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Abstract 

Electroosmosis in homogeneously charged micro- and nanoscale random porous media has 

been numerically investigated using mesoscopic simulation methods which involve a random 

generation-growth method for reproducing three-dimensional random microstructures of porous 

media and a high-efficiency lattice Poisson-Boltzmann algorithm for solving the strongly 

nonlinear governing equations of electroosmosis in three-dimensional porous media. The 

numerical modeling and predictions of EOF in micro- and nanoscale random porous media 

indicate: the electroosmotic permeability increases monotonically with the porosity of porous 

media and the increasing rate rises with the porosity as well; the electroosmotic permeability 

increases with the average solid particle size for a given porosity and with the bulk ionic 

concentration as well; the proportionally linear relationship between the electroosmotic 

permeability and the zeta potential on solid surfaces breaks down for high zeta potentials. The 

present predictions agree well with the available experimental data while some results deviate 

from the predictions based on the macroscopic theories. 

Keywords: random porous media; electroosmosis; lattice Poisson-Boltzmann method; mesoscopic 
simulation 
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1. Introduction 

Electroosmotic flows (EOFs) in porous media have been studied for nearly two hundred years due to 

their important applications in soil, petroleum and chemical engineering [1-6] since the electrokinetic 

effects were first observed by Reuss in 1809 in an experimental investigation on porous clay [7]. In the 

few past decades, there are considerable and reawakening interests in the EOF in porous media because of 

the conspicuous applications in biological-chemical-medical analysis [8-11] and new techniques in energy 

and geophysical engineering [12-15], especially in micro- and nano- scales [16-18]. Recently, charged 

porous structures have been employed in some devices to control and improve the fluid behavior as 

expected. For examples, microparticles which are packed in microchannels have been used to improve the 

performances of electroosmotic micropumps with a lower flow rate and a higher pumping pressure 

[19-24]. 

Although EOFs in porous media have been studies much theoretically, it is still a big challenge to 

predict the multi-physical transport behaviors in porous media accurately and efficiently due to its 

complicacies [25-35]. Levine and Neale [25] developed a “cell model” to predict the electroosmosis in 

multiparticle systems where the porous medium was considered as a random assemblage consist of 

identical unit “cell” each of which contained of a particle surrounded by a fluid envelope [26]. Although 

good results were obtained for disperse systems [27,28], the cell model did not deal well with dense 

porous media cases (i.e. at low porosities) because the model ignored the contacts and connections 

between particles [29]. By improving the “capillary tube model” [30], Mehta and Morse [31] schematized 

a micro porous membrane by an array of charged uniform spheres. Jin and Sharma [32] extended the 

capillary model to two-dimensional square lattice network model, which was more appropriate in 

simulating inhomogeneous porous media. Grimes et al. [33] developed the cubic lattice network of 

interconnected cylindrical pores model and simulated the intraparticle electroosmotic volumetric flow rate 

in the three-dimensional pore network of interconnected cylindrical pores. All these theoretical models are 

creative and contributive; however there are still two defects so far when they are used for predictions of 
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EOFs in micro- and nanoscale porous media. First, most of the models are based on vanishingly thin 

electric double layers (EDL) [19-22,25-35] so that they are not suitable for dense micro- and nanoscale 

porous media where the small pore space may be in a same order of the EDL thickness. Second, the 

theoretical models can hardly provide flow structure details, which are necessary for deep understandings 

of the transport mechanism of electroosmosis in micro- and nanoscale porous media. 

Owing to the rapid developments of computer and computational techniques various numerical 

methods have been developed in the past decade for modeling and predicting multi-physical transports in 

porous media. A full numerical tool set for analyzing EOF in porous media needs two steps: a digital 

description of porous microstructure details and a set of partial differential equation (PDE) solvers for 

solving governing equations of the multiphysical transport phenomena. For EOF in microscale charged 

random porous media, both are big challenges until now. 

First, the microstructures of porous media are very complicated. The shapes and positions of 

pores/particles are random so that there could never be two natural porous media that are exactly same 

even. People can only reproduce microstructures of porous media based on the known macroscopic 

statistical information. Tacher et al. [36] and Pilotti [37] developed methods to generate granular porous 

media using spheres or ellipses with random sizes and locations; however they could hardly deal with the 

inter-grain connections. To make the reproduced structure more natural, the reconstruction process [38-42] 

has been widely used in generations of multiphase porous structures based on the digital 

micro-tomographic information and statistical correlation functions [41,42]. Similar algorithms have been 

found in soil researches, named Markov chain Monte Carlo methods, which also created two-dimensional 

structures with satisfactory agreements with various scanned real soil structure images [43,44]. Borrowing 

the spirit of cluster growing theory [45,46], Wang et al. have recently developed a random 

generation-growth method to generate random microstructures of various multiphase micro porous media 

including granular porous media [47,48] and fibrous porous media [49]. The generated structures have 

been used to predict effective thermal properties of porous materials and good agreements have been 

obtained with the existing experimental data [47,48]. 
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Second, numerically solving the governing equations of EOF in porous structures is still badly 

challenging for the present computational methods [50-66]. The coupled electrostatic, hydrodynamic and 

mass transport problems subjected to complex geometrical boundary conditions represented by the 

solid-liquid interface in random porous media require huge or even unacceptable computational resources. 

The difficulties come mainly from two aspects: the strong nonlinearity of governing equations and the 

irregularity of random porous structures. Coelho et al. [29] developed a direct numerical solution for the 

EOF in porous media in the linear limit when the EDL thickness was much larger than the elementary grid 

size, and the method was applied to analyze the electroosmotic phenomena in fractures [50], porous media 

[51] and compact clays [52,53]. As well known the linear approximation is strictly valid for low zeta 

potentials ζ  whose absolute value is smaller than 25 mV [54,55]. Gupta et al. [56] recently extended 

their linear model to the nonlinear region for high zeta potentials. Since the accuracy of their models 

depends strongly on the discretization step, their applications are limited by the computational costs [57]. 

Only a few results with relatively coarse spatial discretiztation steps have been found to reach reasonable 

computation times [29,50-54,56]. Kang et al. [58] introduced the interval functions approximation [59] 

into the Poisson-Boltzmann equation to simplify the solution process and to improve the efficiency. Their 

method showed good performance to analyze EOFs in packing microspheres [60,61]. Hlushkou et al. [57] 

proposed a numerical scheme for modeling the EOF in porous media, involving a traditional 

finite-difference method (FDM) for solving the Poisson-Nernst-Planck equations for electrodynamics and 

a lattice Boltzmann method (LBM) for solving the Navier-Stokes equations for hydrodynamics, and 

investigated the EOFs in spatially regular and random sphere arrays. Recently, Wang et al. [62,63] 

presented a lattice Poisson-Boltzmann method (LPBM), which combines a lattice Poisson method (LPM) 

for solving the nonlinear Poisson equation for electric potential distribution [64] with a lattice Boltzmann 

method (LBM) for solving the Boltzmann-BGK equations for fluid flow. The LPBM has been employed 

to analyze the performance improvements by changed porous media additives in micropumps [65] and the 

morphology effects on EOF in anisotropic porous media [66]. To our knowledge, few contributions have 

reported a full numerical analysis of EOF in micro- and nanoscale random porous media. 
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The purpose of this contribution is to present a numerical set and modeling results of 

three-dimensional EOFs in homogeneously charged micro- and nanoscale random porous media. We 

extend the random generation-growth method for reproducing microstructures of random porous media, 

for granular porous media as examples [47,48], and the lattice Poisson-Boltzmann algorithm [62,63,65] 

into three dimensional cases. The present numerical set is then employed to analyze the influences of 

statistical characteristics of solid-media morphology, fluid phase property and surface potential on the 

EOF behavior in random porous media. The article is organized as follows. In section 2, we present the 

governing equations along with corresponding boundary conditions. In section 3, we introduce briefly the 

employed numerical methods, in particular, the random generation-growth method for generating 3D 

microstructures of random porous media, and the efficient lattice Poisson-Boltzmann algorithm for 

solving the governing equations of EOF in porous media. Numerical results are gathered in section 4, 

which include a series of simulations addressing the influences of solid, liquid and interface characteristics 

on the EOF permeability. Qualitative and quantitative comparisons with existing experimental data are 

presented in section 4 and the fluid mechanism is discussed. 

2. Governing equations 

Although our focus is down to nano-scale, it is still beyond atomistic effects. Macroscopic continuum 

assumptions work in their way. Consider an N -component Newtonian electrolyte flowing with velocity 

( , )tu r  in interstices of a porous material with no polarization and chemical reactions. Let ( , )tψ r  be 

the electric potential prevailing within the solution; the flux ij  of each i th ion species, composing the 

solute, is given by the following constitutive equation [67] 

i i i i i i iD n ez b n nψ= − ∇ − ∇ +j u             (1) 

where in  is the number density of the i th ion species, iz  the i th ion algebraic valence, and e  the 

absolute charge of electron. iD  and ib  are the ion’s diffusivity and electric mobility, related by the 

Stokes-Einstein equation 
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i iD b kT=                 (2) 

where k  is the Boltzmann constant and T  the absolute temperature. The ionic flux ij  and the 

concentration in obey the continuity equation 

0i
i

n
t

∂
+∇ ⋅ =

∂
j                (3) 

For an incompressible laminar electroosmotic flow, the movement of electrolyte is governed by the 

continuity and momentum equations: 

0∇⋅ =u                  (4) 

2
Et

ρ ρ μ∂
+ ⋅∇ = ∇ +

∂
u u u u F ,            (5) 

where ρ  the solution density, μ  the dynamic fluid viscosity and EF  the electric force density vector. 

In general, the electrical force in electrokinetic fluids can be expressed as: 

int int( )E ext e Vρ= + + × +F F E ξ B F  ,           (6) 

where extF  represents the external field body forces, including the Lorentz force associated with any 

externally applied electric and magnetic field. For only an electrical field, ext eρ=F E , where eρ  is the 

net charge density and E is the electrical field strength. intE  and intB  are internally smoothed electrical 

and magnetic fields due to the motion of the charged particles inside the fluid. VF  is a single equivalent 

force density due to the intermolecular attraction [68]. In the present contribution, we are concerning the 

steady state of electroosmosis in micro porous media so that the electromagnetic susceptibility is 

negligible. The net charge density eρ  can be expressed as 

e i i
i

ez nρ =∑                 (7) 

The local electrical potential is governed by the Poisson equation 

2

10 0

1 N
e

i i
ir r

en zρψ
ε ε ε ε =

∇ = − = − ∑             (8) 
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where rε  is the dimensionless fluid dielectric constant and 0ε  the permittivity of a vacuum. 

Equations (3)-(8) are the governing equations for electroosmosis in porous media and can be solved 

subject to the following boundary conditions on the liquid-solid interface Ω  

( ) 0i Ω⋅ =v j                 (9) 

0Ω =u                  (10) 

ψ ζΩ =                  (11) 

where v  is the outer normal to Ω , and ζ  the zeta potential. 

For the electroosmotic flow of dilute electrolyte in micro porous media, the macroscopic velocity is 

low so that equilibrium satisfies everywhere in the flow field base on which one can obtain the Boltzmann 

distribution for in  

, exp i
i i

ezn n
kT

ψ∞
⎛ ⎞= −⎜ ⎟
⎝ ⎠

             (12) 

where ,in ∞  is the bulk ionic number density. Substituting Eq.(12) into Eq.(8) yields the famous nonlinear 

Poisson-Boltzmann equation for electrokinetic flows [69]: 

2
,

0

1 exp i
i i

ir

ezez n
kT

ψ ψ
ε ε ∞

⎛ ⎞∇ = − −⎜ ⎟
⎝ ⎠

∑           (13) 

So far as it is concerned, the present contribution actually solves the governing equations (4-7, 12,13) 

subject to the boundary conditions Eqs. (9-11) by the numerical methods as described in the next section. 

3. Numerical methods 

This section describes the numerical methods used to simulate EOF in random porous media, 

including a generation algorithm for three-dimensional random porous microstructures and a mesoscopic 

PDE solver for the multi-physical transports equations, the lattice Poisson-Boltzmann method. 

3.1 Generation of Random Porous Structures 
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As mentioned before, the phase distributions are random in a natural porous medium. Although the 

shapes, positions and connections of elements are different for different medium samples, one still can 

measure and summarize essential statistical information of morphology and then reproduce a digital 

random structure in computers. The generated microstructure may be different from a real one in detail, 

but they have same structure characteristics in statistics. Several methods have been proposed to generate 

random porous structures in the past few years [36-49]. Here we follow the random generation-growth 

model for reproducing multiphase granular porous microstructures [47,48] and develop the algorithm into 

three dimensional cases. 

In most cases, the microstructure for EOF flowing through has two phases: solid structure and fluid 

solution. The process of the multi-parameter generation-growth model for such two-phase structures is 

described as below: 

i) Randomly locate the cores of solid particles in a grid system based on a core distribution 

probability, dc , whose value is no greater than the volume fraction of solid. Each cell in the grid will be 

assigned a random number by a uniform distribution function within (0, 1). Each cell whose random 

number is o greater than dc  will be chosen as a core; 

ii) Enlarge every element of the solid particles to its neighboring cells in all directions based on each 

given directional growth probability, iD , where i  represents the direction. Again for each solid particle, 

new random numbers will be assigned to its neighboring cells. The neighboring cell in direction i will 

become part of solid particle if its random number is no greater than iD ; 

iii) Repeat the growing process of ii until the volume fraction of the solid particles reaches its given 

value sP  whose value is usually equal to (1-ε ) with ε  representing the porosity. 

Thus the generated microstructure is controlled by the three statistical parameters, dc , iD  and sP  

(or ε ).  

The core distribution probability dc  is defined as the probability of a cell to become a core of solid 
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particle. Its value is strongly relative to the number density of solid particles. For a given porosity, the 

average volume of each solid particle pV  could be related with dc  as: (1 ) ( )p dV V N cε= − ⋅  where 

V  represents the total volume of system, and N  the total grid number. The value of dc  also controls 

the degree of structure details for a certain grid system. A smaller dc  leads to a finer description of the 

microstructures, including particle shapes and inter-particle connections. However a small value of dc  

will also decrease the statistical particle number under a certain grid number and thus increase the 

computation fluctuation.  

The directional growth probability iD  is defined as the probability of a cell neighboring in the i -th 

direction to become a part of solid phase. The directional growth probabilities are classed into three levels 

based on the directions or on the contact level with the focused cell: main direction (surface contact), side 

direction (line contact) and diagonal direction (point contact). An appreciate arrangement of the 

directional growth probabilities may lead to an isotropic structure of porous media. In other words, the 

growth probabilities can be adjusted to control the degree of anisotropy. For three-dimensional cubic grid 

systems, each cell has 26 growing directions to its neighbors, see Fig. 1. There are six main directions 

(1-6), 12 side directions (7-18) and 8 diagonal directions (19-26). To obtain an isotropic structure in such 

systems, we have to set uniform values within each class of direction, 1 6D − , 7 18D −  and 19 27D − , and the 

probabilities ratio is set as 1 6D −  : 7 18D −  : 19 27D −  = 8 : 4 : 1 by assuming the directional growth 

probability to be consistent with the equilibrium distribution function of density in an isotropic material 

[70-72]. 

Fig. 2 shows four schematic illustrations of the generated three-dimensional porous structures using 

the present random generation-growth method. The stochastic characteristics of phase distribution and 

connections are depicted quite realistically in the figures. The white parts represent the solid particles and 

the dark the fluid. The parameters for Fig. 2-a are the solid volume fraction sP =0.3, the solid particle core 

distribution probability dc =0.01 sP  and the growth probabilities in six main directions are equal. Fig. 2-b 
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shows the structure when the solid volume fraction geminates, where both the volume and inter-particle 

connections of solid phase increase. Comparison between Fig. 2-a and c shows that a larger value of dc  

leads to the solid phase more dispersive with a smaller averaged particle size. We can also change the 

media isotropy by varying values of directional growth probabilities in given directions. Fig. 2-d shows a 

generated anisotropic structure where the growth probabilities of the main directions 1&3 enlarge to 10 

times. Directional characteristics appear in the structure of Fig. 2-d when comparing with that in Fig. 2-a. 

3.2 Lattice Poisson-Boltzmann Method 

After porous structures are generated, the set of coupled hydrodynamic and electrodynamic governing 

equations for the EOF subjected to the appropriate boundary conditions will be solved by lattice 

Poisson-Boltzmann method (LPBM) which combines an electrical potential evolution on discrete lattices 

to solve the nonlinear Poisson equation (lattice Poisson method) with a density evolution method on a 

same set of discrete lattices to solve the Boltzmann-BGK equation (lattice Boltzmann method). The detail 

of two-dimensional LPBM can be found in our previous publications [62,65]. In this work, we develop the 

LPBM into its three-dimensional form. The equations are only solved in liquid phase and the solid phase 

is silent and charged homogeneously on the surfaces. 

The continuity and momentum equations can be solved by tracking the movements of molecule 

ensembles through the evolution of the distribution function using the popular lattice Boltzmann method 

[73]. The lattice Boltzmann equation can be derived from the Boltzmann equation [74]. For the flows with 

external forces, the continuous Boltzmann-BGK equation with an external force term, F , is 

( )
eq

t
Df f ff f F
Dt ντ

−
≡ ∂ + ⋅∇ = − +ξ ,          (14) 

where ( , , )f f x t≡ ξ  is the single particle distribution function in the phase space ( , )x ξ , ξ  the 

microscopic velocity, ντ  the relaxation time, eqf  the Maxwell-Boltzmann equilibrium distribution and 

F  the external force term 
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( ) eqF f
RT
⋅ −

=
G ξ u

              (15) 

with G  being the external force per unit mass [75]. The Chapman-Enskog expansion can be used to 

transform the Boltzmann-BGK equation, Eq. (7), into the correct continuum Navier-Stokes equations [76] 

Thus the three-dimensional fifteen-speed (D3Q15) discrete density evolution equation is 

1( , ) ( , ) ( , ) ( , )eq
t t tf t f t f t f t Fα α α α α α

ν

δ δ δ
τ

⎡ ⎤+ + − = − − +⎣ ⎦r e r r r      (16) 

where r  is the position vector, tδ  the time step, αe  the discrete velocities with the direction system 

shown in Fig. 3, 

( )
( )
( )

0,0,0 0

1,0,0 , (0, 1,0) , (0,0, 1) 1 6

1, 1, 1 7 14

c c c to

c to
α

α

α

α

=⎧
⎪

= ± ± ± =⎨
⎪ ± ± ± =⎩

e      (17) 

where c  represents the sound speed, ντ  the dimensionless relaxation time which is a function of the 

fluid viscosity, 

23 0.5t

x
ν

δτ ν
δ

= + ,               (18) 

where ν  is the kinetic viscosity and xδ  the lattice constant (or grid size), and eqfα  the density 

equilibrium distribution 

2 2

2 4 2

( ) 31 3 9
2 2

eqf
c c c
α α

α αω ρ
⎡ ⎤⋅ ⋅

= + + −⎢ ⎥
⎣ ⎦

e u e u u
         (19) 

with 

2 / 9
1/ 9

1/ 72
αω

⎧
⎪= ⎨
⎪
⎩

   
0

1 6
7 14

to
to

α
α
α

=
=
=

.           (20) 

For EOFs of dilute electrolyte solutions, the external electrical force in Eq. (5) can be simplified to: 

E e eρ ρ= − ∇ΦF E ,              (21) 
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where Φ  is the stream electrical potential caused by the ion movements in the solution based on the 

Nernst-Planck theory. Generally, the stream potential dominates the electro-viscosity effect in pressure 

driven flows, but its value is much less than the external potential and can be ignored in electrically driven 

flows. Therefore, the external force in the discrete Lattice Boltzmann equation is 

( ) eqeF f
RT
α

α α
ρ

ρ
⋅ −

=
E e u

.             (22) 

The macroscopic density and velocity can be calculated using 

fα
α

ρ =∑ ,                (23) 

fα α
α

ρ =∑u e .               (24) 

To solve the Poisson equation with strong nonlinearity, Eq. (13), we employ here another evolution 

method on the same grid system, lattice Poisson method (LPM) [64], by tracking the electrical potential 

distribution transporting on the discrete lattices. By expanding Eq. (13) into the time-dependent form 

2 ( , , )rhsg t
t
ψ ψ ψ∂

= ∇ +
∂

r              (25) 

with ,
0

1 exp i
rhs i i

i b

z eg z en
k T

ψ
εε ∞

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑  representing the negative right hand side (RHS) term of the 

original Eq. (13), we get the discrete evolution equation for the electrical potential distribution 

, ,
1 0.5( , ) ( , ) ( , ) ( , ) (1 )eq

t g t g rhs
g g

g t g t g t g t gα α α α αδ δ ω
τ τ

⎡ ⎤+ Δ + − = − − + −⎣ ⎦r r r r r , (26) 

where the equilibrium distribution of the electric potential evolution variable g  is 

eqgα αϖ ψ= , with 
0 0
1/ 9 1 6
1/ 24 7 14

to
to

α

α
ϖ α

α

=⎧
⎪= =⎨
⎪ =⎩

,      (27) 

The time step for the electrical potential evolution is 

, '
x

t g c
δδ = ,                (28) 
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where 'c  is a pseudo sound speed in the potential field [62]. The dimensionless relaxation time is 

,
2

9
0.5

5
t g

g
x

χδ
τ

δ
= + ,              (29) 

where χ  is defined as the potential diffusivity which equals to unity in these simulations. 

After evolving on the discrete lattices, the macroscopic electrical potential can be calculated using 

,( 0.5 )t g rhsg gα α
α

ψ δ ω= +∑ .            (30) 

Though the electrical potential evolution equations are in an unsteady form, only the steady state 

result is realistic, because the electromagnetic susceptibility has not been considered. Although the lattice 

evolution method for nonlinear Poisson equation is not as efficient as the multi-grid solutions due to its 

long wavelength limit, it has the advantages of suitability for geometrical complexity and parallel 

computing [64]. 

The boundary condition implements play a very critical role to the accuracy of the numerical 

simulations. The hydrodynamic boundary conditions for the lattice Boltzmann method have been studied 

extensively [77-84]. The conventional bounce-back rule is the most commonly used method to treat the 

velocity boundary condition at the solid-fluid interface due to its easy implement, where momentum from 

an incoming fluid particle is bounced back in the opposite direction as it hits the wall [76]. However the 

conventional bounce-back rule has two main disadvantages. First, it requires the dimensionless relaxation 

time strictly within the range of (0.5, 2), otherwise the prediction will deviate from the correct result 

definitely [77,78]. Second, the non-slip boundary implemented by the conventional bounce-back rule is 

not located on the boundary nodes exactly, which will lead to inconsistence when coupling with other 

PDE solvers on a same grid set [79]. 

To overcome the inconsistence between the LBM and other PDE solvers on a same grid set, one can 

replace the bounce-back rule with another “non-slip” boundary treatment proposed by Inamuro et al. [80], 

with the cost of loss of easy implement for complicated geometries. An alternative solution is to modify 

the boundary condition treatments of the PDE solver for the electric potential distribution to be consistent 
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with the LBM bounded by the bounce-back rule. In this contribution, the bounce-back rule [79,81] for 

nonequilibrium distribution proposed by Zou and He [82] is introduced and extended to both 

hydrodynamic and electrodynamic boundary implements to deal with the complex geometries in porous 

media. 

At the boundary the following hydrodynamic boundary condition holds: 

neq neqf fα β= ,                 (31) 

where the subscripts α  and β  represent opposite directions. 

Analogously, the non-equilibrium “bounce-back” rule for the electric potential distribution at the wall 

surfaces is suggested as: 

neq neqg gα β= − .                 (32) 

These boundary treatments are easy to implement for complicated geometries and have 

approximately second-order accuracy [82,79]. 

4. Results and discussion 

Fig. 4 shows a schematic illustration of three dimensional EOF in charged random porous media. The 

solid microstructure has random shapes, positions and connections, generated by the algorithm described 

in section 3.1. The cubic domain is periodic in all the three directions. The solid surfaces are 

homogeneously charged with a zeta potential, ζ  so that the electrolyte solution can be driven flowing 

though the porous structure by an external electrical field, E . In this section, we simulate and analyze 

EOFs in charged micro porous media using the lattice Poisson-Boltzmann method, with geometry effects, 

solution and surface charge effects considered. The simulated results are compared with existing theories 

and experimental data. 

In the following simulations, we focus on a cubic system of which each side is 1 micron long. A 

60×60×60 uniform grid is used. We change microstructure geometries of porous media by varying the 

porosity ε  from 0.1 to 0.9. The average characteristic length of particles varies from 20 to 150 nm. The 
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bulk ionic concentration n∞  varies from 10-6 to 10-3 M and the surface zeta potential from 0 to -100 mV. 

The other properties and parameters used in this work are: the fluid density ρ =999.9 kg/m3, the 

dielectric constant 0rε ε =6.95×10-10 C2/J m, the dynamic viscosity μ =0.889 mPa s, the temperature 

T =273 K and the external electrical field strength E =1×104 V/m. 

4.1 Geometry effects 

First, the geometry effects on the electroosmotic permeability in micro porous media are investigated 

by changing volume fraction and particle size (or number density) of the solid phase. We define the 

electroosmotic permeability, eκ , as 

e
u
E

κ =                   (33) 

where u  is the averaged velocity of EOF along the direction of the driving electrical field E . 

The coefficients of electroosmotic permeability ( eκ ) for different porosities (ε ) of porous media are 

shown in Fig. 5. The other parameters are dc =0.1 for the microstructure generation process, the bulk 

molar concentration c∞ =10-4 M, and ζ = -50 mV. The electroosmotic permeability increases with the 

porosity monotonically. The increasing rate rises with the porosity as well which is very low when the 

porosity is smaller than 0.5 and becomes sharply high when the porosity is larger than 0.7. The predicted 

electroosmotic permeability is in the order of 10-9 m2/s V, which is consistent of the existing experimental 

measurements [83]. 

Fig. 6 shows the calculated electroosmotic permeability in homogeneously charged nanoscale porous 

media versus the average characteristic length of solid particles which is defined as the cube root of the 

average volume of every particle. The average characteristic length changes from 20 to 150 nm by varying 

dc  from 0.38 to 0.001 in present simulations and other parameters are ε =0.38, c∞ =10-4 M, and ζ = 

-50 mV. The results show that the electroosmotic permeability eκ  increases with the average 
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characteristic length of solid particles monotonically. When the x-axial is in a logarithmic scale, the curve 

appears nearly linear (see the reference line in Fig. 6), which means the electroosmotic permeability 

increases with the average characteristic length of particles at an approximately logarithmic rate. Three s 

trials were performed for each average characteristic length but the calculated electroosmotic 

permeabilities did not exactly fall into a same value. The fluctuations come from the stochastic 

characteristics of the random microstructure. For a given porosity and a grid number, a smaller average 

characteristic length of particles leads to a smaller statistical fluctuation around the average result. For 

parameters used in the present contribution, the statistical deviation is smaller than 3%. 

4.2 Concentration effect 

Based on the macroscopic EOF theory, the electrical double layer can often be treated as a thin layer 

and a slip velocity can therefore introduced by the Helmholtz-Smoluchowski model, 

0 r
slip

ε ε ζ
μ

= −
Eu ,                (34) 

as a boundary condition subjecting to the hydrodynamics equations (Eq. 4 & 5). Such models have been 

employed to analyze the EOF in micro porous media frequently [19-22,25-35]. A further conclusion from 

Eq. (34) is the electroosmotic permeability has no relationship with the ionic concentration of the 

electrolyte solution. This may be true if the solid individuals are separated by a wide enough interval space. 

However in most natural micro porous media, such a critical condition is hard to satisfy. The narrow 

clearances between solid particles of micro porous media often break down the thin double layer 

approximation and the EOF should be governed by the full set of equations (Eq. 4-13). 

Fig. 7 shows the predicted electroosmotic permeability versus the bulk ionic concentration of the 

electrolyte solution. We used a same porous microstructure with dc =0.1 and ε =0.38. The electroosmotic 

permeability eκ  increase monotonically with the bulk ionic concentration c∞  as c∞  varies from 10-6 

to 10-3 M. This result can be explained by the undeveloped electrical potential distributions in narrow 

channels, whose similar results can be found in Fig. 2 of Ref. [66] and Fig.1&2 of Ref. [84]. When c∞  is 
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lower then 10-4 M, the electroosmotic permeability is nearly proportional to the bulk ionic concentration. 

When c∞  is higher, the increasing rate becomes a little smaller. 

4.3 Zeta potential effects 

Zeta potential on solid surfaces of porous media affects EOF permeability directly. Simple 

proportional relationships have been obtained between the electroosmotic permeability and the zeta 

potential for electrical transports in soils [83,85] and in polymer composites recently based on the 

boundary-layer theory [86]. Here we analyze such effects using our numerical methods. 

Fig. 8 shows the calculated electroosmotic permeability versus the zeta potential on solid surfaces of 

porous media. All surfaces are homogeneously charged with a same value of ζ . The other parameters 

used are: c∞ =10-4 M, dc =0.1 and ε =0.38. The zeta potential ζ  changes from 0 to 100 mV. It shows 

that the proportionally linear relationship between electroosmotic permeability and zeta potential is 

accurate only when ζ  is very small (<30 mV). The permeability increases much sharper when the zeta 

potential ζ  is larger than 40 mV and then smoother when the zeta potential ζ  is larger than 90 mV. 

4.4 Comparison with experiments 

The predicted electroosmotic permeability is also compared with experimental data quantitatively for 

different zeta potentials. Table 1 listed six kinds of soil and the measured data, including porosities, zeta 

potentials and permeabilities [87]. Since there is little information about the soil structure and the 

properties of electrolyte solutions, we evaluate such values by referring to some relative references 

[87-89]. Table 1 also compares the predictions based on the H-S model [83,87] which are one order of 

magnitude higher than the experimental data. It is shown that the predicted electroosmotic permeabilities 

by the present method agree much better with the measured data. 

5. Conclusions 

Electroosmosis in homogeneously charged micro- and nanoscale random porous media has been 
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numerically investigated using the mesoscopic simulation methods. A random generation-growth method 

has been developed for reproducing three-dimensional random microstructures of natural porous media 

and the high-efficiency lattice Poisson-Boltzmann algorithm has been extended into three dimensional 

cases for solving the strongly nonlinear governing equations of electroosmosis in random porous media. 

Such a full numerical set is quite suitable for analyses of electroosmosis in micro- and nanoscale random 

porous media. 

The numerical modeling and predictions of EOF in micro porous media indicate: the electroosmotic 

permeability increases monotonically with the porosity of random porous media and the increasing rate 

rises with the porosity as well; the electroosmotic permeability increases with average solid particle size 

for certain porosity; the permeability increases with the bulk ionic concentration in micro porous media 

which can not be predicted based on the macroscopic theory; the proportional relationship between the 

electroosmotic permeability and the zeta potential stands only at low zeta potentials. The present 

predictions agree with the existing experimental observations and measurements. The results and 

methodology in this contribution may be of great significance to improve our understandings of 

multiphysical transport mechanism in electroosmosis in micro- and nanoscale random porous media. 
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Table 
 
 

Table 1  Electroosmotic permeability for different soils 
Soil ε  ζ  

(mV) 
eκ , measured 

(10-9 m2/s⋅V) 
eκ , H-S model 

(10-9 m2/s⋅V) 
eκ , predicted 

(10-9 m2/s⋅V) 
Grey 0.53 64 0.72 45 0.74 ♣ 
Brown 0.62 97 2.86 69 2.0 ♠ 
G-H 0.62 96 2.00 68 2.0 ♠ 
Phosphatic 0.87 62 0.7 44 1.72 • 
Wallace burg 0.51 87 1.5 62 1.6 ♣ 
Orleans 0.70 22 0 16 0.052 • 

where the parameters used for predictions are: ♣ dc =0.1 sP  and en =2×10-5 M; ♠ dc = sP  

and en =1×10-5 M; • dc = sP  and en =1×10-4 M. 
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Figure Captions 
 
 
Fig. 1  Twenty-six growth directions of each cell in three-dimensional cubic grid systems 

Fig. 2  Schematics of the generated porous structures using the present growth-generation method on 

60×60×60 grid systems. The white is solid particles and the dark is fluid. (a) sP =0.3, dc =0.01 sP ; 

(b) sP =0.6, dc =0.01 sP ; (c) sP =0.3, dc =0.1 sP ; (d) sP =0.3, dc =0.01 sP , 

1,3D =10 2,4 6D − (anisotropic) 

Fig. 3  The lattice direction system (α ) for D3Q15 model 

Fig. 4  Schematic illustration of EOF in charged random porous media 

Fig. 5  Predicted electroosmotic permeabilities for various porosities of porous media at c∞ =10-4 M, 

ζ = -50 mV, E =1×104 V/m 

Fig. 6  The electroosmotic permeability versus average characteristic length of solid particles for 

ε =0.38, c∞ =10-4 M, ζ = -50 mV, and E =1×104 V/m 

Fig. 7  The electroosmotic permeability changing with the bulk ionic concentration for ε =0.38, ζ = 

-50 mV, and E =1×104 V/m 

Fig. 8  The electroosmotic permeability versus the zeta potential for ε =0.38, c∞ =10-4 M, and 

E =1×104 V/m 
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Figure 1, Wang and Chen, Submitted to JCIS 
 
 
 

 
 
 

Fig. 1  Twenty-six growth directions of each cell in three-dimensional cubic grid systems 
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Figure 2, Wang and Chen, Submitted to JCIS 
 
 
 
 

     
(a) sP =0.3, dc =0.01 sP ;                             (b) sP =0.6, dc =0.01 sP ; 

     
(c) sP =0.3, dc =0.1 sP ;                  (d) sP =0.3, dc =0.01 sP , 1,3D =10 2,4 6D − (anisotropic) 
 
 

Fig. 2  Schematics of the generated porous structures using the present growth-generation method on 60×60×60 
grid systems. The white is solid particles and the dark is fluid. 
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Figure 3, Wang and Chen, Submitted to JCIS 
 
 
 
 

 
 
 

Fig. 3  The lattice direction system (α ) for D3Q15 model 
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Figure 4, Wang and Chen, Submitted to JCIS 
 
 
 
 

 
 
 

Fig. 4  Schematic illustration of EOF in charged random porous media 
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Figure 5, Wang and Chen, Submitted to JCIS 
 
 
 
 

 
 
 

Fig. 5  Predicted electroosmotic permeabilities for various porosities of porous media at c∞ =10-4 M, ζ = -50 mV, 

E =1×104 V/m 
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Figure 6, Wang and Chen, Submitted to JCIS 
 
 
 
 

 
 
 

Fig. 6  The electroosmotic permeability versus average characteristic length of solid particles for ε =0.38, 
c∞ =10-4 M, ζ = -50 mV, and E =1×104 V/m 



M. Wang and S. Chen, Submitted to J. Colloids Interface Sci. 

 32

Figure 7, Wang and Chen, Submitted to JCIS 
 
 
 
 

 
 
 

Fig. 7  The electroosmotic permeability changing with the bulk ionic concentration for ε =0.38, ζ = -50 mV, and 
E =1×104 V/m 
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Figure 8, Wang and Chen, Submitted to JCIS 
 
 
 
 

 
 
 

Fig. 8  The electroosmotic permeability versus the zeta potential for ε =0.38, c∞ =10-4 M, and E =1×104 V/m 




