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Abstract

Bioenergetic approaches have been greatly influential for understanding 

community functioning and stability and predicting effects of environmental 

changes on biodiversity. These approaches use allometric relationships to 

establish species’ trophic interactions and consumption rates, and have been

most successfully applied to aquatic ecosystems. Terrestrial ecosystems, 

where body mass is less predictive of plant-consumer interactions, present 

inherent challenges that these models have yet to meet. Here, we discuss 

the processes governing terrestrial plant-consumer interactions and develop 

a bioenergetic framework integrating those processes. Our framework 

integrates bioenergetics specific to terrestrial plants and their consumers 

within a food-web approach. It also considers mutualistic interactions, 

advancing understanding of terrestrial food webs and predictions of their 

responses to environmental changes.
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Ecology needs a terrestrial bioenergetic approach

Bioenergetic food web approaches (see Glossary) [1,2] have fueled

an industry of ecological research [3–10]. However the inherent focus on 

body size has resulted in an approach less suitable for exploring empirical 

patterns in terrestrial systems [11,12], especially plant-consumer (herbivore,

mutualist) interactions, which are often determined by factors other than 

body size [3,10,12]. With the increased use of bioenergetic approaches to 

understand complex outcomes of global change [4,6,7,9,13], there is 

increasing need for a holistic bioenergetic framework that addresses the 

challenges introduced in terrestrial above-ground ecosystems. Here we 

review previous efforts to capture the mechanistic processes governing 

aboveground plant-consumer interactions, and develop a conceptual and 

mathematical guide for integrating these processes into a framework that is 

established on bioenergetic constraints.

Terrestrial plant-consumer interactions are mostly determined by traits

external to body mass — a problematic characteristic to apply to many plant 

species — such as phytochemistry [14–16] and morphology of physical 

structures such as flowers [17–19]. These characteristics, rather than body 

size, matter most to consumers that range from leaf galling arthropods to 

large mammal grazing, as well as mutualists consuming floral rewards and 

fruits [20]. Terrestrial plants also exhibit large variation in tissue growth and 

turnover to build structures that not only attract and repel herbivores and 

mutualists [21], but that serve to fight gravity in a race for space and light, 
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relationships that defy traditional bioenergetic approaches. Consequently, 

our understanding of community stability and ecosystem functioning that is 

obtained through the use of bioenergetic models is by definition biased 

toward aquatic systems, where trophic interactions and consumption rates 

tend to scale with organismal body mass [10,12]. Additionally, food web 

theory has traditionally emphasized the consumer perspective, reflected in, 

for example, the greater detail in the functional responses of consumers 

compared to those of primary producers, or the focus on consumer adaptive 

foraging rather than the adaptive response of resources against consumption

[22]. These emphases have resulted in over-simplistic models of plant 

growth and the trait-mediated responses of plants to herbivore attack

[1,5,6], potentially biasing our understanding of food web dynamics from the

bottom up.

This complexity of aboveground terrestrial plant-consumer interactions

requires a deeper consideration of their unique processes giving rise to 

communities. We review the literature on the bioenergetics of plant-animal 

interactions, and discuss extensions to traditional food web frameworks. 

These extensions integrate advances in network analyses, bioenergetics, and

the biological mechanisms underlying interactions between plants, their 

consumers and mutualists.

Terrestrial bioenergetic framework 
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The dimensional reduction offered by allometric scaling has a rich 

history in ecology, but harnessing it to analyze species interactions was not 

seriously examined until the seminal bioenergetic model by Yodzis and Innes

[1]. This framework was expanded to communities of interacting species with

the Allometric Trophic Network (ATN) model [2,13] (see Box 1), which models

food web dynamics with a minimal number of parameters, namely, the body 

sizes of the consumer and resource species and a handful of allometric 

constants [5,6,23,24]. This model has demonstrated particular success with 

respect to aquatic systems, where the presence/absence of trophic 

interactions and rates of consumption are assumed to scale allometrically 

(see Box 1, Figure 1), largely due to the gape limitations that constrain so 

many aquatic consumer interactions [10,12,25]. 

A central tenant of the new perspective we propose (Figure 1) is the 

notion that plant species can be organized along a fast–slow growth axis [26–

28], determining plant mass-specific metabolic rates and ultimately the flow 

of energy from primary production to higher trophic levels via consumption. 

Fast-growing plants invest in photosynthetic machinery at the expense of 

defenses and structural tissue [29], which itself is defensive because it is 

difficult to digest. Because of these investments, fast growing plants tend to 

be leafier, more nutritious for consumers (lower C:N,P ratios and higher 

tissue digestibility), and less resistant but more tolerant to herbivory. This 

increased tolerance arises both because their ability to grow quickly allows 

them to quickly replace lost tissue and because their lack of investment in 
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structure and defenses lowers the per unit cost of their tissue [29]. Slow-

growing plants, in contrast, invest more heavily in structure and defenses 

that promote the longevity of their tissues and therefore tend to be larger, 

woodier, less nutritious for consumers, and more resistant but less tolerant 

of herbivory. This lack of tolerance arises because each bite of tissue is more

valuable and more costly to replace [26–28,30]. A fast-slow plant axis thus 

affects key parameters governing food web dynamics, including herbivore 

ingestion ( f ji) and assimilation (e ji) of plant biomass, foraging effort (p ji(B)), 

attack rate (a ji), and handling time (h ji) (see Box 1) [14–16,31].

Plant structural complexity

Plants have evolved different tissue types to address their 

simultaneous needs to acquire water and nutrients, photosynthesize, and 

reproduce [32], and diverse guilds of herbivores have in turn evolved to 

consume and at times specialize on them (Figure 2). These tissues include 

leaves, stems, wood, roots, underground storage organs, seeds, nectar, 

pollen, and sap/phloem, all of which vary in terms of plant investment, 

nutritional value, and the cost (or benefit) to the plant if the tissue is 

consumed [32] (Figure 2). These differences influence both the biomass 

available to herbivores and the effect of biomass loss on plant maintenance, 

growth, and reproduction [14–16,31]. Plants are indeterminate growers, such

that their allocation to different organs or tissues are often plastic in 

response to both internal and external factors [32]. Internal factors include 
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life stages and phenology [33], whether the plant has a fast or slow growth 

strategy [27,28], and how resistant or tolerant the plant is to herbivory

[30,34]. In contrast, external factors include the effects of environmental 

pressures (e.g. water and nutrient availability [35,36]), competition with 

other plants [37], and herbivory [38]. For example, in resource-poor 

environments, plants may exhibit slower growth rates, altering energetic 

allocation to different organs [32] in response to the total energy available to

the ecosystem. As a result, profiles of organ proportions differ across 

environments or seasons [39,40], potentially driving substantial changes in 

the herbivore community [31].

The effects of plant structural complexity can be integrated into a 

bioenergetic food web framework by incorporating the chemical and physical

constraints governing the interactions between herbivores and particular 

plant tissues — as opposed to interactions with plant species or functional 

groups (Figure 2A). This can be accomplished using either fixed (Figure 2B) 

or dynamic pool (Figure 2C) approaches. The fixed pool approach assumes 

the plant biomass is composed of fixed fractions of each tissue, with 

herbivore groups limited to feeding on that fraction of biomass. Alternative 

tissues vary in their nutrient composition and thus provide different yields to 

herbivores. This fixed pool approach incorporates the topological complexity 

of different animal guilds feeding on different plant tissues without 

increasing the complexity of the dynamic models. In contrast, the dynamic 

pool approach allows dynamic allocations to growth and maintenance for 
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each tissue [21,41,42] at the cost of additional model complexity. Dynamic 

pools allows for feedbacks between consumption and production of each 

tissue, such that adaptive foraging behaviors among herbivores [22,41–43], 

in response to the relative availability, cost, and benefit from different 

tissues, may promote coexistence even when diets are similar.

 

Herbivore ingestion and assimilation of plant biomass

The proportion of plant biomass (Bi) available for consumption by 

herbivores (that is, the fraction ingested, Bi / f ji, see Box 1) is constrained by 

plant and herbivore traits. Indeed, much plant-herbivore research (especially

for insects) examines how plant defenses, including the vast diversity of 

phytochemicals and physical traits such as toughness and spinescence, 

influence f ji and rates of herbivory in general. We review literature on 

constitutive and inducible defenses in Box 2 and propose to integrate those 

defenses in our framework as affecting herbivores’ consumption parameters 

(a ji , e ji , f ji , h ji , p ji) (see Boxes 1 and 2). For ground-based mammals (e.g., 

ungulates), the proportion of plant biomass available will also depend on the 

relative height of the plant and the herbivore, because these herbivores can 

only access tissue within a vertical range roughly spanning ground level to 

shoulder-height [44]. While plant height might place a physical limit on 

access, these mammals tend to partition their diets across a relatively low-

dimensional plant trait access correlating with nutritional quality [45]. Key to 
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understanding plant-herbivore interactions is that not all green tissue is 

equally available — physically or biochemically — to herbivores.

Once plant biomass is ingested, plant-consumer interactions are 

constrained by the efficiency with which herbivores can transform ingested 

food into new biomass. That is, the assimilation efficiency (e ji in Eq. 1 of Box 

1). We propose expressing this efficiency as yield from the perspective of 

bulk requirements of consumer-resource interactions [46]. The consumer 

yield (grams of consumer produced per grams of resource consumed) is 

given by Y ji=M j EDi
/EL j, where M j is the body mass of consumer j (g), ED i is 

the energy density of resource i (Joules/g) and EL j represents the lifetime 

energetic requirements of a consumer j that reaches maturity (Joules). The 

resource removed by the consumer is then proportional to the efficiency

e ji=d jiBi/Y ji, where d ji is the proportion of digested plant biomass, which must

be a function of both plant biochemistry and the herbivore’s digestive 

abilities (see Box 2 and Online Supplemental Information Appendix S1). 

Herbivores exhibit species-specific behaviors designed to optimize e ji within 

particular communities and habitats [47], the result of unique evolutionary 

trajectories driven by local fitness gradients [48].

Adaptive behavior of plants and herbivores

Both consumers and resources interact dynamically, adapting the 

energy allocated to searching for and consuming, attracting, and/or 

defending against those species with which they interact. Following [22], we 
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define adaptive behavior as the fitness-enhancing changes in individuals' 

feeding-related traits due to variation in their trophic environment. This 

includes adaptive foraging of consumers, as well as the adaptive responses 

of resources, which we define as changes in resource behavior and other 

traits in response to consumers and environmental cues. Box 3 details a 

method by which herbivore adaptive foraging and plant adaptive responses 

can be introduced into a comprehensive bioenergetic ATN framework.

Herbivores adaptively forage in a multi-scale manner [49] by first 

searching the landscape for a promising foraging habitat, and then locating 

particular plant individuals using multiple sensory modalities [50], after 

which a decision to eat them or keep searching is made [48]. Insects use a 

diverse array of cues to find their hosts, including habitat context and plant 

odor and color, after which many sense tissue quality and make feeding 

decisions using specialized chemoreceptors [49,51]. Ovipositing females also

search for places to lay eggs by sensing the leaves with their ovipositor [52]. 

And while it is clear that herbivores respond to a complex constellation of 

plant traits and conditions to maximize profitability, plants demonstrate 

equally dynamic responses to both repel and attract their herbivores. 

Chemical defenses are central to the adaptive response to herbivory 

by plants, with many species upregulating the production of toxins following 

detection of herbivore damage or other herbivore cues (Box 2). The fast-slow

trait axis (Ti) may also affect the response to herbivory of plant species i by 

influencing its average adaptation rate (s ' i) or the benefit in per-capita 

11

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

11



growth rate obtained by its response to herbivore j (∂G i /∂v ij). Plant adaptive 

responses also involve mutualistic interactions in terms of attracting the 

consumers of their herbivores (i.e., indirect defenses) or attracting 

pollinators and seed dispersers. For example, some plants respond to 

herbivore cues or attack by releasing volatiles that attract predators or even 

reward predators with nectar or pearl bodies (concentrations of protein) [53].

Other plants produce chemicals that, after being ingested by herbivores, 

volatilize from their feces and guide predators to them [54]. Inducible 

extrafloral nectaries attract ants that then remove herbivores from the plant

[55]. Plants also provide predator shelters (domatia; e.g., leaf pits, swollen 

thorns), the production of which can be upregulated following herbivory [56].

Finally, floral rewards and fruits produced by plants to attract pollinators and 

seed dispersers, respectively, can also be formalized as adaptive responses. 

They are resource traits where investment responds directly to consumers 

and environmental cues, though their role is to attract, rather than repel, the

consumer (pollinator, seed disperser) with a potentially positive effect on 

plant fitness [17–19].

Frequency dependence can play an important role in plant-herbivore 

adaptive responses. For some species of caterpillars, survival is low when 

they attack a plant in small groups and high when they attack in larger 

groups, apparently because plant responses depend on herbivore density

[57]. For example, herbivores that overcome plant defenses by attacking en 

masse, such as bark beetles, often have aggregation hormones that help 
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them reach high local densities [58]. In other systems, negative density-

dependence drives dynamics. Herbivores avoid damaged plants because: (i) 

previously attacked plants are likely to have induced resistance traits [59], ii)

earlier attacking herbivores are likely to have removed the best quality 

tissue [60], (iii) to avoid direct interference interactions with competing 

herbivores [61].

Stage-structure dynamics

Organismal ontogeny can play a significant role in changing species’ 

metabolic rates [62] and interactions [63], especially for plants [64]. Species 

can either consume or be consumed by different species as they grow and 

mature [65]. Integrating ontogenetic structure into aquatic food web models 

has had varied effects on food web dynamics, with some showing increased 

stability [66] due to tradeoffs or emergent facilitation [67], and others 

showing decreased stability through ontogenetic niche shifts [65]. Terrestrial

food web models integrating plant ontogeny remain scarce, though 

preliminary work indicates the potential for emergent facilitation in certain 

food web motifs at the autotroph level [68]. The relationship between plant 

individual growth and defenses [69] can be a way to incorporate plant 

ontogeny in a more comprehensive bioenergetic framework. Inducible 

defenses tend to be highest during seedling stages, while constitutive 

defenses take over with individual growth. In turn, this ontogenetic variability
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in plant defenses influences herbivores to prefer particular plant stages over 

others [70,71].

Ontogeny interacts with phenology to affect plant-herbivore 

interactions. In semelparous monocarpic plant species, unique stages are 

differentially available across the growing season, potentially creating 

distinct phenological windows of interaction between consumers that would 

instead be static trophic links without considering ontogeny [72] (compare 

Figure S1B with Figure S1C in Supplementary Information). In longer-lived, 

multi-season, iteroparous plants, seasonally specific growth for younger 

versus older stages can still open up distinct interaction windows (as in 

Figure S1C) but with potential cross-generational intraspecific competition. 

For example, high adult density limits the survival or maturation rates of 

younger stages either by restricted access to necessary nutrients [73] or 

increased exposure to soil pathogens [74].

Structure of terrestrial networks 

Our bioenergetic framework advocates for a broader definition of food 

web topology that includes both antagonistic and mutualistic trophic 

interactions (Figure 2). Food webs typically exclude mutualistic trophic 

interactions, which limits the analysis of terrestrial food web dynamics [21]. 

Of the few networks available [10], many include only a subset of the local 

taxa, with uneven levels of taxonomic resolution, often representing the 

specialties of the investigators. As a consequence, plants and insects tend to
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be less resolved than vertebrates [75,76], potentially biasing our 

understanding of both structure and dynamics in these systems. Fortunately,

recent advances in DNA barcoding from feces and stomach contents 

provides unprecedented opportunity to increase sampling resolution [77]. 

Despite these challenges, that aquatic and terrestrial food webs reveal clear 

differences in topological and biomass structures is well understood (see 

panels iv of Figure 1). Aboveground terrestrial food webs have shorter food 

chains with more producer biomass and less herbivore biomass and 

consumption than aquatic food webs with similar net primary productivity, 

presumably due to the greater structural complexity and lower edibility of 

terrestrial plant tissues [11, 12]. We suggest that a comprehensive 

bioenergetic framework that includes the unique relationships observed 

between plants and their consumers (including mutualists) may improve our 

understanding of where these differences arise. 

Generative models of food web topologies [78–80] offer a powerful 

means by which food web bioenergetic dynamics can be explored, given the 

inherent difficulty of collecting food web data. These phenomenological 

models generate topologies with broadly similar properties compared to 

empirical food webs [79,80], though typically contain too few herbivore 

species, too few plant-herbivore interactions, and accumulate too many 

trophic levels [9,80] compared to terrestrial communities. Together these 

differences substantially alter predicted biomass dynamics compared to 

empirical terrestrial topologies [9]. We predict these deviations will be 
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magnified when the traditionally unresolved plant taxa are better resolved 

and when the consumption of different plant tissues is incorporated (Figure 

2). 

To better accommodate these deviations, we propose a terrestrial 

extension to a class of topological models that use an empirically-

measurable body size axis. These models, inspired by the Allometric Diet 

Breadth Model, specify an energetically optimal body mass ratio ¿) at 

which animals can most efficiently feed on a resource [3,25]. Animals can 

feed on a range of resource sizes, but efficiency decreases away from the 

optimum until effectively no interaction occurs. Therefore, species’ traits 

determine both the presence and rate of feeding interactions (Box 1). We 

propose that plant trait values (T i) on a fast-slow axis determine the feeding 

efficiency of herbivores on plant tissues (Figure 1). Such a trait axis contains 

high dimensional information on the nutritiousness (stoichiometry) and 

defendedness of plant leaves. Herbivores of a given metabolic class (e.g., 

ectotherm invertebrates, endotherm vertebrates) likely have maximum 

feeding efficiency on optimally-matched plant traits (M j /T i) but can tolerate a

range of plant traits with diminishing feeding efficiency and yield (i.e., Eq. 4 

is dependent on Ti, see also Online Supplemental Information Appendix S1). 

For example, larger-bodied herbivores can handle taller and less nutritious 

forage – ‘slower’ plants in our framework – than can smaller-bodied 

herbivores, due to lower mass-specific metabolic needs and greater digestive

capacity and efficiency [81]. Though empirical evidence connecting this 
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pattern to herbivory network structure is sparse, some observations suggest 

this to be a good first hypothesis. For example, mammals of similar body 

sizes tend to have similar diets [82], and resource partitioning among African

savanna grazers is well-explained by their body sizes [83]. Within a 

taxonomically diverse leaf-chewing community, smaller insect herbivores 

preferred younger, less defended, and more nutritious leaves of Ficus wassa 

than larger species [84]. 

Different trait axes may be appropriate for different plant tissues, 

allowing different sub-networks for specific types of herbivory such as 

nectarivory (Figure 2). Therefore, we propose generating similar sub-

networks for different types of terrestrial feeding interactions using animal 

body size as the trait axis for carnivory and the matching of the plant trait 

and animal body size axes for herbivory. These sub-networks can then be 

interlinked into multiplex topologies following plausible assembly rules (e.g.,

[21,78,79,85]).

Community stability and ecosystem functions

The weakening and diversification of consumer-resource interactions 

are well-known to stabilize food web dynamics [86]. We suggest that 

introducing a more accurate accounting of plant and herbivore communities 

and their associated constraints in food web structure and function will 

fundamentally alter the distribution of interaction strengths relative to 

current bioenergetic approaches. Specifically, incorporating plant defenses 
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and herbivory on different plant tissues (as we propose in Figs. 1 and 2 and 

Box 2) will diversify and weaken energy flows from plants to herbivores and, 

therefore, stabilize terrestrial in comparison to aquatic food webs. Further, 

weakening interactions generally will tend to reduce the strength of trophic 

cascades by constraining vertical energy flow through the food web [86,87]. 

Intriguingly, empirical evidence from terrestrial ecosystems are consistent 

with weak-skewed interactions [87].

A holistic terrestrial bioenergetic framework may be well-positioned to 

advance our understanding on the relationship between biodiversity and 

ecosystem functioning. Current efforts have shown that diversity loss can 

simultaneously affect multiple ecosystem functions and services, such as 

primary and secondary production, pollination, pest control, and carbon 

sequestration [88]. A key challenge is now to understand the trade-offs and 

synergies among these ecosystem functions and services. The classical 

bioenergetic approach has been used to analyze the processes affecting 

primary and secondary production, as well as their trade-offs and synergies 

(e.g. [3,89]). A holistic terrestrial bioenergetic framework may contribute 

tools to analyze other important ecosystem functions and services, including 

pollination, seed dispersal, and biological control within plant-herbivore 

interactions. It can also provide important insight into the mechanisms 

behind the relations among ecosystem services such as pollination and pest 

control, whose combined effects — either synergistic or antagonistic — 

remain poorly understood [90].
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Concluding Remarks

Bioenergetic approaches have promoted productive research in food 

web ecology because of their ability to model food web dynamics by 

estimating demographic and consumption rates of interacting species using 

allometric scaling. Because of these successes, there is a great demand for a

more terrestrially focused bioenergetic approach to address key fundamental

and applied questions in community ecology (see Outstanding Questions). By

combining perspectives and approaches unique to terrestrial plant-animal 

interactions with traditional tools from network ecology, we provided a 

roadmap that will guide the integration of bioenergetics specific to terrestrial

plants and their biotic interactions into those of traditional food web models.
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FIGURES

Figure 1.

Figure 1. Terrestrial alternative to bioenergetic models. (A) The 

classical approach determines food web structure and dynamics from 

allometric patterns based on each species’ average adult body mass (M j) 

and metabolic class (Box 1). (i) Species’ potential feeding L ji efficiency 

depends on their body mass relative to their resources. Consumers can feed 

on resources within a range of sizes around an energetically optimum body 

mass ratio. (ii) This enforces strong size structure with producers (trophic 

level [TL] = 1) of similar size and consumers approximately Z= 10-100x 

larger than their resources. (iii) Growth and consumption rates are also 

calculated from body masses, allowing (iv) high consumption and production

by herbivores typical of aquatic ecosystems. (B) Our framework uses plant 

traits (T i) representing the “fast-slow” axis to determine the structure and 

dynamics of herbivory interactions. Fast-growing plants are smaller, leafier, 

with more palatable leaves; while slow-growing plants are larger, woodier, 

with less nutritious and more defended leaves. (i) Animals’ potential feeding
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L ji efficiency on plants depends on the match between their body mass for a 

given metabolic class and T i. (ii) This creates herbivory sub-networks with 

weaker size structure. (iii) Plant growth (ri , x i) and herbivory (

a ji (L ji ) , e ji , f ji , h ji , p ji) can also be calculated using plant traits. (iv) Allowing 

variation in plant size and stoichiometry breaks the dependence of herbivore

attack rate on consumer-resource body size ratio. This results in lower 

herbivore consumption and production than aquatic ecosystems with similar 

net primary productivity (NPP) due to less nutritious and more defended 

plant tissues.

 

Figure 2.

Figure 2. Approaches to herbivory in aboveground terrestrial food 

webs.  The structural complexity of terrestrial plants supports many groups 
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of herbivores feeding on different plant tissues, including (photos from top to

bottom): nectar and pollen, fruits and seeds, leaves, and bark and wood. 

Plant and herbivore growth and reproduction strongly depend on these 

different trophic interactions, which indirectly affects the full food web 

dynamics. Despite the importance of these different interactions, the 

traditional approach to food webs has focused only on antagonistic herbivory

(e.g., folivory), excluding “mutualistic” feeding by pollinators and seed 

dispersers. We propose two new approaches to incorporate the network 

complexity of different animal guilds feeding on different plant tissues by 

assuming plant biomass as: (A) composed of fixed fractions of each tissue, 

with herbivore groups limited to feeding on a specific fraction, and (B) 

partitioned into coupled pools, allowing dynamic plant allocations to growth 

or maintenance for each tissue, feedbacks between consumption and 

production of each tissue, and herbivore adaptive foraging. In both 

approaches, the structure of herbivory interactions on different plant tissues 

can be derived from the matching between plant and animal traits (Fig. 1). 

Illustrative food webs show grayscale nodes lighter in color with increasing 

trophic level. Colored nodes indicate different plant tissues matching the 

photo borders for different types of herbivory. Links represent bioenergetic 

couplings, due to feeding (gray) or dynamic feedbacks between the 

production and maintenance of different tissues (green).
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TEXT BOXES

Box 1 – Allometric Trophic Network (ATN) model 

Consists of two sets of governing equations [2,13], one for primary 

producers (Eq. 1) and another for consumers (Eq. 2):

d Bi

dt =r iBi Di (B )⏞

Autotrop h ic
growt hgain

− x i Bi⏞

Maintenance
loss

−∑
j

1
f jie ji

x j y j B jF ji (B )
⏞

Herbivory
loss

(Eq. 1)

d B j

dt =x jB j∑
k
y jF ji (B )⏞

Resources
consumptiongain

− x jB j⏞

Maintenance
loss

−∑
k

1
f kjekj

xk yk Bk F kj (B )
⏞

Predation
loss

(Eq. 2)

where B is vector of biomasses for every species in the food web and Bi is 

biomass of species i. Bi of producer species i changes over time according to 

the balance between gains from autotrophic growth and losses due to 

metabolic maintenance and herbivory by consumer species j. Autotrophic 

growth is determined by the producer’s intrinsic growth rate (r i), metabolic 

rate (x i), and logistic growth: Di (B )=1– ¿¿, with K  as carrying capacity of all 

primary producers. Biomass loss to herbivory increases with mass-specific 

metabolic rate (x j) and maximum consumption rate (y j) of consumer species 

j, and decreases with ingestion ( f ji) and assimilation (e ji) efficiencies by 

consumer j on producer i. B j of consumer species j (Eq. 2) changes over time 

according to the balance between biomass gains by resource consumption 

and biomass loss from metabolic maintenance and predation. Functional 
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response F ji (B ) determines the consumption rate of each consumer species j 

on each resource species i, defined:

F ji (B )=
p ji (B ) a ji h jiB i

q

1+c j B j+ ∑
l=resources

p jl (B ) a jl h jlBl
q  (Eq. 3)

where p ji(B), a ji, and h ji are, respectively, the foraging effort, attack rate, and 

handling time of consumer i on resource j, c j is the intra-specific foraging 

interference of consumer j, and q controls the shape of Eq. 3.

Parameters in Eqs. 1-3 are constrained by average body masses of 

individuals of the consumer (M j) and resource species (M i), as:

ri=
Ri

R ref
 ¿(

M i

M ref )
−0.25

x i=
X i

Rref
 ¿

ax

ar (
M i

M ref )
−0.25

 y j=
Y j

X j
 ¿

ay

ax
 (Eq. 4)

a ji=a0 M j
0.25M i

0.25L ji h ji=
e ji

ay
M j

0.25

where a0, ar, ax, and ay are allometric constants specific to species’ metabolic 

categories (producer, invertebrate, ectotherm vertebrate, or endotherm 

vertebrate) and L ji quantifies potential feeding efficiency given the 

energetically optimum body size ratio. Subscript ref  denotes the reference 

producer species, the smallest in the system. Primary production (Ri), 

metabolism (X j), and maximum consumption (Y j) in Eq. 4 follow negative 

power laws with each species’ average body mass as:  Ri=ar Mi
−0.25,

X i=a xM i
−0.2 5, Y j=a jM i

−0.25. We propose to consider plant growth traits (Ti) on a 

"fast-slow" axis to determine parameters (Ri ¿, (X i) which then can be used 
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with animal body mass to calculate (a ji), (e ji), ( f ji), (h ji), and (p ji) (see Figure 1

and the Online Supplemental Information Appendix S1).

Box 2 – Plant defense

Plant defenses are organized in two major categories, constitutive and 

inducible [59]. Constitutive defenses are always expressed and more 

common in environments where herbivore pressure is consistently high and 

with low resource availability, in which it is challenging to replace lost tissue. 

Inducible defenses develop in response to environmental cues or to 

herbivory, with plants responding to chemical cues [91]. For example, when 

many species in the pine family (Pinaceae) are attacked by herbivores, they 

induce production of resin and phenolic compounds that resist herbivores, 

and these induced responses are stronger in faster growing, low-latitude and

low-elevation species than in the slower-growing species found at higher 

latitudes and elevations [92]. These responses can be transgenerational [93]

but commonly happen throughout the lifespan of an individual, even at the 

scale of hours [94]. We propose to include both types of defenses as 

affecting herbivores’ consumption parameters (a ji , h ji , e ji , p ji) (see Box 1). For 

instance, high levels of defenses are expected to decrease e ji(section 3) and

p ji (section 4) while inducible responses should strongly determine plant 

adaptive response v ij (Box 3) especially for fast growing plants.

There are two main defensive pathways for plant inducible defenses, 

the jasmonic acid pathway, which responds to chewers, such as caterpillars, 

and the salicylic acid pathway, which responds to pathogens and sucking-
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insects, such as aphids [14]. For example, many milkweeds (Asclepias spp.) 

increase production of toxic cardenolides and exudation of sticky latex in 

response to feeding by monarch caterpillars (Danaus plexippus), which can 

reduce monarch survival and performance [15]. Research shows clear 

constraints in some plant species to induction of defenses between these 

two pathways [14]. When a chewing herbivore attacks, the jasmonic-acid 

pathway is upregulated and the plant suppresses the salicylic-acid pathway, 

so it becomes more susceptible to the attack of phloem suckers or 

pathogens.

Plant chemical receptors and metabolic pathways responding to 

chemical cues are so sophisticated that they can even sense an insect 

walking on them before biting [95]. For trees or highly sectorial plants (e.g., 

shrubs), localized responses can lead individuals to be defensive mosaics, 

which are likely adaptive in the face of heterogeneous herbivore attack

[96,97]. Communication via volatiles or below-ground mycorrhizal 

connections can lead plant responses to herbivore attack to include large 

patches of plants [91]. Plants change their odors when attacked, and 

neighboring plants can respond in a process of plant-plant communication or

eavesdropping [91].
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Box 3 - Adding plant-herbivore adaptive behavior to our 

bioenergetic framework

Herbivore adaptive foraging and plant defenses can be incorporated 

into the functional response of the ATN model (Eq. 3 of Box 1) as:

F ji (B )=
p ji (B)(1−v ij) a ji h jiB i

q

1+c j B j+ ∑
l=resources

p jl(B) (1−v lj ) a jl h jlBl
q (Eq. 5)

where p ji is the foraging effort consumer j assigns to resource i and v ij is the 

anti-predator effort resource i assigns against consumer j, respectively. Note 

that in some versions of the ATN (e.g., [2]), p ji=ω ji denoting fixed consumer 

preference (unitless), while here it denotes variable foraging effort (also 

unitless, [13]). These efforts define the fraction of individuals’ energy or time

allocated to consuming a particular resource species and avoiding a 

particular consumer species, respectively [22]. The higher the foraging effort

invested in a particular resource, the higher the capture efficiency is of that 

resource and the larger Eq. 5 is. The higher the anti-predator effort of a 

resource against a consumer, the lower the capture efficiency of that 

consumer and the smaller Eq. 5 is. Adaptive foraging and inducible defenses 

are incorporated into Eq. 5 by allowing p ji and v jk, respectively, to adapt over 

time:

d p ji

dt =s j (
∂G j

∂ p ji
−γ j)(Eq. 6)

d v jk

dt =s ' j (
∂G j

∂v jk
−γ j)(Eq. 7)
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Parameters s j and s ' j are the rates by which species j changes its foraging 

and anti-predator efforts, respectively. Function G j=
1
B j

d B j

dt  is j’s per-capita 

(per-biomass in this case) growth rate. If s j < 1 or s ' i< 1, changes in foraging 

and anti-predator efforts are slower than population dynamics and the shift 

of strategies reflects evolutionary changes, whereas s j > 1 or s ' j > 1 

represents faster changes acquired through behavioral responses [98]. 

These efforts increase when they increase the per-biomass growth rate more

than the average per-biomass growth rate obtained from assigning the effort

to other consumers or resources, γ j, defined as:

γ j= ∑
lϵ resources

p jl

∂G j

∂ p jl
+ ∑

kϵconsumers
v jk

∂G j

∂v jk
(Eq. 8)

If a species only adaptively forages, then v jk=0, Eq. 7 is zero, and γ j in Eq. 6 

will only contain the first sum of Eq. 8. If a species only adaptively defends, 

then p ji=0, Eq. 6 is zero, and γ j in Eq. 7 only contains the second sum. 

Optimization of Eqs. 6 and 7 is constrained by allocation costs [99], 

representing the impossibility of individuals infinitely and simultaneously 

assigning energy or time to every task, expressed as:

∑
lϵresources

p jl+ ∑
kϵconsumers

v jk=1(Eq. 9)
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	Figure 1. Terrestrial alternative to bioenergetic models. (A) The classical approach determines food web structure and dynamics from allometric patterns based on each species’ average adult body mass () and metabolic class (Box 1). (i) Species’ potential feeding efficiency depends on their body mass relative to their resources. Consumers can feed on resources within a range of sizes around an energetically optimum body mass ratio. (ii) This enforces strong size structure with producers (trophic level [] = 1) of similar size and consumers approximately = 10-100x larger than their resources. (iii) Growth and consumption rates are also calculated from body masses, allowing (iv) high consumption and production by herbivores typical of aquatic ecosystems. (B) Our framework uses plant traits () representing the “fast-slow” axis to determine the structure and dynamics of herbivory interactions. Fast-growing plants are smaller, leafier, with more palatable leaves; while slow-growing plants are larger, woodier, with less nutritious and more defended leaves. (i) Animals’ potential feeding efficiency on plants depends on the match between their body mass for a given metabolic class and . (ii) This creates herbivory sub-networks with weaker size structure. (iii) Plant growth () and herbivory () can also be calculated using plant traits. (iv) Allowing variation in plant size and stoichiometry breaks the dependence of herbivore attack rate on consumer-resource body size ratio. This results in lower herbivore consumption and production than aquatic ecosystems with similar net primary productivity (NPP) due to less nutritious and more defended plant tissues.
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