation in the Northeast United States is

linked to La Niña conditions.

4. Discussion

We have presented a method for exploring extreme

behavior of high-dimensional data by decomposing the

data via a basis arising from a matrix summarizing

pairwise extremal dependence. The method is analo-

gous to PCA, but tailored for extremes. The exploratory

nature of the method differs from previous atmospheric

science extremes work, which has primarily aimed to

quantify risk (e.g., provide an estimate of a 100-yr event)

or to model phenomena (e.g., fit a max-stable process to

weather stations’ annualmaxima).We apply themethod

to U.S. precipitation data and find strong evidence for a

positive trend in the coefficients of the first principal

component and find evidence for relationships between

other principal components and ENSO. The method is

general and can be used for any variable of interest.

Our exploration of the behavior of the principal

components led us to perform several hypothesis tests. It

could be argued that the hypothesis tests we conducted

FIG. 5. Representations of the data for 16 Sep 1999, the date corresponding to Hurricane Floyd. Shown are a plot of the

transformed data, a complete basis reconstruction, and truncated reconstructions with 2, 6, 10, and 20 eigenvectors.



suffer from test selection bias since we chose to perform

them after examining the data (which the PCA method

allows us to do in a novel way). For example, the test

shown in Fig. 6 was one of a possible 15 (6-choose-2)

tests pairing the first six principal components; if one

were to perform all 15 tests, some multiple testing cor-

rection should be applied to the p value. Furthermore,

the boxes indicated in Fig. 6 were chosen based on

viewing this data and are unique to this pair of principal

components, thus adding to the possibility of test se-

lection bias. It is clearly important to keep in mind

the possibility of test selection bias when interpreting

the p values of these tests. However, in an exploratory

analysis such as this, it is natural to pose questions based

on what one discovers from the data exploration, so test

selection bias is perhaps unavoidable. The real value of a

test like the one illustrated in Fig. 6 is to suggest further

avenues for exploration that could perhaps lead to a

confirmatory analysis.

An interesting aspect of applying this method to

CONUS precipitation data is that extreme precipitation

is localized in its spatial extent. As seen in Fig. 5, the area

where Hurricane Floyd’s most extreme precipitation

occurred is quite small. Thus, it is not surprising that the

first six eigenvectors only explain 41% of the total scale

for precipitation, and that it requires a large number of

eigenvectors to recreate the small-scale features of an

extreme event. Similar behavior is found when tradi-

tional PCA is applied to data with localized dependence,

and PCA is often most useful in such cases because the

large-scale behavior can be more difficult to visualize

directly from data that appear to be dominated by local

behavior. Still, we recognize that interpretation is chal-

lenging. By aggregating the localized signals from storms

across more than 60 years of data, we are able to find

evidence for large-scale trends and relationships with

ENSO. But the leading eigenvectors we analyze do not

yield information about the spatial extent of individual

storms. If one needed to do a risk assessment associated

with individual storms, a different type of extreme value

analysis would be required.

Clearly, precipitation is not asymptotically dependent

at continental scales. As asymptotic independence is a

degenerate case in the regular variation framework that

underlies the TPDM and our PCA decomposition, one

might conclude that our method is ill-suited for this

study. If one were interested in modeling extreme pre-

cipitation events across CONUS (a dubious proposi-

tion), one would absolutely need a model that could

capture the nuanced tail dependence in order to accu-

rately estimate probabilities in the joint tail. Here, our

aim is to explore patterns in extreme precipitation, and

the lens of the most efficient basis provided by our PCA

decomposition provides a new avenue for exploration.

In this study we chose not to detrend the data.

Consequently, this allowed us to quantify the signifi-

cance of the trend found in the coefficients for the

‘‘continental’’ signal yt,1. Our estimation of the TPDM,

like the estimation of the covariance matrix in tradi-

tional PCA, assumed that the data were independent

and identically distributed. An alternative modeling

strategy would be to first detrend the data prior to esti-

mating the TPDM. This of course would have involved

selecting a detrending method (parametric or nonpara-

metric), but had the trend been estimated on the ‘‘conti-

nental’’ scale, the extremal PCA analysis on the detrended

data would likely have not seen a trend in the leading co-

efficients yt,1. As with traditional PCA, but also time series

analysis or geostatistical modeling, a researchermust often

choose what to include as a nonstochastic factor (i.e., a

trend), and what to leave in to as a stochastic component.

Formal detection and attribution analyses of long-

term trends in nonextreme climate variables have used

PCA methods to identify large-scale patterns of change

(sometimes called fingerprints) and to test whether

these trends are attributable to anthropogenic or natural

forcings (e.g., Santer et al. 2004). Extensions of these

methods to temperature and precipitation extremes

have transformed extreme variables so that standard

FIG. 6. Bivariate scatterplot of PC2 and PC6. Since negative

values of PC2 correspond to large events on the East Coast, we

focus on this portion of the plot. Recall that positive values of PC6

correspond to large events in the Northeast and negative values

correspond to large events in the Southeast. The ONI indicates

ENSO levels, with high values and low values corresponding to El

Niño and La Niña, respectively.



PCA could be performed (Min et al. 2011, 2013; Zhang

et al. 2013). The PCA method for extremes presented

here may offer an alternative method for the formal

detection and attribution of observed trends in extreme

temperature and precipitation without making such

transformations. Similar to such analyses of changes in

nonextreme climate variables, comparisons of the ob-

served patterns of extreme PCA components to those of

climate model simulations with and without various

natural and anthropogenic forcings would be straight-

forward, and well-established methods of assessing sig-

nificance could then be applied. We plan on investigating

such approaches in our future research.

Links toRcode anddata for replicating the results in this

paper are available at https://www.stat.colostate.edu/;
cooleyd/, as are functions to apply the methods to new

datasets.
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