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Fractional factorial designs are widely used in practice and typically chosen according to the

minimum aberration criterion. A sequential algorithm is developed for constructing efficient

fractional factorial designs. A construction procedure is proposed that only allows a design

to be constructed from its minimum aberration projection in the sequential build-up process.

To efficiently identify nonisomorphic designs, designs are divided into different categories ac-

cording to their moment projection patterns. A fast isomorphism check procedure is developed

by matching the factors using their delete-one-factor projections. A method is proposed for

constructing minimum aberration designs using only a partial catalog of some good designs.

Minimum aberration designs are constructed for 128 runs up to 64 factors, 256 runs up to 28

factors, and 512, 1024, 2048, and 4096 runs up to 23 or 24 factors. Furthermore, this algorithm

is used to completely enumerate all 128-run designs of resolution 4 up to 30 factors, all 256-run

designs of resolution 4 up to 17 factors, all 512-run designs of resolution 5, all 1024-run designs

of resolution 6, and all 2048- and 4096-run designs of resolution 7.

KEY WORDS: Fractional factorial design, isomorphism, linear code, MacWilliams identity,

minimum aberration, resolution

1 Introduction

Fractional factorial (FF) designs are widely used in many areas of science, engineering and industry.

With the rapidly increasing computational power, more and more large FF designs are used in large

scale computer experiments where physical processes are being simulated. Researchers at Johns

Hopkins University employed two-level FF designs in a ballistic missile defense project to assess the

sensitivity of 47 parameters of an extended air defense simulation in two far-term scenarios over the

first 10 days of a war (Mee 2004). In the first scenario, a resolution IV design with 512 runs was
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initially used and followed by 352 additional runs to resolve aliasing of two-factor interactions. The

second scenario was explored using a resolution V design with 4,096 runs obtained by SAS’s PROC

FACTEX. A more economic design in the second scenario would have been a resolution V design

with 2,048 runs, which can be obtained from a binary linear code constructed by Chen (1991). Lin

and Sitter (2006) reported that FF designs with over 600 runs and as many as 53 parameters were

used in computer simulations at Los Alamos National Laboratory.

FF designs are often chosen by the minimum aberration (MA) criterion (Fries and Hunter 1980),

an extension of the maximum resolution criterion (Box and Hunter 1961); see, among others, Box,

Hunter, and Hunter (2005, Table 6.22), Dean and Voss (1999, Tables 15.55 and 15.56), Montgomery

(2005, Table 8-14), and Wu and Hamada (2000, Tables 4A and 5A). The reader is referred to Wu

and Hamada (2000) and Mukerjee and Wu (2006) for rich results on MA designs and extensive

references.

The construction of MA designs or optimal designs under other criteria is not straightforward,

especially when the run size is large. Draper and Mitchell (1967, 1968) first developed a stage-

by-stage algorithm and completely enumerated all 256-run designs of resolution ≥ 5 and all even

512-run designs of resolution ≥ 6. An even design contains entirely defining words of even length

whereas an odd design has at least one defining word of odd length. Draper and Mitchell (1970)

attempted but failed to construct the complete set of even 1024-run designs of resolution ≥ 6,

and the complete set of odd 512-run designs of resolution ≥ 5. They obtained 4,043 distinct even

1024-run designs of resolution ≥ 6; as we will see later, they missed about 30% designs.

The construction of efficient FF designs is relatively easier when the run size is smaller. Chen,

Sun and Wu (1993, CSW hereafter) developed a sequential algorithm and enumerated all 8, 16, 27,

32-run designs of resolution ≥ 3 and 64-run designs of resolution ≥ 4. Xu (2005) extended their

work and enumerated all 81-run designs of resolution ≥ 3, 243-run designs of resolution ≥ 4, and

729-run designs of resolution ≥ 5. Based on a conjecture, Block and Mee (2005) constructed MA

128-run designs for 12 to 64 factors. Lin and Sitter (2006) developed an algorithm and enumerated

all 128-run designs of resolution ≥ 4 up to 16 factors and all 512-run designs of resolution ≥ 5 up

to 16 factors.

A key step in any algorithmic construction of FF designs is to determine whether two designs

are isomorphic. Two FF designs are isomorphic (or equivalent) if and only if one may be obtained

from the other by a relabeling of the factors. Two designs are distinct if they are not equivalent.

For large FF designs, the test of equivalence of two designs requires an excessive amount of com-
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puter time, so many test procedures have been proposed to quickly identify nonisomorphic designs.

Draper and Mitchell (1967) used the wordlength pattern to distinguish designs. Unfortunately,

two nonisomorphic designs can have the same wordlength pattern, so Draper and Mitchell (1970)

used a “letter pattern comparison” to test the equivalency of two designs and conjectured that FF

designs with the same letter pattern are isomorphic. However, Chen and Lin (1991) disproved their

conjecture by constructing two nonisomorphic 231−15 designs with the same letter pattern. Zhu

and Zeng (2005) reported that counter examples exist for as small as 32 runs; they also proposed

a more sensitive test based on the coset pattern, which still fails to determine a design uniquely.

Block and Mee (2005) conjectured that two designs are isomorphic if their sets of delete-one-factor

projections are equivalent. See Clark and Dean (2001), Ma, Fang, and Lin (2001), Xu (2005), and

Lin and Sitter (2006) for other test procedures.

In this paper we develop a new algorithm for constructing efficient FF designs with large run

sizes. As in other algorithms, we construct designs sequentially by adding one factor at a time. We

introduce an intelligent construction procedure that only allows a design to be constructed from its

MA projection in the sequential build-up process. This procedure discards many isomorphic designs

without performing time-consuming isomorphism checks. As we will see later, this procedure is

more efficient than the procedure used by Lin and Sitter (2006) who adopted a combined approach

from Bingham and Sitter (1999). To identify nonisomorphic designs, we divide designs into different

categories according to their moment projection patterns. As demonstrated by Xu (2005), the use

of moment projection patterns is more efficient than the use of letter patterns in terms of both

distinguishing designs and computation. To test whether two designs in the same category are

isomorphic, we develop a fast isomorphism check procedure by matching the factors using their

delete-one-factor projections. This procedure skips many unsuccessful relabeling maps and is much

more efficient than the procedures used by CSW and Lin and Sitter (2006). Based on an upper

bound on the wordlength pattern, we propose a method for constructing MA designs using only a

partial catalog of some good designs. The new algorithm enables us to construct MA designs for

128 runs up to 64 factors, 256 runs up to 28 factors, and 512, 1024, 2048 and 4096 runs up to 23

or 24 factors. Furthermore, we completely enumerate all 128-run designs of resolution ≥ 4 up to

30 factors, all 256-run designs of resolution ≥ 4 up to 17 factors, all 512-run designs of resolution

≥ 5, all 1024-run designs of resolution ≥ 6, and all 2048- and 4096-run designs of resolution ≥ 7.

For clarity, we consider only two-level regular FF designs. The extension to multi-level designs is

straightforward.
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In Section 2, we review some basic concepts, definitions and preliminary results. We describe

the construction method in Section 3. Tables of designs with 128–4096 runs are given in Section 4

and concluding remarks are given in Section 5.

2 Basic concepts, definitions and preliminary results

A regular 2n−k FF design, denoted by D, has n factors of two levels and 2n−k runs. A factor is

also called a letter or a column whereas a run is called a row. Associated with every regular 2n−k

design is a set of k independent defining words. The defining contrast subgroup of D consists of all

possible products of the k defining words and has 2k words (including the identity I). Let Ai(D) be

the number of words of length i. The vector (A1(D), . . . , An(D)) is called the wordlength pattern.

The resolution is the smallest i such that Ai(D) > 0.

Let D1 and D2 be two regular 2n−k designs. D1 is said to have less aberration than D2 if there

exists an r such that Ai(D1) = Ai(D2) for i = 1, . . . , r − 1 and Ar(D1) < Ar(D2). D1 is said to

have minimum aberration (MA) if there is no other regular design with less aberration than D1.

A 2n−k design D of resolution R is said to have weak MA (Chen and Hedayat 1996) if it has

maximum resolution and AR(D) is minimized among all regular designs.

2.1 Connection with coding theory

The connection between factorial designs and linear codes is important in the development of our

algorithm. For an introduction to coding theory, see Hedayat, Sloane, and Stufken (1999, Chapter

4) and MacWilliams and Sloane (1977).

A regular 2n−k FF design D is also known as a linear code of length n and dimension n − k

over the binary field GF (2) in coding theory. Associated with every binary linear code is another

linear code, the dual code D⊥, that consists of all row vectors (u1, . . . , un) over GF (2) such that∑n
i=1 uivi = 0 for all (v1, . . . , vn) in D.

The Hamming weight of a vector (u1, . . . , un) is the number of nonzero components ui. Let

Bi(D) and Bi(D⊥) be the number of rows with Hamming weight i in D and D⊥, respectively.

The vectors (B0(D), B1(D), . . . , Bn(D)) and (B0(D⊥), B1(D⊥), . . . , Bn(D⊥)) are called the weight

distributions of D and D⊥.
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The weight distributions of D and D⊥ are related through the famous MacWilliams identities.

Bj(D⊥) = 2−(n−k)
n∑

i=0

Pj(i;n)Bi(D) for j = 0, . . . , n, (1)

where Pj(x;n) =
∑j

i=0(−1)i
(
x
i

)(
n−x
j−i

)
are the Krawtchouk polynomials.

It is easy to see from the definitions that the defining contrast subgroup of D is indeed the dual

code D⊥ and that the wordlength pattern of D is the weight distribution of D⊥, that is,

Ai(D) = Bi(D⊥) for i = 1, . . . , n.

By definition, the wordlength pattern is computed via counting words in the defining contrast

subgroup. This direct approach can be cumbersome when k is large, because there are 2k words in a

2n−k design. The connection with coding theory leads to an alternative approach. We can compute

Ai(D) via the weight distribution Bi(D) and the MacWilliams identities (1). The Krawtchouk

polynomials need be computed once for each n and can be efficiently calculated via the following

recursive identity:

Pj(x;n) = Pj(x− 1;n)− Pj−1(x;n)− Pj−1(x− 1;n),

and the initial values P0(x;n) = 1 and Pj(0;n) =
(
n
j

)
. We use the alternative approach in our

algorithm, because the alternative approach is faster than the direct approach when k > n− k.

2.2 Delete-one-factor projections

For a 2n−k design D and i = 1, . . . , n, let D(−i) be the resulting 2(n−1)−(k−1) design when the ith

column is deleted. These sub-designs are called the delete-one-factor projections of D. Note that

D(−i) may be degenerate in the sense that it has less than 2n−k distinct runs.

The next two properties about MA delete-one-factor projections are important in our construc-

tion.

Lemma 1. For a 2n−k design D, if D(−i) has MA among all delete-one-factor projections of D,

then the ith column is a product of some of the other columns and therefore D(−i) is not degenerate.

Proof. Suppose the result is not true, then the ith column is independent of the other columns and

therefore it does not appear in any word of D. Then we can choose another column that appears

in some word and deleting that column would yield a design having less aberration than D(−i),

which is a contradiction.
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Lemma 2. Suppose that D is a 2n−k design of resolution R with δn words of length R. If D(−i)

has MA among all delete-one-factor projections of D, then D(−i) has at most δn−dR ·δn/ne words

of length R, where dxe is the smallest integer that is greater than or equal to x.

Proof. Each word of length R consists of R factors, so on average each factor appears in R · δn/n

words of length R. There must exist a factor that appears in at least dR · δn/ne words. Deleting

this factor yields a design that has at most δn − dR · δn/ne words of length R. The lemma follows

from the fact that MA projection D(−i) has the least number of words of length R.

3 Construction Method

3.1 Basic algorithm

Following CSW, we construct designs sequentially by adding one factor at a time. We first review

the basic idea of CSW’s algorithm and then describe how to improve it.

Denote r = n − k. Let G be an r × (2r − 1) matrix that consists of all nonzero r-tuples

(u1, . . . , ur)T from GF (2). It is well known that every regular 2n−k FF design can be viewed as n

columns of an 2r × (2r − 1) matrix H, which consists of all linear combinations of the rows of G

over GF (2).

Let CR
n,k be the set of nonisomorphic 2n−k designs of resolution ≥ R. CSW constructed CR

n+1,k+1

from CR
n,k by adding an additional column. For each design in CR

n,k, there are 2r − 1 − n ways to

add a column to produce a design with n + 1 columns. Let C̃n+1,k+1 be the set of these designs.

Obviously, |C̃n+1,k+1| = (2r − 1 − n)|CR
n,k|. It is obvious that CR

n+1,k+1 is a subset of C̃n+1,k+1.

However, some designs in C̃n+1,k+1 are isomorphic and some may have resolutions less than R. To

construct CR
n+1,k+1, it is necessary to eliminate these redundant designs. It is easy to eliminate

designs of resolution < R but is more difficult to eliminate isomorphic designs. To speed up

the isomorphism check process, CSW divided all designs into different categories according to

their wordlength patterns and letter patterns. Obviously, designs in different categories are not

isomorphic. However, designs in the same category are not necessarily isomorphic and therefore

a complete isomorphism check has to be applied to determine whether or not two designs are

isomorphic.
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Table 1: Number of Times that 27−3 Designs are Generated in the Sequential Construction

27−3 Designs

Design A3 7-3.1 7-3.2 7-3.3 7-3.4 7-3.5

6-2.1 0 2 6 0 1 0

6-2.2 1 0 6 3 0 0

6-2.3 2 0 0 9 0 0

6-2.4 2 0 2 4 1 2

3.2 A modified construction procedure

One problem with CSW’s algorithm is that too many isomorphic designs are generated in the

sequential build-up process, because a 2(n+1)−(k+1) design can be generated from as many as n+ 1

distinct 2n−k designs. We solve this problem by only allowing a design to be generated from its

MA delete-one-factor projection.

We modify the construction procedure as follows. For any design D in CR
n,k, adding a column

to D yields a candidate design Dc. Discard Dc if its resolution is less than R or if D does not have

MA among all delete-one-factor projections of Dc.

For illustration consider the construction of 27−3 designs. According to CSW, there are four

distinct 26−2 designs and five distinct 27−3 designs, labeled as 6-2.i and 7-2.j, where the designs

are ranked according to the MA criterion. For each 26−2 design, we can add one of the remaining

9 columns to obtain a 27−2 design. Table 1 shows the number of times that each 27−3 design

is generated in the (unmodified) sequential construction. For example, design 7-3.3 is generated

three times from design 6-2.2, nine times from design 6-2.3 and four times from design 6-2.4. The

modified construction procedure only allows design 7-3.3 to be generated from design 6-2.2, because

it has MA among all delete-one-factor projections of design 7-3.3. Under the original construction

procedure we need entertain 4×9 = 36 designs whereas under the modified construction procedure

we need entertain only 14 designs (boldfaced in Table 1). Because there are five distinct 27−3

designs, we reduce the number of isomorphism checks from 31 to 9.

Bingham and Sitter (1999) proposed a construction procedure that combines the search table

method of Franklin and Bailey (1977) and Franklin (1985) with the sequential approach. Table

2 shows the comparison of the construction procedures in the construction of 128-run designs of

resolution ≥ 4. The last row of the table shows the number of distinct designs. As the table shows,
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Table 2: Number of Designs Entertained in Creating Catalogs of 128-run Designs of Resolution ≥ 4

n

Procedure 8 9 10 11 12 13 14 15 16

CSW 99 458 1,104 2,597 6,632 16,200 36,192 79,064 160,040

Bingham and Sitter 99 186 506 1,367 3,499 7,950 15,798 29,062 48,889

Author 99 299 341 502 890 1,952 4,028 7,969 14,176

True 5 13 33 92 249 623 1,535 3,522 7,500

both the combined procedure of Bingham and Sitter (1999) and our modified procedure significantly

reduce the number of designs entertained. For n ≥ 10, our modified procedure entertains much less

designs than the other two procedures.

We now show, by induction, that every possible 2n−k design of resolution ≥ R in 2r runs is

isomorphic to a design in CR
n,k under the modified construction procedure. It is trivial that this

is true for n = r + 1. Suppose this is true for n = r + k. Consider n + 1 = r + k + 1. Let

D = (c1, . . . , cn+1) be a 2(n+1)−(k+1) design of resolution ≥ R in 2r runs. Suppose that D(−i)

has MA among all possible delete-one-factor projections of D. Lemma 1 implies that D(−i) must

be a non-degenerate 2n−k design of resolution ≥ R. By the assumption for 2n−k designs, there

exists a design Dn in CR
n,k that is isomorphic to D(−i). Let π be the isomorphic map from D(−i)

to Dn, i.e., Dn = π(D(−i)). Note that π(ci) is uniquely defined under this isomorphic map.

Let π(D) = (Dn, π(ci)). Clearly π(D) is entertained in the modified construction procedure and

therefore D is isomorphic to a design in CR
n+1,k+1. This completes the proof.

3.3 A nonisomorphism test procedure

Xu (2005) observed that the use of wordlength patterns and letter patterns is not efficient in

identifying nonisomorphic designs for three-level FF designs. Following Xu (2005), we divide designs

into different categories according to their weight distributions and moment projection patterns (to

be defined next). As explained in Section 2.1, the use of weight distributions is equivalent to

the use of wordlength patterns in terms of distinguishing designs but is more efficient in terms of

computation (when k > r).

For a 2n−k design D and an integer p, p < n, there are
(
n
p

)
p-factor projections. For each
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Table 3: Number of Designs Identified for 128-Run Designs of Resolution ≥ 4

n

Method 8 9 10 11 12 13 14 15 16

WLP 5 13 28 68 152 297 518 889 1,425

LP 5 13 33 92 247 617 1,506 3,467 7,229

MPP (q = 1) 5 13 33 92 247 617 1,506 3,467 7,229

MPP (q = 2) 5 13 33 92 249 623 1,535 3,522 7,500

p-factor projection, say Dp, and an integer t, compute the tth power moment

Kt(Dp) =
p∑

i=0

(p− i)tBi(Dp),

where Bi(Dp) is the number of row vectors of Dp with Hamming weight i. The power moment Kt

was introduced by Xu (2003) and Xu and Deng (2005) for ranking and classifying nonregular de-

signs. The frequency distribution of Kt-values of all p-factor projections is called the p-dimensional

Kt-value distribution. It is evident that isomorphic designs have the same p-dimenionsonal Kt-value

distribution for all positive integers t and p < n. Whenever two designs have different p-dimensional

Kt-value distributions for some t and p, these two designs must be nonisomorphic.

To ease the computation, we fix t and let p vary from n−1 to n−q, where q is a pre-chosen small

number, say 2 or 3. The corresponding q Kt-value distributions are called the moment projection

pattern. It requires O(nq) operations to compute the moment projection pattern. The choice of t

does not make a difference provided t > 5 in most cases. In the algorithm, we fix t arbitrarily at

t = 10.

Table 3 shows the numbers of designs identified by the wordlength pattern (WLP), letter pattern

(LP), moment projection pattern (MPP) with q = 1 and 2 in the construction of 128-run designs

of resolution ≥ 4 for n ≤ 16. Note that the moment projection pattern with q = 1 and the letter

pattern identify the same numbers of designs. The moment projection pattern with q = 2 correctly

identifies all nonisomorphic designs for n ≤ 16.

As Table 3 shows, the moment projection pattern check with q = 1 has the same or nearly the

same classification power as the letter patten check whereas the moment projection pattern check

with q = 2 or 3 typically has more classification power. Furthermore, when k is large, the moment

projection pattern check is faster than the letter pattern check.
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3.4 A fast isomorphism check procedure

We first review the isomorphism check procedure proposed by CSW. Consider two 27−3 designs

defined by

D1 : 5 = 123, 6 = 124, 7 = 13 and D2 : 5 = 12, 6 = 124, 7 = 234,

which have the same wordlength pattern and letter pattern. CSW’s procedure works as follows:

1. Select four independent columns from D2, say, {1, 2, 3, 6}. There are
(
7
4

)
choices.

2. Select a relabeling map from {1, 2, 3, 6} to {a, b, c, d}, say, a = 1, b = 2, c = 3, and d = 6.

There are 4! choices.

3. Write the remaining columns, {4, 5, 7}, in D2 as interactions of {a, b, c, d}, i.e., 4 = abd,

5 = ab, and 7 = acd. Then D2 can be written as {a, b, c, d, ab, abd, acd}.

4. Compare the new representation of D2 with that of D1. If they match, D1 and D2 are

isomorphic, and the process stops. Otherwise, return to step 2 and try another map of

{a, b, c, d}. When all the relabeling maps are exhausted, return to step 1 and find next four

columns.

If two designs are isomorphic, an isomorphic map will be found eventually. Otherwise, two designs

are not isomorphic. In the worst case, it requires O(n
(
n
r

)
r!) operations to declare that two 2n−k

designs are not isomorphic.

We improve the isomorphism check procedure by considering delete-one-factor projections. Let

π be a permutation of {1, . . . , n}. If π is an isomorphic map from D1 to D2, D1(−i) and D2(−π(i))

must be isomorphic and therefore they must have the same weight distribution. So π cannot be an

isomorphic map if D1(−i) and D2(−π(i)) do not have the same weight distribution for some i.

For convenience, we call a permutation π feasible if D1(−i) and D2(−π(i)) have the same weight

distribution for every i. A relabeling map is feasible if its induced permutation is feasible. The

key idea of our new isomorphism check procedure is to entertain only feasible relabeling maps by

matching the factors using the weight distributions of the delete-one-factor projections.

We illustrate our procedure with the two 27−3 designs mentioned earlier. Here are the steps.

1. Compute the weight distributions of the delete-one-factor projections (delete-one weight dis-

tributions, for short) for both designs; see Table 4. For each column of D1, count the frequency

that each delete-one weight distribution appears. Let ni be the frequency for the ith column.

Here n1 = n2 = n3 = n5 = 4, n4 = n6 = 2 and n7 = 1.
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Table 4: Weight Distributions of Delete-One-Factor Projections

D1 D2

Projection B0 B1 B2 B3 B4 B5 B6

D1(−1) 1 0 4 6 3 2 0

D1(−2) 1 0 4 6 3 2 0

D1(−3) 1 0 4 6 3 2 0

D1(−4) 1 1 2 6 5 1 0

D1(−5) 1 0 4 6 3 2 0

D1(−6) 1 1 2 6 5 1 0

D1(−7) 1 0 3 8 3 0 1

Projection B0 B1 B2 B3 B4 B5 B6

D2(−1) 1 0 4 6 3 2 0

D2(−2) 1 0 4 6 3 2 0

D2(−3) 1 1 2 6 5 1 0

D2(−4) 1 0 4 6 3 2 0

D2(−5) 1 0 3 8 3 0 1

D2(−6) 1 0 4 6 3 2 0

D2(−7) 1 1 2 6 5 1 0

2. Relabel the columns of D1 by selecting four new independent columns so that their frequency

numbers ni are as small as possible. For example, we select columns {7, 4, 6, 1} as the new

independent columns. We relabel them as {a, b, c, d}, i.e., a = 7, b = 4, c = 6, d = 1, and

write the remaining three columns as their interactions, i.e., 2 = bcd, 3 = ad, and 5 = abcd.

So after relabeling, D1 becomes D′1 : {a, b, c, d, ad, bcd, abcd}. The purpose of this step is to

reduce the number of feasible relabeling maps to be considered in the next step.

3. Select four independent columns from D2 that have the same delete-one weight distributions

as the four independent columns from D′1, and relabel the columns. To obtain a feasible map

from D2 to D′1, we must relabel column 5 of D2 as a, because only column 5 has the same

delete-one weight distribution as factor a of D′1. Similarly, we must relabel column 3 or 7 of

D2 as b or c. We can relabel column 1, 2, 4, or 6 of D2 as d. There are 1× 2× 4 = 8 choices

of feasible relabeling maps. For example, we choose a = 5, b = 3, c = 7, d = 1 and write the

remaining columns as 2 = ad, 4 = abcd, 6 = bcd. It is clear now that D2 is isomorphic to D′1

and hence to D1.

4. If two designs do not match after relabeling the independent columns, consider another choice

of relabeling and/or another choice of independent columns in step 3. If none of the choices

yields to an identical design, two designs are not isomorphic.

In the above example, we entertain only eight feasible relabeling maps out of
(
7
4

)
4! = 840

possible choices of relabeling maps. It can be verified that any of the eight feasible relabeling maps

leads to an isomorphic map. This is not true in general.
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Table 5: Time to Create Catalogs of 128-Run Designs of Resolution ≥ 4

n

Algorithm 8 9 10 11 12 13 14 15 16

CSW 0s 1s 4s 27s 2m32s 10m30s 37m48s 2h27m 6h43m

Author 0s 0s 0s 1s 1s 4s 8s 16s 39s

NOTE: The CSW’s algorithm is modified so that two algorithms differ only in the isomorphism

check procedures used. The h, m, and s stand for hour, minute, and second, respectively.

In theory our new isomorphism check procedure still requires O(n
(
n
r

)
r!) operations in the worst

case. In practice, the new isomorphism check procedure saves tremendous amount of computer

time, because the worst case happens rarely.

To see the computation advantage of the our new isomorphism check procedure, we develop two

algorithms with everything the same except isomorphism check procedures, one with the original

procedure by CSW and the other with our new procedure. Table 5 shows the real time comparison of

these two procedures in constructing 128-run designs of resolution ≥ 4. The savings are tremendous

and become larger for larger designs. The times are taken on a 2GHz PowerPC G5 computer.

The isomorphism check can be made faster in some situations. It is evident that two designs are

isomorphic if and only if their dual codes are isomorphic. So when k < r, we perform isomorphism

checks on the dual codes. This technique was previously used by Lin and Sitter (2006).

As an alternative, we can match columns using their letter patterns. It can be shown that the

use of delete-one weight distributions is equivalent to the use of letter patterns. We use the former

because it is faster to compute delete-one weight distributions than letter patterns when k > r.

Clark and Dean (2001) presented a method of determining isomorphism of any two FF designs,

regular or nonregular, by examining the Hamming distances of their projection designs. They also

developed an algorithm for checking the isomorphism of two-level designs. Their isomorphism check

procedure, adopted by Lin and Sitter (2006), is inferior to ours for the regular design case, because

it ignores the special property of regular designs and requires O(n(n!)2) operations in theory for

the worst case.
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Table 6: Illustration of Constructing MA 256-Run Designs for n ≤ 28

n 9 10 11 12 13 14 15 16 17 18

δn 0 0 0 0 0 1 2 3 5 7

|C4
n,k(δn)| 5 9 11 14 15 124 617 1,836 14,158 46,929

n 19 20 21 22 23 24 25 26 27 28

δn 9 12 16 20 25 31 38 46 54 64

|C4
n,k(δn)| 56,821 104,654 258,535 136,105 65,070 23,981 5,610 661 6 1

3.5 Construction of MA designs

It is impractical to enumerate all designs in many situations. Here we propose a method for

constructing MA designs by enumerating a subset of good designs.

Let CR
n,k(δn) be the set of nonisomorphic 2n−k designs of resolution ≥ R with at most δn words

of length R. We can sequentially build up CR
n,k(δn) as before. To construct CR

n,k(δn), according to

Lemma 2, it is sufficient to add a column to every design in CR
n−1,k−1(δn−1), where

δn−1 = δn −
⌈
R · δn
n

⌉
. (2)

For illustration, consider the construction of MA 256-run designs for n ≤ 28. It is known from

Block (2003) that there is a resolution four 228−20 design with A4 = 64. We set R = 4, δ28 = 64,

and compute δn−1 backward using (2) recursively for n = 28, . . . , 10. Then we build up C4
n,k(δn)

forward for n = 9, . . . , 28. By completely enumerating C4
n,k(δn), we obtain all MA 256-run designs

for n ≤ 28. Table 6 shows the value of δn and the cardinality of C4
n,k(δn). From the table, we know

that there is a unique resolution four 228−20 design with A4 ≤ 64.

3.6 Construction of even and odd designs

Sometimes it is of interest to study even and odd designs separately. Recall that an even design

contains entirely defining words of even length whereas an odd design has at least one defining

word of odd length. It is evident that any projection of an even design is an even design. So when

searching for even designs, we can simply discard all odd designs. On the other hand, a projection

of an odd design can be an odd or even design, and at least one projection is an odd design. So

when searching for odd designs, we add an extra step in our construction procedure.
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Here is the modified construction procedure for odd designs. Let OR
n,k be the set of noniso-

morphic odd 2n−k designs of resolution ≥ R. For any design D in OR
n,k, adding a column to D

yields a candidate design Dc. Discard Dc if its resolution is less than R or if it is an even design.

Further discard Dc if all of its delete-one-factor projections are odd designs and D does not have

MA among all the delete-one-factor projections. Let ÕR
n+1,k+1 be the set of designs Dc left. It can

be shown that ÕR
n+1,k+1 contains OR

n+1,k+1.

Whether a design is even or odd can be conveniently determined by its weight distribution.

Lemma 3. (a) A 2n−k design D is an odd design if and only if Bn(D) = 0.

(b) For an odd 2n−k design D, all of its delete-one-factor projections are odd designs if and only

if Bn−1(D) = 0.

Proof. (a) It is well known that a 2n−k design is an even design if and only if it is a fold-over design.

Because every 2n−k design contains a row of 0’s, an even design contains a row of 1’s. So D is an

even design if and only if Bn(D) = 1. Equivalently, D is an odd design if and only if Bn(D) = 0.

(b) It follows from (a).

4 Tables of Designs

Using the new algorithm we completely enumerate all 128-run designs of resolution ≥ 4 up to 30

factors, all 256-run designs of resolution ≥ 4 up to 17 factors, all 512-run designs of resolution ≥ 5,

all 1024-run designs of resolution ≥ 6, and all 2048- and 4096-run designs of resolution ≥ 7. Table

7 shows the number of nonisomorphic designs for various run sizes and resolutions.

By constructing even and odd designs separately, we further completely enumerate all odd 128-

run designs of resolution ≥ 4 which exist for n ≤ 40 and all even 256-run designs of resolution ≥ 4

for n ≤ 19. Table 8 shows the number of nonisomorphic even and odd designs for 128, 256, 512,

and 1024 runs. The complete set of designs can be obtained from the author upon request.

The 128-run designs are of special interest because MA designs are given in CSW up to 64 runs.

Block and Mee (2005) constructed MA and weak MA 128-run designs for n=12–64. They achieved

this by enumerating all odd designs of resolution four and all even designs for n ≤ 22, based on their

conjecture. By comparing the numbers of even and odd designs, we conclude that their set of odd

designs is complete and their set of even designs is also complete for n ≤ 22. The numbers of even

designs for n = 21 and 22 in their table 6 are not correct, though. So their conjecture is correct

for all the cases they considered and their designs do have weak MA as claimed except for a few
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typos in their table 2 with 15, 19–21, and 30–32 factors (see Corrigenda). For easy reference, we

give all MA and weak MA designs for 128 runs up to 40 factors in Table 9, constructed according

to the procedure in Section 3.5. Note from Table 9 that MA designs are in sequential order for

n=32–40. However, this is not true for n = 31, which agrees with the theoretical result of Xu and

Cheng (2007). For 40 < n ≤ 64, MA designs can be obtained via deleting the MA complementary

even designs from the unique even 264−57 design; see Butler (2003) and Block and Mee (2005) for

details. Again, this can be achieved by enumerating a set of good even designs. We confirm that

MA designs are unique except for n=41, 42, 43, 44, and 50. For n > 64, MA designs can also be

obtained via complementary designs; see Chen and Hedayat (1996), Tang and Wu (1996), Butler

(2003), and Xu and Cheng (2007). Thus, all MA 128-run designs can be constructed.

Table 10 gives all MA and weak MA 256-run designs up to 28 factors, constructed as outlined

in Section 3.5. Block (2003) previously studied 256-run designs and obtained a list of designs up

to 80 factors. Comparing the wordlength patterns, we find that his designs do not have MA when

n = 24, 25.

Tables 11 and 12 give selected 512-run designs of resolution ≥ 5 and 1024-run designs of resolu-

tion ≥ 6. These tables include all weak MA designs and the top three or four designs. We list only

one design when other designs have less resolution. MA designs are unique and weak MA designs

are also unique except for 512 runs and n = 22.

Draper and Mitchell (1970) conjectured that all 223−14 designs of resolution five are equivalent.

We confirm this; see Table 7. According to Table 8, there are 5,710 nonisomorphic even 1024-run

designs of resolution ≥ 6. Draper and Mitchell (1970) identified 4,043 even designs using the letter

pattern check, so they missed 1,667 (about 30%) even designs.

Table 13 gives the complete catalog of 2048-run designs of resolution ≥ 7 and Table 14 gives

the complete catalog of 4096-run designs of resolution ≥ 8. Weak MA designs are unique for all

cases. According to Table 7, 4096-run designs of both resolution 7 and 8 have maximum 24 factors.

In Tables 9–14, each 2n−k design is labeled as n − k.i, where the index i reflects the ordering

based on the MA criterion. When two or more designs have the same wordlength pattern, the

ordering among them is arbitrary. Every 2n−k design is represented by a set of n columns in the

Yates order. To save space, we omit the independent columns, which are {1, 2, . . . , 2n−k−1}, and give

only a set of k columns. For illustration, consider design 9-2.1 in Table 9 which has columns {31,

103}. Denote the nine factors as {x1, . . . , x9}, where {x1, . . . , x7} represent independent columns,

that is, xi = 2i−1 for i = 1, . . . , 7. Then x8 = x1 ·x2 ·x3 ·x4 ·x5 and x9 = x1 ·x2 ·x3 ·x6 ·x7 because
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31 = 20 + 21 + 22 + 23 + 24 and 103 = 20 + 21 + 22 + 25 + 26. The wordlength pattern of this design

is A6 = 3 and Ai = 0 for i 6= 6.

5 Concluding Remarks

We develop a new sequential algorithm for constructing large FF designs. The new algorithm has

the following features:

1. A construction procedure that allows a design to be constructed only from its MA projection

in the sequential build-up process,

2. A nonisomorphism test procedure that uses moment projection patterns to identify noniso-

morphic designs efficiently,

3. A fast isomorphism check procedure that matches factors using their delete-one weight dis-

tributions,

4. A method for constructing MA designs using a partial catalog of good designs.

With some proper modifications, these features can be used to more efficiently construct designs

for other situations such as blocked designs, split-plot designs, and robust parameter designs.

Using this algorithm we construct MA designs with run sizes ranging from 128 to 4096 and

maximum number of factors ranging from 23 to 64. The construction of large designs beyond

these presented in this paper remains challenging, because of the enormous number of designs

encountered, as evidenced in Tables 7 and 8. It appears feasible to enumerate all resolution four

designs with 128 runs on a personal computer; however, it seems impractical to do so with 256 runs

at this moment. The algorithm takes one hour on a G5 computer to enumerate all resolution four

designs with 256 runs for n = 16 and one day for n = 17, and in the latter case there are about 1.8

million distinct designs. Further research is called for.
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Table 7: Number of Nonisomorphic Designs

Run Size (Resolution ≥ R)
n 27(4) 28(4) 28(5) 29(5) 210(6) 211(7) 212(7) 212(8)
8 5
9 13 6 5

10 33 21 9 6
11 92 74 11 16 6
12 249 311 14 36 14 6
13 623 1,429 15 92 24 9 7 6
14 1,535 7,344 11 282 47 7 17 7
15 3,522 42,581 6 1,011 98 7 27 4
16 7,500 271,784 1 4,019 185 7 48 5
17 14,438 1,798,534 1 13,759 380 3 95 5
18 25,064 ? 0 29,373 919 2 113 2
19 39,335 ? 31,237 1,701 1 84 1
20 57,920 ? 14,135 1,682 1 35 1
21 82,496 ? 2,373 739 1 22 1
22 118,444 ? 128 128 1 17 1
23 173,092 ? 1 8 1 17 1
24 256,654 ? 0 1 0 13 1
25 376,382 ? 0 0 0
26 537,907 ?
27 735,111 ?
28 956,190 ?
29 1,174,404 ?
30 1,363,003 ?

Total ? ? 73 96,468 5,932 46 495 35
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Table 8: Number of Nonisomorphic Even and Odd Designs

Run Size (Resolution ≥ R)
27(4) 28(4) 29(5) 210(6)

n Even Odd Even Odd Even Odd Even Odd
8 3 2
9 6 7 3 3

10 14 19 9 12 3 3
11 30 62 24 50 4 12 3 3
12 69 180 80 231 5 31 7 7
13 136 487 241 1,188 5 87 11 13
14 295 1,240 839 6,505 5 277 23 24
15 596 2,926 3,029 39,552 5 1,006 51 47
16 1,292 6,208 12,487 259,297 3 4,016 125 60
17 2,651 11,787 55,331 1,743,203 1 13,758 332 48
18 5,598 19,466 265,798 ? 1 29,372 908 11
19 11,341 27,994 1,314,705 ? 0 31,237 1,695 6
20 22,728 35,192 ? ? 14,135 1,681 1
21 43,295 39,201 ? ? 2,373 738 1
22 79,597 38,847 ? ? 128 127 1
23 138,224 34,868 ? ? 1 8 0
24 228,521 28,133 ? ? 0 1
25 355,813 20,569 ? ? 0
26 524,409 13,498 ? ?
27 727,036 8,075 ? ?
28 951,906 4,284 ? ?
29 1,172,255 2,149 ? ?
30 1,362,027 976 ? ?
31 ? 433 ? ?
32 ? 197 ? ?
33 ? 101 ? ?
34 ? 31 ? ?
35 ? 13 ? ?
36 ? 8 ? ?
37 ? 3 ? ?
38 ? 2 ? ?
39 ? 1 ? ?
40 ? 1 ? ?

Total ? 296,960 ? ? 32 96,436 5,710 222
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Table 9: Weak Minimum Aberration 128-Run Designs for n ≤ 40

Design (A4, A5, . . .) Columns

8-1.1 0 0 0 0 1 127
9-2.1 0 0 3 0 0 31 103
10-3.1 0 3 3 1 0 31 103 43
11-4.1 0 6 6 2 1 31 103 43 85
12-5.1 1 8 12 8 1 31 103 43 85 121
12-5.2 1 10 10 5 4 31 103 43 85 44
12-5.3 1 10 11 4 2 31 103 43 85 46
13-6.1 2 16 18 10 9 31 103 43 85 44 86
13-6.2 2 16 20 8 5 31 103 43 85 46 61
14-7.1 3 24 36 16 11 31 103 43 85 46 61 114
15-8.1 7 32 52 40 35 31 103 43 85 46 61 114 67
15-8.2 7 34 46 42 45 31 103 43 85 44 86 88 53
15-8.3 7 38 44 28 51 31 103 43 85 46 61 114 13
16-9.1 10 48 72 80 90 31 103 43 85 44 86 88 53 110
17-10.1 15 60 130 120 31 103 43 85 46 61 114 67 78 116
17-10.2 15 66 110 130 31 103 43 85 46 61 114 67 78 55
17-10.3 15 68 106 128 31 103 43 85 44 86 88 53 38 58
17-10.4 15 72 102 112 31 103 43 85 46 61 114 67 13 55
18-11.1 20 80 200 192 31 103 43 85 46 61 114 67 78 116 121
18-11.2 20 92 160 212 31 103 43 85 46 61 114 67 78 55 58
19-12.1 27 120 235 344 31 103 43 85 46 61 114 67 78 55 58 86
20-13.1 36 152 340 544 31 103 43 85 46 61 114 67 78 55 58 86 91
21-14.1 51 200 414 840 31 103 43 85 44 82 54 56 88 78 123 125 104 25
21-14.2 51 202 400 860 31 103 43 85 44 86 88 53 38 58 79 83 110 124
22-15.1 65 248 572 1280 31 103 43 85 44 86 88 53 78 58 83 97 28 104 114
22-15.2 65 256 552 1256 31 103 43 85 44 82 54 56 88 78 123 125 104 25 112
23-16.1 83 316 744 31 103 43 85 44 82 54 56 88 78 123 125 104 25 112 49
23-16.2 83 318 734 31 103 43 85 44 86 88 53 38 58 79 83 110 124 97 104
24-17.1 102 384 992 31 103 43 85 44 86 88 53 110 19 28 57 67 98 100 26 105
24-17.2 102 394 985 31 103 43 85 44 86 88 53 38 58 79 83 110 124 97 104 114
25-18.1 124 482 1312 31 103 43 85 44 86 88 53 38 58 79 83 110 124 97 104 114 123
26-19.1 152 568 1704 31 103 43 85 44 86 88 53 110 19 28 57 67 98 100 26 105 62 77
27-20.1 180 690 2200 31 103 43 85 44 86 88 53 110 19 28 57 67 98 100 26 105 62 77 112
28-21.1 210 840 2800 31 103 43 85 44 86 88 53 110 19 28 57 67 98 100 26 105 62 77 112 127
29-22.1 266 945 3472 31 103 43 85 44 86 88 53 110 19 28 57 67 98 100 26 105 62 77 112 127 124
30-23.1 335 972 4662 31 103 43 81 45 26 114 127 22 67 56 94 116 7 38 108 14 69 53 25 73 121 28
31-24.1 391 1134 5826 same as design 30-23.1, plus 91
31-24.2 391 1134 5827 same as design 30-23.1, plus 51
32-25.1 452 1322 7219 same as design 30-23.1, plus 51 97
32-25.2 452 1323 7218 same as design 30-23.1, plus 91 51
32-25.3 452 1324 7219 same as design 30-23.1, plus 51 62
33-26.1 518 1543 8863 same as design 30-23.1, plus 51 97 70
33-26.2 518 1544 8863 same as design 30-23.1, plus 91 51 62
34-27.1 589 1800 10788 same as design 30-23.1, plus 51 97 70 79
34-27.2 589 1801 10788 same as design 30-23.1, plus 51 97 70 87
35-28.1 665 2100 13020 same as design 30-23.1, plus 51 97 70 79 93
35-28.2 665 2101 13020 same as design 30-23.1, plus 51 97 70 79 91
36-29.1 756 2401 15736 same as design 30-23.1, plus 51 97 70 79 93 62
37-30.1 854 2744 18886 same as design 30-23.1, plus 51 97 70 79 93 62 87
38-31.1 959 3136 22512 same as design 30-23.1, plus 51 97 70 79 93 62 87 88
39-32.1 1071 3584 26656 same as design 30-23.1, plus 51 97 70 79 93 62 87 88 91
40-33.1 1190 4096 31360 same as design 30-23.1, plus 51 97 70 79 93 62 87 88 91 106
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Table 10: Weak Minimum Aberration 256-Run Designs for n ≤ 28

Design (A4, A5, . . .) Columns
9-1.1 0 0 0 0 0 1 255
10-2.1 0 0 1 2 0 0 63 199
11-3.1 0 0 6 0 1 0 127 143 179
12-4.1 0 0 12 0 3 0 127 143 179 213
13-5.1 0 3 12 12 3 0 127 143 179 213 105
14-6.1 0 9 18 16 7 6 127 143 179 213 105 27
15-7.1 0 15 30 26 15 127 143 179 213 105 27 46
16-8.1 0 24 44 40 45 127 143 179 85 150 75 108 189
17-9.1 0 34 68 68 85 127 143 179 85 150 75 108 189 229
18-10.1 3 36 114 132 127 143 179 213 105 27 46 182 92 194
18-10.2 3 42 102 118 127 143 179 213 105 27 46 152 203 214
18-10.3 3 44 98 116 127 143 179 213 105 27 46 92 152 203
18-10.4 3 46 92 111 127 143 179 85 150 75 108 189 229 7
18-10.5 3 47 95 103 127 143 179 213 105 27 46 77 158 185
18-10.6 3 48 94 100 127 143 179 213 105 27 46 77 185 234
18-10.7 3 48 96 100 127 143 179 85 150 75 108 118 184 234
18-10.8 3 48 102 92 127 143 179 213 105 27 46 158 164 185
19-11.1 4 48 168 208 127 143 179 213 105 27 46 182 92 194 229
19-11.2 4 56 152 184 127 143 179 213 105 27 46 152 203 214 236
19-11.3 4 60 144 180 127 143 179 213 105 27 46 152 203 214 92
19-11.4 4 64 140 160 127 143 179 213 105 27 46 77 158 185 234
19-11.5 4 64 152 144 127 143 179 213 105 27 46 158 164 185 234
20-12.1 5 64 240 320 127 143 179 213 105 27 46 182 92 194 229 248
20-12.2 5 80 208 272 127 143 179 213 105 27 46 152 203 214 236 92
21-13.1 9 104 268 127 143 179 213 105 27 46 152 203 214 236 92 45
22-14.1 14 137 346 127 143 179 213 105 27 46 77 158 185 234 164 88 201
23-15.1 20 172 450 127 143 179 213 105 27 46 77 158 185 234 201 88 43 236
24-16.1 26 216 584 127 143 179 213 105 27 46 77 158 185 84 248 166 83 146 165
25-17.1 34 262 760 127 143 179 213 105 27 46 77 158 185 84 248 166 83 146 165 49
25-17.2 34 266 752 127 143 179 213 105 27 46 77 158 185 84 248 166 83 146 165 78
26-18.1 43 325 963 127 143 179 213 105 27 46 77 158 185 84 248 166 83 146 165 78 113
26-18.2 43 326 960 127 143 179 213 105 27 46 77 158 185 84 248 166 83 146 165 78 124
27-19.1 53 395 1224 127 143 179 213 105 27 46 77 158 185 84 248 166 83 146 165 78 113 124
28-20.1 64 476 1550 127 143 179 213 105 27 46 77 158 185 84 248 166 83 146 165 78 113 124 228
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Table 11: Selected 512-Run Designs of Resolution ≥ 5

Design (A5, A6, . . .) Columns
10-1.1 0 0 0 0 0 1 511
11-2.1 0 0 2 1 0 0 127 399
12-3.1 0 2 4 1 0 0 127 399 179
12-3.2 0 3 3 0 1 0 255 271 307
12-3.3 0 4 0 3 0 0 127 391 155
12-3.4 0 4 0 3 0 0 127 143 307
13-4.1 0 4 8 3 0 0 127 399 179 341
13-4.2 0 6 6 1 2 0 127 399 179 213
13-4.3 0 8 0 7 0 0 127 391 155 301
14-5.1 0 7 16 7 0 0 127 399 179 341 489
14-5.2 0 15 0 14 0 1 127 391 155 301 206
14-5.3 0 15 0 15 0 0 127 391 155 301 433
15-6.1 0 25 0 30 0 3 127 391 155 301 206 501
15-6.2 0 27 0 23 0 12 127 391 155 301 433 205
15-6.3 0 27 0 24 0 9 127 391 155 301 206 188
16-7.1 0 44 0 45 0 28 127 391 155 301 206 188 358
16-7.2 0 45 0 41 0 34 127 391 155 301 433 205 345
16-7.3 0 48 0 30 0 48 127 143 307 181 211 285 327
17-8.1 0 68 0 85 0 68 127 391 155 301 206 188 358 369
18-9.1 0 102 0 153 0 127 391 155 301 206 188 358 369 468
19-10.1 12 84 156 78 127 143 307 181 211 285 327 105 427 473
19-10.2 15 102 67 153 127 391 155 301 206 188 358 369 468 15
19-10.3 18 78 130 104 127 143 307 181 211 285 105 427 473 39
20-11.1 16 120 240 130 127 143 307 181 211 285 327 105 427 473 485
20-11.2 24 112 200 170 127 143 307 181 211 285 327 105 427 473 39
20-11.3 28 108 188 182 127 143 307 181 211 285 105 427 473 39 60
21-12.1 21 168 360 210 127 143 307 181 211 285 327 105 427 473 485 510
21-12.2 37 152 280 290 127 143 307 181 211 285 327 105 427 473 39 60
21-12.3 45 139 240 354 127 143 307 181 211 285 105 427 473 39 323 453
22-13.1 63 189 325 569 127 391 155 301 206 188 358 350 507 105 298 275 369
22-13.2 63 190 321 566 127 391 155 301 206 188 358 369 83 166 197 408 498
22-13.3 63 190 321 566 127 391 155 301 206 188 358 23 340 507 418 99 46
22-13.4 63 193 313 565 127 391 155 301 206 188 358 369 468 15 86 99 166
23-14.1 84 252 445 890 127 391 155 301 206 188 358 23 340 430 435 90 450 99
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Table 12: Selected 1024-Run Designs of Resolution ≥ 6

Design (A6, A7, . . .) Columns
11-1.1 0 0 0 0 0 1 1023
12-2.1 0 0 3 0 0 0 127 911
13-3.1 0 4 3 0 0 0 127 911 435
14-4.1 0 8 7 0 0 0 127 911 435 725
15-5.1 0 15 15 0 0 127 911 435 725 873
16-6.1 6 25 15 0 10 127 911 435 725 873 158
16-6.2 8 24 13 0 8 127 911 435 725 158 327
16-6.3 9 16 18 12 3 127 911 435 213 665 865
17-7.1 12 41 25 0 20 127 911 435 725 873 158 327
17-7.2 13 40 25 0 18 127 911 435 725 158 327 490
17-7.3 15 34 23 14 16 127 911 435 725 158 327 551
18-8.1 19 66 45 0 42 127 911 435 725 873 158 327 490
18-8.2 20 64 46 0 40 127 911 435 725 158 327 490 860
18-8.3 28 48 38 32 32 127 911 435 469 158 376 535 1022
19-9.1 28 104 78 0 88 127 911 435 725 873 158 327 490 626
19-9.2 46 56 81 72 81 127 911 435 213 665 301 625 598 841
19-9.3 48 54 81 72 72 127 911 435 213 665 301 625 598 762
20-10.1 40 160 130 0 127 911 435 725 873 158 327 490 626 697
20-10.2 90 0 255 0 127 911 179 341 539 361 668 445 598 1004
20-10.3 90 0 255 0 127 911 179 341 614 158 790 440 604 995
21-11.1 56 240 210 0 127 911 435 725 873 158 327 490 626 697 860
21-11.2 128 0 410 0 127 911 179 341 614 158 968 283 355 570 625
21-11.3 130 0 396 0 127 911 179 341 539 361 668 445 709 565 1002
22-12.1 77 352 330 0 127 911 435 725 873 158 327 490 626 697 860 932
22-12.2 183 0 600 0 127 911 179 341 539 361 668 173 1002 203 823 589
22-12.3 184 0 594 0 127 911 179 341 614 158 968 283 805 508 604 535
23-13.1 251 0 899 0 127 911 179 341 614 158 968 283 805 466 555 508 535
23-13.2 252 0 890 0 127 911 179 341 614 158 790 440 964 625 995 234 334
23-13.3 252 0 892 0 127 911 179 341 614 158 790 440 364 589 1002 355 692
24-14.1 336 0 1335 0 127 911 179 341 614 158 790 440 964 625 995 234 334 589
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Table 13: A Complete Catalog of 2048-Run Designs of Resolution ≥ 7

Design (A7, A8, . . .) Columns
12-1.1 0 0 0 0 0 1 2047
12-1.2 0 0 0 0 1 0 1023
12-1.3 0 0 0 1 0 0 511
12-1.4 0 0 1 0 0 0 255
12-1.5 0 1 0 0 0 0 127
12-1.6 1 0 0 0 0 0 63
13-2.1 0 1 2 0 0 0 255 1807
13-2.2 0 2 0 1 0 0 511 1567
13-2.3 0 3 0 0 0 0 127 911
13-2.4 1 0 1 1 0 0 511 1551
13-2.5 1 1 0 0 1 0 1023 1055
13-2.6 1 1 1 0 0 0 255 783
13-2.7 2 0 0 0 0 1 2047 63
13-2.8 2 0 0 1 0 0 511 543
13-2.9 2 1 0 0 0 0 127 399
14-3.1 0 7 0 0 0 0 127 911 1459
14-3.2 2 3 2 0 0 0 255 1807 819
14-3.3 3 2 1 1 0 0 511 1567 615
14-3.4 3 3 0 0 1 0 127 911 1175
14-3.5 4 1 0 2 0 0 511 543 1127
14-3.6 4 2 0 0 0 1 2047 63 455
14-3.7 4 3 0 0 0 0 127 911 435
15-4.1 0 15 0 0 0 0 127 911 1459 1749
15-4.2 4 7 4 0 0 0 127 911 1459 725
15-4.3 6 5 2 2 0 0 255 1807 819 1397
15-4.4 6 7 0 0 2 0 127 911 1459 469
15-4.5 7 6 0 0 1 1 127 911 1175 441
15-4.6 7 7 0 0 0 0 127 911 1459 444
15-4.7 8 7 0 0 0 0 127 911 435 725
16-5.1 0 30 0 0 0 0 127 911 1459 1749 1897
16-5.2 7 15 8 0 0 0 127 911 1459 1749 444
16-5.3 8 14 8 0 0 0 127 911 1459 725 873
16-5.4 10 15 0 0 6 0 127 911 1459 1749 470
16-5.5 11 11 4 4 0 0 127 911 1459 725 444
16-5.6 12 13 0 0 4 2 127 911 1459 469 694
16-5.7 15 15 0 0 0 0 127 911 435 725 873
17-6.1 16 30 0 0 16 127 911 1459 1749 1897 470
17-6.2 20 25 0 0 12 127 911 1459 1749 470 739
17-6.3 21 25 0 0 10 127 911 1459 469 694 876
18-7.1 32 46 0 0 32 127 911 1459 1749 1897 470 739
18-7.2 33 45 0 0 30 127 911 1459 1749 470 739 826
19-8.1 52 78 0 0 72 127 911 1459 1749 1897 470 739 826
20-9.1 80 130 0 0 127 911 1459 1749 1897 470 739 826 1272
21-10.1 120 210 0 0 127 911 1459 1749 1897 470 739 826 1272 1309
22-11.1 176 330 0 0 127 911 1459 1749 1897 470 739 826 1272 1309 1614
23-12.1 253 506 0 0 127 911 1459 1749 1897 470 739 826 1272 1309 1614 1956
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Table 14: A Complete Catalog of 4096-Run Designs of Resolution ≥ 8

Design (A8, A9, . . .) Columns
13-1.1 0 0 0 0 0 1 4095
13-1.2 0 0 0 0 1 0 2047
13-1.3 0 0 0 1 0 0 1023
13-1.4 0 0 1 0 0 0 511
13-1.5 0 1 0 0 0 0 255
13-1.6 1 0 0 0 0 0 127
14-2.1 0 2 1 0 0 0 511 3615
14-2.2 1 0 2 0 0 0 511 3599
14-2.3 1 1 0 1 0 0 1023 3103
14-2.4 1 2 0 0 0 0 255 1807
14-2.5 2 0 0 0 1 0 2047 2111
14-2.6 2 0 1 0 0 0 511 1567
14-2.7 3 0 0 0 0 0 127 911
15-3.1 3 4 0 0 0 0 255 1807 2867
15-3.2 5 0 2 0 0 0 511 3599 1651
15-3.3 6 0 0 0 1 0 2047 2111 2503
15-3.4 7 0 0 0 0 0 127 911 1459
16-4.1 7 8 0 0 0 0 255 1807 2867 3413
16-4.2 11 0 4 0 0 0 511 3599 1651 2741
16-4.3 13 0 0 0 2 0 2047 2111 2503 2777
16-4.4 14 0 0 0 0 0 127 911 1459 2492
16-4.5 15 0 0 0 0 0 127 911 1459 1749
17-5.1 14 16 0 0 0 0 255 1807 2867 3413 3734
17-5.2 15 15 0 0 0 0 255 1807 2867 3413 3689
17-5.3 22 0 8 0 0 0 511 3599 1651 2741 3289
17-5.4 25 0 0 0 6 0 2047 2111 2503 2777 2922
17-5.5 30 0 0 0 0 0 127 911 1459 1749 1897
18-6.1 45 0 0 0 18 0 2047 2111 2503 2777 2922 3308
18-6.2 46 0 0 0 16 0 2047 2111 2503 2777 2922 2996
19-7.1 78 0 0 0 48 0 2047 2111 2503 2777 2922 3308 2996
20-8.1 130 0 0 0 120 2047 2111 2503 2777 2922 3308 2996 3441
21-9.1 210 0 0 0 280 2047 2111 2503 2777 2922 3308 2996 3441 3482
22-10.1 330 0 0 0 616 2047 2111 2503 2777 2922 3308 2996 3441 3482 3670
23-11.1 506 0 0 0 1288 2047 2111 2503 2777 2922 3308 2996 3441 3482 3670 3747
24-12.1 759 0 0 0 2576 2047 2111 2503 2777 2922 3308 2996 3441 3482 3670 3747 3853
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