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Towards Simple, Generalizable Neural Networks
with Universal Training for Low SWaP Hybrid
Vision
BAURZHAN MUMINOV, ALTAI PERRY, RAKIB HYDER, M. SALMAN
ASIF, AND LUAT T. VUONG*

University of California Riverside
* LuatV@UCR.edu

Abstract: Speed, generalizability, and robustness are fundamental issues for building lightweight
computational cameras. Here we demonstrate generalizable image reconstruction with the
simplest of hybrid machine vision systems: linear optical preprocessors combined with no-
hidden-layer, "small-brain" neural networks. Surprisingly, such simple neural networks are
capable of learning the image reconstruction from a range of coded diffraction patterns using
two masks. We investigate the possibility of generalized or “universal training” with these
small brains. Neural networks trained with sinusoidal or random patterns uniformly distribute
errors around a reconstructed image, whereas models trained with a combination of sharp and
curved shapes (the phase pattern of optical vortices) reconstruct edges more boldly. We illustrate
variable convergence of these simple neural networks and relate learnability of an image to its
singular value decomposition entropy (SVD-entropy) of the image. We also provide heuristic
experimental results. With thresholding, we achieve robust reconstruction of various disjoint
datasets. Our work is favorable for future real-time low-SWaP hybrid vision: we reconstruct
images on a 15W laptop CPU with 15k fps: faster by a factor of 3 than previously reported results
and 3 orders of magnitude faster than convolutional neural networks.

© 2021 Optical Society of America

1. Introduction

Image reconstruction haswide application inmedicine [1,2], biology [3], X-ray crystallography [4]
and low-light vision, among other technologies. These reconstructions generally involve solving
an inverse problem and retrieving the phase from phase-less intensity measurements. The
field has been an active area of research for several decades [5–7] and inverse solvers achieve
impressive results with additional coded optics or optical scanning [8–21]. More recently, deep
neural networks, and specifically convolutional neural networks, enable single feed-forward,
non-iterative reconstruction [22] and are capable of learning from the statistical information
contained in a variety of systems, from speckle [23,24] to coded diffraction [25] patterns. Inverse
solvers using neural networks are generally faster than iterative, optimization-based, or optical
scanning-based algorithms and may require as few as a 100 illumination training patterns, for
example, with an “unrolled” neural network [26].
However, despite the benefits of using neural networks to solve inverse problems, there are

also drawbacks. Some of these issues—especially those associated with phase retrieval—have
been solved. Others—particular those related to generalizability, robustness, and processing
time or energy—remain active areas of research [24]. Since neural networks learn how to
weigh the importance of information patterns based on training data, they exhibit a tendency to
“memorize” patterns to gain intuition about the task [27]. This predisposition towards prior data
is advantageous for building “inductive, artificial intelligence machines” that extract patterns;
however, that predisposition is a detriment to the generalizability of inverse solutions, e.g., for
building real-time computational cameras. Antun et al. [28] highlight three specific issues



encountered by neural nets in imaging tasks:

1. Small, sometimes undetectable perturbations in the input (both image and sampling domain)
can cause severe artifacts in the image reconstruction,

2. Small structural changes can be left undetected, and

3. More samples in the training set can lead to a deterioration of the results (as a result of
the “memory” effect described above). Subsequently, algorithms themselves can stall or
experience instabilities.

Whereas biomedical applications are aimed at large-image, high-quality image reconstruction
[3], we turn our attention towards building real-time computational cameras for low size, weight,
and power (SWaP) image reconstruction, which are needed for autonomous-vehicle applications.
In our prior effort [29], we demonstrate reconstruction with a “small brain” dual-layer neural
network. Such regression-based approaches [30] demonstrate fast reconstruction rates, robustness
to noise, and show potential for generalization with a phase vortex encoder. Here, we focus
entirely on the generalizability of a simple neural network using a single-layer architecture for
image reconstruction. We supply the model with a generalized or Universal Training Set (UTS)
(synthetic images, used to train the neural network) and then test the neural network with images
of different, unseen classes [see Fig. 1(a)]. A UTS-trained model overcomes the challenges
associated with the “stereotypes” that generally arise from training by a specific image set. On
the other hand, some disadvantages include the fact that the neural network is too simple to
reconstruct images when nonlinear transformations are required [31]. Nevertheless, our results
provide insight for training generalizable neural networks and computational cameras that operate
at fast speeds. Our proposed method can readily be used for the initialization of alternating
minimization problems or downstream image analysis tasks [32–34].
It is perhaps surprising that the simple learning model possesses enough capacity to recover

a good approximation of the inverse coded-diffraction problem, and even with such a simple
neural network there are interesting issues to address. In an effort to move towards producing a
generalized training set, we compare the performance of the vortex encoder with other random
encoders. From there, we build intuition for the UTS design based on the modal decomposition
of the training, diffracted imaging patterns, and SVD-entropy. We also perform experiments,
which build heuristics for real-world applications. We find that the choice of training images and
optical encoder is important for achieving generalizability, since not all imaged patterns provide
a unique mapping to be learned and not all learned intensity patterns aid image reconstruction.
While we have not quantitatively analyzed the image reconstruction i.e., compared the set of
training images to the span of the neural network, we observe that reduced SVD-entropy in the
training set increases the learning efficiency, in both simulations and experiments.

2. Project setup

In this section, we review an approach similar to [29] for our study of generalizable training.
Figure 1(b) shows a schematic of the hybrid machine vision system, which encodes the image
prior to the neural network with either a random or vortex phase pattern.

2.1. The hybrid vision system

The fields from the object at the diffractive encoder plane are � (G, H). The encoder plane is
imprinted with two diffractive element patterns " (G, H), as shown in Fig. 1(c). A sensor or
detector captures the intensity pattern of the electric fields � ′(D, E). Let F be the Fourier
Transform operation (G, H) → (D, E), where we capture an image in the Fourier plane:

� ′(D, E) = F [" (G, H)� (G, H)] (1)



Fig. 1. (a) Project objective: design a generalized training set for a neural network,
which can later be used for general image reconstruction without retraining and operate
real-time. (b) Schematic of hybrid vision camera where light from an object is
transmitted through a diffractive encoder (DE). Sensors capture two transmitted images
that are combined as inputs to the trained neural network, which reconstruct the object
from the detector-plane images. (c) This project employs two pairs of diffractive
encoders: one with low SVD-entropy (lens and topological charge < = 1 and 3) and
the other with high SVD-entropy (uniformly-distributed random pattern).

Light from each object produces two images, each with a different diffractive element
" (G, H). Although the mask pattern may imprint vector (i.e., polarization-dependent) or spectral
(time-dependent) delays, here we assume a homogeneous polarization, a linear encoder, and
monochromatic, continuous-wave light. All optical neural networks have been previously
demonstrated, notably with several diffractive layers in the THz regime [35], with nonlinear
activations via saturable-absorbing nonlinearities [36], and with nano-interferometric etalons [37]
in the visible regime. All-optical methods maximize speed and minimize energy loss in the
neural computation [38]. At the same time, all-optical systems require nonlinear interactions as
proxies for the electronic neural network layer activations. These nonlinearities occur at small
length scales in order to confine light sufficiently, so all-optical computing may be more sensitive
to environmental conditions and less suitable for autonomous-vehicle computational cameras.
By contrast, we focus on hybrid imaging in which optical processing conditions sensor

measurements and an electronic neural network performs reconstruction [39–41]. Our work
is also inspired by pytchography approaches in [10–12]. Two phase masks are used to capture
the intensity measurements of the object on the sensor, which are then fed to a no-hidden-layer
neural network. At this time, we do not predict depth sensing with imaging, so the masks contain
lenses for Fourier-plane detection. Here we reproduce the object based on the detector intensity
patterns and assume that the detector is in the focal plane associated with a quadratic radial phase
of the mask. In recent work, Fresnel mid-field imaging shows potential for better object-based
depth detection [42].



In a manner similar to [29], we generate phase-modulated patterns,

� (G, H)" (G, H) = 48UX� (G, H)" (G, H), (2)

where � (G, H) is the Gaussian beam pattern illuminating the object and X is the positively-valued
original image. This Gaussian pattern represents a smooth pupil function or the illuminating
beam. In our study, we fix U = c and find that the reconstruction quality does not change
significantly when U varies from c/4 to 3c/2.
The general inverse problem for mapping the detector measurements to the original image

involves solving the following nonlinear system of equations:

Y = � (X) + N, (3)

or for our specific case,
Y = |F [48UX� (G, H)" (G, H)] |2 + N, (4)

where Y is the positively-valued sensor measurement, � (·) is a nonlinear transform operator
that includes the transfer function of the optics, light scattering, and the sensitivity curve of the
detector, and N is the measurement noise.

The Fourier-plane intensity patterns Y are the inputs to a neural network. The neural network
estimates X (size 28 × 28) given Y (size 28 × 28 × 2). To train the neural network, we use
the TensorFlow library with the mean squared error loss and Adam optimization algorithm.
Convergence is achieved with similar results using either “linear” or “ReLu” activation. Our
approach is simple and shows promising opportunities for generalized image reconstruction with
“small brain” neural networks.

2.2. Universal Training Sets (UTS) and Diffractive Encoders

We choose two pairs of diffractive encoders. One pair is composed of vortex masks, where each
mask has an on-axis singularity of either < = 1 or 3:

" (G, H) = 4−(G
2+H2) ( 8

5 _
+ 1

F2 )48<q (5)

where 5 is the effective focal length of the radial quadratic phase, _ is the wavelength of light, <
is an on-axis topological charge, and F is the width of the Gaussian beam illuminating the mask.
Figures 1(b,c) show diffractive elements with < = 1, 3. The second pair is composed of random
masks, where each pixel of the transmitted pattern is encoded with a random phase from 0 to 2c.
The mask is also illuminated with the same Gaussian beam. On the side of the training, we work
with a range of images composed of 28 × 28 patterns that are random X', Fourier-based X� , or
shapes related to a vortex phase X+ .
We approach the generalized training to understand the modal distribution of each image X.

In principle, the training images should span the space of the test images, which defines the
requirements for reconstruction. This would suggest that each coded-diffraction Fourier-plane
image should be decomposed into Fourier modes, since this common basis provides a unique
and straightforward basis for each image. Such Fourier patterns are linear wave patterns that
change with phase and vary with variables 9 , :, ;, =:

X� (B 9 ,B: ,q; ,=) (G, H) = ∠(48 (GB 9+HB:+q;) )�= (6)

where combinations of B 9 = 2c 9/3G, B: = 2c:/3H, and : span the Fourier space intended to
reproduce any arbitrary image and # . �= represents a scanning Gaussian beam with varied
width and center,

�= (G, H) = 4−[(G−G=)
2+(H−H=)2 ]/F2

= (7)



Fig. 2. Reconstructed images from (a, b, c) MNIST handwritten and (d, e, f) fashion
MNIST datasets with random, Fourier and vortex bases, respectively. The vortex basis
provides edge enhancement for object detection. (g) Ground truth and (h) reconstructed
images from the CIFAR-10 dataset using the vortex training bases and a vortex mask as
the encoder.

where G=, H=, F= tune size of the UTS to be comparable to others. The size of the dataset also
changes the phase shift, where q: = 2c:/# and # is the number of the uniquely-valued wave
fringes with wave numbers B 9 , B: in X� .
We refer to a “vortex training set” as a UTS composed of shapes similar to the phases of a

vortex beam that have distinct edges and curves:

X+ (G 9 ,H: ,q 9 ,=,;) (G, H) = ∠{48<; tan−1 [ (H−H: )/(G−G 9 ) ]+q: )� 9 ,:,=. (8)

For the vortex X+ as well as the random X' UTS, we use uniformly-distributed random variables



to mask the pattern with a Gaussian profile. In other words, combinations of G 9 , H 9 , and
q: = 2c:/# span the dataset, or

� 9 ,:,= (G, H) = 4−[(G−G 9 )
2+(H−H: )2 ]/F2

= . (9)

This Gaussian function � 9 ,:,= (G, H) represents a scanning light beam that illuminates the training
images. All image patterns are positively-valued and normalized to have a peak value of 1.

We produce three UTS that span the image space using up to 40,000 patterns. The goal of our
project is to illustrate trends and intuition with these datasets.
Once trained with a large dataset, we observe that the dense neural network without hidden

layers can approximate almost any shape-based image (MNIST, fashion MNIST, CIFAR). An
example set of reconstructed images from different classes is shown in Fig. 2. Figure 2 shows
a representative set of images reconstructed from models trained with X� ,X+ , and X' and a
vortex mask. In each case, 20,000 training images are used. Error with thresholding is as low as
10% with test datasets. While the overall error is similar, models trained with the vortex-phase
datasets, X+ , generally have the lowest error and strongly highlighted edges. Meanwhile models
trained with a Fourier basis X� have the highest error and models trained with a random basis X'
have error in between, with error distributed over the area of the image. Additional differences
are explained in the following section.

2.3. Differences in convergence and single-pixel response with different training sets

With this simple neural network and three different UTS, we observe trends in convergence and
overfitting. These trends consistently depend on the choice of the UTS patterns regardless of the
choice of mask "+ or "'. Figures 3(a-c) show samples from 20k-image X� ,X+ , and X' UTS
with the vortex mask "+ . Some pairings converge with minimal overfitting while others do not
provide enough information in Y to calculate the inverse of the nonlinear mapping, � (X) [Fig.
3(d-f)].
A Fourier basis is the most well-known spectral basis for decomposing an image. When

training with a Fourier basis, the validation loss stops decreasing after a certain number of epochs,
which signals that the neural network struggles to extract information about the mapping given
this orthogonal set of images. What this tells us is rather unintuitive about the span or basis of
image reconstruction with neural networks, but potentially addressed in [43]: the images are
less effectively learned by the neural net because there is minimal overlap between them; the
correlations between Fourier modes are less visible to the neural net.
The random UTS also unreliably converges when the dataset is smaller than 2k, and its loss

generally shows a “hill”, where the loss plateaus before dropping. Meanwhile, the vortex-based
UTS is less prone to such behavior. This combination of trends tells us that neither orthogonality
nor randomness is ideal for training a neural network. The structured pattern of our vortex-based
UTS X+ is a better candidate for generalized training compared to random X' or Fourier X�
patterns. In our discussion, we provide some measures related to the UTS image analysis and
trained model robustness.

3. Discussion

In this section, we discuss the ability to recreate sharp images, which may be seen by the
single-pixel response. The single-pixel response from the random UTS-trained neural network is
sharply corrugated [Fig. 4(a)], whereas the structured, single-pixel images from the vortex-trained
model is generally smooth with a sharp “hole” in the center or dark spot [Fig. 4(b)]. We claim that
these differences in the impulse response are responsible for the edge-enhanced reconstruction of
shapes in Figs. 2(c,f). Figures 4(a,b) illustrate example images reconstructed with just one "hot"
pixel in the camera sensor plane. These patterns are the building blocks of the reconstruction



Fig. 3. (a,b,c) Sample training images X' , X� , and X+ or random, Fourier, and vortex
training sets. (d, e, f) Corresponding training and validation curves.

scheme and these patterns change depending on how the model is trained. Depending on the
training set, the model is tuned to pay attention to different features of the image, which may
depend on the task at hand.

Fig. 4. (a) Single "hot" pixel response of the randommodel and (b) single-pixel response
of vortex model, which demonstrates sharp edges and resolves high-contrast objects.
(c) Comparison of reconstruction error for different levels of noise given high-entropy
random UTS and random mask and lower SVD-entropy vortex UTS and vortex mask.
This error corresponds to the scenario in which shot noise dominates the background
noise.

Figure 4(c) provides a simple noise analysis that shows the additional advantage of robustness
when the neural network is trained with a low-entropy UTS. We show the reconstruction error
as a function of noise magnitude. Poisson shot noise and background noise are added to the
Fourier-plane intensity patterns of the test image set. Low SVD-entropy image training and
encoders appear more robust.



3.1. Analysis with Singular Value Decomposition Entropy

In order to estimate complexity of the pattern we employ the measure of entropy. We approximate
the 2D entropy of the images using the spectra of singular value decomposition (SVD), which
describes the complexity of an image. Unlike Shannon entropy [44], SVD-entropy illustrates the
mixture of spatial modes that are present in an image.

Fig. 5. (a) SVD-entropy of a structured pattern composed of the phase of a vortex
(modulus 0, 2c) and a Gaussian mask with radius of F2. A few-pixel pattern has
almost zero entropy, and the SVD-entropy saturates for a vortex depending on the
topological charge. (b) Illustration of these patterns with F2 = [54−3, 54−2, 54−1, 5]
corresponding to SVD-entropy values of [0.94, 1.8, 2.6, and 2.7]. The SVD-entropy
strongly relates to the length of the edge dislocations of an image. (c) Histogram of the
SVD-entropy in the vortex X+ , Fourier X� , and random X' generalized training sets
implemented in this project.

We use a normalized relation for the SVD-entropy that is invariant with image intensity scaling:

�(+� = −
 ∑
1
f8 log2 (f8), (10)

where the argumentf8 is the normalized magnitude of the singular values or the modal coefficients
of the image, given as

f8 =
f8∑ 
1 f8

and
∑
8

f8 = 1, (11)

where  is the number of singular values and f8 are the singular values.
Some trends related to the SVD-entropy are illustrated in Fig. 5. If images in the set have

several high singular values f8 , the images may be reconstructed using fewer "elementary"
patterns; those with higher entropy require many more patterns to achieve enough reconstruction
accuracy. Low SVD-entropy images are smoother with fewer edges. On the other hand, images
with many discontinuities exhibit a high degree of SVD-entropy.

From our analysis of differently structured patterns, the SVD-entropy scales logarithmically
with the edge steps or dislocations in an image [Fig. 5(a-b)]. In this illustration, we plot the phase
of an < = 3 vortex with varied Gaussian-beam filtering. The measure of 2D SVD-entropy aids
our analysis of the UTS. The vortex UTS has a broad range and lower values of SVD-entropy in
contrast to the random UTS [Fig. 5(c)].



Pertaining to our efforts towards generalized training or a UTS, we see that a low SVD-entropy
training set like that with structured patterns X+ allows us to extract the structured (low SVD-
entropy) information from the data [Fig. 2 (c,f,g,h)]. This effectively acts as a filter for salient
features of the image. This low SVD-entropy training would be useful for some specific tasks,
especially when, e.g., we are less interested in the image’s background information than in the
foreground object.

3.2. Heuristic Experiments

Fig. 6. (a) Schematic of experimental reconstruction with UTS. There is no spatial filter
or polarizer, images are noisy and at this wavelength, the modulation dynamic range
is only U = c. This was done intentionally to simulate poor experimental conditions
with background light. (b) Sample random UTS images and (c) sample reconstructed
images produced by random patterns, which are not learned by the simple neural
network model experimentally. On the other hand, (d) simpler images with fewer edges
are (e) reconstructed by the neural network. (f) Sample ground truth images and (g)
discernable reconstructed patterns when the neural network is trained by the vortex
dataset.

To illustrate the potential and the impact of our approach for generalizable training, we show
heuristic experimental results. In simulations, almost any encoded diffraction pattern with a
mask presents a learnable map for a simple neural network. However, in practice when noise
is present, neural networks do not always converge. Our experimental data show that under
noisy experimental conditions where light is unpolarized and the sensor data is collected with
significant levels of noise, the high SVD-entropy dataset is not suitable for the task of image
reconstruction: background light and distortions render a high SVD-entropy training image
useless since the neural network does not learn the pattern. By contrast, a neural network trained
on low SVD-entropy images is capable of recovering reasonable approximations of the unseen
images, as shown in Fig. 6.

Our experimental setup consists of a 633-nm Helium-neon continuous-wave laser, microscope
objective, HOLOEYE Spatial Light Modulator and focusing lenses, and a CMOS 8-bit camera
(1280x1024 pixel resolution). The setup does not include polarizers as part of the design to
provide a large-background and an unmodulated signal to test the limits of image reconstruction
with a simple neural network. As a result, we are unable to recover images with the zeroth-order
transmitted pattern. When we instead collect the sensor data at the first diffraction maximum,



we are successful with image reconstruction but only with the vortex UTS. For reconstruction
purposes, small square patches of the detector pattern are taken (e.g. 50 × 50 pixels).

In our experiments with imperfect spatial beam profiles and background unmodulated noise, the
simple neural networks do not converge with random masks (the results are shown in Fig. 6(b-c)).
Experimentally, we demonstrate two masks shown in Fig. 1(c-d]), which are successfully learned
by the neural network. The low SVD-entropy dataset composed of shapes with straight edges
and curves, i.e., X+ [Eq. 8] converges but the high SVD-entropy random X' patterns do not.
Again, we find it more difficult to train a simple neural network with a high SVD-entropy UTS.

4. Conclusion

Corners, edges, and higher-order solutions are a challenge in image reconstruction, requiring
a higher degree of superposed waves [45]. This more complex representation of images is the
definition of SVD-entropy in an image, and suggests that the reconstruction of such images
requires the learning of images composed of high SVD-entropy patterns [46]. We find, however,
that this is not always the case when aiming for robust neural network-based reconstruction. In
fact, generalized training with low-entropy patterns recreates these sharp features well with edge
enhancement.

We show that a simple neural network without hidden layers is capable of learning generalized
image reconstruction. With this simple architecture designed to approach generalized training,
it is evident that not all generalized data sets are equal. When we compare the convergence of
differently structured datasets such as handwritten digits and fashion MNIST, a set of images or
encoder based on vortex phase patterns (structured, low SVD-entropy, a combination of edges
and curves) yields image reconstruction with lower error than a high SVD-entropy random
encoder pattern that contains many edges. With a dataset such as CIFAR, the salient features are
preserved in image reconstruction using a vortex UTS.
We have previously shown that a convolutional neural network can outperform a single layer

neural network but with significantly higher energy cost. The deep neural network is also less
robust to noise [29]. Here, we aim to work with a "small brain" neural network rather than a
deep neural network architecture. This approach has been specifically tuned with the aim of
low-SWaP computational cameras. We conclude that

• Single-layer neural networks are capable of approximating the inverse mapping from
phaseless Fourier-plane intensity patterns after basic training.

• Such moderate-accuracy generalizable image reconstruction achieves high speeds (we
achieve 15k fps on a 15W laptop CPU).

• Image reconstruction with simpler neural networks are robust to the vulnerabilities and
instabilities described by [28].

• Even with a simple neural network architecture and a large training basis set, we encounter
differences in convergence. (Experimentally with an imperfect encoder, neural networks
learn low SVD-entropy images more rapidly and reliably than high SVD-entropy.)

• Low SVD-entropy images are valuable in training neural networks to extract the salient
features of the image.

Additional advantages of a UTS include what is likely a generalized upper bound for error [3],
higher robustness, and high potential for low-SWaP computational cameras. Because of its low
computational complexity, our approach in the future may be inverted to uncover the inverse
mapping in data-driven models to solve inverse problems. A higher degree of sampling over the
sensor images (i.e., zero-padding) may further reduce the reconstruction image error and even



provide additional advantages, i.e., super-resolution phase retrieval from multiple phase-coded
diffraction patterns, [47] and depth detection [48].
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