UC Berkeley UC Berkeley Previously Published Works

Title

On tubular neighbourhoods of manifolds. I

Permalink

<https://escholarship.org/uc/item/8fs2m952>

Journal

Mathematical Proceedings of the Cambridge Philosophical Society, 62(2)

ISSN

0305-0041

Author

Hirsch, Morris W

Publication Date

1966-04-01

DOI

10.1017/s0305004100039712

Peer reviewed

Mathematical Proceedings of the Cambridge Philosophical Society

http://journals.cambridge.org/PSP

Additional services for *Mathematical Proceedings of the Cambridge Philosophical Society:*

Email alerts: Click here Subscriptions: Click here Commercial reprints: Click here Terms of use : Click here

On tubular neighbourhoods of manifolds. I

Morris W. Hirsch

Mathematical Proceedings of the Cambridge Philosophical Society / Volume 62 / Issue 02 / April 1966, pp 177 - 181 DOI: 10.1017/S0305004100039712, Published online: 24 October 2008

Link to this article: http://journals.cambridge.org/abstract_S0305004100039712

How to cite this article:

Morris W. Hirsch (1966). On tubular neighbourhoods of manifolds. I. Mathematical Proceedings of the Cambridge Philosophical Society, 62, pp 177-181 doi:10.1017/S0305004100039712

Request Permissions : Click here

On tubular neighbourhoods of manifolds. I

\mathbf{B} more more written with \mathbf{B} *University of California, Berkeley*

(Received 18 *August* 1965)

1. *Introduction.* Let X be a submanifold of *Y,* in either the topological, smooth, or piecewise linear *(= PL)* categories. A *normal cell bundle* on X in 7 is a bundle $\xi = (p, E, X)$ in the category whose fibre is a closed cell, and such that E is a neighbourhood of *X* in *Y* and $p: E \to X$ is a retraction. The triple (Y, X, ξ) is a *tubular neighbourhood,* or briefly, a *tube.* For convenience we may refer to a tube by its cell bundle.

Two tubes (Y_i, X_i, ξ_i) (i = 0, 1), are *isomorphic* if there is an isomorphism of the category $h: (Y_0, X_0) \to (Y_1, X_1)$ inducing a bundle map from ξ_0 to ξ_1 . That is, h takes fibres of ξ_0 onto fibres of ξ_1 . If $Y_0 = Y_1 = Y$, the two tubes are *I-cobordant* if there exists a tube $(Y \times I, Z, \xi)$ such that Z is isomorphic to $X_0 \times I$, and $Z \cap (Y \times i) = X_i \times i$, and $\mathcal{E}[X_i \times i = \mathcal{E}_i \times i]$. A tube is *trivial* if its cell bundle is a trivial bundle.

The purpose of this article is to prove the following theorem.

THEOREM A. Let (Σ^{11}, Σ^7) be the standard pair of PL spheres. There are PL trivial *normal cell bundles* ξ_0 and ξ_1 on Σ^7 such that the tubes $(\Sigma^{11}, \Sigma^7, \xi_0)$ and $(\Sigma^{11}, \Sigma^7, \xi_1)$ are not *PL I-cobordant, nor are they topologically isomorphic.*

A consequence of Theorem A and Hudson's isotopy extension theorem (5) is:

COROLLARY B. There is a PL embedding $f: \Sigma^7 \times I^4 \to \Sigma^7 \times I^4$ which leaves $\Sigma^7 \times 0$ fixed, *and which is not PL isotopic to any embedding taking each fibre* $y \times I^4$ *onto a fibre* $z \times I^4$ *.*

2. *Terminology.* Three categories will be used:

- (1) the *topological category* $\mathscr T$ of spaces and continuous maps;
- (2) the *piecewise linear category* $\mathscr P$ of polyhedra and piecewise linear maps;
- (3) the *smooth category* $\mathscr S$ smooth manifolds and smooth maps.

Euclidean *n*-space R^n , the closed half space E^n and the closed interval $I = [0,1]$ may be considered as objects in each of the three categories. An *n-manifold* in one of the categories $\mathscr F$ or $\mathscr P$ is a paracompact object that is locally isomorphic to E^n . The *n-disc* is the closed unit ball $D^n \subset R^n$, and is an object in $\mathscr T$ and $\mathscr S$. Its boundary is $\partial D^n = S^{n-1}$. The *n*-cube I^n is the Cartesian product of *n* copies of $[-1,1]$; its boundary is Σ^{n-1} . A cell is an isomorph of I^n or D^n , depending on the category, for some appropriate *n*. Similarly, an *n-sphere* is an isomorph of $Sⁿ$ or $\Sigmaⁿ$.

Embedding, isotopy, etc., have their usual interpretations in each category. We assume submanifolds to be closed as subsets.

Fix one of the categories; let Y be an object and $p: E \to B$ a map. The triple (p, E, B) is a *Y-bundle* if it is locally trivial in the category, with fibre *Y.* That is, *B* is covered by

 \mathbf{p} open sets U for each of which there exists an isomorphism of the category $p^{-1}U\!\rightarrow\! U\times Y$ making commutative the usual diagram

For the theory of such bundles, see (4).

The notions of *tubular neighbourhood* and of *isomorphism* and *I-cobordism* of tubular neighbourhoods, defined in section 1, make sense in each of the three categories. Another equivalence relation that may hold between two tubes (Y, X_i, ξ_i) $(i = 0, 1)$, is that of *h-cobordism*: there exists an *h*-cobordism $Z \subset Y \times I$ between the manifolds $X_0 \times 0$ and $X_1 \times 1$ and a normal cell bundle ξ on Z reducing to $\xi_i \times i$ on $X_i \times i$.

Let (Y, X, ξ) be a tube and h: $Y \to Y'$ an embedding. There is a unique normal cell bundle $h(\xi)$ on $h(X)$ in $h(Y)$ making $h: (Y, X, \xi) \to (h(Y), h(X), h(\xi))$ an isomorphism of tubes.

Let (Y, X, ξ) be a smooth tube; let $\xi = (p, E, X)$. A *triangulation* of ξ is a PL cell bundle $p: \hat{E} \to \hat{X}$, where \hat{E} and \hat{X} are smooth triangulations of E and X. The triangulation \hat{E} always extends to a smooth triangulation \hat{Y} of Y ; the resulting PL tube $(\hat{Y}, \hat{X}, \hat{\xi})$ is called a *triangulation of* (Y, X, ξ) . It follows from the triangulation theorems for smooth bundles proved in (4) that triangulations of smooth tubes always exist, and are unique up to *PL* isomorphism. In this paper all that is needed is the existence of triangulations for trivial tubes, and this is obvious.

3. *Geometrical facts.* We list in this section various theorems in differential and piecewise linear topology that are needed to prove Theorem A.

PROPOSITION 1 (Whitehead ((11))). Let C be a collapsible polyhedron in a piecewise *linear manifold Mm. Then C has a regular neighbourhood, and any regular neighbourhood of C is a PL m-cell.*

PROPOSITION 2 (Munkres ((8))). *A smooth manifold which can be smoothly triangulated by a PL cell is a smooth cell.*

PROPOSITION 3 (Hirsch ((1,2))). *Let Mm be a smooth manifold with a fixed compatible PL* structure. Let $X \subseteq M$ be a PL $m-1$ dimensional submanifold lying on the boundary $of a PL$ m-dimensional submanifold. Let $A \subseteq X$ be a closed subset having a neighbourhood $in X$ which is a smooth submanifold of M. Then there exists a smooth submanifold $X' \subseteq M$ *which can be smoothly triangulated by X, and such that* $X \cap X'$ *is a neighbourhood of A in X.*

Let $M \subset S^q$ be a smooth submanifold. Call M depressible if there exists a smooth embedding $F: M \times I \to S^q \times I$ such that $F(M \times 0) = M \times 0$, and $F(M \times 1) \subset S^{q-1} \times 1$.

PROPOSITION 4 (Levine ((7))). *There is a smoothly embedded 1-sphere in R11 which is not depressible, and which has a trivial smooth normal bundle.*

Proof. In (7) it is proved that $\widetilde{\Sigma}^{11,7}$ has order 60, while $\widetilde{\Sigma}^{10,7}$ has order 3 (where $\widetilde{\Sigma}^{n,m}$ is the group of embedded m -spheres in $Sⁿ$ modulo the subgroup bounding framed manifolds). A non-zero $\alpha \in \Sigma^{11,7}$ of order 5 is represented by an indepressible embedded

 $M^7 \subset R^{11}$. Moreover, *M* must have trivial normal bundle *v* since *v* is represented by the image of α under a homomorphism $\sum^{11,7} \rightarrow \prod_{\beta} (SO_{\beta}) = Z_{12} \oplus Z_{12}$.

PROPOSITION 5. A smooth submanifold $M \subset S^q$ is depressible provided there exists a *smooth q-cell* $D \subset S^q \times I$ with $M \times 0 \subset \partial D$.

Proof. Deform *D* diffeotopically in $S^q \times I$, leaving ∂D fixed, until a small concentric q -cell D' coincides with a hemisphere of $S^q \times 1$ bounded by $S^{q-1} \times 1$. Since $D - \text{int}D'$ is diffeomorphic to $S^{q-1} \times I$, it is easy to construct the required embedding of $M \times I$.

PROPOSITION 6. A smooth submanifold $M \subset S^q$ is depressible provided there exists a $\emph{smooth triangulation of $S^q \times I$, a $\emph{PL submanifold} $X \subset S^q \times I$ of dimension q, and a \emph{PL}}$ q -cell $B \subset X$ *, such that:*

(a) *X* lies on the boundary of a PL submanifold of dimension $q + 1$;

(b) $M \times 0 \subset \partial B$;

(c) *M* x 0 *has neighbourhoods in B and X that are smooth submanifolds.*

Proof. Apply Proposition 3 twice, first to get a smooth triangulation $f: X \to Y = a$ smooth submanifold of $S^q \times I$, and then to obtain a smooth triangulation $g: f(B) \to D$ $=$ a smooth submanifold of Y, such that f and g leave fixed a neighbourhood of $M \times 0$ in *X*. By Proposition 2, *D* must be a smooth q-cell, and the proof is completed by applying Proposition 5.

PROPOSITION 7 (Hirsch-Zeeman; see also Irwin((6))). *Let W be a contractible PL m-manifold and* $K \subseteq \partial W$ *a compact polyhedron. If* dim $K \leq m-4$ *, there exists a PL m*-cell *C* such that $K \subset C \subset W$.

Proof. See the Engulfing theorem in (3).

PROPOSITION 8 (Zeeman((12))). Let $A, B \subset \Sigma^n$ be PL embedded k-spheres. If $n \geq k + 3$, *there exists a PL homeomorphism of* $\Sigmaⁿ$ *taking A onto B.*

PROPOSITION 9 (Smale ((10))). A PL manifold of dimension ≥ 6 is a PL cell if it is com*pact and contractible and has a simply connected boundary.*

4. Sections of tubes. Let (Y, X, ξ) be a tube, with $\xi = (p, E, X)$. A section of ξ is a cross-section $f: X \to \partial E$ of the sphere bundle $(p, \partial E, X)$. The section f is *engulfable* provided there exists a contractible open set W of Y – int E containing $f(X)$. If the tube is PL and f is a PL section, then f is *shrinkable* if there exists a collapsible polyhedron C such that $f(X) \subset C \subset Y - \text{int } E$.

PROPOSITION 10. The existence of an engulfable section is an isomorphism invariant *of tubes. The existence of a shrinkable section is a PL isomorphism invariant of PL tubes.*

Proof. Trivial.

PROPOSITION *II. Let (Y,X,£) be a PL tube with X compact.*

(a) Every shrinkable section is engulf able.

(b) If dim $Y - \dim X \geq 4$, every PL engulfable section is shrinkable.

Proof. Since a regular neighbourhood of a collapsible set is contractible, *(a)* is obvious. To prove (b), let $f: X \to \partial E$ be a PL engulfable section, and $W \subset Y - \text{int } E$ a contractible open set containing $f(X)$. The required collapsible polyhedron exists by virtue of Proposition 7.

180 MORRIS W. HIRSCH

PROPOSITION 12. Let $M \subset S^q$ be a smooth submanifold with a smooth normal cell b undle v. Let $(\widehat{S}^{q},\widehat{M},\widehat{\nu})$ be a triangulation of $(S^{q},M,\nu).$ If v has an engulfable section, and

$$
q-\dim M\geqslant 4,
$$

then M is depressible.

Proof. Assume that ν has an engulfable section. By Proposition 10, $\hat{\nu}$ has a shrinkable section $f: \hat{M} \to \partial \hat{E}$, where $\nu = (p, E, M)$ and $\hat{\nu} = (p, \hat{E}, \hat{M})$. By Proposition 7 there is a $PLg\text{-cell }C\subset S^q-\mathop{\rm int}\nolimits E\text{ with }f(M)\subset C.$ We may assume that $C\cap \partial \bar E$ is a neighbourhood in ∂E of $f(M)$. Since E is a smooth submanifold of S^q , C is smooth in a neighbourhood of $f(M)$. Proposition 12 follows from Proposition 6 (or 3).

Remark. Using Proposition 3 it is easy to show that *M* is actually diffeotopic to a submanifold of S^{q-1} (i.e. M is *compressible* in the sense of (3)).

5. Proof of Theorem A. Let $M \subset S^{11}$ be the smoothly embedded 7-sphere of Proposition 4, and let ν be its smooth normal 4-cell bundle. Let $(\hat{S}^{11}, \hat{M}, \hat{\nu})$ be a triangulation (see (2)) of (S^{11}, M, ν) . By the smooth triangulation theorems of Whitehead ((11)) and Zeeman's unknotting theorem (Proposition 8), there is a PL normal cell bundle ξ_0 on $\Sigma^7 \subset \Sigma^{11}$ and a PL isomorphism $f: (\hat{S}^{11}, \hat{M}, \hat{\nu}) \to (\Sigma^{11}, \Sigma^7, \xi_0)$. By Proposition 12, $(\widehat{S}^{11},\hat{M},\hat{\nu})$ does not have an engulfable section. Therefore neither has $(\Sigma^{11},\Sigma^7,\xi_0),$ by Proposition 10. On the other hand Σ^7 obviously has another PL normal cell bundle in Σ^{11} , say ξ_1 , which does have an engulfable section, and even a shrinkable one. Therefore $(\Sigma^{11}, \Sigma^7, \xi_0)$ and $(\Sigma^{11}, \Sigma^7, \xi_1)$ are not topologically isomorphic. Moreover, both ξ_0 and ξ_1 are trivial bundles.

It remains to prove that ξ_0 is not PL I-cobordant to ξ . This will follow from:

 ${\rm Propos}$ rr ${\rm for}$ 13 *. Let* (S^q,M,ν) *be a smooth tube with a triangulation* $(\widehat{S}^q,M_0,\xi_0)$ *which is PL h*-cobordant to a tube having a shrinkable section. If either (a) dim $M \leq q-3$, or *(b) the h-cobordism is a PL I-cobordism, then M is depressible.*

Proof. Let (\hat{S}^q, M_1, ξ_1) be a PL tube with a shrinkable section $f: M_1 \to \partial E_1$, where $\xi_i = (p_i, E_i, M_i)$ for $i = 0, 1$. Let $Z \subset \hat{S}^q \times I$ be a PL *h*-cobordism between $M_0 \times 0$ and $M_1 \times 1$, and let ξ be a PL normal cell bundle on Z which extends $\xi_0 \times 0$ and $\xi_1 \times 1$. Put $\xi = (p, E, Z)$. Thus $Z \cap (S^q \times i) = M_i \times i$. Without loss of generality we assume that $E \cap (S^q \times [0, \frac{1}{2}]) = E_0 \times [0, \frac{1}{2}],$ so that *E* is smooth in a neighbourhood of $E_0 \times 0$. The shrinkable section $f: M_1 \times I \to \partial E_1 \times I$ extends to a PL section $F: Z \to \partial E$, because $M_1 + 1$ is assumed to be a deformation retract of Z, and the covering homotopy theorem is valid for PL bundles. Since f is shrinkable, there is a collapsible $C \subset S^q \times I$ such that $C \cap \partial E = F(M_1 \times 1)$. Let $K = C \cup F(Z)$. It is clear that *K* is contractible, and that *K* is collapsible if *Z* is *PL* homeomorphic to $M_1 \times I$.

Let $T \subseteq E$ be the total space of the open cell bundle corresponding to ξ . That is, $T = E - cl(S^q \times I - E)$. Consider the submanifold $X \subset \hat{S}^q \times I$ defined by $X = (E \cup S^q \times 1) - T$. Observe that $K \subset X$. Let $B \subset X$ be a regular neighbourhood of *K* meeting $\partial X = \partial E_0 \times 0$ in a neighbourhood of $K \cap \partial E = F(M_0 \times 0)$. If *K* is collapsible, then *B* is a *PL* cell. If *K* is contractible, so is *B*, and if dim $M \leq q-3$, then $\dim K \leq \dim X - 3$ and hence ∂B is simply connected. In this case if $\dim X \geq 6$ then *B* is a PL cell by Proposition 9, while if dim $X \le 5$ the theorem is trivial using

On tubular neighbourhoods of manifolds. I 181

standard embedding theorems. Thus we have a q-cell $B \subset X$; X clearly lies on the boundary of $(S^q \times I) - T$. Moreover, both *B* and *X* are smooth in a neighbourhood *U* of $F(M_0 \times 0)$ in *B*. Let $g: M_0 \times 0 \to \partial E_0 \times 0$ be a smooth section of ν_0 whose image lies in U. Then $g(M_0 \times 0)$ lies in the smooth part of B. Proposition 6 now implies that $g(M_0)$, and hence also M_0 , is depressible, proving Proposition 11.

This work was supported by the National Science Foundation, GP-4035.

REFERENCES

- (1) HTRSCH, M. W. On combinatorial submanifolds of differentiable manifolds. *Comment. Math.*
- *Helv.* 36 (1962), 103-111. (2) HIBSCH, M. W. Smooth regular neighborhoods. *Ann. of Math.* 76 (1962), 524-530.
- (3) HmscH, M. W. On embeddings and compressions of manifolds and polyhedra. *Topology,* to
- appear.

(4) HIRSCH, M. W. and MAZUR, B. *Smoothings of piecewise linear manifolds*. Cambridge Uni-

versity, 1964 (mimeographed).
- versity, 1964 (mimeographed). (5) HUDSON, J. P. P. *Extending piecewise linear isotopies.* Cambridge University, 1964 (mimeographed).

(6) IRWIN, M. C. Combinatorial embeddings of manifolds. *Bull. Amer. Math. Soc.* 68 (1962),
- 25-27.
(7) LEVINE, J. *A classification of differentiable knots. Ann. of Math.* 82 (1965), 15-50.
(8) MUNKRES, J. Obstructions to the smoothing of piecewise-differentiable homeomorphisms.
-
- *Ann. of Math.* 72 (1960), 521-554. (9) MUNKBES, J. *Elementary differential topology* (Princeton University Press, 1963).
-
-
- (10) SMALE, S. On the structure of manifolds. *Amer. J. Math.* 84 (1962), 387-399. (11) WHITEHEAD, J. H. C. Simplicial spaces, nuclei and w-groups. *Proc. London Math. Soc.* 45 (1939), 243-327. (12) ZEEMAN, E. C. Unknotting combinatorial balls. *Ann. of Math.* 78 (1963), 501-526.
-