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Developing an Adaptive Strategy for Connected Eco-
Driving Under Uncertain Traffic and Signal Conditions 

EXECUTIVE SUMMARY 

The eco-approach and departure (EAD) application for signalized intersections has been proved 
to be environmentally efficient in a Connected and Automated Vehicles (CAVs) system. In the 
real-world traffic, traffic conditions and signal timings usually appear to be dynamic and 
uncertain. The traffic-related information received from sensing or communication devices is 
highly uncertain due to the limited sensing range and varying driving behaviors of other 
vehicles. Meanwhile, when the host vehicle is approaching an actuated signalized intersection 
which are widely deployed in the U.S., the remaining time of the current signal phase indicated 
by the SPaT message will be updated dynamically according to vehicle actuation. This 
uncertainty increases the difficulty to predict the actual queue length of the downstream 
intersection or actual remaining time in a phase using signal phase and timing (SPaT) 
information. It further brings great challenge to derive an energy efficient speed profile for 
vehicles to follow. 

This research proposes an adaptive strategy for connected eco-driving towards a signalized 
intersection under real world conditions including uncertain traffic and actuated signal 
condition. A graph-based model is created with nodes representing dynamic states of the host 
vehicle (distance to intersection and current speed) and indicator of queue status or signal 
status and directed edges with weight representing expected energy consumption between 
two connected states. Then a dynamic programing approach is applied to identify the optimal 
speed for each vehicle-queue-signal state iteratively from downstream to the upstream. The 
uncertainty can be addressed by formulating stochastic models when describing the transition 
of queue-signal state. For uncertain traffic conditions, numerical simulation results show an 
average energy saving of 9%. It also indicates that energy consumption of a vehicle equipped 
with adaptive EAD strategy and a 100m-range sensor is equivalent to a vehicle with 
conventional EAD strategy and a 190m-range sensor. To some extent, the proposed strategy 
could double the effective detection range in eco-driving. For the actuated signals, the 
numerical simulations with real world SPaT data show that the proposed method is robust and 
adaptive to varying signal conditions, and achieves 40% energy savings when the vehicle arrives 
in the red time, and 8.5% energy savings when the vehicle arrives in the green time compared 
to other baseline methods. We also proposed a hybrid reinforcement learning (HRL) framework 
to develop eco-driving strategies using onboard sensor only when the historical traffic data are 
not available. Microsimulation experiments in Unity shows that the proposed HRL-based ego-
vehicle can traverse trough a signalized intersection with eco-driving strategy under mixed 
traffic conditions, reducing 12%-47% energy consumption comparing with baseline methods 
and 1.2%-6.9% travel time. The proposed framework can also be readily implemented to other 
types of vehicles by replacing the energy-reward function and vehicle dynamic model.
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1. Introduction 

The growing transportation activities has been not only substantially enhancing the mobility of 
people and goods, but also producing more greenhouse gas (GHG) emissions and consuming a 
large amount of energy. In 2016, it is estimated that transportation sector has accounted for 
the largest portion (28%) of total U.S. GHG emissions, with 83% of the gas emitted by light-duty 
vehicles and medium- and heavy-duty trucks [1]. According to the statistics from U.S. 
Department of Energy, the energy consumption of transportation has kept increasing since 
2012, reaching 28.2 quadrillion BTU (British thermal unit) and a share of 28.8% of U.S. total 
energy consumption by end-use sector in 2017 [2]. The increasing GHG emissions and energy 
consumption has drawn tremendous attention of government and researchers, and a series 
eco-driving projects and applications have come up throughout the years to improve the 
efficiency of the transportation system. Taking advantage of both vehicle-to-everything (V2X) 
and autonomous driving technology, connected and automated vehicle (CAV) emerges as one 
of the transformative solutions to the current challenges in sustainable transportation, such as 
traffic congestion, air pollution, and energy consumption [1], [2]. Connected vehicles (CVs) has 
shown the capability to improve traffic mobility and energy efficiency via vehicle-to-vehicle 
(V2V) or vehicle-to- infrastructure (V2I) communication. Meanwhile, automated vehicles (AVs) 
equipped with sensing technology (e.g., camera, Lidar, radar, etc.) and artificial intelligent (AI) 
technology would recognize the environment and subsequently perform proper actions by fully 
or partial automation. Urban traffic near the signalized intersection is one good scenario to 
utilize the advantages of CV-AV fusion, as the ego-vehicle may have extensive interaction with 
traffic signal timing and non-surrounding vehicles, which is imperceptible from on-board 
sensors but detectable via V2X communications. 

Lee et al. proposed a cooperative vehicle intersection control (CVIC) system to enable the 
interaction between vehicles and infrastructure to optimize the efficient intersection operation 
[4]. According to the study conducted by Guler et al., the increase in the penetration rate of CV 
in low demand traffic can significantly reduce the average delay of passing intersections by 
applying connected platooning and adaptive signal control [5]. Elhenawy et al. proposed a 
game-theory-based control algorithm for cooperative adaptive cruise control (CACC) based AVs, 
which reduces travel time and delay under uncontrolled intersection [6]. In Europe, started 
from 2010, the project eCoMove has developed a transport energy efficiency system based on 
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I/I2V) communication, where real-
time data can be shared among the vehicles and traffic controllers supporting a more fuel-
saving traffic system [3]. In the U.S., Application for the Environment: Real-Time Information 
Synthesis (AERIS) research program established by the Intelligent Transportation Systems (ITS) 
Joint Program Office (JPO) in 2014 has developed 18 Connected Vehicle (CV) applications in 5 
Operational Scenarios, among which Eco-Approach and Departure (EAD) at Signalized 
Intersections has been proven to be an effective application in decreasing fuel consumption 
and emissions [4]. 

The EAD application in the host CV can calculate the most energy efficient speed profile and 
guide the vehicle to pass the target traffic signal in an eco-friendly manner after collecting the 
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Basic Safety Message (BSM) from other CVs and Signal Phase and Timing (SPaT) information 
transmitted from the roadside equipment unit [5]. Besides the SPaT messages and traffic 
condition (number of queued vehicles or queue length) that serve as a main requirement for 
the application, other types of information such as geographic data (road map and grade) and 
vehicle dynamics also contribute to the calculation of an ideal speed profile. In the real-world 
traffic, as shown in Figure 1, signal timing and traffic conditions usually appear to be dynamic 
and uncertain. For example, when a CV is approaching an actuated signalized intersection, the 
remaining time of the current signal phase indicated by the SPaT message will be updated 
dynamically. Meanwhile, the traffic-related information received from other CVs and radar is 
also highly uncertain due to the limited sensing range and varying driving behaviors of other 
vehicles. Therefore, the future signal timing and traffic condition of the downstream 
intersection is hard to predict, which brings challenges to develop applicable EAD models. 

 
Figure 1. Dynamic information in connected eco-driving 

The EAD application was initially developed under fixed-timing signal control, which 12% 
reduction on fuel consumption and CO2 emissions has been validated in microscopic simulation 
models [6]. Later studies also made no-preceding traffic or fixed-timing signal assumptions to 
avoid the uncertainty in the traffic condition [7-8]. He et al. obtained the speed profile by 
solving a multi-stage optimal function and put the queue information into constraints [9], Ye et 
al. estimated the end of queue based on the predicted preceding vehicle trajectories, with an 
assumption under congested urban traffic scenario such that a preceding vehicle could always 
be detected after SPaT messages are received [10]. All the above studies were conducted under 
the assumption that either queue does not exist or is fully predictable before trajectory 
planning. If the radar does not have enough sensing range to detect the preceding vehicle after 
signal information is received, those studies will not be able or will be less effective to design an 
optimal speed profile for drivers or longitudinal controller to follow. Meanwhile, most existing 
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EAD applications were developed for fixed-time signals. Actual signals, which are widely 
deployed in the U.S., receive less attention due to the high uncertainty in phase extension and 
skipping caused by vehicle actuation. This uncertainty increases the difficulty to predict the 
actual remaining time in a phase using signal phase and timing (SPaT) information. It further 
brings great challenge to derive an energy efficient speed profile for vehicles to follow. 

To find the optimal solution to adapt the uncertain information, we propose a prediction based 
adaptive connected eco-driving system. The proposed system analyzes the possible upcoming 
traffic and signal scenarios based on historical data and live information stream collected from 
communication and sensing devices, and then choose the most energy-efficient solution that 
minimize the expectation of the energy consumption of all possible following actions. The 
objectives of the proposed research include: 

1. Design an adaptive connected eco-driving strategy to optimize the energy consumption 
at the intersection considering preceding traffic and queues, using sensor detection and 
historical traffic data. 

2. Develop an adaptive connected eco-approach and departure strategy that is applicable 
to actuated signals, using historical SPaT data. 

3. Develop a multi-sensor based online connected eco-driving strategy using 
Reinforcement Learning for conditions with no external data (e.g., historical traffic or 
signal data) 

4. Implement the algorithms in micro-simulation and test it under various traffic/sensing 
conditions. 

The rest of this report is organized as follows. In Section 2, we present fundamentals on 
adaptive eco-driving, including the variables, the problems and the basic models. In Section 3, 
we show the models and numerical simulation results for uncertain traffic. In Section 4 we 
design the adaptive eco-driving strategy for actuated signals. In Section 5 and 6, we develop the 
Reinforcement Learning based connected eco-driving strategy and conduct micro-simulations 
to validate it. In Section 7 we conclude the report with discussions on future research.  
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2. Fundamentals in Adaptive Eco-Driving 

In this section, we introduced the proposed connected eco-driving framework that could 
accommodate the host vehicle, traffic and signal timing information. Fundamental concepts, 
including variables and rules, are defined in this section to better support the mathematical 
modeling for this system. 

2.1. Problem statement 

In the proposed adaptive connected eco-driving system, nine types of information are fed into 
the algorithms to derive the most energy-efficient solution for the equipped vehicle. Their 
definitions are as follows: 

1. Distance to intersection (D): the road distance from the current GPS location to the stop 
line. 

2. Vehicle speed (V): the current speed of the vehicle, measured by on-board diagnostics 
(OBD) devices or GPS devices. 

3. Time (t): current time stamp. 

4. V2I communication range (C): this application works for both Dedicated Short-Range 
Communications (DSRC) or C-V2X. The V2I communication range is usually limited by 
the technology. As the connected eco-driving application start to work when the vehicle 
is within the communication range, we can assume D≤C. 

5. SPaT information: when a CV approaches within V2I communication range, it could 
receive SPaT information and know the phase status and the start and end time of the 
current phase.  

6. Onboard sensor range (S): The maximum reliable forward detection range of the 
onboard sensor (e.g., radar, lidar or camera). Usually this range is less than the V2I 
communication range C, i.e., S<C. 

7. Distance to the preceding vehicle (R): The measured distance to the preceding vehicle at 
the same lane. If there is no vehicle detected within the sensor range S, R = -1. 

8. Speed of the preceding vehicle (U): The speed of the preceding vehicle at the same lane. 
If there is no vehicle detected within the sensor range S, U = -1. 

9. The prior distribution of the queue length Q (in vehicle number), summarized from the 
historical traffic data. The prior probability of P(Q=q) is a pre-defined function f(q). The 
cumulative probability, P(Q≤q), is defined as F(q). 

We assume the sensors only report the states of the adjacent preceding vehicle (if any). Based 
on the information from sensors, there are three circumstances: 1. No preceding vehicle within 
the sensor range; 2. A stop preceding vehicle detected; and 3. A moving preceding vehicle 
detected. Base on the range that sensor can reach and the distance to the intersection, 
following cases are considered when we estimate the queue length or queue length 
distribution: 
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Case 1.1. No preceding vehicle within the sensor range (U = -1) and the vehicle is close to the 
intersection (D≤S): the queue length is 0. 

Case 1.2. No preceding vehicle within the sensor range (U = -1) and the vehicle is far from the 
intersection (D>S): the possible queue length can vary from 0 to D-S. The conditional probability 
of the queue length can be formulated as: 

 𝑃(𝑄 = 𝑞|𝑈 = −1, 𝐷 > 𝑆 ) =
𝑓(𝑞)

𝐹(𝑔(𝐷−𝑆))
 (1) 

Here we use a function g to convert the queue length in distance into queue length in vehicle 
number: 

 𝑔(𝑦) = ⌊
𝑦−𝑙𝑣𝑒ℎ

𝑙𝑗𝑎𝑚
⌋ + 1 (2) 

where 𝑙𝑣𝑒ℎ  is the average length of vehicle, 𝑙𝑗𝑎𝑚 is the average jam spacing (measured from 

vehicle font to vehicle front). We select the integer part of the value. 

Case 2.1. A stop preceding vehicle is detected (U = 0) and the vehicle is close to the intersection 
(D<R): the preceding vehicle should be a queued vehicle at the downstream intersection if two 
intersections are closely spaced. In this case, the queue length for the study intersection is 0. 

Case 2.2. A stop preceding vehicle is detected (U = 0) and the vehicle is far to the intersection 
(D≥R): the queue length in distance can be determined as D-R. The queue length in vehicle 

number is then calculate as 
𝐷−𝑅−𝑙𝑣𝑒ℎ

𝑙𝑗𝑎𝑚
+ 1. 

Case 3.1. A moving preceding vehicle is detected (U > 0) and the vehicle is close to the 
intersection (D≤R): the preceding vehicle is traveling in the downstream of the stop line. In this 
case, the queue length is 0. 

Case 3.2. A moving preceding vehicle is detected (U > 0) and the vehicle is far to the 
intersection (D>R): the possible queue length in distance can vary from 0 to D-R. The 
conditional probability of the Q can be formulated as: 

 𝑃(𝑄 = 𝑞|𝑈 > 0, 𝐷 > 𝑅 ) =
𝑓(𝑞)

𝐹(𝑔(𝐷−𝑅))
 (3) 

The above cases can be categorized into three types: A. No-queue cases (Case 1.1, 2.1, and 3.1); 
B. Deterministic queue cases (Case 2.2); and C. Non-deterministic cases (Case 1.2 and 3.2). In 
the following sections, we will develop eco-driving strategies for each type. 

2.2. No-queue cases 

The no-queue cases are the basic scenarios for eco-approach and departure application. In Hao 
et al [11], a graph-based trajectory planning algorithm was developed to solve the optimal 
solution for eco-approach and departure. In that paper, we assign a unique 3-D coordinate (t, D, 
V) to describe the dynamic state of the vehicle, which corresponds to the nodes in the graph. 



 

 6 

The edges in the graph represent the movement of the vehicle, i.e., state transition from one-
time step to the next. The cost on edge as the energy consumption during this state transition 
process. To formulate this graph model, we discretize the time and space into fixed time step 

∆𝑡 and distance grid ∆𝑑. The vehicle speed domain is therefore discretized with 
∆𝑥

∆𝑡
 as the step. 

The energy consumption minimization problem is converted into a problem to find the shortest 
path from the source node Vs (t, D, V) to the destination node Vd (T, 0, V’) in the directed 
graph, where t, D and V are the current time, distance and speed of the vehicle. T is the target 
passage time at the stop line. For the red time arrival scenario, T can be identified as the start 
of the green time plus a buffer time, i.e., 𝑇 = 𝑇𝑔 + 𝜏𝑏. V’ is the target speed when the vehicle 

passes the stop line. The Dijkstra's algorithm [12] is then applied to solve this single-source 
shortest path problem. This method shows good performance in energy efficiency but takes 
relatively long computational time in creating the graph and solving it. 

In this project, to achieve higher computational efficiency and better compatibility with 
stochastic models, we reformulate this problem into a dynamic programming approach. The 
objective of this problem is defined as follows: 

Give any initial state (t, D, V), find the optimal valid action that minimize the expected total 
cost over the rest of the path to the target state (T, 0, V’). 

Here we say the transition from State 1 and State 2 is a “valid” action if they satisfy: 

1. Time at State 2 is consecutive with time at State 1: 𝑡2 = 𝑡1 + ∆𝑡; 

2. Consistency on distance and speed: 𝐷2 = 𝐷1 + 𝑉1∆𝑡 

3. Speed constraint: 𝑉2 = 𝑉1 + 𝑥∆𝑡 and 𝑉𝑚𝑖𝑛 ≤ 𝑉2 ≤ 𝑉𝑚𝑎𝑥, where 𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥 are the 
minimum and maximum speed allowed. 

4. Acceleration constraint: 𝑉2 = 𝑉1 + 𝑥1∆𝑡, (𝑎𝑚𝑖𝑛 ≤ 𝑥1 ≤ 𝑎𝑚𝑎𝑥), where 𝑎𝑚𝑖𝑛 and 𝑎𝑚𝑎𝑥 
are the maximum deceleration rate and maximum acceleration rate. 

Then we say State 1 is the valid parent state of State 2, and State 2 is the valid child state of 
State 1. Based on the criteria above, given state (t, D, V), the valid actions are included in the 
set of  

 {𝑡 + ∆𝑡, 𝐷 − 𝑉∆𝑡, 𝑉 + 𝑥∆𝑡|𝑎𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑎𝑚𝑎𝑥 and 𝑉𝑚𝑖𝑛 ≤ 𝑉 + 𝑥 ≤ 𝑉𝑚𝑎𝑥} (4) 

The acceleration rate x is therefore the key variable to define a valid action. According to the 
powertrain model in [11] and [13], the acceleration is also important in energy estimation for 
any type of vehicle or powertrain. We can formulate a powertrain-specific function 𝐻(𝑉, 𝑥, ∆𝑡) 
to represent the cost that the study vehicle varies its speed from V to 𝑉 + 𝑥∆𝑡 in ∆𝑡 time.  

We then use 𝑀(𝑡, 𝐷, 𝑉) to represent the minimum total cost at state (t, D, V), which 
corresponds to a series of optimal valid action from the initial state to the final state. This 
problem is then formulated in an iterative way as follows: 
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𝑀(𝑡,𝐷,𝑉)=min
𝑥

(𝐻(𝑉,𝑥,∆𝑡)+𝑀(𝐷−𝑉∆𝑡,𝑉+𝑥∆𝑡,𝑡+∆𝑡))

𝑠.𝑡.𝑎𝑚𝑖𝑛≤𝑥≤𝑎𝑚𝑎𝑥
𝑉𝑚𝑖𝑛≤𝑉+𝑥≤𝑉𝑚𝑎𝑥

 (5) 

We also define the values of the boundary states at or beyond the stop line. If the vehicle 
arrives at the stop line at the target time with target speed, 𝑀(𝑇, 0, 𝑉′) =  0. For other cases, 
e.g., 1) if the vehicle exceeds the stop line (d < 0); 2) if the vehicle arrives at the stop line at 
other time (d = 0, 𝑡 ≠ 𝑇); or 3) the vehicle arrives at the stop line with other speed (d = 0, 𝑉 ≠
𝑉′), the total cost function is set to infinity, i.e., 𝑀(𝑡, 𝐷, 𝑉) =  +∞. 

Based on all the assumptions above, this problem is formulated into a multiple-source single-
destination shortest path problem. It can be solved using a variation Dijkstra algorithm in which 
two nodes are linked only if their time sates are consecutive. The pseudo codes below describe 
the algorithm. Here we use 𝑋(𝑡, 𝐷, 𝑉) to record the optimal acceleration rate at state (𝑡, 𝐷, 𝑉). 

Initialize the M values of all states with +∞, i.e., 𝑀(𝑡, 𝐷, 𝑉) =  +∞, 𝑋(𝑡, 𝐷, 𝑉) =  0, ∀𝑡, 𝐷, 𝑉.  
Set 𝑀(𝑇, 0, 𝑉′) =  0.  
For 𝑡 = 𝑇: −∆𝑡: 𝑇𝑚𝑖𝑛 + ∆𝑡 

For each (𝑡, 𝐷, 𝑉) 
Find all the valid parent states of (𝑡, 𝐷, 𝑉), i.e., (𝑡 − ∆𝑡, 𝐷 + 𝑉∆𝑡 − 𝑥∆𝑡, 𝑉 − 𝑥), ∀𝑥 

For each valid action x 
If 𝑀(𝑡, 𝐷, 𝑉) + 𝐻(𝑉 − 𝑥, 𝑥, ∆𝑡) < 𝑀(𝜏 − ∆𝑡, 𝐷 + 𝑉∆𝑡 − 𝑥∆𝑡, 𝑉 − 𝑥) 

Update 𝑀(𝑡 − ∆𝑡, 𝐷 + 𝑉∆𝑡 − 𝑥∆𝑡, 𝑉 − 𝑥) = 𝑀(𝑡, 𝐷, 𝑉) + 𝐻(𝑉 − 𝑥, 𝑥, ∆𝑡) 
Update 𝑋(𝑡 − ∆𝑡, 𝐷 + 𝑉∆𝑡 − 𝑥∆𝑡, 𝑉 − 𝑥) = 𝑥  

Return 𝑀(𝑡, 𝐷, 𝑉) and 𝑥(𝑡, 𝐷, 𝑉) 

Figure 2 illustrates a simple example of this algorithm. We use blue, green and red dots to show 
the states in three consecutive time stamps. Figure 2(a) shows the process to find all the valid 
parent states of each state, using two red states and one green states as examples. Figure 2(b) 
shows that if one state has two or more valid child states, the optimal valid action corresponds 
to the one with lower M value. Figure 2(c) illustrates all the optimal valid actions for the blue 
and green states based on the proposed algorithm. 
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(a) The process to find all the valid parent states 

(b) The process to identify the optimal valid actions 

Time

Distance

Speed
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(c) All the optimal valid actions 

Figure 2. A graph-based illustration of the proposed algorithm 

2.3. Deterministic queue cases 

The interaction of preceding traffic makes the connected eco-driving problem more realistic, 
and more challenging. There are several scenarios that the vehicle might met if it is trying to 
pass the signalized intersection after receiving the SPaT information. For example, if the current 
signal is green and the preceding vehicle is detected to be moving, the host vehicle could follow 
the preceding vehicle with an eco-adaptive cruise control strategy (which is not in the scope of 
this report). If the current signal is green and the preceding vehicle is detected to stop, then the 
estimated time that vehicle should arrive at the intersection could be calculated from the 
starting time of the current green phase with additional queue-discharging time calculated by 
the stop location and shockwave theory. If the current signal is red then the preceding vehicle is 
most likely to be detected to a stop (or on the way to a stop) at some time during the 
trajectory, and the sensing range together with the distance between the preceding vehicle and 
host vehicle restrict the distance of eco-driving. For all the cases except for the first one, the 
preceding vehicle’s stop location (i.e., the end of queue) is crucial to determine the optimal 
speed profile for the host vehicle as it affects the location and time when eco-driving could 
start and finish. 

If the end of queue is detected by sensors, the queue length in distance can be determined as 
D-R, the difference between the distance to the intersection and the range of sensor. The 

queue length in vehicle number, Q, is 
𝐷−𝑅−𝑙𝑣𝑒ℎ

𝑙𝑗𝑎𝑚
+ 1. As the queue discharging process would 

provide additional delay to the study vehicle when performing eco-driving, the target time T 

Time

Distance

Speed



 

 10 

under deterministic queue cases can be considered as a function of queue length Q. We use 
ℎ𝑠𝑎𝑡 to represent the average saturation flow headway, 𝜏𝑆𝐿𝑇 to represent the start-up lost time, 
and 𝑇𝑏 to represent the buffer time for the EAD vehicle to guarantee safety. The queue-aware 
target time is then expressed as: 

 𝑇(𝑄) = 𝜏𝑆𝐿𝑇 + ℎ𝑠𝑎𝑡𝑄 + 𝑇𝑏 (6) 

The perceived queue length Q is a new state variable in addition to time, distance and speed. 
We can revise the objective function in the previous section to accommodate it in the 
optimization problem. 

 
𝑀(𝑡,𝐷,𝑉,𝑄)=min

𝑥
(𝐻(𝑉,𝑥,∆𝑡)+𝑀(𝐷−𝑉∆𝑡,𝑉+𝑥∆𝑡,𝑡+∆𝑡,𝑄))

𝑠.𝑡.𝑎𝑚𝑖𝑛≤𝑥≤𝑎𝑚𝑎𝑥
𝑉𝑚𝑖𝑛≤𝑉+𝑥≤𝑉𝑚𝑎𝑥

 (7) 

For certain queue length Q, if the vehicle arrives at the stop line at the corresponding queue-
aware target time with target speed, 𝑀(𝑇(𝑄),0, 𝑉′, 𝑄) =  0. For other cases, the M values are 
set to infinity. 

One may notice that in this section, although we add a new dimension in the planning space, 
the new states introduced by different values of Q are more like parallel universes which do not 
interact with each other. In the next section, we will show how those universes interact with 
each other under uncertain traffic conditions.  
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3. Adaptive Eco-Driving Strategy Under Uncertain Traffic Condition 

Based on the framework developed in Section 0, we propose an iterative approach to adapt the 
uncertain queue information so that the vehicle could start eco-driving even when entering the 
sensing range without knowing the current queue information. The previous section shows how 
to create the speed profile after detecting the end of queue based on the information acquired 
from I2V/V2V communication and onboard sensors. In this section we will derive the speed 
profile starting from the receiving of the SPaT messages to the detection of the end of queue, 
through analyzing the signal information and potential traffic condition based on historical data 
(queue distribution). The most energy-efficient solution can be then derived from minimizing 
the expectation of the energy consumption of all possible actions after combining the two 
phases.  

3.1. Non-deterministic cases 

If the onboard sensing cannot reach the stop line or is blocked by a moving preceding vehicle, 
the actual queue length at the intersection remains uncertain. In this case, the prior queue 
length distribution would impact the optimal strategy the vehicle should take when 
approaching the intersection. In the example shown in Figure 3, we create a scenario to explain 
why the prior queue length distribution is a significant factor in eco-driving strategy design. 
Assume the vehicle is 105 m far from the intersection, and the sensor range is 100 m. The 
vehicle is approaching the intersection with 5 m/s as the speed. As D>S, the queue condition 
remains uncertain (i.e., the queue length can be 1 or 0) until the vehicle gets closer in the next 
second. Then the vehicle is in a dilemma: to keep the current speed or decelerate to 4 m/s. The 
cost of the speed keeping action is 1, and the cost of the deceleration action is 0.5. Note that 
the costs are not the actual energy consumption in eco-driving. We just use them as a simple 
example to address the significance of prior queue information. In the figure we show the 
different residual cost (i.e., M value at next time step) under combinations of two strategies 
and two queue condition.  

1. If keep the current speed and there is no queue, the vehicle can pass the intersection 
with constant speed with the residual cost of 1. 

2. If decelerate and there is no queue, the deceleration is unnecessary. The vehicle has to 
use more energy to recover the speed. The residual cost is 2. 

3. If decelerate and there is a queue, the deceleration is necessary as the vehicle has to 
slow down to bypass the queue. The residual cost is 3. 

4. If keep the current speed and there is queue, the vehicle has to slow down harder in the 
rest of the path to avoid the queue. The residual cost is 4. 

Then, if the intersection has less traffic, say the prior probability of no-queue case is 80% and 
that of queue case is 20%, the expected cost of speed keep strategy is lower than the 
deceleration strategy according to the figure. In contrast, if the intersection has more traffic, 
say the prior probability of no-queue case is 20% and that of queue case is 80%, the expected 
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cost of speed keep strategy is higher than the deceleration strategy. That means, the optimal 
strategy the vehicle should take is dependent to the prior traffic information. 

 
Figure 3. Adaptive strategy for uncertain traffic condition 

For non-deterministic cases (Case 1.2 and 3.2), we define the queue state Q as -1. We first 
discuss Case 1.2 in which D>S. At certain non-deterministic state (𝑡, 𝐷, 𝑉, −1), the conditional 

probability that the actual queue length q is 
𝑓(𝑞)

𝐹(𝑔(𝐷−𝑆))
 according to equation (1). We can define 

the potential queue pool for the current state as {0, 1, 2, … 𝑔(𝐷 − 𝑆)}. In the next time step, 
the vehicle precedes with distance of V. There might be two possible scenarios:  

Scenario 1. No new detection by next time step. The vehicle is still under non-deterministic 
state (𝐷 − 𝑉∆𝑡, 𝑉 + 𝑥∆𝑡, 𝑡 + ∆𝑡, −1), the conditional probability of Q=q becomes 

𝑓(𝑞)

𝐹(𝑔(𝐷−𝑆−𝑉∆𝑡))
. The potential queue pool for becomes {0, 1, 2, … 𝑔(𝐷 − 𝑆 − 𝑉∆𝑡)}. As 

𝑔(𝐷 − 𝑆 − 𝑉∆𝑡) ≤ 𝑔(𝐷 − 𝑆), some potential queue lengths are removed from the pool. The 

prior probability of this scenario, 𝜇−1 =
𝐹(𝑔(𝐷−𝑆−𝑉∆𝑡))

𝐹(𝑔(𝐷−𝑆))
. 

Scenario 2. The queue is detected by next time step, or the sensing range exceeds the stop line 
without finding any queue. The vehicle switches to no-queue or deterministic state 
(𝐷 − 𝑉∆𝑡, 𝑉 + 𝑥∆𝑡, 𝑡 + ∆𝑡, 𝑄). The queue length q can be any value in the set of 

{𝑔(𝐷 − 𝑆 − 𝑉∆𝑡) + 1, … , 𝑔(𝐷 − 𝑆)}. The prior probability of queue length Q=q, 𝜇𝑞 =
𝑓(𝑞)

𝐹(𝑔(𝐷−𝑆))
. 

1

4

2

3

80%
20%

80%

20%

80%

5

5

4

5

5

4

Optimal 
Residual 
Cost

E(Cost)

2.6

2.7

20%

20%

80%

20%

80%

20%

5

5

4

E(Cost)

4.4

3.3

80%

Next 
Speed

Speed

Road-side DSRC

Sensor range: 100m, Distance to intersection : 105m, Speed: 5m/s

Unable to determine if there is queue (   ) or not (   ) until the next time step, but know the prior distribution 

if

if

Action 
Cost

0.5

1

（=1+0.8*1+0.2*4）

Different prior knowledge lead to different strategies 



 

 13 

The objective function is then formulated as follows: 

 
𝑀(𝑡,𝐷,𝑉,−1)=min

𝑥
(𝐻(𝑉,𝑥,∆𝑡)+𝜇−1𝑀̅−1+∑ 𝜇𝑞𝑀̅𝑞

𝑔(𝐷−𝑆)
𝑞=𝑔(𝐷−𝑆−𝑉∆𝑡)+1

)

𝑠.𝑡.𝑎𝑚𝑖𝑛≤𝑥≤𝑎𝑚𝑎𝑥
𝑉𝑚𝑖𝑛≤𝑉+𝑥≤𝑉𝑚𝑎𝑥

 (8) 

where 𝑀̅−1 = 𝑀(𝐷 − 𝑉∆𝑡, 𝑉 + 𝑥∆𝑡, 𝑡 + ∆𝑡, −1), and 𝑀̅𝑞 = 𝑀(𝐷 − 𝑉∆𝑡, 𝑉 + 𝑥∆𝑡, 𝑡 + ∆𝑡, 𝑞) 

In equation (8), 𝐻(𝑉, 𝑥, ∆𝑡) is the immediate cost of the action x, 𝑀̅−1 is the residual cost if the 
vehicle is still under non-deterministic state by next time step and 𝑀̅𝑖 is the residual cost if the 
queue is detected as Qi by next time step. The sum of probability 𝜇−1 and 𝜇𝑖’s equals to 1. 

The model for Case 3.2 is similar. We can just replace S with R to formulate the same 
optimization function as equation (8). The pseudo code to solve the problem in (8) is shown 
below. 

Initialize M values of all states with +∞, i.e., 𝑀(𝑡, 𝐷, 𝑉, 𝑄) =  +∞, 𝑋(𝑡, 𝐷, 𝑉, 𝑄) =  0, ∀𝑡, 𝐷, 𝑉, 𝑄.  
Set 𝑀(𝑇(𝑄),0, 𝑉′, 𝑄) =  0.  
For 𝑡 = 𝑇(𝑄𝑚𝑎𝑥): −∆𝑡: 𝑇𝑚𝑖𝑛 + ∆𝑡 

For each 𝑡, 𝐷, 𝑉 
For 𝑞 = 0: 1: 𝑄𝑚𝑎𝑥  

Find all the valid parent states of (𝑡, 𝐷, 𝑉, 𝑞), i.e., (𝑡 − ∆𝑡, 𝐷 + 𝑉∆𝑡 − 𝑥∆𝑡, 𝑉 − 𝑥, 𝑞), 
and (𝑡 − ∆𝑡, 𝐷 + 𝑉∆𝑡 − 𝑥∆𝑡, 𝑉 − 𝑥, −1), ∀𝑥 
For each valid action x 

Let 𝑀̅𝑞 = 𝑀(𝑡, 𝐷, 𝑉, 𝑞), 𝜇𝑞 =
𝑓(𝑞)

𝐹(𝑔(𝐷+𝑉∆𝑡−𝑥∆𝑡−𝑆))
 

If 𝑀(𝑡, 𝐷, 𝑉, 𝑞) + 𝐻(𝑉 − 𝑥, 𝑥, ∆𝑡) < 𝑀(𝜏 − ∆𝑡, 𝐷 + 𝑉∆𝑡 − 𝑥∆𝑡, 𝑉 − 𝑥, 𝑞) 
Update 𝑀(𝑡 − ∆𝑡, 𝐷 + 𝑉∆𝑡 − 𝑥∆𝑡, 𝑉 − 𝑥, 𝑞) = 𝑀(𝑡, 𝐷, 𝑉, 𝑞) + 𝐻(𝑉 − 𝑥, 𝑥, ∆𝑡) 
Update 𝑋(𝑡 − ∆𝑡, 𝐷 + 𝑉∆𝑡 − 𝑥∆𝑡, 𝑉 − 𝑥, 𝑞) = 𝑥 

Find all the valid parent states of (𝑡, 𝐷, 𝑉, −1), i.e., (𝑡 − ∆𝑡, 𝐷 + 𝑉∆𝑡 − 𝑥∆𝑡, 𝑉 − 𝑥, −1) 

Let 𝑀̅−1 = 𝑀(𝑡, 𝐷, 𝑉, −1), 𝜇−1 =
𝐹(𝑔(𝐷−𝑆))

𝐹(𝑔(𝐷+𝑉∆𝑡−𝑥∆𝑡−𝑆))
  

For each valid action x  

If 𝐻(𝑉 − 𝑥, 𝑥, ∆𝑡) + ∑ 𝜇𝑞𝑀̅𝑞
𝑄𝑚𝑎𝑥
𝑞=−1 < 𝑀(𝜏 − ∆𝑡, 𝐷 + 𝑉∆𝑡 − 𝑥∆𝑡, 𝑉 − 𝑥, −1) 

Update 𝑀(𝜏 − ∆𝑡, 𝐷 + 𝑉∆𝑡 − 𝑥∆𝑡, 𝑉 − 𝑥, −1) = 𝐻(𝑉 − 𝑥, 𝑥, ∆𝑡) + ∑ 𝜇𝑞𝑀̅𝑞
𝑄𝑚𝑎𝑥
𝑞=−1  

Update 𝑋(𝑡 − ∆𝑡, 𝐷 + 𝑉∆𝑡 − 𝑥∆𝑡, 𝑉 − 𝑥, −1) = 𝑥 
Return 𝑀(𝑡, 𝐷, 𝑉, 𝑞) and 𝑥(𝑡, 𝐷, 𝑉, 𝑞) 
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3.2. Simulation and numerical results 

3.2.1. Simulation setup and baseline methods 

Numerical simulations are conducted in MATLAB to test the proposed method and compare 
with the baseline. Table 1 lists the assumptions for all the simulations: 

Table 1. Simulation assumptions and parameters 

D0 Initial Distance 300 m 

T0 Initial Time 0 s 

hsat Saturation headway 2 s 

sjam Jam spacing 5 m 

V0, V’ Initial and final speed of host vehicle 13 m/s 

Vmax Maximum speed 18 m/s 

Vmin Minimum speed 0 m/s 

amax, amin Maximum and minimum acceleration 2 m/s2 

Q Range of queue length  [0, 20] 

Δd Distance step 1 m 

Δt Time step 1 s 

Δv Speed step 1 m/s 

We create multiple baseline strategies to validate the proposed algorithms. The first strategy is 
ideal EAD method. The ideal trajectory for absolute minimum energy consumption can be 
derived when the actual queue length is known (i.e., perfect information) at the beginning of 
the simulation. This strategy can only be achieved if all vehicles are connected to share their 
positions to the study vehicle. Besides the ideal method, baseline EAD methods (Baselinek) are 
setup for comparison: Assuming the queue length to be Qk, the vehicle first follows the ideal 
trajectory of the assumed Qk length, then change to the corresponding strategy after detecting 
the real queue length. These baselines are the methods given the same information as the 
proposed method except the historical queue distribution is missing. Note that if k is 0, 
Baseline0 corresponds to the scenario when the vehicle follows the existing EAD strategy with 
no-queue assumption until the sensor detects preceding traffic. 

Note that for some baseline methods, there might not exist a solution, for example: the vehicle 
first travels under at an assumption of a large queue length, but actual queue length is small, 
therefore the vehicle will first travel at a relatively lower speed due to the assumed long delay 
and couldn’t reach the traffic signal at required time after the queue is detected. In these cases, 
a delayed time (T') can be calculated as the minimum extra time that vehicle is given to finish 
the trajectory with predefined final speed V’. This delayed time increases the risk to miss 
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following green windows in the downstream signals. It will also force the following vehicles to 
slow down and result in an extra energy and fuel consumption to the system. To make a fair 
comparison, we use a penalty term to quantify the impact of the delay as the additional 
amount of energy (∆𝑀) that the delayed vehicle will consume to catch up with the fast vehicle 
with the same final speed. 

Therefore, all the methods including ideal, proposed and baseline can be evaluated with energy 
consumption and the result is shown in the following subsections. In the following subsection, 
we show some sample trajectory among different methods to address the significance of the 
proposed method. 

3.2.2. Sample trajectories 

First, two sample trajectories of the vehicle approaching traffic signal with different queue 
lengths derived from each method are shown in Figure 4. For the baseline method, zero vehicle 
is assumed to be waiting by the traffic signal, i.e., Baseline0 is used. The other assumptions 
include: sensing distance S is 50m, Start of green time Tg is 40s and the queue length Q follows 
an uniform prior distribution between {0, 20}. 
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(a) Actual queue length Q = 10 

 

(b) Actual queue length Q = 20 

Figure 4. Speed profile of proposed against baseline and ideal method 
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Figure 4 compares the speed profile of proposed method against baseline and ideal methods 
with 10 and 20 as the actual queue length. Note that Baseline0 and proposed method result in 
the same trajectory in the two plots before preceding vehicle getting detected (point labeled 
with green). Compared to the baseline method, the proposed method spends shorter time 
driving at higher constant speed, which saves 2.28% (top) and 2.17% (bottom) total energy 
respectively. 

3.2.3. Results with varying actual queue length 

We then compare the energy consumption among different methods for varying actual queue 
length. All the parameters are set up as follows: sensing distance S is 100m, start of green time 
Tg is 40s, and the queue length Q follows an uniform prior distribution between {0, 20}. As 
shown in Figure 5, the proposed method has a lower energy consumption than the baseline 
methods for most Q and only has a slightly larger energy consumption compared to ideal 
method. To compare with all the possible baseline methods, since distribution of Q is uniform, 
the average energy consumption, calculated as the average cost value of all Q’s is shown in 
Table 2. The proposed method reduces the energy consumption by 3.35% (Baseline0) and 
8.88% (average of all 21 baselines), and is 2.24% higher than the ideal energy consumption. 

 

Figure 5. Energy comparison of proposed against baseline and ideal method in terms of 
different queue length (Unit: J) 
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Table 2. Average energy consumption comparison among three methods (Unit: 106 J) 

Method Energy Method Energy 

Ideal 1.5011 Baseline10 1.6682 

Proposed 1.5354 Baseline11 1.6998 

Baseline0 1.5869 Baseline12 1.6235 

Baseline1 1.5500 Baseline13 1.6506 

Baseline2 1.5444 Baseline14 1.6727 

Baseline3 1.5417 Baseline15 1.7176 

Baseline4 1.5424 Baseline16 1.7365 

Baseline5 1.5646 Baseline17 1.7949 

Baseline6 1.5932 Baseline18 1.8532 

Baseline7 1.6156 Baseline19 1.9315 

Baseline8 1.6066 Baseline20 1.9908 

Baseline9 1.6216   

3.2.4. Results with varying phase duration 

In Figure 6, we compare the energy consumption among different methods when varying Tg, 
between 20s and 60s. For the ideal method, as shown in Figure 5, The energy consumption is 
monotonically increasing due to the more frequent acceleration and deceleration during a 
longer travel time. The proposed method shows a better performance than baseline methods 
when Tg ≥ 22s. The worse performance for small Tg is caused by the high acceleration and 
speed of the vehicle that tries to arrive at the traffic signal at required time. The energy 
consumption tends to reach the same value as Tg increases among all methods. 
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Figure 6. Energy consumption comparison of proposed against baseline and ideal method in 
terms of different phase duration (Unit: J) 

3.2.5. Results with varying sensing range 

In this subsection, we will compare the energy consumption among different methods for 
varying sensing range S. This simulates the various sensing ranges of all kinds of sensors when 
there is a queue in front of the host vehicle. The same parameters in above subsections are 
adopted, but multiple sensing ranges are tested. 

As we can see from Figure 7, the proposed method always outperforms the baseline method. 
The average energy consumption of ideal method stays the same for all sensor range since the 
queue length is set to be known from the beginning. For both baseline methods and proposed 
method, the energy consumption gradually decreases as S increases, since the distance that 
queue is known gets longer and more trajectories can result in absolute minimum energy 
consumption. A detailed results table is shown in Table 3. It indicates that energy consumption 
of a vehicle equipped with adaptive EAD strategy and a 100m-range sensor is equivalent to a 
vehicle with conventional EAD strategy and a 190m-range sensor. To some extent, the 
proposed strategy could double the effective detection range in eco-driving. 
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Figure 7. Energy consumption comparison of three methods in terms of different sensor 
range 
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Table 3. Energy comparison between three methods for different sensing range (Unit: 106 J) 

Range Ideal Proposed Baseline0 Baseline10 Baseline20 

50 1.5011 1.5973 1.6360 1.7419 2.2949 

60 1.5011 1.5735 1.6249 1.7403 2.2186 

70 1.5011 1.5610 1.6085 1.7115 2.1418 

80 1.5011 1.5549 1.5998 1.7043 2.0755 

90 1.5011 1.5461 1.5933 1.6593 2.0540 

100 1.5011 1.5354 1.5869 1.6682 1.9908 

110 1.5011 1.5297 1.5797 1.6770 1.9489 

120 1.5011 1.5250 1.5744 1.6438 1.9214 

130 1.5011 1.5228 1.5655 1.6184 1.8585 

140 1.5011 1.5209 1.5612 1.5846 1.8018 

150 1.5011 1.5183 1.5547 1.5930 1.7407 

160 1.5011 1.5170 1.5460 1.5614 1.7313 

170 1.5011 1.5161 1.5411 1.5502 1.6715 

180 1.5011 1.5154 1.5402 1.5482 1.6071 

190 1.5011 1.5133 1.5340 1.5466 1.5554 

200 1.5011 1.5103 1.5265 1.5458 1.5446 

3.2.6. Results with different queue distribution 

In this subsection, we will verify the capability of proposed method for a different queue 
distribution. Gaussian distribution is selected to generate queue length pattern. We set 
Q~N(10, 4) with other parameters the same as 3.2.3. Table 4 shows the comparison of expected 
energy consumption among different methods. The proposed method reduces the energy 
consumption by 4.14% (Baseline0) and 3.56% (average 21 baselines) and is 1.88% higher than 
the ideal consumption. 
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Table 4. Energy comparison among three methods for Gaussian queue distribution (Unit: 106 
J) 

Method Energy Method Energy 

Ideal 1.5141 Baseline10 1.5693 

Proposed 1.5431 Baseline11 1.5887 

Baseline0 1.6070 Baseline12 1.5491 

Baseline1 1.5695 Baseline13 1.5617 

Baseline2 1.5624 Baseline14 1.5765 

Baseline3 1.5552 Baseline15 1.5931 

Baseline4 1.5433 Baseline16 1.6028 

Baseline5 1.5604 Baseline17 1.6476 

Baseline6 1.5619 Baseline18 1.6893 

Baseline7 1.5487 Baseline19 1.7634 

Baseline8 1.5444 Baseline20 1.8183 

Baseline9 1.5479   
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4. Adaptive Eco-Driving Strategy for Actuated Signals 

In this section, we developed an adaptive EAD strategy for human drivers or automated vehicle 
controllers to minimize the expected energy consumption when passing an actuated signalized 
intersection. The historical SPaT data are applied to calculate the probability that one signal 
state (including phase status, time in the phase, minimum and maximum time-to-change) 
transfers to another state. On top of that, a graph-based model is created with nodes 
representing dynamic states of the host vehicle (distance to intersection and current speed) 
and signal state (passing time and estimated minimum and maximum time-to-change) and 
directed edges with weight representing expected energy consumption between two 
connected states. Then a dynamic programing approach is applied to identify the optimal speed 
for each vehicle-signal state iteratively from downstream to the upstream. The proposed data-
driven method is applicable to any types of actuated signals without knowing the exact control 
rules for the signal. Real world SPaT data collected from the intersection of Wilmington Avenue 
and E Carson Street in Carson, CA is applied in the simulation, which has shown that the 
proposed method is robust and adaptive to varying signal conditions, and achieves 40% energy 
savings when the vehicle arrives in the red time, and 8.5% energy savings when the vehicle 
arrives in the green time compared to other baseline methods.  

4.1. Problem statement 

When a CV approaches an actuated signalized intersection and establish communication with 
the signal controller via DSRC or C-V2X, it could receive signal phase and timing (SPaT) 
information and know the status of current traffic signal with the phase status, phase starting 
time, current time in the phase and estimated minimum and maximum time-to-change for the 
current phase. Using the received SPaT information, distance to the traffic signal (D) and the 
current speed (V), the proposed method can derive the optimal speed profile from the 
preconstructed energy graph for minimum expected energy consumption. The host vehicle will 
then follow the suggested speed to achieve an eco-driving behavior.  

Since the actuated signals actively respond to the traffic, the SPaT pattern can be different at 
every cycle. The uncertainty increases the difficulty of deriving an energy efficient speed profile. 
Most existing eco-driving methods give certain assumptions to the actuated SPaT information. 
Some of them assume that the minimum time-to-change, or maximum time-to-change, or both 
usually converge to the similar value that is close to the real time-to-change when the phase 
comes to an end [8]. The method will then derive an energy efficient speed profile based on the 
estimated time-to-change using the SPaT information. However, in the real-world traffic, the 
assumed time-to-change convergence might be slow or inaccurate. And when the time-to-
change starts to get accurate enough for the algorithms, it might be too late to start eco-
driving.  

In order to solve the problem of the inaccurate minimum and maximum time-to-change SPaT 
information, instead of seeing them as time indicators, we use them purely as parameters along 
with the passing time, distance to the traffic signal and the current speed. The subsection 
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below describes how we process the real SPaT information and use them as the parameters for 
the nodes in the graph. 

4.2. Statistical model using actuated SPaT data 

The SPaT data applied in the algorithm were collected from the north bound of the intersection 
between Wilmington Avenue and E Carson Street in Carson, CA. The data were preprocessed so 
that only the 9am – 12pm time period between Dec 11th, 2018 to May 2nd, 2019 was included. 
The certain time period enables less plan variation and uncertainty in the graph construction, 
which makes the suggested speed more accurate for energy saving. 

The three parameters in the SPaT data are elapsed time in the current phase(sec), estimated 
minimum total time for the current phase(sec), and estimated maximum total time for the 
current phase(sec) respectively. The latter two parameters are calculated using the passing 
time in the current time plus the minimum and maximum time-to-change. All the time 
parameters are rounded to integers to decrease the number of nodes in the SPaT graph 
described in the next paragraph.  

A directional SPaT graph is constructed to calculate the probability of one SPaT state changing 
to the next. The node of the graph represents a specific SPaT combination. A directional edge is 
connected between two nodes if the current SPaT state has changed to the next in the 
collected SPaT data, and the weight of the edge represents the frequency of this state change. 
After the SPaT graph is constructed, the probability of one state changing to the next can be 
calculated using the weight of the edge divided by the total weight of the outgoing edges.  

For certain vehicle dynamic state (time, distance, time) and SPaT state W = (elapsed time in the 
current phase, estimated minimum total time, estimated maximum total time), the objective 
function is then formulated as follows: 

 
𝑀(𝑡,𝐷,𝑉,𝑊)=min

𝑥
(𝐻(𝑉,𝑥,∆𝑡)+∑ 𝜇

𝑊→𝑊′𝑀̅
𝑊′ )

𝑠.𝑡.𝑎𝑚𝑖𝑛≤𝑥≤𝑎𝑚𝑎𝑥
𝑉𝑚𝑖𝑛≤𝑉+𝑥≤𝑉𝑚𝑎𝑥

 (9) 

Where 𝑊′ is the possible SPaT state in the next time step, 𝑀̅𝑊′ = 𝑀(𝐷 − 𝑉∆𝑡, 𝑉 + 𝑥∆𝑡, 𝑡 +
∆𝑡, 𝑊′) is the residual cost if the next SPaT state is 𝑊′, and 𝜇𝑊→𝑊′  is the probability that the 
the next SPaT state is 𝑊′. The sum of probability 𝜇𝑊→𝑊′  equals to 1.  

For the graph construction of the phase for red light, we defined the start of green phase after 
the end of each red phase as the final state for the graph and formulate the remaining 
trajectory of the vehicle using rules. Similar state definition is created for the green light phase. 
The yellow phase (y1) is created as the first second of the yellow light after the green light 

phase. For the states containing y1, if 
𝑑𝑇𝐿

𝑣
≤ 3, the vehicle will simply cross the road at its 

current constant velocity. If 
𝑑𝑇𝐿

𝑣
> 3, the vehicle will enter the red phase time and apply the red 

light graph for the energy efficient driving. A time proportional energy penalty is given to each 
state to count for the time lost and encourage an efficient intersection passing. 
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4.3. Numerical experiment and results 

Simulations are conducted in MATLAB to test the proposed method and compare with the 
baseline. Table 5 below shows the assumptions for all the simulations in the red and green light 
phase. 

Table 5. Simulation assumptions and parameters 

D0 Initial Distance 300 m 

T0 Initial Time 0 s 

V’ Final speed of host vehicle 13 m/s 

Vmax Maximum speed 18 m/s 

Vmin Minimum speed 0 m/s 

amax, amin Maximum and minimum acceleration 2 m/s2 

Δd Distance step 1 m 

Δt Time step 1 s 

Δv Speed step 1 m/s 

4.3.1. Results for red-time arrival 

For the case that the vehicle approaches the intersection in the red time, the baseline driver 
models is developed as follows: when the host vehicle enters the study zone, the vehicle will 
first accelerate to the maximum speed using constant acceleration of 2 m/s2, then decelerate at 
-2 m/s2 after reaching the safety distance. The safety distance is defined as the shortest 
distance the vehicle needs to stop at the intersection with the maximum deceleration. If the 
traffic signal changes to green phase in this process, the vehicle will immediately accelerate 
with the maximum acceleration and pass the intersection as soon as possible.  

To compare the energy consumption between the proposed and baseline method, a total of 
5000 historical SPaT messages are tested with different phase-entering time and initial velocity. 
If the final speed V’ between the two methods are different, an extra energy is added to the 
one with lower speed to quantify the speed gap as form of energy. Table 6 shows the average 
energy consumption (106 J) between two methods (proposed, baseline) over all available SPaT 
messages with different phase-entering time and initial velocity.  
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Table 6. Simulation results for red-time arrival (Unit: 106 J) 

Phase-entering time (s) 

Initial velocity (m/s) 
0 20 40 60 

5 1.75 3.42 1.65 3.44 1.67 3.43 1.87 3.51 

9 1.62 3.22 1.61 3.24 1.52 3.21 1.59 3.27 

13 1.54 2.38 1.57 2.40 1.47 2.37 1.48 2.43 
17 1.45 1.53 1.46 1.56 1.43 1.53 1.44 1.56 

As can be seen from the table, the energy consumption decreases as the initial velocity 
increases and the proposed method always outperforms the baseline method. A 5.23% ~ 
52.65% energy saving can be achieved using the proposed method. The average energy saving 
is over 40%. 

4.3.2. Results for green-time arrival 

For the case that the vehicle approaches the intersection in the green time, the baseline driver 
is designed as follows: if the current speed of the vehicle is less than 13m/s, the vehicle will 
accelerate to 13 m/s using an acceleration of 1 m/s2 and pass the intersection. If the current 
speed is higher than 13m/s, the vehicle will decelerate to 13 m/s using an acceleration of -1 
m/s2 and pass the intersection. And the vehicle will keep its current speed if it is driving at 
13m/s. 

A total of 5000 historical SPaT messages are tested with different phase-entering time and 
initial velocity for the comparison between two baselines and proposed method. A similar 
energy-time-velocity transformation is used to quantify the speed gap as form of energy. Table 
7 shows the average energy consumption (106 J) between two methods over all available SPaT 
messages with different phase-entering time and initial velocity. 

Table 7. Simulation results for green-time arrival (Unit: 106 J) 

Phase-entering time (s) 

Initial velocity (m/s)  0 5 15 25 

5 4.47 4.61 4.56 4.66 8.16 8.22 6.27 7.01 

9 3.93 3.96 3.97 4.01 7.18 7.72 6.24 6.91 
13 3.31 3.31 3.32 3.36 6.97 7.08 6.21 6.26 

17 2.68 3.02 2.63 3.10 2.80 6.85 6.25 6.14 

As can be seen from the table, the proposed method outperforms the baselines for most cases 
except for the 25s phase-entering time at 17m/s initial speed. For the 25s phase-entering time, 
the remaining green time in the current usually is not enough for the vehicle to pass. Therefore, 
a relative conservative strategy in baseline would save some unnecessary effort. In average, 
8.5% energy savings can be achieved when the vehicle arrives in the green time compared to 
the baseline method.  
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5. Reinforcement Learning Based Connected Eco-Driving 

In Section 3 and 4, we developed statistical models to perform adaptive connected eco-driving 
based on external historical data (e.g., historical traffic or signal data). However, if those data 
are not archived or accessible from the traffic operators, those strategies may fail to work. In 
Section 5 and 6, we will discussion the Connected Eco-Driving approach that only relies on the 
onboard sensors of the host vehicle, by utilizing the tremendous generalization power of deep 
learning (DL) [14] and reinforcement learning (RL) [15], which not rely on specific models or 
rules. Particularly, reinforcement learning has demonstrated its significant power in dealing 
with policy learning tasks by itself without predefined human rules or models in a complex 
environment [16], [17], including transportation. Owing to the great capability of RL, many 
researchers are trying to apply RL algorithms into autonomous driving tasks. A deep RL-based 
autonomous driving framework was proposed by Sallab et al. to enable automatic lane- keeping 
with interaction with simple traffic [18]. Desjardins et al. proposed an RL-based cooperative 
adaptive cruise control (CACC) method by utilizing V2V information, which can result in efficient 
behavior in CACC [19]. Shalev-Shwartz proposed an RL-based safe driving model, which enables 
multi-agents to merge smoothly in a double-merge scenario [20]. For signalized intersection 
scenario, Chen et al. proposed a hierarchical RL-based driving behavior control model, which 
enables the vehicle to basically interact with the traffic signal (i.e., stop or go with different 
phase) [21]. Most existing RL-based algorithms focused on lane-keeping, CACC, merging and 
traffic-signal interaction, but few RL algorithms are used in intersection-based eco-driving 
strategy to the authors’ knowledge. One reason may be that RL algorithms are good at solving 
single logical task while the intersection-based eco-driving has at least three different logical 
tasks:  

(1) Energy efficiency, which requires the vehicle to drive through the intersection with less 
energy consumption.  

(2) Intersection interaction, which requires the vehicle to interact properly with the traffic 
signal.  

(3) Traffic interaction, which requires the vehicle to interact with traffic without colliding 
into each other.  

In this study, to further explore the eco-driving strategy of CAV under realistic mixed connected 
traffic around a signalized intersection, we proposed a hybrid reinforcement learning (HRL) 
framework to learn long-term driving strategies. The key contributions of this research includes 
(1) we proposed an HRL framework for a logically complex task, like eco- driving with signalized 
intersection; (2) an innovative long- short term reward algorithm is proposed, which provides 
the RL model with the ability to learn complex driving strategy from conflicting factors (i.e., 
speed and energy); (3) The traffic environment is considered as mixed traffic where the other 
vehicles are human-driven (i.e., without connectivity) and have a different dynamic model; (4) 
In order to make the mixed traffic more realistic, intelligent driver model (IDM) is applied in 
building the mixed traffic; and (5) a multi-sensor-based RL- network is proposed, which enables 
the ego-vehicle to interact properly with the mixed traffic. 
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5.1. Problem statement 

The main purpose of this study is to design an RL-based framework to conduct an eco-driving 
strategy for vision-based CAV under mixed traffic in the signalized intersection. This problem 
can be formulated as an optimal policy learning task with three main goals of the policy: (1) to 
save energy consumption, (2) to reduce the travel time, and (3) to safely interact with traffic 
and signal. The proposed RL-based framework has five key compositions and the connections 
between these compositions and the traffic situation in this paper are shown as follows: 

1. Agent: the ego-vehicle which can perceive the environment via front camera and V2I-
based SPaT information; 

2. Environment: traffic environment which includes various kinds of vehicles and signalized 
intersection; 

3. Policy: the proposed eco-driving policy; 

4. Action reward: the short-term benefit (i.e., speed reward, energy consumption) of 
taking action right at this moment and the long-term benefit (i.e., travel time, total 
energy consumption) of the journey; 

5. Action-value function: the function to determine which action is the best choice at the 
next moment to achieve a long-term optimal result. 

These connections illustrate that the issue in this research can be well interpreted by the RL 
framework. RL framework is established based on Markov Decision Process (MDP) which is a 
mathematical framework for decision making via the interaction between a learning agent and 
its environment in terms of state, actions and rewards. In this research, the ego-vehicle (i.e., 
agent) interacts with the environment (i.e., mixed traffic and signalized intersection). To be 
specific, the traffic environment, agent observation, agent actions are discussed as follow. 

5.1.1. Traffic environment 

The traffic environment includes three main parts: the ego-vehicle, other vehicles, and a five-
lane signalized intersection.  

In order to make the proposed environment more similar to the real traffic, we designed a 
different kind of other vehicles and different start phase time of the traffic light. To be specific, 
the other vehicles are divided into five kind vehicles which have different dynamic model and 
behavior strategy. To make the other vehicles more realistic, we applied the intelligent driver 
model (IDM) to the other vehicles’ longitudinal control method. For the latitudinal control, we 
designed different rates for other vehicles to change the target lane. The detail of the 
description of other vehicles is shown in Table 8. 
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Table 8. The description of the dynamic model of the vehicles 

Vehicle MAX_ACC MAX_DEC GAP_ACC HW_ACC V_TAR LAT_RATE 

EV1 6.0 m/s2 6.0 m/s2 3 m 1.5 s 13.8 m/s 0.3 

EV2 5.0 m/s2 4.5 m/s2 3 m 1.5 s 12.5 m/s 0.2 

EV3 3.0 m/s2 5.0 m/s2 2 m 1.2 s 11.1 m/s 0.2 

EV4 3.0 m/s2 3.0 m/s2 3 m 1.5 s 9.72 m/s 0.1 

EV5 2.0 m/s2 1.5 m/s2 5 m 1.5 s 8.33 m/s 0.1 

In the table, MAX_ACC, MAX_DEC, GAP_ACC, HW_ACC, V_TAR, and LAT_RATE represent the 
maximum acceleration, the maximum deceleration, the minimum distance to the front vehicle, 
Safe time headway, Desired velocity and the rate of change target lane separately.  

For the traffic light, every time the simulation start, the initial phase and time are randomly 
selected in the entire cycle duration. Specifically, the duration of greed time, yellow time, red 
time and all-red time phases are set as the 20s, 3s, 40s, and 1s respectively. 

5.1.2. Agent 

The proposed method is applicable to any type of vehicles given its dynamic and powertrain 
characteristic. As an example, the ego-vehicle is modeled as an electric CAV in this research. 
The maximum acceleration and deceleration are set as 3m/s2 and -3m/s2 respectively. 
Furthermore, the observation input, energy consumption model (ECM) and action output are 
defined as follow. 

For the input observation, in this study, the perception information comes from three main 
parts: (1) V2I communication-based signalized traffic light information which includes the 
current phase state and the duration time; (2) the on-board sensor which includes three radars 
(left distance 𝑑𝑙, right distance 𝑑𝑟 and front distance 𝑑𝑓) and front camera (image size 320*160, 

50fps); and (3) on-board diagnosis which include the ego-vehicle speed 𝑣𝑒  and acceleration 
value 𝑎𝑒.  

Due to the multiple-input data, in order to enhance the learning performance, we find an 
efficient way to decrease the complexity of the input observation without losing too much 
information. For the radar data, we define three variables which are the forward warning 𝑤𝑓 , 

the left warning 𝑤𝑙  and the right warning 𝑤𝑟. The definition of these variables is shown as 
follow: 
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 𝑤𝑑 = 3 + (𝑣𝑒 − 𝑣𝑓)2/2𝑎𝑒 

 𝑤𝑓 = {
0, 𝑑𝑓 > 𝑤𝑑

1, 𝑑𝑓 <= 𝑤𝑑
 

 𝑤𝑙 = {
0, 𝑑𝑙 > 𝑤𝑙

1, 𝑑𝑓 <= 𝑤𝑙
 

 𝑤𝑟 = {
0, 𝑑𝑟 > 𝑤𝑟

1, 𝑑𝑟 <= 𝑤𝑟
 (10) 

Where 𝑤𝑑 , 𝑣𝑓, 𝑤𝑙 , 𝑤𝑟represent the forward warning threshold distance, forward vehicle 

velocity, left-warning threshold distance and right-warning threshold distance separately. 
Specifically, 𝑤𝑙 , 𝑤𝑟are both set as 2m. Thus, the observation is composed of a 12-dimensional 

vector {𝑡𝑔, 𝑡𝑦 , 𝑡𝑟 , 𝑤𝑓 , 𝑤𝑙 , 𝑤𝑟 , 𝑤𝑐 , 𝑑𝑟 , 𝑑𝑓, 𝑣𝑓, 𝑣𝑒 , 𝑎𝑒} where 𝑡𝑔, 𝑡𝑦 , 𝑡𝑟 , 𝑑𝑟represent the duration time 

of green light, yellow light, red light, and the remain distance. 

For the energy consumption model, we applied one of our previous work in which an energy 
consumption model was proposed and calibrated by real-world driving data from a 2013 
NISSAN LEAF [22]. The original energy consumption model is shown below. 

𝐸 = −3.037 − 0.591𝑣 𝑐𝑜𝑠( 𝛼) − 1.047 × 10−3𝑣3 − 1.403𝑣𝑎 + 2.831 × 10−2𝑣2 𝑐𝑜𝑠( 𝛼) 

−7.980 × 10−2𝑣2𝑎 − 1.490𝑣𝛼 𝑠𝑖𝑛( 𝛼) + 3.535 × 10−3𝑣3𝑎 − 0.243𝑣𝑎2 − 

1.279𝑣𝛼 𝑐𝑜𝑠( 𝛼) + 6.484 × 10−4𝑣3𝛼 + 0.998𝑣𝑎𝛼 (11) 

Where 𝑎, 𝑣, 𝛼 represent the instant acceleration (m/s2), speed (m/s) and road grade (rad) 
separately. In this study, the road grade is set as zero. Besides, in the original model, the 
breaking will charge the battery, which may cause a negative influence on RL learning. Thus, we 
redefined the original model which is shown as follow. 

 𝐸𝑟𝑙 = {
𝐸, 𝑎 >= 0
0, 𝑎 < 0

 (12) 

where 𝐸𝑟𝑙represent the energy consumption model applied in our framework.  

For the output action, in this study, the main purpose is to learn an optimal strategy in both 
longitudinal and latitudinal driving maneuvers. Thus, the output actions are defined both on 
these two dimensions. For longitudinal maneuver, the action space is 
[1.0𝑎𝑚 , 0.8𝑎𝑚 , 0.6𝑎𝑚 , 0.4𝑎𝑚 , 0.2𝑎𝑚, 0.0,0.2𝑑𝑚, 0.4𝑑𝑚, 0.6𝑑𝑚, 0.8𝑑𝑚, 1.0𝑑𝑚] where 𝑎𝑚 , 𝑑𝑚 
represent the maximum acceleration and deceleration separately. For the latitudinal maneuver, 
the target lane action space is [-1，0，1] where -1, 0, 1 represent the target lane is the left 
lane, the current lane, and the right lane separately. 

Furthermore, in order to enhance the learning performance, we find a way to decrease the 
dimension of action space. Generally, the action space will be a 33-dimensional vector. 
However, we define that the lane-changing maneuvers are only available when the longitudinal 
acceleration is zero, which means when the vehicle is accelerating or decelerating it should not 
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change lane (this also fit with the real-world traffic safety rules). Thus, in our paper, the action 
space is a 13-dimensional vector. 

5.2. Hybrid RL-based eco-driving framework 

In this research, we proposed the hybrid RL-based CAV eco-driving framework and algorithms 
for electric passenger vehicles. Figure 8 illustrates the key components of the hybrid-RL based 
CAV eco-driving system which consists of several components as described briefly below. 

5.2.1. System architecture 

 

(a) The systematic architecture of the HRL method. 

 

(b) Traffic environment structure. 
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(c) The view of traffic simulator. 

Figure 8. The HRL-based eco-driving system architecture 

1. On-board computer: it houses the hybrid-RL brain which is the decision-making center 
of the whole system. The brain will receive perception data and process the data. Then 
it will return the longitudinal acceleration and target lane information to the vehicle 
control center. 

2. On-board radar: there are three radars applied in this research. One is installed in front 
of the vehicle, which is used to detect the front distance and front-vehicle velocity. The 
other two radars are installed at the left side and right side of the vehicle, which are 
used to detect the left distance and right distance. The range of radars is 100 meters in 
the simulator. The radar information will be sent to the on-board computer as part of 
the agent observation. 

3. On-board camera: it is installed in the front of the vehicle. The direction of the camera is 
the same as the vehicle’s driving direction. The camera information will be sent to the 
on-board computer, which is the key part of the traffic perception. 

4. On-board diagnostics (OBD): this component can get the instant speed and acceleration 
information and then the message will be sent to the on-board computer as part of the 
observation. 

5. Traffic light and road-side unit: the traffic light will send the real-time traffic light 
information to the road-side unit. Then the road-side unit will send the information to 
any CAV within its communication coverage. 

As the most crucial component in the system, the hybrid-RL brain aims to drive through an 
intersection with less time and energy consumption by generating appropriate instant 
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longitudinal acceleration and target lane. As we have discussed above, driving through 
intersection traffic is a logically complex task. Because there are at least four sub-tasks: (1) 
cruise control that avoid collision with other vehicle; (2) lane-changing decision that in the 
traffic; (3) stop-light reaction that stop the vehicle before the stop line when the light is red or 
yellow; and (4) go-light reaction that speed up when the light is now becoming green. So far, it 
is nearly impossible for one RL algorithm to handle such a multi-phase task. In this research, we 
proposed a hybrid RL brain which combines the manual-designed rules and RL algorithm. The 
hybrid-RL brain consists of several components which are illustrated as follow. 

5.2.2. Decision manager 

The key component of the hybrid-RL framework is the decision manager because this part 
combines the manual-designed rules and the RL algorithm to endow the framework with the 
ability to handle the complex task. In the decision manager, the driving process is divided into 
different running situations according to the immediate situations of ego-vehicle and traffic 
light. The architecture of the decision manager is shown in Figure 9(a). 
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(a) The rule-based workflow of Decision Manager 

 

(b) the detail of the definition of one key variable in Decision Manager: The Stop-Light warning 

Figure 9. The architecture and detail of Decision Manager 

Figure 9(b) illustrates the definition of Stop-Light warning wlight(t). When the vehicle enters the 
Stop-Light-warning trigger area and the current light is red or yellow, the wlight(t) is True. On the 
other hand, if the vehicle does not enter the trigger area or the light is green, the wlight(t) is 
False. The main purpose of Stop-Light warning is to build a safe and stable vehicle-signal 
interaction, as it is hard for the RL to learn all the logically different tasks. 

In addition, the IDM and emergency breaking model are also integrated into the decision 
manager. The IDM model is activated when the ego-vehicle need to start at an intersection 
when the light becomes green. The emergency braking model is defined as v(t+1) = v(t)dm, 
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where dm is set as 5m/s2and the emergency braking will be activated when the wf (t) is 
True. 

5.2.3. Data preprocessing 

In this research, observation input of ego-vehicle consists of (1) a 50 fps raw image flow and (2) 
a 13-dimensional vector. Generally, the raw image data cannot be fed into the training network 
directly because the size of the raw image is not compatible with the convolutional neural 
networks. Besides, the purpose of this study is to explore the ability of the hybrid RL to 
generate the eco-driving strategy for CAV. Hence, considering the driving strategy relies on 
both spatial and temporal information, instead of resizing the images, we also need to 
transform multiple single-frame images into a multi-frame spatiotemporal data format. To be 
more specific, in this study, in order to include more information without making the input data 
too heavy (having too many frames in one format). We proposed a select-stack preprocess 
method. The whole preprocess includes four steps as below:  

1. Recording the raw image flow based on the time sequence; 
2. Resizing every frame of the raw image flow into an 80*80*3 format;  
3. Selecting one frame out of Nselect frames;  
4. Stacking Nstack frame of images into a higher dimensional data format: 80*80*3*Nstack.  

Specifically, in this study, the Nselect and Nstack are both set as 4. Through the above 
preprocessing method, the training network could get spatiotemporal observation data, which 
is of considerable significance on the driving strategy learning procedure. 

5.2.4. Deep RL for eco-driving 

According to the above discussion, the eco-driving approach of going through an intersection 
can be formulated as an MDP in which the agent interacts with the environment. Furthermore, 
due to the discretion of action space in this research, we applied Dueling Deep Q Network 
(Dueling DQN) as our basic RL framework. The Dueling DQN is developed from Deep Q Network 
(DQN), which is briefly introduced below. 

Deep Q Network (DQN) is a typical deep RL algorithm that uses a deep neural network to 
predict the value function of each discrete action. DQN performs in discrete action spaces and 
aims to choose the action with maximum value output. Specifically, the input of DQN is 
observation state ot, and the output is the evaluation value Q(st, at) corresponding to each 
action at state A. Then, according to the e-greedy algorithm, an action is selected from the 
action space. After the execution of action at, a reward rt and an observation state ot+1 can get 
from the environment. 

In addition, prioritized experience replay algorithm is used to solve the problem of correlation 
and non-static distribution. Experience state et(st, at, rt, st+1) will be stored in the experience 
pool Et = (e1, e2, ..., et). During the training process, a mini-batch of data will be selected 
randomly from the experience pool so that the training process can avoid the correlation 
problem. 
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 𝐿(𝜃)  =  (𝑅𝑡  +  𝛾𝑚𝑎𝑥𝐴𝑡+1
 𝑄(𝑂𝑡 , 𝐴𝑡;  𝜃−))2 (13) 

where γ is a discount factor, 𝜃 is parameters of neural network and 𝜃−  is the parameters of 
target network. 

In many visual perception-based DRL tasks, the value functions of different state actions are 
disparate, but in some states, the size of the value function is independent of the action. Thus, 
Wang et al. proposed a dueling network-based DQN model named Dueling DQN [23]. Dueling 
DQN is constructed with two streams which separately estimate (scalar) state-value and the 
advantages of each action and shows significant performance improvement than DQN. In 
Equation (14) we show the function to calculate Q-value of Dueling DQN is designed to 
aggregate the states-value and action advantages. 

 𝑄(𝑆𝑡 , 𝐴𝑡; 𝜃, 𝛼, 𝛽) =  𝑉(𝑆𝑡 , ; 𝜃, 𝛽) + 𝐴(𝑆𝑡 , 𝐴𝑡 ; 𝜃, 𝛼) −
1

|𝐴|
∑ 𝐴(𝑆𝑡 , 𝐴𝑡 ; 𝜃, 𝛼)𝐴𝑡

 (14) 

As shown in the equation, 𝛼 represents the parameters of A (the advantage function). Besides, 
𝛽 represents the parameters of V (the state-value function) and 𝜃 is parameters of the neural 
network. Thus, due to the performance of long-term reward learning and vision-based RL task, 
Dueling DQN is applied in this research as the basic RL algorithm of the hybrid RL framework. 

However, in this research, the biggest challenge is that we want to find a method that can 
decrease energy consumption without spending more travel time (even save time) under mixed 
traffic condition. As is well-known, when driving on a freeway, the long-term travel time 
depends, to most extent, on the short-term reward such as the instant speed or lane changing. 
Nevertheless, if driving through an intersection, the long-term travel time and energy 
consumption depend more on the interaction between current vehicle status and traffic signal 
status. Thus, in order to figure out the optimal eco-driving solution in a realistic signalized 
intersection traffic situation, the most significant work is to build an RL model that can learn 
more from the long-term driving reward. 

Although Dueling DQN framework is powerful in learning vision-based long-term policy, it is 
difficult to design an appropriate reward function for the eco-driving RL model. The main 
reason is the reward function is an instant value. On the contrary, the travel time and the total 
energy consumption can only be received when the journey is finished (i.e., ego-vehicle cannot 
know how many the total consumption is until it reaches the destination). Thus, the RL model 
will not work well or even don’t work at all if the reward function is designed straight forward 
as usual (more information at the Experiments section). 

In this study, we proposed a long-short term reward (LSTR) function, which not only considers 
the instance variables such as speed, lane change, and instant energy consumption but also 
includes some long-term based indicators. Algorithm 1 illustrates the LSTR function. The two 
conflicting factors in this issue are the short-term reward (instant speed, energy consumption) 
and the long-term reward (total travel time and total energy consumption). We designed some 
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instant reward principles which include indications for long-term benefit, which are shown 
below. 

• When the current phase is red or yellow and ego-vehicle cannot pass the intersection 
with its current speed, then it shouldn’t accelerate. 

• When the current phase is red or yellow and ego-vehicle may pass the intersection with 
current speed or driving faster, then try to accelerate. 

• When the current phase is green and the ego-vehicle cannot pass the intersection with 
its current speed, then it shouldn’t accelerate. 

• When the current phase is green and the ego-vehicle may pass the intersection with 
current speed or driving faster, then try to accelerate. 

Basing on these principles, the LSTR function is designed as Algorithm 1 in Figure 10(a) in which 
the definition of RGreen-Pass is further explained by Figure 10(b). In a nutshell, the RGreen-
Pass reflects the future benefit for reaching the intersection when the light is green. 
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(a) The algorithm for long-short term reward (LSTR) function 

 

(b) The definition of RGreen-Pass is based on the four principles 

Figure 10. Long-short term reward (LSTR) function 
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5.2.5. Network architecture 

The main purpose of the deep neural network is mapping the current observation state O to 
the best action value A in action space. Thus, the main network can be divided into two 
components: (1) the hidden feature extraction network and (2) the policy network which 
applies Dueling DQN. Figure 11 illustrates the architecture of the proposed deep RL network. 

 

Figure 11. The architecture of the neural network 

For the hidden feature extraction network, its main purpose is to extract hidden features from 
the preprocessed high-dimensional spatiotemporal data. As discussed above, the network input 
consists of (1) image flow and (2) high dimensional vector. In order to extract features from 
these different types of data, we designed a multi-channel feature extraction network, which 
consists of different kinds of parallel neural networks.  

For the image flow input, the most popular method to extract image data is convolutional 
neural network (CNN), because the image is a spatial data format and the CNN has a 
tremendous capability of solving high-dimensional spatial data. Thus, in this study, a CNN 
stream is designed to extract the vision-based input data. 

On the other hand, the radar, OBD, and V2I information (named as logical data) are integrated 
into a 13-dimension vector. After the selected-stack preprocess, the logical data are 
transformed into a time-series based temporal data. Long-short term memory (LSTM) network 
is famous for its powerful ability in dealing with temporal data series. Thus, for the logical data 
feature extraction, LSTM is applied in our deep RL net.  

After the CNN and LSTM, the two-stream features are combined through a concatenate layer 
and then a dense layer-based policy network is designed by applying Dueling DQN. Figure 11 
illustrates that there are two streams of the dense layer. The upper stream is used to extract 
state value while the lower stream is used to extract advantage value. Finally, the action with 
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maximum Q-value will be selected as the action at this moment. To be specific, the details of 
the configuration of the neural network is illustrated in Table 9. 

Table 9. The description of the network configuration 

Layer Actuation Patch size Stride Filter Unit 

Conv 1 ReLU 8 × 8 4 32 - 

Conv 2 ReLU 4 × 4 2 64 - 

Conv 3 ReLU 3 × 3 1 64 - 

LSTM - - - - 1024 

Dense 1 1/2 ReLU - - - 1024 

Dense 2 1/2 ReLU - - - 256 

Dense 3 1/2 ReLU - - - 128 

5.2.6. Network update and hyperparameters 

There are four steps of the network updating process, which are: 

1. Considering the current state as st and predicting the Qt value of different actions 
through the evaluation network. 

2. Choosing the action a(t) with the largest Q value by utilizing e-greedy policy.  

3. Generating the Q values at time t + 1: Q(t+1) through the target network. 

4. Calculating the loss function and then updating the evaluation network. 

In addition, at each learning step, the weight coefficients of the proposed network were 
updated using the adaptive learning rate method Adam [24] in order to minimize the loss 
function. For the adopted hyperparameters, the learning rate \alpha, discount factor \gamma, 
batch size, steps used for observation, replay memory size, steps for target network update, 
training steps, and test steps are set as 0.00025, 0.99, 64, 10000, 50000, 10000, 2million, 10000 
separately. 
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6. Simulation Study of the RL-based Connected Eco-driving 

In order to train the proposed model and evaluate its performance, a simulator is constructed 
in this paper by utilizing Unity and Unity Machine-learning Agents (Unity ML-Agents). The 
intersection simulator is developed basing on previous work in [25, 26]. The main reason to use 
Unity to build the simulator is that Unity can provide a virtual reality environment in which the 
simulated camera can be applied. In addition, Unity ML-Agents provides a machine learning 
development platform in which the machine learning algorithms can be constructed readily. For 
the external RL brain, the deep RL algorithm and deep neural network are developed basing on 
Tensorflow [27] by Python. 

As is discussed in the previous section, the testbed in this study is built as a one-direction 
intersection with 5 lanes. There are five different kinds of human-driven vehicles. The length of 
the research area is 550 meters: from 500 meters upstream of the intersection to 50 meters 
after the stop line. The vehicle speed limit is set to 50 kilometers per hour (kph). For the traffic 
light, the time for the green phase is 20 seconds, the time for the yellow phase is 2 seconds and 
the time for the red phase is 41s. 

6.1. Experiment setup 

For the training procedure, the 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 policy is implemented as the exploration policy. 
The 𝜀 is decreased linearly from 1 to 0.00001 over 2 million steps. When the training start, the 
initial phase and time of the traffic light will be randomly selected, which not only avoids the 
overfitting of the algorithm but also makes the training more realistic. In addition, the simulator 
is equipped with Intel® Core™ i7-7700k CPU @ 4.20GHz, 64 GB RAM, and an NVIDIA GTX 1080 
GPU. The total training time is around 36 hours. 

For the test procedure, there are three baselines implemented to compare with the proposed 
HRL framework, which are briefly introduced below: 

1. IDM method: the IDM-based control model, which means the ego-vehicle is totally 
controlled by IDM (i.e., like the other vehicles); 

2. Short-Sighted (SS) method: only considering short-term benefit in the reward function, 
i.e., without 𝑅𝑇𝑖𝑚𝑒 and 𝑅𝐿𝑖𝑔ℎ𝑡; 

3. Speed-First (SF) method: only considering speed efficiency in the reward function, i.e., 
without 𝑅𝑇𝑖𝑚𝑒, 𝑅𝐿𝑖𝑔ℎ𝑡 and 𝑅𝐸𝑛𝑒𝑟𝑔𝑦 . 

The proposed framework and each of the aforementioned baselines are tested through 
numerical experiments. As is illustrated in Figure 13 (shown in the next section), six different 
entry time in a cycle are tested: the 0th second of the cycle (C0), the 10th second of the cycle 
(C10), the 20th second of the cycle (C20), the 30th second of the cycle (C30), the 40th second of 
the cycle (C40) and the 50th second of the cycle (C50). Furthermore, different initial speeds 
from 10 kph to 50 kph with 10 kph as the increment (S10, S20, S30, S40, S50) are also tested. 
The training and numerical test results are discussed in the next section. 
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6.2. Training results 

Figure 12(a)(b)(c)(d) illustrate the training results of HRL method and SF method, including the 
average energy consumption, traffic-light interaction reward, average speed and average lane-
changing number in a single journey. Figure 12(a) shows that the energy consumption of HRL 
method is decreasing via the iteration of training while the energy consumption of SF is 
increasing, as the SF method is trying to get higher instant speed without considering the 
energy consumption. In addition, the training results of the SS method is not shown below, 
because during the iteration of training the ego-vehicle will drive more and slower and finally 
stop in the road, which makes the training have to stop. We realize that this may be because 
the confliction of two short-term rewards pushes the learning to fall into one side of the 
conflict factors (i.e., in this case, the short-term energy factor is stronger than speed, the ego-
vehicle will not accelerate any more). 

Basing on the above discussion, we realize that the Figure 12(b) can help to further explain why 
the HRL method can successfully learn an optimal policy in such a dilemma. Figure 12(b) shows 
that after the approximately half way of training steps, the traffic-light interaction reward is 
increasing obviously, which means that the ego-vehicle is learning more about how to interact 
with the traffic light intelligently (i.e., balancing the speed and energy consumption). On the 
other hand, it is also obvious that pursuing a speed-first driving strategy will actually cause a 
negative effect on the cooperation between vehicles and intersection. 

Figure 12(c) and 12(d) shows that the HRL method can also learn how to drive faster with less 
unnecessary lane-changing behaviors, which represents a smoothly, time-efficient driving 
strategy.  

 
(a) The average energy consumption per journey during the training for HRL and SF model. 
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(b) The traffic-light interaction reward per journey during the training for HRL and SF model. 

 
(c) The average speed per journey during the training for HRL and SF model. 
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(d) The average number of lane changing per journey during the training for HRL and SF model. 

Figure 12. The training results 

6.3. Testing results 

Figure 13(a)(b)(c)(d)(e) illustrates the testing results of the comparison for speed trajectories of 
HRL, IDM and SF methods with different entry speed and initial phase time. In all subfigures, 
the red line, purple line and the blue line represent the results of our HRL method, IDM method 
and SF method separately. The Y-axis and X-axis represent the instant speed (kph) and current 
distance (meter). The title of each subfigure represents the initial phase time and entry speed 
of ego-vehicle. For example, the C0_S10 represents the initial phase time is 0s in the signal 
cycle and the entry speed is 10 kph. According to the testing results, there are three points we 
want to discuss: 

(1) The acceleration: it is evident that the acceleration value of HRL is obviously lower than 
either IDM or SF in almost all scenarios. Lower acceleration value is better for eco-
friendly driving strategy, because, according to the energy consumption model, the 
energy consumption will go much higher if the acceleration increases. This 
demonstrates that the HRL model can drive in a more energy-efficient strategy. 

(2) The target speed: for IDM and SF model, the target speed is always the maximum speed 
of the vehicle. However, for HRL model, it will not achieve the highest speed in some 
situations, such as C10_S10, C20_S10 and C20_S20, because the HRL model learns that 
in such a situation, a lower speed can gain more benefit in the long run (i.e., waiting for 
the end of red light so that ego-vehicle can pass without stops, such as C20_S10 and 
C20_S30). This evidently shows that the HRL can drive in a higher travel-efficient way 
than IDM and SF method (i.e., better interact with the intersection). 
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(3) The interaction with the mixed traffic: for the IDM model, it can only longitudinally 
interact with its front vehicle. For SF and HRL model, they can interact traffic from both 
longitudinal level and latitudinal level. Thus, in some situation, such as C40_S10, C0_S50, 
and C40_S40, the HRL and SF performed much better than IDM. In fact, due to the lower 
acceleration preference, HRL performed even better than SF, such as C30_S30, C20_S30, 
and C30_S50. This point illustrates that the HRL model can better interact with mixed 
traffic. 

 

(a) The comparison of speed trajectories with 10 kph entry speed (S10). 

 

(b) The comparison of speed trajectories with 20 kph entry speed (S20). 
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(c) The comparison of speed trajectories with 30 kph entry speed (S30). 

 

(d) The comparison of speed trajectories with 40 kph entry speed (S40). 

 

(e) The comparison of speed trajectories with 50 kph entry speed (S50). 

Figure 13. The speed trajectories of simulation experiments 

Table 10. The average time per travel for three methods shows the comparison for average 
travel time of HRL, IDM and SF method. According to the table, the HRL can achieve nearly the 
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same performance to the SF method and better performance (1.12% in average) than IDM 
method. It is noticed that when the initial phase time is C20, the HRL has the relatively best 
time performance, which is 7.58% better than IDM method.  

Table 10. The average time per travel for three methods 

Methods S10/C0 S10/C10 S10/C20 S10/C30 S10/C40 S10/C50 Average 

HRL 71.4 62.9 41.9 45.9 47.3 79.7 58.2 

SF 69.7 62.4 44.8 44.2 43.2 80.2 57.4 

IDM 70.7 62.2 51.2 45.2 44.9 81.5 59.3 

Methods S20/C0 S20/C10 S20/C20 S20/C30 S20/C40 S20/C50 Average 

HRL 70.2 62.4 48.9 45.9 42.7 80.1 58.4 

SF 67.9 63.1 52.6 43.1 41.4 79.6 58.0 

IDM 69.6 61.5 49.7 42.5 40.72 80.3 57.4 

Methods S30/C0 S30/C10 S30/C20 S30/C30 S30/C40 S30/C50 Average 

HRL 71.5 60.8 44.1 42.1 41.1 79.5 56.5 

SF 70.2 61.6 51.1 44.2 40.3 79.3 57.8 

IDM 71.1 60.2 50.1 44.7 41.9 79.4 57.9 

Methods S40/C0 S40/C10 S40/C20 S40/C30 S40/C40 S40/C50 Average 

HRL 67.9 61.3 53.5 43.7 40.1 79.5 57.7 

SF 72.2 58.18 53.1 40.5 40.2 79.3 57.2 

IDM 72.3 61.5 52.1 42.4 41.9 79.1 58.2 

Methods S50/C0 S50/C10 S50/C20 S50/C30 S50/C40 S50/C50 Average 

HRL 70.6 61.7 48 41.5 41.9 79.9 57.3 

SF 67.5 61.8 52.4 42.5 39.6 79.8 57.3 

IDM 72.1 61.5 52.7 42.2 42.7 79.9 58.5 

HRL_Avg 70.3 61.8 47.3 43.8 42.6 79.7 57.6 

SF_Avg 69.5 61.4 50.8 42.9 40.9 79.6 57.5 

IDM_Avg 71.2 61.4 51.2 43.4 42.4 80.0 58.3 

HRLtoIDM -1.18% 0.72% -7.58% 0.97% 0.46% -0.37% -1.13% 

SFtoIDM -2.33% 0.06% -0.70% -1.15% -3.50% -0.50% -1.25% 
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Table 11 shows the comparison of the average energy consumption of a single journey. It is 
obvious that the proposed HRL method can save energy in all the different situations. Due to 
the better performance in acceleration control, target speed control and interaction with mixed 
traffic, the HRL method can save 12.2% (up to 33.2% under S30_C20) energy comparing with 
IDM method and can save 47.1% energy comparing with SF method. 

In addition, according to Table 11, when the initial phase time is C20 (i.e., the start of the yellow 
light), the HRL method has the relatively best average performance. In this situation, the 
average improvement is 24%, even comparing to the IDM method, which is a tremendous 
enhancement. On the other hand, when the initial phase time is near-zero or the entry speed is 
too fast, the improvement is only near 3% comparing to IDM method. According to this 
analysis, we realize that the initial phase time and entry speed will influence the performance 
of HRL method, which reminds us that there is an adjustment space of the HRL method. 
Different traffic situations have different adjustment space for ego-vehicle and if we can control 
the vehicle to enter the intersection with proper adjustment space, the HRL-based eco-driving 
approach will get its best performance. 
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Table 11. The average energy consumption per travel for three methods 

methods S10/C0 S10/C10 S10/C20 S10/C30 S10/C40 S10/C50 Average 

HRL 43488 37870 38460 33576 33871 41295 38093.33 

SF 77105 78726 88713 79917 76013 84277 80791.83 

IDM 44790 41728 40106 36272 35949 43570 40402.5 

Saving -2.91% -9.25% -4.10% -7.43% -5.78% -5.22% -5.72% 

methods S20/C0 S20/C10 S20/C20 S20/C30 S20/C40 S20/C50 Average 

HRL 43307 36302 28202 27054 27095 42636 34099.33 

SF 76061 82930 78222 69645 76947 80955 77460 

IDM 45847 43190 41212 29100 29400 45297 39007.67 

Decrease -5.54% -15.95% -31.57% -7.03% -7.84% -5.87% -12.58% 

Methods S30/C0 S30/C10 S30/C20 S30/C30 S30/C40 S30/C50 Average 

HRL 43769 35008 28618 27511 29733 43926 34760.83 

SF 77599 83342 82494 59857 78600 85573 77910.83 

IDM 46331 43714 42855 31841 30844 46812 40399.5 

Decrease -5.53% -19.92% -33.22% -13.60% -3.60% -6.17% -13.96% 

methods S40/C0 S40/C10 S40/C20 S40/C30 S40/C40 S40/C50 Average 

HRL 39454 33745 30168 27570 33597 40522 34176 

SF 79545 87708 85055 78179 77700 88732 82819.83 

IDM 46565 45047 43671 30632 30548 46879 40557 

Decrease -
15.27% 

-25.09% -30.92% -10.00% 9.98% -13.56% -15.73% 

methods S50/C0 S50/C10 S50/C20 S50/C30 S50/C40 S50/C50 Average 

HRL 39172 34786 31727 29344 32330 42539 34983 

SF 85188 88754 84358 72231 66488 91066 81347.5 

IDM 43008 41489 39621 36878 37163 43828 40331.17 

Decrease -8.92% -16.16% -19.92% -20.43% -13.00% -2.94% -13.26% 

Average -7.63% -17.27% -23.95% -11.70% -4.05% -6.75% -12.25% 
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7. Conclusion 

This research proposes an adaptive strategy for connected eco-driving towards a signalized 
intersection under real world conditions including uncertain traffic and actuated signal 
condition. A graph-based model is created with nodes representing dynamic states of the host 
vehicle (distance to intersection and current speed) and indicator of queue status or signal 
status and directed edges with weight representing expected energy consumption between 
two connected states. Then a dynamic programing approach is applied to identify the optimal 
speed for each vehicle-queue-signal state iteratively from downstream to the upstream. The 
uncertainty can be addressed by formulating stochastic models when describing the transition 
of queue-signal state. For uncertain traffic conditions, numerical simulation results show an 
average energy saving of 9%. It also indicates that energy consumption of a vehicle equipped 
with adaptive EAD strategy and a 100m-range sensor is equivalent to a vehicle with 
conventional EAD strategy and a 190m-range sensor. To some extent, the proposed strategy 
could double the effective detection range in eco-driving. For the actuated signals, the 
numerical simulations with real world SPaT data show that the proposed method is robust and 
adaptive to varying signal conditions, and achieves 40% energy savings when the vehicle arrives 
in the red time, and 8.5% energy savings when the vehicle arrives in the green time compared 
to other baseline methods. 

Besides the adaptive eco-driving strategy based on historical traffic and signal data, we also 
consider the sensor-only based approach when the historical data are not available. An multi-
sensor based eco-driving strategy for CAVs under uncertain traffic is proposed under a hybrid 
reinforcement learning (HRL) framework. According to the microsimulation experiments, the 
proposed HRL-based ego-vehicle can traverse trough a signalized intersection with eco-driving 
strategy under mixed traffic conditions. The HRL method can reduce 12.25%–47.1% energy 
consumption comparing with IDM and SF method and can save 1.2%–6.9% time comparing 
with IDM. The proposed framework can also be readily implemented to other types of vehicles 
by replacing the energy-reward function and vehicle dynamic model.  

Regarding future work, the performance of the different types of vehicles (e.g., heavy-duty 
trucks) can be tested and analyzed. In addition, cooperative eco-driving strategy can be 
conducted by applying multi-vehicle agents in complex traffic network, such as a combination 
of uncertain traffic condition and actuated signals along a signalized corridor. Furthermore, 
more experiments including micro-simulation and field experiments can be conducted to 
analyze the performance in more realistic situations.  
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Data Management Plan 

Products of Research  

In this project, we collected vehicle speed trajectories and energy consumptions data for all the 
host vehicles from all the numerical and micro-simulation experiment. Those data are used to 
validate the proposed algorithms and estimate the performance on energy savings. 

Data Format and Content  

The data were saved in CSV files in the format of second-by-second trajectories. For each time 
stamp, the vehicle’s dynamic state, e.g., location, speed and acceleration rate, the signal timing 
information and the traffic information are archived along with the estimate energy 
consumption calculated by the specific models for gasoline vehicles or electric vehicles. 

Data Access and Sharing  

The data are publicly available via Dryad: https://datadryad.org/stash/, which is in compliance 
with the USDOT Public Access Plan. This dataset can be cited as: 

Hao, Peng; Wei, Zhensong; Barth, Matthew (2019), Speed trajectory data from adaptive 
eco-driving applications, UC Riverside, Dataset, https://doi.org/10.6086/D11H3P  

Reuse and Redistribution  

The data are restricted to research use only. If the data are used, our work should be properly 
cited: Hao, Peng; Wei, Zhensong; Barth, Matthew (2019), Speed trajectory data from adaptive 
eco-driving applications, UC Riverside, Dataset, https://doi.org/10.6086/D11H3P. 

https://datadryad.org/stash/
https://ntl.bts.gov/public-access
https://doi.org/10.6086/D11H3P
https://doi.org/10.6086/D11H3P
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