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Abstract

Reactive astrocytes are astrocytes undergoing mlwgical, molecular, and functional
remodelling in response to injury, disease, ordtdm of the central nervous system (CNS).
Although this remodelling was first described oaerentury ago, uncertainties and controversies
remain, regarding the contribution of reactive @sftes to CNS diseases, repair, and ageing. It is
also unclear whether fixed categories of reactsteoaytes exist, and if so, how to identify them.
We point out the shortcomings of binary divisions reactive astrocytes into good/bad,
neurotoxic/neuroprotective or A1/A2. We advocatestead, that research on reactive astrocytes
include assessment of multiple moleculand functional parameters, preferably in vivo,
multivariate statistics, and determination of impaic pathological hallmarks in relevant models.
These guidelines may spur the discovery of astesbgised biomarkers, and astrocyte-targeting
therapies that abrogate detrimental actions oftireaastrocytes, potentiate their neuro- and glio-
protective actions, and restore or augment theirdastatic, modulatory, and defensive functions.



224

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

1. Introduction

‘Neuroglia’” or ‘glia@ are collective terms descnilg cells of neuroepithelial
(oligodendrocytes, astrocytes, oligodendrocyte @ndgr cells, ependymal cells), neural crest
(peripheral glia), and myeloid (microglia) origi@hanges in neuroglia associated with diseases of
the central nervous system (CNS) have been ndtedacterised, and conceptualised from the very
dawn of neuroglial research. Rudolf Virchow, ireature to students and medical doctors in 1858,
stressed thatthis very interstitial tissuf.e. neurogliaJof the brain and spinal marrow is one of
the most frequent seats of morbid chanté Changes in the shape, size, or number of glits cel
in various pathological contexts have been freduel@scribed by prominent neuroanatomfsits.
particular, hypertrophy of astrocytes was recoghis®y early as an almost universal sign of CNS
pathology? “The protoplasmic glia elemenfse. astrocyteshre really the elements which exhibit
a morbid hypertrophy in pathological conditidns Neuroglial proliferation was thought to
accompany CNS lesions, leading to early suggesti@tgroliferating glia fully replaced damaged
neuronal elementsThus, a historical consensus was formed that @sairg'the appearance of
neuroglia serves as a delicate indicator of theacof noxious influences upon the central nervous
systerfy and the concept ofréactionary change or gliosisvas accepted.While the origin of
“gliosis” is unclear (“glia + osis” in Greek meafglial condition or process”; in Latin the suffix
“-0sis” acquired the additional meaning of “dis€aseence astrogliosis may also carry a
connotation of “glial disorder”), the term becamaiversally adopted to denote astrocytic
remodelling in response to pathologic conditiortse Tole of reactive astrocytes in forming a scar-
border to seal the nervous tissue against penegrisions was recognised, with distinct stages
being visualised. In the 2% century, astrocytes are increasingly viewed asnigaa critical
contribution to neurological disorders. Researdo ithhe roles of astrocytes in neurology and
psychiatry is accelerating and drawing in incregsiombers of researchers. This rapid expansion
has exposed a pressing need for unifying nomemneland refining of conceptdlere, we start by
providing a working consensus on nomenclature agfthilons, and by critically evaluating
widely used markers of reactive astrocytes. Thendescribe the advances, and we take position
on controversies, regarding the impact of astracypeCNS diseases and ageing. Finally, we
discuss the need for new names to grasp astroeyezogeneity, and we outline a systematic
approach to unravelling the contribution of asttesyto disorders of the CNS. This article is
expected to inform clinical thinking and researchastrocytes, and to promote the development
of astrocyte-based biomarkers and therapies.

2. Too many names

“Astrocytosis”, “astrogliosis”, “reactive gliosis™astrocyte activation”, “astrocyte reactivity”,
“astrocyte re-activation”, and “astrocyte reactiohdve been all used to describe astrocyte
responses to abnormal events in the CNS, inclutkngodegenerative and demyelinating diseases,
epilepsy, trauma, ischemia, infection, and cané&r.suggest “reactive astrogliosis” to define the
process whereby, in response to pathology, asesagtigage in molecularly defined programs
involving changes in transcriptional regulationyasl as biochemical, morphological, metabolic,
and physiological remodelling, which ultimately u#sin gain of new function(s) or loss or
upregulation of homeostatic ones. Although for seesearchers, particularly neuropathologists,
“reactive astrogliosis” is invariably associatedthwirreversible changes such as astrocyte
proliferation, scar-border formation, and immuné-eruitment® these phenomena mainly occur
when there is disruption of the blood-brain bar(ig. 1a)’ We also support the term “astrocyte
reactivity” as being broadly equivalent to “reaetiastrogliosis”, but emphasizing the capacity of
astrocytes to adopt distinct state(s) in respomselivterse pathologies. Thereforagactive
astrocytes”, referring to the cells undergoing tieimodelling, is an umbrella term encompassing
6



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

multiple potential states. We define “state” asransient or long-lasting astrocyte condition
characterized by a specific molecular profile, fimts, and distinct impact on diseases, while its
“phenotype” is the measurable outcome of that statportantly, the changes in astrocytes in
response to pathological stimuli are not to be gsed with the plasticity of healthy astrocytes,
which are constantly being activated by physiolabsignals in the CNS. For this reason, although
transitions from physiology to pathology are pragiee and sometimes difficult to define,
“astrocyte activation” should be reserved for pbl@yical conditions and not used in pathological
contexts, which should be referred to as “astromyaetivity”.

The pathological contexts in which astrocyte redtgtioccurs can markedly vary, and may be
sporadic or genetically mediated, acute or chrodi® to a systemic pathology (e.g., sepsis),
specific injury or disease of the CNS, or a deletes experimental manipulation. By definition,
astrocyte reactivity is secondary to an extringgnal, may evolve with time, and, in many
situations, is reversible. Astrocytes may also leitltiell-autonomous disturbancas happens in
astrocytopathies resulting from mutated allelesastrocytic genes (e.dgsFAP in Alexander
diseasef,as well as from direct viral infections or expasto toxic substances that specifically
damage astrocytes (e.g., ammonium in hepatic eatmpithy)!® These astrocytes can be
considered “diseased astrocytes” that unequivodaltiate the diseases and may secondarily
acquire a reactive phenotype with a distinct impant disease progression. Mutations in
ubiquitously-expressed genes, as in familial neegederative disorders (e.g. Huntington’s
disease, HD), or disease-risk polymorphisms in génghly expressed in astrocytes (eAROE

in Alzheimer's disease, AD}, may also lead to dysfunctional astrocytes thathaout being the
sole or primary initiators of pathology, may adwtys affect outcomes. Terminology
recommendations and caveats are summarized in Boxl in section 7, below.

3. GFAP as a marker

Glial fibrillary acidic protein (GFAP)—a major pmh constituent of astrocyte intermediate
filaments—is the most widely used marker of reactigtrocytes (Table 1jIindeed, up-regulation
of GFAP mRNA and protein, as shown with multipleheiques including quantitative PCR
(gPCR), RNA sequencing (RNAseg)n situ hybridization, electron microscopy, and
immunostaining (Fig. 1a, d), is a prominent featafemany, but not necessarily all, reactive
astrocytes: (i) increased GFAP content occurs aaiverse types of CNS disorders, (i) is an early
response to injury, and, moreover (iii) is a sewsitndicator, detectable even in the absence of
overt neuronal death (e.g., when there is synaps® Iminor demyelination, and extracellular
amyloid$3 oligomers).However, while the degree of GFAP up-regulatiomaactive astrocytes
often parallels the severity of the injutyhis correlation is not always proportional, pghaue

to regional differences of astrocytes, includingdd&FAP contert® 14In the healthy mouse brain,
hippocampal astrocytes have a higher GFAP conbamt ¢ortical, thalamic, or striatal astrocytes;
this, however, does not make hippocampal astroayte® reactive. GFAP is also expressed by
progenitor cell® and its expression depends on developmental stagésn addition, GFAP
immunoreactivity has been reported to decreasesitbpopulation of astrocytes in mouse cortex
following repetitive traum4,and in the spinal cord of a mouse model of amydtio lateral
sclerosis (ALS), probably due to cleavage of GFAR-aspase & Expression ofFAP is also
modulated by physiological stimuli such as physiadtivity,!® exposure to enriched
environments? and glucocorticoid®® and it fluctuates with circadian rhythms in the
suprachiasmatic nucledsTherefore, changes BFAP expression may also reflect physiological
adaptive plasticity rather than being simply a teaaesponse to pathological stimuli. A common
mistake is to interpret higher numbers of GFAP-pascells as local recruitment or proliferation
of astrocytes. We recommend to use markers of fpration (Ki67, PCNA and BrdU

7
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incorporation, Table 2), and to combine GFAP imnsiaming with other ubiquitous astrocyte
markers such as aldehyde dehydrogenase 1 L1 (ALRMI1dlutamine synthetase (GS), and
aldolase C (ALDOC) to correctly estimate astroaytenbers’? provided that their expression is
stable. Finally, there are discrepancies betwesrrobd mMRNA and protein levels, perhaps due to
differential regulation of translation, post-traatgbnal modifications, protein half-life, and
antibody epitope accessibility. Overall, althoughracrease in GFAP content is a strong indication
of reactive-astrocyte remodelling, it is not anadbte marker of reactivity, nor does it strictly
correlate with the extent thereof, or indicateraliefunctions of reactive astrocytes.

4. Morphology revisited

Increased GFAP immunoreactivity largely reflectaryes in the astrocytic cytoskeleton and tends
to exaggerate the degree of hypertrophy, becausethve exception of scar-border astrocytes, the
volume accessed by reactive astrocytes does noigehaince they remain in their territorial
domains®® In other words, cytoskeletal reorganization does mecessarily equal astrocyte
hypertrophy. Immunohistochemical staining for cplasenzymes such as ALDH1L1, ALDOC,
GS, and S100B allow the visualization of the sormetd proximal processes of astrocytes,
although, like GFAP, these markers fail to reveaak processes. Membrane proteins such as the
glutamate transporters EAAT1 and 2 are not optimalssess complex astrocyte morphology, as
they tend to produce widespread and diffuse stgffim addition, the expression of some of these
proteins may change in reactive astrocytéslable 1) and some might be expressed by other cel
types in specific brain regiorg. Animal models expressing fluorescent proteinshi astrocyte
cytosol or membrane through astrocyte-specificsganesis, or gene transfer with viral vectors,
circumvent the limitations of immunohistochemicabbysis. Further, dye-filling methods can be
used to visualize whole astrocytes in ricas well as in human brain samples from surgical
resections (Fig. 18 Thorough visualisation is necessary because gs¢®aindergo distinct
morphological changes other than hypertrophy irhg@apical contexts, including elongation,
process extension towards injury site, and somed8Main overlap® In addition, although
astrocytes appear to be more resistant than netoategeneration and death, loss of primary and
secondary astrocyte branches has been reportediisermodels of AP and ALS!® and in
patients with multiple sclerosis (M3 Detailed analyses of astrocyte arborization in Clié8ases
and injuries are however pending, given that tine foerisynaptic and perivascular astrocytic
processes can only be revealed with super-reso|utixpansion, or electron microscopy. Finally,
clasmatodendrosis (From Greek “klasma”, fragmerfidendron”, tree + “osis”, condition or
process) is a form of astrodegeneration charaety an extreme fragmentation or beading and
disappearance of distal fine processes, along swiiling and vacuolation of the cell body. It is
observed in neuropathological specimens after savaima and ischemia, and in the aged Bfain.
However, although astrocytes may suffer plasma mangbdisruption due to mechanical damage
and cleavage of membrane protans cytoskeletal proteins including GFAf proteases in acute
brain traum&? 3! the phenomenon of clasmatodendrosis should beoagiped with caution,
because it may be an artefact derived freost-mortemautolysis with no pathophysiological
bearing, as suggested by Cadfdin summary, GFAP upregulation and hypertrophyuseful, but
insufficient markers of astrocyte reactivity thaed to be complemented by additional markers
(Table 1, Box 1).

5. Impact in CNS diseases

Research on astrocytes in CNS diseases has advanttexllast century in line with conceptual
and technological progress in astrocyte biologywN&pproaches have been progressively
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integrated with existing ones and these continuevolve. At present, research in reactive
astrocytes is an interdisciplinary endeavour coinigiromics approaches with physiology and
genetic manipulatiarBelow, we summarize advances and controversiesragfrds to the impact
of astrocytes in CNS diseases from a historicadppestive, punctuated by technical advances.

From morphology to functional studies

From the early 20 century up to the 1980s, the morphological appearaf astrocytes was the
only readout of their role in neuropathology. Hypaphy and increased GFAP content were
generally regarded as reflections of a detrimeasttocyte phenotype. The advent of genetic
engineering in the early 1990s opened a new phagesearch based on astrocyte-targeted
manipulation of gene expression. For example, depleor over-expression of receptors,
membrane proteins; 3*cytoskeleton protein®,acute-phase proteidéheat-shock protein¥,and
transcription factor§4%in astrocytes or ablation of proliferative scarder forming astrocyte¥,
was reported to modify (protect or exacerbate) dbaerse of neurological diseases in mouse
models. An important conclusion drawn from thesglists is that the morphological appearance
of astrocytes does not correlate with functionangdtypes, or with their impact on other cell types.
Moreover, the overall impact of reactive astrocyiaseach disease is complex. For example, the
manipulation of reactive astrocytes has resultemjproved®® 42 43worser® outcomes, and no
changé* in mouse models of AD and M%.4> %5Plausibly, such differences arise from several
scenarios: (i) pathways that ultimately exacerbateenuate, or have no impact on ongoing
pathology occur in the same astrocyte, such tleaséhective manipulation of one pathway may
mask, or secondarily impact, the manifestationtbérs, (ii) coexisting astrocyte subpopulations
may have opposing effects on pathol@gyiii) in neurodegenerative diseases, a spectrum of
reactive-astrocyte phenotypes conceivably coexifte same brain at a given time point because
of the asynchronous progression of neuropathologlfierent brain regions, (iv) the pathological
impact of astrocytes is stage-dependent, as shomwiise models of M8: 4% 4Finally, pathways
inducing astrocyte reactivity may be beneficialoine disease and detrimental in another. For
example, activation of STAT3-dependent transcripti® beneficial in neonatal white matter
injury,*’ traumatic brain injury®, spinal cord injury® “*and motor neuron injutybut detrimental

in AD models*> % That is, STAT3-mediated transcriptional programsynw@ntribute to
malfunctional astrocyte states in AD models, anesilient states in other conditions. We broadly
define astrocyte resilience as the set of succeasftoprotective responses that maintain cell-
intrinsic homeostatic functions in neural circui@able 2), while promoting both neuronal and
astrocyte survival. Lastly, responses of reactigsgoaytes may be maladaptive and result in
malfunctional astrocytes, which, in addition to itm@s homeostatic functions, may also gain
detrimental functions, thus exacerbating ongoingh@agy® Numerous mixed scenarios of
malfunctional and resilient astrocytes plausiblysexwith multidirectional transitions among
them.

Research in the last decade has begun to unraeelfispfunctional alterations in reactive
astrocytes underlying complex phenotypic changesiormal conditions, astrocyte “dased
responses, and downstream signalling via neuraactigdiators, exert multifarious effects on
synaptic function and plasticity, neural-networkitiations, and, ultimately, on behaviotir>?In
pathology, various functional changes emerge. AgteoC&" dynamics and network responses
become aberrant in mouse models of HBD,>* and ALS>® possibly contributing to cognitive
impairment and neuropatholo@y.>® 6 Reactive microglia may shift astrocyte signalliingm
physiological to pathological by increasing prodaoictof tumour necrosis factar, thus altering
synaptic functions and behaviour.Functions lost or altered in reactive astrocytesluide
neurotransmitter and ion buffering in mouse HD niggfcommunication via gap junctions in the
sclerotic hippocampus of epileptic patietitghagocytic clearance of dystrophic neurffeand
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metabolic coupling by glycolysis-derived D-sefth@nd lactat® in mouse AD models. The
excessive release of GABA by reactive astrocytesf® and Parkinson’s dised$enay be a case

of gain of detrimental functiolAnother example may be the so-called astrocyteatexicity, but

we recommend using this term only when increasedomal death is due to the verified release of
an identified toxic factor by reactive astrocyi@sd not merely due to loss of trophic or antioxidan
support from astrocytes. An example is neuronal atpandue to nitrosative stress caused by
astrocyte-derived nitric oxide in MB8.Finally, a classical gain of beneficial functios the
restriction of immune cell infiltration in open injes by scar-border forming reactive astrocytes.

Transcriptomics and A1/A2 classification

Transcriptomics has contributed to a fundamentstadiery: astrocytes in the healthy brain are
diverse and specialized to perform specific rotedistinct CNS circuitd? ®° Astrocyte diversity

in healthy tissue arises from embryonic patterpnggrams or local neuronal cuéslikewise,
reactive astrocytes are also diverse, as unequlyabamonstrated by microarray-ba8&ef and
RNAseg-base® 597! transcriptomic profiling of mouse bulk astrocytés®®-"or of astrocyte
populations pre-selected according to cell-surfacarkers’* Such transcriptomic profiling
specifically shows that reactive astrocytes adaptiritt molecular states in different disease
models!® 6-79CNS regiong? and in brain tumour§. These studies also suggested complex
functional changes in reactive astrocytes, inclgdiovel regenerative functiod$proliferation,
and neural stem cell potentfdlas well as loss of homeostatic functi6h$hey have also identified
drug candidates to establish the impact of alterstiocytic pathways in mouse mod&s’?®
Whether baseline astrocyte heterogeneity influeastscyte reactivity is an outstanding question.

In one early transcriptome stifflyand its follow-up’? it was proposed that mouse astrocytes
adopted an “Al” neurotoxic phenotype after exposargpecific cytokines secreted by microglia
exposed to lipopolysaccharide (LPS), whereas tlogyiee an “A2” neuroprotective phenotype
after ischemic stroketwo acute pathological conditions. Two correlatsignatures of 12 genes
with 14 pan reactive genes were proposed as fingéspdentifying these phenotypes and, for Al
astrocytes, combined with thorough functional asedyn vitro.”? Although the Al and A2
phenotypes were not proposed to be universal eenabmpassing, they became widely
misinterpreted as evidence for a binary polarizatibreactive astrocytes in either “neurotoxic” or
neuroprotective states, which could be readilytified in any CNS disease, acute or chronic, by
their correlative marker genes in a manner simitathe once popular, but now discarded,
“Th1/Th2 lymphocyte and “M1/M2” microglia polarizan theories® For multiple reasons, we
now collectively recommend moving beyond the “Al/A&bels and the misuse of their marker
genes. Importantly, only a subset, often a mixAf™and “A2” or pan-reactive transcripts, are
upregulated in astrocytes from human#Bnd AD™® 7® brains, or from several mouse models of
acute injuries and chronic diseases of the ¢NS.’6 "Moreover, the functions of these genes are
not known, for, to date, no experimental evidenae ¢ausally linked any of the proposed marker
genes of “Al” or “A2” astrocytes to either “toxiadr “protective” functions. Thus, the mere
expression of some, or even all these marker geloes, not prove the presence of functions that
these genes have not been demonstrated to exedifi§qly, complement factor 3 (C3) should
not be regarded as a single and definitive matkatr inequivocally labels astrocytes with a net
detrimental effect. In addition, steadily increase&vidence indicates that any binary polarization
of reactive astrocytes falls short of capturingirth@henotypic diversity across disorders. For
example, single cell/nucleus RNAseq (sc/snRNAsagjiss in mouse models ahdman brains

of chronic neurodegenerative diseases have uneavelimerous stage-dependent transcriptomic
states in HO* AD,” "®and MSY, that do not clearly comply with A1/A2 profilesi hddition,
advanced statistics using multi-dimensional datd em-clustering approaches reveals that the
“Al” and “A2” transcriptomes represent only two aftmany potential astrocyte transcriptomes
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segregating along several latent variatféBhe analyses also indicate that multidimensioag d
are necessary to establish the distinctivenesstad@te phenotypes (Fig. 2). Characterization of
the potentially extensive and subtle functionaledéity of reactive astrocytes suggested by
transcriptomic data is an important future goal.

Human stem cells

Advances in human induced pluripotent stem celP§€) technology are being adapted to
astrocyte research. Interestingly, astrocytes geéeerfrom hiPSC derived from fibroblasts
obtained from patients with CNS diseases (usuaillly  genetic mutation causative of disease or
a risk polymorphism) show pathological phenotypa@scluding dysregulation of lipid
metabolismi! alteration in the contents of the extracellulasivies released by astrocytés
reduced autophag$ or altered STAT3 signallingf. hiPSC-derived astrocytes are also amenable
to study responses to viral infectfidrand to specific stimufi* Nevertheless, caution is in order,
for more research is needed to establish hiPS@atkastrocytes dsona fidemodels of human
astrocytes and to determine whether they recatetth@ maturity as well as the temporal, regional,
and subject heterogeneityiafvivo astrocytes. Importantly, not only are these aeltlsoved from
their original milieu, but the serum pervasiveledsn culture media may render them reacifve.
In addition, generation of astrocytes from neutafrscells is inherently difficult, and derivation
and culture conditions have not yet been standeddizading to diversity of clone phenotypes.
Finally, ageing-related neurodegenerative diseabeslld be modelled with astrocytes derived
from cells from aged subjects, but, in this case épigenetic rejuvenation intrinsic to the
reprogramming of adult cells arises as a confoumthotor to be controlled for.

6. Are ageing astrocytes reactive or senescent?

Healthy brain ageing is not pathological and magdigned as an adaptive evolution of global cell
physiology over timé&® Aged human brains display only mild and heterogasechanges in
astrocyte morphology or GFAP levéfsStudies in rodents document region-dependentn ofte
contradictory changes in ageing astrocytes, su@nascrease in cellular volume and overlap of
astrocyte processes, but also atrophy, increaSEAP content, or even a reduction in the number
of GFAP and GS-positive astrocyt&$® Notably, ageing is also associated with pronounced
regional differences in astrocyte gene expressionduse brain& °*However, only a few studies
have directly assessed astrocyte functions in geehg mouse brait> % Thus, although the data
suggest complex changes in ageing astrocytes, tlernee is not yet sufficient to qualify
astrocytes as beingona fidereactive during physiological ageing. Nonethelegt advanced
age, cumulative exposure to pathological stimulymender some astrocytes reactive. To test this
hypothesis, a systematic investigation of the mdécproperties of ageing astrocytes across
different CNS regions in humans, and comparisophgkiologically aged and reactive astrocytes
in various pathological conditions, is needed, tbgewith functional validations in mouse models.
Finally, we suggest caution about extending thecephof senescence to astrocytes based upon
the expression of cell senescence markersN{ff6 increasedB-galactosidase activity, and
secretion of cytokine¥ because the core definition of senescence (revdrsible cell-cycle arrest

in proliferative cells) may not apply to astrocytesich are essentially post-mitotic cells thaehar
divide in healthy tissue. Molecular and functiopabfiling of putative senescent astrocytes in
different diseases is needed to clarify the meaoimpg 8N expression in post-mitotic astrocytes,
as well as the interplay between senescence-ldteares, reactivity, and ageing in astrocytes.

7. Are new names needed?
11
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Arguably, new names are needed to capture thetyaoie reactive astrocytes, but current
knowledge does not yet allow the objective catemgogi of reactive astrocytes. Indeed, the
existence of fixed categories defined by molecatat functional features consistently observed in
different disease contexts is not yet certain. Nogless, two new names have recently been coined
to describe the extremes of six astrocytic trapsiomal clusters detected by snRNAseq in the
hippocampus of AD transgenic and wild-type mig this study, “homeostatic astrocytes” were
predominant in healthy mice, whereas “disease-&s®gocastrocytes” were unique to AD mice.
We do not support generalization of this “diseassaiated” classification to other conditions
because only one disease was studied. In additierterm “homeostatic astrocytes” implies the
unproven assumption that other transcriptionaloagte clusters are dyshomeostatic, while they
may be successful homeostasis-preserving adapdbatisease.

We stress that the expression in full or in pad pfe-determined correlative signature of molacula
markers is not, on its own, sufficient to definéduactional phenotype of reactive astrocyte. In
addition, vague and binary terms such as “neureptioe” or “neurotoxic” are best avoided in
describing astrocyte phenotypes as they are toplisto to be meaningful, unless they are
supported by specific molecular mechanisms, arettitausative experimental evidence. Future
classification of reactive astrocytes should, iadie consider multiple criteria including
transcriptome, proteome, morphology, and speciéitutar functions (Table 2), together with
demonstrated impact on pathological hallmarks (Ejg.

For now, we recommend “reactive astrocytes” asgémeeral term for astrocytes observed in
pathological conditions (Box 1). The term “injuredunded astrocytes” should be reserved for
astrocytes with unequivocal morphological signslaiage (e.g., beaded processes), as observed
in ischemia and traum&:. 3! Descriptions based on misleading generalizatidngunctional
changes and over-interpretation of correlative datauld be avoided. We call for a clear
operational terminology that includes informatidroat morphology (e.g. hypertrophic, atrophic),
molecular markers (Table 1), functional readouth{& 2), as well as brain region, disease, disease
stage, sex, species, and any other relevant solifeeterogeneity (Fig. 2). Indeed, the goal is to
go beyond the mere categorization of reactive egtes, and identify the key variables driving
specific reactive astrocyte states, phenotypesfiamdions in specific contexts. When addressing
similar issues for neurons, scientists are not eored about categorizing disease-associated
neurons into simple generalizable subtypes; rattier,emphasis is placed on understanding
specific changes of defined neuronal populationspiecific diseases. This principle should also
apply to astrocytes.

8. Towards astrocyte-targeting therapies

One goal of research on reactive astrocytes iet@ldp astrocyte-targeting therapies for CNS
diseases. Two challenges preclude translating theltlv of functional and molecular data
described in the previous sections into therapgi@st, there is a need to unequivocally clarify
whether or not reactive astrocytes and their aasatisignalling pathways significantly contribute
to the pathogenesis of specific CNS diseases. ppmach should be reciprocal, such that human
data inform experimental manipulations in animablels, and animal data are validated in human
materials. The second challenge is to develop @geotherapies tailored to specific disease
contexts. Specific research directions include:

Heterogeneity characterization

12
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To define astrocyte phenotypes, all sources ofrbgémeity should be considered and integrated
with multidimensional statistical analyses (Fig- &cRNAseq and snRNAseq are becoming
established as valuable tools to gain insight besal* and reactive-astrocyte heterogeneity (Fig.
1e)40 78 9Notably, isolation protocols may not always beiropt for astrocytes, resulting in low
numbers of cells or nuclei being sequenced, andesbighly relevant but weakly-expressed
transcripts such as transcription factors and péasrambrane receptors being overlooked,
particularly in snRNAseq. Translation from sc/snR3¢4 data ton situ immunohistochemical
detection and functional validations is far fronvital, because the molecular profiles of astrocyte
clusters/subpopulations partly overlap. Thus, extef individual markers, signatures composed
of a combination of markers with specified levefseapression or relative fold-changes are
required to identify astrocyte phenotygésSuch signatures must be statistically validatethéo
point of predicting phenotypes. Alternatively, tdeversity within astrocyte populations from
mouse models may be dissected out by combining FA@Scell-surface markers identified in
screeng! Further, emerging spatial transcriptomics thatvalihe simultaneouis situ detection of
numerous genes will be of value to study the hgemeity of reactive astrocytes at local and
topographical levels (Fig. 11§ Importantly, molecular signatures based on theesgion of genes
or proteins need to be validated by assessing fgpastrocyte functions (Table 2), since post-
transcriptional and post-translational events aalty shape functional outcomes. Functional
validations should preferably be performedvivo, or with in vitro models closely mimicking
human diseases. Classical knockout-, knockdownCRISPR-based approaches to inactivate
gene expression are available to gain insighttilampact on disease of a given pathway within
previously identified astrocyte subséts.

Signalling

An important implication of the disease-specifiduistion of distinct reactive astrocyte states is
that the damage- and pathogen-associated stimalidne disorder cannot be assumed to be active
in another. For example, the now widely-used catkfdactors released by LPS-treated neonatal
microglia’? cannot be simply assumed to model reactive astredy diseases other than neonatal
septic shock due to infection by gram-negative dyéat Likewise, exposure to Tau, amyl@icr
a-synuclein needs to be carefully desigimedvo andin vitro to replicate the concentration, protein
species and combinations thereof found in patieainb. Acute metabolic damage with the
mitochondrial toxin MPTP does not replicate chroRD, to cite another example of vivo
inappropriate modelling. To complicate things ferththe outcome of activating a signalling
pathway may depend on the upstream stffholi priming caused by previous exposure to other
stimuli®” perhaps through epigenetic contfdlThus, careful selection of upstream stimuli is
essential for appropriat@ vivo andin vitro modelling of disease-specific reactive astrocytes.
Finally, interventional strategies such @assical pharmacology; ®® genetic manipulatiof? °¢
and biomateriaf§ are available tools to modify pathological sigimglin reactive astrocytes for
therapeutic purposes. Optogenefiaand Designer Receptor Exclusively Activated by ifresr
Drugs (DREADDY® are potential tools to manipulate reactive astesyor restore their aberrant
C&* signalling observed in mouse models of neurodeg¢ine diseases>° However, it is
unknown whether, and how, the changes in/KHCI/C&* fluxes and second messengers
triggered by these approachesodulate signalling cascades driving phenotypatainges of
reactive astrocytes (e.g., JAK-STAT and kB-pathways?.

Humanizing research

Although some basic functional properties of asttes have been shown to be evolutionarily
conserved between humans and rod&ftis,is still critical to study patient samples agevelop
models of human reactive astrocytes because margical and transcriptomic comparisons have
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revealed prominent differences between mice andangti! 1 In addition to astrocytes from
post-mortenmsamples and biopsie¥ (Fig. 1b), hiPSC-derived astrocytes, which cagdrerated
with a fast protocol in 2D layef$§?or integrated in 3D systems such as spheroids r@yahoids'®>

108 are rapidly becoming commonplace in basic reséaréhand therapy developmehf.
Researchers need to be aware of the pros and tdresarious protocols available, as discussed
in previous sections and elsewhé&i®!*?Also, hiPSC glial mouse chimeric brains, in whi¢gR®C
differentiate into human astrocytes, oligodendresyand their progenitors, offer the possibility to
study human astrocytes from patients in contextsrale tan vivo experimentatiof®® 14In
addition, proteins released by injured astrocytescarrently being considered as fluid biomarkers
of neurotrauma! Biomarkers of reactive astrocytes in human disediebe indeed needed to
demonstrate target engagement of future astrodsgetdd therapies in clinical trials. Emerging
reactive-astrocyte biomarkers are either measurbtbod or cerebrospinal fluid (e.g. YKL-48,

or used for brain imaging such as MAO-B-based paisiemission tomography (PET¥, which
provides important topographical information (Tat)e’ Plausibly, disease-specific biomarker
signatures rather than single ubiquitous biomarkéide needed.

Use of systems biology

Computerised tools including systems biology atifi@al intelligence are essential to organizing
and interpreting the increasing wealth of high-tlglput multidimensional molecular and
functional data from reactive astrocytes. Currentiyolecular data (e.g., -omics) can be
transformed into mathematical maps by artificiakligencet!® thereby providing quantitative
representations of the otherwise vague notion ehptypes. An example of functional data is 2D
and 3D C& imaging that generates kinetic profiles and mapssingle astrocytes and 2D/3D
networks (Fig. 1c}® 129 Artificial intelligence can identify patterns ofa€ signalling in
astrocytes® 2°Multidimensional molecular and functional data &alven two applications. First,
multivariate analysis may unravel molecules, patsand variables shaping astrocyte phenotypes
in acute versus chronic degenerative conditiorfierént disease stages, sexes, and CNS regions
(Fig. 2). Second, these data can be used to ptbeictet functional outcome of a complex mix of
potentially protective or deleterious pathways, addntification of hubs such as master
transcription factors or epigenetic regulattrat, when activated, promotgobally beneficial
transformations. Importantly, the inhibition of detental pathways must not secondarily impair
protective ones, or damage basic astrocyte furetiinally, no astrocyte-targeting therapy can be
successful if it does not consider the complexratigons of reactive astrocytes with other CNS
cells.

9. Concluding remarks

The dawn of neuropathology in the laté"Ehd early 20 centuries witnessed widespread interest
in neuroglia. Today, research on astrocytes and&@odelling in the context of injury, disease,
and infection is undergoing a renaissance, with resgarchers bringing exciting new techniques,
approaches, and hypotheses. Given the scarcityisefgske-modifying treatments for chronic
diseases and acute injuries of the CNS, this ageaevival represents an opportunity to develop
largely unexplored therapeutic niches such as theipalation of reactive astrocytes. However,
despite the substantial body of knowledge accuradlaince the discovery of reactive astrocytes
a century ago, there are no therapies purposeigriEsagainst astrocyte-specific targets in clinica
practice. The present working consensus for reBegtsdelines will hopefully boost more
coordinated and better focused efforts to imprawe, therapeutically exploit, our knowledge about
the role(s) of reactive astrocytes in CNS diseasésinjuries.
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Figure legends
Figure 1. Multivariate assessment of reactive astaytes

a. Reactive astrocyte proliferation in the vicinitifdood vessels assessed by co-staining for BrdU
(green, arrows), DAPI (blue), GFAP (white), and ABed) after stab injury of the mouse cortex.
Bar size: 15 um. Unpublished image from Drs. Sakd Gotz.

b. Human cortical protoplasmic astrocytes in a sufgsp@cimen injected with Lucifer yellow
(arrow, injection site) that traverses the gap fioms into neighbouring astrocytes. Bar size: 45
pum. Courtesy of Drs. Xu, Sosunov, and McKhann, @dlia University Department of
Neurosurgery.

c. Event-based determination of Ceesponses in a GCaMP6-expressing astrocyte (suteoly

a dashed line) in mouse cortical slices using Ast®QUantitative Analysis (AQuUAY? Colours
indicate AQUA events occurring in a single 1-sexrfe of a 5-min movie. Bar size: .

d. Activation of the transcription factor STAT3 (grgeassessed by nuclear accumulation in
GFAP' reactive astrocytes (red) surrounding an amyldéadjye (blue, arrow) in a mouse AD
model. Bar size: 20 um. Adapted frdf

e.ScRNAseq in the remission phase of a mouse MS imedeals several transcriptional astrocyte
clusters. These astrocyte sub-populations may lgated with spatial transcriptomics, as shown
in fin an AD model. Adapted frof?.

f. Distribution of 87 astrocytic (green), neuronad}, microglial (yellow), and oligodendroglial
(blue) genes as shown wiih situ multiplex gene sequencing in a coronal sectiomfeomouse
AD model. The method ‘reads’ barcodes of antiseDB\ probes that simultaneously target
numerous mMRNAs. Bar size: 8p@n. Boxed area is magnified in bottom image, shovEGq 0
amyloid{3 plaques (white, arrows). Adapted frdfn

Fig. 2. Workflow for the identification of key variables shaping astrocyte reactivity using
multidimensional analyses

a. Variables tameasuran individual experiments. Although at presensitinrealistic to measure
all in the same experiment, it will in most casegbssible to measure at least two or three.

b. Variables torecord in individual experiments. In some experiments, allmost of these
variables are kept constant and are not compaunethéy should all be recorded to allow for future
comparison across experiments and studies.

c. Individual studies will generate multidimensionataisets of reactive astrocytes that can be
organized in matrices containing all outcome messsaf variables assessedaj(e.g. omics data,
functional measurements). One matrix may be geseffat each condition listed ib) using data
obtained ina. Determining whether such states are equivalerfixexl categories rather than
temporary changes due to the dynamic nature ofug@itioning requires cross-comparison among
studies or longitudinal studies, paired with stat#zd analysesd).

d. Multidimensional data analysis and clustering stats of weighted scores from datasefs (
across different contextb) represented in matricees) @llow identification of functional vectors
(V) driving astrocyte reactivity in different coxts. A high score and a low score in each vector
represent gain and loss of function, respectivEiye graph shows a hypothetical plot of simulated
multivariate datasets froma) (each dot represents one dataset/sample) obtamnedfferent
contexts k), depicted in different colours. Astrocytes wittased features segregate together along
three axes according to the predominance of thetifum represented in each vector. A state is
defined by where the dataset(s) falls in the Vp&ce. The analysis can be n-dimensional, but for
visual clarity, we show a 3-dimensional scenario.
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Table 1. Potential markers of reactive astrocytes

Marker Known function | Type of change | Conditions observed | Species Comments Ref
Cytoskeleton
Intermediate Widespread. Not in some Released by injured astrocytes
GFAP . 1 mMRNA & protein P ' Widespread Cleavage product found in CSF/plasma 122
filament trauma models :
(neurotrauma biomarker)
. Intermediate . AD, AxD, MS, spinal . 123
Nestin filament T mMRNA & protein cord injury, TBI Hu, Ms Also a marker of progenitor cells
. Intermediate . AD, AxD, astrocytoma, Normally expressed in a subset of astrocytes during 124
Synemin filament T MRNA & protein Bl Hu, Ms development
. . Intermediate . . . Also expressed by endothelial cells, vascular stoot 125
Vimentin filament 1 MRNA & protein Widespread Widespread muscle cells, and immature astrocytes
Metabolism
. . Released by injured astrocytes 30, 31
ALDOC Glycolytic enzyme 1 protein SCI, TBI Hu, Ms Fluid biomarker for neurotrauma.
BLBP/ . . Also a marker of immature astrocytes. Releasedhjoyed 31, 60
FABP7 Lipid transport 1 protein AD, MS, TBI Hu, Ms astrocytes. Fluid biomarker for neurotrauma
Catecholamine . PET radiotracers available 63, 64, 117
MAO-B catabolic enzyme 1 protein AD, ALS, PD Hu, Ms Also expressed by catecholaminergic neurons
TSPO Mitochondrial lipid + MRNA & protein AD, MS, ischemia Hu, Rt, Ms PET rad_lotrac_ers available. Also induced in reactiv 126
transporter microglia. Expressed by vascular cells
Chaperones
CRYAB Chaperone activity TMRNA& | AD, AxD, epilepsy, HD, Hu, Ms _ _ 74,95
protein,T secretion MS, TBI Reduces protein aggregation
HSPB1/ .| AD, AxD, epilepsy, MS, . 95, 127
HSP27 Chaperone 1+ mMRNA & protein tauopathies, stroke Widespread

Secreted proteins
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C3 Complement factor] 1+ mRNA & protein ND, pnor;r(]jésciase, septic Hu, Ms Also expressed by microglia 2
CHI3LY/ Unclear function T MRNA & protein Widespread Hu, Ms Increase in CSF is a prognostic biomarker in LOAI a| 79 115
YKL40 1 secretion MS
Iron trafficking .| AxD, MS, septic shock, . 66
Lcn2 protein T mMRNA & protein ALS, stroke Widespread
Serpina3n/ Ser_lne_ protease 1T mMRNA AD, septic shock, stroke Hu, Ms Secretedximaeellular matrix 66
ACT inhibitor
MT Metal binding 1 mRNA & protein HD, PD, AD Hu, Ms Antioxidant effex 4
THBS-1 Synaptogenic factof ! ml?lgleACféE(r)(r)]tem Axotomy, MS Hu, Ms STAT3-regulated. Has benefigghaptogenic effects 50
Cell signalling — Transcription factors
1 mMRNA, protein
NFAT Transcription factor nuclear AD, TBI, PD Hu, Ms Links C#& signalling with reactive transcriptional changes 3% 128
translocation
NTRK2/ : . . . .
1 mRNA and/or Epilepsy, MS (white Trigger non-canonical pathological BDNF-dependenft 33 109
TrkB Receptors X Hu, Ms . . Lo : ~
IL17R protein matter) signalling, and/or NB activation and NO production
S100B Ca&* binding protein f prrglt:;r;:nd Widespread Widesprea Released upon injury. Flisicharker 129
SOX9 Transcription factor 1 mRNA and/or ALS, stroke, SCI Hu, Ms . Nuclear staining - . 130
protein Also present in ependymal cells and in neurogeitices
Phosphorylation,
STAT3 Transcription factor nuclear Widespread Widesprea Also expressed in neuronsthied cell types 49,50, 131
translocation
Channels- Transporters
EAAT1 & 2 Glutamate L mRNA, protein ND Widespread May be also detected in some neurons 53,182
transporters and uptake
KIR4.1 K* channel l rgfg:lé?n& Widespread Hu, Ms May or may not translate interalion of K buffering 58
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Abbreviations used:AD: Alzheimer’s disease: ALS: amyotrophic lateralesosis; AxD: Alexander disease; BDNF: Brain-dedweurotrophic factor; CSF:
cerebrospinal fluid; HD: Huntington’s disease; Human; LOAD: late onset AD; MS: multiple sclerogi4s: Mouse; ND: neurodegenerative disease; NO:
nitric oxide; PET: positron emission tomography;: Parkinson’s disease; Rt: rat; SCI: spinal cojdrin TBI: traumatic brain injury.

This table lists potential markers for reactive@sjtes in different pathological contexts in hunaiseases and animal models. The list is not meant
to be exhaustive; other markers exist and morebsihdded over time. These proteins can be usadher characterize the reactive state of astesgyt
although note that, like GFAP (see Section 3), nufrtbese proteins should be used as a singleivensal marker of reactive astrocytes, nor for the
time being do they identify a specific type of riae astrocyte. Plausibly, markers in the tabld b part of signatures defining disease-specific o
core markers of reactive astrocytes, as well as@ge-based fluid biomarkers (see Section 8). igaly, few of these markers are astrocyte-specifi
therefore, additional methods to identify or iselastrocytes and remove contamination by othettyedis will be in order.
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Table 2. Potential functional assessments for redce astrocytes

Function/Phenomenon

Potential readouts

Ref

Ca?* signalling in single cells
Ca?* based network dynamics

Ca* imaging with chemical or genetically-encoded Gadicators

25, 52, 55, 119, 120

. . Measurement of ionic currents and membrane potdetectrophysiology). Direct measurement of exgétadar K* 58, 132
lonic homeostasis levels
Detection of neuroactive factors using fluoresaamsors anih vivo two-photon imaging o5
Quantification of neuroactive factors in extrackliumilieu and CSF (FRET, HPLC, CE-LIF, fluoresceahsors
Glutamate, GABA, like GIuSnFR, enzymatic kits)
D-serine and ATP release ) ) ) _ - 109, 132
Glutamate uptake and conversion | Analysis of glutamate currents (electrophysiologgyl/or transporter content (immunoblot, immunosigs)
. 137
Metabolism of'3C-labeled substrates (GC-MS & HPLC)
inter- T . . . 59
Astrocyte Inter _cellular Diffusion of permeant dyes in astrocyte networkat¢h-clamp & imaging), FRAP
connectivity
. Assessment of vascular responses aftét @ecaging or optogenetic stimulation of astrocyte®-photon imaging, 134
Vascular coupling optical intrinsic imaging, MRI)
Maintenance of BBB integrit o . . 13E
grity Assessment of BBB permeability with detection ia garenchyma of blood proteins or dyes (Evans IDegtrans)
Signalling Standard biochemical assays. Signalling manipuldipDREADDs 25, 109, 136
Transcription factor activation Transcription factor translocation and DNA bindemgsays, chromatin immunoprecipitation, reporters
Production of synaptogenic and | Synapse quantificatioin vivoand upon exposure to astrocyte-conditioned miexdétro 72 97
neurotrophic factors, ECM, Proteomics/metabolomics of astrocyte-conditionedimand acutely sorted astrocytes '
cytokines, chemokines Multiplex ELISA assays, immunostainings
Interactions with neurons,
. . . . . . . 58, 72, 82
oligodendrocytes, OPC and In vivo/ex wo analyses, co-cultures or exposure to conditionedia and assessment of function/survival
microglia
. : . . 138, 137
Glycolysis Metabolism offH/*C/*C/- labelled energy substrates (GC-MS, radioacssays, NMR) ’
el EEe O e Glucose, pyruvate, lactate and ATP quantificatidtih \genetically-encoded fluorescent sensorsianivo two- 138, 139

Lactate production
Glycogen metabolism
Mitochondrial respiration

photon imaging

Lipid-droplet and fatty-acid staining with BODIP Yess

14C
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NADH imaging (FLIM)

141

Activities of electron transport chain complexes
Extracellular acidification, oxygen consumption #3¢orse, voltametry)

141

Quantification of glycogen granules by EM or immataanings

142, 145

NO-ROS production/detoxification

NO/ROS imaging with intra/extracellular fluoresceensors or probes
Immunostaining for oxidized residues
Activity of antioxidant enzymes with commercial kit

33, 144

Endolysosomal system

Detection of phagocytosed materials (array tomdyyagM, 2 photon microscopy)
Uptake of myelin debris or labelled synaptosomes

60, 72, 145

Autophagic flux

81, 14¢

Exosome production

8GC, 147

Proteasome/lysosome proteolytic activity (fluoregqaobes)

14¢

Proliferation

BrdU incorporation
Ki67, PCNA, cyclin labelling (calculation of a pif@rative index, i.e. % of positive cells in thegadation)
Characterization of astrocyte progeny by fate magpi

149, 150

Scar-border formation

Morphometric/functional analyses (e.g. compositjpermeability to immune cells)

131

Abbreviations used BBB: blood-brain barrier; BrdU: bromodeoxyuridir@E-LIF: capillary electrophoresis with laser indddluorescent detection, CSF:
cerebrospinal fluid; DREADD: designer receptor esolely activated by designer drugs. ECM: Extradal matrix; EM: electron microscopy; FLIM:
fluorescence lifetime imaging microscopy; FRAP:dflescence recovery after photobleaching. FRET it€itresonance energy transfer; GC-MS: gas
chromatography-mass spectrometry; HPLC: high pevdmce liquid chromatography; NO: nitric oxide; NMRiclear magnetic resonance; OPC:
oligodendrocyte progenitor cells; PCNA: proliferaticell nuclear antigen; ROS: reactive oxygen sseci

The table depicts assays that can be performestriocgtes to characterize their functional progsttReferences and functions are not exhaustive
and aim to illustrate the existing methodology byviding recent protocols for each approach. Altifomost references concern studies in healthy
or reactive astrocytes, some additional tools eetévo reactive astrocytes are listed as well. ys€an be performed in human neurosurgical

samplesin vivo, or in acute brain slices of animal models antdfaitro (pure cultures, mixed cultures, organoids). Nbt¢ some assays require

specific equipment and skills or the physical isolaof astrocytes to measure astrocyte-specifictional parameters. No reference is provided

for enzymatic assays that are commercially avaalabl
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BOX 1. Basic consensus and recommendations for reseh on reactive astrocytes

BASIC CONSENSUS
1. Reactive astrocytes are astrocytes that undergphulmgical, molecular, and functional
changes in response to pathological situations umosnding tissue (CNS disease/injuty/
deleterious experimental manipulation).
2. Astrocytes with disease-causing genetic mutatiosasdeseased astrocytes that initiate or
contribute to pathology, and later become readtivevays that may differ from the astrocyte
reactivity normally triggered by external stimuBenetic polymorphisms linked to CNS diseases
may also influence astrocytic functions and prirseacytes to acquire distinct reactive states,
3. There is no prototypical reactive astrocyte, norelictive astrocytes polarize into simple
binary phenotypes, such as good/bad, neurotoximpeatective, A1/A2, etc. Rather, reactive
astrocytes may adopt multiple states dependin@otegt, with only a fraction of common changes
between different states.
4, Loss of some homeostatic functions, aid gf some protective or detrimental functiops,

may happen simultaneously. Whether the overall ohpa disease is beneficial or detrimental will

be determined by the balance and nature of losgaimed functions, and the relative abundance
of different astrocyte subpopulations.

RECOMMENDATIONS
4. Astrocyte phenotypes should be defined by a conibmaf molecular markers (Table 1)
and functional readouts (Table 2), preferablyvivo. GFAP and morphology alone are not
sufficient criteria to qualify astrocytes as reeeti

5. The specifics of the astrocytes under study shbeldpelled out in titles, abstracts, and
results of articles (e.g., X-positive astrocyte¥iregion showed Z phenomenon).

6. Multivariate and clustering analysis of moleculad&unctional data will facilitate the
identification of distinct phenotypes of reactisracytes (Fig. 2).

7. Local, regional, temporal, subject/patient, anduséXeterogeneity of reactive astrocytes
should be studied (Fig. 2).

8. The discovery and validation of plasma/serum amdlzespinal fluid biomarkers, as well

as of PET radiotracers of astrocyte reactivitya iesearch priority, as it will facilitate astroeyt
directed drug development.
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Figure 1

Figure 2
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