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Abstract

The majority of the heritability of coronary artery disease (CAD) remains unexplained, despite recent successes of genome-
wide association studies (GWAS) in identifying novel susceptibility loci. Integrating functional genomic data from a variety
of sources with a large-scale meta-analysis of CAD GWAS may facilitate the identification of novel biological processes and
genes involved in CAD, as well as clarify the causal relationships of established processes. Towards this end, we integrated
14 GWAS from the CARDIoGRAM Consortium and two additional GWAS from the Ottawa Heart Institute (25,491 cases and
66,819 controls) with 1) genetics of gene expression studies of CAD-relevant tissues in humans, 2) metabolic and signaling
pathways from public databases, and 3) data-driven, tissue-specific gene networks from a multitude of human and mouse
experiments. We not only detected CAD-associated gene networks of lipid metabolism, coagulation, immunity, and
additional networks with no clear functional annotation, but also revealed key driver genes for each CAD network based on
the topology of the gene regulatory networks. In particular, we found a gene network involved in antigen processing to be
strongly associated with CAD. The key driver genes of this network included glyoxalase I (GLO1) and peptidylprolyl
isomerase I (PPIL1), which we verified as regulatory by siRNA experiments in human aortic endothelial cells. Our results
suggest genetic influences on a diverse set of both known and novel biological processes that contribute to CAD risk. The
key driver genes for these networks highlight potential novel targets for further mechanistic studies and therapeutic
interventions.
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Introduction

Coronary artery disease (CAD) remains a leading cause of death

worldwide despite a variety of available interventions to reduce

cardiovascular events. CAD is partly familial [1,2], which

motivates genetic studies to elucidate novel pharmacological

targets. However, large-scale genome-wide association studies

(GWAS) have revealed a complex genetic architecture of CAD

susceptibility with modest effect sizes for the single nucleotide

polymorphisms (SNPs) detected to date [3,4]. The heritability

explained by the top SNPs is approximately 10%, whereas the

estimates of total heritability from family studies are substantially

higher, between 30% and 50% [1,2]. Furthermore, the SNP

associations themselves rarely provide evidence on their down-

stream functional consequences, which has prompted the need to

integrate DNA variants with functional data to better understand

the pathogenic processes.

Genes and their downstream products comprise a complex

regulatory machinery that sustains the delicate homeostasis of an

organism in a changing environment [5]. Genetic variants can

perturb parts of this regulatory network and its ability to restore

and maintain homeostasis in the presence of environmental

pressure. Consequently, the dysregulated biological processes such

as cholesterol metabolism and transport can eventually lead to

CAD [6]. To elucidate additional as yet unidentified CAD-related

processes, regulatory and functional data on the intermediate

tissue-specific molecular phenotypes are essential [7–9]. Regula-

tory networks between genes can be captured by various network

reconstruction algorithms [10–13]; functional information of

genetic variants can be derived from expression quantitative trait

loci (eQTLs; contain expression SNPs or eSNPs) that inform on

the downstream target genes of genetic variants [8,14–16].

Integration of these empirical data allows us to aggregate eSNPs

from multiple interacting genes into eSNP sets that collectively

perturb a part of the regulatory network. Subsequently, the eSNP

sets can be directly compared with SNP-to-disease associations

from a GWAS to connect gene networks to disease.

In this study, we apply an integrative genomics framework

(illustrated in Figure 1) to identify the genetically perturbed

regulatory networks that contribute to CAD. We make use of four

distinct types of data sources. First, associations between SNPs and

CAD were determined in 16 independent GWAS – 14 from the

CARDIoGRAM Consortium and two from the Ottawa Heart

Institute [4,17]. Second, the effects of SNPs on gene regulation

were determined according to eQTLs in multiple tissue-specific

genetics of gene expression studies of CAD-related tissues or cell

types in humans. As a result, we were able to link the CAD SNPs

from the GWAS with their empirically defined target genes.

Third, we downloaded known metabolic and signaling pathways

(in the form of gene sets) from public repositories, and

complemented these known pathways with data-driven network

modules of co-expressed genes from multiple transcriptomic

studies, to investigate the collective genetic risk via multiple

functionally related genes. Finally, we overlaid the identified CAD-

associated gene sets onto causal network models of gene-gene

interactions from multiple genomic studies to pinpoint the most

central regulatory genes. This combination of human genetics,

functional genomics, tissue-specific gene networks from empirical

data, and biological knowledge in this integrative genomics

framework provides us with further insights into the known and

hitherto unknown pathogenic processes that are relevant for CAD.

Results

SNP set enrichment analysis (SSEA) of canonical
pathways

Our first aim was to test if any of the known biological pathways

curated in Reactome, Biocarta and Kyoto Encyclopedia of Genes

and Genomes (KEGG) databases [18,19] was more likely to

harbor tissue-specific eSNPs that were also associated with CAD in

GWAS (Figure 1A). To reduce false discovery and identify the

most robust signals, we implemented a multi-stage design that

utilized two independent sets of CAD meta-analysis (Stage 1 and

Stage 2) each involving distinct sets of CAD cohorts, as well as the

overall meta-analysis of all 16 CAD cohorts (combined Stage 1+2

set; see Methods for details). The QQ plots of these three sets of

meta-analysis are shown in Figure S1. As majority of the cohorts

were from the CARDIoGRAM consortium, the GWAS results

from our new meta-analysis closely resembled those of CARDIo-

GRAM reported previously [4] and there were no new loci

identified at genome-wide significance level (Table S1). Tissue-

specific eSNPs from CAD related human cells or tissues including

adipose tissue, liver, human aortic endothelial cells (HAECs),

blood, as well as a pooled eSNP set from multiple tissues and cell

types (denoted as ‘All eSNPs’), were used for eSNP-to-gene

mapping, yielding five sets of eSNPs mapped to each pathway

(Materials and Methods). Each eSNP set representing a pathway

was then compared with random eSNP sets drawn from the

background eSNPs of matching tissue to look for enrichment of

low p value associations with CAD in GWAS using SSEA.

Enrichment was measured by a score calculated as the mean -log

P-value from Kolmogorov-Smirnov test and Fisher’s exact test (see

Methods) in SSEA. We defined a pathway to be significantly

associated with CAD when permutation-based false discovery

rates (FDRs) from Stage 1, Stage 2, and combined Stage 1+2

analyses simultaneously reached 20%, 20%, and 5%. Considering

that Stage 1 and Stage 2 GWAS datasets were independent, the
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combined FDR from these two sets of analysis was expected to be

,5% (20% * 20% = 4%). An additional requirement for FDR,

5% from the combined Stage 1+2 analysis further ensured low

FDR.

To test whether our method can pick up true positive signals, we

selected two predefined CAD gene sets based on the GWAS

Catalog [20] and CADgene database [21] (details in Methods) as

positive controls. These positive controls exhibited strong and

consistent signals across multiple sets of SSEA using eSNPs from

individual tissues (7,score,29; equivalent to 1e-7,p,1e-29),

supporting the sensitivity of our approach. A total of 79 out of

833 canonical pathways tested were associated with CAD in at

least one of the five sets of SSEA using different eSNP sets

(Table 1; full results in Table S2). Among these, the lipid and

lipoprotein pathway from Reactome was significant in adipose

eSNP analyses (score 9.8). On the other hand, the bile acid

recycling pathway was strongly indicated by the liver eSNPs

(score 8.5). The next large group of CAD-associated pathways

was related to the immune system: ‘Immunoregulation with

lymphoid and non-lymphoid cells’ was the top Reactome

pathway (score 11.4 for adipose eSNPs), ‘Antigen processing

and presentation’ from KEGG was significant in the liver (score

10.8), and ‘Adhesion and diapedesis of granulocytes’ from

Biocarta was a significant pathway when using the HAEC eSNPs

(score 3.7). A number of pathways that were directly related to

the vascular system or heart, and four pathways that were related

to blood coagulation were also associated with CAD. For

instance, the SSEA implicated the vascular endothelial growth

factor (VEGF), hypoxia and angiogenesis pathway, and the

platelet/endothelial cell adhesion molecule 1 (PECAM1) path-

way. In essence, the analysis of the curated pathways was able to

detect genetic links between CAD and its classical risk factor

dyslipidemia, and other suspected CAD processes such as

inflammation and vascular dysfunction. More importantly, the

use of tissue-specific eSNPs sets helped implicate the most

relevant tissues for the significant pathways.

Our analyses also revealed pathways that so far have not been

clearly implicated in CAD development. These included four

pathways related to the nervous system (such as ‘Erythropoietin

mediated neuroprotection through NF-kB’ and ‘TrkA receptor

signaling pathway’ from BioCarta), 13 cell cycle and proliferation

pathways (such as ‘NRAGE signals death through JNK’ from

Reactome and ‘EGF signaling’ from BioCarta), and ten DNA or

RNA pathways (such as ‘Spliceosome’ from KEGG and ‘E2F

regulation of DNA replication’ from Reactome). Furthermore, we

observed pathways such as ‘Phase I functionalization’ from

Reactome and ‘Proteasome’ from KEGG that have a role in the

disposal and neutralization of harmful molecules. Pathways that

covered amino acids and peroxisome proliferator-activated

receptors were also among the significant signals.

We compared the top knowledge-driven pathways detected with

our eSNP-based SSEA to those detected by several widely used

location-based gene-to-SNP mapping methods for gene set

enrichment analysis including iGSEA4GWAS [22], MAGENTA

[23] and GSA-SNP [24], and observed considerable variation in

the results between methods, with relatively greater consistency

between our SSEA approach and iGSEA4GWAS (data not

shown). The results from iGSEA4GWAS are reported in a

separate manuscript by Ghosh et al (under review). We found that

signals from SSEA such as lipid metabolism, immune and

inflammatory pathways, PDGF signaling, NOTCH signaling,

and PPAR signaling could be replicated in one or more of the

other methods tested. Nonetheless, SSEA and iGSEA4GWAS

each yielded additional biologically plausible pathways.

Our current analysis included majority of the large-scale CAD-

related eQTL sets published before mid 2013. During the revision

of this manuscript, several additional blood eQTLs became

available [25–27]. We tested the pathways identified in our study

using the updated blood eQTLs and found minimal impact on our

main results, with Pearson correlation coefficient of the pathway

scores being 0.96 (comparison between scores before and after

incorporating the new blood eQTLs is shown in Table S3).

SSEA of co-expression modules and formation of non-
overlapping supersets

To uncover hitherto unknown biological processes, we aug-

mented the set of canonical pathways with data-driven co-

expression modules (empirical sets of tightly co-regulated genes)

from multiple previous human and mouse studies (detailed in

Materials and Methods). A total of 341 of the 2,706 modules tested

satisfied the FDR,20% in both Stage 1 and Stage 2, and FDR,

5% in the combined meta-analysis (Table S4). Given that

canonical pathways defined by different databases may overlap

and also co-expression modules may overlap with known

biological pathways, we collected all CAD-associated gene sets

regardless of their source (79 canonical pathways + 341 co-

expression modules = 420 in total), and analyzed their overlap

structure (Figure 1B; overlap matrix in Figure S2). After merging

CAD gene sets with overlap of .20% in their member genes

(details in Materials and Methods), 62 non-overlapping merged

supersets remained.

To ensure the merged supersets still captured the features of the

significant pathways, we performed a second round of SSEA on

the supersets and applied a stringent Bonferroni-corrected

statistical cutoff (correcting for the total number of pre-merged

gene sets, n = 3539, not 62 supersets) to focus on the most reliable

signals. Therefore, although the second round of SSEA was mainly

confirmatory to ensure that we did not lose the signals during

merging/trimming, a highly stringent Bonferroni-correction that

considered multiple testing of 3539 original gene sets (not 62

Author Summary

Sudden death due to heart attack ranks among the top
causes of death in the world, and family studies have
shown that genetics has a substantial effect on heart
disease risk. Recent studies suggest that multiple genetic
factors each with modest effects are necessary for the
development of CAD, but the genes and molecular
processes involved remain poorly understood. We con-
ducted an integrative genomics study where we used the
information of gene-gene interactions to capture groups
of genes that are most likely to increase heart disease risk.
We not only confirmed the importance of several known
CAD risk processes such as the metabolism and transport
of cholesterol, immune response, and blood coagulation,
but also revealed many novel processes such as neuro-
protection, cell cycle, and proteolysis that were not
previously implicated in CAD. In particular, we highlight
several genes such as GLO1 with key regulatory roles
within these processes not detected by the first wave of
genetic analyses. These results highlight the value of
integrating population genetic data with diverse resources
that functionally annotate the human genome. Such
integration facilitates the identification of novel molecular
processes involved in the pathogenesis of CAD as well as
potential novel targets for the development of efficacious
therapeutic interventions.
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supersets after merging) further ensures that the signals passed the

threshold were truly robust. Note that this level of Bonferroni

correction is highly conservative because we are treating all 3539

gene sets as independent. In reality, the highly overlapping

structures among these gene sets make the number of truly

independent gene sets much smaller.

Out of the 62 non-overlapping supersets, 22 were confirmed to

be genetically associated with CAD in the second round of SSEA

(Table S5) and the top six supersets are summarized in Table 2.

The data-driven supersets implicated lipid metabolism (‘Lipid I’

and ‘Lipid II’), the immune system (‘Immunity’ and ‘Antigen’) and

coagulation processes (‘Lipid II’), consistent with the findings from

the canonical pathways. Eight supersets did not significantly

overlap with any known pathway or process and could not

therefore be annotated by functional categories (hence named

‘‘Unknown’’; Table S5).

Key driver analysis (KDA) of CAD-associated gene
supersets

In order to determine the regulatory genes (referred to as key

drivers) at the center of the CAD-associated supersets as a means

to further explore regulatory mechanisms and prioritize disease

genes, we performed KDA using tissue-specific Bayesian network

models constructed from transcriptomic and genetic datasets from

multiple human and mouse studies (Figure 1C; details in Materials

and Methods) [12,28,29]. The topology of these Bayesian

Figure 1. Schematic overview of the study design. A) The SNP set enrichment analysis (SSEA) comprised four steps. First, gene sets from
knowledge-driven pathways and data-driven co-expression modules were collected. Second, the gene sets were converted to expression SNP (eSNP)
sets according to genetics of gene expression or eQTL studies. Third, P-values from CAD GWAS were extracted for each eSNP. Fourth, the GWAS P-
values within eSNP sets were compared against random expectation to derive pathways and network modules enriched for CAD genetic signals. B)
Overlapping CAD-associated gene sets were merged and trimmed into non-overlapping supersets. C) Integration of Bayesian gene-gene network
models with CAD-associated supersets to determine key driver genes based on network topology.
doi:10.1371/journal.pgen.1004502.g001
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networks captures detailed gene-gene regulatory relationships and

can help infer key network drivers. The KDA results for the top six

supersets are summarized in Table 3 and full list of key drivers are

in Table S6. To test if the key driver genes were also responsible

for the enrichment of CAD genetic signals in each of the CAD

superset, we also ranked and selected the member genes whose

eSNPs (i.e., SNPs that are associated with the expression levels of

the member genes) showed the strongest CAD association within

the superset, termed ‘‘GWAS signal genes’’, for comparison

(Table 3). Interestingly, the key driver genes were mostly different

from the GWAS signal genes, which supports a previously

observed phenomenon [30] that important regulatory genes may

not harbor common susceptibility polymorphisms by natural

selection and, conversely, that a majority of common disease

susceptibility loci (as captured by GWAS) do not involve key

regulatory genes but are situated in the periphery of biological

networks.

Both the ‘Lipid I’ and ‘Lipid II’ supersets fell under the general

category of lipid and fatty acid metabolism (Figure 2A and 2B).

They share 14% of their members, including seven apolipopro-

teins, but were considered non-overlapping according to our a
priori overlap threshold of 20%. In fact, the key drivers for ‘Lipid

Table 1. Knowledge-based grouping of canonical pathways that were significantly enriched for CAD genetic loci.

Category Selected pathways All eSNPs Adipose Liver Blood HAEC

Control GWAS Catalog 29.0* 9.0* 25.1* 17.2* 7.3*

CADGene 12.0* 11.9* 9.1* 1.3 1.7

Lipids (9) Metabolism of lipids and
lipoproteins (Reactome)

10.0* 9.8* 2.4 0.7 1.0

Fatty acid metabolism (KEGG) 5.2* 10.3* 1.6 0.4 0.7

Recycling of bile acids and
salts (Reactome)

5.3* - 8.5* - -

Immune system (24) Immunoregulation between
lymphoid and other cells (Reactome)

9.4* 11.4* 8.6* 1.8 1.6

Antigen processing and presentation
(KEGG)

8.9* 8.1* 10.8* 2.9* 3.0

Th1/Th2 differentiation (Biocarta) 6.6* 5.1* 5.3* 2.0 0.2

Adhesion and diapesis of lymphocytes
(Biocarta)

3.3 6.0* - 0.8 3.6*

Adhesion and diapedesis of
granulocytes (Biocarta)

3.3 3.8* - 0.9 3.7*

Cellular stress response (6) VEGF, hypoxia and angiogenesis
(Biocarta)

4.5* 7.7* 5.9* 3.2 1.4

Erythropoietin mediated
neuroprotection through
NF-kB (Biocarta)

3.0* 4.8* 4.6* 2.2 2.6

Hypoxia-inducible factor in the
cardiovascular system (Biocarta)

1.5 3.8* 2.6 1.9 1.1

Cell cycle and growth (18) Notch-HLH transcription (Reactome) 2.5 3.3* - - 0.6

NRAGE signals death through JNK
(Reactome)

3.2* 3.7* 2.5 5.3* 0.5

EGF signaling pathway (Biocarta) 1.7 2.7* 1.7 1.8 1.2

G1/S transition (Reactome) 1.2 0.6 5.3* 0.1 0.2

DNA and RNA (7) Double-strand break repair
(Reactome)

3.1* 2.5 2.3 3.3* 0.7

Spliceosome (KEGG) 1.7 0.6 0.3 5.9* 0.5

Protein metabolism (6) Metabolism of proteins
(Reactome)

2.1* 4.2* 1.1 2.6 1.5

Proteasome (KEGG) 0.9 0.3 3.6* 0.2 0.7

Post-translational protein
modifications (Reactome)

1.3 3.6* 2.3 0.7 1.5

Other (6) Bioactive peptide induced
signaling (Biocarta)

3.2* 5.9* 0.3 1.5 0.2

PPAR signaling pathway (KEGG) 3.1* 5.9* 0.6 0.6 0.7

Glycine, serine and threonine
metabolism (KEGG)

2.4* 2.2* 1.3 2.4 3.4

The enrichment score was defined as the mean of negative log-transformed Kolmogorov-Smirnov and Fisher P-values for over-representation of high-ranking GWAS
SNPs among the eSNPs that affect the expression of the pathway member genes. The number in parentheses in the first column indicates the number of CAD-
associated pathways (detailed in Table S1).
*FDR,20% in Stage 1 and 2 respectively, and FDR,5% in combined Stage 1 & 2.
doi:10.1371/journal.pgen.1004502.t001
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I’ comprise genes important for fatty acid metabolism (DCI,

ETFDH and EHHADH) and cholesterol biosynthesis (SQLE),

whereas ‘Lipid II’ was regulated by coagulation (PLG and

HRG) and carrier proteins (GC and PZP), which confirms non-

overlapping functionality between the two supersets. Of note,

two critical genes involved in lipoprotein metabolism, LPL
and LDLR, were among the top GWAS signals genes for

‘Lipid I’.

Two supersets of immune system genes – ‘Antigen’ and

‘Immunity’ - were significantly enriched for CAD loci in adipose

tissue and the liver (Figure 2D and 2E). The ‘Antigen’ superset

owes its annotation to the human leukocyte antigen (HLA) and

mouse HLA orthologs (H2 genes) that comprise 21 of the 221

member genes. We found the key drivers for this superset such as

GLO1, PPIL1 and DECR2 to be highly consistent across

Bayesian networks from multiple tissues (Table S7). The ‘Immu-

nity’ superset contains a variety of immune response genes

including six HLA genes and 18 cytokines or their receptors such

as CCL2, CD antigen genes, CXCL10, IL2RB and TLR2. Four of

the top five key drivers for the ‘Immunity’ superset (PTPRC, FYB,

FCGR1A and FCER1G) participate in the immune response, and

three (PTPRC, FYB and FCER1G) have been previously

identified as key drivers of an inflammatory gene signature

underlying multiple diseases (including CAD) [12].

We could not annotate two out of our six top supersets

(‘Unknown I’ and ‘Unknown II’). These supersets, however, have

consistent network key drivers across multiple tissues (Figure 2C

and 2F, Table S7). ‘Unknown I’ contained a diverse set of key

driver genes such as SGK1, SIK1 and SLC10A6 (sodium

metabolism and hypertension), MT2A and TSC22D3 (glucocor-

ticoid signaling), GADD45G, ERRFI1, GPRC5A, and EGFR
(cell growth and apoptosis), and CEBPB, CEBPD, and KCNA5
(heart development and function). Possible functions of ‘Un-

known II’ include RNA metabolism (ZC3H7B), protein methyl-

ation (PRMT1), glycosylation (ALG8), chaperone recycling

(DNAJC7) and ubiquitination (UBE2S), and similar annotations

could also be found for the network neighboring genes of these

key drivers. Of note, the gene CYP39A1 which converts

cholesterol into bile acid was shared between ‘Lipid I’, ‘Antigen’

and ‘Unknown II’ supersets.

Table 2. CAD enrichment scores for selected non-overlapping supersets after the merging of CAD-associated canonical pathways
and co-expression modules.

Superset Overlap with known processes All eSNPs Adipose Liver Blood HAEC

Lipid I Lipid, fatty acid and steroid metabolism;
oxidoreductase; PPAR signaling;
mitochondrial beta-oxidation;
branched-chain amino acid degradation;
cholesterol biosynthesis; unsaturated
fatty acid biosynthesis

5.4* 9.4* 0.4 0.4 0.7

Lipid II Lipid, fatty acid and steroid metabolism;
oxidoreductase; vesicles; xenobiotics;
complement and coagulation system

10.3* 11.0* 1.9 1.8 0.1

Antigen Human leukocyte antigens; bone
reabsorption

10.3* 9.5* 8.6* 3.7 1.1

Immunity Wound and inflammatory
responses; cell activation

6.1* 7.4* 8.7* 1.5 1.4

Unknown I - 3.5 7.4* 4.4 1.2 0.2

Unknown II - 2.9 6.4* 3.9 2.2 0.2

The enrichment score was defined as the mean of negative log-transformed Kolmogorov-Smirnov and Fisher P-values for over-representation of high-ranking GWAS
SNPs among the eSNPs that affect the expression of the superset member genes.
*P,0.05 in either Fisher’s exact test or Kolmogorov-Smirnov test after Bonferroni correction for the 3,539 original gene sets.
doi:10.1371/journal.pgen.1004502.t002

Table 3. Top five genes whose eSNPs show strongest association with CAD in GWAS (termed ‘‘GWAS signal genes’’) and key driver
genes for selected CAD-associated supersets.

Superset GWAS signal genes* Key driver genes#

Lipid I SREBF1, LPL, LDLR, CYP4A11, ME1 DCI, SQLE, ETHDH, SLC22A5, EHHADH

Lipid II TMEM116, TMEM27, MAT1A, LRRC19, NAT2 GC, CES3, PZP, HGR, PLG

Immunity CTSS, HLA-B, OAS1, HLA-DRB1, HLA-DQB1 PTPRC, NCKAP1L, FCGR1A, FYB, FCER1G

Antigen CD2AP, AS3MT, HCG4, TAF11, FLOT1 VPS52, PPIL1, GLO1, GFER, DECR2

Unknown I NT5C2, SURF6, ARL3, LMO4, TIE1 DNAJC7, UBE2S, ALG8, ZC3H7B, PRMT1

Unknown II ALS2CR13, TMEM116, C10orf26, CEACAM3, NM_152451 CEBPD, SGK1, SLC10A6, KCNA5, MAP3K6

*Genes within superset whose eSNPs (i.e. putative functional SNPs that affect gene expression) show best association with CAD in the GWAS meta-analysis.
#The key driver genes were ascertained by combining key driver analyses of all available Bayesian networks, and taking into account both the consistency across
datasets and the KDA statistics.
doi:10.1371/journal.pgen.1004502.t003
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Experimental validation of the key drivers of the top-
scoring superset

The ‘Antigen’ superset had the highest combined CAD

association score across the five sets of SSEA using eSNP sets

from different tissues (Table 2) and their key driver genes identified

were highly consistent across the Bayesian networks used for KDA

(Table S7). For these reasons, we tested the effects of silencing

three of the key drivers, glyoxalase I (GLO1), peptidylprolyl

isomerase I (PPIL1) and peroxisomal 2,4-dienoyl CoA reductase 2

(DECR2), on the expression of member genes in the ‘Antigen’

superset in HAECs, aiming to validate the role of these key drivers

in regulating this CAD superset. HAECs were chosen based on

their critical role in maintaining a healthy vessel wall and

knowledge that endothelial dysfunction is observed early in the

development of atherosclerosis [31]. Of note, the number of

HAEC specific eSNPs was relatively low due to the limited sample

size in the original study [32], which could explain the lack of

significant pathway enrichment signals in this cell type in this

study. However, this statistical power issue should not be

misconstrued as a lack of relevance of this cell type in the

pathogenesis of CAD.

Three separate siRNAs against the GLO1 transcript NM_006708

(Qiagen Catalog Numbers SI04175892, SI04206244, SI04266052)

resulted in 86%, 88% and 91% reduction in GLO1 expression, and

siRNA SI04284224 against the PPIL1 transcript NM_016059

resulted in 87% reduction. DECR2 expression level was too low

in HAECs to be informative. Whole genome transcript

expression in response to GLO1 and PPIL1 suppression was

measured using microarrays and then compared with that from

scrambled siRNAs (null control) to detect genes with significant

changes.

A total of 485 and 656 genes were affected by GLO1 and

PPIL1 suppression, respectively (P,0.001 for both). Due to

substantial overlap (281 genes were affected by both GLO1 and

PPIL1), we pooled the 860 unique genes that were significantly

affected by either GLO1 or PPIL1. We determined how many of

these top genes were neighbors by two edges to any of the five key

drivers (GLO1, PPIL1, DECR2, VPS52 and GFER) of the

‘Antigen’ superset when considering all available Bayesian

networks. We found the 547 neighbor genes to be enriched for

the differentially expressed genes by 1.7 fold (37 observed vs. 21.5

expected, P = 5.561024 by Fisher’s exact test), indicating that the

suppression of GLO1 and PPIL1 perturbed the ‘Antigen’ superset

in HAEC.

To verify the connection of GLO1 and PPIL1 perturbations to

CAD, we tested the two pre-defined CAD positive control gene

sets (Table 1) against the differential P-values from the siRNA

experiments. The CADgene positive control set was significantly

associated with altered expression due to either GLO1 (PFisher,

0.0001, PK-S = 0.0042) or PPIL1 suppression (PFisher,0.0001,

Figure 2. Key driver genes of six CAD-associated supersets, and their adjacent regulatory partners. Key driver genes were denoted as
larger nodes in the network. Genes were colored based on their membership in the six CAD-associated supersets. A) ‘Lipid II’ superset in red. B) ‘Lipid
I’ superset in yellow. C) ‘Unknow II’ superset in lime. D) ‘Immunity’ superset in green. E) ‘Antigen’ superset in blue. F) ‘Unknown I’ superset in magenta.
Only edges that were present in at least two Bayesian networks constructed from independent studies were included.
doi:10.1371/journal.pgen.1004502.g002
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PK-S = 0.0085). These results indicate that the expression levels of

genes from CAD-related processes are significantly more affected

by GLO1 and PPIL1 knockdown compared to a random set of

genes in HAEC.

Discussion

We performed an integrative genomics study that combined

association signals from a large GWAS, tissue-specific eQTL

datasets, known canonical pathways, and data-driven regulatory

networks to gain insights into the causal molecular mechanisms of

CAD. Our approach identified both established and novel

biological processes supported by functional evidence; specifically,

the expression levels of the member genes within these processes

were controlled by multiple CAD-associated SNPs. To dissect the

key regulatory mechanisms, we derived a network representation

of the central genes involved in the pathogenic processes and

investigated how the affected genes were related to known

biological pathways and metabolic cascades and how the processes

were inter-connected in multi-tissue regulatory networks. Our

study revealed a highly complex and multifactorial genetic basis

for CAD, and implicated several known and novel causal

pathways along with their potential regulators deserving of further

study.

Several aspects of this study distinguish it from previous

pathway and network studies of CAD. First, we used data from

eQTL studies of CAD-related tissues or primary cell types to

assign eSNPs to genes, whereas previous approaches have

primarily utilized genomic location for assignment of SNPs to

genes [3,22,23,33,34]. Our method incorporates empirical func-

tional support and tissue specificity into the analyses to increase

the sensitivity of detecting tissue-specific molecular events that

would have been missed by conventional methods [22,23,33] and

to enhance the biological and mechanistic interpretability of the

disease-related signals [9,35–37]. Our partial re-analysis of data

incorporating recently reported blood eSNPs suggests that the

addition of new eQTLs reinforces the significance of the pathways

identified thus far. Second, we tested both knowledge-driven and

data-driven gene sets to expand the coverage of novel biological

processes. Third, we used two large independent CAD GWAS

meta-analyses, merged and trimmed overlapping CAD-associated

gene sets, and imposed a strict Bonferroni threshold for final

statistical evaluation of the CAD signals to avoid false positives and

focus on the most reliable core processes for CAD. Fourth, we

utilized scores of empirically-derived gene networks from diverse

CAD-related tissues to extract the CAD network architecture and

the key driver genes, whereas previous studies have relied on

literature-based topologies, protein-protein interaction networks,

or single-tissue networks [3,38–40]. Lastly, we performed targeted

siRNA studies in HAEC to provide experimental support for our

in silico findings.

Of note, the KDA approach we utilized has been recently

demonstrated by multiple studies to have the capacity to identify

hidden novel regulatory genes that are missed by traditional

analysis, and novel predictions from each of these studies have

been experimentally validated [12,28,41]. The key drivers

identified, however, are not necessarily GWAS hits. In contrast,

it is their downstream or peripheral genes that are more likely to

be identified in GWAS and the expression of these genes are more

likely to be cis-regulated by GWAS SNPs. This may explain why a

majority of the GWAS hits uncovered to date only have small

effects on complex disease phenotype. As elucidated previously by

Goh et al. [30], the lack of GWAS signals from key driver genes

can be explained by evolutionary constraints imposed on

important regulators because strong genetic perturbations in these

key regulators are more likely to be deleterious. If certain genetic

polymorphisms within key regulatory genes (e.g., transcription

factors) indeed successfully segregate in general population and

can be identified in GWAS, these polymorphisms tend to be cis-
eSNPs of the regulators themselves and then trans-eSNPs of

additional disease genes [25].

Our results support the role of genetic perturbation to lipid

metabolism, immune response and inflammation, coagulation,

and vascular wall function in the etiology of CAD. Apart from

cholesterol metabolism and transport, a causal role for many of

these processes in pathogenesis of CAD has been debated for

years. For instance, recent Mendelian randomization studies as

well as randomized control trials of cardiovascular drugs have

demonstrated that a number of known key genes within these

pathways (e.g. CRP, fibrinogens) are not causally associated with

CAD [42–44]. Our results suggest that a critical mass of causal

variants may be inherited within many of the genes in these

pathways even if the pathway includes some genes that have no

causal role in the pathogenesis of CAD.

We identified novel biological processes such as neuroprotec-

tion, cell cycle and proteolysis that were perturbed by the CAD-

associated genetic variants. Furthermore, the data-driven network

models identified CAD-associated gene sets that did not overlap

with any known biological processes. We merged the knowledge-

based biological pathways and data-driven functional units of

genes derived from expression patterns to bridge the knowledge

gaps, and focused on six gene sets that were not only strongly

associated with CAD in human GWAS but also exhibited a

consistent causal network topology around a limited number of

key regulatory genes.

The supersets ‘Lipid I’ and ‘Lipid II’ are involved in cholesterol

and lipid biosynthesis or degradation. The ‘Lipid II’ superset

appears to have more diversified functions beyond lipid biosyn-

thesis and transport, as it contains multiple additional genes from

coagulation and complement pathways. If ‘Lipid I’ and ‘Lipid II’

were simultaneously perturbed, one can speculate that the lipid

transport system would become overwhelmed, wound healing

processes and the complement cascade would become over-

activated, and the lipid-rich debris would feed the accumulation

of plaque on the vessel wall. Furthermore, two of the central

genes in Lipid II, plasminogen (PLG) and the histidine-rich

glycoprotein (HRG) regulate the fine balance between clotting

and fibrinolysis, which can affect the propensity of thrombosis

after plaque rupture.

The strongest overall CAD association was observed for the

‘Antigen’ superset. The key drivers were highly consistent

across tissues but, surprisingly, none of them have been directly

implicated in antigen processing. In fact, many of the network

driver genes appear to be involved in protein processing, and

endosomal and lysosomal functions. For instance, glyoxalase 1

(GLO1) plays a critical part in the enzymatic defense against

dysfunctional glycated forms of proteins [45], the vacuolar

protein sorting 52 homolog (VPS52) is involved in the

transport and sorting of proteins from the plasma membrane

to the lysosome via mannose-6-phosphate receptors [46], the

N-acetylglucosamine-1-phosphate transferase gamma subunit

(GNPTG, top 10 key driver, between GLO1 and GFER in

Figure 2) is part of mannose-6-phosphate synthesis [47], and

peptidylprolyl isomerase (PPIL1) is a member in the cyclo-

philin family that regulates protein folding and immune

responses [48]. Of note, there may also be a direct link to

lipid metabolism: the peroxisomal 2,4-dienoyl CoA reduc-

tase (DECR2), which participates in the beta-oxidation of
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unsaturated fatty acids [49], is a key driver of this ‘Antigen’

superset and a member of ‘Lipid I’.

GLO1 is an interesting candidate for a causal CAD gene.

Diabetes, kidney disease, and diabetic kidney disease in particular

increase the risk and severity of CAD dramatically [50,51], and

the glyoxalase system is an important protective mechanism

against the formation and subsequent accumulation of advanced

glycation end products that are believed to promote diabetic end-

organ damage. In a mouse study, a Glo1 knock-down model

spontaneously developed kidney disease even without diabetes

[52], and a single case of human GLO1 deficiency exhibited both

end-stage renal disease and severe atherosclerosis [53]. A recent

study demonstrated a protective role of Glo1 in restoring

neovascularization of ischemic tissue in diabetic rats [54]. In our

study, knock-down of GLO1 in HAECs perturbed the expression

of many of the same genes that were affected by CAD-associated

SNPs in the human GWAS. Therefore, the glyoxalase system may

represent one common pathway responsible for both the

microvascular and macrovascular complications observed in

subjects with diabetes.

The ‘Immunity’ superset may represent the same core

inflammatory signature that we have observed across species,

tissues, and multiple diseases [12]. Four of the top key drivers

(HCK, TYROBP, NCKAP1L and AIF1) identified from the

previous multi-disease inflammatory signature were also detected

as key drivers for the ‘Immunity’ superset in this study (Figure 2D).

Although we cannot provide definitive answers on the sequence of

events, one may hypothesize that the ‘Immunity’ superset executes

the downstream machinery that is recruited in response to the

antigen presentation in cells under metabolic stress.

The central genes in the ‘Unknown I’ superset include the

serum glucocorticoid regulated kinase 1 (SGK1), a mitogen-

activated protein kinase (MAP3K6), a sodium/bile acid co-

transporter (SLC10A6) and a C/EBP transcription factor

(CEBPD). Of these, SGK1 has been studied the most and is

believed to be important for renal sodium absorption, salt-

sensitivity to hypertension and glycemia, cardiac repolarization,

and numerous other processes [55]. MAP3K6 regulates VEGF
expression [56], and its expression was altered in a mouse model of

cardiomyopathy [57]. The SLC10 gene family contains three

sodium-dependent transporters, of which SLC10A6 transports

sulfoconjugated steroid hormones. One of the shared genes

between ‘Antigen’ and ‘Unknown I’ in Figure 2, salt-inducible

kinase 1 (SIK1), is thought to be part of the sodium-sensing

network [58]. Cyclin-dependent kinase inhibitors (CDKN) may be

causally related to atherosclerosis [3,59], although the exact role of

CDNK1A (adjacent to MAP3K6 and SLC10A6 in Figure 2)

remains unclear. Thus, the superset ‘Unknown I’ appears bring

together processes quite relevant to CAD including glucocorticoid

signaling, vascular stress response, cell growth, and blood pressure

control.

‘Unknown II’ could not be annotated by known processes and

the functions of the core genes remain poorly understood. There

were a number of genes that may regulate methylation, histones,

chromatin, and splicing (ING3, CBX6, LMNB1, SFRS5), post-

translational protein modifications and activation (PRMT1,

ALG8, PDIA3, DNAJC7), ubiquitination (UBE2S, RNF25,

RNF146), cytoskeleton organization (ARPC3, MAP1LC3A,

DYNLL2, ARL6IP5), and cell cycle (CD82, ING3, UBE2S,

MDFI, TRAF4). It is possible that the genes within ‘Unknown II’

participate in the stress-induced epigenetic and proteomic changes

that contribute to atherogenic processes. If this is true, it may

explain why the curated pathways, many of which consist of

chemical reactions between metabolites, missed the predominantly

regulatory gene networks such as ‘Unknown I’ and ‘Unknown II’.

We had a wealth of data sources at our disposal in this study to

derive a comprehensive view of the complex mechanisms of

CAD. Nevertheless, we acknowledge the following limitations.

First, our study cannot distinguish pathways or gene subnetworks

that are more relevant to specific subtypes of CAD from those

which cause CAD through more general mechanisms involving

relatively well-understood cardiometabolic processes. Future

studies involving sample sets that include more refined subtyping

of cases may help further advance our understanding in this

respect. Second, although the concept of eQTL as an empirical

alternative to the traditional location-based gene-SNP mapping

in pathway analysis is appealing from a biological perspective as it

carries functional implications and allows detection of tissue-

specific signals, in practice, however, the lack of comprehensive

and large enough genetics of gene expression studies may limit

the power and the biological coverage of the approach, as the

total number of eSNPs is typically lower and eSNPs from

additional CAD-related cell types of tissues are not necessarily

available. On the other hand, emerging resources such as

ENCODE [60,61] and GTEx [62] are likely to improve the

situation in the future.

In conclusion, we used an integrative genomics framework to

shed light on the key genes and regulatory processes involved in

the pathogenesis of CAD. We detected genetically driven

perturbations of several pathways with a strong a priori evidence

of involvement in CAD (cholesterol synthesis, inflammation, and

blood coagulation), as well as novel processes (neuroprotection,

epigenetic and post-translational modifications, intracellular trans-

port, proteolysis, and cell cycle). The data suggest that many genes

in these biological processes are causally associated with CAD

even if this may not be the case for all the pathway or network

members. We verified the importance of the key drivers in the top-

scoring gene set using an experimental gene expression model.

Thus, the CAD associated gene networks and key drivers

identified in this study warrant further validation in additional

population genetic and mechanistic studies. Further knowledge

gained through such studies has the potential to lead to major

advances in the development of therapeutic strategies to reduce

the risk of CAD.

Materials and Methods

Overall analysis flow
The overall integrative framework is depicted in Figure 1. First,

we applied a modified SNP set enrichment analysis (SSEA) [36,37]

to find sets of functionally related genes that were associated with

CAD (Figure 1A). In this analysis, we used knowledge-based

canonical pathways and data-driven co-expression network

modules as the functional units of genes that were tested for

CAD association, tissue-specific eQTL studies to connect the

genes to SNPs, and CAD GWAS to provide the associations

between SNPs and CAD. To reduce false discovery and identify

the most robust signals, we implemented a multi-stage design that

leveraged two independent GWAS meta-analyses of CAD. Next,

we investigated the statistically significant CAD-associated path-

ways and co-expression modules for shared genes, and merged any

overlapping gene sets into non-overlapping supersets (Figure 1B).

Lastly, the key regulator genes for each superset were determined

by integrating multiple tissue-specific Bayesian causal network

models of gene interactions with the CAD-associated gene

supersets (Figure 1C).
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Genome-wide association studies of coronary artery
disease

The design, clinical classification and genotyping within the

Coronary ARtery DIsease Genome-wide Replication And Meta-

Analysis (CARDIoGRAM) Consortium have been described

previously [4,63]. The dataset used in this study comprised

25,491 cases with coronary artery disease, myocardial infarction or

both and 66,819 controls from the 14 cohorts within CARDIo-

GRAM and two GWAS by the Ottawa Heart Institute in

collaboration with Cleveland Clinic and Duke University [17].

The 16 GWAS were split into two independent sets (Table S8):

The Stage 1 set combined the results from the Ottawa Heart

Genomics Study with the Cleveland Clinic Gene Bank (OHGS_A

and OHGS_CCGB_B), the CAD component of the Wellcome

Trust Case Control Consortium (WTCCC), the Duke CATH-

GEN Study, and the German Myocardial Infarction Family

Studies I, II, III with Collaborative Health Research in the Region

of Augsburg (GerMIFS1, GerMIFS2, GerMIFS3/KORA). The

remaining CARDIoGRAM cohorts formed the Stage 2 set and

included Atherosclerotic Disease VAscular functioN and genetic

Epidemiology Study (ADVANCE), CADomics, Cohorts for Heart

and Aging Research in Genomic Epidemiology (CHARGE),

deCODE CAD, Ludwigshafen Risk and Cardiovascular Health

Study (LURIC/AtheroRemo 1, LURIC/AtheroRemo 2), Med-

Star, Myocardial Infarction Genetics Consortium (MIGen) and

the PennCath Study.

Genotyping of the individuals was performed by Affymetrix or

Illumina platforms and imputed to 2.5 million SNPs prior to meta-

analyses [4]. Ancestry was restricted to European origin by self-

reporting or principal component analysis of genotypes or both.

The Ottawa cohorts were imputed separately using IMPUTE2

and MACH software, and a reference panel that included 112

European genomes from the 1000 Genomes Project (August 2009)

and 298 additional subjects from a separate CEU/TSI reference

panel [17].

Correcting of population stratification was performed as

described previously [17]. The smartPCA (principal components

analysis) program from EIGENSOFT v3.0 [64] was used to

identify and remove subjects of admixed or non-European

ancestry. Study subjects were processed with 270 HapMap2

subjects for PCA (90 CEU, 90 JPT+CHB, 90 YRI). In the

resulting first 2 dimensions from PCA, k-means was used to

ascertain the center of each of the CEU, JPT+CHB, and YRI

clusters, and the original 2 PC dimensions were projected onto

these axes. Subjects were removed if they fell outside an oval

whose major axes were 10 times the standard deviation of the

CEU cluster along the 2 transformed axes.

The SNP-level associations were estimated by a meta-analysis

approach similar to that used for CARDIoGRAM [4]. SNPs with

minor allele frequency below 1%, significant Hardy-Weinberg

equilibrium (P,0.0001), imputation quality below 50% or call rate

below 75% were excluded. Rare SNPs that were present in less

than three Stage 1 GWAS or less than five Stage 2 GWAS were

also excluded. The GWAS were analyzed jointly by a fixed-effect

inverse-variance weighted model within the Stage 1 and Stage 2

sets, respectively. Heterogeneous SNPs with significant Q and I

statistics (P,0.0001) were analyzed by DerSimonian and Laird

inverse variance model of random effects. We also used all

available cohorts to create an overall meta-cohort (denoted as

Stage 1+2).

Knowledge-driven pathways
We included curated pathways from the Reactome, Biocarta

and Kyoto Encyclopedia of Genes and Genomes (KEGG)

databases [18,19]. The Reactome database is based on reactions

between diverse molecular species rather than limiting the

pathways to protein-protein interactions or other types of non-

biological categories. Also, the nested structure of the Reactome

database helps to increase the coverage to multiple levels of gene

set organization. The KEGG database represents carefully curated

and experimentally validated pathways of metabolic processes and

gene sets of human diseases, while BioCarta is a community based

effort to describe interactions that arise from proteomic and other

similar studies. In total, 833 gene sets were included in the

analyses, collectively referred to as knowledge-driven pathways.

We constructed two positive control gene sets using previously

known CAD candidate genes. The first positive control gene set

was based on the GWAS Catalog [20]. SNPs with P,5.061028

for the traits ‘Coronary heart disease’, ‘Coronary artery calcifica-

tion’ and ‘Myocardial infarction’ were collected from the catalog,

and the reported genes for these loci were included in the control

set. Another positive control was formed from the CAD candidate

genes curated in the CADgene database [21].

Data-driven modules of co-expressed genes
Consistent expression patterns among specific sets of genes were

investigated in previous studies to define co-regulated gene sets,

commonly referred to as co-expression network modules. These

modules can be considered data-driven ‘‘pathways’’ of gene

regulation that typically operate upstream of the classical pathways

of chemical signaling and enzymatic action. We utilized co-

expression modules constructed using the weighted Gene Co-

expression Network Analysis [13] from ,10 human and mouse

studies that involved multiple CAD-related tissues (details and

references in Table S9). Human modules were obtained from

HAEC, adipose tissue, blood, and liver. Mouse modules were

obtained from adipose tissue, liver, muscle, brain, heart, islet cells

and kidney. A total of 2706 co-expression modules representing

data-defined functional units of genes were used in this study.

Expression SNPs (eSNPs) from human expression
quantitative trait loci (eQTL) studies

Human eQTL studies are analogous to GWAS of quantitative

traits, except that the traits are tissue-specific gene expression levels

rather than biomarkers or clinical measures. eQTL studies

constitute an important source of empirically supported mappings

from a genetic variant (eSNP) to its gene target and these

mappings can be reversed to convert a gene set back into the

respective eSNP set for direct testing of disease associations in

GWAS. The human eSNP data used in this study were collected

previously from adipose tissue, liver, HAEC, blood, fibroblasts,

lymphoblasts, and monocytes (details and references in Table S9).

Both cis-eSNPs (within 1 Mb distance from gene region) and

trans-eSNPs (beyond 1 Mb from gene region) at false discover rate

,10% were included. We chose adipose tissue, liver, blood and

HAEC for tissue-specific analyses due to their direct relevance to

CAD and relative abundance of eSNPs, while all eSNP resources

were pooled into a tissue-independent set denoted as ‘All eSNPs’,

yielding five sets of gene-eSNP mapping for each gene set.

We observed a high degree of linkage disequilibrium (LD)

between eSNPs. If left uncorrected, redundant eSNPs can inflate

the disease association scores of a pathway or gene network and

increase the number of false positives. For this reason, we devised

an algorithm to remove eSNPs in LD while preferentially keeping

those with a strong statistical association with gene expression

(Text S1). The preferential treatment based on these expression

association P-values was motivated by previous observations that

disease loci are enriched among eSNPs [36,65].
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We used eSNPs from multiple human cohorts with different

sample sizes and study designs. Simply comparing the raw

expression association P-values in the LD pruning algorithm

could potentially skew the selection according to the study

characteristics rather than biological relevance. Therefore, we

ranked the expression association P-values and scaled the ranks to

the interval between 0 and 1 within the study-specific eSNP

dataset before pooling the studies and applying the LD pruning

algorithm.

The reduction in the number of accepted eSNPs after LD

pruning was smooth over a wide range of LD thresholds (Figure

S3). We chose a moderate LD cutoff (R2,0.7) that lead to the

rejection of approximately 50% of eSNPs. This cutoff was chosen

because it preserves statistical power while removing eSNPs in

high LD. We used the LD structure of the CEU HapMap

population [66] for the eSNP pruning given our CAD GWAS

included only subjects of white/European descent.

SNP set enrichment analysis (SSEA)
We applied a modified SSEA to identify gene sets associated

with CAD [36,37] (Figure 1A). We collected gene sets from

knowledge-based pathway databases, or defined them according to

data-driven co-expression network modules (Figure 1A, left). We

also determined the specific sets of eSNPs that perturb the

expression of the member genes in each gene set based on the

tissue-specific eSNP sets described above (Figure 1A, middle). We

retrieved the CAD association P-values for the eSNPs from the

CAD GWAS (Stage 1, Stage 2, Stage 1+2, separately), compared

the P-values against the random expectation, and summarized the

observed difference as a single enrichment score, as detailed below

(Figure 1A, right).

Importantly, the study involved two levels of P-values. The first

level of P-values for each SNP in the GWAS was calculated

according to the genotypes of the participating individuals in

relation to their CAD phenotype. For our purposes, these trait

association P-values represent the statistical strengths of CAD

associations, and produce the ranking of eSNPs according to their

relevance to CAD. It has been previously observed that eSNPs are

enriched for disease associations [36,65]. Therefore, simply using

eSNPs to determine pathway signals typically leads to false

positives. In our study, we first removed SNPs that were not

eSNPs, and used the remaining pool of eSNPs as the null

background for subsequent enrichment tests. For instance, the

background for adipose tissue comprised all the 59,979 non-

redundant adipose eSNPs. This procedure was adopted for each

tissue-specific eSNP set separately.

The gene set enrichment P-values represent the second level of

P-values which reflect the degree of enrichment of high ranking

disease-associated eSNPs within a given gene set as compared to

the null distribution of randomly expected uniform distribution of

all ranks. The enrichment of CAD association signals for each

gene set (pathway or co-expression module) was estimated by the

Kolmogorov-Smirnov (K-S) test and Fisher’s exact test. The K-S

test takes into account the total deviation of the observed ranks

from the expectation and is therefore sensitive to a large number of

weak GWAS signals. The Fisher’s exact test detects if the top 5%

of eSNPs based on their CAD association strength is over-

represented among the eSNPs representing a gene set of interest

(sensitive to a few strong signals). The final enrichment score was

defined as the mean 2log10 of K-S and Fisher P-values.

False discovery rates (FDR) were estimated by randomly

permuting the CAD association P-values of the background

eSNPs while keeping all other data structures intact. For a single

permutation, FDR was estimated as the ratio between the number

of permuted gene sets that exceeded a given enrichment score, and

the observed number of gene sets that actually exceeded the score

threshold. The final FDR was averaged over 1000 permutations

for each tissue-specific eSNP set separately. Gene sets that satisfied

FDR,20% in both Stage 1 and Stage 2 GWAS sets, and

FDR,5% in the combined Stage 1+2 were considered statistically

significant. As Stage 1 and Stage 2 were independent, the request

for simultaneous satisfaction for these FDR cutoffs ensured the

overall FDR to be ,5%. SSEA was performed in R.

Gene set overlaps and construction of supersets
A substantial number of gene sets overlapped based on their

shared member genes, given that similar functional units of genes

could be captured by the pathway databases and gene expression

studies used in the study. To reduce the redundancy of the dataset,

we collapsed overlapping CAD-associated gene sets into non-

overlapping ‘‘supersets’’ (Figure 1B). When multiple gene sets are

merged, the size of the resulting superset can grow very large. For

this reason, we included only the core genes (that were shared with

most of the constituent gene sets) in the final supersets.

For two gene sets A and B with different numbers of member

genes, two overlap ratios were calculated: the proportion of genes

in A that were also in B (rAB), and the proportion of genes in B that

were also in A (rBA). We chose the formula r = (rAB6rBA)0.5 to

describe the degree of overlap. Importantly, r is small whenever

the sizes of A and B are substantially different, which discourages

the merging of nested gene sets. We also required that Fisher’s

exact test for the number of shared genes was statistically

significant (P,0.05 after Bonferroni correction).

We employed hierarchical clustering to define blocks of

overlapping gene sets. First, the overlap matrix of the CAD-

associated gene sets was estimated and all non-significant elements

were set to zero. The overlaps were then converted to distances

d = (1 - r). Clusters of overlapping gene sets were identified by the

hclust() function in the R programming environment with a static

cutoff at zero overlap. In the last step, the gene sets within clusters

were merged and trimmed into supersets. The above procedure

was repeated two times to reduce the maximum observed overlap

below 20% between any two resulting supersets.

A size limit of 200 genes was chosen to trim the raw supersets

down to the core genes that were shared across overlapping gene

sets. This choice of optimal size was motivated by earlier SSEA

analyses [37]. The least shared genes were successively removed

until the next removal would have reduced the superset size below

the 200-gene limit. Overlap ratios were re-calculated between the

trimmed supersets before the next round of hierarchical clustering.

The functional categorization of each superset was based on the

known pathways from the Gene Ontology and KEGG databases.

We evaluated the over-representation of a functional category

within the member genes of a superset with the Fisher’s exact test.

Significant functional categories (P,0.05 after Bonferroni correc-

tion) were used to annotate the functionality of each superset. If no

significant annotation could be found, we labeled the superset as

‘Unknown’. A second round of SSEA was performed for the

merged supersets to confirm that they captured the features of the

pre-merged gene sets. Significance was determined at SSEA P,

0.05 after Bonferroni-correction for the number of all original

gene sets (n = 3539, not the number of supersets after merging) to

ensure stringency.

Bayesian network models of causal gene-gene
interactions

The above SSEA analysis is able to identify a gene set that is

likely to contain disease-causing genetic variation. To pinpoint the
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most influential regulatory genes, we utilized Bayesian network

models of gene-gene interactions that take into account both the

genotypes that affect gene expression (causal direction known), and

the statistical relationships between gene expression levels (causal

direction uncertain), using the established method by Zhu et al.

[29,67]. Bayesian network models from human and mouse studies

were constructed based on genetics and gene expression data

generated from multiple tissues from multiple previously published

studies, each involving hundreds of individuals (details and

references in Table S9). Human networks were obtained from

adipose tissue, blood, and liver. Mouse networks were obtained

from adipose tissue, liver, muscle, brain, and kidney.

Bayesian networks are directed acyclic graphs in which the

edges of the graph are defined by conditional probabilities that

characterize the distribution of states of each gene given the state

of its parents [68]. The network topology defines a partitioned

joint probability distribution over all genes in a network. The

likelihood of a Bayesian network model given observed genomic

data is determined using Bayes formula. For each dataset, 1000

Bayesian networks, each using different random seeds, were

reconstructed using Monte Carlo Markov Chain simulation [69].

Bayesian Information Criteria was used to determine the model

with the best fit for each network. From the resulting set of 1000

networks, edges that appeared in greater than 30% of the networks

were used to define a consensus network for a given dataset. To

infer causal directions between genes in a network, genetic

information was used as priors by allowing genes with cis-eSNPs to

be parent nodes of genes without cis-eSNPs and preventing genes

without cis-eSNPs to be parents of genes with cis-eSNPs [70].

Bayesian network provides a natural framework for integrating

diverse data and reconstruct biological causal networks.

Key driver analysis (KDA)
We used the key driver analysis (KDA) to determine the key

regulatory genes of the CAD-associated gene supersets [12,28,29].

We defined a key driver as a gene that is connected to a large

number of genes from a CAD-associated superset, compared to

the expected number for a randomly selected gene within a

Bayesian causal network. The basic idea of KDA is depicted in

Figure 1C. First, one needs a network topology that defines links

between pairs of genes. In this study, we used tissue-specific

Bayesian networks that were constructed from large-scale genetic

and genomic datasets from multiple previously published studies as

described above. Second, a disease-related gene set is needed. In

our study, this comes from the CAD-associated gene supersets (call

it Gene Set S). We then tag each of the member genes in the Gene

Set S within the network, as shown by the colored nodes in

Figure 1C. For a gene in the network (call it Gene A), we then ask

the following question: How many of Gene A’s neighbors are

members in the Gene Set S? If the proportion of member genes is

higher than what could be expected for a random gene set, we

define Gene A as a key driver for Gene Set S. The statistical

significance of a key driver for a given CAD superset in a

particular Bayesian network is determined by Fisher’s exact test

which assesses the enrichment of CAD genes in the candidate

key driver’s network neighborhood. Bonferroni-corrected p,

0.05 was used to determine key drivers. As multiple networks

were available for a number of tissues, we used two criteria to

prioritize the five most important key driver genes. Firstly, we

counted how many times a gene was a key driver in multiple

networks (denoted as N). The consistency across networks was

expressed as (N - 0.99) to strongly favor key genes that could be

identified in at least two networks. The second criterion was

based on the statistical significance of the key driver. In

particular, the significance value was calculated as mean(-log

P), where P denotes the KDA significance P-values from each of

the networks. The final ranking of genes was based on the

product of the consistency and significance criteria. KDA was

performed using R.

Small interfering RNA (siRNA) experiments to test the
regulatory role of candidate key driver genes

To test whether perturbing key drivers identified in our study

indeed result in perturbations of CAD gene networks, we used

siRNAs to knockdown the expression of novel key drivers in

HAECs. HAECs were grown to 80% confluency on 0.1% gelatin

coated culture plates in MCDB-131 complete medium (VEC

technologies). Cells were transfected with siRNAs against each

candidate key driver gene under investigation and a negative

control (Cat. No. 1027280) at a final concentration of 40 nM

with Lipofectamine 2000 reagent for 4 hours in Opti-MEM

medium (Invitrogen). Three HAEC lines from different donors

were used as biological replicates for each siRNA. Media was

replaced with MCDB-131 and cells were lysed for RNA

isolation after 24 hours. Whole transcriptome expression was

assessed with Illumina HumanHT-12 v4 Expression BeadChip.

We identified the differential expression of genes between cells

transfected with the siRNAs targeting the candidate genes and

the control siRNA using the limma package in R (2.14.0).

Overlap between the differentially expressed genes in siRNA

experiments and a CAD network of interest was assessed using

Fisher’s exact test.

Supporting Information

Figure S1 QQ plots for the three new GWAS meta-analyses:

Stage 1 (cyan), Stage 2 (green), and combined Stage 1+2 meta-

analysis (orange).

(PNG)

Figure S2 Overlaps among CAD-associated gene sets. Hierar-

chical clustering of the CAD-associated gene sets A) before and B)

after two rounds of merging and trimming based on overlapping

ratios between gene sets. Red color indicates high overlaps and

white color shows no overlap. Before merging, there are

substantial overlaps among gene sets. After merging, the merged

supersets are largely independent.

(PNG)

Figure S3 Effect of LD pruning on the number of distinct

eSNPs. The numbers of eSNPs after LD pruning (Y axis) are

plotted against the r2 LD values (X axis). As the LD cutoff becomes

more stringent, the eSNP numbers gradually decrease, with the

largest reduction of eSNPs occurring at r2 of 0.9.

(PNG)

Table S1 Significant GWAS loci from the combined Stage 1+2

meta-analysis and their relationship to known GWAS loci.

(XLSX)

Table S2 SSEA results for all significant canonical pathways.

SSEA scores and FDR from Stage1+2 GWAS are shown.

(XLSX)

Table S3 Comparison of scores before and after incorporating

three new large-scale blood eQTLs published between September

2013 and March 2014. The enrichment score was defined as the

mean of negative log-transformed Kolmogorov-Smirnov and

Fisher P-values for over-representation of high-ranking GWAS

SNPs among the eSNPs that affect the expression of the pathway
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member genes. *FDR,20% in Stage 1 and 2 respectively, and

FDR,5% in combined Stage 1+2.

(DOCX)

Table S4 SSEA results for all significant co-expression modules.

SSEA scores and FDR from Stage1+2 GWAS are shown.

(XLSX)

Table S5 CAD enrichment scores for non-overlapping supersets

after the merging of CAD-associated canonical pathways and co-

expression modules. Annotations were summarized according to

statistically significant over-representation of known pathways and

processes. Supersets with at least one significant score in any tissue

are included. *P,0.05 in either Fisher’s exact test or Kolmogorov-

Smirnov test after Bonferroni correction for the 3,539 original

gene sets.

(DOCX)

Table S6 Top five GWAS signal genes and key regulator genes

for selected CAD-associated supersets. A GWAS signal gene was

defined as a gene that was functionally associated via one or more

eQTL to the most statistically significant SNPs in the meta-

analyzed GWAS. Key drivers were ascertained by combining key

driver analyses of all available Bayesian networks, and taking into

account both the consistency across datasets and the KDA

statistics.

(DOCX)

Table S7 Top 5 key regulatory genes for CAD enriched

supersets in tissue-specific gene regulatory networks based on key

driver analysis. The genes within a tissue-specific table cell are

ordered according to significance and consistency across multiple

datasets when available. H = human, M = mouse.

(DOCX)

Table S8 Genome-wide association studies of CAD.

(DOCX)

Table S9 Data resources and references for eQTLs, co-

expression networks, and Bayesian networks.

(DOCX)

Text S1 Algorithm to remove eSNPs of high LD from genetics of

gene expression datasets.
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