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preprint, arXiv:1502.07698.

Moduli spaces of semitoric systems, preprint, arXiv:1502.07296.

Metrics and convergence in the moduli space of maps, preprint, arXiv:1406.4181.

x



ABSTRACT OF THE DISSERTATION

Symplectic invariants and moduli spaces of integrable systems

by

Joseph Palmer

Doctor of Philosophy in Mathematics

University of California, San Diego, 2016

Professor Álvaro Pelayo, Chair

In this dissertation I prove a number of results about the symplectic geometry of finite

dimensional integrable Hamiltonian systems, especially those of semitoric type. Integrable systems

are, roughly, dynamical systems with the maximal amount of conserved quantities. Though the

study of integrable systems goes back hundreds of years, the earliest general result in this field is the

action-angle theorem of Arnold in 1963, which was later extended to a global version by Duistermaat.

The results of Atiyah, Guillemin-Sternberg, and Delzant in the 1980s classified toric integrable

systems, which are those produced by effective Hamiltonian Tn-actions. Recently, Pelayo-Vũ Ngo.c

classified semitoric integrable systems, which generalize toric systems in dimension four, in terms of

five symplectic invariants. Using this classification, I construct a metric on the space of semitoric

integrable systems. To study continuous paths in this space produced via symplectic semitoric

xi



blowups, I introduce an algebraic technique to study such systems by lifting matrix equations from

the special linear group SL2(Z) to its preimage in the universal cover of SL2(R). With this method I

determine the connected components of the space of semitoric integrable systems. Motivated by this

algebraic technique, I introduce the notion of a semitoric helix; the natural combinatorial invariant

of semitoric systems. By applying a refined version of the algebraic method to semitoric helixes

I classify all possible minimal semitoric integrable systems, which are those that do not admit a

symplectic semitoric blowdown. I also produce invariants of integrable systems designed to respect

the natural symmetries of such systems, especially toric and semitoric ones. For any Lie group G, I

construct a G-equivariant analogue of the Ekeland-Hofer symplectic capacities. I give examples when

G = Tk × Rd−k, in which case the capacity is an invariant of integrable systems, and I study the

continuity of these capacities using the metric I defined on semitoric systems. Finally, as a first step

towards constructing a meaningful metric on general integrable systems, I provide a framework to

study convergence properties of families of maps between manifolds which have distinct domains by

defining a metric similar to the L1 distance on such a collection.
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Chapter 1

Introduction

A symplectic manifold is a pair (M,ω) where M is a smooth manifold and ω is a closed,

non-degenerate 2-form on M . The study of symplectic manifolds was originally motivated by

classical mechanics, where symplectic manifolds are used to model the phase space of certain physical

dynamical systems. Such systems are called integrable if they possess the maximal number of

independent quantities which are preserved by the dynamics.

Despite being a very classical subject going back to the 17th century or earlier, very few

general results are known about integrable systems, although there is extensive literature about

concrete examples. In the 20th century there have been a number seminal works which apply

to general integrable systems, some of the most famous ones being the action-angle theorem by

Arnold [2] and its global version by Duistermaat [22].

In the 1980s integrable systems of toric type were classified by Delzant [21], using as a

stepping stone the convexity theorem of Atiyah [3] and Guillemin-Sternberg [40]. Toric integrable

systems are those which have specific periodic symmetries in addition to having the conserved

quantities of an integrable system, and thus can be viewed as an effective Hamiltonian Tn-action.

Delzant classified them in terms of the image of the associated momentum map, the joint map of

the conserved quantities, and showed that in this case the image is what is now known as a Delzant

polytope.

This subject has been recently revitalized by the Pelayo-Vũ Ngo.c classification of semitoric

1
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integrable systems [70], which generalize toric integrable systems in dimension 4. This classification

is the culmination of several years of work constructing symplectic invariants of semitoric integrable

systems [69, 76, 77]. Semitoric integrable systems are classified in terms of five invariants, one of

which is analogous to the Delzant polytope while the other four are related to the focus-focus (or

nodal) singularities which can arise in semitoric systems but not in toric ones. The classification of

semitoric systems is much more delicate than that of toric systems because the presence of focus-focus

singularities create Duistermaat monodromy [22] in the natural structure of the system.

We begin with a general outline of the relationship between symplectic geometry, dynamical

systems, and integrable systems.

1.1 An informal example

If Q is a manifold which represents all possible configurations of a physical system, then

each point of T∗Q, its cotangent bundle, is a state of the corresponding system, containing both

location and momenta information. In this case, T∗Q is known as the phase space of the system.

The phase space is also equipped with a function H : T∗Q→ R, known as the Hamiltonian or energy

function, which assigns to each state of the system the total energy of that state. For this illustration

we assume that H is time-independent. Solving such a system amounts to extracting from H the

dynamics of the system. That is, the goal is to use a function on the phase space to determine an

R-action, or flow, on the phase space which represents the way that the system transforms over

time. This is where symplectic geometry becomes useful. We will see that every cotangent bundle is

equipped with a natural symplectic form, and thus is a symplectic manifold.

If (M,ω) is a symplectic manifold and f : M → R is any smooth function then there exists a

unique vector field Xf on M which satisfies

ω(Xf , Y ) = −df(Y )

for all vector fields Y on M . The vector field Xf is known as the Hamiltonian vector field of f . Thus,

symplectic geometry provides a method of producing a vector field from a function. If M is a phase

space and f = H is the associated time-independent Hamiltonian then the flow of XH , when it is



3

complete, describes the dynamics of the system. In this case (M,ω,H) is known as a Hamiltonian

system.

The problem of understanding the flow of XH can be a difficult one. In the situation we

have described, H will be a conserved quantity of the system, that is, H is invariant under the flow

of XH . This already gives us a hint about computing the dynamics, the flow lines must always lie on

level sets of the function H. If more independent conserved quantities can be found, then the flow

will be further restricted.

Roughly, a completely integrable Hamiltonian system, or simply an integrable system, is a

Hamiltonian system on a symplectic manifold equipped with the maximum number of independent

conserved quantities. Symplectic manifolds are even dimensional, and if M is 2n-dimensional then

an integrable system on M will have a total of n conserved quantities. If an integrable system has

conserved quantities

f1 = H, f2, . . . , fn : M → R

then the joint map

F = (f1, . . . , fn) : M → Rn

is known as the momentum map.

Suppose that F is proper, so each Hamiltonian vector field Xfi of the component fi of F is

complete. An important property of integrable systems is that the flows of Xf1 , . . . ,Xfn commute,

and thus produce an Rn-action on M . The orbits of this Rn-action are contained in level sets of F ,

since each component of F is preserved by this Rn-action. Thus, in the study of integrable systems

there is interplay between dynamics - the orbits - and a singular fibration - the level sets of F .

Now, we can give a better indication of the definitions of toric and semitoric integrable

systems. An integrable system is toric if the flow of the Hamiltonian vector field associated to each

of the components of its momentum map is periodic of period 2π. These systems are considered

to be very interesting, but nonetheless this definition is very rigid. Delzant [21] showed that two

toric integrable systems are diffeomorphic by a diffeomorphism which preserves the symplectic form

and the momentum map if and only if the images of their momentum maps agree. That is, Delzant

showed that toric integrable systems are classified by the image of their momentum map, which is
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necessarily a specific type of polytope known as a Delzant polytope.

A semitoric integrable system is an integrable system in dimension 4 for which the singular

points of the momentum map are of a specific type and one of the two components of the momentum

map is proper with 2π-periodic flow. The requirements of this definition are much less rigid than

those of a toric integrable system. Pelayo-Vũ Ngo.c [69, 70] classified these systems in terms of a list

of five invariants.

1.2 The aim of this work

The general goal of this dissertation is to construct invariants of integrable systems and

to study continuous deformations of integrable systems. Special emphasis is placed on toric and

semitoric systems. Questions addressed include the following:

1. Does there exist a meaningful topology or metric on the space of semitoric integrable systems?

2. Must the limit of semitoric systems be semitoric?

3. What steps can be taken towards a topology or metric on more general integrable systems?

4. What are the path-connected components of the space of semitoric systems?

5. Is there a reasonable way to define blowup/blowdown operations on semitoric systems? Can

the systems that do not admit a blowdown be classified as they are in the toric case?

6. Is there a purely combinatorial invariant of semitoric systems, analogous to the fans of toric

systems (and of toric varieties)?

7. What invariants of integrable systems can be produced which respect the natural symmetries

of such systems?

With these goals in mind, in this dissertation I define a metric, and thus topology, on the

moduli space of semitoric integrable systems which extends a known metric on toric integrable

systems and I characterize the connected components of the resulting topological space. I introduce

semitoric helixes, which are the natural combinatorial invariant of semitoric systems, and develop an

equivariant version of symplectic capacities in order to construct new invariants of integrable systems.
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Also, as a step towards a metric on more general spaces of integrable systems, I define and study a

metric on spaces of maps which may not have the same domain.

1.3 Outline

• In Chapter 2 I give a quick exposition of the background necessary for the rest of the

dissertation. This chapter is broken into two parts. First is an introduction to symplectic

geometry, which includes the basics of symplectic geometry along with discussions of symplectic

invariants (such as symplectic capacities) and symplectic/Hamiltonian group actions. Secondly,

there is an introduction to the integrable systems from a symplectic point of view. This includes

the classifications of toric and semitoric integrable systems and a discussion of non-degenerate

singular points of integrable systems.

• In Chapter 3 I extend the metric on toric systems from [67] to semitoric systems. The metric

on toric integrable systems is defined by declaring the distance between two systems to be

the usual Lebesgue measure of the symmetric difference of their Delzant polytopes. I extend

this distance to semitoric systems by considering each of the five semitoric invariants from

the Pelayo-Vũ Ngo.c classification [70]. The metric on semitoric systems is constructed in

Section 3.2, and it depends on two parameters, a sequence and a measure on R2. The main

result of Chapter 3 is Theorem 3.2.12, which states that:

1. the proposed function is indeed a metric;

2. the topology of the metric space does not depend on parameters of the metric;

3. the resulting metric space is incomplete,

and describes the completion.

• In Chapter 4 I develop an algebraic method to study an object I introduce in this chapter

known as a semitoric fan. I study these objects in order to use them in Chapter 5 to determine

the connected components of the space of semitoric integrable systems. Roughly, a semitoric

fan is a collection of vectors in R2 which can be obtained as the inwards pointing normal vectors

of an element of a semitoric polygon. Each subsequent pair of vectors in the fan determines
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an element of SL2(Z), and composing these matrices must equal a specific matrix which is

determined by the number of focus-focus singular points in the corresponding semitoric system.

This equation in SL2(Z) does not contain enough information to classify such fans because it

does not count the number of times the vectors in the fan wind around the origin. Thus, I

study semitoric fans by lifting these equations from SL2(Z) to its preimage in the universal

cover of SL2(R). I am then able to prove Theorem 4.1.1, which describes how semitoric fans

can be related by a sequence specific transformations, and which is useful in Chapter 5.

• The goal of Chapter 5 is to determine the connected components of the moduli space of

semitoric systems from Chapter 3. From the definition of the metric, it is clear that any two

semitoric systems with different numbers of focus-focus singularities and systems with different

twisting index invariants must be in different components of the moduli space. In Chapter 5,

using the algebraic tools developed in Chapter 4, I prove that this is the only obstruction

to two systems being in the same component. That is, any two semitoric systems with the

same number of focus-focus singular points and the same twisting index invariant may be

continuously deformed into one another via a continuous path of semitoric systems with the

same number of focus-focus singular points and the same twisting index invariant. This is the

content of Theorem 5.1.1, which is proven using Theorem 4.1.1.

• In Chapter 6 I introduce a combinatorial invariant of semitoric systems which I call the

semitoric helix. Semitoric helixes are a refinement of semitoric fans from Chapter 4 which

generalize the toric fans of toric integrable systems. In this chapter I discuss the method of

producing these invariants using the semitoric polygon invariant introduced by Vũ Ngo.c [77]. I

expand on the techniques from Chapter 4 to study minimal models of semitoric helixes, which

in turn gives a classification of minimal semitoric systems. A semitoric system is minimal if

it is impossible to perform a symplectic blowdown on the manifold, and this corresponds to

the case that each vector in the associated semitoric helix is not the sum of the adjacent two

vectors. In this chapter, I give a complete classification of minimal helixes in Theorem 6.1.13

and explain the relation between semitoric systems, semitoric fans, and semitoric helixes.

• In Chapter 7 I construct invariants of symplectic G-manifolds and define an equivariant
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version of symplectic capacities. In particular, I study G-capacities when G = Tk×Rd−k. Since

integrable systems with complete Hamiltonian flows come equipped with a natural Rn-action

these can be used as invariants of integrable systems in which k of the components of F have

periodic flows. I construct an equivariant version of the Gromov radius, which is proven to

be a Rn-capacity in Theorem 7.1.1 and I construct equivariant ball packing capacities for

toric and semitoric systems, which are proven to be T2 and S1 × R-capacities, respectively, in

Theorem 7.1.2. Roughly, these capacities measure the symplectic volume of the given toric or

semitoric manifold which can be filled with equivariantly symplectically embedded balls.

• In Chapter 8 I study the continuity of certain G-capacities. The topology on the space of

toric integrable systems from [67] and the topology on the space of semitoric integrable systems

in Chapter 3 create the possibility to study the continuity of symplectic invariants on these

spaces. Theorem 8.1.1 specifies the regions of continuity of the packing capacities and the

equivariant Gromov radius on toric and semitoric systems.

• In Chapter 9 I study families of maps which have different domains. For manifolds M and

N where M is equipped with a volume form I consider families of maps in the collection

{(φ,Bφ) | Bφ ⊂M,φ : Bφ → N with Bφ, φ both measurable} and I define a distance function

similar to a generalized L1 distance on such a collection. Theorem 9.3.1 states that the proposed

function is indeed a metric and that the resulting metric space is complete. The relationship

between convergence in this metric and the natural notion of pointwise almost everywhere

convergence in this context is given in Theorem 9.3.5. In Theorem 9.3.8 I use the new metric

to study families of maps which converge after an arbitrarily small perturbation. This metric

could in principle have many applications, but it was developed with integrable systems in mind.

If (M,ω, F ) and (M ′, ω′, F ′) are integrable systems such that M and M ′ both symplectically

embed into a symplectic manifold (N, η) then the distance from Chapter 9 can be used to

compare M and M ′.



Chapter 2

Preliminaries

In this section I provide a quick overview of the symplectic theory of integrable systems.

Section 2.1 covers general symplectic geometry and Section 2.2 is concerned with integrable systems

from a symplectic point of view.

There are many standard resources already available to supplement this chapter. For instance,

the books [10, 55] together form a great introduction to symplectic geometry which includes much

of the same information in Section 2.1. Additionally, the book [8] and survey paper [71] are good

resources from which to study the symplectic theory of integrable systems to complement Section 2.2.

2.1 Symplectic geometry

A symplectic manifold is a pair (M,ω) where M is a smooth manifold and ω is a closed, non-

degenerate 2-form on M . That is, dω = 0 and for each p ∈M if v ∈ TpM is such that ωp(v, w) = 0

for all w ∈ TpM then v = 0. In this case ω is known as the symplectic form. Given two symplectic

manifolds (M,ω) and (M ′, ω′) a diffeomorphism φ : M →M ′ is known as a symplectomorphism if

φ∗ω′ = ω, and in this case (M,ω) and (M ′, ω′) are said to be symplectomorphic.

2.1.1 First consequences

The existence of ω puts some requirements on M . Let (M,ω) be a symplectic manifold and

let p ∈M . By using a skew-symmetric form of the Gram-Schmidt process, it can be seen that on the

8
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tangent plane TpM there exists an integer n > 0 and linear coordinates x1, . . . , xn, y1, . . . , yn such

that

ωp(xi, xj) = ωp(yi, yj) = 0 and ωp(xi, yj) = δij

for all i, j = 1, . . . , n. This implies that M must be even-dimensional. The degeneracy condition on

ω implies that ωn = ω ∧ . . . ∧ ω is a volume form, so M must be orientable.

If M is compact and 2n-dimensional, then its even dimensional de Rham cohomology groups

H2k(M), for k = 1, . . . , n, must be non-trivial. This is because if ωk = dη then

w

M

ωk =
w

M

dη =
w

∂M

η = 0

by Stoke’s theorem and the fact that ∂M = ∅. This contradicts the non-degeneracy of ω. In

particular, the only sphere with a symplectic structure is the 2-sphere.

In dimension 2n = 2 the definition of a symplectic form coincides with that of a volume

form. Thus, any orientable surface is a symplectic manifold.

Recall Cartan’s magic formula, which states that

LXη = dιXη + ιXdη (2.1)

where L is the usual Lie derivative, X is any vector field on M , η ∈ Ωk(M), and ι is the interior

product defined by

ιXη(X1, . . . , Xk−1 = η(X,X1, . . . , Xk−1)

for vector fields X1, . . . , Xk−1 on M . In the case that ω is a symplectic form then Equation (2.1)

implies that

LXω = dιXω

for any vector field X on M because ω is closed.
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2.1.2 Local theory

An example of a symplectic manifold is R2n with linear coordinates x1, . . . , xn, y1, . . . , yn

and symplectic form

ω0 =

n∑
i=1

dxi ∧ dyi.

Given an open U ⊂M we pull back the symplectic form on M to U via the inclusion map in order

to give U a symplectic structure.

Theorem 2.1.1 (Darboux). Let (M,ω) be a symplectic manifold and let p ∈M . Then there exists

an open neighborhood of p which is symplectomorphic to an open subset of (R2n, ω0).

This theorem gives a local normal form for any point of all symplectic manifolds and thus

implies that the only local symplectic invariant is the dimension. Therefore, the study of symplectic

invariants by necessity is a study of global phenomena. This should be compared to Riemannian

geometry in which there are local curvature invariants.

2.1.3 An example: Cotangent bundles

Let Q be any n-dimensional manifold and T∗Q its cotangent bundle. Let π : T∗Q→ Q be

the natural projection so dπ : T(T∗Q) → TQ. Any x ∈ T∗(Q) is a pair x = (q, ξ) where q = π(x)

and ξ ∈ T∗qQ. Recall that if (U, q1, . . . , qn) is a chart for Q then (dq1)q, . . . (dqn)q form a basis of

T∗qQ. Thus, any ξ ∈ T∗qQ can be written as ξ =
∑n
i=1 ξi(dqi)q. This induces a chart, known as a

cotangent chart, (T∗U, q1, . . . , qn, ξ1, . . . , ξn) on T∗Q about the point (q, ξ).

Define a 1-form α ∈ Ω1(T∗Q) pointwise by

α(q,ξ) = π∗(q,ξ)ξ.

In a cotangent chart (T∗U, q1, . . . , qn, ξ1, . . . , ξn) it can be seen that

α =

n∑
i=1

ξidxi.

This form α is known as the tautological one-form on T∗Q.
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Now define

ω = −dα

so locally

ω =

n∑
i=1

dqi ∧ dξi.

We know that ω is intrinsically defined because α is, and it is immediate from its definition that ω is

a closed, non-degenerate 2-form. That is, ω is a symplectic form on T∗(Q).

2.1.4 Lagrangian submanifolds

Let (M,ω) be a 2n-dimensional symplectic manifold. A submanifold X ⊂M is said to be

isotropic if i∗ω ≡ 0 where i : X ↪→ M is the inclusion map. The dimension of X can be bounded

above by symplectic linear algebra.

Proposition 2.1.2. If X is a isotropic submanifold of (M,ω) then

dim(X) 6
1

2
dim(M)

Proof. Suppose that X ⊂ M is isotropic and let p ∈ M be any point. Then TpX ⊂ TpM is such

that ωp(v, w) = 0 for all v, w ∈ TpX. Let

(TpX)ω = {v ∈ TpM | ωp(v, w) = 0 for all w ∈ TpX}

and dim(TpX) + dim((TpX)ω) = dim(TpM) because the map

TpV → T∗pX

v 7→ ωp(v, ·)

has rank dim(TpX) and nullity dim(TpX)ω). Since X is isotropic TpX ⊂ (TpX)ω, and we conclude

that if X is isotropic then

2dim(X) 6 dim(M).
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Definition 2.1.3. A submanifold X of a symplectic manifold (M,ω) is a Lagrangian submanifold if

X is isotropic, i.e. i∗ω = 0 where i : X ↪→M is the inclusion map, and dim(X) = 1
2dim(M).

Suppose M = T∗Q, the cotangent bundle of an n-dimensional manifold Q, equipped with

the standard symplectic form on cotangent bundles as in Section 2.1.3. Then Q can be identified

with the zero section of T∗Q which is given by

Q0 = {(q, ξ) | ξ = 0 in TqQ}.

In a local cotangent chart (T∗U, q1, . . . , qn, ξ1, . . . , xin) this submanifold is described as ξ1 = . . . =

ξn = 0, so the tautological 1-form α =
∑n
i=1 ξidxi vanishes on Q0. That is, if i : Q0 ↪→ T∗Q is the

inclusion map then i∗α = 0. Thus i∗ω = −i∗dα = 0 so Q0 is a Lagrangian submanifold.

Here we have seen that any manifold Q can be realized as a Lagrangian submanifold by

identifying it with the zero section of its cotangent bundle. This is the content of ”Weinstein’s

Lagrangian creed” that ”everything is a Lagrangian submanifold”.

2.1.5 Symplectic group actions

Let (M,ω) be a symplectic manifold and let G be a Lie group with Lie algebra Lie(G) and

dual Lie algebra Lie(G)∗. Then φ : G×M →M is a symplectic G-action if:

1. φ(g, ·) : M →M is a symplectomorphism for all g ∈ G;

2. φ(g, φ(h, ·)) = φ(gh, ·) for all g, h ∈ G.

If φ is a symplectic G-action on (M,ω) then the triple (M,ω, φ) is known as a symplectic G-manifold.

Such an action is a Hamiltonian G-action if there exists a map µ : M → Lie(G)∗ such that

−d〈µ,X〉 = ω(XM , ·)

for all X ∈ Lie(G) where XM denotes the vector field on M generated by X via the action of G.

That is, for X ∈ Lie(G) the vector field XM is given by

(XM )p =
d

dt
φ(exp(tX), p)

∣∣
t=0

.
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Such a quadruple (M,ω, φ, µ) is known as a Hamiltonian G-manifold and µ is known as the momentum

map.

An as example, consider the sphere S2 viewed as a submanifold of R3 with coordinates (θ, h)

where θ ∈ [0, 2π) represents the angle and h ∈ [−1, 1] represents the height (cylindrical coordinates

on R3). Then S2 is a symplectic manifold since it is an orientable surface and the symplectic form is

given by ω = dθ ∧ dh. A symplectic action of R on S2 is given by

φ : R× S2 → S2

(t, (θ, h)) 7→ (θ + t, h).

The vector field induced on S2 by this action is ∂
∂θ and

ω

(
∂

∂θ
, ·
)

= dh

which means that the action φ is Hamiltonian with momentum map −h : S2 → R.

Next consider a similar action on the torus. Let T2 ∼= S1 × S1 have coordinates (α1, α2)

where αi ∈ S2 ⊂ C and endow T2 with the symplectic form ω = dα1 ∧ dα2. Define an action

ψ : R× T2 → T2

(t, (α1, α2) 7→ (α1 + t, α2).

The induced vector field is ∂
∂α1

and

ω

(
∂

∂α1
, ·
)

= dα1

which closed but not exact. Thus, this action is symplectic but not Hamiltonian.

Let φ be a symplectic G-action on (M,ω) and let XM be the vector field on M generated by

X ∈ Lie(G). By Cartan’s magic formula

LXMω = dιXMω + ιXMdω
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which implies that

dιXMω = 0

because ω is closed and the G-action is symplectic. The action is Hamiltonian if and only if ιXMω is

exact for all X ∈ Lie(G). Thus, we see that if H1(M) = 0 then all symplectic actions are Hamiltonian.

2.1.6 Symplectic capacities

By Theorem 2.1.1 there are no local invariants in symplectic geometry, but we will see that

there are many interesting global invariants. An important class of such invariants are known as

symplectic capacities. Let

B2n(r) = {(x1, y1, . . . , xn, yn) ∈ R2n | x2
1 + y2

1 + . . . x2
n + y2

n < r2}

denote the 2n-dimensional symplectic ball of radius r and let Z2n(r) = B2(r)× R2n−2 denote the

2n-dimensional symplectic cylinder. Both inherit a symplectic structure from the natural embedding

into R2n. A symplectic embedding is an embedding which preserves the symplectic form. In the 1980s

Gromov proved the following influential theorem.

Theorem 2.1.4 (Non-squeezing theorem [35]). There exists a symplectic embedding ρ : B2n(r) ↪→

Z2n(R) if and only if r 6 R.

This should be contrasted to the case of volume-preserving embeddings. For all r,R > 0

there exists a volume preserving embedding B2n(r) ↪→ Z2n(R).

Theorem 2.1.4 motivates the following definition.

Definition 2.1.5. The Gromov radius of a 2n-dimensional symplectic manifold (M,ω) is given by

cB(M) = sup{r > 0 | there exists a symplectic embedding B2n(r) ↪→M}

If φ : (M,ω) → (M ′, ω′) is a symplectomorphism then ρ : B2n(r) ↪→ M is a symplectic

embedding if and only if φ ◦ ρ is a symplectic embedding, so the Gromov radius is a symplectic
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invariant. The non-squeezing theorem asserts that

cB(Z2n(r)) = r.

Let Symp2n be the category of symplectic 2n-dimensional manifolds with symplectic em-

beddings as morphisms. A symplectic category is a subcategory C of Symp2n such that (M,ω) ∈ C

implies (M,λω) ∈ C for all λ ∈ R \ {0}. Let C ⊂ Symp2n be a symplectic category.

The following fundamental notion of symplectic invariant is due to Ekeland and Hofer.

Definition 2.1.6 ([26, 44]). A generalized symplectic capacity on C is a map c : C→ [0,∞] satisfying:

1. Monotonicity : if (M,ω), (M ′, ω′) ∈ C and there exists a symplectic embedding M ↪→M ′ then

c(M,ω) 6 c(M ′, ω′);

2. Conformality : if λ ∈ R \ {0} and (M,ω) ∈ C then c(M,λω) = |λ| c(M,ω).

If additionally B2n,Z2n ∈ C and c satisfies:

3. Non-triviality : 0 < c(Z2n, ω0) <∞ and 0 < c(B2n, ω0) <∞;

then c is a symplectic capacity.

It is clear that the Gromov radius satisfies items (1) and (2), and by the non-squeezing

theorem we can see that it also satisfies item (3). Thus, the Gromov radius is a symplectic capacity

on the category of all symplectic manifolds. Since this definition was formulated, there have been

many more examples of symplectic capacities, see [13].

2.2 Integrable systems

Let (M,ω) be a symplectic manifold and let X(M) denote the collection of vector fields on

M . Since ω is non-degenerate the mapping

X(M)→ Ω1(M)

X 7→ ω(X, ·)
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is an isomorphism. This means that given any 1-form η there exists a unique X ∈ X(M) such

that η = ω(X, ·). In particular, for each f : M → R there exists a unique vector field, called the

Hamiltonian vector field of f and denoted Xf , on M which satisfies −df = ω(Xf , ·). Hamiltonian

vector fields preserve the symplectic form because

LXfω = dιXfω + ιXfdω = −d(df) = 0

making use of Cartan’s magic formula and the flow of Xf preserves f because

LXf f = Xf (f) = df(Xf ) = −(ιXfω)(Xf ) = −ω(Xf ,Xf ) = 0.

2.2.1 Classical mechanics

A Hamiltonian dynamical system is a triple (M,ω,H) where H : M → R is the Hamiltonian

function and represents the total energy of the system. Such a system evolves by flowing along XH .

As a first example, consider R2n with coordinates (q1, . . . , qn, p1, . . . , pn) and the usual

symplectic form ω =
∑n
i=1 dqi ∧ dpi. Let us compute XH in this case. Let XH =

∑n
i=1 ai

∂
∂qi

+ bi
∂
∂pi

.

Then ιXHω = H implies that

n∑
i=1

aidpi − bidqi =

n∑
i=1

∂H

∂qi
dqi +

∂H

∂pi
dpi

and thus XH =
∑n
i=1

∂H
∂pi

∂
∂qi
− ∂H

∂qi
∂
∂pi

. This means that a curve γ(t) = (q(t), p(t)) is an integral curve

for XH if and only if

dqi
dt

=
∂H

∂pi
;

dpi
dt

= −∂H
∂qi

,

recovering Hamilton’s equations from classical mechanics.
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2.2.2 Integrable systems

Recall that a Poisson bracket on C∞(M) is a bilinear map

{·, ·} : C∞(M)× C∞(M)→ C∞(M)

satisfying the following for f, g, h ∈ C∞(M):

1. skew symmetry: {f, g} = −{g, f};

2. Jacobi identity: {f, {g, h}} = {{f, g}, h}+ {g, {f, h}};

3. Leibniz rule: {f, gh} = {f, g}h+ g{f, h}.

The symplectic form on M determines a natural Poisson bracket on C∞(M), given by

{f, g} = −ω(Xf ,Xg).

Proposition 2.2.1. Let f,H ∈ C∞(M) where (M,ω) is a symplectic manifold. Then {f,H} = 0 if

and only if f is preserved by the flow of XH .

Proof. This is because

LXH (f) = XH(f) = df(XH) = (−ιXfω)(XH) = −ω(Xf ,XH) = {H, f}.

Definition 2.2.2. An integrable system is a triple (M,ω, F ) where (M,ω) is a 2n-dimensional

symplectic manifold and F = (f1, . . . , fn) : M → Rn satisfies

1. (df1)p, . . . , (dfn)p are linearly independent in T∗pM for almost all p ∈M ;

2. f1, . . . , fn Poisson commute. That is, {fi, fj} = 0 for all i, j < n.

It is important to notice that the differentials df1, . . . ,dfn may be dependent on a set of

measure zero in M . These points are the singularities of the integrable system and they are precisely

the points at which the most interesting dynamics occur.

The map F is known as the momentum map and its components, f1, . . . , fn, represent

conserved quantities of the corresponding physical system. By Proposition 2.2.1 we see that {fi, fj} =
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0 implies that fi is preserved by the flow of Xfj for each i, j. If H = f1 is the Hamiltonian function

of the system then each fi is preserved under the flow of XH .

Remark 2.2.3. A note on momentum maps: The momentum map of an integrable system

F : M → Rn and the momentum map of a Hamiltonian G-manifold µ : M → Lie(G)∗ are related but

not the same. It is unlucky that they have the same name. Let (M,ω, F ) be any integrable system

such that Xf1 , . . . ,Xfn are complete. This is automatically true, for instance, if F is proper. Let

B : Lie(G)∗ → Rn be any isomorphism of vector spaces and φ : Rn ×M →M take ((t1, . . . , tn),m)

to the point on M obtained by flowing m along Xfi for time ti, i = 1, . . . , n. The order of the flows

doesn’t matter because the functions Poisson commute. Then (M,ω, φ,B ◦ F ) is a Hamiltonian

Rn-manifold. �

2.2.3 Example

Consider R2n with the standard symplectic form

ω =

n∑
i=1

dxi ∧ dyi

and F = (f1, . . . , fn) : R2n → Rn given by

fi =
1

2
(x2
i + y2

i ).

Then

Xfi = xi
∂

∂xi
+ yi

∂

∂yi

for i = 1, . . . , n. The flow of Xfi is circular motion in a plane parallel to {xi = yi = 0}, and the origin

is a fixed point of the flow of Xfi for all i. By taking H : R2n → R to be given by

H = f1 + . . .+ fn

one obtains a model of the the motion of a particle in a harmonic oscillator centered at the origin. The

coordinates x1, . . . , xn describe the location of the particle and the coordinates y1, . . . , yn describe
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its momenta.

2.2.4 Regular points of integrable systems

If p ∈M is a regular point of F , where (df1)p, . . . , (dfn)p are independent, then

(Xf1)p, . . . , (Xfn)p ∈ TpM

are also linearly independent. Also,

ωp((Xfi)p, (Xfj )p) = {fi, fj}(p) = 0

which means that span((Xf1)p, . . . , (Xfn)p) ⊂ TpM is a isotropic subspace of TpM . Thus, since it

is dimension n, this means that for any regular value c ∈ Rn the submanifold F−1(c) of M is a

Lagrangian submanifold. From this computation we can also see that n is the maximal number of

such functions which can exist by Proposition 2.1.2 which states that a isotropic subspace can have

dimension at most n. An integrable system may be viewed as a dynamical system with the maximal

amount of independent Poisson-commuting conserved quantities.

Lemma 2.2.4. Let (M,ω, F ) be an integrable system and let c ∈ Rn be a regular value of F . If

Xf1 , . . . ,Xfn are complete on F−1(c) then each connected component of F−1(c) is diffeomorphic to

Rn−k × Tk for some k.

Proof. Use the flows of Xfi to produce charts on F−1(c).

The following theorem completely describes the local dynamics at regular points of the

momentum map. Identify T∗Tn, the cotangent bundle of the n-torus, with Tn × Rn by choosing

coordinates (x1, . . . , xn, ξ1, . . . , ξn) chosen such that the canonical 1-form is written α =
∑n
i=1 ξi∧dxi.

Theorem 2.2.5 (Liouville-Arnold Theorem [2]). Let (M,ω, F ) be an integrable system with F proper

and let c ∈ Rn be a regular point of F . Then there exists a symplectomorphism χ from a neighborhood

of the zero section of T∗Tn to a neighborhood of each connected component of F−1(c) such that

F ◦ χ = φ ◦ (ξ1, . . . , ξn) where φ is some local diffeomorphism of Rn.
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This theorem, known as the Action-Angle Theorem, states that if F is proper then the

preimage of a regular point is always a torus, known as a Liouville torus when they exist, on which

the flow of the Hamiltonian vector fields of each fi is linear and moreover that in a neighborhood of

that fiber there exist coordinates complimentary to those on the torus which create a Darboux chart.

Notice that this result is of a semiglobal nature. That is, it gives a local normal form for a

neighborhood of a fiber F−1(c). It is not global but it gives more information than a local theory,

which would only give a normal form for a neighborhood of a point p ∈M .

Let p ∈M be such that F (p) = c is a regular point of F and as before view (M,ω, F ) as a

Hamiltonian system by taking H = f1. Then, by Theorem 2.2.5, the corresponding Hamiltonian

system evolves from an initial condition of p along a linear path in the torus F−1(c). The dynamics

at regular points of an integrable system are very well understood. We will see that the dynamics

around the points that are not regular, the singular points, can be very complicated and the existence

of certain types of singular points can have surprising global effects on the system.

2.2.5 Singular points of integrable systems

The point p ∈M is a critical (or singular) point of F : M → Rn and c = F (p) is a critical

(or singular) value if (df1)p, . . . , (dfn)p are not linearly independent. This is equivalent to the map

dpF : TpM → Rn having rank less than n.

After covering the required background, we will define a notion of non-degenerate singular

points of integrable systems which is analogous to non-degenerate singularities in Morse theory.

In short, a singular point p ∈ M is non-degenerate if the Hessians of f1, . . . , fn span a Cartan

subalgebra of the space of quadratic forms on TpM . In this section, we explain this definition

in detail and describe two important results about non-degenerate singular points: Williamson’s

pointwise classification of non-degenerate points and Eliasson’s local normal forms for non-degenerate

points.

This description is standard, and can for instance be found in [8, 79, 87].
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Background: Q(TpM) and sp(2n,R)

Here we quickly review how the space of quadratic forms on a linear vector space can be

identified with the Lie algebra sp(2n,R) and mention several other results which will be necessary

for studying singular points of integrable systems.

Let (M,ω, F ) be an n-dimensional integrable system and let p ∈ M . Fix symplectic

coordinates x1, y1, . . . , xn, yn on TpM and view the elements x ∈ TpM as column vectors. Denote

by Q(TpM) the quadratic forms on M . That is,

Q(TpM) =

{
q ∈ C∞(TpM)

∣∣∣∣ q(x) =
1

2
xtAqx for Aq a symmetric 2n× 2n real matrix

}

where xt denotes the transpose of x. The matrix Aq is the Hessian of the function q : TpM → R.

That is, in coordinates w1 = x1, . . . , wn = xn, wn+1 = y1, . . . , w2n = yn,

(Aq)ij =
∂q

∂wi∂wj
.

Since (TpM,ωp) is a symplectic vector space, and thus a symplectic manifold, it comes equipped

with a Poisson bracket on C∞(TpM), which we denote {·, ·}p. Thus, (Q(TpM, {·, ·}p) is a Lie algebra.

Let sp(2n,R) denote the Lie algebra of real Hamiltonian matrices. That is,

sp(2n,R) = {A ∈ gl(2n,R) | AtJ t = JA}

where

J =

 0 −In

In 0


and In is the n × n identity matrix. The Lie bracket on sp(2n,R) is given by the usual matrix

commutator [A,B] = AB −BA.

Proposition 2.2.6. The Lie algebras Q(TpM, {·, ·}p) and (sp(2n,R), [·, ·]) are isomorphic.

Proof. It is clear that Aq = Aq′ implies that q = q′. A matrix B is in sp(2n,R) if and only if

B = J−1A for a symmetric matrix A, since BtJ t = JB if and only if (JB)t = JB The isomorphism

from Q(TpM) to sp(2n,R) is given by q 7→ J−1Aq.
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Next we will show that this preserves brackets. Use symplectic coordinates w1 = x1, . . . , wn =

xn, wn+1 = y1, . . . , w2n = yn and write Aq = (aij) and Aq′ = (a′ij). Then use

{q, q′}p =

n∑
k=1

∂q

∂xk

∂q′

∂yk
− ∂q

∂yk

∂q′

∂xk

=

n∑
k=1

((
2n∑
i=1

akiwi

)(
2n∑
i=1

a′(k+n)iwi

)
−

(
2n∑
i=1

a(k+n)iwi

)(
2n∑
i=1

a′kiwi

))

=

n∑
k=1

 2n∑
i,j=1

(akia
′
(k+n)j − a(k+n)ia

′
kj)wiwj


=

2n∑
i,j=1

(
n∑
k=1

akia
′
(k+n)j − a(k+n)ia

′
kj

)
wiwj

and write out

[J−1Aq, J
−1Aq′ ] =

[
J−1 (aij) , J

−1
(
a′ij
)]

in coordinates to conclude that

J−1A{q,q′}p = [J−1Aq, J
−1Aq′ ]

Given any function f : M → R such that dpf = 0 the Hessian of f at p is the quadratic

form Hp(f) ∈ Q(TpM) with associated matrix

AHp(f) =

(
∂2f

∂wi∂wj
(p)

)

where w1, . . . , w2n are now coordinates on M .

Proposition 2.2.7. If f, g ∈ C∞(M) and p ∈M is a singular point of both f and g then

Hp{f, g} = {Hp(f),Hp(g)}p.

Proof. Write out both sides in coordinates.

The following will be useful when studying integrable systems.
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Corollary 2.2.8. Let f, g ∈ C∞(M) be such that dpf = dpg = 0. If {f, g} = 0 then

{Hp(f),Hp(g)} = 0.

Background: Cartan subalgebras of Q(TpM)

Here we very briefly indicate the results we will need regarding Cartan subalgebras of Q(TpM)

which, in light of Proposition 2.2.6, we identify with sp(2n,R).

If g is any Lie algebra then the lower central series is the series

g = g1 D g2 D . . .

defined by gn = [g, gn−1]. A subalgebra h 6 g is nilpotent if hn = 0 for some n. The normalizer of a

subalgebra h 6 g is given by

Ng(h) = {a ∈ g | [a, h] ⊂ h}.

Definition 2.2.9. A subalgebra h 6 g is a Cartan subalgebra if is nilpotent and self-normalizing

(i.e. h = Ng(h)).

For any element a ∈ g, denote by C(a) the commutator of a given by

C(a) = {b ∈ g | ab = ba}.

An element of a Lie algebra is regular if its commutator is of minimal dimension among commutators

of elements of g. In the case of a matrix Lie algebra, such as sp(2n,R), this amounts to a having all

distinct eigenvalues, in which case dim(C(a)) = n.

Non-degenerate singular points

We now have enough machinery to define the singular points which can arise in the integrable

systems we study. First consider the case of singular points with rank 0.

Definition 2.2.10. Let (M,ω, F = (f1, . . . , fn)) be an integrable system. If p ∈ M is such that
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dpF ≡ 0 then p is a non-degenerate singular point if

span(Hp(f1), . . . ,Hp(fn)) ⊂ Q(TpM)

is a Cartan subalgebra.

Suppose that p ∈ M is a singular point of F with rank n − k for some 0 < k < n. Let K

denote the kernel of dpF : TpM → TF (p)Rn and let

I = span((Xf1)p, . . . , (Xfn)p) ⊂ TpM.

Then I is a maximally isotropic subspace of (K,ωp) which means that

ωp(v + I, w + I) := ωp(v, w)

is a well-defined symplectic form ωp on K/I. The quotient K/I can be identified with a subspace

R ⊂ TpM . The dimension of R is 2k.

Definition 2.2.11. A singular point p ∈M of rank n− k is non-degenerate if Hp(f1), . . . ,Hp(fn)

span a Cartan subalgebra of Q(R).

Suppose that (M,ω, F ) is an integrable system where F = (f1, . . . , fn) and suppose that

dpF = 0 for some p ∈M . Since {fi, fj} = 0 we know that

{Hp(fi),Hp(fj)}p = 0

by Corollary 2.2.8. This means that Hp(f1), . . . ,Hp(fn) span an abelian subalgebra of Q(TpM).

If they are independent, so the span is of dimension n, and their span includes a regular element

then p is non-degenerate. This idea is used to prove the following Proposition, which is a useful

characterization of singular points of any rank.

Proposition 2.2.12 (Bolsinov-Fomenko [8]). Let p ∈M be a singular point such that the rank of

dpF is k. Then there exists functions g1, . . . , gn related to f1, . . . , fn by a linear transformation such

that:
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1. dpg1 = . . . = dpgn−k = 0;

2. (Xgn−k+1
)p, . . . , (Xgn)p are linearly independent in TpM .

Let L = span{(Xg1)p, . . . , (Xgn−k)p} ⊂ TpM and let

Lωp = {v ∈ TpM | ωp(v, w) = 0 for all w ∈ L}

The point p is non-degenerate if and only if Hp(g1), . . . ,Hp(gn−k) are independent and there exists a

matrix

A ∈ span{Hp(gn−k+1), . . . ,Hp(gn)} ⊂ Q(TpM)

such that J−1A has 2(n− k) distinct eigenvalues in LJ .

Since every Cartan subalgebra of Q(TpM) is generated as the centralizer of a regular element

(denoted A in Proposition 2.2.12), we can classify such subalgebras by the types of eigenvalues which

appear in the associated regular element.

Pointwise classification of singular points

To classify non-degenerate singular points we appeal to a classification of Cartan subalgebras

of sp(2n,R) due to Williamson [82]. Let q ∈ Q(TpM) be a regular element. Then Williamson [82]

showed the following. The eigenvalues of a are divided into three types of groups:

1. Pairs of imaginary roots ±iα (elliptic block);

2. Pairs of real roots ±β (hyperbolic block);

3. Quadruples of roots ±α± iβ (focus-focus block).

The matrix J−1Aq corresponding to q can be written in blocks. For each elliptic pair of eigenvalues

±iα there is a 2× 2 block  0 α

−α 0

 ,
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for each hyperbolic pair ±β there is a 2× 2 block

β 0

0 −β

 ,

and for each focus-focus quadruple ±α± iβ there is a 4× 4 block



α β 0 0

−β α 0 0

0 0 −α β

0 0 −β −α


.

The matrices which commute with Aq preserve these blocks while scaling them. Translating these

matrices back into quadratic operators implies the following classification of Cartan subalgebras of

Q(TpM).

Theorem 2.2.13 (Williamson [82]). For any Cartan subalgebra h ⊂ Q(TpM) there exist symplectic

coordinates x1, y1, . . . , xn, yn on TpM and a basis q1, . . . , qn of h such that each qi is one of:

1. elliptic type: qi = x2
i + y2

i ;

2. hyperbolic type: qi = xiyi;

3. focus-focus type:

 qi = xiyi+1 − xi+1yi;

qi+1 = xiyi + xi+1yi+1;

Theorem 2.2.13 implies a classification of singular points for integrable system: the Williamson

type [87] of a singular point is given by the integers (me,mh,mr) where the Hessians span a Cartan

subalgebra whose basis from Theorem 2.2.13 has me elliptic blocks, mh hyperbolic blocks, and mf

focus-focus blocks. The rank of the singular point is by me +mh + 2mf .

Local normal forms for singular points

The definition of non-degenerate and the Williamson type of a singular point are both

pointwise definitions. Here we review a result of Eliasson [28, 29] which states that the Williamson

classification can be used to construct local normal forms of non-degenerate singular points.
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Theorem 2.2.14 (Eliasson [28, 29]). If p ∈M is a non-degenerate singular point of an integrable

system (M,ω, F ) then there exists local symplectic coordinates (x1, . . . , xn, y1, . . . , yn) about p such

that there exist q1, . . . , qn : M → R where each qi is given by one of:

1. elliptic: qi =
x2
i+y

2
i

2 ;

2. hyperbolic: qi = xiyi;

3. focus-focus:

 qi = xiyi+1 − xi+1yi;

qi+1 = xiyixi+1yi+1;

4. non-singular: qi = yi,

such that {fi, qj} = 0 for all i, j = 1, . . . , n. If p has no hyperbolic blocks then the assertion that

{fi, qj} = 0 for all i, j = 1, . . . , n may be replaced by the equality

(F − F (p)) ◦ φ = g ◦ q

where q = (q1, . . . , qn), φ = (x1, . . . , xn, y1, . . . , yn)−1, and g is a local diffeomorphism of Rn which

fixes the origin.

2.2.6 Toric integrable systems

An integrable system (M,ω, F ) is toric if M is compact and the Hamiltonian flows associated

to the components of F are all periodic of the same period. That is, if B : Lie(Tn)∗ → Rn is an

isomorphism of vector spaces then B−1 ◦ F is the momentum map (in the group action sense)

for a Hamiltonian Tn-action. Such systems are classified, up to isomorphism, by the image of

their momentum map, which is necessarily a specific type of convex polytope known as a Delzant

polytope. Two toric integrable systems (M,ω, F ) and (M ′, ω′, F ′) are isomorphic if there exists a

symplectomorphism φ : M →M ′ such that φ∗F ′ = F .

A Delzant polytope ∆ ⊂ Rn is a convex polytope which is also:

1. rational: each face of the polytope has a vector in Zn which is perpendicular to it (i.e. it has

rational slope);

2. simple: n edges meet at each vertex;
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3. smooth: for any vertex p of ∆ the there exists v1, . . . , vn ∈ Zn each an inwards pointing normal

vector for a face which is adjacent to p such that v1, . . . , vn spans Zn.

Denote the set of Delzant polytopes in Rn by PT.

Using as a stepping stone the convexity theorem of Atiyah [3], Guillemin-Sternberg [40],

Delzant proved the following.

Theorem 2.2.15 (Delzant classification [21]). If (M,ω, F ) is a toric integrable system then F (M) ⊂

Rn is a Delzant polytope. Furthermore, given any Delzant polytope ∆ ⊂ Rn there exists a toric

integrable system (M,ω, F ) such that F (M) = ∆ and such a system is unique up to isomorphism.

All singular points of toric integrable systems are automatically non-degenerate singular

points with only elliptic blocks. The singular points of rank n are precisely the preimages under F of

the vertices of the Delzant polytope, F (M).

Toric fans and minimal models

In addition to Theorem 2.2.15, Delzant also showed that every toric integrable system is

naturally a toric variety. Toric varieties [16, 17, 19, 33, 56, 61] have been extensively studied in

algebraic and differential geometry and so have their symplectic analogues.

The relationship between toric integrable systems and toric varieties has been understood

since the 1980s, see for instance Delzant [21], Guillemin [38, 39]. The article [24] contains a coordinate

description of this relation.

Associated to every toric variety is a fan, which can be recovered from the associated toric

integrable system as the collection of inwards pointing integral normal vectors to the faces of the

Delzant polytope. We will specialize to dimension 2n = 4.

A toric fan is a collection of vectors (v1, . . . , vd−1) ∈ Zd which are arranged in counter-

clockwise order and satisfy det(vi, vi+1) = 1 for i = 0, . . . , d− 1 where vd denotes v0. The inwards

pointing normal vectors of any Delzant polytope in R2 form a toric fan and any toric fan can be

achieved in this way. What we call a toric fan is the type of fan which is associated to a non-singular,

complete toric surface.

If (v0, . . . , vd−1) is a toric fan then (v0, . . . , vi, vi + vi+1, vi+1, . . . , vd−1) is also a toric fan

and is known as the blowup of the original fan. The inverse of this operation, removing a vector
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which is the sum of two adjacent vectors, is known as a blowdown. A toric fan is minimal if it does

not admit a blowdown. That is, (v0, . . . , vd−1) is minimal if

vi 6= vi−1 + vi+1

for i = 0, . . . , d− 1.

Minimal toric fans have a simple classification. I provide an alternative proof for the following

well-known result in Section 4.4.

Theorem 2.2.16 (Fulton [33], page 44). Up to the action of SL2(Z) all toric fans are of one of the

following three types:

1. v0 =

1

0

, v1 =

0

1

, v2 =

−1

−1

;

2. v0 =

1

0

, v1 =

0

1

, v2 =

−1

0

, v3 =

 0

−1

;

3. v0 =

1

0

, v1 =

0

1

, v2 =

−1

k

, v3 =

 0

−1

 for k ∈ Z, k 6= 0.

This implies that any toric fan may be obtained from one of the three minimal models by a

finite sequence of blowups. Blowup of the toric fan correspond to the removal of an equivariantly

embedded ball from the associated toric integrable system. By equivariant embedded ball we mean

the image in M of an embedding ρ : B2n(r) ↪→M for some r such that rotations of the coordinates

of the ball (as a subset of Cn) agree with the Tn-action on M up to an element of Aut(Tn).

Metric on toric integrable systems

In [67] the authors construct a natural metric on the moduli space of toric integrable

systems making use of the Delzant classification, Theorem 2.2.15. For A,B ⊂ Rn let A 	 B =

(A \ B) ∪ (B \ A) denote the symmetric difference and let λ denote the Lebesgue measure on Rn.

Given two toric integrable systems (M,ω, F ) and (M ′, ω′, F ′) with associated Delzant polytopes ∆

and ∆′, respectively, the distance between (M,ω, F ) and (M ′, ω′, F ′) is given by ∆	∆′.
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2.2.7 Semitoric integrable systems

A semitoric integrable system [69], or symplectic semitoric manifold, is a 4-dimensional,

connected, symplectic manifold (M,ω) with a momentum map F = (J,H) : M → R2 such that:

1. the flow of the Hamiltonian vector field XJ is periodic;

2. J is proper;

3. F has only non-degenerate singularities without real-hyperbolic blocks (as in Section 2.2.5).

Notice that though semitoric systems are required to be 4-dimensional there is much more

freedom in the choice of momentum map compared to toric systems and M is not required to be

compact. Since the singularities of semitoric systems are non-degenerate and not of hyperbolic type

by condition (3), Theorem 2.2.14 implies any critical point of F has one of three possible forms.

If p ∈ M is a critical point of F then there exists g a local diffeomorphism of Rn which fixes the

origin, Darboux coordinates (x1, x2, ξ1, ξ2) about p, in which p is represented by (0, 0, 0, 0), and

q = (q1, q2) : R2 → R2 such that

(F − F (p)) ◦ (x1, x2, ξ1, ξ2)−1 = g ◦ (q1, q2)

and q1, q2 are in one of the following forms:

1. elliptic-elliptic: q1 = x2
1+ξ21/2 and q2 = x2

2+ξ22/2;

2. transversely-elliptic: q1 = x2
1+ξ21/2 and q2 = ξ2;

3. focus-focus: q1 = x1ξ2 − x2ξ1 and q2 = x1ξ1 + x2ξ2.

A semitoric integrable system (M,ω, F = (J,H)) is said to be simple if there is at most

one focus-focus critical point in J−1(x) for all x ∈ R. A similar (but weaker) assumption is generic

according to Zung [87], that each fiber F−1(c) for c ∈ R2 contains at most one critical point

p ∈ M . Any semitoric system has only finitely many focus-focus critical points [77] so we will

denote them by m1, . . . ,mmf ∈ M and the associated singular values are denoted cj = F (mj),

j = 1, . . . ,mf . All semitoric systems studied in this dissertation are assumed to be simple and

we assume J(m1) < . . . < J(mmf ). Suppose that (Mi, ωi, Fi = (Ji, Hi)) is a semitoric system for

i = 1, 2. An isomorphism of semitoric systems is a symplectomorphism φ : M1 → M2 such that

φ∗(J2, H2) = (J1, f(J1, H1)) where f : R2 → R is a smooth function such that ∂f
∂H1

nowhere vanishes.
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We denote by MST the space of simple semitoric systems modulo isomorphism. Semitoric integrable

systems have, in addition to the elliptic singularities of toric systems, also singularities of focus-focus

type.

Semitoric systems have been studied by mathematicians and physicists in the past decade, and

there have been contributions to their study from many points of view, including mathematical physics

(eg. see Babelon-Douçot [4, 5], Dullin [25]), symplectic topology (eg. see Eliashberg-Polterovich

[27] or Leung-Symington [53]), and mirror symmetry (see Gross and Siebert [36, 37]). While this

dissertation is focused on classical integrable systems, much of the work on these systems is motivated

by inverse spectral problems about quantum integrable systems as pioneered in the work of Colin de

Verdière [14, 15] and others, and which also has been the subject of recent works [11, 86].

Semitoric integrable systems are of interest in mathematical physics, symplectic geometry

and spectral theory, because they exhibit rich features from dynamical, geometric, and topological

viewpoints. Examples of semitoric systems permeate the physics literature. For instance the Jaynes-

Cummings system [18, 46], which is one of the most thoroughly studied examples of semitoric

system [73], models simple physical phenomena. It is obtained by coupling a spin and an oscillator,

and its phase space is S2 × R2.

In [69, 70], Pelayo-Vũ Ngo.c provide a complete classification for semitoric systems in terms

of a collection of several invariants. We have included this as Theorem 2.2.27. While compact toric

integrable systems are classified in terms of Delzant polytopes, in the semitoric case a polygon plays

a role but the complete invariant must contain more information. Loosely speaking, the complete

invariant of semitoric systems is a collection of convex polygons in R2 (which may not be compact)

each with a finite number of distinguished points corresponding to the focus-focus singularities labeled

by a Taylor series and an integer (See Figure 2.1).

The number of singular points invariant

In [77, Theorem 1] Vũ Ngo.c proves that a semitoric system has finitely many focus-focus

singular points. Thus, to a system we may associate an integer 0 6 mf < ∞ which is the total

number of focus-focus points in the system. The singular points are preserved by isomorphism so

this is an invariant of the system. For any nonnegative integer mf ∈ Z>0 let MST,mf denote the
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Figure 2.1: The complete semitoric invariant is a collection of polygons with distinguished
points {c1, . . . , cmf } each labeled with extra information: a Taylor series (Sj)

∞, an integer
kj known as the twisting index, and an element εj ∈ {−1,+1} known as the cut direction.
There is one polygon in the family for each possible choice of cut directions and each
allowed choice of twisting indices.

collection of simple semitoric systems with mf focus-focus points modulo semitoric isomorphism.

The Taylor series invariant

The next invariant we will study completely classifies the structure of a focus-focus critical

point in the neighborhood of a fiber up to isomorphism [76]. It is defined in terms of the length of

certain flow lines of the Hamiltonian vector fields for the components of the momentum map. The

details can be found in [76, 71].

Definition 2.2.17. Let R[[X,Y ]] refer to the algebra of real formal power series in two variables

and let R[[X,Y ]]0 ⊂ R[[X,Y ]] be the subspace of series
∑
i,j>0 σi,jX

iY j which have σ0,0 = 0 and

σ0,1 ∈ [0, 2π).

The Taylor series invariant is one element of R[[X,Y ]]0 for each of the mf focus-focus points.

The affine invariant and the twisting index invariant

The affine invariant is similar to the polygon from Delzant’s result, except in this case we

instead have a family of polygons related by specific linear transformations. The twisting index

describes how each critical point sits with respect to a privileged momentum map. These two

invariants will be described together because the twisting indices which label each critical point will
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be defined only up to the addition of a common integer related to the choice of polygon.

A convex polygon is the intersection in R2 of (finitely or infinitely many) closed half planes

such that on each compact subset of R2 there are at most finitely many corner points. A convex

polygon is rational if each edge is directed along a vector with rational coefficients. We denote the

set of all rational convex polygons by Polyg(R2). For λ ∈ R let `λ = {(x, y) ∈ R2 | x = λ} and let

Vert(R2) = {`λ | λ ∈ R}.

Definition 2.2.18. A labeled weighted polygon of complexity mf ∈ Z>0 is an element

(∆, (`λj , εj , kj)
mf
j=1) ∈ Polyg(R2)×

(
Vert(R2)× {−1,+1} × Z

)mf
with

min
s∈∆

π1(s) < λ1 < λ2 < . . . < λmf < max
s∈∆

π1(s)

where π1 : R2 → R is projection onto the x-coordinate. We denote the space of labeled weighted

polygons of complexity mf by LWPolygmf (R2).

Notice there is a triple (`λj , εj , kj) associated with the singular point cj for each j = 1, . . . ,mf .

These are related to the critical points of the semitoric system as follows: λj = π1(cj); εj is the cut

direction at cj ; and kj is the twisting index of cj .

Here we will briefly review how the affine invariant is produced in [77]. Consider the set

F (M) ⊂ R2. In the toric case this is the Delzant polygon. Let c1, . . . , cmf ∈ F (M) denote the images

of the focus-focus points and let Br = Int(F (M)) \ {c1, . . . , cmf } which is precisely the regular values

of F [69, Remark 3.2]. For each j = 1, . . . ,mf remove from Br the line segment `
εj
λj

which starts at

cj and goes upwards if εj = 1 and downwards if εj = −1 to form the set B~εr, where ~ε = (ε1, . . . , εmf ).

Now, B~εr is a simply connected set of regular values of F so define a global toric momentum map

Ftoric : F−1(B~εr)→ R2

and define ∆ = Ftoric(B~εr), the closure. The polygon produced depends on the choice of (εj)
mf
j=1 and

of the toric momentum map on B~εr. The distinguished points in each polygon are the image of the

focus-focus singular points under Ftoric. Of course, we are omitting many details in this explanation.
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Again, the interested reader should see [69, 70].

Let T ∈ SL2(Z) be given by

T =

1 1

0 1

 ∈ SL(2,Z). (2.2)

Definition 2.2.19. Let ∆ ∈ Polyg(R2) be a rational convex polygon. We say that a vertex of ∆ is

a point in the boundary ∂∆ where the meeting edges are not co-linear. A point is said to be in the

top-boundary of ∆ if it is the top end of a vertical segment formed by intersecting ∆ with a vertical

line. Suppose that z is a vertex of ∆ and (u, v) are a pair of primitive integral vectors starting at z

and extending along the direction of the edges which meet at z in the order such that det(u, v) > 0.

Then the point z is called

1. a Delzant corner when det(u, v) = 1;

2. a hidden Delzant corner when it belongs to the top boundary and det(u, T 1v) = 1;

3. a fake corner when it belongs to the top boundary and det(u, T 1v) = 0.

The action of Gmf × G

In order for isomorphic systems to produce the same invariants, we must consider the

collection of invariants we have so far modulo a group action.

Notation 2.2.20. Throughout this dissertation when referring to an mf -tuple such as (kj)
mf
j=1 or

(εj)
mf
j=1 for simplicity we will sometimes use vector notation. That is, we may refer to these mf -tuples

as ~k and ~ε, respectively. These vectors will always have length mf .

Let Gmf = {−1,+1}mf and G = {(T t)k | k ∈ Z} where T t is the transpose of the matrix T

from Equation (2.2). Given ` ∈ Vert(R2) define tk` : R2 → R2 by

tk` (x, y) =


(x, y), x 6 λ

(x, k(x− λ) + y), x > λ.

That is, tk` acts as the identity on the left of ` and, after a translation of coordinates which moves
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the origin onto `, acts as (T t)k to the right of `. For ~u ∈ Zmf let t~u = tu1

`1
◦ · · · ◦ t

umf
`mf

where `j = `λj .

We define the action of Gmf × G on LWPolygmf (R2) by

((ε′j)
mf
j=1, (T

t)k) · (∆, (`λj , εj , kj)
mf
j=1) = (t~u((T t)k∆),

(
`λj , ε

′
jεj , k + kj

)mf
j=0

) (2.3)

where ~u = ((εj−εjε′j)/2)
mf
j=1 .

Remark 2.2.21. Notice that if (∆, (`λj , εj , kj)
mf
j=1) is changed via the action of Gmf to have

ε′j ∈ {−1, 1} instead of εj for each j = 1, . . . ,mf then the new polygon is t~u(∆) where ~u =

(εj−ε
′
j/2)

mf
j=1 ∈ {−1, 0, 1}mf . Thus, the orbit of ∆ under the action of Gmf may be written as

(t~u(∆))~u∈{0,1}mf if ∆ is the polygon with εj = +1 for all j = 1, . . . ,mf . �

The orbit under this action is the appropriate invariant. The choice of cut direction and

constant by which to shift the twisting indices parameterize the collection of all polygons in a given

orbit. Notice that the action of t~u does not necessarily preserve convexity, but it will in the case of

the polygons we are interested in (Proposition 2.2.24).

Definition 2.2.22. A labeled Delzant semitoric polygon is the equivalence class

[∆w] ∈ LWPolygmf (R2)/(Gmf × G)

of an element ∆w = (∆, (`λj ,+1, kj)
mf
j=1) satisfying the following.

1. The intersection of ∆ and any vertical line is either compact or empty;

2. each `λj intersects the top boundary of ∆;

3. each point in the top boundary which is also in some `λj is either a hidden or a fake corner;

4. all other corners are Delzant corners.

The space of labeled Delzant semitoric polygons is denoted by

DPolygmf (R2) ⊂ LWPolygmf (R2)/(Gmf × G).
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Remark 2.2.23. The twisting index is not a unique integer assigned to each focus-focus singular

point because such integers are not preserved under the action of Gmf × G, but the relative twisting

index between two points is preserved. �

Any set satisfying Condition (1) of Definition 2.2.22 is said to have everywhere finite height.

The following Proposition is a restatement of [70, Lemma 4.2]. Since a preferred representative ∆

can be chosen with ~ε = (+1, · · · ,+1) we see that it says that the orbit of ∆ under Gmf is a subset of

Polyg(R2).

Proposition 2.2.24. Suppose ∆w ∈ LWPolygmf (R2) satisfies items (1)-(4) in Definition 2.2.22

and ∆w = [(∆, (`λj ,+1, kj)
mf
j=1)]. Then for each ~u ∈ {0, 1}mf the set t~u(∆w) is convex.

The volume invariant

The action of Gmf × G can change the vertical position of the images of the focus-focus

points, but their height with respect to the bottom of the polygon is preserved.

Definition 2.2.25. Suppose [∆w] ∈ DPolygmf (R2) with associated toric momentum map F . For

j = 1, · · · ,mf we define 0 < hj < length(∆w ∩ `λj ) by

hj = F (mj)− min
s∈∆∩`λj

{π2(s)}

where π2 : R2 → R2 is projection onto the second coordinate and (∆, (`λj , εj , kj)
mf
j=1) ∈ [∆w] is any

representative.

This is well defined for any choice of polygon in the same equivalence class by [69, Lemma

5.1]. The word “volume” is used here because hj can also be viewed as the volume of a specific

submanifold of M [69].

The classification theorem

Now that we have defined all of the invariants we can state the result of Pelayo-Vũ Ngo.c

found in [69, 70].

Definition 2.2.26 (Pelayo-Vũ Ngo.c [70]). A semitoric list of ingredients is
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Figure 2.2: Complete invariant of a semitoric system.

1. a nonnegative integer mf ;

2. a labeled Delzant semitoric polygon [∆w] = [(∆, (`λj , εj , kj)
mf
j=1)] of complexity mf ;

3. a collection of mf real numbers h1, . . . , hmf ∈ R such that 0 < hj < length(π2(∆ ∩ `λj )) for

each j = 1, . . . ,mf ; and

4. a collection of mf Taylor series (S1)∞, . . . , (Smf )∞ ∈ R[[X,Y ]]0.

In other words, a semitoric list of ingredients is a nonnegative integer mf and an element of

DPolygmf (R2)×Rmf ×R[[X,Y ]]
mf
0 where jth element of R must be in the interval (0, length(π2(∆∩

`λj ))). Let I denote the collection of all semitoric lists of ingredients and let Imf be lists of ingredients

with Ingredient (1) equal to the nonnegative integer mf .

Notice how the ingredients interact in Definition 2.2.26. Ingredient (1) determines the number

of copies of each other ingredient and Ingredient (3) is in an interval determined by Ingredient (2).

Theorem 2.2.27 (Pelayo-Vũ Ngo.c [70, Theorem 4.6]). There exists a bijection between the set of

simple semitoric integrable systems modulo semitoric isomorphism and I, the set of semitoric lists of
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ingredients. In particular,

Φ: MST → I

[(M,ω, (H,J))] 7→
(
[(∆, (`λj , εj , kj)

mf
j=1)], (hj)

mf
j=1, ((Sj)

∞)
mf
j=1

)

is bijective.



Chapter 3

The space of semitoric systems

3.1 Introduction

In [67] the authors define a metric on the space of Delzant polytopes via the volume of

the symmetric difference and pull this back to produce a metric on the moduli space of toric

integrable systems, as we described in Section 2.2.6. The construction of this metric is related to the

Duistermaat-Heckman measure [23].

The goal of this chapter is to define a metric on the space of semitoric invariants from

Theorem 2.2.27 and thus induce a metric on the moduli space of semitoric systems, MST, thereby

addressing Problem 2.43 from [72], in which the authors ask for a description of the topology of the

moduli space of semitoric systems. Problems 2.44 and 2.45 in the same article are related to the

closure of MST in the moduli space of all integrable systems, so in this chapter I also compute the

completion of the space of invariants, which corresponds to the completion of MST, in order to lay

the foundation to begin work on these problems. The main result of this chapter, Theorem 3.2.12,

states that the function I propose is a metric on MST and describes the completion of the space of

invariants. Theorem 3.2.12 is stated in Section 3.2 after I have defined the metric.

39
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3.2 Construction of metric and statement of main theorem

The invariants of semitoric integrable systems are discussed in Section 2.2.7. To define a

metric on MST I will first define a metric on each invariant and then I will combine all of these

metrics to form a metric on I. Finally, I will pull this metric back by the map in Theorem 2.2.27 to

produce a metric on the space of semitoric systems. This is the same strategy used in [67].

3.2.1 Comparing the Taylor series invariant

First we will define a metric on the Taylor series invariant. For
∑
i,j>0 σi,jX

iY j ∈ R[[X,Y ]]0

note that the term σ0,1 should actually be regarded as an element of S1 = R/2πZ. This can be seen

from the construction in [76].

Definition 3.2.1. Suppose that {bn}∞n=0 is a sequence such that bn ∈ (0,∞) for each n ∈ Z>0 and∑∞
n=0 nbn <∞. We will say that such a sequence is linear summable. Now we define

d
{bn}∞n=0
0 : R[[X,Y ]]0 × R[[X,Y ]]0 → R

to be given by

d
{bn}∞n=0
0 (s, s′) =

∞∑
i,j>0

(i,j)6=(0,1)

min
{ ∣∣σi,j − σ′i,j∣∣ , bi+j}+ min

{ ∣∣σ0,1 − σ′0,1
∣∣ , 2π − ∣∣σ0,1 − σ′0,1

∣∣ , b1}

where s =
∑
i,j>0 σi,jX

iY j and s′ =
∑
i,j>0 σ

′
i,jX

iY j .

Notice that two series which agree up to a high order will be very close in the metric space

and two series which agree only on the high order terms will be distant, as one would expect. In

Section 3.3.1 we develop a similar metric on R[[X,Y ]], which could be of independent interest.

Proposition 3.2.2. For any choice of linear summable sequence {bn}∞n=0 the space

(R[[X,Y ]]0, d
{bn}∞n=0
0 ) is a complete path-connected metric space and a sequence of Taylor series

converges if and only if the coefficient of Y converges in R/2πZ and all other terms converge in R.

Thus, the topology of (R[[X,Y ]]0, d
{bn}∞n=0
0 ) does not depend on the choice of {bn}∞n=0.

Proposition 3.2.2 follows from the proof of Proposition 3.3.2 in Section 3.3.1.
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3.2.2 Comparing the volume invariant

Since the volume invariant hj is a real number we simply use the standard metric on R.

3.2.3 Comparing the affine invariant

The topology of spaces of polygons have been studied by many authors. For example,

in [41, 42] the authors study polygons with a fixed number of edges up to translations and positive

homotheties in Euclidean space and in [48] the authors study polygons in R2 with fixed side length

up to orientation preserving isometries. For this chapter we will use a topology on polygons related

to the Duistermaat-Heckman measure [23] similar to what is done in [67]. A natural way to define a

metric on closed subsets of R2 is to use the volume of the symmetric difference. Let 	 denote the

symmetric difference of sets. That is, for A,B ⊂ R2 let

A	B = (A \B) ∪ (B \A).

In order to define a metric on labeled Delzant semitoric polygons we would like to use the volume

of the symmetric difference of the polygons (as is done in [67]) but there are two problems. First,

the polygons here are not required to be compact, so the symmetric difference may have infinite

volume, and second there are many polygons to choose from. To solve the first problem we will

define a non-standard measure on R2. A natural choice would be a probability measure on R2 but

the structure of DPolygmf (R2) is such that vertical translation should not affect the measure. This

is because the elements of DPolygmf (R2) are only unique up to specific vertical transformations.

Definition 3.2.3. We say that a measure ν on R2 is admissible if:

1. it is in the same measure class as µ, the Lebesgue measure on R2 (i.e. µ� ν and ν � µ);

2. its Radon-Nikodym derivative with respect to Lebesgue measure only depends on the x-

coordinate, i.e. there exists a g : R→ R such that dν/dµ(x, y) = g(x) for all (x, y) ∈ R2;

3. this function g satisfies xg ∈ L1(µ,R) and g is bounded and bounded away from zero on any

compact interval.
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Equation (3.1), in Section 3.3.2, is an example of such a measure. When only considering

compact semitoric systems one can use the Lebesgue measure on R2 instead to produce a metric

which induces the same topology, see Remark 3.3.16.

We say that a measurable map T : R2 → R2 is a vertical transformation if it is of the form

T (x, y) = (x, y + f(x)) for some f : R→ R. Part (2) of Definition 3.2.3 implies that the measure is

invariant under vertical transformations and part (3) will force convex sets which have a finite height

at every x-value to have finite measure.

Proposition 3.2.4. Suppose that ν is an admissible measure on R2 and ∆ ∈ Polyg(R2). Then ∆

has everywhere finite height if and only if ν(∆) <∞.

Proposition 3.2.4 is proven in Section 3.3.2. Let Smf denote the symmetric group on mf

elements. For p ∈ Smf let the action of p on a vector ~v = (vj)
mf
j=1 by permuting the elements be

denoted by p(~v) = (vp(j))
mf
j=1.

Definition 3.2.5. Suppose ~k,~k′ ∈ Zmf for some nonnegative integer mf . Then we say ~k ∼ ~k′ if

there exists a constant c ∈ Z and a permutation p ∈ Smf such that kj = k′p(j) +c for all j = 1, . . . ,mf .

We denote by [~k] the equivalence class of ~k in Zmf / ∼.

Definition 3.2.6. Fix any ~k,~k′ ∈ Zmf such that ~k ∼ ~k′. Let

S
mf
~k,~k′

=

p ∈ Smf

∣∣∣∣∣∣∣
there exists c ∈ Z such that

kj = k′p(j) + c for all j = 1, . . . ,mf

 .

Notice that ~k ∼ ~k′ is equivalent to S
mf
~k,~k′
6= ∅. The elements of S

mf
~k,~k′

will be called appropriate

permutations for ~k and ~k′.

Now, assume that two labeled weighted polygons have the same number of focus-focus points

and twisting indices related by ∼. We can shift the twisting index of one of the labeled weighted

polygons by the action of an element of G such that after the shift the two labeled weighted polygons

in question will have the same twisting index modulo the ordering. Once the twisting indices are

fixed we still have a family of polygons which depends on the choice of ~ε ∈ {−1,+1}mf . The number

of possible choices of ~ε is finite so we will simply sum up the symmetric difference of each pair of

polygons for each choice of ~ε. Using Remark 2.2.21 we can concisely write this in the following way.
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Definition 3.2.7. Suppose that for i = 1, 2 we have [∆w]i = [(∆i, (`iλj ,+1, kij)
mf
j=1)] ∈ DPolygmf (R2)

for some mf > 0 and with ~k ∼ ~k′, so S
mf
~k,~k′
6= ∅. For p ∈ S

mf
~k,~k′

define

dp,νP

(
[∆w]1, [∆w]2

)
=
∑

~u ∈ {0, 1}mf
ν
(
t~u(∆)	 tp(~u)((T

t)−c(∆′))
)

where c ∈ Z is the unique integer such that kj − k′p(j) = c for all j = 1, . . . ,mf . In the case that

[(∆)], [(∆′)] ∈ DPolyg0(R2) define

dνP([(∆)], [(∆′)]) = ν(∆	∆′).

If mf = 0 the labeled weighted polygon becomes a single polygon. The definition of dp,νP

in this case should be thought of as the same formula as the mf > 0 case and it is only treated

separately because the sum in the more general formula would be empty if mf = 0.

Notice that dp,νP is not a metric if p 6= p−1 in Smf because it is not symmetric. We will

remove the dependence on a choice of permutation in the next section when we define the final

version of the metric. There are many ways to choose a representative from each equivalence class

which have matching twisting indices, but the volume of the symmetric difference will not actually

depend on that choice (see Proposition 3.3.5) so this function is well-defined on orbits of Gmf × G.

3.2.4 Definition of metric and main result

We assume that systems with a different number of singular points are in different components

of MST. Additionally, since the invariant ~k is discrete one might expect that different values of ~k

would not be comparable; this is not correct. If ~k ∼ ~k′ then systems with these twisting indices can

be compared via the metric we are about to define but they are in different connected components

(Remark 3.3.19).

Definition 3.2.8. Suppose that mf ∈ Z>0 and ~k ∈ Zmf . Then we define MST,mf ,~k
⊂ MST,mf to

be those elements with twisting index exactly ~k and define

MST,mf ,[~k] =
⋃

~k′∈[~k]

MST,mf ,~k′
.



44

Furthermore, define

DPolygmf ,[~k](R
2) = {(∆, (`λj , εj , k′j)

mf
j=1) ∈ DPolygmf (R2) | ~k ∼ ~k′}

and

Imf ,[~k] = Imf ∩
(
DPolygmf ,[~k](R

2)× Rmf × R[[X,Y ]]
mf
0

)
.

Notice that

MST =
⋃

mf∈Z>0

~k∈Zmf

MST,mf ,~k
.

This union, and the union in Definition 3.2.8, are not disjoint unions only because they have repeated

terms. For instance, since the action of G can shift all of the twisting indices, we have that

MST,mf ,~k
= M

ST,mf ,(kj+c)
mf
j=1

for any c ∈ Z.

From Sections 3.2.1, 3.2.2, and 3.2.3, given some fixed appropriate permutation we already

know how to define a “distance” function on two systems with specified twisting index. To produce a

metric which does not depend on fixing a permutation we will take the minimum of each possibility.

Definition 3.2.9. Let mf ∈ Z>0 and ~k ∈ Zmf and suppose that m,m′ ∈ Imf ,[~k] with m =(
[∆w], (hj)

mf
j=1, ((Sj)

∞)
mf
j=1

)
and m′ =

(
[∆′w], (h′j)

mf
j=1, ((S

′
j)
∞)

mf
j=1

)
. Let ν be an admissible measure,

{bn}∞n=0 be a linear summable sequence, and p ∈ S
mf
~k,~k′

. We define:

1. the comparison with alignment p to be

d
p,ν,{bn}∞n=0

mf ,[~k]
(m,m′) = dp,νP ([∆w], [∆′w]) +

mf∑
j=1

(
d
{bn}∞n=0
0 ((Sj)

∞, (S′p(j))
∞) +

∣∣hj − h′p(j)∣∣);

2. the distance between m and m′ to be

d
ν,{bn}∞n=0

mf ,[~k]
(m,m′) = min

p∈S
mf
~k,~k′

{
d
p,ν,{bn}∞n=0

mf ,[~k]
(m,m′)

}
.
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A minimum of even a finite number of metrics is not a metric in general, but we will see in

Theorem 3.2.12 that d
ν,{bn}∞n=0

mf ,[~k]
is a metric in this case. Now we use this distance defined on each

component to induce a distance on the whole space which can be pulled back to produce a metric on

MST.

Definition 3.2.10. Let ν be an admissible measure and {bn}∞n=0 be a linear summable sequence.

Then we define

1. the distance on I by

dν,{bn}
∞
n=0(m,m′) =


d
ν,{bn}∞n=0

mf ,[~k]
(m,m′) , if m,m′ ∈ Imf ,[~k] for some mf ∈ Z,~k ∈ Zmf

1 , otherwise

for m,m′ ∈ I;

2. the distance on MST by Dν,{bn}∞n=0 = Φ∗dν,{bn}
∞
n=0 where Φ : MST → I is the bijective

correspondence from Theorem 2.2.27.

To state the main theorem we will have to first define the completion.

Definition 3.2.11. For any choice of mf ∈ Z>0 and ~k ∈ Zmf we define

Ĩmf ,[~k] = D̃Polygmf ,[~k](R
2)× [0, 1]mf × R[[X,Y ]]

mf
0

and

Ĩ =
⋃

mf∈Z>0

~k∈Zmf

Ĩmf ,[~k]

where the critical points satisfy the ordering convention from Remark 3.4.7 and D̃Polygmf ,[~k](R
2) is

defined as in Definition 3.4.9.

Theorem 3.2.12. For any choice of

1. a linear summable sequence {bn}∞n=0;

2. an admissible measure ν;
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the space (MST,D
ν,{bn}∞n=0) is a non-complete metric space whose completion corresponds to Ĩ.

Moreover, the topology of (MST,D
ν,{bn}∞n=0) is independent of the choice of ν and {bn}∞n=0.

Remark 3.2.13. There are several important facts to notice about Theorem 3.2.12:

1. This distance induces a unique topology on MST and thus Theorem 3.2.12 completely resolves

Problem 2.43 from [72].

2. In special cases a less complicated form of the metric can be used. The metric

DId = Φ∗d
Id,ν,{bn}∞n=0

mf ,~k

is easier to work with and induces the same topology as Dν,{bn}∞n=0 (Proposition 3.3.18) so this

should be used to study topological properties of MST. Additionally, when studying compact

semitoric systems the admissible measure on R2 can be instead replaced by the standard

Lebesgue measure without changing the topology (Remark 3.3.16). See Example 3.4.16 for an

explanation of why Dν,{bn}∞n=0 produces the appropriate metric space structure on MST.

3. Since toric integrable systems fall into the broader category of semitoric systems it is natural

to wonder if the metric defined in this chapter is compatible with the metric on toric systems

from [67]. Because we must choose an admissible measure to apply to the more general cases

the metric induced by d does not exactly match the metric defined on toric systems but they

do induce the same topology, see Section 3.3.5.

4. Since all metric spaces are Tychonoff (completely regular and Hausdorff) we know that MST

is Tychonoff. Thus the Stone-Cěch compactification [78, 75] applies to MST so it admits a

Hausdorff compactification (just as in [67]).

�

3.3 The metric

In this section we fill in the details of constructing the metric and prove that it is a metric.
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3.3.1 Metrics on Taylor series

Let R[[X,Y ]] refer to the algebra of real formal power series in two variables, X and Y .

Definition 3.3.1. Suppose that {bn}∞n=0 is any linear summable sequence. Then we define the

distance on Taylor series to be the function

d
{bn}∞n=0

R[[X,Y ]] : R[[X,Y ]]× R[[X,Y ]]→ R

given by

d
{bn}∞n=0

R[[X,Y ]]

∑
i,j>0

σi,jX
iY j ,

∑
i,j>0

σ′i,jX
iY j

 =
∞∑

i,j=0

min
{∣∣σi,j − σ′i,j∣∣ , bi+j} .

Proposition 3.3.2. The space (R[[X,Y ]], d
{bn}∞n=0

R[[X,Y ]]) is a complete path-connected metric space and

a sequence of Taylor series
(
sk =

∑
i,j>0 σ

k
i,jX

iY j
)
k

converges if and only if each sequence of terms

(σki,j)k converges.

Proof. First notice that the sum in the definition of the distance always converges. This is because

d
{bn}∞n=0

R[[X,Y ]]

∑
i,j>0

σi,jX
iY j ,

∑
i,j>0

σ′i,jX
iY j

 6 ∞∑
i,j=0

bi+j =

∞∑
n=0

(n+ 1)bn <∞

for any pair of Taylor series by the choice of {bn}∞n=0. It is also clear that d
{bn}∞n=0

R[[X,Y ]] is symmetric and

positive definite. It satisfies the triangle inequality because that inequality is satisfied for each term

and thus we can see that (R[[X,Y ]], d
{bn}∞n=0

R[[X,Y ]]) is a metric space.

Next we will prove the condition on convergence. Suppose that

lim
k→∞

d
{bn}∞n=0

R[[X,Y ]] (sk, s0) = 0

with sk, s0 ∈ R[[X,Y ]] as in the statement of the Proposition. Fix any I, J ∈ Z>0 and we will show

that σkI,J
k→∞−→ σ0

I,J . Fix ε > 0 and find K such that k > K implies that

∞∑
i,j=0

min
{∣∣σki,j − σ0

i,j

∣∣ , bi+j} < ε
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because we may assume that ε < bI+J . Then we can see that
∣∣σkI,J − σ0

I,J

∣∣ < ε so the result follows.

Now we will show the converse. Suppose that

lim
k→∞

∣∣σki,j − σ0
i,j

∣∣ = 0

for all i, j ∈ Z>0. Fix ε > 0, let N ∈ N be such that

∑
n>N

(n+ 1)bn < ε/2,

and let K ∈ Z be such that k > K implies that

∣∣σki,j − σ0
i,j

∣∣ < ε

N(N + 1)

for each i, j ∈ Z>0 such that i+ j < N . Notice it is possible to do this simultaneously because there

are only finitely many such pairs (i, j). For any k > K we have that

d
{bn}∞n=0

R[[X,Y ]] (sk, s0) 6
∑

i+j<N

∣∣σki,j − σ0
i,j

∣∣+
∑

i+j>N

bi+j

<
ε

N(N + 1)

∑
i+k<N

1 +
∑
n>N

(n+ 1)bn

<
ε

N(N + 1)

N(N + 1)

2
+
ε

2
= ε.

This proves the convergence condition.

Any element of this space may be continuously transformed into any other linearly in each

term, so it is path-connected. To finish the proof we will show that this space is complete. Suppose

that (sk)
∞
k=0 is a Cauchy sequence in R[[X,Y ]]. Using an argument similar to the one for convergence,

we can see that the sequence {σki,j}∞k=0 is Cauchy for each i, j ∈ Z>0 and therefore σki,j
k→∞−→ σ0

i,j for

some σ0
i,j ∈ R. Since it converges in each term, we can use the convergence condition to conclude

that

lim
k→∞

d
{bn}∞n=0

R[[X,Y ]]

sk, ∑
i,j>0

σ0
i,jX

iY j

 = 0

and so all Cauchy sequences have limits.
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We have characterized convergence in this space in a way which is independent of the sequence

{bn}∞n=0. Since the topology of a metrizable space is completely determined by its convergent sequences

we have the following result.

Corollary 3.3.3. The topology on R[[X,Y ]] determined by d
{bn}∞n=0

R[[X,Y ]] does not depend on the choice

of linear summable sequence {bn}∞n=0.

Notice that R[[X,Y ]]0 is not a closed subset of (R[[X,Y ]], d
{bn}∞n=0

R[[X,Y ]]) and (R[[X,Y ]]0, d
{bn}∞n=0

R[[X,Y ]])

with the restricted metric is not a complete metric space. To see this consider any collection of Taylor

series in which σ2 → 2π. This does not accurately describe the structure of the semitoric systems

and thus we use the altered metric from Definition 3.2.1. Proposition 3.2.2 follows from a slightly

altered version of the proof of Proposition 3.3.2.

Remark 3.3.4. A similar construction to d
{bn}∞n=0

R[[X,Y ]] can be used to produce such a metric on Taylor

series in any number of variables. The only difference is that to produce a metric on Taylor series in

m variables the sequence {bn}∞n=0 would be required to satisfy

∞∑
n=0

(
n+m− 1

n

)
bn <∞

because there are
(
n+m−1

n

)
terms of degree n in a Taylor series on m variables. �

3.3.2 Metrics on labeled weighted polygons

We start this section with a proof.

Proof of Proposition 3.2.4. By definition ∆ is the intersection of half-spaces and since it is assumed

to have everywhere finite height we can see that this collection of half spaces must include at least

two which are not completely vertical, i.e. not of the form {x > c} or {x 6 c} for c ∈ R. Let B

denote the intersection of these two half planes. Then by definition ∆ ⊂ B and thus ν(∆) < ν(B). If

the two half planes are parallel of a distance c apart then

ν(B) =
w

B

dν

dµ
dµ =

w

R

cg dµ <∞
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because xg ∈ L1(µ,R) implies that g ∈ L1(µ,R). If the spaces are not parallel then their boundaries

intersect at some point (x0, y0). Let m be the absolute value of the difference in the slopes of the

two boundaries. Then for each value (x, y) ∈ R2 the height of B at that x-coordinate is m |x− x0|

and the sign of x− x0 is the same for each (x, y) ∈ B. Assume that x− x0 > 0 for all (x, y) ∈ B so

we have

ν(B) =
w

B

dν

dµ
dµ =

∞w

x0

m(x− x0)g(x) dµ = m

∞w

x0

xg dµ−mx0

∞w

x0

g dµ <∞

because g ∈ L1(µ,R) and xg ∈ L1(µ,R). The computation is similar if x− x0 6 0 for all (x, y) ∈ B.

Any compact set without everywhere finite height will have infinite ν-measure. This is

because a compact set which does not have everywhere finite height either is a vertical line, which

is not a polygon, or includes a subset of the form {(x, y) | a1 < x < a2} for some a1 < a2. Such a

subset has infinite ν-measure because ν is invariant under vertical translations.

Even once we have fixed the cut directions there are many polygons to choose from based on

the choice of the twisting index (i.e. the orbit of the action of G) but if the same choice is made for

each pair of polygons this choice does not change the volume of the symmetric difference.

Proposition 3.3.5. Let mf ∈ Z>0, p ∈ Smf , and and let Jp ⊂ (DPolygmf ,[~k](R
2))2 be given by

Jp =
{

([(∆, (`λj , εj , kj)
mf
j=1)], [(∆′, (`λ′j , ε

′
j , k
′
j)
mf
j=1)]) ∈ (DPolygmf ,[~k](R

2))2
∣∣∣p ∈ S

mf
~k,~k′

}
.

Then the function dp,νP : Jp → R is well defined.

Proof. Suppose that

∆1
w = (∆1, (`1λj ,+1, k1

j )
mf
j=1),∆2

w = (∆2, (`2λj ,+1, k2
j )
mf
j=1) ∈ [(∆, (`λj , εj , kj)

mf
j=1)]

and ∆′w =
(
∆′, (`λ′j ,+1, k′j)

mf
j=1

)
. Then there exists some d ∈ Z such that k1

j = k2
j−d for j = 1, . . . ,mf

and ∆1 = T d(∆2). Since p ∈ S
mf
~k,~k′

, there exists c ∈ Z such that k1
j − k′p(j) = c for all j and notice
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that this means that k2
j − k′p(j) = c+ d for all j. Therefore,

dp,νP ([∆1
w], [∆′w]) =

∑
~u ∈ {0, 1}mf

ν
(
t~u(∆1)	 tp(~u)(T

−c(∆′))
)

=
∑

~u ∈ {0, 1}mf
ν
(
t~u(T d(∆2))	 tp(~u)(T

−c(∆′))
)

=
∑

~u ∈ {0, 1}mf
ν
(
T d(t~u(∆2)	 tp(~u)(T

−c−d(∆′)))
)

=
∑

~u ∈ {0, 1}mf
ν
(
t~u(∆2)	 tp(~u)(T

−(c+d)(∆′))
)

= dp,νP ([∆2
w], [∆′w])

because admissible measures are invariant under vertical transformations such as T d. The argument

that this function is well defined in the second input is similar.

An example of an admissible measure on R2 is the following. Define ν0 so that

dν0

dµ
(x, y) =

 1 , if |x| < 1

1
x3 , else.

(3.1)

Notice x−2 ∈ L1(µ,R) and g0 = dν0
dµ (x, 0) is bounded and bounded away from zero on compact

intervals. This proves the following.

Proposition 3.3.6. The measure ν0 is an admissible measure on R2.

3.3.3 Choice of ν does not change the topology

While the choice of admissible measure will change the metric it does not change the topology

induced by that metric.

Lemma 3.3.7. Suppose that ν is an admissible measure and ∆k,∆ ∈ Polyg(R2) for k ∈ N are such

that ν(∆k 	∆)
k→∞−→ 0. Then there exists a proper vertical segment A = {x0} × [y0, y1], with y0 < y1,

and K > 0 such that A ⊂ ∆k ∩∆ for all k > K.

Proof. Fix any N > 0 such that ∆ ∩ ([−N,N ] × R) has non-zero measure with respect to ν, and

thus also with respect to µ. Since ν is admissible we can find some c > 0 such that dν/dµ > c on
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[−N,N ]× R.

For each ε > 0 let

Uε =
{
p ∈ R2

∣∣Bε(p) ⊂ (−N,N)× R
)
∩∆

}

where Bε(p) is the standard open ball of radius ε centered at p and int(A) denotes the interior of the

set A.

Fix any k ∈ N and suppose Uε \∆k 6= ∅. Because ∆k is the intersection of closed half-planes

its complement, ∆c
k, is the union of open half-planes. If q ∈ Uε \∆k then there exists some open

half-plane with boundary including q which is a subset of ∆c
k. Let Hq be the intersection of one such

half-plane with Bε(q) so Hq ⊂ ∆ \∆k. Then, since Hq ⊂ (−N,N)× R,

ν(Hp) =
w

Hp

dν

dµ
dµ > cµ(Hp) =

c

2
µ
(
Bε(p)

)
=
cπ

2
ε2.

Thus, if Uε \∆k is non-empty then ν(∆k 	∆) > cπ
2 ε

2.

Now choose ε small enough that Uε is non-empty and choose K > 0 such that k > K implies

that ν(∆	∆k) < cπ
2 ε

2. If Uε \∆k 6= ∅ then ν(∆k 	∆) > cπ
2 ε

2, so we conclude Uε ⊂ ∆k for k > K.

The set Uε has nonempty interior so we can find the set A as in the statement of the Lemma.

Now we will use Lemma 3.3.7 to prove Lemma 3.3.8, which says that the same sequences of

polygons converge with respect to any admissible measure.

Lemma 3.3.8. Suppose that ν1, ν2 are admissible measures and that ∆k,∆ ∈ Polyg(R2) for k ∈ N

have ν1(∆), ν1(∆k) <∞. If ν1(∆k 	∆)
k→∞−→ 0 then ν2(∆k 	∆)

k→∞−→ 0.

Proof. Suppose that ν1(∆k	∆)
k→∞−→ 0 and let A, x0, y0, and y1 be as in Lemma 3.3.7. We know that

the line {x = x0} intersects ∆ so it must intersect the top boundary of ∆, since ∆ has everywhere

finite height by Proposition 3.2.4. Since a convex set is the intersection of half-planes there must

exist a line `1 which goes through the point where {x = x0} intersects the top boundary such that

all of ∆ is in a closed half-plane bounded by `1 (as in Figure 3.1). Such a line may not be unique if

there is a vertex with x-coordinate equal to x0, but any choice of such a line will do.
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Figure 3.1: Since ∆ is convex it must all lie on the same side of `1.

The situation we describe next is shown in Figure 3.2. Let m denote the slope of `1 and

let `2 be the line through (x0, y1) with slope m + 1. Let m′ denote the slope of the line through

the point (x0, y0) and the point which is the intersection of `1 with `2. Finally let `3 be the line

through (x0, y0) with slope (m+m′)/2. Since the slope of `3 is greater than the slope of `2 these two

lines must intersect at some x-coordinate greater than x0, but since the slope of `3 is less than m′ we

know that the intersection of `2 and `3 must be to the right of the intersection of `1 and `2. Thus

the lines `1, `2, and `3 bound a triangle which we will denote by G, as is shown in Figure 3.2. Let

N1 = maxs∈G π1(s). Since ∆ is on one side of `1 and G is on the other we conclude that G ∩∆ = ∅.

For any N > x0 let E1
N denote the region of R2 which has x > N and is above or on `2.

Now suppose that k is large enough so that A ⊂ ∆k and let p ∈ E1
N1
∩ `2. Then p ∈ ∆k implies

that G ⊂ ∆k 	∆ because ∆k is convex and ∆ ∩G = ∅. Similarly, if p is any other point in E1
N1

we can conclude that some ν1-preserving transformation of G must be contained in ∆k 	∆. This

is because moving p vertically will result in acting on G by some matrix T r (as in Equation (2.2))

with r ∈ R with origin on the line {x = x0} (see Figure 3.3). In any case, if ∆k ∩ E1
N1

is nonempty

Figure 3.2: The lines `1, `2, `3, and triangle G.
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Figure 3.3: Notice that for a fixed vertical line segment A ⊂ R2 the measure of the convex
hull of A and p ∈ R2 only depends on the x-component of p. This is because if p1, p2 ∈ R2

with π1(p1) = π2(p2) then the convex hulls are related by a vertical transformation.

and k is large enough so that A ⊂ ∆k then we can conclude that ν1(∆	∆k) > ν1(G) > 0. Since

ν1(∆	∆k)
k→∞−→ 0 we can conclude that for large enough k the set ∆k ∩ E1

N is empty.

Using a similar argument, one can define sets EiN for i = 2, 3, 4 that must also be disjoint

from ∆k for large enough k and N ; these are shown in Figure 3.4. The sets E1
N and E2

N are bounded

to the left by the line {x = N} and the sets E3
N and E4

N are bounded to the right by {x = −N}.

The sets E1
N and E4

N are bounded below by lines and the sets E2
N and E3

N are bounded above by

lines. Let EN = ∪4
i=1E

i
N and let N2 > N1 be large enough so that for large enough k we have that

∆k ∩ EN2
= ∅. Let DN = [−N,N ]× R for N ∈ R and let SN = R2 \ (EN ∪DN ).

Fix ε > 0. Notice that for each N > 0 the set SN is of finite ν2-measure. Since {SN}N>0

are nested we conclude that limN→∞ ν2(SN ) = 0. Now choose some fixed N3 > N2 and K1 > 0 such

that ν2(SN3
) < ε and k > K1 implies that ∆k ∩ EN3

= ∅. Since both ν1 and ν2 are admissible

measures we know that their Radon-Nikodym derivative is bounded on DN3 . This is because

dν2

dν1
=

dν2

dµ

(
dν1

dµ

)−1

,

which are both bounded on DN3 . Let c > 0 be such that dν2/dν1 < c on DN3 . Now choose K2 > K1
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Figure 3.4: For large choices of N and k the set SN is small and the set EN has empty
intersection with ∆k. Then we can concentrate on the set DN , on which the Radon-Nikodym
derivative dν2/dν1 is bounded.

such that k > K2 implies ν1(∆	∆k) < ε. Finally, for k > K2 we have

ν2(∆k 	∆) =
w

R2

|χ∆k
− χ∆| dν2

=
w

SN3

|χ∆k
− χ∆| dν2 +

w

EN3

|χ∆k
− χ∆| dν2 +

w

DN3

|χ∆k
− χ∆| dν2

6 ν2(SN3) + 0 +
w

DN3

|χ∆k
− χ∆|

dν2

dν1
dν1

< ε+ c ν1(∆k 	∆)

< (1 + c)ε,

which can be made arbitrarily small.

By combining Lemma 3.3.8 and Proposition 3.2.2 we have the following corollary.

Corollary 3.3.9. Fix a nonnegative integer mf ∈ Z>0, a vector ~k ∈ Zmf , any two linearly summable

sequences {bn}∞n=0 and {b′n}∞n=0, and two admissible measures ν and ν′. Then the metric spaces

(Imf ,[~k], d
ν,{bn}∞n=0

mf ,[~k]
) and (Imf ,[~k], d

ν′,{b′n}
∞
n=0

mf ,[~k]
) have the same topology generated by their respective

metrics.

3.3.4 d is a metric

While it does not hold in general that the minimum of even a finite collection of metrics

will be itself a metric, it does hold in this particular case. For this section fix an admissible measure



56

ν, a linear summable sequence {bn}∞n=0, a nonnegative integer mf , and ~k,~k′ ∈ Zmf . Let d denote

d
ν,{bn}∞n=0

mf ,[~k]
and let dp denote d

p,ν,{bn}∞n=0

mf ,[~k]
, as given in Definition 3.2.9. It is clear that d is positive

definite and it is symmetric because S
mf
~k,~k′

is closed under inverses so we must only show that the

triangle inequality holds. We show this in Lemma 3.3.12 but first we must prove two lemmas.

Lemma 3.3.10. Fix ~k,~k′,~k′′ ∈ Zmf and let S
mf
~k,~k′

be as in Definition 3.2.6. Then for any fixed

q ∈ S
mf
~k,~k′′

we have that S
mf
~k′′,~k′

= {p ◦ q−1|p ∈ S
mf
~k,~k′
}.

Proof. Let r ∈ S
mf
~k′′,~k′

. Then there exist constants c1, c2 ∈ Z such that

kj − k′′q(j) = c1 and k′′j − k′r(j) = c2

for all j = 1, . . . ,mf . In particular, for i = q(j) we have

kj − k′r(q(j)) = (c1 + k′′i )− (k′′i − c2) = c1 + c2

and so we conclude that p = r ◦ q ∈ S
mf
~k,~k′

and clearly r = p ◦ q−1 so S
mf
~k′′,~k′

⊂ {p ◦ q−1|p ∈ S
mf
~k,~k′
}.

Now let p ∈ S
mf
~k,~k′

and q ∈ S
mf
~k,~k′′

so there are constants c, c1 ∈ Z such that

kj − k′p(j) = c and kj − k′′q(j) = c1.

Subtracting these two equations gives k′′q(j) − k
′
p(j) = c− c1 and thus p ◦ q−1 ∈ S

mf
~k′′,~k′

.

Lemma 3.3.11. Let m,m′,m′′ ∈ Imf ,[~k] and suppose p ∈ S
mf
~k,~k′

and q ∈ S
mf
~k,~k′′

. Then

dp(m,m′) 6 dq(m,m′′) + dp◦q
−1

(m′′,m′).

Proof. The mf = 0 case is trivial so assume mf > 0. Since p ∈ S
mf
~k,~k′

and q ∈ S
mf
~k,~k′′

there must be

constants c, c1 ∈ Z such that

kj − k′p(j) = c and kj − k′′q(j) = c1.

Because dp is a sum of distances we can use the triangle inequality for each term with an appropriate
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permutation on the elements:

dp(m,m′) =
∑

~u∈{0,1}mf
ν
(
t~u(∆)	 tp(~u)(T

−c(∆′))
)

+

mf∑
j=1

(
d
{bn}∞n=0
0 ((Sj)

∞, (S′p(j))
∞) +

∣∣hj − h′p(j)∣∣)
6

∑
~u∈{0,1}mf

[
ν
(
t~u(∆)	 tq(~u)(T

−c1(∆′′))
)

+ ν
(
tq(~u)(T

−c1(∆′′))	 tp(~u)(T
−c(∆′))

)]

+

mf∑
j=1

(
d
{bn}∞n=0
0 ((Sj)

∞, (S′′q(j))
∞) + d

{bn}∞n=0
0 ((S′′q(j))

∞, (S′p(j))
∞)

+
∣∣hj − h′′q(j)∣∣+

∣∣h′′q(j) − h′p(j)∣∣)
=dq(m,m′′) + dp◦q

−1

(m′′,m′).

Notice that in the case that p = q = Id this gives a proof of the triangle inequality for dId.

Lemma 3.3.12. The triangle inequality holds for d.

Proof. Let m,m′,m′′ ∈ Imf ,[~k]. There exists some q ∈ S
mf
~k,~k′′

such that d(m,m′′) = dq(m,m′′) and by

Lemma 3.3.10 we know that

min
p∈S

mf
~k,~k′

{dp◦q
−1

(m′′,m′)} = d(m′′,m′).

Now, using the inequality from Lemma 3.3.11 we have that

d(m,m′) = min
p∈S

mf
~k,~k′

{dp(m,m′)}

6 min
p∈S

mf
~k,~k′

{dq(m,m′′) + dp◦q
−1

(m′′,m′)}

= dq(m,m′′) + min
p∈S

mf
~k,~k′

{dp◦q
−1

(m′′,m′)}

= d(m,m′′) + d(m′′,m′)

as desired.
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Combining the arguments in Sections 3.3.1 and 3.3.2 with the present section, in particular

Proposition 3.2.2 and Lemma 3.3.12, we get the following.

Proposition 3.3.13. Let mf ∈ Z>0, ~k ∈ Zmf , {bn}∞n=0 be a linear summable sequence, and ν an

admissible measure. Then the space (Imf ,[~k], d
ν,{bn}∞n=0

mf ,[~k]
) is a metric space.

3.3.5 Relation to the metric on the moduli space of toric systems

In [67] the authors construct a metric on the moduli space of (compact) toric integrable

systems which we denote by MT. Recall there is a one-to-one correspondence between elements of

MT and Delzant polytopes. The authors of [67] define a metric on MT by pulling back the natural

metric on the space of Delzant polytopes given by the Lebesgue measure of the symmetric difference.

Toric integrable systems can also be viewed as compact semitoric systems with no focus-focus

singularities. If mf = 0 then Gmf × G = ∅ and thus the affine invariant is a unique polygon, the

Delzant polytope. To compare two such systems the semitoric metric defined in the present chapter

takes the ν-measure of the symmetric difference of the polygons for some admissible measure ν, as

opposed to using the standard Lebesgue measure on R2 as is done in [67]. Notice also that MT is

not equal to MST,0 because, for instance, there are elements of MST,0 which are not compact.

Moreover it is possible for two toric systems to be isomorphic as semitoric systems but not

isomorphic as toric systems. This is because if (M,ω, (J,H)) and (M ′, ω′, (J ′, H ′)) are two choices of

4 dimensional toric systems then a diffeomorphism φ : M →M ′ is an isomorphism of toric systems if

φ∗(J ′, H ′) = (J,H). This corresponds to taking f to be the identity in the definition of semitoric

isomorphisms. Thus we see that if ∼ represents the equivalence induced by semitoric isomorphisms

we have that MT/∼ ⊂MST,0 so the metric on MT produces a topology on a subset of MST,0 via the

quotient topology.

In MST,0 the semitoric invariant is a unique polygon so to conclude that the metrics produce

the same topology it is sufficient to show that the same sequences of convex compact polygons

converge with respect to both the Lebesgue measure and any admissible measure.

Lemma 3.3.14. Let ∆k,∆ ⊂ R2 be convex compact sets for each k ∈ N, let µ denote the Lebesgue

measure on R2, and let ν be any admissible measure. Then limk→∞ µ(∆	∆k) = 0 if and only if

limk→∞ ν(∆	∆k) = 0.
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Proof. If limk→∞ µ(∆	∆k) = 0 we can see that limk→∞ ν0(∆	∆k) = 0 where ν0 is the example of

an admissible measure from Section 3.3.2. This is because ν0(A) < µ(A) for any set A ⊂ R2. Thus

we conclude that limk→∞ ν(∆	∆k) = 0 by Lemma 3.3.8.

Now we will show the other direction. Suppose limk→∞ ν(∆	∆k) = 0 and fix ε > 0. Choose

some L > 0 such that π1(∆) ⊂ [−L,L]. By Lemma 3.3.7 we know there exists x0, y0, y1 ∈ R with

y0 < y1 and x0 ∈ [−L,L] such that the set {x0} × [y0, y1] ⊂ ∆ is a subset of ∆k for k > K1 for

some fixed K1 ∈ N. Now, suppose that k > K1 and p ∈ ∆k has π1(p) > L+ 1. Then, since ∆k is

convex, the triangle with vertices (x0, y0), (x0, y1), p, which we will denote by Gp, must be a subset

of ∆k. Since π1(∆) ⊂ [−L,L] we know that Gp \ π−1
1 ([−L,L]) ⊂ ∆ 	 ∆k and the ν-measure of

any such triangle Gp defined by a point p ∈ R2 with π1(p) > L is bounded below by a constant

c1 = ν(Gp0) > 0 where p0 = (L+ 1, 0). This is because any triangle Gp where π1(p) > L contains

a triangle G(L+1,y) for some y ∈ R and any such triangle is the image under a vertical, and thus

ν-preserving, transformation of Gp0 . Similarly, p ∈ ∆k for k > K1 with π1(p) < −L would imply

that ν(∆	∆k) > c2 for some constant c2 > 0. Thus, since limk→∞ ν(∆	∆k) = 0 we conclude that

there exists some K2 > K1 such that k > K2 implies that ∆k ⊂ π−1
1 ([−L,L]). Since ν is admissible

we know that there exists some c3 > 0 such that dµ/dν < c3 on π−1
1 ([−L,L]). Choose K3 > K2 such

that k > K3 implies that ν(∆	∆k) < ε/c3 and notice that

µ(∆	∆k) =
dµ

dν
ν(∆	∆k) < c3ν(∆	∆k) < ε,

because while the Radon-Nikodym derivative is not bounded on all of R2 it is bounded on the set

∆	∆k for large enough k.

Corollary 3.3.15. The metric d induces the same topology on MT as the metric defined in [67]

does.

Corollary 3.3.15 follows from Lemma 3.3.14. This result is concerning compact polygons. Of

course, if we consider non-compact sets these metrics will not induce the same topology.

Remark 3.3.16. Let M
cpt
ST ⊂MST be the collection of compact semitoric integrable systems. Then

the polygons produced will always be compact and thus Lemma 3.3.14 applies. So we can conclude

that when restricting to M
cpt
ST the standard Lebesgue measure can be used in place of the choice of



60

admissible measure and the same topology will be produced. �

3.3.6 d and dId induce the same topology

Let

Imf ,~k = {m ∈ Imf ,[~k] | m has twisting index ~k}

and define dId = dId,ν,{bn}∞n=0 on I by

dId(m,m′) =


d

Id,ν,{bn}∞n=0

mf ,~k
(m,m′) if m,m′ ∈ Imf ,~k for some mf ∈ Z>0,~k ∈ Zmf

1 otherwise.

Both d and dId are defined on I and the main result of this section will be that both of these metrics

induce the same topology on I.

Lemma 3.3.17. Let m,mn ∈ I for n ∈ N. Then d
ν,{bn}∞n=0

mf ,[~k]
(m,mn)

n→∞−→ 0 implies that λnj
n→∞−→ λj

for all j = 1, . . . ,mf .

Proof. Again we use d to denote d
ν,{bn}∞n=0

mf ,[~k]
and dp to denote d

p,ν,{bn}∞n=0

mf ,[~k]
.

Step 1: Let pn ∈ Smf satisfy d(m,mn) = dpn(m,mn) for each n ∈ N. For the first step of this

proof we will argue that λnpn(j)

n→∞−→ λj by contrapositive. Suppose there exists some j ∈ 1, . . . ,mf

such that λnpn(j) 6→ λj as n→∞. This means there exists a > 0 and a subsequence (ni)
∞
i=0 such that

∣∣∣λnipni (j) − λj∣∣∣ > a for all i ∈ N.

Now let tj = t1`λj
and tnj = t1`λn

pn(j)

. Let ∆ be a polygon which represents a choice of ~ε = {+1, . . . ,+1}

for m. We must show that ν(tj(∆)	 tnij (∆)) is bounded away from zero. We may assume that a is

less than the horizontal distance from λj to the edge of the polygon ∆ because λj ∈ int(π1(∆)). Let

b = minx∈[λj−a,λj+a]{ length(∆ ∩ `x) } and notice that since ∆ is a convex polygon we must have

that b > 0.

The set ∆ may be shifted by a vertical transformation so that max{π2(∆∩ `x)} = 0 for each

x ∈ R to form a new set ∆′ ⊂ R2, as is shown in Figure 3.5. Let A : R2 → R2 be the composition of

these transformations so A(∆) = ∆′. This new set may not be convex but since ν is invariant under
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Figure 3.5: Without changing the ν-measure we can produce a new polygon which has
{y = 0} as its top boundary.

Figure 3.6: Either λnij < λj − a or λnij > λj + a. Each case is shown above and in either
case there is some positive measure region which is always in the symmetric difference.
This causes convergence to be impossible.

vertical translations we have that ν(∆) = ν(∆′). Notice that B = [λj − a, λj + a]× [−b, 0] satisfies

B ⊂ ∆′.

Now there are two cases, both shown in Figure 3.6. If λj < λnij then tj(B) ∩ {y > 0} ⊂

tj(∆
′)	 tnij (∆′). This is because tnij is the identity on points where x ∈ [λj−a, λj +a] and so for x in

this interval ∆′ does not intersect the open upper half plane. The set tj(B)∩{y > 0} always contains

the rectangle [λj + a/2, λj + a]× [0, a/2], as in Figure 3.6. Let c1 = ν([λj + a/2, λj + a]× [0, a/2]).

Now suppose that λj > λnij . In this case the symmetric difference always contains the

region tj([λj , λj + a] × [a − b, a]) which has the same measure as [λj , λj + a] × [a − b, a]; see

Figure 3.6. Let c2 = ν([λj , λj + a]× [a− b, a]) and let c = min{c1, c2}. So in any case we have that

ν(tj(∆)	 tnij (∆) > c > 0.

Assume that limn→∞ d(m,mn) = 0. This implies limi→∞ ν(∆	∆ni) = 0. In this case fix
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ε > 0 such that ε < c, and find I > 0 such that i > I implies that ν(∆	∆ni) < ε. Then for i > I

we have that

ν[tj(∆)	 tnij (∆)] 6 ν[tj(∆)	 tnij (∆ni)] + ν[tnij (∆ni)	 tnij (∆)]

= ν[tj(∆)	 tnij (∆ni)] + ν[∆ni 	∆],

which implies

ν[tj(∆)	 tnij (∆ni)] > ν[tj(∆)	 tnij (∆)]− ν[∆ni 	∆] > c− ε.

Thus limn→∞ ν[tj(∆)	 tnj (∆n)] = 0 is impossible, but this is a term in d(m,mn) so d(m,mn)→ 0

is impossible as well. We conclude that λnpn(j) → λj for all j = 1, . . . ,mf .

Step 2: From Step 1 we know that λnpn(j)

n→∞−→ λj for each j = 1, . . . ,mf . Let D =

min{|λj − λj′ | | j, j′ ∈ {1, . . . ,mf}, j 6= j′}. Then there exists some N > 0 such that n > N implies

that
∣∣∣λnpn(j) − λj

∣∣∣ < d/2. Thus, for n > N we have that pn = Id and the result follows.

Proposition 3.3.18. Let mf ∈ Z>0, ~k ∈ Zmf , {bn}∞n=0 be a linear summable sequence, and ν be

an admissible measure. Then d
ν,{bn}∞n=0

mf ,[~k]
and d

Id,ν,{bn}∞n=0

mf ,~k
induce the same topology on I.

Proof. Any sequence which converges for dId will converge for d because d < dId. Suppose that

(mn)∞n=1 is a sequence in I which converges to m ∈ I with respect to d. Then by Step 2 of the

proof of Lemma 3.3.17 we know there exists some N > 0 such that for n > N we have that

d(m,mn) = dId(τ, τn). Thus, we see that the sequence dId(m,mn) is eventually equal to a sequence

which converges to zero, so we conclude that dId(m,mn)
n→∞−→ 0.

Remark 3.3.19. Each Imf ,~k ⊂ I is in a separate component of (I, d). This is because these are

defined to be in different components for dId and we have just shown that dId and d induce the same

topology. �

3.4 The completion

In this section we compute the completion of the space of semitoric ingredients I which

corresponds to the completion of MST by Theorem 2.2.27. We will show that the completion of I is
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Ĩ, where Ĩ is as is described in Definition 3.2.11 and Definition 3.4.9. The completion of an open

interval in R with the usual metric is the corresponding closed interval and we have already stated

that R[[X,Y ]]0 is complete (Proposition 3.2.2), so to produce the completion of I it seems the only

difficultly will be with the weighted polygons. This is not the case since in fact defining the distance

as a minimum of permutations has intertwined the metrics on these different spaces so we can not

consider them separately. This section has similar arguments to those in [67] except that in our

case we must consider a whole family of polygons all at once instead of only one polygon. For the

remainder of this section fix some admissible measure ν, some linear summable sequence {bn}∞n=0,

a nonnegative integer mf , and a vector ~k ∈ Zmf . For simplicity we will use d and dp to refer to

d
ν,{bn}∞n=0

mf ,[~k]
and d

p,ν,{bn}∞n=0

mf ,[~k]
(from Definition 3.2.9) respectively, where p ∈ Smf .

In Section 3.4.1 we show that the completion must contain Ĩ and in the remaining subsections

we show that Ĩ is complete. In Section 3.4.2 we prove several Lemmas about Cauchy sequences which

are used in Section 3.4.3 to conclude that Ĩ is in fact the completion of I.

There is no way for elements of I with different numbers of focus-focus points or twisting

indices that are not equivalent (under the equivalence from Definition 3.2.5) to be close to one another

because the distance between any two such systems is always 1 (see Definition 3.2.10). Thus, we will

work with the components Imf ,[~k] of I.

First, notice that the definition of d from Definition 3.2.9 holds on Ĩ as well. That is, extend

the definition of d in the following way:

Definition 3.4.1. Suppose that m,m′ ∈ Ĩ denote

(
[Aw], (hj)

mf
j=1, ((Sj)

∞)
mf
j=1

)
and

(
[A′w], (h′j)

mf
j=1, ((S

′
j)
∞)

mf
j=1

)

, respectively. Then:

1. the comparison with alignment p is

dp(m,m′) = dp,νP ([Aw], [A′w]) +

mf∑
j=1

(
d
{bn}∞n=0
0 ((Sj)

∞, (Sp(j))
∞) +

∣∣hj , h′p(j)∣∣);



64

2. the the distance between m and m′ is

d(m,m′) = min
p∈S

mf
~k,~k′

{dp(m,m′)} .

Proposition 3.4.2. d is a metric on Ĩ.

This proposition follows from the proof of Proposition 3.3.13.

Remark 3.4.3. Notice that dId is not a metric on Ĩ because it does not satisfy the triangle inequality.

This can be seen in Example 3.4.16. �

Throughout Section 3.4.1 each space we examine can be viewed as a subspace of Ĩ and we

will endow them with the structure of a metric subspace.

Remark 3.4.4. The space I can be viewed as a subspace of Ĩ because there is a natural correspondence

between the elements of I and the elements of a subset of Ĩ. This is because there is at most one

element of I in each equivalence class in Ĩ so the space I corresponds to the subset {[m] | m ∈ I}. �

3.4.1 The completion must contain Ĩmf ,[~k]

In the next few lemmas we start with Imf ,[~k] and build up to Ĩmf ,[~k] in several steps, showing

that each inclusion is dense. First we will show that the completion of Imf ,[~k] must include at least

all rational labeled polygons which satisfy the convexity requirements.

Lemma 3.4.5. Let P′mf ,[~k] ⊂ D̃Polygmf ,[~k](R
2) be given by

P′mf ,[~k] =

[(∆, (`λj ,+1, k′j)
mf
j=1)]

∣∣∣∣∣∣∣∣∣∣
t~u(∆) ∈ Polyg(R2) for any ~u ∈ {0, 1}mf ,

~k ∼ ~k′, ν(∆) <∞, and

mins∈∆ π1(s) < λ1 < . . . < λmf < mins∈∆ π1(s)


and let

I′
mf ,[~k]

= P′mf ,[~k] × [0, 1]mf × R[[X,Y ]]
mf
0 .

Then the inclusion Imf ,[~k] ⊂ I′
mf ,[~k]

is dense.
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Proof. Fix any element m =
(
[∆w], (hj)

mf
j=1, ((Sj)

∞)
mf
j=1

)
∈ I′

mf ,[~k]
. Since d 6 dId we will show there

exists an element m′ ∈ Imf ,[~k] arbitrarily close to m with respect to the function dId. Clearly we

will have no problems with making the volume invariant or the Taylor series arbitrarily close so just

consider the polygons.

Let [∆w] = [(∆, (`λj ,+1, kj)
mf
j=1)] ∈ P′mf ,[~k] and fix ε > 0. We will show there exists some

element [∆′w] ∈ DPolygmf ,[~k](R
2) such that dId,ν

P ([∆w], [∆′w]) < ε. We will choose this element of

DPolygmf ,[~k](R
2) to have the same λj values as ∆w. Since the action of t~u, ~u ∈ {0, 1}mf , does not

change the volume of sets we have

dId
P ([∆w], [∆′w]) 6 2mf ν(∆	∆′)

where (∆′, (`λj ,+1, kj)
mf
j=1) ∈ [∆′w]. To complete the proof it suffices to show that there exists an

element (∆′, (`λj ,+1, kj)
mf
j=1) ∈ DPolygmf ,[~k](R

2) such that ∆ and ∆′ are equal except on a set of

ν-measure less than 2−mf ε.

For j = 1, . . . ,mf let pj ∈ R2 be the intersection of `λj with the top boundary of ∆. Let

U ⊂ R be a union of disjoint neighborhoods around each corner of ∆ which is not an element of

{pj}
mf
j=1 such that ν(U) < ε/2mf+1. Also, let V ⊂ R \ U be a union of disjoint neighborhoods around

each point pj for each j = 1, . . . ,mf and ν(V ) < ε/2mf+1. We will define ∆′ in several stages, editing

it several times. Start by assuming that ∆′ = ∆. By [67, Remark 23] we can edit ∆′ on the set U so

that every vertex is Delzant except possibly the ones in V .

Now, recall that for a semitoric polygon to be Delzant the points pj must all either be fake

or hidden Delzant corners. This is equivalent to saying that the corners on the top boundary of

t~u(∆′) must all be Delzant for ~u =< 1, . . . , 1 >. Since t~u(∆′) is a convex polygon and t~u(V ) is a

neighborhood of the edges t~u(pj) we can again use [67, Remark 23] to conclude that we may edit

t~u(∆′) inside of the set V such that all of the vertices on the top boundary are Delzant. Now we

have finished defining t~u(∆′) and since this map is invertible we have also defined ∆′. Notice that for

j = 1, . . . ,mf each point t~u(pj) is either a Delzant corner, which would make pj a hidden Delzant

corner, or it is not a vertex at all, in which case pj would be a fake corner. Also, it is easy to check

that any new Delzant corner we had to define in t~u(V ) which is not on the point t~u(pj) for some

j = 1, . . . ,mf gets transformed by t−1
~u to form a Delzant corner on ∆′. In conclusion, [∆′w] is a
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Delzant semitoric polygon and each of the 2mf polygons in the equivalence class is equal to each

polygon in [∆w] except on a set of ν-measure less than ε/2mf .

So from the above Lemma we conclude that the completion of Imf ,[~k] must contain I′
mf ,[~k]

.

In the next Lemma we show it must contain a larger set. The only difference between P′mf ,[~k] and

P′′mf ,[~k] is that P′′mf ,[~k] allows irrational polygons.

Lemma 3.4.6. Let

P′′mf ,[~k] =

[(∆, (`λj ,+1, k′j)
mf
j=1)]

∣∣∣∣∣∣∣∣∣∣
t~u(∆) is a convex polygon for any ~u ∈ {0, 1}mf ,

0 < ν(∆) <∞,~k ∼ ~k′ and

mins∈∆ π1(s) < λ1 < . . . < λmf < maxs∈∆ π1(s)


and let

I′′
mf ,[~k]

= P′′mf ,[~k] × [0, 1]mf × R[[X,Y ]]
mf
0 .

Then the inclusion I′
mf ,[~k]

⊂ I′′
mf ,[~k]

is dense.

Proof. Just as in the proof of Lemma 3.4.5 we can see that we only need to consider the polygons.

Suppose that [∆w] ∈ P′′mf ,[~k] and (∆, (`λj ,+1, kj)
mf
j=1) ∈ [∆w]. Given any ε > 0 we can find an

open neighborhood of the boundary of ∆ which has ν-measure less than ε (since the boundary has

measure zero and ν is regular) and we may approximate ∆ by a rational polygon with boundary

inside of this neighborhood. In the case that ∆ is compact this can be done by approximating the

irrational slopes with rational ones (exactly as done in [67]).

This strategy will work even if ∆ is not compact. For the faces of ∆ which are non-compact

with irrational slope (if there are any) we can still approximate these with a line of rational slope

because of the properties of the admissible measure ν. Suppose there is a non-compact face of ∆

which has irrational slope r ∈ R \Q. Then choose q ∈ Q such that q < r and ν({qx < y < rx}) < ε

and let the edge on the rational polygon have slope q. Such a slope can be chosen because if the

measure of that set is always finite and replacing q by q2 = q+r/2 will produce a wedge with half the

measure of the original.

Remark 3.4.7. Since it is possible for λj = λj+1 for some j ∈ 1, . . . ,mf − 1 the order in which the
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critical points are labeled in a system cannot be made unique by only considering thoseλ values. This

means that there could be two elements in Ĩmf ,[~k] which have the same invariants except labeled in a

different order. Of course, we do not want this because these two elements should be the same, so we

use the other invariants to create a unique ordering on the critical points of any element of Ĩmf ,[~k].

We fix the order so that if λj = λj+1 for some j = 1, . . . ,mf − 1 then we require that hj 6 hj+1. In

the case that λj = λj+1 and hj = hj+1 we look to the Taylor series. In this situation we require that

the coefficient of X of the Taylor series (Sj)
∞ is less than or equal to the coefficient of X in (Sj+1)∞

and if those are equal we look to the coefficient of Y and continue in this fashion. Now given any

system with critical points there is a unique order in which to label them which is essentially the

lexicographic order on the invariants. �

For the next Lemma we only slightly change the restrictions on the (λj)
mf
j=1. Notice that we

allow (positive only) infinite values for the λj . This can only happen in the case that the polygon is

non-compact. If λj = +∞ then we define t1j to be the identity because all of R2 is to the left of this

value.

Lemma 3.4.8. Let

P′′′mf ,[~k] =


[(∆, (`λj ,+1, k′j)

mf
j=1)]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t~u(∆) is a convex polygon for any ~u ∈ {0, 1}mf ,

0 < ν(∆) <∞,~k ∼ ~k′,

λj ∈ R ∪ {∞} for j = 1, . . . ,mf , and

mins∈∆ π1(s) 6 λ1 6 . . . 6 λmf 6 maxs∈∆ π1(s)


and let

I′′′
mf ,[~k]

= P′′′mf ,[~k] × [0, 1]mf × R[[X,Y ]]
mf
0 .

The inclusion I′′
mf ,[~k]

⊂ I′′′
mf ,[~k]

is dense.

Proof. Again, we only need to consider the polygons. We will prove this Lemma in two steps. First,

suppose that [∆w] ∈ P′′′mf ,[~k] has λj <∞ for each j = 1, . . . ,mf so the only thing that is keeping

[∆w] from being in P′′mf ,[~k] is the possibility that λj = λj+1 for some fixed j ∈ {1, . . . ,mf − 1}. Let

~u be all zeros except for a 1 in the jth and (j + 1)st positions. Then [∆w] ∈ P′′′mf ,[~k] implies that

t~u(∆) is convex so we know that there is a vertex of ∆ on the top boundary with x-coordinate λj .
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Figure 3.7: By cutting the corner and adjusting the values of λj and λj+1 of an element
in P′′′mf ,[~k] we can produce an element of P′′mf ,[~k] which is very close.

Let m1 denote the slope of the edge to the left of this vertex and let m2 denote the slope to the right.

Then we can see that the convexity of t~u(∆) implies that m1 > m2 + 2. Now we want to show that

there exists some [∆′w] ∈ P′′mf ,[~k] arbitrarily close in dId to [∆w]. Let [∆′w] be equal to [∆w] except

that λ′j < λj < λ′j+1 and that the top boundary of ∆′ has slope m1− 1 on the interval x ∈ (λ′j , λ
′
j+1).

So, as is shown in Figure 3.7, we have cut the corner off of ∆ to produce ∆′ and clearly this cut

can be made as small as desired. This process can be repeated for each instance of λj = λj+1 for

j ∈ {1, . . . ,mf}.

Now we proceed to step two. Assume that [∆w] = [(∆, (`λj ,+1, kj)
mf
j=1)] ∈ D̃Polygmf ,[~k](R

2)

has λmf = +∞ (and λj < ∞ for j = 1, . . . ,mf − 1) and we will construct a sequence with [∆w]

as its limit. Let N = maxj=1,...,mf−1 |λj | and for any n ∈ N which satisfies n > N define a set

∆n = ∆ ∩ [−n, n] with λmf = n. That is

[∆n
w] = (∆n, (`λj ,+1)

mf−1
j=1 , (`n,+1)).

Notice that each polygon in each family [∆n
w] is convex because it is the intersection of two convex

sets. Then dνP([∆w], [∆n
w])→ 0. Clearly a similar process can be used to produce sets which have

multiple λ values which are infinite.
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Next we would like to consider arbitrary convex sets, but there is a subtlety. We must instead

consider all sets which are convex up to measure zero corrections (as is done in [67]). So far we have

only been working with polygons and if the symmetric difference of two polygons has zero measure

in ν, and therefore also in µ, those polygons are the same set. This is not true for arbitrary subsets

of R2. Recall that ν and the Lebesgue measure µ have exactly the same measure zero sets, so the

equivalence relation in the following definition does not depend on the choice of admissible measure.

Definition 3.4.9. Let

Cmf ,[~k] =


[(A, (`λj ,+1, k′j)

mf
j=1)]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A ⊂ R2, λj ∈ R ∪ {∞} for j = 1, . . . ,mf ,

t~u(A) is a convex set for any ~u ∈ {0, 1}mf ,

~k ∼ ~k′, 0 < ν(∆) <∞, and

mins∈A π1(s) 6 λ1 6 . . . 6 λmf 6 maxs∈A π1(s)


.

Further, for any measurable sets A,B ⊂ R2 we say A ' B if and only if µ(A	B) = 0 and let [A]

denote the equivalence class of A with respect to this relation. Finally, let

D̃Polygmf ,[~k](R
2) =

[([A], (`λj ,+1, kj)
mf
j=1)

] ∣∣∣∣∣∣∣
[(A, (`λj ,+1, kj)

mf
j=1)] ∈ Cmf ,[~k] or

ν(A) = 0 and λj = 0 for j = 1, . . . ,mf

 .

Here it is important to notice that we have included one extra element in each

D̃Polygmf ,[~k](R
2), the equivalence class of the empty set. For this element the values of λj are

unimportant so we set them all equal to zero (in fact, any fixed number will work). For the last

Lemma in this section we will show that the inclusion in Ĩmf ,[~k], which is defined in Definition 3.2.11,

is also dense.

Lemma 3.4.10. The inclusion I′′′
mf ,[~k]

⊂ Ĩmf ,[~k] is dense1.

Proof. Once more, we only have to consider the labeled weighted convex sets since it is easy to align the

volume invariant and Taylor series invariant. Let [(A, (`λj ,+1, kj)
mf
j=1)] = [∆w] ∈ D̃Polygmf ,[~k](R

2).

Now pick [(B, (`λj ,+1, kj)
mf
j=1)] ∈ P′′′mf ,[~k] and notice that they have the same λ values, so if A and

B are close then so are all of the other polygons. Simply approximate A by a family of disjoint

1The explanation of how I′′
mf ,[~k]

can be viewed as a subspace of Ĩ
mf ,[~k]

is in Remark 3.4.4.
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Figure 3.8: An arbitrary convex set can be approximated from the inside by a polygon.
The convexity requirements will be met as long as the vertices on the top boundary at
{x = λj} for each j = 1, . . . ,mf are included in the polygon.

rectangles contained in A. We need to be sure that t~u(B) is convex for any choice of ~u ∈ {0, 1}mf so

take B to be the convex hull of the rectangles which approximate A from the inside and the points in

the top boundary of A which have x-value equal to λj for some j ∈ {1, . . . ,mf}. Since B ⊂ A and

t~u(A) is convex around x = λj for each j = 1, . . . ,mf we know that t~u(B) is convex (Figure 3.8).

From the results of Lemma 3.4.5, Lemma 3.4.6, Lemma 3.4.8, and Lemma 3.4.10, the

following lemma is immediate.

Lemma 3.4.11. The completion of Imf ,[~k] must contain Ĩmf ,[~k].

3.4.2 Cauchy sequences for d and dId

In this section we investigate the relationship between Cauchy sequences in dId and dp. This

will be used to prove Lemma 3.4.14; that Ĩ is complete.

Lemma 3.4.12. Let mn ∈ Ĩmf ,[~k] for n = 1, . . . ,∞. If (mn)∞n=1 is Cauchy with respect to d then

there exists a subsequence (mni)
∞
i=1 which is Cauchy with respect to dId.

Proof. Let (mn)∞n=1 be as in the statement of the Lemma. Let A0 = N and let M0 = 0. We will define

An and Mn recursively for each n ∈ N. Suppose that |An−1| =∞ and Mn−1 ∈ An−1. Let εn = 2−n.

Find some M > 0 such that k, l > M implies that d(mk,ml) > εn/2. Now let Mn be any element of

An−1 which is greater than M and Mn−1. This means d(mMn
,ml) < εn/2 for any l > Mn. For p ∈ Smf
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let Bnp = {l ∈ An−1 | l > Mn, d
p(mMn ,ml) < εn/2}. Notice that ∩p∈SmfBnp = {l ∈ An−1 | l > Mn}

by the definition of Mn. The union of this finite number of sets has infinite cardinality so at least one

of those sets must also have infinite cardinality. Choose any pn ∈ Smf such that
∣∣Bnpn∣∣ =∞ (there

may be several possible choices). Now define An = (An−1 ∩ [0,Mn]) ∪ Bnpn . Notice that Mn ∈ An

and |An| =∞.

Now let A = ∩n∈NAn and notice that |A| =∞ because {Mn | n ∈ N} ⊂ A.

So (ma)a∈A is a subsequence of (mn)∞n=1. We will show that this subsequence is Cauchy

with respect to dId. Fix any ε > 0 and find n ∈ N such that εn < ε. Now pick any k, l > Mn with

k, l ∈ A. Then k, l ∈ An implies that k, l ∈ Snpn so dpn(mMn
,mk), dpn(mMn

,ml) < εn/2 < ε/2. Also

notice that pn being an appropriate permutation to compare mk with mMn and also appropriate to

compare ml with mMn
implies that Id ∈ Smf is an appropriate permutation to compare mk and ml.

Thus

dId(mk,ml) 6 d
pn(mk,mMn) + dpn(ml,mMn) < ε

by Lemma 3.3.11.

Lemma 3.4.13. Suppose that (mn)∞n=1 is a sequence of elements of Ĩmf ,[~k] which is Cauchy with

respect to the function dId. Then there exists some p ∈ Smf and m ∈ Ĩmf ,[~k] such that

lim
n→∞

dp(mn,m) = 0.

Proof. For A,B ⊂ R2 say A ' B if and only if ν(A	B) = 0 and let F denote the subsets of R2 with

finite ν-measure modulo '. Now let E = {[A] ∈ F | there exists B ∈ [A] which is convex} and let dE

be the metric on this space given by the ν-measure of the symmetric difference. For simplicity we

will write A ∈ E instead of [A] ∈ E. We will show that this metric space is complete. Let χA denote

the characteristic function of the set A ∈ E. Then for A,B ∈ E we can see that

dE(A,B) =

∫
R2

|χA − χB | dν = ‖χA − χB‖L1

the L1 norm on (R2, ν). Now suppose that (Ak)∞k=1 is a Cauchy sequence in (E, dE) and by measure

zero adjustments we can assume that each Ak is convex. Then (χAk)∞k=1 is Cauchy in L1(R2, ν) and
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thus there must exist some function g : R2 → R defined up to measure zero such that

lim
k→∞

‖g − χAk‖L1 = 0

because L1 is complete.

The functions (χAk)∞k=1 converge to g in L1 so we know that there is a subsequence (χAkn )∞n=1

which converges to g pointwise off of some measure zero set S. Let

A = {x ∈ R2 \ S | g(x) = 1}

and now we will show that A is almost everywhere equal to a convex set so E is complete. Let

A′ be the convex hull of A and we will show that ν(A 	 A′) = 0. Let p ∈ A′ which means there

exists q, r ∈ A and t ∈ [0, 1] such that p = (1− t)q + tr. Since the subsequence (χAkn )∞n=1 converges

pointwise to χA at the points q and r (since q, r ∈ A and A is disjoint from S) this means that there

exists some N > 0 such that n > N implies q, r ∈ Akn . Thus, since each Ak is convex we see that for

n > N we have p ∈ Akn . We conclude that p ∈ A ∪ S and thus A	A′ ⊂ S so ν(A	A′) = 0. Also

notice ν(Ak, A)→ 0 as k →∞ implies that ν(A) <∞. This means A ∈ E so (E, dE) is a complete

metric space.

Let ([Akw])∞k=1 be a Cauchy sequence in (D̃Polygmf ,[~k](R
2), dId,ν

P ). Let

[Akw] = [(Ak, (`λkj ,+1, kj)
mf
j=1)] and let Ak~ε = tk~u(Ak)

for each ~ε ∈ {−1, 1}mf with uj =
1−εj

2 . Since this sequence is Cauchy we also know that the sequence

(Ak~ε )∞k=1 is a Cauchy sequence in (E, dE). Thus for each ~ε ∈ {−1, 1}mf there exists some convex

A~ε ∈ E which is the limit of (Ak~ε )∞k=1 in E. Let A = A(1,...,1). We have produced a family of convex,

ν-finite sets which could be the limit, but we still need to check that there is some choice of (Λj)
mf
j=1

such that A~ε = t~u(A0) in E for each j = 1, . . . ,mf .

Fix some j ∈ {1, . . . ,mf} and let Aj = Aε where εj = −1 and εi = +1 for i 6= j and let tk
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Figure 3.9: The action of t1
λkmj

and t1
λknj

on a polygon. It can be seen that Rn,m is a

subset of the symmetric difference and has measure which is nonzero if
∣∣∣λknj − λkmj ∣∣∣ 6= 0.

denote t1
λkj

. Since ν is invariant under vertical translations we have that

dE(tk(A), t~u(Ak)) = dE(A,Ak)

so both go to zero as k →∞. By the triangle inequality we can see that

dE(tk(A), Aj) 6 dE(tk(A), tk(Ak)) + dE(tk(Ak), Aj)

so we conclude that

dE(tk(A), Aj)→ 0 as k →∞. (3.2)

If (λkj )∞k=1 diverges to +∞ or converges to sup(π1(A)) then we are done. This is because in

this case dE(tk(A), Aj)→ 0 as k →∞ implies that A and Aj represent the same element in E (i.e.

they are equal almost everywhere) and tΛ acts as the identity on A0 if Λ is the rightmost value of A0.

Otherwise we can find some x0, a ∈ R with a > 0 such that [x0, x0 + 2a] ⊂ π1(A) and there

exists a subsequence (λknj )∞n=1 such that λknj < x0 for all n. Notice that A ∩ `x is an interval for

any x ∈ π1(A) because A is convex. Let δ1 = length(A ∩ `x0
) and δ2 = length(A ∩ `x0+a) and notice
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that δ1, δ2 <∞ because otherwise we would have ν(A) =∞ or ν(A) = 0 because A is convex and

ν is invariant under vertical translations. Also notice that length(A ∩ `x) > min{δ1, δ2} for any

x ∈ [x0, x0 +a] because A is convex. Pick any n,m ∈ N and we can see that t1
λknj

and t1
λkmj

only differ

by a vertical translation when acting on A ∩ π−1
1 ([x0, x0 + a]) (see Figure 3.9). This guarantees that

there is a region Rn,m in the symmetric difference tλ
kn
j (A)	 tλ

km
j (A) which has the same measure

as a rectangle of length a and height min{δ1, δ2,
∣∣∣λknj − λkmj ∣∣∣} positioned between the x-values of x0

and x0 + a (since ν is translation invariant). If R stands for the measure of a rectangle from x = x0

to x = x0 + a of unit height we can see that

ν(Rn,m) = min
{
δ1, δ2,

∣∣∣λknj − λkmj ∣∣∣}R
and since Rn,m ⊂ tλ

kn
j (A)	 tλ

km
j (A) we know that

min{δ1, δ2,
∣∣∣λknj − λkmj ∣∣∣}R 6 ν(tλknj

(A)	 tλkmj (A)). (3.3)

The right side of Equation (3.3) is Cauchy with respect to m and n because (tλknj
)∞n=1 converges

by Equation (3.2) and thus the left side is Cauchy as well. This means that (λknj )∞n=1 is a Cauchy

sequence of real numbers and thus must converge. Call its limit Λj ∈ R. To complete the proof we

must only show that ν(t1Λj (A)	Aj) = 0. This is clear because

ν(t1Λj (A)	Aj) 6 ν(t1Λj (A)	 t1
λknj

(A)) + ν(t1
λknj

(A)	Aj)

and the right side goes to zero as n→∞. So we conclude that the original Cauchy sequence converges

to [(A, (`Λj ,+1, kj)
mf
j=1)]. Clearly the elements of each copy of R[[X,Y ]]0 and [0, 1] can be made to

converge. The only problem is that possibly this limit does not have the critical points labeled in the

correct order according to Remark 3.4.7 to be an element of D̃Polygmf ,[~k](R
2) so we reorder it by

some permutation p ∈ Smf and the result follows.

3.4.3 Ĩ is complete

Lemma 3.4.14. Ĩmf ,[~k] is complete.
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Proof. Any Cauchy sequence in Ĩmf ,[~k] must have a subsequence which is Cauchy with respect to dId

by Lemma 3.4.12. By Lemma 3.4.13 that sequence must converge with respect to dp for some fixed

p ∈ Smf , which in particular means that it must converge with respect to d. A Cauchy sequence

with a subsequence which converges must converge.

Now Lemma 3.4.11 and Lemma 3.4.14 imply the main result of this section.

Proposition 3.4.15. Given an admissible measure ν and a linear summable sequence the completion

of (I, dν,{bn}∞n=0) is (̃I, dν,{bn}∞n=0).

Example 3.4.16. The reason to use d instead of dId can be seen by the examining structure of the

completion. Let

[∆l
w] =

 [(∆l, (λ1 = 0, ε1 = 1, k1 = 0), (λ2 = l, ε2 = 1, k2 = 0))] if l > 0

[(∆l, (λ1 = l, ε1 = 1, k1 = 0), (λ2 = 0, ε2 = 1, k2 = 0))] if l < 0

and suppose that ml ∈ I is a system given by

ml =

 ([∆l
w], ((S1)∞, h1), ((S2)∞, h2)) if l > 0

([∆l
w], ((S2)∞, h2), ((S1)∞, h1)) if l < 0

for l ∈ [−1, 1] \ {0} such that liml→0ml exists in (̃I, d). This can be thought of as one of the critical

points being fixed and the other passing over it at l = 0 as is shown in Figure 3.10. The complications

in defining this come from the fact that the order of the critical points switches at l = 0 so the labeling

has to switch. Now we can see the problem with using dId, which is that liml→0+ ml 6= liml→0− ml

with respect to dId.

�

Finally, Theorem 3.2.12 is produced by combining Proposition 3.3.13, Corollary 3.3.9, and

Proposition 3.4.15.
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Figure 3.10: A continuous family in Ĩ in which one critical point passes over the other as
h increases from negative to positive.

3.5 Further questions

Now that we have defined a metric, and in particular a topology, on MST there are several

questions that would be natural to address. First of all, one may be interested extending the metric

defined in this chapter in the way that this chapter has extended the metric from [67]. To produce

such an extension to a larger class of integrable systems one would first have to classify those systems

with invariants in a way which extends the classification from [69, 70]. Also, one can now ask what

are the connected components of MST, which is the topic of Chapter 4. Furthermore, with a topology

on MST we can consider Problem 2.45 from [72], which asks what the closure of the set of semitoric

integrable systems would be when considered as a subset of C∞(M,R2). To address this problem an

appropriate topology on C∞(M,R2) would have to be defined. This situation is much more general

than the systems which are the focus of this chapter so it may be best to study metrics constructed

in a more general case such as in Chapter 9.

This chapter is partially motivated by the desire to understand limits of semitoric systems

which are themselves not semitoric. One method to do this is to study the elements of Ĩ \ I in relation

to integrable systems. Perhaps some subset of this can be interpreted as corresponding to non-simple

semitoric systems or to some other type of integrable system not included in the classification by

Pelayo-Vũ Ngo.c [69, 70]. Problem 2.44 from [72] asks if some integrable systems may be expressed

as the limit of semitoric systems in an appropriate topology and the study of Ĩ \ I may make some

progress on this question.

Acknowledgements. Chapter 3, in part, is comprised of material submitted for publication



77

by the author of this dissertation as Moduli spaces of semitoric systems, currently available at

arXiv:1502.07296 [63].



Chapter 4

Classifying toric and semitoric fans

4.1 Introduction

In this chapter I present an algebraic viewpoint to study four-dimensional toric integrable

systems, based on the study of matrix relations in the special linear group SL2(Z). Recall, one can

associate to a rational convex Delzant polygon ∆ the collection of primitive integer inwards pointing

normal vectors to its faces, called a toric fan. This is a d-tuple

(v0 = vd, v1, . . . , vd−1) ∈ (Z2)d,

where d ∈ Z is the number of faces and det(vi, vi+1) = 1 for each 0 6 i 6 d− 1. This determinant

condition forces the vectors to satisfy the linear equations aivi = vi−1 + vi+1, for i = 0, . . . , d − 1

where v−1 = vd−1, which are parameterized by integers a0, . . . , ad−1 ∈ Z (Lemma 4.3.3). These

integers satisfy 0 −1

1 a0


0 −1

1 a1

 · · ·
0 −1

1 ad−1

 =

1 0

0 1

 (4.1)

(this equation appears in [33], page 44) but in fact not all integers satisfying Equation (4.1) correspond

to a Delzant polygon. This is an equation in SL2(Z) and in this chapter I lift it to the group G

presented as

G = 〈S, T | STS = T−1ST−1〉

78
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where SL2(Z) ∼= G/(S4). The group G is the pre-image of SL2(Z) in the universal cover of SL2(R),

and thus I can define what I call the winding number of an element of g ∈ G that evaluates to the

identity in SL2(Z). Roughly speaking, we view g as a word in S and T and by applying this word to

a vector one term at a time I produce a path around the origin. I define the winding number of g to

be the winding number of this path in the classical sense.

The equation in G analogous to Equation (4.1) has the property that a collection of integers

a0, . . . , ad−1 satisfy the equation if and only if they correspond to a toric fan, and from the integers it

is straightforward to recover the fan. As such, this is a method to translate problems about toric fans

into equivalent problems about the algebraic structure of the group G. This allows us to simplify

the proofs of some classical results about toric fans (Section 4.4), and generalize these results to the

semitoric case (Section 4.5). Associated to a semitoric system there is also a collection of vectors

(v0, . . . , vd−1) which satisfy more complicated equations (given explicitly in Definition 4.2.5) known as

a semitoric fan. A semitoric fan can be thought of as a toric fan for which the relations between some

pairs of adjacent vectors have been changed as a result of the presence of the focus-focus singularities

of semitoric integrable systems. Roughly speaking, semitoric fans encode aspects of the singular

affine structure induced by the singular fibration associated to a semitoric integrable system.

I present the following theorem in this chapter which is an application of the algebraic

method I introduce. In Chapter 5 I will use this theorem to describes the path-connected components

of the moduli space of semitoric integrable systems with a fixed number of focus-focus singular points.

Theorem 4.1.1. Any semitoric fan may be obtained from a standard semitoric fan in a finite number

of steps using four standard transformations.

A more detailed description of Theorem 4.1.1 is given in Theorem 4.2.8 and the definitions

of the standard semitoric fans and the four standard transformations used in Theorem 4.1.1 are given

in Definition 4.2.7.

The machinery in this chapter is developed with the goal of proving Theorem 5.1.1 in the

next chapter, which describes the connected components of the moduli space of semitoric systems

from Chapter 3.
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4.2 Fans, symplectic geometry, and winding numbers

4.2.1 Toric fans

A toric variety is a variety which contains an algebraic torus as a dense open subset such

that the standard action of the torus on itself can be extended to the whole variety. That is, a toric

variety is the closure of an algebraic torus orbit [56]. By an algebraic torus we mean the product

C∗× . . .×C∗, where C∗ = C \ {0}. It is well known that the geometry of a toric variety is completely

classified by the associated fan. In general, a fan is set of rational strongly convex cones in a real

vector space such that the face of each cone is also a cone and the intersection of any two cones is a

face of each. In this chapter we will be concerned with two-dimensional nonsingular complete toric

varieties and their associated fans, which we will simply call toric fans. As described in Section 2.2.6,

these fans are given by a sequence of lattice points

(v0 = vd, v1, . . . , vd−1) ∈ (Z2)d

labeled in counter-clockwise order such that each pair of adjacent vectors generates all of Z2 and

the angle between any two adjacent vectors is less than π radians. That is, det(vi, vi+1) = 1 for

i = 0, . . . , d− 1.

Recall a Delzant polygon is a convex polygon ∆ in R2 which is simple, rational, and smooth.

A toric fan may be produced from a Delzant polygon considering the collection of inwards pointing

normal vectors of the polygon.

Here I adapt Theorem 2.2.16 to relate it to Delzant polygons.

Theorem 4.2.1 (Fulton [33], page 44). Up to the action of SL2(Z), every Delzant polygon can be

obtained from a Delzant triangle, rectangle, or Hirzebruch trapezoid by a finite number of corner

chops.

The minimal models (the Delzant triangle, rectangle, and Hirzebruch trapezoid) are defined

in Definition 4.4.9 and depicted in Figure 4.1. The corner chop operation is defined in Definition

4.2.7 and is a standard operation in algebraic and symplectic geometry (see, for instance, [49]). The

proof of Theorem 4.2.1 sketched by Fulton in [33], which uses only two-dimensional geometry and
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Figure 4.1: (a) The three minimal models from Theorem 4.2.1. (b) An illustration of a
Delzant polygon produced by corner chopping the Hirzebruch trapezoid.

basic combinatorial arguments, is relatively long and does not immediately generalize. In Section 4.4

we provide an alternative proof using SL2(Z)-relations. This proof may be easily extended to the

semitoric case.

As a consequence of Theorem 4.2.1 in [67] it was recently proved:

Theorem 4.2.2 ([67]). The moduli space of toric polygons is path-connected.

That is, any two toric polygons may be deformed onto each other continuously via a path of

toric polygons. One shows this by first knowing how to generate all toric polygons as in Theorem

4.2.1. Then one shows, using elementary analysis, that the four minimal models can be continuously

transformed into one another and that the corner chop operation is continuous. Again, let us

emphasize that the results about toric fans are not new, we have just used a new viewpoint to arrive

at classical results. We will see that this new viewpoint allows us to generalize the known results.

4.2.2 Semitoric fans

In analogy with semitoric polygons (originally defined in [70, Definition 2.5]) we define

semitoric fans. Recall

T =

1 1

0 1

 ∈ SL2(Z).

Definition 4.2.3. Let v, w ∈ Z2. The ordered pair (v, w) of vectors:
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1. is on the top boundary if both vectors are in the open lower half-plane;

2. satisfies the Delzant condition if det(v, w) = 1;

3. satisfies the hidden condition if det(v, Tw) = 1; and

4. satisfies the fake condition if det(v, Tw) = 0.

Remark 4.2.4. Notice that a pair (v, w) satisfies both the fake and Delzant conditions if and only if

v =

k + ε

ε

 and w =

k
ε


for some k ∈ Z and ε ∈ {−1,+1} and in order for such a pair to be in the top boundary we can only

have the case in which ε = −1. �

Definition 4.2.5. Let d ∈ Z with d > 2. A semitoric fan is a collection of primitive vectors

(v0 = vd, v1, . . . , vd−1) ∈ (Z2)d labeled in counter-clockwise order such that each pair of adjacent

vectors (vi, vi+1) for i ∈ {0, . . . , d− 1} is labeled as a Delzant, fake, or hidden corner. We require that

each labeled pair of vectors satisfies the corresponding condition from Definition 4.2.3 and we further

require that all fake and hidden corners be on the top boundary. The complexity of a semitoric fan is

the number of corners which are either fake or hidden.

Notice that the labeling of the pairs is required only because of the case described in Remark

4.2.4 in which a pair can satisfy both the fake and Delzant conditions. In all other cases the corner

type of a pair of vectors can be uniquely determined by inspecting the vectors involved.

Definition 4.2.5 is inspired by the toric case. Theorem 4.2.1 states that any toric fan can

be produced from a minimal model using only corner chops. Similarly, our goal is to use a series of

transformations to relate any semitoric fan to a standard form up to the action of the appropriate

symmetry group.

Definition 4.2.6. The symmetry group of semitoric fans is given by

G′ =
{
T k | k ∈ Z

}
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where G′ acts on a semitoric fan by acting on each vector in the fan.

Definition 4.2.7.

1. Let c ∈ Z>0. The standard semitoric fan of complexity c is the fan (u0, . . . , uc+3) ∈ (Z2)c+4

given by

u0 =

 0

−1

 , u1 =

1

0

 , u2 =

c
1

 , u3 =

−1

0

 ,

and

u4+n =

−c+ n

−1


for n = 0, . . . , c− 1 in which the first four pairs of vectors are Delzant corners and the rest are

fake corners.

2. Let (v0 = vd, . . . , vd−1) ∈ (Z2)d be a semitoric fan. The following are called the four fan

transformations:

(a) Suppose that (vi, vi+1) is a Delzant corner for some i ∈ {0, . . . , d− 1}. Then

(v0, . . . , vi, vi + vi+1, vi+1, . . . , vd−1) ∈ (Z2)d+1

obtained by inserting the sum of two adjacent vectors between them. The new pairs

(vi, vi + vi+1) and (vi + vi+1, vi+1) are both Delzant corners. The process of producing

this new fan from the original is known as corner chopping [49].

(b) A reverse corner chop is the procedure by which a single vector vi, i ∈ {0, . . . , d − 1},

which is the sum of its adjacent vectors is removed from the fan. This is the inverse of a

corner chop and can only be performed if both pairs in the original fan involving vi are

Delzant corners.

(c) Suppose that the pair (vi, vi+1) is a hidden corner. Then

(v0, . . . , vi, T vi+1, vi+1, . . . , vd−1) ∈ (Z2)d+1

is a semitoric fan with (vi, T vi+1) a Delzant corner and (Tvi+1, vi+1) a fake corner (Lemma
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4.5.1). The process of producing this fan is known as removing the hidden corner (vi, vi+1).

(d) Suppose that the pair (vi, vi+1) is a fake corner and the pair (vi+1, vi+2) is a Delzant

corner. Then

(v0, . . . , vi, T vi+2, vi+2, . . . , vd−1) ∈ (Z2)d

is a semitoric fan with (vi, T vi+2) a Delzant corner and (Tvi+2, vi+2) a fake corner (Lemma

4.5.2). The process of producing this fan is known as commuting a fake and a Delzant

corner.

Using the algebraic results from Section 4.3 we show the following.

Theorem 4.2.8. Let d > 1 be an integer. Any semitoric fan (v0, . . . , vd−1) ∈ (Z2)d of complexity

c ∈ Z>0 may be transformed into a semitoric fan G′-equivalent to the standard semitoric fan of

complexity c by using the four fan transformations.

Remark 4.2.9. The method we are using to study semitoric integrable systems is analogous to

the method we use to study toric integrable systems. Theorem 4.2.1 explains how to generate the

Delzant polygons and is used to prove that the space of Delzant polygons is path-connected (Theorem

4.2.2) which implies that the space of toric integrable systems is connected. Similarly, Theorem 4.2.8

shows how to generate the semitoric polygons, and as an application we prove Lemma 5.3.5 which

describes the connected components in the space of semitoric ingredients (Definition 2.2.26) and this

implies Theorem 5.1.1, which describes the connected components of the moduli space of semitoric

systems. �

4.2.3 Algebraic tools: the winding number

It is shown in Lemma 4.3.1 that the special linear group SL2(Z) may be presented as

SL2(Z) = 〈S, T | T−1ST−1 = STS, S4 = I〉

where

S =

0 −1

1 0

 and T =

1 1

0 1

 .
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Thus Equation (4.1) becomes

ST a0 · · ·ST ad−1 = I

where a0, . . . , ad−1 ∈ Z and I denotes the 2×2 identity matrix. Given v0, v1 ∈ Z2 with det(v1, v2) = 1

a set of vectors

(v0, v1, . . . , vd−1) ∈ (Z2)d

may be produced by

vi+2 = −vi + aivi+1

for i = 0, . . . , d − 1 where we define vd = v0 and vd+1 = v1. In this way associated to each list

of integers satisfying Equation (4.1) there is an ordered collection of vectors unique up to SL2(Z).

It can be seen that the determinant between any adjacent pair of these vectors is one and thus if

these vectors are labeled in counter-clockwise order, then they are a toric fan. The reason that

not all sequences of integers which satisfy Equation (4.1) correspond to a toric fan is that the

vectors v0, . . . , vd−1 ∈ Z2 may circle more than once around the origin, and thus not be labeled in

counter-clockwise order (see Figure 4.2). Thus, we see that viewing ST a0 · · ·ST ad−1 as an element of

SL2(Z) is losing too much information.

Let K = ker(〈S, T 〉 → SL2(Z)) where 〈S, T 〉 denotes the free group with generators S and T

and the map 〈S, T 〉 → SL2(Z) is the natural projection. For any word in K a sequence of vectors

may be produced by letting the word act on a vector v ∈ Z2 one term at a time. We know we will

end back at v, but the sequence of vectors produced contains more information about the word.

This sequence can be used to define a path in R2 \ {(0, 0)}. Of particular interest, especially when

studying toric and semitoric fans, is the winding number of such a path. That is, the number of

times the path, and hence the collection of vectors, circles the origin. This construction is explained

in detail in Section 4.4, and in particular Definition 4.4.4 given a precise definition of the number of

times an ordered collection of vectors circles the origin. Let w : 〈S, T 〉 → Z by given by

w(σ) = 3s− t

for σ ∈ 〈S, T 〉 where s is the number of appearances of S in σ and t is the number of appearances
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of T in σ. We find that if σ ∈ K then w(σ) is a multiple of 12 and w(σ)/12 is the winding number

associated to the word σ. We present the group

G = 〈S, T | STS = T−1ST−1〉

on which the w descends to a well-defined function wG : G → Z. In fact, G is isomorphic to the

pre-image of SL2(Z) in the universal cover of SL2(R) (Proposition 4.3.7). Thus, if K ′ is the image

of K projected to G, then given some g ∈ K ′ there is an associated closed loop in SL2(R). The

fundamental group of SL2(R) is Z and the classical winding number of this loop in SL2(R) coincides

with W (σ) for any σ ∈ 〈S, T 〉 which projects to g. Finally, in Corollary 4.4.6 we show that integers

a0, . . . , ad−1 ∈ Z correspond to a toric fan if and only if the equality

ST a0 · · ·ST ad−1 = S4

is satisfied in G. This correspondence is the basis of our method to study toric and semitoric fans.

4.3 Algebraic set-up: matrices and SL2(Z) relations

The 2× 2 special linear group over the integers, SL2(Z), is generated by the matrices

S =

0 −1

1 0

 and T =

1 1

0 1

 .

We will see that to each toric (resp. semitoric) integrable system there is an associated toric (resp.

semitoric) fan and we will use the algebraic structure of SL2(Z) to study these fans. For our purposes,

the following presentation of SL2(Z) will be the most natural way to view the group.

Lemma 4.3.1. The 2× 2 special linear group over the integers, SL2(Z), may be presented as

SL2(Z) = 〈S, T | T−1ST−1 = STS, S4 = I〉.
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Proof. It is well-known that

SL2(Z) = 〈S, T | (ST )3 = S2 = −I〉 (4.2)

(see for instance [12]) where (−I)2 = I and −I is in the center of SL2(Z). To obtain the relations in

the statement of the lemma from those in Equation (4.2) notice

(ST )3 = S2 ⇔ STS = T−1ST−1 and S2 = −I ⇒ S4 = I.

To obtain the relations of Equation (4.2) from those in the statement of the lemma we only have to

show that S2 squares to the identity and is in the center of the group to conclude that S2 = I. We

have that (S2)2 = I and that S2 commutes with S. To show that S2 commutes with T notice

TS2 = TS(TSTST )

= (TSTST )ST

= S2T.

This concludes the proof.

For v, w ∈ Z2 let [v, w] denote the 2 × 2 matrix with v as the first column and w as the

second and let det(v, w) denote the determinant of the matrix [v, w].

Lemma 4.3.2. Let u, v, w ∈ Z2 and det(u, v) = 1. Then det(v, w) = 1 if and only if there exists

some a ∈ Z such that w = −u+ av.

Proof. In the basis (u, v) we know that v =

0

1

. Write w =

b
a

 for some a, b ∈ Z. Then we can

see that det(v, w) = −b so det(v, w) = 1 if and only if b = −1. That is, w = −u+ av.

The result of Lemma 4.3.2 can be easily summarized in a matrix equation, as we will now

show. Let

(v0 = vd, v1 = vd+1, v2, . . . , vd−1) ∈ (Z2)d

be a toric fan and define Ai = [vi, vi+1] for i = 0, . . . , d. Note that Ad = A0.
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Lemma 4.3.3. For each i ∈ 0, . . . , d− 1 there exists an integer ai ∈ Z such that Ai+1 = AiST
ai .

Proof. By the definition of a toric fan we know that for each 0 6 i < d− 2 we have that

det(vi, vi+1) = det(vi+1, vi+2) = 1

so by Lemma 4.3.2 there exists ai ∈ Z such that vi+2 = −vi + aivi+1. Then

AiST
ai = [vi+1,−vi + aivi]

= [vi+1, vi+2]

= Ai+1,

and this concludes the proof.

It follows that

Ad = Ad−1ST
ad−1 = Ad−2ST

ad−2ST ad−1 = · · · = A0ST
a0 · · ·ST ad−1

which means

A0 = Ad = A0ST
a0 · · ·ST ad−1 ,

and so

ST a0 · · ·ST ad−1 = I. (4.3)

This is a restatement of Equation (4.1) which is from [33]. So to each toric fan of d vectors there is

an associated d-tuple of integers which satisfy Equation (4.3), but having a tuple of integers which

satisfy Equation (4.3) is not enough to assure that they correspond to an toric fan. The determinant

of the vectors will be correct but, roughly speaking, if the vectors wind around the origin more then

once then they will not be labeled in the correct order to be a toric fan, as it occurs in the following

example.

Example 4.3.4. Consider the sequence of integers a0 = −1, a1 = −1, a2 = −2, a3 = −1, a4 =
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Figure 4.2: These vectors do not form a fan because they are not labeled in counter-
clockwise order.

−1, a5 = 0 and notice that

ST−1ST−1ST−2ST−1ST−1ST 0 = I

so Equation (4.3) is satisfied for c = 0 but these integers do not correspond to a toric fan. This is

because the vectors they produce:

v0 =

1

0

 , v1 =

0

1

 , v2 =

−1

−1

 ,

v3 =

1

0

 , v4 =

−1

1

 , v5 =

 0

−1


travel twice around the origin1 , see Figure 4.2. �

So we need extra information that is not captured by viewing this word in S and T as an

element of SL2(Z). For a more obvious example notice that even though they are equal in SL2(Z)

we can see that S4 corresponds to a toric fan while S8 does not. From [33] we know that integers

(a0, . . . , ad) ∈ Zd which satisfy Equation (4.1) correspond to a toric fan if and only if

a0 + . . .+ ad−1 = 3d− 12

1For a formal definition of this, see Definition 4.4.4.
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so we would like to prove that

3d−
∑d−1
i=0 ai

12

is the number of times that the vectors corresponding to (a0, . . . , ad−1) circle the origin. In order to

prove this we will need some more terminology, and in order to keep track of the extra information

about circling the origin we will need to consider a group which is larger than SL2(Z).

Consider instead the free group with generators S and T , denoted 〈S, T 〉. We know SL2(Z)

is a quotient of 〈S, T 〉 by Lemma 4.3.1 so there exists a natural projection map π1 : 〈S, T 〉 → SL2(Z).

Also define a map w : 〈S, T 〉 → Z by

w(Sb0T a0 · · ·Sb`T a`) = 3
∑̀
i=0

bi −
∑̀
i=0

ai

for any Sb0T a0 · · ·Sb`T a` ∈ 〈S, T 〉 where a0, . . . , a`, b0, . . . , b` ∈ Z. Given a toric fan with associated

integers (a0, . . . , ad−1) ∈ Zd we will show that w(ST a0 · · ·ST ad−1) = 12. Both π1 and w factor over

the same group G which is the fiber product of SL2(Z) and Z over Z/(12). Now we can see that we

wanted the particular presentation of SL2(Z) from Lemma 4.3.1 so that the relationship between G

and SL2(Z) would be clear. This discussion is made precise in the following proposition.

Proposition 4.3.5. The following diagram commutes.

〈S, T 〉
π1

zz
π2

��
w

��

SL2(Z)

wSL2(Z)

��

G
π3oo

wG

��
Z/(12) Z

π4

oo

(4.4)

The group G is the fiber product of SL2(Z) and Z over Z/(12) and is given by

G = 〈S, T | STS = T−1ST−1〉,

each of π1, π2, π3, and π4 is a projection, and w : 〈S, T 〉 → Z, wG : G→ Z, wSL2(Z) : SL2(Z)→ Z/(12)
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are given by the same formal expression

Sb0T a0 · · ·Sb`T a` 7→ 3
∑̀
i=0

bi −
∑̀
i=0

ai. (4.5)

Proof. It can be seen that the map wSL2(Z) : SL2(Z)→ Z/(12) is well-defined by noting that both

relations in SL2(Z) as presented in Lemma 4.3.1 preserve the value of the formula (Equation (4.5))

up to a multiple of 12. Similarly, since the relation ST−1S = STS preserves the value of the equation

we know that wG is well-defined. Since each of these functions to Z or Z/(12) is given by the same

formal expression and since each π is a quotient map, the diagram commutes.

To show that G with the associated maps is the fiber product of SL2(Z) and Z over Z/(12)

we must only show that wG restricted to the fibers is bijective. That is, we must show that

wG �π−1
3 (A): π

−1
3 (A)→ π−1

4 (wSL2(Z)(A))

is a bijection for each A ∈ SL2(Z). To show it is surjective, notice that for any g ∈ G

π3(S4kg) = π3(g) and wG(S4kg) = wG(g) + 12k

for any k ∈ Z. To show it is injective it is sufficient to consider only A = I. Since S4 is in the center

of G we know that SL2(Z) = G/(S4) so π−1
3 (I) = {S4k | k ∈ Z}. Since wG(S4k) = 12k we know for

each choice of k this maps to a distinct element of Z.

Notation 4.3.6. We have several groups with generators S and T . To denote the different equalities

in these groups we will use an equal sign with the group in question as a subscript. That is, if an

equality holds in the group H we will write =H . For example, S4 =SL2(Z) I but S4 6=G I.

There is another useful sense in which G is an unwinding of SL2(Z). While SL2(Z) is discrete,

and thus does not have a natural cover, it sits inside the group SL2(R), which has a universal cover.

We claim that G is the preimage of SL2(Z) inside of the universal cover of SL2(R).

Proposition 4.3.7. The group G is isomorphic to the preimage of SL2(Z) within the universal cover

of SL2(R).
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Proof. Let G′ be the preimage of SL2(Z) in the universal cover of SL2(R). We note that there exists

a homomorphism, φ from G to G′ defined by

φ(S) =

cos(θ) − sin(θ)

sin(θ) cos(θ)


06θ6π/2

, φ(T ) =

1 x

0 1


06x61

where the paths given are to represent elements of the universal cover of SL2(R). It is easy to show

that φ(S)φ(T )φ(S) equals φ(T )−1φ(S)φ(T )−1, and thus φ does actually define a homomorphism.

We have left to show that φ defines an isomorphism. To show this, we note that each of G and G′

have obvious surjections π and π′ to SL2(Z). Furthermore it is clear that π = π′ ◦ φ. Thus, to show

that φ is an isomorphism, it suffices to show that φ : ker(π)→ ker(π′) is an isomorphism.

However, it is clear that ker(π) is 〈S4〉. On the other hand, ker(π′) ∼= π1(SL2(R)) = Z, and

is generated by φ(S)4. This completes the proof.

We will see that there is a one to one correspondence between toric fans up to the action of

SL2(Z) and lists of integers a0, . . . , ad−1 ∈ Z satisfying

ST a0 · · ·ST ad−1 =G S4 (4.6)

(Corollary 4.4.6). Equation (4.6) is a refinement of Equation (4.3) which implies both that the

successive pairs of vectors form a basis of Z2 and that the vectors are labeled in counter-clockwise

order. In Proposition 4.5.4 we produce an analogous equation for semitoric fans.

Now we would like to simplify these toric fans. We will understand which integers a0, . . . , ad−1

are possible in an element ST a0 · · ·ST ad−1 ∈ G corresponding to toric fan by studying PSL2(Z) =

SL2(Z)/(−I). The following lemma is important for this and will also be useful later on when

classifying semitoric fans. If ST a0 · · ·ST ad−1 ∈ G projects to the identity in SL2(Z) then by Lemma

4.3.8 we can see when one of the exponents must be in the set {−1, 0, 1}. In any of these cases, we

will be able to use relations in G to help simplify the expression.

Lemma 4.3.8. Suppose that

ST a0 · · ·ST ad−1 =PSL2(Z) I (4.7)
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for some d ∈ Z, d > 0. Then if d > 3 there exist i, j ∈ Z satisfying 0 6 i < j 6 d − 1 such that

ai, aj ∈ {−1, 0, 1}. Furthermore:

1. If d > 3 then i, j can be chosen such that i 6= j − 1 and (i, j) 6= (0, d− 1).

2. If d = 3 then a0 = a1 = a2 = 1 or a0 = a1 = a2 = −1.

3. If d = 2 then a0 = a1 = 0.

4. If d = 1 then Equation (4.7) cannot hold.

Note that part (1) is the statement that i and j are not consecutive in the cyclic group

Z/(d). Of course, it is clear that such i and j may be chosen if three or more elements of the list

a0, . . . , ad−1 are in the set {−1, 0, 1}.

Proof. It is well known that PSL2(Z) acts on the real projective line R ∪ {∞} by linear fractional

transformations: a b

c d

 (x) =
ax+ b

cx+ d
for x ∈ R and

a b

c d

 (∞) =
a

c
.

Let d > 3. Suppose that at most two of a0, . . . , ad−1 are in {−1, 0, 1} and if there are two in

{−1, 0, 1} that they are consecutive or indexed by 0 and d− 1. Notice that

ST a0 · · ·ST ad−1 =PSL2(Z) I implies that ST a1 · · ·ST ad−1ST a0 =PSL2(Z) I

by conjugating each side with ST a0 . This conjugation method and renumbering the integers can be

used to assure that ai /∈ {−1, 0, 1} for i = 1, . . . , d− 2. Since this expression is equal to the identity

in PSL2(Z) it acts trivially on R ∪ {∞}. In particular, we have

ST a0 · · ·ST ad−1(∞) =∞.

Notice that S(x) = −1/x and T a(x) = x+ a for a ∈ Z. Further notice that for any a ∈ Z \ {−1, 0, 1}

and x ∈ (−1, 1) \ {0} we have ST a(x) ∈ (−1, 1) \ {0}. We see that ST ad−1(∞) = 0 and since
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ad−2 /∈ {−1, 0, 1} we know ST ad−2(0) ∈ (−1, 1) \ {0}. Putting these facts together we have

ST a0 · · ·ST ad−1(∞) = ST a0 · · ·ST ad−2(0)

= ST a0 · · ·ST ad−3(x) for some x ∈ (−1, 1) \ {0}

= ST a0(y) for some y ∈ (−1, 1) \ {0}

=
−1

y + a0
6=∞

This contradiction finishes the d > 3 case.

If d = 3 essentially the same result holds except that it is not possible to choose two elements

that are non-consecutive. Notice

ST a0ST a1ST a2(∞) = ST a0ST a1(0) = −
(
−1

a1
+ a0

)−1

.

For this function to be the identity we would need

−1

a1
+ a0 = 0.

This implies that a0a1 = 1 so since they are both integers we have a0 = a1 = ε where ε ∈ {−1, 1}.

Conjugating by ST a0 , we find symmetrically, that a1a2 = 1, and thus that a0 = a1 = a2 = ±1.

If d = 2 then we have

ST a0ST a1(∞) = ST a0(0) =
−1

a0

so we must have a0 = 0 and then

ST 0ST a1(x) = S2T a1(x) = x+ a1,

so we are also forced to have that a1 = 0, as stated in the lemma. If d = 1 then ST a0(∞) = 0 for

any choice of a0 ∈ Z, so there are no solutions.
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4.4 Toric fans

Let a0, a1, . . . , ad−1 ∈ Z be a collection of integers such that

ST a0 · · ·ST ad−1 =SL2(Z) I.

This means that

ST a0 · · ·ST ad−1 =G S4k for some k ∈ Z

by Proposition 4.3.5. We claim that these integers correspond to a toric fan if and only if k = 1.

The idea is that k = 1 precisely when the vectors in the corresponding fan are labeled in

counter-clockwise order, and the only relation in the group G, which is STS = T−1ST−1, preserves

the number of times the vectors circle the origin. Now we make this idea precise.

Lemma 4.4.1. Let g ∈ ker(π3). Then wG(g)
12 ∈ Z.

Proof. Since π3(g) = I we know wSL2(Z) ◦ π3(g) = 0, so by Proposition 4.3.5 π4 ◦ wG(g) = 0. Thus

wG(g) ∈ ker(π4) = {12k | k ∈ Z}.

Recall that G is isomorphic to the preimage of SL2(Z) in the universal cover of SL2(R) by

Proposition 4.3.7. Let φ be the isomorphism from G to its image in the universal cover of SL2(R)

with

φ(S) =

cos(θ) − sin(θ)

sin(θ) cos(θ)


06θ6π/2

, φ(T ) =

1 x

0 1


06x61

This means to each element of the kernel of π3 we can associate a closed loop based at the identity

in SL2(R) denoted φ(g). The fundamental group π1(SL2(R)) is isomorphic to Z and is generated as

〈φ(S4)〉, so let ψ : π1(SL2(R))→ Z be the isomorphism with ψ(φ(S4)) = 1.

Lemma 4.4.2. Let g ∈ ker(π3 : G→ SL2(Z)). Then

ψ ◦ φ(g) =
wG(g)

12
.

Proof. Since ker(π3) is generated by S4, it suffices to check that ψ(φ(S4)) = wG(S4)
12 = 1, but this

holds by definition.



96

Definition 4.4.3. Define W : ker(π3)→ Z by

W (g) =
wG(g)

12
.

We call W (g) the winding number of g ∈ ker(π3).

Definition 4.4.4. Let

(v0 = vd, v1, . . . , vd−1) ∈ (Z2)d

with det(vi, vi+1) > 0 for i = 0 . . . , d− 1. We define the number of times (v0, . . . , vd−1) circles the

origin to be the winding number of the piecewise linear path in (R2)∗ = R2 \ {(0, 0)} produced by

concatenating the linear paths between vi and vi+1 for i = 0, . . . , d− 1.

Lemma 4.4.5. Let a0, . . . , ad−1 ∈ Z such that ST a0 · · ·ST ad−1 =SL2(Z) I and let v0, v1 ∈ Z2 such

that det(v0, v1) = 1. Define v2, . . . vd−1 by

vi+2 = −vi + aivi+1

where vd = v0 and vd+1 = v1. Then the winding number W (ST a0 · · ·ST ad−1) ∈ Z is the number of

times that (v0, . . . , vd−1) ∈ (Z2)d circles the origin.

Proof. Let Ai be the matrix [vi, vi+1] and recall that Ai+1 = AiST
ai . Thinking of the elements ST ai

as elements of G, and thus as elements of the universal cover of SL2(R), this gives a path from Ai to

Ai+1, and concatenating these paths gives a path from A0 to itself in SL2(R). Projecting this path

into the first column vector of the appropriate matrix gives a path in (R2)∗. We claim that this path

is homotopic to the path formed by taking line segments between vi and vi+1. This is easily verified

because both paths between vi and vi+1 travel counterclockwise less than a full rotation.

We know that W (ST a0 · · ·ST ad−1) equals ψ of the path in SL2(R), and now we need to

show that this equals the winding number in (R2)∗ of the first column vectors. To show this we

note that the element of π1((R2)∗) (the group is abelian, so we may ignore basepoint) is given by

the image of the element of π1(SL2(R)) under the natural projection map. Thus, we merely need to
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show that this projection acts correctly on a generator of π1(SL2(R)), but it is easy to see that the

image of φ(S4) yields a path of winding number 1.

Corollary 4.4.6. There exists a bijection from the set of all sequences (a0, . . . , ad−1) ∈ Zd, d > 0,

which satisfy

ST a0 · · ·ST ad−1 =G S4

to the collection of all toric fans modulo the action of SL2(Z). This bijection sends (a0, . . . , ad) ∈ Zd

to the equivalence class of fans

{(v0 = vd, v1 = vd+1, v2, . . . , vd−1) ∈ (Z2)d | v0, v1 ∈ Z2,det(v0, v1) = 1}

in which

vi+2 = −vi + aivi+1

for i = 0, . . . , d− 1.

Proof. Let (v0 = vd, v1, . . . , vd−1) ∈ (Z2)d be a toric fan. That is, det(vi, vi+1) = 1 for each

i = 0, . . . , d − 1 and the vectors are labeled in counter-clockwise order. It is shown in Section 4.3

Equation (4.3) that associated integers (a0, . . . , ad−1) ∈ (Z)d exist such that

ST a0 · · ·ST ad−1 =SL2(Z) I

which means

ST a0 · · ·ST ad−1 =G S4k

for some k ∈ Z with k > 0. By Lemma 4.4.5 we know

W (ST a0 · · ·ST ad−1) = 1

so that the vectors will be labeled in the correct order for it to be a fan. Thus, W (S4k) = 1 but

W (S4k) = k so k = 1. Notice such a construction is well-defined on equivalence classes of toric fans
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because the integers are prescribed via linear equations and fans in a common equivalence class are

related by a linear map.

Now suppose that (a0, . . . , ad−1) ∈ Zd satisfy ST a0 · · ·ST ad−1 =G S4 and define

(v0, . . . , vd−1) ∈ (Z2)d by

vi+2 = −vi + aivi+1

where v0, v1 ∈ Z2 are any two vectors for which det(v0, v1) = 1. Then for each i = 0, . . . , d− 1 we

have

det(vi+1, vi+2) = det

0 −1

1 ai

 det(vi, vi+1) = det(vi, vi+1),

so by induction all of these determinants are 1. By Lemma 4.4.5, the path connecting adjacent

vectors wraps around the origin only once, and since each vi+1 is located counterclockwise of vi, we

have that the vi’s must be sorted in counterclockwise order.

It is straightforward to see that these constructions are inverses of one another.

Now that we have set up the algebraic framework the following results are straightforward

to prove. First we prove that any fan with more than four vectors can be reduced to a fan with fewer

vectors.

Lemma 4.4.7. If (v0 = vd, . . . , vd−1) ∈ (Z2)d is a toric fan with d > 4 then there exists some

i ∈ {0, . . . , d− 1} such that vi = vi−1 + vi+1.

Proof. By Corollary 4.4.6 we know that to the fan (v0 = vd, . . . , vd−1) there is an associated list of

integers a0, . . . , ad−1 ∈ Z such that vi+2 = −vi + aivi+1 and

ST a0 · · ·ST ad−1 =G S4. (4.8)

We must only show that for some i ∈ Z we have ai = 1. Since S4 =PSL2(Z) I we can use Lemma 4.3.8

to conclude that there exist i, j ∈ Z satisfying 0 6 i < j − 1 6 d− 2 such that ai, aj ∈ {−1, 0, 1} and

(i, j) 6= (0, d− 1). By way of contradiction assume that ai, aj ∈ {−1, 0}. Conjugate Equation (4.8)

by ST an for varying n ∈ Z to assure that i 6= 0 and j 6= d− 1. Then at each of these values we may
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use either ST 0S =G S2 or ST−1S =G S2TST to reduce the number of ST -pairs by one or two and

produce a factor of S2. These reductions do not interfere with one another because the values in

question are not adjacent. So we end up with

S4ST b0 · · ·ST b`−1 =G S4

where ` > 1 because we started with at least five ST -pairs and have reduced by at most four. This

means

ST b0 · · ·ST b`−1 =G I

with ` > 1. In fact, ` > 1 because ST b0 =G I is impossible for any choice of b0 ∈ Z.

This implies that W (ST b0 · · ·ST b`−1) = 0 and thus, by Lemma 4.4.5, that the corresponding

collection of vectors winds no times about the origin. However, this is impossible since for such a

sequence of vectors vi+1 is always counterclockwise of vi and ` > 1.

The case in which a vector in the fan is the sum of the adjacent vectors is important because

this means the fan is the result of corner chopping a fan with fewer vectors in it. Now that we have

the proper algebraic tools, we will be clear about the specifics of the corner chopping and reverse

corner chopping operations.

Suppose (v0 = vd, v2, . . . , vd−1) ∈ (Z2)d is a toric fan with associated integers (a0, . . . , ad−1) ∈

Zd. Then

vi+2 = −vi + aivi+1

so if ai = 1 then we have that vi+1 = vi + vi+2. Now we see that in this case

det(vi, vi+2) = det(vi,−vi) + det(vi, vi+1) = 1

so

(w0 = v0, . . . , wi = vi, wi+1 = vi+2, . . . , wi−2 = vd−1) ∈ (Z2)d−1
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is also a fan. Next notice

−wi + (ai+1 − 1)wi+1 = −(vi + vi+2) + ai+1vi+2 = −vi+1 + ai+1vi+2 = wi+2

and

−wi−1 + (ai−1 − 1)wi = (−vi−1 + ai−1vi)− vi = vi+1 − vi = wi+1

so this new fan has associated to it the tuple of integers (a0, . . . , ai−1− 1, ai+1− 1, . . . , ad−1) ∈ Zd−1.

An occurrence of 1 from the original tuple of integers has been removed and the adjacent integers

have been reduced by 1. Algebraically, this move corresponds to the relation STS =G T−1ST−1.

Geometrically this move corresponds to the inverse of chopping a corner from the associated polygon

(as is shown in Figure 4.1). The corner chopping of a toric polygon is done such that the new face of

the polygon produced has inwards pointing normal vector given by the sum of the adjacent inwards

pointing primitive integer normal vectors.

Now we can see that Lemma 4.4.7 tells us that fans with five or more vectors are the result

of corner chopping a fan with fewer vectors. We will next classify all possible fans with fewer than

five vectors.

Lemma 4.4.8. Suppose that integers a0, . . . , ad−1 ∈ Z satisfy

ST a0 · · ·ST ad−1 =G S4 (4.9)

for some d ∈ Z, d > 0.

1. If d = 4 then up to a cyclic reordering the set of integer quadruples which satisfy this equation

is exactly a0 = 0, a1 = k, a2 = 0, a3 = −k for each k ∈ Z.

2. If d = 3 then a0 = a1 = a2 = −1.

3. If d < 3 then there do not exist integers satisfying Equation (4.9).

Proof. Notice ST a0 · · ·ST ad−1 =G S4 implies that

ST a0 · · ·ST ad−1 =PSL2(Z) I.
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From Lemma 4.3.8 we know that if d = 1 then this equality is impossible and if d = 2 the only

possibility is ST 0ST 0 =PSL2(Z) I but ST 0ST 0 6=G S4. Now assume that d = 3. Again by Lemma

4.3.8 we know the only possibilities are a0 = a1 = a2 = ±1. If a0 = a1 = a2 = 1 then notice that

STSTST =G S2 6=G S4.

Next notice that

ST−1ST−1ST−1 =G S4

so that is the only possibility for d = 3.

Now suppose that d = 4. Lemma 4.3.8 tells us that at least one of the ai is in the set

{−1, 0, 1}. By conjugation (which cyclically permutes the order of the integers) we may assume that

a0 ∈ {−1, 0, 1}. If a0 = 1 then

STST a1ST a2ST a3 =G ST a1−1ST a2ST a3−1

so for this to equal S4 in G we must have a1 − 1 = a2 = a3 − 1 = −1 by the d = 3 argument above.

It is straightforward to check that STSST−1S =G S4 so we have found the required solution.

If a0 = −1 then notice

ST−1ST a1ST a2ST a3 =G S4 implies ST a1+1ST a2ST a3+1 =G S2 =PSL2(Z) I

so by Lemma 4.3.8 we must have a1 + 1 = a2 = a3 + 1 = ±1. This time, if a1 + 1 = a2 = a3 + 1 = −1

then Equation (4.9) does not hold, since the left side will equal S6, but if a1 + 1 = a2 = a3 + 1 = 1

then the equation holds. So we have found another solution, ST−1SSTS =G S4, which has the form

described in the statement of the Lemma .

Finally, suppose that a0 = 0. Notice

ST 0STa1ST
a2ST a3 =G S4 implies ST a2ST a1+a3 =G S2 =PSL2(Z) I

so we can use Lemma 4.3.8 to conclude that we need a2 = a1 + a3 = 0. Let a1 = k ∈ Z. Now we
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have that

ST 0ST kST 0ST−k =G S4

for any k ∈ Z. Finally, observe that the other two possibilities we derived in the d = 4 case are just

reorderings of this one with k = 1.

Definition 4.4.9. A Delzant triangle is the convex hull of the points (0, 0), (0, λ), (λ, 0) in R2 for

any λ > 0. A Hirzebruch trapezoid with parameter k ∈ Z>0 is the convex hull of (0, 0), (0, a), (b, a),

and (b+ ak, 0) in R2 where a, b > 0. A Hirzebruch trapezoid with parameter zero is a rectangle.

These are shown in Figure 4.1. So we see that the fan corresponding to any Delzant triangle

is 
1

0

 ,

0

1

 ,

−1

−1




with associated integers (−1,−1,−1) and the fan corresponding to a Hirzebruch trapezoid with

parameter k is 
0

1

 ,

−1

−k

 ,

 0

−1

 ,

1

0




with associated integers (0, k, 0,−k). The following Theorem is immediate from Lemma 4.4.7 and

Lemma 4.4.8.

Theorem 4.4.10 ([33]). Every Delzant polygon can be obtained from a polygon SL2(Z)-equivalent

to a Delzant triangle, a rectangle, or a Hirzebruch trapezoid by a finite number of corner chops.

Proof. Let ∆ be any Delzant polygon with d edges, let (v0, . . . , vd−1) ∈ (Z2)d be the associated

fan of inwards pointing primitive normal vectors, and let (a0, . . . , ad−1) ∈ Zd be the integers

associated to this fan. By Lemma 4.4.7 if d > 4 then ai = 1 for some i ∈ {0, . . . , d − 1} so the

fan is the result of a corner chop for some fan with d − 1 vectors. That is, ∆ is the result of

a corner chop of some Delzant polygon with d − 1 edges. If d < 5 then Lemma 4.4.8 lists each

possibility. If d = 4 and a0 = a1 = a2 = a3 = 0 then ∆ is SL2(Z)-equivalent to a rectangle, if

a0 = 0, a1 = k, a2 = 0, and a3 = −k for k ∈ Z \ {0} then ∆ is SL2(Z)-equivalent to a Hirzebruch

trapezoid, and if d = 3 with a0 = a1 = a2 = −1 then ∆ is SL2(Z)-equivalent to a Delzant triangle.



103

4.5 Semitoric fans

Now we will apply the method from Section 4.4 to classify semitoric fans (Definition 4.2.5).

The first step in the classification is given by a series of lemmas which we will use to manipulate the

semitoric fans in a standard form.

Lemma 4.5.1. If (v0, . . . , vd−1) ∈ (Z2)d is a semitoric fan and (vi, vi+1) is a hidden corner, then

(w0 = v0, . . . , wi = vi, wi+1 = Tvi+1, wi+2 = vi+1, . . . , wd = vd−1) ∈ (Z2)d+1

is a semitoric fan in which (wi, wi+1) is a Delzant corner and (wi+1, wi+2) is a fake corner.

Proof. We know that det(vi, T vi+1) = 1 because that pair of vectors forms a hidden corner. Notice

that

det(wi, wi+1) = det(vi, T vi+1) = 1

and

det(wi+1, Twi+2) = det(Tvi+1,Tvi+1) = 0,

which concludes the proof.

Lemma 4.5.2. If (v0, . . . , vd−1) ∈ (Z2)d is a semitoric fan and (vi, vi+1) is a fake corner and

(vi+1, vi+2) is a Delzant corner, then

(w0 = v0, . . . , wi = vi, wi+1 = Tvi+2, wi+2 = vi+2, . . . , wd−1 = vd−1) ∈ (Z2)d

is a semitoric fan in which (wi, wi+1) is a Delzant corner and (wi+1, wi+2) is a fake corner.

Proof. We know det(vi, T vi+1) = 0 so vi = Tvi+1 since they are both on the top boundary and we

also know det(vi+1, vi+2) = 1. Now we can check that

det(wi, wi+1) = det(vi, T vi+2) = det(Tvi+1, T vi+2) = det(vi+1, vi+2) = 1

and

det(wi+1, Twi+2) = det(Tvi+2, T vi+2) = 0,
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which concludes the proof.

In Lemma 4.5.1 we have described the process of removing a hidden corner and in Lemma

4.5.2 we have described the process of commuting a fake and Delzant corner. Both of these processes

are defined in Definition 4.2.7.

Lemma 4.5.3. Suppose that (v0, . . . , vd−1) ∈ (Z2)d is a semitoric fan. Then after a finite number

of corner choppings the fan will be G′-equivalent to one in which two adjacent vectors are

 0

−1

 and

1

0

.

Proof. Let vd = v0. If

vi =

1

0


for some i ∈ {0, . . . , d− 1} then notice

vi−1 =

 a

−1


for some a ∈ Z. This is because (vi−1, vi) is not on the upper boundary so it must be a Delzant

corner. Then by the action of T−a ∈ G′, which does not change vi, we can attain the required pair of

vectors.

Otherwise, renumber so that v0 is in the lower half plane and v1 is in the upper half plane.

Then insert the vector v0 + v1 between them. This new vector will have a second component with

a smaller magnitude than that of v0 or of v1. Repeat this process until the new vector lies on the

x-axis. Since it is a primitive vector it must be

±1

0

. However since it is the sum of two vectors of

opposite sides of the x-axis with the one above being counterclockwise about the origin of the one on

bottom, it must be

1

0

.

Now we can put Lemmas 4.5.1, 4.5.2, and 4.5.3 together to produce a standard form for

semitoric fans (see Figure 4.3). This standard form will be important to us in Section 5.2 because



105

Figure 4.3: Any semitoric fan with complexity c ∈ Z>0 can be transformed into the
standard fan of complexity c. This image has c = 3.

it can be obtained from any semitoric fan of complexity c by only using transformations which are

continuous in the space of semitoric polygons.

Proposition 4.5.4. Let (v0, . . . , vd−1) ∈ (Z2)d be a semitoric fan of complexity c ∈ Z.

1. By only corner chopping, removing hidden corners, and commuting fake and Delzant corners

we can obtain a new fan (w0 = w`+c, . . . , w`+c−1) ∈ (Z2)`+c with `+ c > d such that

• w0 =

 0

−1

 and w1 =

1

0

;

• each corner (wi, wi+1) for i = 0, . . . , `− 1 is Delzant;

• each corner (wi, wi+1) for i = `, . . . , `+ c− 1 is fake; and

• w` = T cw0 so det(w`−1, T
cw0) = 1.

2. The fan (w0, . . . , wc+`−1) has associated integers b0, . . . , b`−1 such that

w2 = −w` + b0w1,

wi+2 = −wi + biwi+1 for i = 1, . . . , `− 2, and

w1 = −w`−1 + b`−1w`.

These integers satisfy

ST b0ST b1 · · ·ST b`−1 =G S4.
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3. The fan (w0, . . . , wc+`−1) can be obtained via a finite number of corner chops and reverse corner

chops from a fan (u0, . . . , uc+3) ∈ (Z2)c+4 where

u0 =

 0

−1

 , u1 =

1

0

 , u2 =

c
1

 , u3 =

−1

0

 ,

and

u4+n =

−c+ n

−1


for n = 0, . . . , c− 1. In this fan the first four pairs are Delzant corners and the rest are fake

corners.

Proof. The first part is immediate from Lemmas 4.5.1, 4.5.2, and 4.5.3. By Lemma 4.5.3 we know

after a finite number of cuts and renumbering it can be arranged that the first two vectors in the fan

are  0

−1

 and

1

0

 .

Then we invoke Lemma 4.5.1 to remove all of the hidden corners, and finally use Lemma 4.5.2

commute all of the fake corners to be adjacent and arrive at the fan (w0, . . . , w`+c−1) ∈ (Z2)`+c in

the statement of the proposition. Notice that (wi, wi+1) being fake for i = `, . . . , `+ c− 1 implies

that

det(w`, Tw`+1) = · · · = det(w`+c−1, Tw0) = 0.

Now, we know both vectors in a fake corner must have negative second component by definition, so

this implies that

w` = Tw`+1 = T 2w`+2 = · · · = T cw0.

Now (T cw0 = w`, w1, . . . , w`−1) ∈ (Z2)` is a toric fan (we know the vectors are in counter-

clockwise order because we started with a semitoric fan) so there must exist b0, . . . , b`−1 ∈ Z as in

Part 2 of the statement of this theorem. Since

ST b0ST b1 · · ·ST b`−1 =G S4
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if ` > 4 we can use Lemma 4.3.8 to conclude two nonconsecutive exponents are in {−1, 0, 1} and one

of these exponents is not b0 or b`−1. Let bi ∈ {−1, 0, 1} for some 0 < i < `− 1. If bi = 1 then we can

remove the vector wi+1 from the semitoric fan to produce a new semitoric fan via the reverse corner

chop operation. In this way we remove a vector from the fan and reduce the number of ST -pairs

in the corresponding element of G via STS =G T−1ST−1. If bi = −1 then we use the relation

ST−1S =G SSTST and since

SSTST =G S(STS)T =G S(T−1ST−1)T =G ST−1S

this relation can actually be realized by a corner chop, which we know corresponds to a legal move at

the level of fans. If bi = 0 then we actually have a factor of S2 in the word. Notice that TSTSTST

reduces to either TSS or SST via a corner chop depending on where it is cut. In particular, if our

word contains the subword T a+1SST b, we can perform a corner chop to obtain T a+1STSTST b+1,

and then a reverse corner chop to reduce to T aSST b+1. Note that this can be done even if the T a

was in the ST b0 term. By repeating this operation as necessary, we can move any factors of SS to

the front of our word. So we see that in any case we can do an algebraic reduction which will reduce

the number of ST -pairs by one and also corresponds to a fan transformation.

Repeat this process until there are only four ST -pairs. Then by Lemma 4.4.8 we know we

must have reduced this equation to

ST kS2T−kS2 =G S4

and thus we use the relation TSS = SST to end up with S4. This means the corresponding integers

are b′0 = 0, b′1 = 0, b′2 = 0, and b′3 = 0 which produces the desired fan (u0, . . . , uc+3).

If ` < 4 by Lemma 4.4.8 we must have ` = 3 and b0 = −1, b1 = −1, b2 = −1. In this case we

can do a reverse corner chop to again achieve S4.

Theorem 4.2.8 is immediate from Proposition 4.5.4.

Remark 4.5.5. Notice that Theorem 4.4.10 is different from Theorem 4.2.8 because in Theorem

4.4.10 the minimal models of the Delzant polygons may be achieved through only corner chops. In
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Theorem 4.2.8 we use instead a variety of transformations (all of which are continuous, as we show

in Section 5.2). �
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Chapter 5

Connected components of space of

semitoric sytems

5.1 Introduction

Recall MST, the moduli space of semitoric integrable systems which is defined in Section 2.2.7

and endowed with a metric, and thus topology, in Chapter 3. In this short chapter we use the results

of Chapter 4 to prove the following:

Theorem 5.1.1. If (M,ω, F ) and (M ′, ω′, F ′) are simple semitoric integrable systems such that:

(i) they have the same number of focus-focus singularities;

(ii) they have the same sequence of twisting indices,

then there exists a continuous (with respect to the topology defined in [63]) path of semitoric systems

with the same number of focus-focus points and same twisting indices between them. That is, the

space of semitoric systems with fixed number of focus-focus points and twisting index invariant is

path-connected.

This is analogous to Theorem 4.2.2, which states that the moduli space of symplectic toric

manifolds is path-connected.

109
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The Jaynes-Cummings system is an important example of a semitoric system with precisely

one focus-focus point and is studied for example in [73] (systems with exactly one focus-focus point

are referred to as systems of Jaynes-Cummings type for this reason). Since the twisting index is

trivial when there is precisely one focus-focus point Theorem 5.1.1 implies the following.

Corollary 5.1.2. Any semitoric system with precisely one focus-focus singular point may be contin-

uously deformed into the Jaynes-Cummings system via a path of semitoric systems.

5.2 Preparations

The results of Section 4.5 have an interpretation in symplectic geometry of toric manifolds

and semitoric integrable systems.

To define see semitoric fans from this point of view we will need to examine single elements

of the Delzant semitoric polygons defined in Definition 2.2.22. An element (∆, (`λj , εj , kj)
mf
j=1) ∈

LWPolygmf (R2) is a primitive semitoric polygon if

1. ∆ has everywhere finite height;

2. εj = +1 for j = 1, . . .mf ;

3. each `λj intersects the top boundary of ∆;

4. any point in ∂top∆ ∩ `λj for some j ∈ {1, . . . ,mf} satisfies either the hidden or fake condition;

and

5. all other corners satisfy the Delzant condition.

Remark 5.2.1. Though a semitoric polygon is a family of polygons, it is determined by choosing a

single primitive semitoric polygon. �

5.3 The connected components of MST

Recall semitoric fans from Definition 4.2.5. Here we describe how they are related to Delzant

semitoric polygons.
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Definition 5.3.1. Let ∆ ∈ LWPolygmf (R2) be a primitive semitoric polygon. Then the associated

semitoric fan is the semitoric fan F formed by the inwards pointing primitive integer normal vectors to

the edges of ∆ in which the pair of vectors in F are labeled as fake, hidden, or Delzant to correspond

with the labeling of the corners of ∆.

Lemma 5.3.2. Each relation in Theorem 4.2.8 corresponds to some continuous transformation of

the polygons. More specifically, suppose that two fans F0,F1 ∈ (Z2)d are related by

1. performing corner chops;

2. performing reverse corner chops;

3. removing hidden corners; or

4. commuting fake and Delzant corners;

(see Definition 4.2.7). Then there exists a continuous family of (compact) primitive semitoric polygons

∆t, t ∈ [0, 1], such that the fan associated to ∆0 is F0 and the fan associated to ∆1 is F1.

Proof. Suppose that ∆ is a primitive semitoric polygon with associated fan F = (v0, . . . , vd−1) ∈ (Z2)d

and fix some i ∈ {0, . . . , d− 1}. Let v−1 := vd−1 and vd := v0 so that the formulas used in this proof

will be valid if i = 0 or i = d− 1. Throughout, let p ∈ ∆ be the vertex situated between the edges

with inwards pointing normal vectors vi and vi+1. Let ui ∈ Z2, i = 1, 2, denote the primitive vectors

along which the edges adjacent to p are aligned, ordered so that det(u1, u2) > 0.

For w1, w2 ∈ Z2 let Hε
p(w1, w2) denote the half-space given by

Hε
p(w1, w2) = {p+ t1w1 + t2w2 : t1 + t2 > ε}.

First we consider the corner chop operation. Suppose p is a Delzant corner. Fix some ε0 > 0

smaller than the length of the edges incident at p.

For t ∈ [0, 1] let

∆t = ∆ ∩Htε0
p (u1, u2).

We see that ∆t is a continuous family and since the edges of ∆t are parallel to the edges of ∆ except

for the new edge with inwards pointing normal vector given by vi + vi+1 we see that the fan of ∆t
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is the corner chop of the fan for ∆ for t ∈ (0, 1]. Since a reverse corner chop is the inverse of this

operation, we can use the same path backwards.

Now suppose that p is a hidden corner. Let α ∈ Z be the second component of vi+1. For

ε0 > 0 smaller than the length of the adjacent edges and t ∈ [0, 1] let

∆t = ∆ ∩Htε0
p (u1, α

2u2).

It is straightforward to see that the normal vector to the new edge of the polygon is Tvi+1. We see

that ∆t is a continuous family and by construction it has the desired fan. Thus ∆t is the required

family for the operation of removing hidden corners.

Finally, suppose that p is a fake corner and the next corner, which has adjacent edges which

have inwards pointing normal vectors vi+1 and vi+2, is a Delzant corner. Here we can see that this

fan is the result of removing the hidden corner (vi, vi+2) from the fan

F′ = (v0, . . . , vi, vi+2, . . . , vd−1) ∈ (Z)d−1.

We know (vi, vi+2) is a hidden corner because it is given that (vi, vi+1) is fake, which means vi = Tvi+1.

Then we compute

det(vi, T vi+2) = det(Tvi+1, T vi+2) = 1

because (vi+1, vi+2) is Delzant. Thus there is a continuous path from any polygon with fan F to any

polygon with fan F′. Let ∆′ have fan F′ and let p′ ∈ ∆′ be the corner with adjacent edges which have

vi and vi+2 as inwards pointing normal vectors. Now, for some ε0 > 0 small enough, we can consider

∆t = ∆′ ∩Htε0
p′ (β2u′1, u

′
2)

where u′1 and u′2 are the primitive integral vectors directing the edges adjacent to p′, ordered so that

det(u′1, u
′
2) > 0, and β2 is the second component of vi. This is a continuous path to a polygon with

the required fan. This completes the proof.
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Figure 5.1: For each fan transformation there is a continuous path of semitoric polygons
which transitions between the fans. In (a) we show the corner chop and in (b) we show the
removal of a hidden corner (which is replaced by a fake and a Delzant corner).

Recall that toric polygons are precisely the compact primitive semitoric polygons with

complexity zero. Thus, by Proposition 4.5.4 and Lemma 5.3.2 we have recovered Theorem 4.2.2.

In light of Proposition 4.5.4 and Proposition 5.3.2 the only difficulty remaining is to prove

the following lemma is incorporating the case of semitoric systems which have noncompact polygons

as invariants. Recall that Polyg
mf ,~k
ST (R2) denotes the set of labeled semitoric polygons which have

mf focus-focus points and twisting index ~k.

Lemma 5.3.3. Let mf ∈ Z>0 and ~k ∈ Zmf . Then Polyg
mf ,~k
ST (R2) is path-connected.

Proof. We must only consider the primitive semitoric polygons, because if the primitive polygons

converge so do all of the polygons in the family. Any two compact primitive semitoric polygons in

Polyg
mf ,~k
ST (R2) with the same fan can be connected by a continuous path. This path is made by

continuously changing the lengths of the edges because the angles of the two polygons must all be

the same since they have the same fan. So, by Proposition 4.5.4 given two elements of Polyg
mf ,~k
ST (R2)

which are compact we know that the corresponding fans are related by the moves listed in that

proposition and then by Lemma 5.3.2 we know these moves correspond to continuous paths of

polygons. So we have established that any two compact elements of Polyg
mf ,~k
ST (R2) are connected by

a continuous path.
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Figure 5.2: The continuous path from a compact primitive semitoric polygon to a
noncompact primitive semitoric polygon with finitely many vertices.

Next assume that

[∆w] = [(∆, (`λj , εj , kj)
mf
j=1)] ∈ Polyg

mf ,~k
ST (R2)

is such that ∆ is noncompact but has only finitely many vertices. Choose N ∈ R such that all of

the vertices of ∆ are in the region {(x, y) ∈ R2 | −N < x < N}. The set ∆ ∩ [−N − 1, N + 1] is a

polygonal subset of R2 but the corners which intersect `N+1 ∪ `−N−1 may not be Delzant. By [67,

Remark 23] we may change the set on arbitrarily small neighborhoods of these corners to produce a

new set, ∆′, which is equal to ∆ ∩ [−N − 1, N + 1] outside of those small neighborhoods and has

only Delzant corners inside of those neighborhoods. Thus ∆′ is a primitive semitoric polygon and

by choosing the neighborhoods small enough we can assure that ∆ ∩ [−N,N ] = ∆′ ∩ [−N,N ]. For

t ∈ [0, 1) let ∆(t) be the polygon with the same fan as ∆′, the property that

∆(t) ∩ [−N,N ] = ∆′ ∩ [−N,N ],

and which has all of the same edge lengths as ∆′ with the exception of the two or four edges which

intersect `N ∪ `−N . These edges are extended horizontally by a length of 1
t−1 . By this we mean that

if an edge of ∆′ which intersected {(x, y) ∈ R2 | x = N} had as one of its endpoints (x0, y0) with

x0 > N then the corresponding edge of ∆(t) would have as its endpoint (x0 + 1
t−1 , y0 +m 1

t−1 ), where

m is the slope of the edge in question. Then define ∆(1) = ∆ and we can see that ∆(t) for t ∈ [0, 1]

is a path from ∆′, which is compact, to ∆ so [(∆(t), (`λj ,+1, kj)
mf
j=1)] is a continuous path which

connects a compact semitoric polygon to [∆w]. This process is shown in Figure 5.2.

Now we have connected all of the elements except for those with an infinite amount of
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vertices. Suppose that

[∆w] = [(∆, (`λj , εj , kj)
mf
j=1)] ∈ Polyg

mf ,~k
ST (R2)

is such that ∆ is noncompact and has infinitely many vertices. We will connect [∆w] to a polygon

which has only finitely many vertices to finish the proof. Since ∆ has everywhere finite height and

is the intersection of infinitely many half-planes we can choose two of these planes which are not

horizontal and are not parallel to one another. Denote the intersection of these two half-planes by A

and notice ∆ ⊂ A. Since the boundaries of these two half-planes must intersect we can see that A

can only be unbounded in either the positive or negative x-direction, but not both. Without loss of

generality assume that A is unbounded in the positive x-direction.

Let ν be any admissible measure. For any n ∈ Z>0 since ν(A) < ∞ we know there exists

some xn ∈ R such that

ν(A ∩ [xn,∞)) < 1/n,

∆ does not have a vertex on the line `xn , and xn > |λj | for all j = 1, . . . ,mf . Let ∆n denote the

polygon which satisfies

∆n ∩ [−∞, xn] = ∆ ∩ [−∞, xn]

and has no vertices with x-coordinate greater than xn.

For each n ∈ Z>0 and t ∈ (0, 1] define ∆n(t) to have the same fan as ∆n+1 and to have all

the same edge lengths as ∆n+1 except for the two edges which intersect `xn . Extend those two edges

horizontally by 1/t− 1. Define ∆n(0) = ∆n. Now ∆n(t) for t ∈ [0, 1] is a C0 path which takes ∆n to

∆n+1. Moreover,

∆	∆n(t) ⊂ A ∩ [xn,∞] so ν(∆	∆n(t)) < 1/n

for each t ∈ [0, 1]. Each of these paths for n ∈ Z>0 can be concatenated to form a continuous path

∆t, t ∈ [0, 1], from ∆0 to ∆ and we know that ∆0 has only finitely many vertices. It is important not

only that each ∆n be getting closer to ∆ but also that the path from ∆n to ∆n+1 stays close to ∆.

Then we define [(∆(t), (λj ,+1, kj)
mf
j=1)] which is a continuous path from a semitoric polygon with

finitely many vertices to [∆w]. This is shown in Figure 5.3.
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Figure 5.3: The continuous path which adds new vertices to a noncompact primitive
semitoric polygon. This process is repeated to form a path to systems with infinitely many
vertices.

Remark 5.3.4. According to [77, Theorem 3] all of the polygons in Polyg
mf ,~k
ST (R2) are compact if

mf > 1. �

Now we can classify the connected components of MST and MT. Recall that Imf ,~k = Imf , ~k′

if kj = k′j + c for some c ∈ Z so when stating the following lemma we require that the first

component of the twisting index be 0. This is done only to make sure that there are no repeats in

the list of components. Recall I0 is the collection of semitoric lists of ingredients with mf = 0 and

MST,0 = Φ−1(I0) is the collection of semitoric systems with no focus-focus singularities.

Lemma 5.3.5. The connected components of I are

{Imf ,~k | mf ∈ Z>0,~k ∈ Zmf with k1 = 0} ∪ I0

and they are each path-connected.

Proof. It is sufficient to prove that Imf ,~k is path-connected for each choice of mf ∈ Z>0 and ~k ∈ Zmf .

Let m,m′ ∈ Imf ,~k with

m = ([∆w], (hj)
mf
j=1, ((Sj)

∞)
mf
j=1) and m′ = ([∆′w], (h′j)

mf
j=1, ((S

′
j)
∞)

mf
j=1).

By Lemma 5.3.3 we know there exists a continuous path

[∆w(t)] = [(∆(t), (`λj(t),+1, kj)
mf
j=1)],

t ∈ [0, 1], from [∆w] to [∆′w] and by Proposition 3.2.2 we know R[[X,Y ]]0 is path-connected so there
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exists a continuous path (Sj(t))
∞ from (Sj)

∞ to (S′j)
∞ for each j = 1, . . . ,mf . For j = 1, . . . ,mf let

lenj = length(π2(∆ ∩ `λj ))

len′j = length(π2(∆′ ∩ `λ′j ))

lenj(t) = length(π2(∆(t) ∩ `λj(t)))

for t ∈ [0, 1] and define

hj(t) =

(
(1− t)hj

lenj
+
th′j

len′j

)
lenj(t).

Now we have that 0 < hj(t) < lenj(t) and t 7→ hj(t) is a continuous function from [0, 1] to R because

it is impossible for a semitoric polygon to have a vertical boundary at `λj for any j ∈ {1, . . . ,mf}.

Now define

m(t) = ([∆w(t)], (hj(t))
mf
j=1, ((Sj(t))

∞)
mf
j=1)

for t ∈ [0, 1] which is a continuous path from m to m′.

Thus we have established the following result.

Theorem 5.3.6. The set of connected components of MST is

{MST,mf ,~k
| mf ∈ Z>0,~k ∈ Zmf with k1 = 0} ∪MST,0

and each MST,mf ,~k
is path-connected.

Theorem 5.1.1 is equivalent to Theorem 5.3.6.

Acknowledgements. Chapter 5, in part, is comprised of material submitted for publication by
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Chapter 6

Semitoric helixes and minimal

models

6.1 Introduction

In this chapter I introduce a new combinatorial symplectic invariant of compact symplectic

semitoric manifolds which I call a semitoric helix. This invariant encodes information about the

singular affine structure around the preimage of the boundary of the momentum map by correcting

for the effects of the Duistermaat monodromy from the focus-focus singular points which effects

semitoric fans. Using this new invariant I give a complete classification of the minimal models of

semitoric integrable systems; that is, I give an exact list of seven models depending on parameters

which do not admit a symplectic semitoric blowdown, and any semitoric integrable system can be

obtained from one of these by a sequence of semitoric blowups. This clarifies the relationship between

blowdowns and the previously known invariants of compact semitoric integrable systems described in

Section 2.2.7. I classify the minimal models of compact 4-dimensional symplectic semitoric manifolds

by characterizing the minimal models that can be obtained from a semitoric helix by a finite sequence

of blowdowns. A surprising fact is that the proof is purely algebraic.

118
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6.1.1 Minimal models of symplectic toric manifolds

Recall that a toric fan (v0, . . . , vd−1) ∈ (Z2)d is minimal if

vi 6= vi−1 + vi+1

for i = 0, . . . , d − 1. Since a blowup on a toric fan is inserting the vector vk + vk+1 into the fan

and a blowdown is the opposite of this operation, minimal toric fans are exactly those on which

a blowdown cannot be performed. Thus, any toric fan can be reduced to a minimal toric fan by

performing blowdowns until no more are possible. On the other hand, this implies that any toric fan

may be obtained from a minimal toric fan by a finite sequence of blowups. This occurs exactly when

the associated toric integrable system does not admit a symplectic toric blowdown.

Let (M,ω, F ) be a 4-dimensional toric integrable system and recall that M comes equipped

with a natural T2-action. A symplectic toric blowup is performed by removing a equivariantly

embedded open ball B4(r) from M and collapsing the boundary via the Hopf map. A symplectic

toric blowdown is the inverse of this operation.

We can, once again, restate Theorem 2.2.16 to suit the motivation of this chapter.

Theorem 6.1.1 (Fulton [33]). A toric manifold is minimal if its fan is one of the following up to

the action of SL2(Z):

1. v0 =

1

0

, v1 =

0

1

, v2 =

−1

−1

;

2. v0 =

1

0

, v1 =

0

1

, v2 =

−1

0

, v3 =

 0

−1

;

3. v0 =

1

0

, v1 =

0

1

, v2 =

−1

k

, v3 =

 0

−1

 for k ∈ Z, k 6= 0.

Respectively, these are known as the Delzant triangle, the square, and the Hirzebruch trapezoid.

These fans are shown in Figure 6.1. Respectively, they correspond to CP2, CP1 × CP1, and

a Hirzebruch surface.
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Figure 6.1: The three possible minimal toric fans listed in Theorem 6.1.1, where k ∈ Z is
the parameter for the Hirzebruch trapezoid.

6.1.2 Symplectic semitoric manifolds and helixes

Around any elliptic-elliptic point of a semitoric integrable system there exists a toric mo-

mentum map as is used when producing the associated semitoric polygon (see Section 2.2.7). A

symplectic semitoric blowup or blowdown is performed by performing a symplectic toric blowup or

blowdown, respectively, on this toric momentum map around the elliptic-elliptic point as described

in Section 6.1.1.

Definition 6.1.2. A symplectic semitoric manifold (M,ω, F ) is minimal if there does not exist any

(M ′, ω′, F ′) such that (M,ω, F ) can be obtained from (M ′, ω′, F ′) by a symplectic semitoric blowup.

In this chapter I construct a combinatorial invariant of semitoric manifolds, the semitoric

helix, by correcting for the effects of the Duistermaat-monodromy of the focus-focus points at the

cost of the periodicity.

Definition 6.1.3. A semitoric helix of length d ∈ Z>0 and complexity c ∈ Z>0 is an equivalence

class H = [{vi}i∈Z] where {vi}i∈Z ⊂ Z2 is a collection of vectors such that:

1. det(vi, vi+1) = 1 for all i ∈ Z;

2. v0, . . . , vd−1 are arranged in counter-clockwise order;

3. T cvi = vi+d for all i ∈ Z.

The equivalence relation on such collections of vectors is given by {vi}i∈Z ∼ {wi}i∈Z if and only if
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Figure 6.2: A minimal semitoric helix of length 6 and complexity 2. In the classification
from Theorem 6.1.13 this is a type (7) minimal semitoric helix with A0 = ST 2ST 2.

vi = T kwi+` for all i ∈ Z and for some fixed k, ` ∈ Z. A semitoric helix is minimal if

vi 6= vi−1 + vi+1

for all i ∈ Z.

A minimal semitoric helix is shown in Figure 6.2. The semitoric helix is better suited to

studying blowups and blowdowns than the semitoric fan is, and it is a more natural object because

the vectors in a semitoric fan are effected by the artificial corners which are created by making cuts

when producing the semitoric polygon.

Definition 6.1.4. Let H = [{vi}i∈Z] be a semitoric helix. If vj = vj−1 + vj+1 for some j ∈ Z then

a new semitoric helix of the same complexity and one less length can be produced by removing

{vj+nd}n∈Z from {vi}i∈Z. The new helix is known as the blowdown of H at vi. The opposite of this

operation, adding in the sum of two adjacent vectors, is known as a blowup.

Remark 6.1.5. Performing a blowup/blowdown on a semitoric helix H corresponds to performing

a blowup/blowdown on the associated semitoric manifold, so minimal semitoric integrable systems

are precisely those associated to minimal semitoric helixes. �
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6.1.3 From semitoric systems to semitoric helixes

There is a unique semitoric helix related to each semitoric integrable system. We outline the

construction here, and it is given in full detail in Section 6.3. Let (M,ω, F ) be a semitoric integrable

system.

1. Construct polygon: Associated to (M,ω, F ) is semitoric polygon which consists of an infinite

family of polygons [77] which I have described in Section 2.2.7. Fix a polygon ∆ from this

family;

2. Construct semitoric fan: ∆ is rational, so take the collection of inwards pointing integer

normal vectors w0, . . . , wm−1 of minimal length to its edges. If all of the cuts in ∆ are up, this

corresponds to considering the associated semitoric fan (see Chapter 4);

3. Correct for monodromy effect: For each j such that (wj , wj+1) is either hidden or fake

replace wj+1, . . . , wm−1 by

Twj+1, . . . , Twm−1.

Label the new list of vectors w′0, . . . , w
′
m−1;

4. Remove repeated vectors: Now each pair (w′i, w
′
i+1) either satisfies det(w′i, w

′
i+1) = 1 or

w′i = Tw′i+1. For each j such that w′j = w′j+1 remove w′j+1 from the list (these come from the

fake corners) and denote the remaining vectors by v0, . . . , vd−1. Notice det(vi, vi+1) = 1 for all

i = 0, . . . , d− 2;

5. Extend to helix: Extend this finite list of vectors to a semitoric helix H of length d and

complexity c (the number of focus-focus points of the original semitoric manifold) by forcing

condition (3) from Definition 6.1.3.

Given a symplectic system (M,ω, F ) the semitoric helix H produced by the above construction

is known as the semitoric helix associated to (M,ω, F ). The construction procedure includes several

choices by the resulting semitoric helix is unique.

Lemma 6.1.6. Given a semitoric integrable system (M,ω, F ) there exists exactly one associated

semitoric helix.
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Lemma 6.1.6 follows from Lemma 6.3.1.

Definition 6.1.7. The map φ assigns to each semitoric integrable system (M,ω, F ) a semitoric helix

φ(M,ω, F ) = H, where H is the semitoric helix associated to (M,ω, F ).

Lemma 6.1.6 shows that φ is well-defined.

The main result of this chapter is Theorem 6.1.13, which is the classification of all minimal

semitoric systems in terms of the associated semitoric helix. To prove Theorem 6.1.13 I use a refined

version of the algebraic tools used in Chapter 4.

6.1.4 The algebraic technique

Recall the groups

SL2(Z) = 〈S, T | STS = T−1ST−1, S4 = I〉,

PSL2(Z) = 〈S, T | STS = T−1ST−1, S2 = I〉,

and

G = 〈S, T | STS = T−1ST−1〉

Let (R2)∗ := R2 \ {(0, 0)}. Here we set some notation.

Definition 6.1.8. Given any closed loop γ̃ : [0, 1]→ (R2)∗, γ̃(0) = γ̃(1), we denote by wind(γ) ∈ Z

the usual winding number of γ.

Define pr : SL2(Z)→ (R2)∗ by

pr:

a b

c d

 7→
a
c

 .

Definition 6.1.9. Given any loop γ : [0, 1]→ SL2(Z), γ(0) = γ(1), we define the winding number of

γ, denoted wind(γ), by

wind(γ) := wind
(
pr(γ)

)
.
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Thus, there exists a map

ker(G→ SL2(Z))→ Z

which takes each element σ ∈ ker(G→ SL2(Z)) to wind(ρ(σ)). The winding number

W : 〈S, T 〉 → 1

12
Z,

defined in Chapter 4, extends this map to all of 〈S, T 〉 and descends to a map on G which we also

denote W . Recall that given σ ∈ G,

W (σ) = wind(pr ◦ ρ(σ)).

For a semitoric helix H = [{vi}i∈Z] and B ∈ SL2(Z) we use the notation

BH := [{B vi}i∈Z].

A cyclic permutation of a list (a0, . . . , ad−1) ∈ Zd of integers is given by

(akmodd, ak+1 modd, . . . , ak+d−1 modd).

The following is the helix version of Corollary 4.4.6.

Proposition 6.1.10. Associated to any semitoric helix of length d and complexity c there is a lists

of integers (a0, . . . , ad−1) ∈ Zd which satisfy

ST a0 . . . ST ad−1 =G S4X−1T cX

for some X ∈ G. This list of integers is unique up to cyclic permutation, and any such list of integers

is associated to some semitoric helix. Semitoric helixes H and H′ have the same length, complexity,

and associated integers if and only if there exists B ∈ SL2(Z) such that

H = BH′.
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Proposition 6.1.10 is proven in Section 6.4.

An obstruction to producing semitoric helixes is producing words in S and T which not only

evaluate to the correct matrix in SL2(Z) but also which have low winding number. In order to study

these we develop a theory of reduced forms of words; those words with only positive powers of S

which evaluate to a given matrix, up to sign, in SL2(Z) and which have smallest possible winding

number. It turns out there is a relatively simple characterization of these reduced forms and we are

able to take advantage of the fact that the words corresponding to minimal semitoric helixes are

nearly reduced. By understanding the difference between these and their reduced forms we classify

the possibilities.

Thus, the first step towards classifying minimal semitoric helixes is to produce a standard

form of minimal winding number for elements of PSL2(Z).

Definition 6.1.11. A word in S and T is S-positive if it can be written using only non-negative

powers of S, T , and T−1.

Theorem 6.1.12 (Standard form in PSL2(Z)). If X ∈ SL2(Z) there exists a unique string X ∈ 〈S, T 〉

such that X =PSL2(Z) X and

X =〈S,T 〉 T
bST a0 . . . ST ad−1

where ai > 1 for i = 0, . . . d− 2. Moreover,

W (X) 6W (η)

for all S-positive η ∈ 〈S, T 〉 satisfying η =PSL2(Z) X.

We call X the standard form of X. Theorem 6.1.12 is proven in Section 6.5.

6.1.5 Main result: minimal models of semitoric integrable systems

Lemma 6.6.3 has the following consequence, which is proven in Section 6.6 and is the main

result of this chapter. Let

S =
{
A ∈ SL2(Z)

∣∣A = ST a0 . . . ST ad−1 , such that d > 1, ad−1 /∈ {0, 1}
}
. (6.1)



126

A semitoric helix of length d is determined by specifying the complexity and any d consecutive vectors

in any representative of the helix.

Theorem 6.1.13. Suppose that (M,ω, F ) is a compact minimal semitoric integrable system with

associated semitoric helix H = φ(M,ω, F ) of length d and complexity c > 0. Write H = [{vi}i∈Z]. If

d < 5 then the representative {vi}i∈Z can be chosen to be exactly one of the following:

type length v0, . . . , vd−1 complexity

(1) d = 2

(
0
1

)
,

(
−1
−2

)
c = 1

(2) d = 2

(
0
1

)
,

(
−1
−1

)
c = 2

(3) d = 3

(
0
1

)
,

(
−1
k

)
,

(
0
−1

)
k 6= ±2 c = 1

(4) d = 3

(
1
0

)
,

(
0
1

)
,

(
−1
−1

)
c 6= 2

(5) d = 4

(
1
0

)
,

(
0
1

)
,

(
−1
k

)
,

(
0
−1

)
k 6= ±1 c 6= 1

(6) d = 4

(
1
0

)
,

(
0
1

)
,

(
−1
0

)
,

(
k
−1

)
k 6= −1
k 6= 1− c c > 0

Otherwise, d > 5 and we say that H is of type (7). In this case there exists some unique A0 ∈ S such

that [v0, v1] = A0 and

vj = aj−2vj−1 − vj−2

determines {vi}i∈Z ∈ H where a0, . . . , ad−1 are defined by

S2A−1
0 T cA0 = ST a0 . . . ST ad−1 .

Additionally, for each A0 ∈ S there exists such a semitoric helix.

Types (1)-(6) are shown in Figure 6.3 and a a representative example of type (7) is shown in

Figure 6.2.

Idea of proof of Theorem 6.1.13

In the proof of Theorem 6.1.12 we use a reduction algorithm with four steps. Three of these

steps reduce the winding number by 1/2 and the remaining step, which corresponds to a blowdown,
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Figure 6.3: Minimal semitoric helixes of type (1)-(6) of Theorem 6.1.13.

does not change the winding number. We will see, by Lemmas 6.5.4 and 6.5.6, that if a0, . . . , ad−1 is

associated to a semitoric helix then

W (ST a0 . . . ST ad−1)−W (ST a0 . . . ST ad−1) =

 1, X =PSL2(Z) T
k

1
2 , otherwise,

and thus we know that ST a0 . . . ST ad−1 can be reduced to the standard form from Theorem 6.1.12

by using only one or two of the moves which reduce W along with any number of blowdowns.

This observation allows us to prove Lemma 6.6.3, which classifies all minimal words satisfying

Equation (6.3). This implies Theorem 6.1.13, which is proven in Section 6.6.

6.2 An application to semitoric systems

Theorem 6.1.13 has the following surprising consequence in the study of symplectic semitoric

manifolds, which follows from Lemma 6.6.4.

Theorem 6.2.1. If a compact semitoric integrable system (M,ω, (J,H)) has more than 2 focus-focus

singular points, then J has either a non-unique maximum or a non-unique minimum.

In [77, Theorem 3] Vũ Ngo.c uses an analytic argument related to the Duistermaat-Heckman

measure on semitoric manifolds to prove a result analogous to Theorem 6.2.1 in the case that the
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manifold is non-compact with 2 or more focus-focus singular points. Combining these two results we

conclude that if (M,ω, F ) is a semitoric manifold, compact or not, with greater than 2 focus-focus

points then J either has a non-unique maximum or a non-unique minimum.

Remark 6.2.2. Type (7) semitoric helixes always have a specific form. If H = [{vi}i∈Z] is a semitoric

helix then

1. d > 5;

2. v2 = −v0;

3. vk =

±1

0

 for some k ∈ {3, . . . , d− 1} (Lemma 6.6.4).

�

6.3 From semitoric systems to semitoric helixes

In this section we explain how to produce a semitoric helix from a semitoric integrable system

using the associated semitoric polygon.

6.3.1 Producing a semitoric helix

Let [∆w] be a compact Delzant semitoric polygon of complexity c ∈ Z>0 (i.e. it has c

focus-focus points) and write

∆w =
(
∆, (`λj )

c
j=1, (εj)

c
j=1

)
.

The hidden and fake corners come from the existence of focus-focus singular points in the system.

To create a semitoric helix we remove the effect of these points.

Suppose that ∆ has ` > 0 edges and let w0, . . . , w`−1, w` = w0 ∈ Z2 denote the inwards

pointing normal vectors of minimal length to those edges ordered cyclically. That is, choose w0 to be

an inwards pointing normal vector to any edge of ∆ and order w1, . . . , w`−1, w` so that wi and wi+1

are normal vectors to edges adjacent to the same vertex and det(wi, wi+1) > 0. Then the vectors

are ordered in counter-clockwise order and w0 = w` because they are normal to the same edge. We
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Figure 6.4: The semitoric helix is produced by unwinding the polygon on the fake corner
p.

call a pair (wi, wi+1) Delzant, fake, or hidden depending on the corner type of the vertex in between

them. Notice there are exactly c vertices of ∆ which are not Delzant.

Define

f(m) = |{i < m | (wi, wi+1) is not Delzant}|

and consider the sequence

(T f(0)w0, T
f(1)w1, . . . , T

f(`−1)w`−1, T
f(`)w`) ∈ (Z2)`+1.

Notice that any two adjacent vectors in this sequence are either a Delzant pair or equal to one

another. Remove any vector that is equal to an adjacent one and renumber in the same order to

produce

(v0, . . . , vd−1, vd) ∈ (Z2)d+1

which are again in counter-clockwise order. Now vd = T cv0 where c is the total number of corners

that are not Delzant. Extend (vi)
d−1
i=0 into a semitoric helix H of length d and complexity c by using

the relation T cvi = vi+d. The semitoric helix H is said to be associated to ∆w.

The idea of this construction is shown in Figure 6.4.

Lemma 6.3.1. Suppose [∆w] and [∆′w] are compact Delzant semitoric polygons such that [∆w] = [∆′w].
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If H and H′ are associated to ∆w and ∆′w, respectively, then H = H′.

Proof. Check that the semitoric helix produced does not depend on which element of [∆w] is chosen

or on any choices made during the construction. The element of [∆w] is defined up to the action of

Gc × G and the only choice made during the construction is which edge to place w0 on.

Lemma 6.1.6 follows from Lemma 6.3.1.

Lemma 6.3.2. Given any semitoric helix H there exists a Delzant semitoric polygon [∆w] such that

φ([∆w]) = H.

Proof. Let H = [{vi}i∈Z] be a semitoric helix of length d and complexity c. Define a collection of

vectors w0, . . . , wd+c by

wi = vi for i = 0, . . . , d− 1

and

wi = T i−d+1vd−1 for i = d, . . . , d+ c.

Then det(wi, wi+1) = 1 for i = 0, . . . , d− 1,

det(Twi, wi+1) = det(Twi, Twi) = 0

for i = d, . . . , d+ c− 1, and w0 = wd+c by the periodicity requirement on the helix H. The vectors

w0, . . . , wd+c−1 are arranged counter-clockwise so there exists a polygon ∆ ⊂ R2 with d+ c edges

which has these as inwards pointing normal vectors. The polygon ∆ has d Delzant corners c fake

corners, and since T does not change the y-value of a vector we see that either all of the fake corners

are on the top boundary of ∆ or all of the fake corners are on the bottom boundary of ∆. Let λi be

the horizontal position of the ith fake corner and we may number these so that

λ1 < λ2 < . . . < λc

Since each vertical line intersects the top and bottom boundaries at most once each. If the fake

corners are on the top boundary let εj = +1 for j = 1, . . . , c and otherwise let εj = −1 for j = 1, . . . , c.
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Then,

[(∆, (`λj )
c
j=1, (εj)

c
j=1)]

is a Delzant semitoric polygon with associated semitoric helix H.

Lemma 6.3.2 shows that φ is surjective by producing a right inverse, but φ is not injective.

This is because the semitoric helix does not encode information about the length of the edges of the

associated polygon or about the position of the focus-focus points, the values λ1, . . . , λc.

If ∆w is such that εj = 1 for j = 1, . . . , c then the inwards pointing normal vectors to ∆w

form a semitoric fan as in Chapter 4.

6.4 Semitoric helixes and SL2(Z)

In this Section we prove Proposition 6.1.10, which is the tool we use to translate questions

about semitoric helixes into questions about words on letters S and T .

Lemma 6.4.1. Given any semitoric helix H = {vi}i∈Z of length d there is a list of integers

(a0, . . . , ad−1) ∈ Zd such that

aivi+1 = vi + vi+2 (6.2)

for i = 0, . . . , d− 1. Furthermore, given v0, v1, and (a0, . . . , ad−1) the helix can be recovered.

Proof. Let H = {vi}i∈Z be a semitoric helix of length d and complexity c. Let Ai = [vi, vi+1] and

write vi+2 in the {vi, vi+1} basis as

vi+2 = bivi + aivi+1,

for ai, bi ∈ Z. Thus,

Ai

0 bi

1 ai

 = Ai+1

and since Ai, Ai+1 ∈ SL2(Z) we see the determinant of each side is 1 so bi = −1. The result

follows.

Definition 6.4.2. The a0, . . . , ad−1 in Lemma 6.4.1 are the associated integers to the helix H.
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Recall S̃L2(R) denotes the universal cover of SL2(R), so α ∈ S̃L2(R) is a continuous map

α : [0, 1] → SL2(R) satisfying α(0) = I. Recall G is isomorphic to the preimage of SL2(Z) in the

universal cover of SL2(R), denoted S̃L2(R), by Proposition 4.3.7 via the homomorphism ρ : G →

S̃L2(Z) generated by

(
ρ(T )

)
(t) =

1 t

0 1

 and
(
ρ(S)

)
(t) =

cos
(
πt
2

)
−sin

(
πt
2

)
sin
(
πt
2

)
cos
(
πt
2

)
 .

The operation in G is concatenation and the operation in S̃L2(R) is given by the following. if

α, β ∈ SL2(R) then

α, β : [0, 1]→ SL2(R)

and we define αβ ∈ S̃L2(R) by

αβ(t) =

 α(2t), 0 6 t 6 1/2

α(1)β(2t− 1), 1/2 6 t 6 1.

That is, the path αβ is obtained by traveling first along the path α and then along the path produced

by multiplying each element of the path β on the left by α(1). It turns out that the path produced

by traveling first along β and then along α multiplied on the right by β(1) is homotopic.

Lemma 6.4.3. If α, β ∈ S̃L2(R) then the paths in SL2(R) from I to α(1)β(1) given by

γ0(t) =

 β(2t), 0 6 t 6 1/2

α(2t− 1)β(1), 1/2 < t 6 1

and

γ1(t) =

 α(2t), 0 6 t 6 1/2

α(1)β(2t− 1), 1/2 < t 6 1

are homotopic.
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Figure 6.5: The homotopy from the proof of Lemma 6.4.3. A point (x, y) in the above
plane represents α(x)β(y) ∈ SL2(R).

Proof. A continuous homotopy between them is given by

γs(t) =


α(2t), 0 6 t 6 s/2

α(s)β(2t− s), s/2 6 t 6 1+s
2

α(2t− 1)β(1), 1+s
2 6 t 6 1

for 0 6 s 6 1, which is shown in Figure 6.5.

Recall the map pr: SL2(R)→ (R2)∗, where (R2)∗ = R2 \ {(0, 0)}, given by pr([v1, v2]) = v2.

Since

π1(SL2(R)) ∼= π1((R2)∗) ∼= Z

and

pr

cos(2πt) −sin(2πt)

sin(2πt) cos(2πt)

 =

cos(2πt)

sin(2πt)


for t ∈ R we see pr sends a generator of π1(SL2(R)) to a generator of π1((R2)∗), so pr∗ : π1(SL2(R))→

π1((R2)∗) is an isomorphism.

We say a path γ : [0, 1] → (R2)∗ travels only counter-clockwise at most one full rotation

if t 7→ θ(γ(t)) is an increasing function where θ : (R2)∗ → [0, 2π) is the angle coordinate with
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θ(γ(0)) = 0.

Lemma 6.4.4. Let H = [{vi}i∈Z] be a semitoric helix of length d and complexity c and let A0 =

[v0, v1]. If σ ∈ G is given by

σ = ST a0 . . . ST ad−1

then pr
(
A0 ρ(σ)

)
is homotopic to a path from v0 to vd−1 which travels counter-clockwise at most one

full rotation.

Proof. Let Ai = [vi, vi+1] for 1 6 i 6 d− 1 and recall Ai = Ai−1ST
ai−1 . Thus,

pr
(
Ai−1 ρ(ST ai−1)

)

is a path from vi to vi+1 which is homotopic to

γi(t) = pr

Ai−1

cos
(
πt
2

)
−sin

(
πt
2

)
+ tai−1cos

(
πt
2

)
sin
(
πt
2

)
cos
(
πt
2

)
+ tai−asin

(
πt
2

)



= cos

(
πt

2

)
vi−1 + sin

(
πt

2

)
vi.

The path γi travels only counter-clockwise at most one full rotation from vi−1 to vi so the composition

of paths γ1, . . . , γd−1 travels counter-clockwise from v0 to vd−1. The result follows because v0, . . . , vd−1

are arranged in counter-clockwise order.

Lemma 6.4.5. The integers (a0, . . . , ad−1) ∈ Zd are associated to a semitoric helix of complexity

c > 0 if and only if

ST a0 . . . ST ad−1 =G S4X−1T cX (6.3)

for some X ∈ G. If H = [{vi}i∈Z] is a semitoric helix with associated integers (a0, . . . , ad−1) then

A0 = [v0, v1] satisfies X =G A0.

Proof. Let Ai = [vi, vi+1]. By Lemma 6.4.1 and the fact that

0 −1

1 ai

 = ST ai
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we find that Ai+1 =SL2(Z) AiST
ai for all i ∈ Z. We conclude that

Ad =SL2(Z) A0ST
a0 . . . ST ad−1

and since T cA0 =SL2(Z) Ad this implies that

ST a0 . . . ST ad−1 =SL2(Z) A
−1
0 T cA0.

Since S4 generates the kernel of the projection G→ SL2(Z) this means that

ST a0 . . . ST ad−1 =G S4kA−1
0 T cA0

for some k ∈ Z. This is because when reducing an element of SL2(Z) we can assume that the relation

S4 =SL2(Z) I is not used until the last step. Rearranging we have

A0ST
a0 . . . ST ad−1A−1

0 T−c =G S4k. (6.4)

To complete the proof we must only show that k = 1 in Equation (6.4).

Let σ, η ∈ G be given by

σ =G ST a0 . . . ST ad−1 and η =G A0σA
−1
0 T−c.

Since W (S4k) it is sufficient to show that W (η) = 1. By Lemma 4.4.2 σ =SL2(Z) I implies that

W (η) = wind(ρ(η)). By Lemma 6.4.3 write

(
ρ(η)

)
(t) =



ρ(A−1
0 )(4t), 0 6 t 6 1/4[(

ρ(σ)
)
(4t− 1)

]
A−1

0 , 1/4 6 t 6 1/2

σA−1
0

[(
ρ(T−c)

)
(4t− 2)

]
, 1/2 6 t 6 3/4[(

ρ(A0)
)
(4t− 3)

]
σA−1

0 T−c, 3/4 6 t 6 1.
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Let γ0 : [0, 1]→ SL2(R) be the path from A−1
0 to itself given by

γ0(t) =


[(
ρ(σ)

)
(2t)

]
A−1

0 , 0 6 t 6 1/2

σA−1
0

[(
ρ(T−c)

)
(2t− 1)

]
, 1/2 6 t 6 1.

(6.5)

The paths γ0 and ρ(η) are homotopic via the homotopy

(
ρ(η)

)
(t) =



ρ(A−1
0 )( 4t

s ), 0 6 t 6 s/4[(
ρ(σ)

)(
4t−s
2−s

)]
A−1

0 , 2/4 6 t 6 1/2

σA−1
0

[(
ρ(T−c)

)(
4t−2
2−s

)]
, 1/2 6 t 6 4−s

4[(
ρ(A0)

)(
4t+s−4

s

)]
σA−1

0 T−c, 4−s
4 6 t 6 1

for 0 < s 6 1 where γ0 is defined as above. Thus, to complete the proof we only must show

wind(γ0) = 1 where γ0 is as in Equation 6.5. By Lemma 6.4.4, the path

(
pr
(
ρ(σ)(2t)

))
06t61/2

is homotopic to a path which travels counter-clockwise at most one full rotation. The path

[
pr
(
σA−1

0 ρ(T−c)(2t− 1)
)]

1/26t61
,

travels only counter-clockwise and cannot cross the line {y = 0}, so it completes at most one

half-rotation. Since σA−1
0 T−c =SL2(Z) A

−1
0 , the path γ0 thus circles the origin an integer number of

times, so we conclude that wind(pr(γ0)) = wind(γ0) = 1. This completes the proof.

Proof of Proposition 6.1.10. Let H = [{vi}i∈Z] be a semitoric helix of length d and complexity c.

Then there exists associated integers (a0, . . . , ad−1) ∈ Zd as in Definition 6.4.2 by Lemma 6.4.1. If

{wi}i∈Z ∈ H then by Definition 6.1.3 there exists some k, ` ∈ Z such that vi = T kwi+` for all i ∈ Z.

In this case aivi+1 = vi + vi+2 implies that

aiwi+1+` = wi+` + wi+2+`
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and denoting aj := ajmodd this implies that

ai−`wi+1 = wi + wi+2.

Thus, the associated integers for {wi}i∈Z are given by

(a−`, a1−`, . . . , ad−1−`)

which agrees with those integers for {vi}i∈Z up to cyclic permutation. Thus, the map is well-defined.

Suppose (a0, . . . , ad−1) ∈ Zd is a list of integers satisfying

ST a0 . . . ST ad−1 =G S4X−1T−cX

for some c ∈ Z>0. Let A0 ∈ SL2(Z) be any matrix satisfying X =SL2(Z) A0 and define v0, v1 ∈ Z2 so

that A0 = [v0, v1]. Then define v2, . . . , vd−1 by

vi = ai−2vi−1 − vi−2

for i = 2, . . . , d − 1. Use the relationship vi+d = T cvi to extend v0, . . . , vd−1 to {vi}i∈Z. Since

W (ST a0 . . . ST ad−1) = 1, the vectors v0, . . . , vd−1 are in counter-clockwise order and by construction

det(vi, vi+1) = 1 for all i ∈ Z, so [{vi}i∈Z] is a semitoric helix with the prescribed associated integers.

If H and H′ are semitoric helixes of the same length and complexity which are such that

H = BH′ for some B ∈ SL2(Z) then they have the same associated integers since those integers are

defined by a linear equation, Equation (6.2), which is invariant under the action of B.

Conversely, suppose that H = [{vi}i∈Z] and H′[{v′i}i∈Z] are semitoric helixes of the same

length and complexity. Let B ∈ SL2(Z) be the matrix which satisfies

[v0, v1] = B[v′0, v
′
1].

Then act on both sides of Equation (6.2) with B−1 to discover that H′ has the same associated

integers.
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6.5 Standard form in PSL2(Z) and the winding number

First we prove several lemmas which will be needed in the proof of Theorem 6.1.12.

Lemma 6.5.1. If σ ∈ 〈S, T 〉 is S-positive and σ =PSL2(Z) I then W (σ) > 0 where W (σ) = 0 if and

only if σ is the empty word.

Proof. Since σ is S-positive up to conjugation by T we may write it as

σ =〈S,T 〉 ST
a0 . . . ST ad−1

for some a0, . . . , ad−1 ∈ Z. We define a sequence of vectors

v0, . . . , vd−1 ∈ Z2

by choosing any v0, v1 ∈ Z2 with det(v0, v1) = 1 and defining v2, . . . , vd−1 by

vi+2 = −vi + aivi+1

for i = 0, . . . , d− 3. Let γ : [0, 1]→ (R2)∗ be a path which connects v0, . . . , vd−1 in order and travels

only counter-clockwise. Then, W (σ) = wind(γ) and wind(γ) > 0 because γ must travel at least once

around the origin to move only counter-clockwise and return to γ(0).

This implies that each element of PSL2(Z) has a representation in S and T with minimal

winding number.

Lemma 6.5.2. If X ∈ PSL2(Z) then there exists some q ∈ 1
12Z such that w(σ) > q for all σ ∈ 〈S, T 〉

which are S-positive and satisfy σ =PSL2(Z) X.

Proof. Since S =PSL2(Z) S
−1 every element of PSL2(Z) has an S-positive representation. Fix some

S-positive η ∈ 〈S, T 〉 such that η =PSL2(Z) X
−1 and let q = −W (η). Let σ be any S-positive element

of 〈S, T 〉 such that σ =PSL2(Z) X. Now ση =SL2(Z) I, so W (ση) > 0 by Lemma 6.5.1. This means

W (σ) > q and the result follows because W (η) does not depend on the choice of σ.
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6.5.1 Standard form for elements of PSL2(Z)

In this section we prove Theorem 6.1.12.

Lemma 6.5.3. ST−nS =PSL2(Z) (TST )n for n > 0.

Proof. First notice STS =PSL2(Z) T
−1ST−1 implies S =PSL2(Z) TSTST so

ST−1S =PSL2(Z) TST

since S =PSL2(Z) S
−1. Now,

ST−nS =PSL2(Z) (ST−1S)n =PSL2(Z) (TST )n

for n > 0, and if n = 0 the claim reduces to S2 =PSL2(Z) I.

Proof of Theorem 6.1.12. Let σ ∈ 〈S, T 〉 any S-positive word with σ =PSL2(Z) X. There are four

steps to the reduction algorithm we will use on σ.

1. replace each S2 with I;

2. replace each ST−nS with (TST )n, for some n > 0;

3. replace each STS with T−1ST−1;

4. go back to Step (1) if Step (1) or Step (2) is possible.

Each of these reductions preserves the value of σ in PSL2(Z) and recall that the winding number

cannot decrease indefinitely by Lemma 6.5.2. Steps (1) and (2) reduce the winding number while

Step (4) can only be performed if the winding number is not already minimal and Step (3) preserves

the winding number but reduces the number of times S appears in the word, which is also bounded

below. Thus, this process must terminate and after the reduction the word will be of the required

form.

Now we will show uniqueness. Suppose that

σ, η ∈ 〈S, T 〉
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with σ =PSL2(Z) η and

σ =〈S,T 〉 T
bST a0 . . . ST ad−1 ,

η =〈S,T 〉 T
b′ST a

′
0 . . . ST a

′
d′−1 ,

where ai, a
′
j > 1 for i = 0, . . . , d − 2 and j = 0, . . . d′ − 2. First assume min(d, d′) 6 1, and in this

case assume d > d′.

If d′ = 0 then

T b−b
′
ST a0 . . . ST ad−1 =PSL2(Z) I

which contradicts Lemma 4.3.8 unless d = 0, in which case T b−b
′

=PSL2(Z) I so b = b′.

If d′ = 1 then

T b−b
′
ST a0 . . . ST ad−1−a′0ST 0 =PSL2(Z) I

so ad−1 − a′0 ∈ {0,±1} by Lemma 4.3.8. Consider the cases if d > 1. If ad−1 − a′0 = 0 then

T b−b
′
ST a0 . . . ST ad−2S2 =PSL2(Z) I

which contradicts Lemma 4.3.8 after replacing S2 by I. If ad−1 − a′0 = −1 then

T b−b
′
ST a0 . . . ST ad−2ST−1S =PSL2(Z) I

which contradicts Lemma 4.3.8 after replacing ST−1S by TST . Finally, if ad−1 − a′0 = 1, then

T b−b
′
ST a0 . . . ST ad−2−1ST−1 =PSL2(Z) I

which contradicts Lemma 4.3.8 unless ad−2 = 2. This process is repeated to conclude that a0 = . . . =

ad−2 = 2 so

T b−b
′
(ST 2)d−1STS =PSL2(Z) I

which implies

T b−b
′−1ST−d =PSL2(Z) I.
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By Lemma 4.3.8 this can not hold. Thus, d = 1, in which case

T b−b
′
ST a0−a

′
0S =PSL2(Z) I,

so b− b′ = 0 and a0 − a′0 = 0 by Lemma 4.3.8.

Finally, assume d, d′ > 1 and assume that ad−1 6= a′d′−1, otherwise cancel them from both

sides. In this case we see that XY −1 =PSL2(Z) I implies

T bST a0 . . . ST ad−1T a
′
d′−1ST a

′
d′−2 . . . ST a

′
0S =PSL2(Z) I

so ad−1 − a′d−1 = ±1, by Lemma 4.3.8, since we have assumed ad−1 − a′d−1 6= 0. Assume

ad−1 − a′d−1 = 1,

otherwise exchange X and Y . Then choose maximal k ∈ Z>0 such that

ad−2 = ad−3 = . . . = ad−2−(k−1) = 2.

where k = 0 if ad−2 6= 2. If k < d− 1 then

XY −1 =PSL2(Z) T
bST a0 . . . ST ad−2−k(ST 2)k(STS)T−a

′
d′−2 . . . ST−a

′
0ST−b

′

=PSL2(Z) T
bST a0 . . . ST ad−2−k−1(TST )kST−a

′
d′−2
−1 . . . ST−a

′
0ST−b

′

=PSL2(Z) T
bST a0 . . . ST ad−2−k−1ST−a

′
d′−2
−k−1 . . . ST−a

′
0ST−b

′
.

Since ad−2−k − 1 > 1 and −a′d′−2 − k − 1 < −1 this expression cannot evaluate to the identity in

PSL2(Z) by Lemma 4.3.8.
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Otherwise, k = d− 1, in which case

XY −1 =PSL2(Z) T
b(ST 2)d−1(STS)T−a

′
d′−2 . . . ST−a

′
0ST−b

′

=PSL2(Z) T
b−1(TST )d−1ST−a

′
d′−2
−1 . . . ST−a

′
0ST−b

′

=PSL2(Z) T
b−1ST−a

′
d′−2
−d . . . ST−a

′
0ST−b

′
.

which again cannot evaluate to the identity in PSL2(Z) by Lemma 4.3.8. This completes the proof of

uniqueness.

Lastly, we will show the standard form has minimal winding number. Let X ∈ PSL2(Z) and

suppose η ∈ 〈S, T 〉 is S-positive with η =PSL2(Z) X. Then η can be reduced to the standard form of

X, denoted X, by following the reduction algorithm at the beginning of the proof. Since each step of

the algorithm either preserves or reduces the winding number, W (X) 6W (η).

6.5.2 Standard forms and the winding number

Recall that given any X ∈ PSL2(Z) we denote by

X ∈ 〈S, T 〉

the standard form of X, as given in Theorem 6.1.12.

Lemma 6.5.4. If X ∈ PSL2(Z) \ {T k}k∈Z then

W
(
X
)

+W
(
X−1

)
=

1

2
.

Proof. Write

X = T bST a0 . . . ST ad−1

and since X 6= T k for any k ∈ Z, d > 0. Now, W
((
X
)−1)

= −W
(
X
)

where

(
X
)−1

= S−1T−ad−1 . . . S−1T−a0S−1T−b.

We will reduce
(
X
)−1

to standard form and keep track of the winding number. Replacing each
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S−1 by S increases the winding number by d/2. Now replace each ST−aiS with (TST )ai for each

even index i which at most increases the odd indexed powers of T by 2. Since each ai > 2 for

i = 0, . . . , d − 2 we do the replacement ST−ai+2S = (TST )ai−2 for odd 0 < i < d − 3 and the

replacement ST−ai+1S = (TST )ai−1 for i = 1 and the highest odd i 6 d − 2. Thus we have now

used ST−nS = (TST )n, for varying values of n > 0, a total of d− 1 times decreasing W by 1/2 each

time. The word produced in this way is now in standard form so it is equal to X−1 and

W
(
X−1

)
= −W

(
X
)

+
d

2
− d− 1

2
= −W

(
X
)

+
1

2

as desired.

We can now prove that in many cases the first power of T in X and the last power of T in

X−1 must sum to 1.

Lemma 6.5.5. For X ∈ PSL2(Z) write

X =〈S,T 〉 T
bST a0 . . . ST ad−1

and

X−1 =〈S,T 〉 T
b′ST a

′
0 . . . ST a

′
d′−1 .

Then

ad−1 + b′ = a′d′−1 + b = 0

if X =PSL2(Z) T
kST a or X =PSL2(Z) T

k for some k, a ∈ Z, and

ad−1 + b′ = a′d′−1 + b = 1

otherwise.

Proof. The cases of X =PSL2(Z) T
kST a and X =PSL2(Z) T

k are easily checked. Suppose X is not of

that form. Since X−1X =SL2(Z) I by Lemma 4.3.8 some power of T that is not at the front or end

of the word must be −1, 1, or 0. Since X and X−1 are in standard form, X 6=PSL2(Z) T
kST q, and

X 6=PSL2(Z) T
k this means that a′d′−1 + b ∈ {±1, 0}.
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If a′d′−1+b = 0 then S2 is a subword of X−1X which can be replaced by I and if a′d′−1+b = −1

then ST−1S is a subword of X−1X which can be replaced by TST . In either case this means that

w
(
X−1X

)
6W

(
X−1

)
+W

(
X
)
− 1

2
= 0

where the last equality is by Lemma 6.5.4. By Lemma 6.5.1 w(X−1X) > 0 with equality only

when X = I. Since X 6= I we must have a′d′−1 + b = 1. The same analysis on XX−1 implies that

ad−1 + b′ = 1.

Lemma 6.5.6. Let X ∈ PSL2(Z) and c ∈ Z>0. Then W (X−1T cX) = W (X−1T cX).

Proof. If X =PSL2(Z) T
k for some k ∈ Z then

X−1T cX =〈S,T 〉 X−1T cX =〈S,T 〉 T
c

so the result holds. If X =PSL2(Z) T
kST a for some k, a ∈ Z then there are two cases. If c > 1 then

X−1T cX =〈S,T 〉 X−1T cX =〈S,T 〉 T
kST cST−k

so the result holds. If c = 1 then

X−1T cX =〈S,T 〉 T
k−1ST−k−1

while

X−1T cX =〈S,T 〉 T
kSTST−k

and the result still holds.

If X 6= T k and X 6= T kST a for all k, a ∈ Z, then X−1T cX is already in standard form for

any c > 0 by Lemma 6.5.5, so

X−1T cX =〈S,T 〉 X−1T cX.
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6.6 Minimal models for semitoric helixes

Definition 6.6.1. An S-positive word with no leading T

ST a0 . . . ST ad−1 ∈ 〈S, T 〉

is minimal if a0, . . . , ad−1 6= 1.

Minimal words are those associated to minimal helixes.

Lemma 6.6.2. Suppose σ = ST a0 . . . ST ad−1 ∈ 〈S, T 〉 is minimal and there exists X ∈ G \

{S2`T k}`,k∈Z such that

σ =G S4X−1T cX.

Then, after cyclically reordering a0, . . . , ad−1 if necessary, a0 6 0 and one of the following hold:

(i) a0 = 0 and σ =〈S,T 〉 T
a1ST a2 . . . ST ad−1 ;

(ii) a0 < 0 and σ =〈S,T 〉 (TST )nT a1ST a2 . . . ST ad−1 .

Proof. Notice

W (σ) = W (S4X−1T cX) = 1− c

12

while

W (σ) = W (X−1T cX) = W (X−1T cX)

= W (X−1) +W (X)− c

12
=

1

12
− c

12

by Lemmas 6.5.6 and 6.5.4 since X 6=PSL2(Z) T
k for any k ∈ Z. Thus, W (σ) 6= W (σ) so σ is not in

standard form. This means that aj 6 1 for some fixed j ∈ {0, . . . , d− 2} and since σ is minimal this

implies aj 6 0.

If aj = 0 for any j ∈ {0, . . . , d− 2} then reorder so that a0 = 0 so

σ = S2T a1ST a2 . . . ST ad−1
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and notice that

η = T a1ST a2 . . . ST ad−1

satisfies W (η) = W (σ). All steps in the reduction algorithm in the proof of Theorem 6.1.12 reduce

the winding number, except for the blowdown STS → T−1ST−1, so the only possible step to reduce

η into standard form is a blowdown. For a blowdown to be possible we must have aj = 1 for some

j ∈ {1, . . . , d− 1}, contradicting the minimality of σ. Thus, σ =〈S,T 〉 η.

Otherwise, aj 6= 0 for all j ∈ {0, . . . , d− 1} so, after cyclically reordering, a0 = −n < 0. In

this case let

η′ = (TST )nT a1ST a2 . . . ST a1

and notice η′ =PSL2(Z) σ. Again, W (η′) = W (σ) so the only possible reduction move would be a

blowdown, but if a blowdown could be performed on η′ that would contradict the minimality of σ,

except in the case that a1 = 0, which we have assumed does not occur. Thus, σ = η′.

Here we classify all words associated to minimal semitoric helixes. Recall S from Equa-

tion (6.1).

Lemma 6.6.3 (Classification of minimal words). The word σ ∈ 〈S, T 〉 is associated to a minimal

semitoric helix H of complexity c > 0 if and only if σ is exactly one of the following, where A0 = [v0, v1]

and {vi}i∈Z ∈ H:

type σ ∈ 〈S, T 〉 c A0

(1) σ = ST−1ST−4 c = 1 ST−2 =

(
0 −1
1 −2

)
(2) σ = ST−2ST−2 c = 2 ST−1 =

(
0 −1
1 −1

)
(3) σ = S2T aST−a−2 , a 6= 1,−3 c = 1 ST−a−1 =

(
0 −1
1 −a− 1

)
(4) σ = ST−1ST−1ST c−1 c 6= 2 I =

(
1 0
0 1

)
(5) σ = S2T aST cST−a , a 6= ±1 c 6= 1 ST−a =

(
0 −1
1 −a

)
(6) σ = S2T aS2T c−a , a 6= 1, c− 1 c > 0 I =

(
1 0
0 1

)
(7) σ = S2A−1

0 T cA0 c > 0 A0 ∈ S
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where a ∈ Z is a parameter.

Proof. Suppose that σ is minimal and associated to a semitoric helix H of length d and complexity

c > 0. By Lemma 6.4.5 there exists some X ∈ G such that

σ =G S4X−1T cX. (6.6)

We will proceed by cases on X.

Case I: X =PSL2(Z) T
k for some k ∈ Z. This implies that

ST a0 . . . ST ad−1−c =G S4,

and so a0, . . . , ad−2, ad−1 − c are associated to a minimal toric fan. Such words are completely

classified in Lemma 4.4.8 and we conclude either d = 3 and a0 = a1 = a2 − c = −1, which is minimal

only when c 6= 2, or d = 4 and a0 = a2 = 0, a3 = c− a1, which is minimal only when a 6= 1, c− 1.

Thus σ is either of type (4) or (6).

Case II: X 6=PSL2(Z) T
k for all k ∈ Z. In light of Equation (6.6) apply Lemma 6.6.2 to σ

and conclude that, after passing to an equivalent helix by cyclically permuting,

σ =〈S,T 〉 ST
a0 . . . ST ad−1

satisfies either

1. a0 = 0; or

2. aj 6= 0 for all j = 0, . . . , d− 1 and a0 = −n < 0.

If a0 = 0 then

σ = T a1ST a2 . . . ST ad−1

and otherwise

σ = (TST )nT a1ST a2 . . . ST ad−1 .

We now have three further cases on X.
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Case IIa: X =PSL2(Z) T
kST a for k, a ∈ Z. First assume a0 = 0. If c = 1 then

X−1T cX =〈S,T 〉 T
−a−1ST a−1

so σ = S2T−a−1ST a−1 which is minimal for a 6= ±2 and is of type (3). If c 6= 1 then

X−1T cX = T−aST cST a

so σ = S2T−aST a which is minimal if a 6= ±1 and is of type (5).

Now suppose a0 6= 0. Then

σ = (TST )nT a1ST a2 . . . ST d−1

for some n > 0. If c = 1 then σ = T−a−1ST a−1 so a = −2 and thus σ = (TST )T−4 so σ =

ST−1ST−4, which is of type (1). If c = 2, then σ = T−aST 2ST a which means a = −1 and a0 = −2

so σ = ST−2ST−2, which is of type (2). If c > 2, then σ = T−aST cST a which means a = −1 and

a0 = −1 so σ = ST−1ST c−1ST−1, which is of type (4).

Case IIb: X 6=PSL2(Z) S
2`T k, S2`T kST a for all `, k ∈ Z and ai 6= 0 for all i = 0, . . . , d− 1.

In this case a0 = −n < 0. If d = 2, then σ = ST−nST a1 and σ = (TST )nT a1 which means

(TST )nT a1 =〈S,T 〉 X−1T cX. Since X−1T cX starts with TS it must end with S by Lemma 6.5.5 so

a1 = −1. Now W (σ) = 1− c/12 implies that n = 5− c so we have

(TST )5−cT−1 =〈S,T 〉 X−1T cX. (6.7)

The right side of Equation (6.7) contains T c+1 while the highest power of T on the left side is T 2, so

c = 1. Thus we obtain σ = ST−4ST−1 and have type (3).

If d > 2 then

(TST )nT a1ST a2 . . . ST ad−1 =〈S,T 〉 X−1T cX

implies that X−1T cX must end with S by Lemma 6.5.5, so ad−1 = 0 which contradicts our assumption

in this case.
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Case IIc: X 6=PSL2(Z) S
2`T k, S2`T kST a for all `, k ∈ Z and ai = 0 for some i ∈ {0, . . . , d−1}.

If a0 6= 0 then aj = 0 for some j 6= 0 which contradicts the forms of the minimal word prescribed in

Lemma 6.6.2. Thus, a0 = 0 and so

σ = S2σ = S2X−1T cX

which is minimal if X does not end with ST and X−1 does not begin with TS, and is of type (7).

Proof of Theorem 6.1.13. Let H be a minimal semitoric helix of length d with associated integers

(a0, . . . , ad−1) ∈ Zd. Then σ = ST a0 . . . ST ad−1 is a minimal word and, passing to an equivalent helix

if necessary, we conclude σ must be of some type (1)-(7) in Lemma 6.6.3. Types (1)-(6) for σ in

Lemma 6.6.3 correspond to types (1)-(6) for H in Theorem 6.1.13. Notice these each have length

d < 5.

Otherwise, σ must be of type (7), which means there exists some X =G A0, where H =

{vi}i∈Z and A0 = [v0, v1] ∈ S, such that

σ =〈S,T 〉 S
2X−1T cX.

Since A0 ∈ S notice that A0 = ST a0 . . . ST a`−1 with ` > 2, which implies that σ has at least six

occurrences of S, so the length d of H satisfies d > 6.

Lemma 6.6.4. Any semitoric helix of complexity c > 2 includes the vector

1

0

 or its negative.

Proof. We will show that this vector is in every minimal semitoric helix of complexity c > 2, and

since every semitoric helix can be produced by a sequence of blowups on a minimal semitoric helix,

and since blowups do not remove vectors from the helix or change the complexity, the result will

follow.

Since c > 2 the only possible types for minimal models are types (4)-(7). By Theorem 6.1.13

we see that (4), (5), and (6) include the required vector. Let H = [{vi}i∈Z] be a semitoric helix of
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type (7) with associated integers a0, . . . , ad−1 and let A0 = [v0, v1]. Then

S2A−1
0 T cA0 =〈S,T 〉 ST

a0 . . . ST ad−1 , (6.8)

implies

S2A−1
0 T c =〈S,T 〉 ST

a0 . . . ST ak+1 (6.9)

for some k ∈ Z, since A0 starts with S. By the recurrence relation

aivi+1 = vi + vi+2

we see

[vk+2, vk+3] =SL2(Z) A0ST
a0 . . . ST ak+1 . (6.10)

Combining Equations (6.9) and (6.10) yields

[vk+2, vk+3] =PSL2(Z) A0S
2A−1

0 T c

which implies

[vk+2, vk+3] =PSL2(Z) T
c =PSL2(Z)

1 c

0 1


so vk+2 is the required vector.

Theorem 6.2.1 follows from Lemma 6.6.4 because the existence of a horizontal vector in a

semitoric helix implies that there must be a vertical edge on the moment polygon for the associated

semitoric manifold.

Acknowledgements. Chapter 6, in part, is comprised of material in preparation for submission

by the author of this dissertation, Daniel M. Kane, and Álvaro Pelayo as Minimal models in semitoric

geometry.



Chapter 7

Symplectic G-capacities

7.1 Introduction

In this chapter I give a notion of symplectic capacity for symplectic G-manifolds, where

G is any Lie group, which I call a symplectic G-capacity, and give nontrivial examples. Such a

capacity retains the properties of a symplectic capacity (monotonicity, conformality, and an analogue

of non-triviality) with respect to symplectic G-embeddings. Symplectic capacities are examples of

symplectic G-capacities in the case that G is trivial. In analogy with symplectic capacities, symplectic

G-capacities distinguish the symplectic G-type of symplectic G-manifolds. As a first example I

construct an equivariant analogue of the Gromov radius where G = Rk as follows. Let Symp2n,G

denote the category of 2n-dimensional symplectic G-manifolds. That is, an element of Symp2n,G is a

triple (M,ω, φ) where (M,ω) is a symplectic manifold and φ : G×M →M is a symplectic G-action.

Given integers 0 6 k 6 m 6 n I define the (m, k)-equivariant Gromov radius

cm,kB : Symp2n,Rk → [0,∞] (7.1)

(M,ω, φ) 7→ sup{ r > 0 | B2m(r)
Rk
↪−−→M },

where
Rk
↪−−→ denotes a symplectic Rk-embedding and B2m(r) ⊂ Cm is the standard 2m-dimensional

ball of radius r > 0 with Rk-action given by rotation of the first k coordinates.

151
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Theorem 7.1.1. If k > 1, the (m, k)-equivariant Gromov radius cm,kB : Symp2n,Rk → [0,∞] is a

symplectic Rk-capacity.

I prove Theorem 7.1.1 in Section 7.2.3. Thanks to the added structure of the Rk-action the

proof is elementary.

Let Symp2n,Tn
T be the category of Tn-manifolds which can be obtained from toric integrable

systems. The morphisms of Symp2n,Tn
T are Tn-equivariant embeddings. Similarly, let Symp4,S1×R

ST be

the category of (S1 × R)-manifolds which can be obtained from semitoric integrable systems with

(S1 ×R)-equivariant embeddings as the morphisms. Notice that MT is isomorphic to the quotient of

Symp2n,Tn
T by toric isomophisms and translations of the momentum map while MST is the quotient

of Symp4,S1×R
ST by semitoric isomorphisms and translations of the momentum map.

As an application of symplectic G-capacities to integrable systems I define the toric packing

capacitytoric packing capacity

T : Symp2n,Tn
T → [0,∞] (7.2)

(M,ω, φ) 7→
(

sup{ vol(P ) | P is a toric ball packing of M }
vol(B2n)

) 1
2n

,

where vol(E) denotes the symplectic volume of a subset E of a symplectic manifold, B2n is the

standard symplectic unit 2n-ball, Symp2n,Tn
T is the category of 2n-dimensional symplectic toric

manifolds, and a toric ball packing P of M is given by a disjoint collection of symplectically and

Tn-equivariantly embedded balls. In analogy I define the semitoric packing capacity

ST : Symp4,S1×R
ST → [0,∞]

on Symp4,S1×R
ST , the category of semitoric manifolds (see Section 2.2.7), where P in (7.2) is replaced

by a semitoric ball packing of M (Definition 7.5.2).

Theorem 7.1.2. The toric packing capacity T : Symp2n,Tn
T → [0,∞] is a symplectic Tn-capacity and

the semitoric packing capacity ST : Symp4,S1×R
ST → [0,∞] is a symplectic (S1 × R)-capacity.

In Chapter 8, I will study the continuity of capacities which are defined in the present chapter

using the metric on toric integrable systems from [67] and the metric on semitoric integrable systems
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from Chapter 3.

7.2 Symplectic G-capacities

Recall for n > 1 and r > 0, B2n(r) ⊂ Cn denotes the 2n-dimensional open symplectic ball of

radius r and

Z2n(r) = { (zi)
n
i=1 ∈ Cn | |z1| < r }

is the 2n-dimensional open symplectic cylinder of radius r. Both inherit a symplectic structure

from their embedding as a subset of Cn with symplectic form ω0 = i
2

∑n
j=1 dzj ∧ dz̄j . We write

B2n = B2n(1), Z2n = Z2n(1), and in this chapter ↪→ will always denote a symplectic embedding.

7.2.1 Symplectic G-capacities

Let G be a Lie group and let Sympl(M) denote the group of symplectomorphisms of

the symplectic manifold (M,ω). Recall, a smooth G-action φ : G × M → M is symplectic if

φ(g, ·) ∈ Sympl(M) for each g ∈ G. The triple (M,ω, φ) is a symplectic G-manifold. A symplectic

G-embedding ρ : (M1, ω1, φ1) ↪→ (M2, ω2, φ2) is a symplectic embedding for which there exists an

automorphism Λ: G → G of G such that ρ(φ1(g, p)) = φ2(Λ(g), ρ(p)) for all p ∈ M1, g ∈ G, in

which case we say that ρ is a symplectic G-embedding with respect to Λ. We write
G
↪−→ to denote a

symplectic G-embedding. We denote the collection of all 2n-dimensional symplectic G-manifolds by

Symp2n,G. The set Symp2n,G is a category with morphisms given by symplectic G-embeddings. We

call a subcategory CG of Symp2n,G a symplectic G-category if (M,ω, φ) ∈ CG implies (M,λω, φ) ∈ CG

for any λ ∈ R \ {0}. Let CG ⊂ Symp2n,G be a symplectic G-category.

Definition 7.2.1. A generalized symplectic G-capacity on CG is a map c : CG → [0,∞] satisfying:

1. Monotonicity : if (M,ω, φ), (M ′, ω′, φ′) ∈ CG and there exists a symplectic G-embedding

M
G
↪−→M ′ then c(M,ω, φ) 6 c(M ′, ω′, φ′);

2. Conformality : if λ ∈ R \ {0} and (M,ω, φ) ∈ CG then c(M,λω, φ) = |λ| c(M,ω, φ).

When the symplectic form and G-action are understood we often write c(M) for c(M,ω, φ).

Let c be a generalized symplectic G-capacity on a symplectic G-category CG.
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Definition 7.2.2. For (N,ωN , φN ) ∈ CG we say that c satisfies N -non-triviality or is non-trivial on

N if 0 < c(N) <∞.

Definition 7.2.3. We say that c is tamed by (N,ωN , φN ) ∈ Symp2n,G if there exists some a ∈ (0,∞)

such that the following two properties hold:

(1) if M ∈ CG and there exists a symplectic G-embedding M
G
↪−→ N then c(M) 6 a;

(2) if P ∈ CG and there exists a symplectic G-embedding N
G
↪−→ P then a 6 c(P ).

The non-triviality condition in Definition 2.1.6 requires that B2n,Z2n ∈ CG and 0 < c(B2n) 6

c(Z2n) <∞, and tameness encodes this second condition without necessarily including the first one.

If c is a generalized symplectic G-capacity on CG ⊂ Symp2n,G we define

Symp2n,G
0 (c) = {N ∈ Symp2n,G | inf{ c(P ) | P ∈ CG, N

G
↪−→ P } = 0 },

Symp2n,G
∞ (c) = {N ∈ Symp2n,G | sup{ c(M) |M ∈ CG,M

G
↪−→ N } =∞},

Symp2n,G
tame(c) = {N ∈ Symp2n,G | c is tamed by N }.

A generalized symplectic G-capacity gives rise to a decomposition of Symp2n,G.

Proposition 7.2.4. Let c be a generalized symplectic G-capacity on a symplectic G-category CG.

Then:

(a) Symp2n,G = Symp2n,G
0 (c) ∪ Symp2n,G

∞ (c) ∪ Symp2n,G
tame(c);

(b) the union in part (a) is pairwise disjoint;

(c) c is non-trivial on N ∈ Symp2n,G if and only if N ∈ CG ∩ Symp2n,G
tame(c).

Proof. In order to prove item (a) we show that if N ∈ Symp2n,G is not in Symp2n,G
0 (c)∪Symp2n,G

∞ (c)

then it is in Symp2n,G
tame(c). If M

G
↪−→ N

G
↪−→ P for some M,P ∈ CG then M

G
↪−→ P so c(M) 6 c(P ). Let

a1 = sup{ c(M) |M G
↪−→ N } and a2 = inf{ c(P ) | N G

↪−→ P }. Since N /∈ Symp2n,G
0 (c) ∪ Symp2n,G

∞ (c)

we have that 0 < a1 6 a2 <∞. Pick a ∈ [a1, a2]. If M ∈ CG and M
G
↪−→ N then c(M) 6 a1 6 a and

if P ∈ CG and N
G
↪−→ P then c(P ) > a2 > a so N ∈ Symp2n,G

tame(c). Item (b) follows from a similar

argument and (c) is immediate.

In light of item (c) we view Symp2n,G
tame(c) as an extension of the set of elements of Symp2n,G

on which c is non-trivial to include those elements outside of the domain of c.
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7.2.2 Symplectic (Tk × Rd−k)-capacities

For 1 6 d 6 n the standard action of Td on Cn is given by

φCn
(
(αi)

d
i=1, (zi)

n
i=1

)
= (α1z1, . . . , αdzd, zd+1, . . . , zn).

This action induces actions of Td = Tk × Td−k on B2n and Z2n, which in turn induce the standard

actions of Tk ×Rd−k on B2n and Z2n for k 6 d. The action of an element of Tk ×Rd−k is the action

of its image under the quotient map Tk × Rd−k → Td. In the following we endow B2n and Z2n with

the standard actions.

Definition 7.2.5. A generalized symplectic (Tk×Rd−k)-capacity is a symplectic (Tk×Rd−k)-capacity

if it is tamed by B2n and Z2n.

7.2.3 A first example

The Gromov radius cB : Symp2n → (0,∞] is given by

cB(M) := sup{ r > 0 | B2n(r) ↪→M }.

Fix 0 6 k 6 m 6 n and let cm,kB be as in Equation (7.1). If k = 0 and m = n then cB = cm,kB .

Proof of Theorem 7.1.1. Parts (1) and (2) of Definition 7.2.1 are immediate. By the standard

inclusion map cm,kB (B2n) > 1 so we only must show that cm,kB (Z2n) 6 1. Suppose that for r > 1

ρ : B2m(r)
Rk
↪−−→ Z2n is a symplectic Rk-embedding with respect to some Λ ∈ Aut(Rk). Let

(η1, . . . , ηk) = Λ−1(1, 0, . . . , 0).

Since Λ is an automorphism ηj0 6= 0 for some j0 ∈ {1, . . . , k}. Pick

w = (0, . . . , 0, wj0 , 0, . . . , 0) ∈ B2m(r)

with entries all zero except in the jth
0 position and such that |wj0 | > 1. Let u = (u1, . . . , un) = ρ(w)

and note |u1| < 1. Let ι : R ↪→ Rk be given by ι(x) = (x, 0, . . . , 0). Let φB : Rk × B2m(r)→ B2m(r)
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and φZ : Rk × Z2n → Z2n be the standard actions of Rk. Then for x ∈ R

ρ
(
φB(Λ−1 ◦ ι(x), w)

)
= φZ(ι(x), ρ(w)) = φZ(ι(x), u).

Thus

ρ
(
{ (0, . . . , e2ixηj0wj0 , 0, . . . , 0) | x ∈ R }

)
= { (e2ixu1, u2, . . . , un) | x ∈ R } (7.3)

and since ρ is injective and ηj0 6= 0 this means that u1 6= 0. Let

SB = { (0, . . . , 0, α, 0, . . . , 0) ∈ B2m(r) | |α| < |wj0 | }

where α is in the jth
0 position and

SZ = { (β, u2, . . . , un) ∈ Z2n | |β| < |u1| }.

Equation (7.3) implies that ρ(∂SB) = ∂SZ and since ρ is an embedding this means ∂(ρ(SB)) = ∂SZ.

Since ρ(SB) and SZ have the same boundary, ωZ is closed, and Z2n has trivial second homotopy

group,
w

ρ(SB)

ωZ =
w

SZ

ωZ.

Finally, integrating over z we have

i

2

w

|z|<|wj |

dz ∧ dz̄ =
w

SB

wB =
w

SB

ρ∗ωZ =
w

ρ(SB)

ωZ =
w

SZ

ωZ =
i

2

w

|z|<|u1|

dz ∧ dz̄.

This implies that 1 < |wj | = |u1| < 1, which is a contradiction.

It follows from the proof that cm,kB (B2n) = cm,kB (Z2n) = 1.

Proposition 7.2.6. Let M = (S2)n with symplectic form ωM = 1
2

∑n
i=1 dhi ∧dθi where hi ∈ [−1, 1],

θi ∈ [0, 2π), i = 1, . . . , n, are the standard height and angle coordinates. Let Rk, 1 6 k 6 n, act on

M by rotating the first k components. Then

cm,kB (M) =
√

2
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for all m, k ∈ Z with 1 6 k 6 m 6 n.

Proof. The map ρ : B2n(
√

2)
Rn
↪−−→M given by

ρ(r1e
iθ1 , . . . , rne

iθn) = (θ1, r
2
1 − 1, . . . , θn, r

2
n − 1)

is a symplectic Rn-embedding, so cn,nB (M) >
√

2.

Fix k,m, n ∈ Z satisfying 0 < k 6 m 6 n and let ρ : B2m(r)
Rk
↪−−→ M be a symplectic

Rk-embedding for some r > 0. Let

Bj = { (hi, θi)
n
i=1 ∈M | hi ∈ {±1} if i 6 k and i 6= j }

for j = 1, . . . , k. For R ∈ (0, r) let

AR = { (z, 0, . . . , 0) ∈ B2m(r) | |z| < R }.

Every point in AR, except at the identity, has the same (k − 1)-dimensional stabilizer in Rk so

there exists j0 6 k such that ρ(AR) ⊂ Bj0 for all R ∈ (0, r). Write ρ = (Hi,Θi)
n
i=1 and consider

coordinates (r, θ) on AR given by (reiθ, 0, . . . , 0)→ (r, θ). For i 6= j0 this means that Hi is constant

if i 6 k and the Rn-equivariance of ρ implies that Hi and Θi are independent of θ if i > k. Thus if

i ∈ {1, . . . , n} and i 6= j0 then

w

ρ(AR)

dhi ∧ dθi =
w

AR

dHi ∧ dΘi = 0

for R ∈ (0, r). Therefore,

πR2 =
w

AR

ωB =
w

ρ(AR)

ωM =
1

2

w

ρ(AR)

dhj0 ∧ dθj0 +
1

2

∑
i 6=j0

 w

ρ(AR)

dhi ∧ dθi

 6 1

2

w

S2

dh ∧ dθ = 2π

for any R ∈ (0, r). This implies that r 6
√

2 so

√
2 6 cn,nB (M) 6 cm,kB (M) 6

√
2
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for any k,m, n ∈ Z satisfying 0 < k 6 m 6 n.

Figure 7.1: A symplectic R-embedding.

Example 7.2.7. For k, n ∈ Z>0 with k < n let M = Z2n with the standard symplectic form. There

are two natural ways in which Rk can act symplectically on M given by

φ1((ti)
k
i=1, (zi)

n
i=1) = (e2it1z1, e

2it2z2, . . . , e
2itkzk, zk+1, . . . , zn)

and

φ2((t)ki=1, (zi)
n
i=1) = (z1, e

2it1z2, . . . , e
2itkzk+1, zk+2, . . . , zn)

where φi : Rk ×M →M for i = 1, 2. Let ρ : M →M be given by

ρ((zi)
n
i=1) =

(
zk+1

1 + |zk+1|
,

z1

1− |z1|
, z2, . . . , zk, zk+2, . . . , zn

)

similar to the map shown in Figure 7.1. The map ρ is well-defined because |z1| < 1 and it is an

Rk-equivariant diffeomorphism because

ρ
(
φ1((ti)

k
i=1, (zi)

n
i=1)

)
=

(
zk+1

1 + |zk+1|
, e2it1

z1

1− |z1|
, e2it2z2, . . . , e

2itkzk, zk+2, . . . , zn

)
= φ2

(
(t)ki=1, ρ((zi)

n
i=1)

)

for all t1, . . . , tk ∈ R. Thus the symplectic Rk-manifolds (M,ω, φ1) and (M,ω, φ2) are symplectomor-

phic via the identity map and Rk-equivariantly diffeomorphic via ρ but they are not Rk-equivariantly

symplectomorphic because c1,1B (M,ω, φ1) = 1 and c1,1B (M,ω, φ2) =∞. �
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7.3 Hamiltonian (Tk × Rn−k)-actions

In this section we review the facts we need for the remainder of the chapter about Hamiltonian

(Tk × Rn−k)-actions and their relation to toric and semitoric systems. Let (M,ω) be a symplectic

manifold and G a Lie group with Lie algebra Lie(G) and dual Lie algebra Lie(G)∗. Recall, a

symplectic G-action is Hamiltonian if there exists a map µ : M → Lie(G)∗, known as the momentum

map, such that

−d〈µ,X〉 = ω(XM , ·)

for all X ∈ Lie(G) where XM denotes the vector field on M generated by X via the action of G. A

Hamiltonian G-manifold is a quadruple (M,ω, φ, µ) where (M,ω, φ) is a symplectic G-manifold for

which the action of G is Hamiltonian with momentum map µ. Let Ham2n,G denote the category

of 2n-dimensional Hamiltonian G-manifolds with morphisms given by symplectic G-embeddings

which intertwine the momentum maps. Let I2n denote the set of all 2n-dimensional integrable

systems and define an equivalence relation ∼I on this space by declaring (M,ω, F ) and (M ′, ω′, F ′)

to be equivalent if there exists a symplectomorphism φ : M →M ′ such that F − φ∗F ′ : M → Rn is

constant.

7.3.1 Hamiltonian Rn-actions and integrable systems

Let (M,ω, F = (f1, . . . , fn)) be an integrable system and for i = 1, . . . , n let ψti : M →

M denote the flow along Xfi , the Hamiltonian vector field of fi. The Hamiltonian flow action

φF : Rn ×M →M , given by φF ((t1, . . . , tn), p) = ψt11 ◦ . . . ◦ ψtnn (p), defines a Hamiltonian Rn-action

on M . The action of G on M is almost everywhere locally free if the stabilizer of p is discrete for

almost all p ∈ M . Let FSymp2n,Rn be the space of Rn-manifolds on which the action of Rn is

Hamiltonian and almost everywhere locally free and let ∼Rn denote equivalence by Rn-equivariant

symplectomorphisms.

Lemma 7.3.1. Let X1, . . . ,Xn be vector fields with commuting flows on an m-manifold M , with

n 6 m. Let Rn act on M by φ((t1, . . . , tn), p) = ψt11 ◦ . . . ◦ ψtnn (p) where ψti is the flow of Xi. Then,

for p ∈M , the vectors (X1)p, . . . , (Xn)p ∈ TpM are linearly independent if and only if the stabilizer

of p under the action φ is discrete.
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Proof. If (X1)p, . . . , (Xn)p are linearly independent then, since they have commuting flows, there is a

chart (U, g), with U ⊂M and g : U → Rm, such that g−1 : g(U)→ U satisfies

g−1(t1, . . . , tn, 0, . . . , 0) = φ((t1, . . . , tn), p)

for any (t1, . . . , tn, 0, . . . , 0) ∈ g(U). Thus g(U) is an open neighborhood of the identity in Rn and

there exists no non-zero point in g(U) which fixes p, so the stabilizer of p under the action of Rn is

discrete. On the other hand, if (X1)p, . . . , (Xn)p are linearly dependent, there exist t1, . . . , tn ∈ R

not all zero such that
∑n
i=1 ti(Xi)p = 0. Thus (αt1, . . . , αtn) ∈ Rn fixes p for all α ∈ R and so the

stabilizer of p is not discrete.

Proposition 7.3.2. Let ψ be the map which takes an integrable system on M to M equipped with

its Hamiltonian flow action. Then

ψ : I2n/∼I → FSymp2n,Rn/∼Rn

is a bijection.

Proof. By Lemma 7.3.1 we know that the Hamiltonian flow action must be almost everywhere locally

free because the Hamiltonian vector fields of an integrable system are by definition independent

almost everywhere. Next suppose that Rn acts Hamiltonianly on M in such a way that the action

is almost everywhere locally free. Since the action is Hamiltonian there exists a momentum map

µ : M → Lie(Rn)∗. Define F = (f1, . . . , fn) : M → Rn by F = A ◦ µ where A : Lie(Rn)∗ → Rn is the

standard identification which is induced by the standard basis {e1, . . . , en} of Rn. These functions

Poisson commute because action by the components of Rn commute and are linearly independent

at almost all points because the group action is almost everywhere locally free (Lemma 7.3.1).

Thus, (M,ω, F ) is an integrable Hamiltonian system. Let {v1, . . . , vn} be the standard basis of

Lie(Rn) ∼= Rn induced by the standard basis of Rn. Let vM denote the vector field on M generated

by v ∈ Lie(Rn) via the action of G. Then 〈µ, vi〉 = fi : M → R so dfi = ω((vi)M , ·) which means

that the Hamiltonian vector field associated to fi is (vi)M . Thus the Hamiltonian flow action related

to F is the original action of Rn.
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Here we fix the identification between Lie(Tn)∗ and Rn that we will use for the remainder of

the chapter. We specify our convention by choosing an epimorphism from R to T1, which we take to

be x 7→ e2
√
−1x.

7.3.2 Hamiltonian Tk-actions

We denote by Ham2n,Tn
T the category of 2n-dimensional symplectic toric manifolds with

morphisms as symplectic Tn-embeddings and we denote equivalence by toric isomorphism by ≈T.

In general being an invariant is weaker than being monotonic, but in the case of toric manifolds

these are equivalent because symplectic Tn-embeddings between toric manifolds are automatically

Tn-equivariant symplectomorphisms. Delzant proved [21] that in this case µ(M) is a Delzant polytope,

i.e. simple, rational, and smooth, and that

Ψ: Ham2n,Tn
T /≈T → PT

[(M,ω, φ, µ)] 7→ µ(M)

is a bijection, where PT denotes the set of n-dimensional Delzant polytopes. Let Ham2n,Tn →

Symp2n,Tn be given by (M,ω, φ, µ) 7→ (M,ω, φ) and let Symp2n,Tn
T denote the image of Ham2n,Tn

T

under this map. Also let ∼T denote equivalence on Symp2n,Tn
T by Tn-equivariant symplectomorphisms.

7.3.3 Hamiltonian (S1 × R)-actions

Let (Mi, ωi, Fi = (Ji, Hi)) be a semitoric integrable system for i = 1, 2. Let Ham4,S1×R
ST denote

the category of simple semitoric systems and let ≈ST denote equivalence by semitoric isomorphism.

Let Symp4,S1×R
ST denote the image of Ham4,S1×R

ST under the map Ham4,S1×R → Symp4,S1×R given by

(M,ω, φ, µ) 7→ (M,ω, φ) and let ∼ST denote the equivalence on Symp4,S1×R
ST inherited from ∼ST on

Ham4,S1×R
ST .

7.4 Symplectic Tn-capacities

In this section we construct a symplectic Tn-capacity on the space of symplectic toric

manifolds. Recall MT
∼= Ham2n,Tn

T /≈T is the moduli space of 2n-dimensional toric integrable systems
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up to Tn-equivariant symplectomorphisms which preserve the moment map. In [31, 64, 65, 68] the

authors study the toric optimal density function Ω: Ham2n,Tn
T /≈T → (0, 1], which assigns to each

toric integrable system the fraction of that manifold which can be filled by equivariantly embedded

disjoint open balls. This function is not a capacity because it is not monotonic or conformal. Next

we study a modified version of this function which is a capacity.

For M ∈ Symp2n,Tn by a Tn-equivariantly embedded ball we mean the image φ(B2n(r)) of

a symplectic Tn-embedding φ : B2n(r)
Tn
↪−−→ M for some r > 0. A toric ball packing of M [64] is a

disjoint union P =
⊔
α∈ABα where Bα ⊂M is a symplectically and Tn-equivariantly embedded ball

in M for each α ∈ A, where A is some index set. That is, for each α ∈ A there exists some rα > 0

and some symplectic Tn-embedding φα : B2n(rα)
Tn
↪−−→M such that

φα(B2n(rα)) = Bα.

An example is shown in Figure 7.2. Recall the toric packing capacity T : Symp2n,Tn
T → [0,∞]

defined in Equation (7.2). In the following for M ∈ Symp2n,Tn let cn,nB (M) be defined by first lifting

the action of Tn on M to an action of Rn and applying the usual cn,nB to the resulting symplectic

Rn-manifold.

Figure 7.2: Toric ball packing of S2 by symplectic T2-disks.

Lemma 7.4.1. Let M ∈ Symp2n,Tn
T , N ∈ Symp2n,Tn be such that the Tn-action on N has ` ∈ Z>0

fixed points. If there is a symplectic Tn-embedding M
Tn
↪−−→ N then T(M) 6 `1/2ncn,nB (N).

Proof. Since the center of B2n(r), r > 0, is a fixed point of the Tn-action we see that the maximal

number of such balls that can be simultaneously equivariantly embedded with disjoint images into M

is the Euler characteristic χ(M) of M , which is the number of fixed points of the Tn-action on M .

Each of these balls has radius at most cn,nB (M). For r > 0 we have that vol(B2n(r)) = r2nvol(B2n).
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Therefore

(T(M))2nvol(B2n) 6 χ(M)vol
(
B2n(cn,nB (M))

)
= χ(M)

(
cn,nB (M)

)2n
vol(B2n).

Since Tn-embeddings send fixed points to fixed points and M
Tn
↪−−→ N we know that χ(M) 6 `.

Furthermore, since M
Tn
↪−−→ N and cn,nB is a symplectic Tn-capacity by Theorem 7.1.1 we have that

cn,nB (M) 6 cn,nB (N). Hence T(M) 6 `1/2ncn,nB (N).

Proposition 7.4.2. The toric packing capacity is a symplectic Tn-capacity on Symp2n,Tn
T .

Proof. Let M ∈ Symp2n,Tn
T with χ(M) ∈ Z>0 fixed points and fix any ordering of these points.

Notice that T(M) is the supremum of

{ ‖~r‖2n | ~r ∈ Rχ(M), PM (~r) ⊂M is a toric packing }

where ~r = (r1, . . . , rχ(M)) ∈ Rχ(M),

‖~r‖2n =

χ(M)∑
j=1

r2n
j

1/2n

is the standard `2n-norm, and PM (~r) ⊂M is the toric ball packing of M in which B2n(rj) is embedded

at the jth fixed point of M for j = 1, . . . , χ(M). Suppose that ρ : B2n(r)
Tn
↪−−→ M is a symplectic

Tn-embedding into (M,ω, φ) for some r > 0. Then for any λ ∈ R\{0} the map ρλ : B2n(|λ| r) Tn
↪−−→M

given by

ρλ(z) = ρ(z/|λ|)

is a symplectic Tn-embedding into (M,λω, φ). Thus if PM (~r) is a toric packing of (M,ω, φ) then

PM (|λ| r1, . . . , |λ| rχ(M)) is a toric ball packing of (M,λω, φ) for any λ ∈ R \ {0}. This and the fact

that ‖λr‖2n = |λ| ‖r‖2n for all r ∈ Rχ(M) and λ ∈ R imply that T is conformal. Now suppose that

M,M ′ ∈ Symp2n,Tn
T and ρ : M

Tn
↪−−→ M ′. If P ⊂ M is a toric ball packing of M then ρ(P ) ⊂ M ′ is

a toric ball packing of M ′ of the same volume so T(M) 6 T(M ′) and we see that T is monotonic.

Finally, suppose that there is a symplectic Tn-embedding M
Tn
↪−−→ Z2n. Then, since Z2n has only one
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point fixed by the Tn-action and recalling that cn,nB (Z2n) = 1, it follows from Lemma 7.4.1 that

T(M) 6 (1)
1/2ncn,nB (Z2n) = 1.

Finally, suppose that ρ : B2n Tn
↪−−→M is a symplectic Tn-embedding. Then P = ρ(B2n) ⊂M

is a toric ball packing of M and thus

T(M) >

(
vol(P )

vol(B2n)

)1/2n

= 1.

Hence T is tame.

Example 7.4.3. Let M ∈ Symp2n,Tn
T . In [65] it is shown that there exists a Z-valued function

EmbM : R>0 → [0, n!χ(M)] such that the homotopy type of the space of symplectic Tn-embeddings

from B2n(r) into M is given by the disjoint union of EmbM (r) copies of Tn. Thus, for each r ∈ R>0

we may define a symplectic Tn-capacity Er on Symp2n,Tn
T given by

Er : Symp2n,Tn
T → [0,∞]

(M,ω, φ) 7→ (vol(M))
1
nEmbM ((vol(M))

1
n r).

Since EmbM is invariant up to Tn-equivariant symplectomorphisms [65] and symplectic embeddings

in Symp2n,Tn
T are automatically symplectomorphisms we see that Er is monotonic and it is an exercise

to check that it is conformal. It is tame because the space of symplectic Tn-embeddings of B2n into

Z2n is homotopic to n! disjoint copies of Tn. �

7.5 Symplectic (S1 × R)-capacities

In this section we construct a symplectic (S1×R)-capacity on the space of semitoric integrable

systems. Let (M,ω, F = (J,H)) be a simple semitoric integrable system with mf focus-focus singular

points and let {λj}
mf
j=1 ⊂ R be the image under J of these points ordered so that λ1 < λ2 < . . . < λmf .

Let (λj , yj) be the image under F of the jth focus-focus singular point and for ε ∈ {±1} let `ελj be
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those (λj , y) ∈ `λj such that εy > εyj . Let `~ε = `ελ1
∪ . . . ∪ `

εmf
λmf

. A homeomorphism

f : F (M)→ f(F (M)) ⊂ R2

is a straightening map for M [77] if for some choice of ~ε ∈ {±1}mf we have the following: f |F (M)\`~ε

is a diffeomorphism onto its image; f |F (M)\`~ε is affine with respect to the affine structure F (M)

inherits from action-angle coordinates on M and the affine structure f(F (M)) inherits as a subset

of R2; f preserves J , i.e. f(x, y) = (x, f (2)(x, y)); f |F (M)\`~ε extends to a smooth multi-valued map

from F (M) to R2 such that for any c = (x0, y0) ∈ `~ε we have

lim
(x,y)→c
x<x0

df(x, y) = T lim
(x,y)→c
x>x0

df(x, y);

and the image of f is a rational convex polygon. Recall that T is the matrix given in Equation (2.2).

We say f is associated to ~ε.

Let T ⊂ AGL2(Z) be the subgroup including powers of T composed with vertical translations.

It was proved in [77] that a semitoric system (M,ω, F ) has a straightening map f : M → R2 associated

to each ~ε ∈ {±1}mf , unique up to left composition with an element of T. Define

FM = { f ◦ F | f is a straightening map for M }. (7.4)

If Va : R2 → R2 denotes vertical translation by a ∈ R, then

{ F̃ (M) | F̃ ∈ FM } = {Va(∆) ⊂ R2 | ∆ is associated to M and a ∈ R }

where a polygon is associated to M if it is an element of the affine invariant of M . Up to vertical

translations the set FM is the orbit of a single non-unique function under the action of Gmf × G. If

F̃ ∈ FM then there exists some ~ε ∈ {−1,+1}mf such that F̃ |M~ε : M~ε → R2 is a momentum map for

a T2-action φF̃ : T2 ×M~ε →M~ε where M~ε = M \ F−1(`~ε).

Corollary 7.5.1. The manifold M~ε has on it a momentum map for a Hamiltonian T2-action unique

up to G. Thus M~ε ∈ Symp4,T2

and the given T2-action is unique up to composing the associated
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momentum map with an element of G.

We call such actions of T2 on M~ε induced actions of T2. Given any ρ : N → M with

ρ(N) ⊂M~ε define ρ~ε : N →M~ε by ρ~ε(p) = ρ(p) for p ∈ N .

Definition 7.5.2. Let (M,ω, F ) be a semitoric integrable system and let (N,ωN , φ) ∈ Symp4,T2

.

A symplectic embedding ρ : N ↪→ M is a semitoric embedding if there exists ~ε ∈ {±1}mf and an

induced action φ~ε : T2 ×M~ε → M~ε such that ρ(N) ⊂ M~ε and ρ~ε : (N,ωN , φ)
T2

↪−→ (M~ε, ω, φ~ε) is a

symplectic T2-embedding.

Let (M,ω, F ) be a semitoric manifold. A semitoric ball packing of M is a disjoint union

P =
⊔
α∈ABα where Bα ⊂M is a semitorically embedded ball in M . The semitoric packing capacity

ST : Symp4,S1×R
ST → [0,∞] is given by

ST(M) =

(
sup{ vol(P ) | P ⊂M is a semitoric ball packing of M }

vol(B4)

) 1
4

.

In order to show that ST is a (S1 × R)-capacity we need the following lemmas.

Lemma 7.5.3. For i = 1, 2 let (Mi, ωi) be a symplectic integrable system, let fi : Mi → R be

a function, and let Xfi denote the Hamiltonian vector field of fi on Mi. If ρ : M1 → M2 is a

symplectomorphism such that ρ∗Xf1 = Xf2 then f1 − ρ∗f2 : M1 → R is constant.

Proof. Notice that

d(ρ∗f2) = ρ∗(df2) = ρ∗(ιXf2ω2) = ρ∗(ιρ∗Xf1ω2)

= ω2(ρ∗Xf1 , ρ∗(·)) = (ρ∗ω2)(Xf1 , ·) = ιXf1ω1 = df1,

thus f1 and ρ∗f2 differ by a constant.

Lemma 7.5.4. Let (Mi, ωi, Fi = (Ji, Hi)) be semitoric integrable systems for i = 1, 2. If

ρ : M1
S1×R
↪−−−−→M2
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is a symplectic (S1 × R)-embedding with respect to the Hamiltonian flow action on each system, then

ρ∗J2 = eJ1 + cJ and ρ∗H2 = aJ1 + bH1 + cH

for some e ∈ {±1} and a, b, cJ , cH ∈ R such that b 6= 0.

Proof. Since ρ is S1 × R-equivariant there exists Λ ∈ Aut(S1 × R) such that ρ(φ(g,m1)) =

φ(Λ(g), ρ(m1)) for all g ∈ S1 × R and m1 ∈ M1. Associate S1 × R with R/Z × R and give it

coordinates (x, y) ∈ R2. Then Λ ∈ Aut(S1 × R) and Λ continuous means that Λ descends from a

linear invertible map from R2 to itself, which we will also denote Λ ∈ GL2(R). Write Λ = (Λij) for

Λij ∈ R and i, j ∈ {1, 2}. The automorphism Λ sends the identity to itself so Λ

n
0

 ∈ Z×{0} for all

choices of n ∈ Z. This implies that Λ11 ∈ Z and Λ21 = 0. Since Λ is invertible and Λ−1 ∈ Aut(S1×R)

we see that (Λ11)−1 ∈ Z and so Λ11 = ±1. Since Λ is invertible and upper triangular we know that

Λ22 6= 0.

For a function f : Mi → R let Xf denote the associated Hamiltonian vector field on Mi,

i = 1, 2. Also, for v ∈ g = Lie(S1×R), thought of as the tangent space to the identity, let vMi
denote

the vector field on Mi generated by v by the group action. Endow g with the coordinates (α, β) so

that the exponential map will send (α, β) ∈ g to (α, β) ∈ R/Z× R. Now notice that XJ1 = (1, 0)M1

and XH1
= (0, 1)M1

.

For mi ∈Mi, i = 1, 2, such that ρ(m1) = m2 we have

ρ∗XJ1(m2) =
d

dt

∣∣∣∣
t=0

(
ρ
(
φ((t, 0),m1)

))
=

d

dt

∣∣∣∣
t=0

(
φ(Λ[(t, 0)],m2)

)
=
(
TΛ(1, 0)

)
M2

(m2)

Notice that T(1,0) = (Λ11, 0) ∈ g. Then ρ∗XJ1 =
(
TΛ(1, 0)

)
M2

= Λ11(1, 0)M2 = Λ11XJ2 . Similarly we

see that ρ∗XH1 = Λ12XJ2 + Λ22XH2 . By Lemma 7.5.3 this implies that

ρ∗J2 =
1

Λ11
J1 + cJ and ρ∗H2 =

−Λ12

Λ11Λ22
J1 +

1

Λ22
H1 + cH

for some cJ , cH ∈ R. Recalling that Λ11 ∈ {±1} and Λ11,Λ22 6= 0 take e = (Λ11)−1, a = −Λ12

Λ11Λ22
, and

b = (Λ22)−1 to complete the proof.



168

Proposition 7.5.5. The semitoric packing capacity, ST, is a symplectic (S1 × R)-capacity on

Symp4,S1×R
ST .

Proof. The proof that ST is conformal and non-trivial is analogous to the proof of Proposition 7.4.2,

so we must only show that ST is monotonic. Let (Mi, ωi, Fi) be semitoric for i = 1, 2 and suppose

φ : M1
S1×R
↪−−−−→M2 is a symplectic (S1 ×R)-embedding. Recall that action-angle coordinates are local

Darboux charts in which the flow of the Hamiltonian vector fields are linear. Since φ is symplectic,

(S1 × R)-equivariant, and φ∗(F2) = A ◦ F1 where A : R2 → R2 is affine (Lemma 7.5.4), this means

that φ sends action-angle coordinates to action-angle coordinates. Since semitoric embeddings are

those which respect the action-angle coordinates, given any semitoric embedding ρ : B2n(r) ↪→M1

the map φ ◦ ρ : B2n(r) ↪→M2 is a semitoric embedding. It follows that ST(M1) 6 ST(M2).

Theorem 7.1.2 follows from Propositions 7.4.2 and 7.5.5.

Remark 7.5.6. There are many examples of classical symplectic capacities (see for instance [13]),

and it would be of interest to adapt these capacities to the equivariant category. It would also

be useful to construct symplectic G-capacities for more general integrable systems. In particular,

integrable systems where a complete list of invariants is not known (that is, the vast majority).

In [34] the authors give a lower bound on the number of fixed points of a circle action on

a compact almost complex manifold M with nonempty fixed point set, under the condition that

the Chern number c1cn−1[M ] vanishes. These results apply to a class of manifolds which do not

support any Hamiltonian circle action with isolated fixed points, and which includes all symplectic

Calabi-Yau manifolds [84] (see [34, Proposition 2.15]). The class of symplectic Calabi-Yau manifolds

is thus of particular interest because they do not admit integrable systems of toric or semitoric type.

Also, there is work extending the classification in [70] and related results to higher dimensions [80], so

one could extend the semitoric packing capacity to higher dimensional semitoric systems, for which

there is currently no classification.

Another interesting direction would be to generalize the work in [51] to our setting. There,

the author constructs infinite dimensional symplectic capacities for a general class of Hamiltonian

PDEs. In case the PDEs preserves some G-action, one may expect to construct also G-capacities in

such infinite dimensional setting, and this may give new interesting result on the long time behavior

of solutions.
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Symplectic capacities are also of interest from a physical view point, for instance in [20] the

authors describe interrelations between symplectic capacities and the uncertainty principle. It would

be interesting to explore similar connections to symplectic G-capacities. �

Remark 7.5.7. In this chapter G can be a compact Lie group (like in the case of symplectic toric

manifolds) or a non-compact Lie group (like in the case of semitoric systems). In general there are

obstructions to the existence of effective G-actions on compact and non-compact manifolds, even in

the case that the G-action is only required to be smooth. For instance, in [83, Corollary in page 242]

it is proved that if N is an n-dimensional manifold on which a compact connected Lie group G acts

effectively and there are σ1, . . . , σn ∈ H1(M,Q) such that σ1 ∪ . . . ∪ σn 6= 0 then G is a torus and

the G-action is locally free. In [83] Yau also proves several other results giving restrictions on G, M ,

and the fixed point set MG. If the G-action is moreover assumed to be symplectic or Kähler, there

are even more non-trivial constraints. Therefore the class of symplectic manifolds for which one can

define a notion of symplectic G-capacity with G non-trivial is in general much more restrictive than

the class of all symplectic manifolds. �
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Chapter 8

Continuity of G-capacities

8.1 Introduction

In this Chapter I use the metric on toric integrable systems [67] and the metric on semitoric

integrable systems from Chapter 3 to study the continuity of the symplectic invariants defined in

Chapter 7.

The continuity of symplectic capacities is discussed in [6, 13, 26, 85]. The semitoric and toric

packing capacities are each defined on categories of integrable systems which have a natural topology,

but we can only discuss the continuity of the (m, k)-equivariant Gromov radius on a subcategory

of its domain which has a topology, so I restrict to the case of (m, k) = (n, n). The Tn-action on a

symplectic toric manifold may be lifted to an action of Rn. Let Symp2n,Rn
T be the symplectic category

of symplectic toric manifolds each of which is endowed with the Rn-action obtained by lifting the

given Tn-action which is a subcategory of Symp2n,Rn .

Theorem 8.1.1 (Continuity of capacities). The following hold:

(i) The toric packing capacity T : Symp2n,Tn
T → [0,∞] is everywhere discontinuous and the restric-

tion of T to the space of symplectic toric 2n-dimensional manifolds with exactly N fixed points

of the Tn-action is continuous for any choice of N > 0;

(ii) The semitoric packing capacity ST : Symp4,S1×R
ST → [0,∞] is everywhere discontinuous and the

restriction of ST to the space of semitoric manifolds with exactly N elliptic-elliptic fixed points

170
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of the associated (S1 × R)-action is continuous for any choice of N > 0;

(iii) The (n, n)-equivariant Gromov radius restricted to the space of symplectic toric manifolds

cn,nB |Symp2n,Rn
T

: Symp2n,Rn
T → [0,∞]

is everywhere discontinuous and the restriction of cn,nB |Symp2n,Rn
T

to the space of symplectic toric

2n-dimensional manifolds with exactly N fixed points of the Rn-action is continuous for any

choice of N > 0.

Theorem 8.1.1 generalizes [31, Theorem A], which deals with 4-manifolds, and solves [67,

Problem 30].

8.2 Continuity of symplectic Tn-capacities

In this section we study the continuity of the symplectic Tn-capacity constructed in Section 7.4.

The metric on MT
∼= Ham2n,Tn

T /≈T from [67] is described in Section 2.2.6.

The map

Ham2n,Tn
T /≈T → Symp2n,Tn

T /∼T

given by [(M,ω, φ, µ)] 7→ [(M,ω, φ)] is a quotient map and thus we can endow Symp2n,Tn
T /∼T with

the quotient topology. Since Symp2n,Tn
T /∼T is a quotient of Symp2n,Tn

T we can pull the topology

up from Symp2n,Tn
T /∼T to Symp2n,Tn

T by declaring that a set in Symp2n,Tn
T is open if and only if it

is the preimage of an open set from Symp2n,Tn
T /∼T under the natural projection. Two points in

Symp2n,Tn
T are not separable if and only if they are Tn-equivariantly symplectomorphic. Thus, a

map c : Symp2n,Tn
T → [0,∞] which descends to a well-defined map φ on Symp2n,Tn

T /∼T is continuous

if and only if the map

ĉ : Ham2n,Tn
T /≈T → [0,∞]

is continuous, where ĉ is defined by the following commutative diagram:
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Ham2n,Tn
T Symp2n,Tn

T [0,∞]

Ham2n,Tn
T /≈T Symp2n,Tn

T /∼T

c

ĉ

φ

Next we define an operation on Delzant polytopes. Let n ∈ Z>0. For x0 ∈ Rn, w1, . . . , wn ∈

Zn, and ε > 0 define

Hε
x0

(w1, . . . , wn) = {x0 +
∑
j tjwj | t1, . . . , tn ∈ R>0,

∑
j tj > ε }. (8.1)

Recall that PT denotes the set of Delzant polytopes (Section 2.2.6). Suppose that ∆ ∈ PT

and x0 ∈ Rn is a vertex of ∆. Let ui ∈ Zn, i = 1, . . . , n, denote the primitive vectors along which

the edges adjacent to x0 are aligned. The ε-corner chop of ∆ at x0 is the polygon ∆ε
x0
∈ PT given

by ∆ε
x0

= ∆ ∩Hε
x0

(u1, . . . , un) where ε is sufficiently small so that ∆ε
x0

has exactly one more face

than ∆ does as is shown in Figure 8.1. One can check that if ∆ ∈ PT then ∆ε
x0
∈ PT. Notice that

Figure 8.1: An ε-corner chop at a vertex x0 of ∆ for some ε > 0.

limε→0 dP(∆,∆ε
x0

) = 0. This means that given any element of PT with N vertices, corner chopping

can be used to produce other polygons which are close in dP and all polygons produced in this way

will have more than N vertices. Let PNT denote the set of Delzant polygons in Rn with exactly N

vertices. We will later need the following.

Proposition 8.2.1 ([31]). Let N ∈ Z>0 and ∆ ∈ PNT . Any sufficiently small neighborhood of ∆ is a

subset of ∪(N ′>N)P
N ′

T .

We study ball packing problems about symplectic toric manifolds by instead studying packings

of the associated Delzant polygon. Let ∆ ∈ PT be a Delzant polytope. Let AGLn(Z) = GLn(Z)nRn
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Figure 8.2: (a) An image of ∆(1) ⊂ R2. (b) An image of an admissible, but not maximal,
packing.

denote the group of affine transformations in Rn with linear part in GLn(Z). For r > 0 let

∆(r) = Conv{ re1, . . . , ren, 0 } \ Conv{ re1, . . . , ren } where Conv(E) denotes the convex hull of the

set E ⊂ Rn and { e1, . . . , en } denote the standard basis vectors in Rn. Following [64], a subset Σ

of ∆ is an admissible simplex of radius r > 0 with center at a vertex x0 of ∆ if there exists some

A ∈ AGLn(Z) such that:

(1) A(∆(r1/2)) = Σ;

(2) A(0) = x0;

(3) A takes the edges of ∆(r1/2) meeting at the origin to the edges of ∆ meeting at x0.

An admissible packing of ∆ is a disjoint union R =
⊔
α∈A Σα ⊂ ∆ where each Σα is an

admissible simplex for ∆. This is illustrated in Figure 8.2. The half-plane Hε
x0

given in Equation

(8.1) is designed so that that an ε-corner chop on a Delzant polytope corresponds to the removal of

an admissible simplex of radius ε.

The function Ω: Symp2n,Tn
T /∼T → (0, 1] given by

Ω(M) =
sup{ vol(P ) | P is a toric ball packing of M }

vol(M)
,

known as the optimal toric density function, has been studied in [31, 64, 68]. In particular, in [31]

Pelayo-Figalli studied the regions of continuity of Ω and proved the n = 2 case of Theorem 8.1.1

part (i). They stated the theorem in terms of Ω, while we state it in terms of T.

Let vol : Symp2n,Tn
T → R denote the total symplectic volume of a symplectic toric manifold

and let volP : PT → R denote Euclidean volume function of a polytope in Rn. Let

(B2n(r), ωB, φB, µB) ∈ Ham2n,Tn
T

denote the standard ball of radius r > 0 in Cn with the standard action of Tn and suppose
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that (M,ω, φ, µ) ∈ Ham2n,Tn
T . Let ∆B = µB(B2n(r)) and ∆ = µ(M). Then, as shown in [64],

vol(M) = n!πnvolP(∆) and if f : B2n(r)
Tn
↪−−→M is a symplectic Tn-embedding then

vol(B2n(r)) = vol(f(B2n(r))) = n!πnvolP(µ ◦ f(B2n(r))) = n!πnvolP(∆B).

Theorem 8.2.2 ([64]). Let (M,ω, φ, µ) ∈ Ham2n,Tn
T and let ∆ = µ(M). Suppose φ : B2n(r) ↪→ M

is a symplectic Tn-embedding for some r > 0. Then µ(φ(B2n(r))) ⊂ ∆ is an admissible simplex of

radius r2. Conversely, if Σ ⊂ ∆ is an admissible simplex of radius r2 then there exists a symplectic

Tn-embedding φ : B2n(r) ↪→M such that µ(φ(B2n(r))) = Σ.

Moreover, if P is a toric ball packing of M , then µ(P ) ⊂ ∆ is an admissible packing of ∆.

Conversely, if R is an admissible packing of ∆ then there exists a toric ball packing P of M such

that µ(P ) = R.

Since there is a toric ball packing P of M related to an admissible packing R of ∆ by

µ(P ) = R, it follows that vol(P ) = n!πnvolP(R). To study packing of the manifold we will study

packing of the polygon. Thus, we define πT : PT → (0,∞) by

πT(∆) = sup{ volP(R) | R is an admissible packing of ∆ }.

Suppose that ∆ ∈ PNT with vertices v1, . . . , vN ∈ Rn and let πiT(∆) be the supremum of volP(R) over

all admissible packings R of ∆ in which vi /∈ R.

The following result generalizes [31, Theorem 7.1] to the case n > 3.

Theorem 8.2.3. Fix n ∈ Z>0. For N ∈ Z>1 and let PNT denote the set of Delzant polygons in Rn

with exactly N vertices. Then:

1. πT is discontinuous at each point in PT;

2. the restriction πT|PNT is continuous for each N > 1;

3. if ∆ ∈ PNT then PNT is the largest neighborhood of ∆ in PT in which πT is continuous if and

only if πiT(∆) < πT(∆) for all 1 6 i 6 N .

Proof. First we show (1). Let ∆ ∈ PNT and for any small enough ε > 0 perform an ε-corner chop (as

in Section 8.2) at each corner to produce ∆ε ∈ P2N
T . Any admissible packing of ∆ε can have at most
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2N simplices and each simplex must have one side with length at most ε while the other sides are

universally bounded by the maximal side length of ∆. The size of such simplices decreases to zero as

ε does, so limε→0 πT(∆ε) = 0. Hence

lim
ε→0

dP(∆,∆ε) = 0

but

lim
ε→0
|πT(∆)− πT(∆ε)| = πT(∆) > 0,

so πT is discontinuous at ∆.

Now we prepare to show part (2). For any v1, . . . , vn ∈ Zn let [v1, . . . , vn] denote the n× n

integer matrix with ith column given by vi for i = 1, . . . , n. Let η : SLn(Z)→ GLn(R) given by

η([v1, . . . , vn]) =

[
v1

|v1|
, . . . ,

vn
|vn|

]

take a nonsingular integer matrix to its column normalization. Notice for any A = [v1, . . . , vn] ∈

SLn(Z) that

det(A) = |v1| · · · |vn| · det(η(A)).

Suppose ∆ ∈ PT is n-dimensional. In a neighborhood around each vertex the polytope is described

by a collection of vectors v1, . . . , vn ∈ Zn with det(v1, . . . , vn) = 1 along which the edges adjacent

to this vertex are directed. So, associated to any vertex of a Delzant polytope, there is a matrix

A ∈ SLn(Z) given by A = [v1, . . . , vn] which is unique up to even permutations of its columns and

thus, though A is not unique, the values determined by det(A) and det(η(A)) associated to a vertex

are well-defined. Fix ∆ ∈ PNT and {∆j }∞j=1 ⊂ PNT such that

lim
j→∞

dP(∆,∆j) = 0. (8.2)

For j large enough for each vertex V of ∆ there must be a corresponding vertex Vj of ∆j so that

Vj → V as j →∞. Let A ∈ SLn(Z) be a matrix corresponding to V and let Aj ∈ SLn(Z) be a matrix

corresponding to Vj for j ∈ Z large enough. In particular, convergence in dP, which is convergence in
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L1(Rn), implies that locally these vertices must converge, so Equation (8.2) implies that

lim
j→∞

|det(η(A))− det(η(Aj))| = 0.

Now we are ready to prove (2) by showing that the collection of possible vertices of Delzant

polytopes is discrete. Fix ∆ ∈ PNT with a vertex V at the origin and let ε > 0. Choose δ > 0 small

enough so that if ∆′ ∈ PNT with a vertex V ′ at the origin then dP(∆,∆′) < δ implies that

|det(η(A))− det(η(A′))| < ε, (8.3)

where A ∈ SLn(Z) is a matrix associated to V and A′ ∈ SLn(Z) is a matrix associated to V ′. Suppose

that ε < det(η(A)). Now let A′ = [w1, . . . , wn] for wi ∈ Zn, i = 1, . . . , n. These are all nonzero

integer vectors so |wi| > 1 for i = 1, . . . , n. For each i we have

1 = det(A′) = |w1| |w2| . . . |wn|det(η(A′)) > |wi|det(η(A′))

and so by Equation (8.3)

|wi| 6
1

det(η(A′))
6

1

det(η(A))− ε
.

Thus each wi ∈ Zn has length at most (det(η(A))− ε)−1, a value which does not depend on ∆′, and

so to be within δ of ∆ the vectors directing the edges coming out from the vertex V ′ of ∆′ must

be chosen from only finitely many options. This means the set of possible local neighborhoods of

vertices is discrete. Thus, for small enough δ > 0 we conclude that dP(∆,∆′) < δ implies that there

exist open sets U,U ′ ⊂ Rn around the vertices V and V ′ such that

∆ ∩ U = Fc(∆
′ ∩ U ′)

where Fc : R→ R is a translation by some fixed c ∈ Rn. Now, let ∆ ∈ PNT be any Delzant polytope

in Rn with N vertices. In a sufficiently small dP-neighborhood of ∆ all polytopes must have the

same angles at the finitely many vertices by the argument above. Thus they are all related to ∆ by

translating its faces in a parallel way, which continuously changes πT. This proves (2) because πT is
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continuous on such families.

Finally we show (3). Let ∆ ∈ PNT and assume that πT(∆) = πiT(∆) for some i ∈ {1, . . . , N}.

Then there is an optimal packing of ∆ which avoids the ith vertex. For ε > 0 let ∆ε ∈ PN+1
T be the

ε-corner chop of ∆ at the ith vertex. Since the optimal packing of ∆ avoids the ith vertex, we see

that limε→0 dP(∆,∆ε) = 0 and limε→0 πT(∆) = πT(∆ε) so there is a set larger than PNT on which

πT is continuous around ∆.

Conversely assume that ∆ ∈ PNT satisfies πiT(∆) < πT(∆) for all i = 1, . . . , n. By Propo-

sition 8.2.1 we know that any small enough neighborhood of ∆ only includes polytopes with N

vertices and polytopes with more than N vertices, which are produced from corner chops of ∆.

We must now only show that πT cannot be continuous on any neighborhood of ∆ which includes

any such polygons. For ε > 0 let ∆ε ∈ PN+1
T be the ε-corner chop of ∆ at the ith vertex. Then

limε→0 πT(∆ε) = πiT(∆) < πT so for small enough corner chops πT(∆ε) is bounded away from πT(∆).

Thus any set on which πT is continuous around ∆ cannot include any corner chops of ∆. From this

we conclude that any such set cannot include polytopes with greater than N vertices¿ The result

follows since is continuous on all of PNT .

Theorem 8.1.1 part (i) follows from Theorem 8.2.2 and Theorem 8.2.3. In addition, these

Theorems also imply the following result. Let N > 1 and let Symp2n,Tn
T,N denote the set of symplectic

toric manifolds with exactly N points fixed by the Tn-action. For (M,ω, φ) ∈ Symp2n,Tn
T,N with fixed

points p1, . . . , pN ∈M let

Ti(M) =

(
sup{ vol(P ) | P is a toric ball packing of M such that pi /∈ P }

vol(B2n)

) 1
2n

.

Proposition 8.2.4. The space Symp2n,Tn
T,N is the largest neighborhood of M in Symp2n,Tn

T in which

T is continuous if and only if Ti(M) < T(M) for every 1 6 i 6 N .

Theorem 8.1.1 part (i) and Proposition 8.2.4 are illustrated in Figure 8.3. If n = 2

Proposition 8.2.4 was proved in [31].
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Figure 8.3: Continuous families of Delzant polygons on which (a) T is continuous and (b)
T is not continuous.

8.3 Continuity of symplectic (S1 × R)-capacities

In this section we study the continuity of the symplectic (S1 × R)-capacity constructed in

Section 7.5 relative to the metric defined in Chapter 3. We are only interested in the topology of

Symp4,S1×R
ST /∼ST so, as is suggested in Remark 3.2.13, we will use the simplified version of the metric

DId = Φ∗d
Id,ν,{bn}∞n=0

mf ,~k
.

Recall that while DId produces a different metric space structure on Symp4,S1×R
ST /∼ST it induces

the same topology on Symp4,S1×R
ST /∼ST as the full metric (Proposition 3.3.18). Fix an admissible

measure ν and let dST
P = dId,ν

P denote the metric on semitoric polygons from Definition 3.2.7 relative

to the identity permutation.

Since Ham4,S1×R
ST /≈ST is a quotient of Ham4,S1×R

ST we can pull the topology up from

Ham4,S1×R
ST /≈ST to Ham4,S1×R

ST by declaring that a set in Ham4,S1×R
ST is open if and only if it

is the preimage of an open set from Ham4,S1×R
ST /≈ST under the natural projection. We endow

Symp4,S1×R
ST with the quotient topology relative to the map Ham4,S1×R

ST → Symp4,S1×R
ST which forgets

the momentum map. Thus a map c : Symp4,S1×R
ST → [0,∞] which descends to a well-defined map φ

on Symp4,S1×R
ST /∼ST is continuous if and only if the map ĉ : Ham4,S1×R

ST /≈ST → [0,∞] is continuous

where ĉ is defined by the commutative diagram:
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Ham4,S1×R
ST Symp4,S1×R

ST [0,∞]

Ham4,S1×R
ST /≈ST Symp4,S1×R

ST /∼ST

c

ĉ

φ

Let ∆w = (∆, (`λj ,+1, kj)
mf
j=1) be a primitive semitoric polygon, and let v ∈ ∆ be a vertex.

Definition 8.3.1. An admissible semitoric simplex of radius r > 0 with center at v is a subset Σ of

∆ such that there exist some A ∈ AGL2(Z) and ~u ∈ {0, 1}mf satisfying:

- A(∆(r1/2)) = t~u~λ(Σ);

- A(0) = t~u~λ(v);

- A takes the edges of ∆(r1/2) meeting at the origin to the edges of t~u~λ(∆) meeting at t~u~λ(v);

- Σ ⊂ ∆~u where

∆~u = ∆ \

 (x, y) ∈ ∆

∣∣∣∣∣∣∣
x = λj and (−2~u+ 1)y > min(λj ,y0) y0 + hj

for some j ∈ { 1, . . . ,mf }

 .

An admissible semitoric packing of ∆w is a disjoint union R =
⊔
α∈A Σα where each Σα is an

admissible simplex of some radius, where the radii of the simplices are allowed to be different.

Such a simplex cannot exist at a fake corner.

Figure 8.4: An admissible semitoric packing. Here t denotes t~u~λ.

Lemma 8.3.2 ([65]). Let FB be a momentum map for the usual Tn-action on B2n(r), r > 0, and

let (M,ω, φ, F ) be a Hamiltonian Tn-manifold of dimension 2n. If ρ : B2n(r) ↪→M is a symplectic

Tn-embedding with respect to some Λ ∈ Aut(Tn) then there exists some x ∈ Rn such that the following
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diagram commutes:

B2n(r) M

R2 R2

ρ

FB F

(Λt)−1+x

where (Λt)−1 + x is the affine map with linear part (Λt)−1 which takes 0 to x.

In [50] a proper Hamiltonian Tn-manifold is a quadruple (Q,ωQ, FQ,Γ) where (Q,ωQ) is a

connected 2n-dimensional symplectic manifold with momentum map FQ for an action of Tn and

Γ ⊂ Lie(Tn)∗ is an open convex subset with FQ(Q) ⊂ Γ and such that FQ is proper as a map to Γ.

A proper Hamiltonian Tn-manifold is centered about p ∈ Γ if p is an element of each component of

FQ(QK) for each subgroup K ⊂ Tn, where QK is the set of all points in Q which are fixed by the

action of all elements of K.

Lemma 8.3.3 ([50]). Let (Q,ωQ, FQ,Γ) be a proper Hamiltonian Tn-manifold of dimension 2n. If

(Q,ωQ, FQ,Γ) is centered about p ∈ Γ and (FQ)−1({p}) = {q}, then Q is equivariantly symplecto-

morphic to { z ∈ Cn | p +
∑n
j=1 |zj |

2
ηqj ∈ Γ }, where ηq1, . . . , η

q
m ∈ Lie(Tn)∗ are the weights of the

isotropy representation of Tn on TqQ.

We use Lemma 8.3.2 and Lemma 8.3.3 to prove the following.

Proposition 8.3.4. Let (M,ω, F = (J,H)) be a semitoric manifold such that

Φ
(
(M,ω, F )

)
=
(
mf , ((Sj)

∞)
mf
j=1, [∆w], (hj)

∞
j=1

)

where ∆w = (∆, (`λj ,+1, kj)
mf
j=1) is primitive with associated momentum map F̃ ∈ FM such that

F̃ (M) = ∆. Then:

1. Suppose ρ : B4(r) ↪→ M is a semitoric embedding for some r > 0. Then F̃ (ρ(B4(r))) ⊂ ∆

is an admissible semitoric simplex with radius r2. Conversely, if Σ ⊂ ∆ is an admissible

semitoric simplex with radius r2 then there exists a semitoric embedding ρ : B4(r) ↪→M such

that F̃ (ρ(B4(r))) = Σ.

2. Let P be a semitoric ball packing of M . Then F̃ (P ) ⊂ ∆ is an admissible packing of ∆w.

Conversely, if R is an admissible packing of ∆w then there exists a semitoric ball packing P of

M such that F̃ (P ) = R.
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Proof. Part (2) follows from Part (1) since the semitoric simplices associated to disjoint semitorically

embedded balls are disjoint. This follows from the fact that F̃−1(p) is a 2-dimensional submanifold

of M for any regular point p ∈ ∆ and the embedded balls are 2-dimensional.

Suppose that B ⊂ M is a semitorically embedded ball of radius r > 0. Then for some

~ε ∈ {−1,+1}mf the map ρ~ε : B4(r) ↪→ M~ε is a T2-embedding with respect to some Λ ∈ Aut(T2).

Recall M~ε is a Hamiltonian T2-manifold and denote a momentum map for this action by F~ε. Let

p = F~ε(ρ(0)) and let ∆~ε = F~ε(M~ε). Hence by Lemma 8.3.2 the diagram

B4(r) M~ε

∆B ∆~ε

ρ

FB F~ε

(Λt)−1+x

commutes for some x ∈ Lie(T2)∗. Since Λ is an automorphism so is (Λt)−1, hence it sends the weights

of the isotropy representation of T2 on T0(B4(r)) to the weights of the isotropy representation on

TpM . Since (Λt)−1 is linear and ∆B is the convex hull of the isotropy weights of the representation

on T0(B4(r)) and the origin, we find that

Σ~ε := [(Λt)−1 + x](∆B)

is the convex hull of p, p+ r2α1, and p+ r2α2, minus the convex hull of p+ r2α1 and p+ r2α2, where

α1 and α2 are the weights of the isotropy representation of T2 on TpM . For ~u = 1
2 (1 − ~ε) recall

that t~u~λ(∆) = ∆~ε and let Σ =
(
t~u~λ

)−1
(Σ~ε). Notice that Σ = F̃ (ρ(B4(r))) ⊂ ∆ and is an admissible

semitoric simplex.

To prove the converse let Σ ⊂ ∆ be an admissible semitoric simplex. This means that there

exists some ~ε ∈ {−1,+1}mf such that

Σ′ := t~u~λ(Σ)

satisfies the requirements of Definition 8.3.1, where ~u = 1
2 (1 − ~ε). Let ∆′ = t~u~λ(∆). Let p be the

unique vertex of Σ′. Thus, Σ′ is the convex hull of p, p+ r2α1, and p+ r2α2, minus the convex hull

of p + r2α1 and p + r2α2, for some αi ∈ R2, i = 1, 2. Let Γ ⊂ R2 be the unique open half plane

satisfying Γ ∪∆′ = Σ′. Let N = F̃−1(Σ) and let ωN = ω|N . We can see that N ⊂M is open and by
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the proof of the Atiyah-Guillemin-Sternberg Convexity Theorem [3, 40] we know that N is connected.

The map F̃ is proper because its first component, J , is proper and thus F̃N := t~u~λ

(
F̃ |N

)
: N → Σ′ is

proper. Therefore F̃N : N → Γ is proper because (F̃N )−1(Γ \ Σ′) = ∅, and hence (N,ωN , F̃N ,Γ) is

a proper Hamiltonian T2-manifold. Since (N,ωN , F̃N ,Γ) is centered about p ∈ R2 by Lemma 8.3.3

we conclude that N is equivariantly symplectomorphic to

{ z ∈ C2 | p+ |z1|2 α1 + |z2|2 α2 ∈ Γ } = B4(r).

It follows that there exists a symplectic T2-embedding ρ : B4(r) ↪→M~ε with image N so F̃ (ρ(B4(r))) =

F̃ (N) = Σ.

Define the optimal semitoric polygon packing function πST : PolygST(R2)→ [0,∞] by

πST([∆w]) = sup{ volP(P ) | P is an admissible semitoric packing of ∆w }.

It is well-defined because any two primitive semitoric polygons in the same orbit are related to one

another by a transformation in Gmf × G which sends semitoric packings to semitoric packings and

preserves volume.

Definition 8.3.5. We call α ∈ (0, π) a smooth angle if it can be obtained as an angle in a Delzant

polygon.

Equivalently, α ∈ (0, π) is smooth if and only if it is the angle at the origin of Aα(∆(1)) for

some Aα ∈ SL2(Z).

Lemma 8.3.6. The set of smooth angles is discrete in (0, π) ⊂ R.

Proof. Fix a smooth angle α ∈ (0, π) and fix some ε > 0 small enough so that (α− ε, α+ ε) ⊂ (0, π).

Let

Bε(α) = {β ∈ (0, π) | β is a smooth angle and |α− β| < ε }

and let δε > 0 be such that if β ∈ Bε(α) then |sin(α)− sin(β)| < δε. Now fix any β ∈ Bε(α). This

means there exists some Aβ ∈ SL2(Z) such that β is the angle at the origin of ∆ = Aβ(∆(1)). Let

`1, `2 ∈ R denote the lengths of two edges of the simplex ∆ which are adjacent to the vertex at the
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origin. These each represent the magnitude of a vector in Zn so `i > 1 for i = 1, 2. By the choice of

δε we have that sin(β) > sin(α)− δε. Since ∆ has area 1/2 we know that `1`2 sin(β)
2 = 1

2 and so for

i = 1, 2 we conclude that 1 = `1`2 sin(β) > `i sin(β) which implies that

`i 6
1

sin(β)
<

1

sin(α)− δε
.

Therefore associated to each β ∈ Bε(α) there is a pair of vectors in Z2 each with length less than

(sin(α)− δε)−1, a value which does not depend on β. There are only finitely many such vectors.

The proof of Lemma 8.3.6 is taken from the proof of [31, Theorem 7.1] and is a two-

dimensional version of the strategy used in Theorem 8.2.3. Let α ∈ (0, π) be called a hidden smooth

angle if it can be obtained as a hidden corner in a primitive semitoric polygon.

Corollary 8.3.7. The set of hidden smooth angles is discrete in (0, π) ⊂ R.

It is important to notice that a sequence of smooth angles can approach π. This must be

the case, for example, if a semitoric polygon has infinitely many vertices.

Definition 8.3.8. We say that a vertex v of (∆, (`λj ,+1, kj)
mf
j=1)) is non-fake if it is either Delzant

or hidden in one, and hence all, elements of the affine invariant. For N > 1 let PolygNST(R2)0 denote

the set of primitive polygons with exactly N non-fake vertices and let PolygNST(R2) denote the set

of (Gmf × G)-orbits of elements of PolygNST(R2)0. Let IN be the set of all semitoric ingredients for

which the affine invariant is an element of PolygNST(R2) and let

Symp4,S1×R
ST,N = Φ−1(IN )

where Φ is as in Theorem 2.2.27.

Recall Hε
p(v) defined in Equation (8.1). The following are two operations which can be

performed on [∆w] to produce a new element of PolygST(R2)0.

Definition 8.3.9. Let ∆w = (∆, (`λj ,+1, kj)
mf
j=1). Let p ∈ ∆ be a vertex and let v1, v2 ∈ Z2 be

the primitive inwards pointing normal vectors to the two edges which meet at p ordered so that

det(v1, v2) > 0.
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If p is a Delzant vertex of ∆w then the ε-corner chop of ∆w at p is the primitive semitoric

polygon

∆p,ε
w =

(
∆ ∩Hε

p(v1 + v2), (`λj ,+1, kj)
mf
j=1

)
.

Similarly, given [∆w] we say that [∆p,ε
w ] is the ε-corner chop of [∆w] at p.

Suppose p is a hidden corner of ∆w and thus there exists j ∈ { 1, . . . ,mf } such that p ∈ `λj .

The ε-hidden corner chop of ∆w at p is the primitive semitoric polygon

∆p,ε
w =

(
∆ ∩ t−1

`λj

(
Hε
p(v1 + v2)

)
, (`λj ,+1, kj)

mf
j=1

)
.

We say that [∆p,ε
w ] is the ε-hidden corner chop of [∆w] at p.

The hidden corner chop of a hidden corner amounts to acting on the polygon with t1`λj
to

transform the hidden corner into a Delzant corner, performing the usual corner chop on this Delzant

corner, and then transforming the polygon back with t−1
`λj

. This is shown in Figure 8.5.

Figure 8.5: In (a) a hidden corner is shown. In (b) we unfold it by reversing the sign
of the associated εi resulting in a Delzant corner. In (c) we perform corner chop on this
corner and in (d) the εi returns to its original sign.

Lemma 8.3.10. Fix N ∈ Z>0. Each [∆w] ∈ PolygNST(R2) has an open neighborhood in PolygNST(R2)

which consists exclusively of transformations of [∆w] in which its sides are moved in a paral-

lel way. Moreover, any sufficiently small neighborhood of [∆w] in PolygST(R2) is contained in

∪(N ′>N)PolygN
′

ST(R2).

Proof. The angles of non-fake corners are discrete by Lemma 8.3.6 and Corollary 8.3.7. This means

that there exists a neighborhood of [∆w] in which all elements which have N non-fake vertices must

have all of the same angles as [∆w]. This is the open neighborhood described in the Lemma. Any

semitoric polygon with fewer non-fake vertices than [∆w] is bounded away from [∆w] because the

only ways to change the number of non-fake vertices are a corner chop or introducing a smooth angle
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into an edge of infinite length but by Lemma 8.3.6 smooth angles are discrete.

Lemma 8.3.11. The map πST : PolygST(R2)→ [0,∞] is discontinuous at every point.

Proof. Primitive semitoric polygons must have at least one non-fake vertex. Let

[∆w] = [(∆, (`λj ,+1, kj)
mf
j=1)]

be a semitoric polygon. First assume that [∆w] ∈ PolygNST(R2) for some N > 1 and that πST([∆w]) <

∞. Then for ε > 0 small enough define [∆ε
w] to be the semitoric polygon produced by performing an

ε-corner chop at each non-fake vertex of [∆w]. We have that

lim
ε→0

dST
P ([∆], [∆ε

w]) = 0. (8.4)

A packing of [∆ε
w] has at most 2N disjoint admissible simplices. Since their side lengths are determined

by the lengths of the adjacent edges, one of which is length ε, we have that limε→0 πST([∆ε
w]) = 0.

Since every semitoric polygon has positive optimal packing we have

lim
ε→0
|πST([∆w])− πST(∆ε

w)| = πST([∆w]) > 0

and thus, in light of Equation (8.4), πST is discontinuous at [∆w].

Suppose [∆w] ∈ PolygNST(R2) for some N > 1 and πST([∆w]) = ∞. Since [∆w] has only

finitely many non-fake vertices, any admissible packing has only finitely many admissible simplices.

Hence there is a vertex at which an arbitrarily large simplex fits. The only possible case is that N = 1

and the polygon is of complexity zero. Taking a corner chop of any size at the single non-fake vertex

produces a polygon on which πST evaluates to a finite number, so πST is discontinuous at [∆w].

Now suppose that πST([∆w]) < ∞ and [∆w] ∈ PolygST(R2) \
⋃
N>1 PolygNST(R2). For

i ∈ Z>1 let Ii ⊂ R be given by Ii = [−n, n] \ (−(n− 1), n− 1) and let Ni ∈ Z>0 denote the number

of non-fake vertices of [∆w] with x-coordinate in Ii. This number is finite by the definition of a

convex polygon and it is invariant under the action of Gmf × G. For ε > 0 small enough let [∆ε
w] be

a semitoric polygon which has a small corner chop at each non-fake vertex such that, at each vertex

in Ii for i ∈ Z>1, the largest possible admissible simplex that can fit into that vertex has volume at
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most ε/(NiSi+1). Then an admissible packing R of [∆ε
w] satisfies

volP(R) 6
∞∑
i=1

ε

Ni2i+1
2Ni = ε.

Therefore

lim
ε→0

dST
P ([∆w], [∆ε

w]) = 0

while

lim
ε→0
|πST([∆w])− πST([∆ε

w])| = πST([∆w]) > 0

and thus πST is not continuous at [∆w].

For [∆w] = [(∆, (`λj ,+1, kj)
mf
j=1)] ∈ PolygNST(R2) with non-fake vertices v1, . . . , vN , let

πP,i
ST (∆) be the total volume of the optimal packing excluding all packings which have a simplex

centered at vi.

Theorem 8.3.12. Let πST : PolygST(R2)→ [0,∞] be the optimal semitoric polygon packing function.

Then:

1. πST is discontinuous at each point in PolygST(R2);

2. the restriction πST|PolygNST(R2) is continuous for each N ∈ Z>1;

3. if [∆w] ∈ PolygNST(R2) then PolygNST(R2) is the largest neighborhood of ∆w in PolygNST(R2) in

which πST is continuous if and only if πiST([∆w]) < πST([∆w]) for all 1 6 i 6 N .

Proof. Part (1) is the content of Lemma 8.3.11.

By Lemma 8.3.10, given any [∆w] ∈ PolygNST(R2), there exists a neighborhood of [∆w] in

PolygNST(R2) containing exclusively orbits of polygons formed by translating the sides of ∆w in a

parallel way. Hence part (2) follows from this because πST is continuous on such transformations.

For Part (3) suppose first that πST([∆w]) = πiST([∆w]) for some i ∈ { 1, . . . , N }. This means

that there exists some optimal packing avoiding the ith non-fake vertex. For ε > 0 let [∆ε
w] be

the result of an ε-corner chop at the ith vertex and notice that limε→0 d
ST
P ([∆w], [∆ε

w]) = 0 and

limε→0 πST([∆ε
w]) = πST([∆w]). Thus there exists some set larger than PolygNST(R2) on which πST is

continuous, as shown in Figure 8.6.
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Figure 8.6: Corner chop of a corner not used in the optimal packing.

Finally, to show the converse assume that [∆w] satisfies πP,i
ST ([∆w]) < πP

ST([∆w]) for all

1 6 i 6 N . By Lemma 8.3.10 there is an open set around [∆w] in which the only elements not in

PolygNST(R2)0 are obtained from [∆w] by iterations of corner chops, parallel translations of the edges,

and introducing a smooth angle into an edge of infinite length. For ε > 0 let [∆ε
w] be any ε-corner

chop at the ith non-fake vertex of [∆w]. Then

lim
ε→0

πST([∆ε
w]) = πiST([∆w]) < πST([∆w])

and the result follows.

Notice that the quotient map Symp4,S1×R
ST → PolygST(R2) is continuous and the metric on

Symp4,S1×R
ST is the sum of the metric on PolygST(R2) and the metric on the remaining components.

Thus, Theorem 8.1.1 part (ii) follows from Theorem 8.3.12. For (M,ω, F ) ∈ Symp4,S1×R
ST,N with fixed

points p1, . . . , pN ∈M let

STi(M) =

(
sup{ vol(P ) | P ⊂M is a semitoric ball packing of M and pi /∈ P }

vol(B4)

) 1
4

.

Proposition 8.3.13. Let N > 1. If (M,ω, F ) ∈ Symp4,S1×R
ST,N then Symp4,S1×R

ST,N is the largest

neighborhood of M in Symp4,S1×R
ST in which ST is continuous if and only if STi(M) < ST(M) for all

1 6 i 6 N .

Theorem 8.1.1 part (ii) and Proposition 8.3.13 are illustrated in Figure 8.7.

Definition 8.3.14. The semitoric radius capacity is the symplectic (S1 × R)-capacity

STrad : Symp4,S1×R
ST → [0,∞]
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Figure 8.7: Continuous families of primitive semitoric polygons on which (a) ST is
continuous and (b) ST is not continuous.

given by

STrad(M) = sup{ r > 0 | there exists a semitoric embedding B4(r) ↪→M }.

It can be shown that STrad is a (S1 × R)-capacity in the same way that it was shown

that ST is a (S1 × R)-capacity. Recall that Symp2n,Rn
T is the symplectic Rn-category which is the

collection of toric manifolds with their Tn-action lifted to an Rn-action. Let Symp2n,Rn
T,N denote those

systems with exactly N points fixed by the Rn-action. By repeating the proofs of the continuity

results Theorem 8.1.1 part (i), Proposition 8.2.4, Theorem 8.1.1 part (ii), and Proposition 8.3.13 we

immediately have the following result, that yields Theorem 8.1.1 part (iii).

Theorem 8.3.15. The maps cn,nB |Symp2n,Rn
T

and STrad are discontinuous everywhere on their domains

and the restrictions cn,nB |Symp2n,Rn
T,N

and STrad|Symp4,S1×R
ST,N

are both continuous. For

(M,ω, F ) ∈ Symp2n,Rn
T,N

the set Symp2n,Rn
T,N is not the largest neighborhood of M in Symp2n,Rn

T in which cn,nB |Symp2n,Rn
T

is

continuous and for (M,ω, F ) ∈ Symp4,S1×R
ST,N the set Symp4,S1×R

ST,N is the largest neighborhood of M in

Symp4,S1×R
ST in which STrad is continuous if and only if N = 1.

Acknowledgements. Chapter 8, in part, is comprised of material submitted for publication

by the author of this dissertation, Alessio Figalli, and Álvaro Pelayo as Symplectic G-capacities and
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Chapter 9

Moduli spaces of maps

9.1 Introduction

In [74] the authors shown that if M and N are symplectic manifolds with Bt ⊂M for each

t ∈ (a, b) and

{(φt, Bt) | t ∈ (a, b) and φt : Bt ↪→ N}

is a smooth (see Definition 9.7.1) family of symplectic embeddings such that

1. each Bt is open and simply connected;

2. if s < t then Bt ⊂ Bs;

3. for all t, s ∈ (a, b) the set
⋃
v∈[t,s]φv(Bv) is relatively compact in N ,

then there exists a symplectic embedding

φ0 :
⋃

t ∈ (a, b)

Bt ↪→ N.

Given a collection of embeddings which satisfy certain conditions not related to convergence,

this result assures the existence of an embedding from the union of their domains, which takes the

place of the limit. In the present chapter, given a collection of embeddings which does not converge,

I ask how much each embedding needs to be perturbed in order to produce a convergent collection.

In particular, I am interested in situations in which each element of the collection may be perturbed

189
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by an arbitrarily small amount in order to produce a converging family. In this case, unlike in the

result above, I am more interested in the nature of the family of embeddings than the existence of

such a limiting embedding. To formalize what I mean by a small perturbation, we define a distance

function on maps which do not necessarily have the same domain. An Lp space is a space of maps

with a natural metric, and we explain the relationship between the distance defined in the present

chapter and the L1 norm in Remark 9.3.3. Another example of examining a metric on a space of

maps is the study of symplectic energy [43] which is defined in terms of a specific metric on the space

of compactly supported Hamiltonian symplectomorphisms.

The study of collections of maps between smooth manifolds, particularly of embeddings or

diffeomorphisms, has recently attracted a lot of interest [1, 7, 65, 74, 66]. Having a distance function

defined on a collection of such mappings gives the collections the structure of a metric space about

which new questions may be posed, as it is for instance done in [67]. It is the goal of this chapter

to define a distance function on collections of maps with distinct domains, which are subsets of the

same manifold, and study the properties of the resultant metric space.

9.1.1 Outline of chapter

In Section 9.2 I define the space of maps over which we will be working and the distance

function. I state the main results of this chapter in Section 9.3. In Section 9.4 I prove several

properties of the distance function including some parts of Theorem 9.3.1, and in Section 9.5 we

prove the rest of Theorem 9.3.1. Next, in Section 9.6 I examine the convergence properties of the

distance and prove Theorem 9.3.5. Finally, in Section 9.7 I use what we have established in the

preceding sections to study families of embeddings which do not converge to an embedding and prove

Theorem 9.3.8. In the last section, Section 9.8, I comment on how the ideas from this chapter can

be used to further study such families and mention some other possibilities for applications of this

distance.

9.2 The distance function

Considering families of maps with different domains is essential for applications, see for

instance the work of Pelayo-Vũ Ngo.c [74, 66]. Suppose that the maps are defined on subsets of a
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smooth manifold M with a volume form V and map to a complete Riemannian manifold N with

natural distance d. By this we mean that if g is the Riemannian metric on N and y1, y2 ∈ N then

d(y1, y2) = inf


1w

0

√
g(γ′(t), γ′(t)) dt

∣∣∣∣∣∣∣
γ : [0, 1]→ N is piecewise C1 with

γ(0) = y1 and γ(1) = y2

 .

We will soon see that the properties of the distance will not depend on the choice of metric g and it

is known that any smooth manifold admits a complete Riemannian metric, so we are not making any

assumptions on N . Throughout the chapter by metric we will always mean a metric function on

the space and if referring to a metric tensor we will always specify the Riemannian metric. Also,

it is well known (see the Hopf-Rinow Theorem [45, Satz I]) that (N, g) is a geodesically complete

Riemannian manifold if and only if (N, d) is a complete metric space, so throughout this chapter

we will call such a manifold complete without specifying. Let µV be the measure on M induced by

V. That is, for any A ⊂M we have µV (A) =
r
A
V. Now we will define the set of maps we will be

working with (shown in Figure 9.1).

Definition 9.2.1. Let

M(M,N) :=

(φ,Bφ)

∣∣∣∣∣∣∣
Bφ ⊂M a nonempty measurable set and

φ : Bφ → N a measurable function


which we will frequently denote by M when M and N are understood and we will also frequently

write only φ where the associated domain is understood to be denoted by Bφ. Also let

F(M) =
{
{(φt, Bt)}t∈(a,b) ⊂M

∣∣ a, b ∈ R with a < b
}
.

For the remaining chapter we will denote by F(S) the collection of one parameter families in

a set S indexed by an open interval in R.

Recall the symmetric difference of sets A and B is given by A M B = (A \B) ∪ (B \A).



192

Figure 9.1: I will be considering maps from subsets of M to N .

Definition 9.2.2. For (φ,Bφ), (ψ,Bψ) ∈M we define the penalty function pdφψ : M → [0, 1] by

pdφψ(x) =


1 if x ∈ Bφ M Bψ;

min{1, d(φ(x), ψ(x))} if x ∈ Bφ ∩Bψ;

0 otherwise,

and we define

Dd
M ((φ,Bφ), (ψ,Bψ)) =

w

M

pdφψdµV.

A reasonable first guess for the “distance” between two elements in M would be to integrate

a penalty function over M . That is, we start with a function which assigns a penalty at each point

in M depending on how different the mappings are at that point, and then compute the “distance”

between the two mappings by adding up all of these penalties via integration. For each point in the

symmetric difference, we know that one mapping acts on it while the other does not, so we assign it

a maximum penalty of 1. For each point which is in the intersection of the domains, we simply find

the distance between where each map sends the point, cut off to not exceed a maximum value of 1,

and use this as the penalty.

Notice that we need the minimum in Definition 9.2.2 to make sure that any point on which

both mappings act is not penalized more than the points which are only acted on by one mapping.

It is worth noting that even though the choice of the constant 1 may seem arbitrary it is shown

in Proposition 9.4.3 that any positive constant may be used instead and the induced distance will

be strongly equivalent (see Definition 9.4.1). Also, if d is chosen so that the metric space (N, d) is

complete (which can always be done [60, Theorem 1]) the choice of d will not change the properties
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Figure 9.2: A graphic representing the values of pdφψ on S ⊂M .

of the induced metric.

However while Dd
M is the natural “distance” it turns out to not be a distance function on

M. There are two main problems. First, it is possible that Dd
M will evaluate to zero on two distinct

elements of M and second it might be that Dd
M evaluates to infinity. The first problem is a common

one and can be addressed in the standard way, by having Dd
M act on equivalence classes of maps,

but the second problem will require a more delicate solution.

The problem of Dd
M evaluating to infinity is even worse than it seems. Suppose that

φt(x) = (x, t) takes R into R2 for all t ∈ (0, 1). Using the notation from above in this case we have

that M = Bφt = R for all t ∈ (0, 1) and N = R2 with dR2 the usual distance. Then φt has a pointwise

limit of φ0(x) := (x, 0) as t→ 0, but despite this we have that D
dR2
M (φt, φ0) is infinite for all t ∈ (0, 1).

This example shows that Dd
M is not always able to capture when a family of maps is converging. I

am able to solve this problem by observing Dd
M restricted to various subsets of M .

Definition 9.2.3. I define D restricted to a measurable set S ⊂M by

Dd
S((φ,Bφ), (ψ,Bψ)) =

w

S

pdφψ dµV.

Figure 9.2 shows a good way to visualize computing Dd
S. Now each Dd

S contains all of the

information about Dd
M on the set S and, as long as S is chosen to be of finite volume, Dd

S cannot

evaluate to infinity. The problem now, of course, is that we no longer have just a single metric with



194

information about all of M but instead have an infinite family of metrics which each have information

about only one finite volume subset of M . I solve this last problem by recalling that any manifold

admits a nested exhaustion by compact sets, which must each have finite volume. For the remaining

portion of this chapter by exhaustion we will always mean a countable nested exhaustion by finite

volume sets. In the following definition we set up the framework for this chapter. I will write ν{Sn}

in place of ν{Sn}∞n=1
and Dd

{Sn} in place of Dd
{Sn}∞n=1

for simplicity.

Definition 9.2.4. Let M and N be manifolds with d a metric on N induced by a Riemannian

metric.

1. Let {Sn}∞n=1 be a exhaustion of M by nested finite volume sets and let ν{Sn} be the measure

on M given by

ν{Sn}(A) =

∞∑
n=1

2−n
µV (A ∩ Sn)

µV (Sn)

for A ⊂M . Notice that ν{Sn}(M) = 1 so ν{Sn} is a probability measure. Then define

Dd
{Sn}(φ, ψ) =

w

M

pdφψdν{Sn}.

2. If Dd
{Sn}(φ, ψ) = 0 for one choice of exhaustion then, by Corollary 9.4.7, it equals zero for all

choices of exhaustion and complete metrics d, so in that case we write D(φ, ψ) = 0.

3. Let

M∼(M,N) := M(M,N)/ ∼

where (φ,Bφ) ∼ (ψ,Bψ) if and only if D(φ, ψ) = 0. As before we will frequently shorten this

to M∼ and we denote by [φ,Bφ] the equivalence class of (φ,Bφ) ∈M.

There is an equivalent definition of Dd
{Sn} given in Proposition 9.4.4 which is used in some

of the proofs in this chapter and explicitly shows the relation between Dd
{Sn} and Dd

S.

9.3 Main results

Now we have enough notation to state our first result. Let M and N be manifolds and V a

volume form on M .
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Theorem 9.3.1. For any choice of a metric d on N induced by a complete Riemannian metric

and a countable exhaustion {Sn}∞n=1 of M by nested finite volume sets, the space (M∼,Dd
{Sn}) is a

complete metric space. Moreover, such a metric and exhaustion alway exist and if d′ and {S′n}∞n=1

are other such choices then Dd′

{S′n}
induces the same topology as Dd

{Sn} on M∼.

In light of Theorem 9.3.1 we can now make the following definitions. Recall that F(M)

denotes the collection of one-parameter families of M indexed by an interval (a, b) ⊂ R.

Definition 9.3.2. Let a, b, c ∈ R with a < b and c ∈ [a, b]. Also let {(φt, Bt)}t∈(a,b) ∈ F(M) and

φ0 ∈M.

1. Let S ⊂M be any subset. If limt→cD
d
S(φt, φ0) = 0 we write

φt
Dd

S−−→ φ0 as t→ c.

2. If limt→cD
d
{Sn}(φt, φ) = 0 for one, and hence all, choices of {Sn}∞n=1 and d, we write

φt D−−→ φ0 as t→ c.

3. Since all metrics Dd
{Sn} generate the same topology on the set M∼ we denote this set with such

topology as (M∼,D).

Thus M∼ is a metric space with metric Dd
{Sn} for any choice of exhaustion and complete

metric and the metric spaces for different choices of exhaustion are all equivalent topologically. Notice

that all of the information about Dd
{Sn} is contained in Dd

M if M is finite volume, and in this case we

will only have to consider Dd
M , see Remark 9.4.12.

Remark 9.3.3. Recall that Lp spaces are collections of maps from a fixed measure set to R. Since M

is a collection of all maps between fixed manifolds we can see that in some sense M is a generalization

of Lp spaces. The function Dd
{Sn} is similar to the L1 norm, but there are several differences. It

is noteworthy that any measurable mapping from M to N is “integrable” with respect to Dd
{Sn},

in the sense that the distance between any two measurable mappings is finite. This is why M

includes all measurable maps, while Lp includes only functions which satisfy a growth restriction.
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In Example 9.4.13 we work out a specific case which does not converge in Lp for any p but does

converge with respect to the distance defined in this chapter. �

Now that there is a metric defined on M∼ we can explore families in F(M∼) which converge

with respect to that metric. In Section 9.6 we study another type of convergence and we explore

the connection between these two natural forms of convergence on M∼. The limit inferior and limit

superior of a family of sets are reviewed in Equations (9.6) and (9.7) in Section 9.6.

Definition 9.3.4. Let a, b, c ∈ R with a < b and c ∈ [a, b]. Let {(φt, Bt)}t∈(a,b) ∈ F(M) and suppose

there exists some measurable B ⊂M satisfying

B ⊂
{
x ∈ lim

t→c
Bt

∣∣∣∣ limt→cφt(x) exists

}

and µV

(
limt→cBt \B

)
= 0. This in particular requires that the domains converge as sets as is

described in Definition 9.6.1. Then, with

φ : B → N

x 7→ lim
t→c

φt(x).

we say that {(φt, Bt)}t∈(a,b) converges to (φ,B) almost everywhere pointwise as t→ c in M and we

write φt a.e.−−→ φ as t→ c.

Theorem 9.3.5. Let a, b, c ∈ R such that a < b and c ∈ [a, b]. Suppose {(φt, Bt)}t∈(a,b) is a

family such that (φt, Bt) ∈ M for t ∈ (a, b) and let (φ,B) ∈ M. If φt a.e.−−→ φ as t → c then

φt D−−→ φ as t→ c.

There are many different directions one could head from this point, but since there is research

already being done regarding the convergence properties of families of embeddings [66, 74] we will

pursue an application in that field. I will use D to study families of embeddings which do not converge

to an embedding and quantify how far they are from converging. With this in mind we make the

following definitions.

Definition 9.3.6. Define Emb⊂(M,N) ⊂ M to be those elements (φ,B) ∈ M such that B ⊂ M
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is a submanifold and φ : B ↪→ N is an embedding. Also define Emb∼⊂(M,N) ⊂ M∼ to be those

equivalence classes [φ,B] ∈M∼ such that [φ,B] includes an element of Emb⊂(M,N).

Definition 9.3.7. Let a, b ∈ R with a < b, ε > 0, and {(φt, Bt)}t∈(a,b) ∈ F(M). A smooth family

{(φ̃t, B̃t)}t∈(a,b) ∈ F(M) is a convergent ε-perturbation (with respect to Dd
{Sn}) of {(φt, Bt)}t∈(a,b) if

1. there exists (φ̃, B̃) ∈ Emb⊂(M,N) such that φ̃t a.e.−−→ φ̃ as t→ a;

2. Bt = B̃t for all t ∈ (a, b) and

lim
t→c

B̃t ⊂ B̃;

3. for all t ∈ (a, b) we have that Dd
{Sn}(φt, φ̃t) 6 ε.

The function

rd{Sn} : F(M)→ [0,∞]

takes a family in F(M) to its radius of convergence given by

rd{Sn}
(
{(φt, Bt)}t∈(a,b)

)
:= inf

ε > 0

∣∣∣∣∣∣∣
there exists a smooth convergent

ε-perturbation of {(φt, Bt)}t∈(a,b)

 .

In part 2 of Definition 9.3.7 we make a requirement on the domains. This is so that the

singular points cannot simply be removed from the domain to form a convergent ε-perturbation. It is

important to notice that, unlike many of the properties we have introduced so far, rd{Sn} does depend

on the choice of d and {Sn}∞n=1. I am most interested in the rd{Sn} = 0 case, where an arbitrarily small

perturbation can cause the family to converge to an embedding. It is natural to wonder whether a

family can have radius of convergence zero but still not converge to any element of M. The following

Theorem addresses this.

Theorem 9.3.8. Let a, b ∈ R with a < b, {(φt, Bt)}t∈(a,b) be such that (φt, Bt) ∈M for each t ∈ (a, b),

and let rd{Sn} be the radius of convergence function associated to a complete Riemannian distance d

on N and an exhaustion of finite volume nested sets {Sn}∞n=1 of M . If rd{Sn}({(φt, Bt)}t∈(a,b)) = 0

then there exists (φ,B) ∈M unique up to ∼ such that φt D−−→ φ as t→ a. Furthermore, the converse

holds if there exists some T ∈ (a, b) such that s < t < T implies Bs ⊂ Bt.
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This theorem is important in the study of families with rd{Sn} = 0 because to characterize

such families we may assume right away that there exists some limit φ0 and study its properties in

order to understand the family we started with. In the final section we explore some ideas about

the open questions regarding rd{Sn} including restricting to embeddings with specific properties and

considering a converse of Theorem 9.3.8 in the case in which the domains do not eventually shrink or

stabilize.

9.4 Definitions and preliminaries

9.4.1 Basic properties of the distance

Let M be an orientable smooth manifold with volume form V and let N be a smooth

Riemannian manifold with natural distance function d. Again let µV be the measure on M induced by

the volume form V. In this section we will prove all but the completeness statement in Theorem 9.3.1,

which is postponed to Section 9.5. Recall the different notions of equivalent metrics. The use of these

terms varies, but for this chapter we will use the following conventions.

Definition 9.4.1. Let d1 and d2 be metrics on a set X. Then we say that d1 and d2 are:

1. topologically equivalent if they induce the same topology on X;

2. weakly equivalent if they induce the same topology on X and exactly the same collection of

Cauchy sequences;

3. strongly equivalent if there exist c1, c2 > 0 such that

c1d1 6 d2 6 c2d1.

Now we define the following function.

Definition 9.4.2. Let (φ,Bφ), (ψ,Bψ) ∈M. For α > 0 and a finite volume subset S ⊂M define

D
d,α
S ((φ,Bφ), (ψ,Bψ)) =

w

S

pd,αφψ dµV
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where

pd,αφψ (x) =


α if x ∈ Bφ M Bψ;

min{α, d(φ(x), ψ(x))} if x ∈ Bφ ∩Bψ;

0 otherwise.

In Definition 9.4.2 we have a family of functions depending on the choice of α > 0, but in

fact these will induce strongly equivalent metrics.

Proposition 9.4.3. Let S be a finite volume subset of M . If β > α > 0 then

D
d,α
S 6 D

d,β
S 6

β

α
D
d,α
S .

Proof. Notice

D
d,α
S (φ, ψ) =

w

Bφ ∩ Bψ ∩ S

min{α, d(φ, ψ)} dµV + αµV

(
(Bφ M Bψ) ∩ S

)
6

w

Bφ ∩ Bψ ∩ S

min{β, d(φ, ψ)} dµV + βµV

(
(Bφ M Bψ) ∩ S

)
= D

d,β
S (φ, ψ)

and also notice that

D
d,β
S (φ, ψ) =

w

Bφ ∩ Bψ ∩ S

min{β, d(φ, ψ)} dµV + βµV

(
(Bφ M Bψ) ∩ S

)
6

w

Bφ ∩ Bψ ∩ S

min{β, β
α
d(φ, ψ)} dµV + βµV

(
(Bφ M Bψ) ∩ S

)
=
β

α
D
d,α
S (φ, ψ).

So Proposition 9.4.3 means that the choice of α > 0 will not matter when we use D
d,α
S to

define a metric, so henceforth we will assume that α = 1. That is, for any finite volume subset S ⊂M

we have Dd
S as defined in Definition 9.2.3. In the above proof we wrote out the definition of Dd

S in
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a way which did not explicitly use the penalty function pdφψ. We can now notice that there is an

equivalent definition of Dd
S which will be useful for several of the proofs.

Proposition 9.4.4. Let M and N be manifolds with a volume form V on M , d a distance on N

induced by a Riemannian metric, S ⊂M a compact subset, and {Sn}∞n=1 a nested exhaustion of M

by finite volume sets. The function Dd
S given in Definition 9.2.3 can be written

Dd
S(φ, ψ) =

w

Bφ ∩ Bψ ∩ S

min{1, d(φ, ψ)} dµV + µV

(
(Bφ M Bψ) ∩ S

)
.

and the function Dd
{Sn} from Definition 9.2.4 satisfies

Dd
{Sn}(φ, ψ) =

∞∑
n=1

2−n
Dd

Sn
(φ, ψ)

µV (Sn)
.

This proposition has a trivial proof. Before the next Proposition we have a definition.

Definition 9.4.5. Suppose a, b ∈ R with a < b and c ∈ [a, b]. For a set X and a function

F : X ×X → [0,∞]

we say that a family {at}t∈(a,b) ⊂ X is Cauchy with respect to F as t→ c if for all ε > 0 there exists

some δ > 0 such that s, t ∈ (c− δ, c+ δ) ∩ (a, b) implies F (at, as) < ε.

Below are several important properties of Dd
{Sn}, which is defined in Definition 9.2.4.

Proposition 9.4.6. Let a, b ∈ R with a < b, {(φt, Bt)}t∈(a,b) ∈ F(M), and φ, ψ ∈ M. Further

suppose that d is a metric on N induced by a Riemannian metric and {Sn}∞n=1 is an exhaustion of

M by nested finite volume sets. The function Dd
{Sn} has the following properties.

1. {(φt, Bt)}t∈(a,b) is Cauchy with respect to Dd
{Sn} as t → c if and only if it is Cauchy with

respect to Dd
S as t→ c for all compact S ⊂M .

2. limt→cD
d
{Sn}(φt, φ) = 0 if and only if φt

Dd
S−−→ φ as t→ c for all compact S ⊂M .

3. Dd
{Sn}(φ, ψ) = 0 if and only if Dd

S(φ, ψ) = 0 for all compact S ⊂ M if and only if µV

(
(Bφ M

Bψ) ∩ S
)

= 0 for every compact S ⊂M and φ = ψ almost everywhere on Bφ ∩Bψ.
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Proof. Let ε > 0 and fix some compact subset S ⊂M . Then S ⊂
⋃∞
n=1 Sn = M and since S has finite

volume and the Sn are nested we can find some I ∈ N such that µV (S \ SI) < ε. This means that

Dd
S 6 Dd

SI
+ ε.

Now that we have this fact we will prove the three properties.

(1) It is sufficient to assume that a = c = 0 and b = 1. Suppose that {(φt, Bt)}t∈(0,1) is

Cauchy with respect to Dd
{Sn} as t→ 0 and fix some compact S ⊂M . Let ε > 0.

From the above fact we can find some I ∈ N such that Dd
S 6 Dd

SI
+ ε/2. Now, since this

family is Cauchy with respect to Dd
{Sn} we can find some δ ∈ (0, 1) such that s, t < δ implies

Dd
{Sn}(φt, φs) <

ε

2I+1µV (SI)
.

Using the expression for Dd
{Sn} from Proposition 9.4.4 we have that

∞∑
n=1

2−n
Dd

Sn
(φt, φs)

µV (Sn)
<

ε

2I+1µV (SI)

which in particular means

2−I
Dd

SI
(φt, φs)

µV (SI)
<

ε

2I+1µV (SI)

so Dd
SI

(φt, ψt) < ε/2.

Finally, we have that for s, t < δ

Dd
S(φt, φs) 6 Dd

SI
(φt, φs) +

ε

2
< ε.

The converse is easy and the proof of (2) is similar to the proof of (1).

(3) Suppose Dd
{Sn}(φ, ψ) = 0 and fix some compact S ⊂ M . Notice that this means that

Dd
Sn

(φ, ψ) = 0 for all n. For any ε > 0 from the fact above we know we can choose some I such that

Dd
S(φ, ψ) 6 Dd

SI
(φ, ψ) + ε = ε
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so we may conclude that Dd
S(φ, ψ) = 0.

Next, assume that Dd
S(φ, ψ) = 0 for all compact S ⊂M , which means that

µV

(
(Bφ M Bψ) ∩ S

)
= 0

because this is a term in Dd
S. Suppose that there is some set of positive measure in Bφ ∩ Bψ for

which φ 6= ψ. Then since manifolds are inner regular there exists some compact subset of positive

measure K on which they are not equal. But this implies that Dd
K(φ, ψ) 6= 0.

Now since µV

(
(Bφ M Bψ) ∩ S

)
= 0 for every compact S ⊂M and φ = ψ almost everywhere

on Bφ ∩Bψ it is clear that Dd
{Sn}(φ, ψ) = 0.

Corollary 9.4.7. Let {Sn}∞n=1 be an exhaustion of M and let d be a metric on N induced by a

Riemannian metric. Suppose that (φ,Bφ), (ψ,Bψ) ∈ M such that Dd
{Sn}(φ, ψ) = 0. Then for any

such parameters {S′n}∞n=1 and d′ we have that Dd′

{S′n}
(φ, ψ) = 0 as well.

Given the new information in Proposition 9.4.6 we can prove the following important

Proposition.

Proposition 9.4.8. For any choice of an exhaustion of M by finite volume sets {Sn}∞n=1 we have

that Dd
{Sn} is well defined and is a distance function on M∼. Also, if {S′n}∞n=1 is another such choice

of exhaustion then Dd
{Sn} and Dd

{S′n}
are weakly equivalent metrics on M∼.

Proof. Fix some {Sn}∞n=1 a compact exhaustion of M and let φ, ρ, ψ ∈ M. It is a straightforward

exercise to show that

pdφψ(x) 6 pdφρ(x) + pdρψ(x)

for each x ∈M and thus

Dd
{Sn}(φ, ψ) 6 Dd

{Sn}(φ, ρ) + Dd
{Sn}(ρ, ψ).

It should be noted that this inequality would not hold without the minimum in pdφψ. From here we

can see that if φ ∼ ρ then

Dd
{Sn}(φ, ψ) 6 Dd

{Sn}(ρ, ψ)
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and similarly the opposite inequality is true as well. So

Dd
{Sn}(φ, ψ) = Dd

{Sn}(ρ, ψ)

and thus Dd
{Sn} is well defined on M∼.

Now Dd
{Sn} is positive definite on M∼ because it is positive on M and by definition

Dd
{Sn}(φ, ρ) = 0 implies φ ∼ ρ. Since Dd

{Sn} is well defined on M∼ and satisfies the triangle

inequality on M we know that it satisfies the triangle inequality on M∼ and similarly we know that

Dd
{Sn} is symmetric on M∼.

Proposition 9.4.6 parts (1) and (2) characterize both convergent and Cauchy sequences of

Dd
{Sn} in a way which is independent of the choice of {Sn}∞n=1. This means that different choices of

{Sn}∞n=1 will produce weakly equivalent metrics Dd
{Sn}.

9.4.2 Independence of Riemannian structure

We have seen that M∼ is a metric space with metric Dd
{Sn} for any choice of compact

exhaustion and the metric spaces for different choices of exhaustion are all weakly equivalent. Now

we will show that this construction is actually independent of the choice of Riemannian metric on N

as well. For the remaining portion of the chapter we will use ‖·‖ to denote the usual norm in Rk and

dRk to denote the usual distance on Rk.

Lemma 9.4.9. Fix any measurable finite volume subset S ⊂ M and let a, b, c ∈ R with a < b and

c ∈ [a, b]. Now let {(φt, Bt)}t∈(a,b) ∈ F(M) and (φ,B) ∈ M. Suppose that φt
Dd

S−−→ φ ∈ M as t → c

and R : B ∩ S→ (0,∞) is any function. Then

lim
t→c

µV ({x ∈ Bt ∩B ∩ S | d(φ(x), φt(x)) > R(x)}) = 0.

Proof. It is sufficient to prove for a = c = 0 and b = 1. First, for t ∈ (0, 1) let Ct = {x ∈ Bt ∩B ∩ S |
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d(φ(x), φt(x)) > R(x)}. Since Ct ⊂ S we notice that

Dd
S(φt, φ) >

w

Ct

min{1, d(φ, φt)}dµV

>
w

Ct

min{1,R} dµV.

Now for each n ∈ N let Dn = {x ∈ B ∩ S | R(x) > 2−n} and notice that

w

Ct

min{1,R} dµV >
w

Dn ∩ Ct

min{1,R} dµV

> 2−n · µV (Dn ∩ Ct) .

Now combining the above facts we have that Dd
S(φt, φ) > 2−n · µV (Dn ∩ Ct) for any choice of n ∈ N

so

lim
t→0

µV (Dn ∩ Ct) = 0 (9.1)

for all n ∈ N.

Finally fix ε > 0. Since R(x) > 0 for all x ∈ B∩S we know that the collection {Dn}∞n=1 covers

B∩S. Since B∩S has finite volume we know there exists some N ∈ N such that µV

(
(B ∩ S) \DN

)
<

ε/2. This implies that for all t ∈ (0, 1) we have that µV

(
Ct \DN

)
< ε/2. By Equation (9.1) we

conclude that we can choose some T such that t < T implies that µV

(
Ct ∩DN

)
< ε/2. Now for t < T

we have that µV (Ct) = µV

(
Ct \DN

)
+ µV

(
Ct ∩DN

)
< ε.

Now we show that any choice of continuous metric on N will produce a weakly equivalent

metric on M∼.

Lemma 9.4.10. Suppose that d1 and d2 are topologically equivalent metrics on N each induced by a

Riemannian metric and let {Sn}∞n=1 be any exhaustion of M by finite volume sets. Then Dd1
{Sn} and

Dd2
{Sn} are topologically equivalent metrics on M∼.

Proof. Fix finite volume S ⊂M . If we show Dd1
S and Dd2

S are topologically equivalent then we have

proved the lemma by Proposition 9.4.6. It is sufficient to show that the same families indexed by

(0, 1) converge so suppose {(φt, Bt)}t∈(0,1) ∈ F(M) and (φ0, B0) ∈M such that φt
D
d1
S−−−→ φ0 as t→ 0

and we will show that φt
D
d2
S−−−→ φ0 as t→ 0. Fix ε > 0 and without loss of generality assume that
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ε < µV (S) . Let

C2
t =

{
x ∈ Bt ∩B0 ∩ S | d2(φ0(x), φt(x)) >

ε

3µV (S)

}
.

Let biy0(r) = {y ∈ N | di(y, y0) < r} for i = 1, 2. Since d1 and d2 are weakly equivalent metrics for

each y ∈ N there exists some radius ry > 0 such that the ball with respect to d1 of radius ry centered

at y is a subset of the ball with respect to d2 of radius ε/3µV(S) centered at y. Thus there exists some

R : B0 ∩ S→ (0,∞) such that

b1φ0(x)

(
R(x)

)
⊂ b2φ0(x)

(
ε

3µV (S)

)
for all x ∈ B0 ∩ S. (9.2)

Define C1
t = {x ∈ Bt ∩B0 ∩ S | d1(φ0(x), φt(x)) > R(x)} and notice that Equation (9.2) implies that

C2
t ⊂ C1

t . By Lemma 9.4.9 since φt
D
d1
S−−−→ φ0 as t→ 0 we know that limt→0 µV

(
C1
t

)
= 0 and so we

can conclude that

lim
t→0

µV

(
C2
t

)
= 0.

Now we can find some T ∈ (0, 1) such that if t < T then µV

(
C2
t

)
< ε/3 and also µV

(
(Bt M

B0) ∩ S
)
< ε/3. Then

Dd2
S (φt, φ0) =

w

Bt ∩ B0 ∩ S

min{1, d2(φt, φ0} dµV + µV

(
(Bt M B0) ∩ S

)
6

w

(Bt ∩ B0 ∩ S) \ C2
t

min{1, d2(φt, φ0} dµV +
w

C2
t

min{1, d2(φt, φ0} dµV + µV

(
(Bt M B0) ∩ S

)
6

w

S

ε

3µV (S)
dµV + µV

(
C2
t

)
+ µV

(
(Bt M B0) ∩ S

)
< ε/3 + ε/3 + ε/3 = ε.

We conclude this section with the following lemma.

Lemma 9.4.11. Let {Sn}∞n=1 be a nested exhaustion of M by finite volume sets and suppose that

d1 and d2 are metrics on N induced by smooth Riemannian metrics. Then Dd1
{Sn} and Dd2

{Sn} are

topologically equivalent metrics on M∼.

Proof. Both d1 and d2 are continuous with respect to the given topology on N . This means that
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Figure 9.3: An image of Φm,k.

they are topologically equivalent metrics and so by Lemma 9.4.10 the result follows.

Remark 9.4.12. If M is finite volume, such as in the case that M is compact, then there is an

obvious preferred choice to make when choosing the exhaustion, namely simply {M} itself. In such a

case we will always use

Dd
M (φ, ψ) =

w

M

pdφψdµV =
w

Bφ ∩ Bψ

min{1, d(φ, ψ)}dµV + µV (Bφ M Bψ) .

There are also no choices now when defining convergent ε-perturbations or the radius of convergence

except for the choice of metric on N . �

9.4.3 A representative example

To conclude Section 9.4 we work out an important example which will be referenced

throughout the chapter.

Example 9.4.13. Let Φm,k : (0, 1)→ R by

Φm,k(x) = m · χ(k/m,k+1/m)(x)

(shown in Figure 9.3) for k,m ∈ N with k < m where χS is the indicator function for the set S ⊂ (0, 1).
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We can see that
w

(0, 1)

Φm,k = 1

for all possible values of k and m. We will use these functions to construct an example which is

similar to the “traveling wave” example that is common in introductory analysis [32] except that our

example changes height so it always integrates to 1.

Consider the sequence

φ1 = Φ0,1, φ2 = Φ0,2, φ3 = Φ1,2, φ4 = Φ0,3, φ5 = Φ1,3, φ6 = Φ2,3, φ7 = Φ0,4, . . .

(as shown in Figure 9.4) and let φ0 : (0, 1)→ R by

φ0(x) = 0 for all x ∈ (0, 1).

Notice that this sequence does not converge pointwise to φ0 for any point x ∈ (0, 1). Also notice

Figure 9.4: A few terms of {φn}. It can be seen that each integrates to 1 and the
“traveling waves” pass over every point infinitely many times, so pointwise convergence is
impossible.

that since the integral of any element in this sequence is 1 we can conclude that this sequence does

not converge in L1 (or Lp for any p ∈ [1,∞]) either (as is mentioned in Remark 9.3.3), but it will

converge with respect to D. This is because the measure of values in the domain which get sent to a

number other than zero is becoming arbitrarily small, so we can conclude that

lim
n→∞

DdR
(0,1)(φn, φ0) = 0.
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This example shows a case in which we have a family which does not behave well pointwise almost

everywhere or with respect to the Lp norm, but it does behave well with respect to D.

Of course, if we replace the indicator function with a bump function we can produce a

sequence of smooth functions which has the same essential properties as these functions. In fact, for

this example we have considered a sequence of functions instead of a continuous family of functions

because it made it easier to describe the sequence, but we could easily extend this sequence to

a smooth (see Definition 9.7.1) family of smooth embeddings of (0, 1) into (0, 1) × R indexed by

t ∈ (0, 1) which has the same properties. �

9.5 Completeness of M∼

9.5.1 Preparation

Below is a collection of various technical Lemmas which are needed for Section 9.5.2. In this

section we will frequently use the alternative expression for D given in Proposition 9.4.4.

Lemma 9.5.1. Let A ⊂M be a measurable finite volume set and let a, b, c ∈ R such that a < b and

c ∈ [a, b]. Suppose that some family of measurable functions {ft : A → Rk}t∈(a,b), is Cauchy with

respect to
r
A
‖ft − fs‖ dµV as t → c. Then there exists some f : A → Rk such that ft

D
dRk
A−−−−→ f as

t→ c where dRk is the usual metric on Rk.

Proof. It is sufficient to show the result in the case that a = c = 0 and b = 1. For t ∈ (0, 1) we know

that ft maps into Rk so we may write it into components. Write

ft(x) = (f1
t (x), f2

t (x), . . . , fkt (x)).

Notice for any fixed j ∈ {1, 2, . . . , k} that

w

A

‖ft − fs‖ dµV =
w

A

(
k∑
i=1

(f it − f is)2

)1/2

dµV

>
w

A

∣∣∣f jt − f js ∣∣∣ dµV
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so we conclude that {f jt }t∈(0,1) is Cauchy in L1(A) for each j ∈ {1, 2, . . . , k}. Since L1(A) is complete

we know for each j ∈ {1, 2, . . . , k} there exists some function f j : A→ R such that

lim
t→0

w

A

∣∣∣f jt − f j∣∣∣ dµV = 0.

So we define f(x) = (f1(x), f2(x), . . . , fk(x)) for x ∈ A. Now, notice that for any x ∈ A we have

‖ft(x)− f(x)‖ 6
k∑
i=1

∣∣f it (x)− f i(x)
∣∣ .

Finally, notice

D
dRk
A (ft, f) =

w

A

min{1, ‖ft − f‖}dµV

6
w

A

min{1,
k∑
i=1

∣∣f it − f i∣∣}dµV

6
k∑
i=1

w

A

min{1,
∣∣f it − f i∣∣}dµV

6
k∑
i=1

w

A

∣∣f it − f i∣∣ dµV.

Since
r
A

∣∣∣f jt − f j∣∣∣ dµV goes to 0 as t goes to 0 for any choice of j ∈ {1, 2, . . . , k} the result follows.

Lemma 9.5.2. Let a, b, c ∈ R with a < b and c ∈ [a, b]. Let {(φt, Bt)}t∈(a,b) ∈ F(M∼(M,Rk)) and

(φ,B) ∈ M∼(M,Rk) be such that φt D−−→ φ as t→ c and suppose there exists a fixed closed subset

P ⊂ Rk such that φt(Bt) ⊂ P for all t ∈ (a, b). Then

µV ({x ∈ B | φ(x) /∈ P}) = 0

and thus there exists some (φ′, B′) ∼ (φ,B) such that φ′(B) ⊂ P .

Proof. Without loss of generality assume that a = c = 0 and b = 1. Since P is closed notice that for

y ∈ Rk we have that

inf
p∈P
{dRk(y, p)} = 0 implies y ∈ P
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where dRk is the standard metric on Rk. Thus, if we let C = {x ∈ B | φ(x) /∈ P} and

Cn = {x ∈ B | inf
p∈P
{dRk(φ(x), p)} > 2−n}

for each n ∈ N then we have that

C =

∞⋃
n=1

Cn.

So it will be sufficient to prove that µV (Cn) = 0 for each n ∈ N.

Let S ⊂M be compact and notice that φt D−−→ φ as t→ 0 implies that

lim
t→0

D
dRk
Cn∩S(φt, φ) = 0.

We know

D
dRk
Cn∩S(φt, φ) =

w

Bt ∩ Cn ∩ S

min{1, dRk(φt, φ)} dµV + µV ((Bt M B) ∩ Cn ∩ S)

> 2−n · µV (Bt ∩ Cn ∩ S) + µV ((Cn \Bt) ∩ S)

> 2−n · µV (Cn ∩ S) > 0.

This implies that

lim
t→0

(
2−n · µV (Cn ∩ S)

)
= 0

for any choice of compact S ⊂M which of course means µV (Cn) = 0 for each n ∈ N.

Lemma 9.5.3. Suppose that ρ : N → Rk is an isometric embedding of Riemannian manifolds

(ie, it preserves the metric tensor) where Rk is equipped with the standard Riemannian metric and

a, b, c ∈ R with a < b and c ∈ [a, b]. Then given some family {(φt, Bt)}t∈(a,b) ∈ F(M) and φ ∈M we

have that φt D−−→ φ as t→ c if and only if (ρ ◦ φt) D−−→ (ρ ◦ φ) as t→ c.

Proof. Let dN be the natural distance function on N and let dRk be the standard distance on Rk.
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Then we may define a second distance function d2 on N by

d2 : N ×N → R

(y1, y2) 7→ dRk(ρ(y1), ρ(y2))

If we can show that these are topologically equivalent metrics on N then the result will follow by

Lemma 9.4.10. Fix some y0 ∈ N and let

b(r) = {y ∈ N | dN (y, y0) < r} and b2(r) = {y ∈ N | d2(y, y0) < r}.

Now notice that in general d2 6 dN (see Remark 9.5.4), so we must only show that given some

arbitrary R > 0 we can find some r > 0 such that b2(r) ⊂ b(R).

Since b(R) ⊂ N is an open set and ρ is an embedding we can find some open set U ⊂ Rk

such that U ∩ ρ(N) = ρ(b(R)). Now since U is open and ρ(y0) ∈ U we can find some r > 0 such that

{z ∈ Rk | dRk(z, ρ(y0)) < r} ⊂ U. (9.3)

Now let y ∈ b2(r). Then we can see that Equation (9.3) tells us that ρ(y) ∈ U . Clearly

ρ(y) ∈ ρ(N) so ρ(y) ∈ U ∩ ρ(N) = ρ(b(R)). Since ρ is injective we now know that y ∈ b(R). Thus

b2(r) ⊂ b(R).

Remark 9.5.4. An isometric embedding of Riemannian manifolds preserves the metric at each

point, so it will preserve the length of curves, but often the shortest path between two points in

ρ(N) ⊂ Rk (a straight line) is not contained in ρ(N). This means that even though ρ preserves the

metric the images of two points in Rk may be closer than those two points are in N and this is why

d2 6 dN in the proof above. �
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9.5.2 Proof that (M∼,D) is complete

The goal of this section is to prove that (M∼,Dd
{Sn}) is a complete metric space for any

choice of an exhaustion of M by finite volume sets {Sn}∞n=1 and metric on N induced by a complete

Riemannian metric d. To do this we first have to prove several lemmas. We will start by considering

mappings restricted to a compact set and indexed by (0, 1), but later it will be easy to generalize

this to all of M by using a compact exhaustion and to arbitrary intervals. The first lemma proves

the theorem in the special case that N = Rk and all maps have the same domain.

Lemma 9.5.5. Fix some compact set S ⊂ M and let {(φt, S)}t∈(0,1) ∈ F(M(M,Rk)) be a family

which is Cauchy with respect to D
dRk
S as t→ 0. Then there exists some φ0 : S→ Rk, unique up to ∼,

such that φt
D
dRk
S−−−−→ φ0 as t→ 0.

Proof. The proof has five steps. Figures 9.5 and 9.6 show how the proof works in a specific case.

Step 1: First we will define a new family {(φnt , S)}t∈(0,1) ∈ F(M) for each n ∈ N. Since

{(φt, S)}t∈(0,1) is Cauchy with respect to D
dRk
S for each n ∈ N pick some Tn ∈ (0, 1) such that

t 6 Tn =⇒ D
dRk
S (φt, φTn) < 2−n. (9.4)

Now for each n ∈ N we can define a new family {(φnt , S)}t∈(0,Tn) by

φnt (x) =


φt(x) if ‖φt(x)− φTn(x)‖ 6 1/2;

φTn(x) +
φt(x)−φTn (x)

2‖φt(x)−φTn (x)‖ otherwise.

Step 2: Next we will show that each family {(φnt , S)}t∈(0,Tn) converges in D
dRk
S . Notice for

any t, s < Tn we have that
∥∥φnt (x)− φns (x)

∥∥ 6 1 so in fact we have that

D
dRk
S (φnt , φ

n
s ) =

w

S

∥∥φnt − φns ∥∥ dµV.

1Recall that the functions in Example 9.4.13 are labeled in the opposite order for convenience.
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Figure 9.5: Applying the proof of Lemma 9.5.5 to Example 9.4.13. In Step 1 we choose
T2 = 12 because1in this case φ12 satisfies Equation (9.4) for n = 2 and we restrict each
mapping to have values within the shaded area (within a distance of 1/2 from φT2

) to

produce the family {(φnt , S)}. In Step 2 we find the limit of those functions to define φ2
0.

At the points in which this function takes values on the boundary of the shaded area we
can see that the family is approaching a value outside of the shaded area, so in Step 3 we
remove these points from the domain to form φ2

0.

Figure 9.6: Two examples in which the maps are restricted to find the limit φ2
0 in Steps 1

and 2 of the proof of Lemma 9.5.5. In each case we start with φt and create φt by changing
the function to have only values with a distance less than 1/2 to φT2 .
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Since for any x ∈ S we have that ‖φt(x)− φs(x)‖ >
∥∥φnt (x)− φnx(x)

∥∥ we know

D
dRk
S (φt, φs) > D

dRk
S (φnt , φ

n
s ) =

w

S

∥∥φnt − φns ∥∥ dµV

and since {(φt, S)}t∈(0,1) is Cauchy with respect to D
dRk
S we now know that {(φnt , S)}t∈(0,Tn) is Cauchy

with respect to
r
S

∥∥φnt − φns ∥∥ dµV. Thus by Lemma 9.5.1 we know that for each n ∈ N there exists a

map φn0 : S→ Rk such that φnt
D
dRk
S−−−−→ φn0 as t→ 0.

Step 3: In this step we will define φn0 for each n on all but a subset of measure less than

2−n+2 of S. Let

Bn0 = {x ∈ S |
∥∥φTn(x)− φn0 (x)

∥∥ < 1/4}.

Now define

φn0 = φn0 |Bn0 : Bn0 → Rk.

Now we will show that φn0 is defined on all but a small subset of S.

Let ε > 0 and pick some t < Tn such that D
dRk
S (φnt , φ

n
0 ) < ε. Then

D
dRk
S (φTn , φ

n
0 ) 6 D

dRk
S (φTn , φ

n
t ) + D

dRk
S (φnt , φ

n
0 ) < 2−n + ε

for all ε > 0 so we may conclude that D
dRk
S (φTn , φ

n
0 ) 6 2−n. Next also notice that since S \Bn0 ⊂ S

we know that

D
dRk
S (φTn , φ

n
0 ) >

w

S \ Bn0

min{1,
∥∥φTn − φn0∥∥} dµV >

1

4
µV (S \Bn0 ) .

This means that µV (S \Bn0 ) 6 2−n+2. Since Bn0 ⊂ S we conclude that µV (Bn0 ) > µV (S)− 2−n+2.

So if

µV

(
S \

∞⋃
n=1

Bn0

)
= α > 0

the we would have a contradiction because we can choose some n ∈ N such that 2−n+2 < α. Thus

we have that

µV

(
S \

∞⋃
n=1

Bn0

)
= 0.

Step 4: Next we must show that the limiting functions are equal on the overlap of their
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domains. That is, we must show for any m,n ∈ N that φm0 (x) = φn0 (x) for almost every x ∈ Bm0 ∩Bn0 .

Our first step towards this goal is to define

Ent = {x ∈ Bn0 |
∥∥φTn(x)− φnt (x)

∥∥ > 1/2}

and show that

lim
t→0

µV (Ent ) = 0

for all n ∈ N.

Since Ent ⊂ Bn0 we know that for any x ∈ Ent we have that

∥∥φTn(x)− φnt (x)
∥∥ > 1/2

and also that ∥∥φTn(x)− φn0 (x)
∥∥ < 1/4.

Thus we may apply the triangle inequality to notice that

∥∥φnt (x)− φn0 (x)
∥∥ > 1/4 for x ∈ Ent .

Now we just notice that since Ent ⊂ S we have

D
dRk
S (φnt , φ

n
0 ) >

w

Ent

∥∥φnt − φn0∥∥ dµV >
1

4
µV (Ent ) .

Thus we conclude that limt→0 µV (Ent ) = 0, as desired.

Now let C = {x ∈ Bn ∩Bm | φn0 (x) 6= φm0 (x)} and we will show that µV (C) = 0 to complete

this step. Notice that for any x ∈ C \ (Ent ∪ Emt ) we have that φnt (x) = φmt (x) = φt(x). Notice

w

C

min{1,
∥∥φnt − φmt ∥∥} dµV 6 µV (Ent ) + µV (Emt ) +

w

C \ (Ent ∩ E
m
t )

min{1,
∥∥φnt − φmt ∥∥}dµV

= µV (Ent ) + µV (Emt ) .
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Then, since 0 <
r
C

min{1,
∥∥φnt − φmt ∥∥}dµV 6 µV (Ent ) + µV (Emt ) and the right side decreases to

zero as t→ 0 we conclude that

lim
t→0

w

C

min{1,
∥∥φnt − φmt ∥∥}dµV = 0

so limt→0 D
dRk
C (φnt , φ

m
t ) = 0.

Finally, by the triangle inequality

D
dRk
C (φn0 , φ

m
0 ) 6 D

dRk
C (φn0 , φ

n
t ) + D

dRk
C (φnt , φ

m
t ) + D

dRk
C (φmt , φ

m
0 )

and we know each term on the right goes to zero as t→ 0. Since t does not appear on the left side

we may conclude that

D
dRk
C (φn0 , φ

m
0 ) =

w

C

min{1, ‖φn0 − φm0 ‖}dµV = 0.

Notice that the function min{1, ‖φn0 (x)− φm0 (x)‖} is strictly positive on C, so since integrating it

over C yields zero we conclude that µV (C) = 0.

Step 5: In this step we will define the map φ0 : S→ Rk and show that it is the unique limit.

Now define

φ0(x) = φn0 (x) for any n such that x ∈ Bn0 .

This map is well defined almost everywhere because the φn0 are equal almost everywhere on the

overlap of their domains and ∪∞n=1B
n
0 covers almost all of S.

Now we must show this is the limit. Since we already know that {(φt, S)}t∈(0,1) is Cauchy

it is sufficient to choose a subsequence and show it converges to φ0. We will consider the sequence

{(φTn , S)}∞n=1. Fix some ε > 0 and pick N ∈ N such that 2−n+2 < ε/3 for all n > N . Now for each



217

n > N pick tn ∈ (0, Tn) such that D
dRk
S (φntn , φ

n
0 ) < ε/3. Then for any n > N we have

D
dRk
S (φTn , φ0) 6 D

dRk
S (φTn , φ

n
tn) + D

dRk
S (φntn , φ

n
0 ) + D

dRk
S (φn0 , φ0)

< 2−n + ε/3 + 2−n+2

< ε.

Thus we conclude that φTn
D
dRk
S−−−−→ φ0 as t → 0 and thus φt

D
dRk
S−−−−→ φ0 as t → 0. To show

that this is unique suppose that there exists some other φ′0 : S→ Rk such that φt
D
dRk
S−−−−→ φ′0 as t→ 0.

Then for any compact set S′ ⊂M and t ∈ (0, 1) we have that

D
dRk
S′ (φ0, φ

′
0) 6 D

dRk
S (φ0, φt) + D

dRk
S (φt, φ

′
0)→ 0 as t→ 0

since both have domain S, so φ0 ∼ φ′0.

For the next step we will continue to focus on a single compact set and the case in which

N = Rk, but this time we will allow the domains of the functions to vary.

Lemma 9.5.6. Fix some compact subset S ⊂M . Any family {(φt, Bt)}t∈(0,1) ∈ F(M(M,Rk)) which

is Cauchy with respect to D
dRk
S as t → 0 also converges with respect to D

dRk
S as t → 0 to some

φ0 : B0 → Rk where B0 ⊂ S. Moreover, among maps in M with domains a subset of S that share this

property, (φ0, B0) is unique up to ∼.

Proof. Let {(φt, Bt)}t∈(0,1) ∈ F(M∼(M,Rk)) be a family which is Cauchy as t → 0 and define

π : Rk → Rk+1 via π(x1, . . . , xk) = (0, x1, . . . , xk). Now, for each t ∈ (0, 1) define φ̂t : S→ Rk+1 by

φ̂t(x) =

 (1, 0, . . . , 0) if x /∈ Bt

π(φt(x)) if x ∈ Bt.
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Notice that for all s, t ∈ (0, 1)

min{1,
∥∥∥φ̂t(x)− φ̂s(x)

∥∥∥} =


min{1, ‖φt(x)− φs(x)‖} if x ∈ Bt ∩Bs

1 if x ∈ Bt M Bs

0 if x /∈ Bt ∪Bs.

Thus for s, t ∈ (0, 1) we have that

D
dRk+1

S (φ̂t, φ̂s) =
w

S

min{1,
∥∥∥φ̂t − φ̂s∥∥∥} dµV

=
w

Bt ∩ Bs ∩ S

min{1,
∥∥∥φ̂t − φ̂s∥∥∥} dµV +

w

(Bt M Bs) ∩ S

1 dµV +
w

S \ (Bt ∪ Bs)

0 dµV

=
w

Bt ∩ Bs ∩ S

min{1,
∥∥∥φ̂t − φ̂s∥∥∥} dµV + µV

(
(Bt M Bs) ∩ S

)
= D

dRk
S (φt, φs).

Now we can see that {φ̂t, S}t∈(0,1) must be Cauchy as well. Since these are all functions into Rk+1 with

the same domain we can invoke Lemma 9.5.5 to conclude that there exists some limit φ̂0 : S→ Rk+1

which is unique up to ∼ such that φ̂t
D
dRk+1

S−−−−−→ φ̂0 as t → 0. Since K = π(Rk) ∪ {(1, 0, . . . , 0)} is a

closed subset of Rk+1 we can invoke Lemma 9.5.2 to conclude that we may assume that φ̂0(S) ⊂ K.

This allows us to define (φ0, B0) in the following way. Let

B0 = {x ∈ S | φ̂0(x) 6= (1, 0, . . . , 0)}.

So for any x ∈ B0 we know that φ̂0(x) ∈ π(Rk), which means that we can define

φ0 : B0 → Rk

x 7→ π−1(φ̂t(x)).

Since D
dRk
S (φt, φ0) = D

dRk+1

S (φ̂t, φ̂0) we can see that φ̂t
D
dRk+1

S−−−−−→ φ̂0 implies that φt
D
dRk
S−−−−→ φ0 and we

know that φ0 is unique up to ∼ because φ̂0 is.
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Finally we will expand to consider all of M instead of just a single compact set, but we will

still only consider N = Rk.

Lemma 9.5.7. (M∼(M,Rk),D) is complete. That is, if {Sn}∞n=1 is any nested finite exhaustion of

M then
(
M∼(M,Rk),D

dRk
{Sn}

)
is a complete metric space where dRk is the standard metric on Rk.

Proof. It is sufficient to show that families indexed by (0, 1) which are Cauchy as t → 0 also

converge as t→ 0. Let {(φt, Bt)}t∈(0,1) ∈ F(M∼(M,Rk)) be Cauchy with respect to D
dRk
{Sn}. From

Proposition 9.4.6 we know that this means for all compact S ⊂ M this sequence is Cauchy with

respect to D
dRk
S and from Lemma 9.5.6 we know that this means for each compact S ⊂M we have

some φS0 : BS
0 → Rk where BS

0 ⊂ S such that (φS0 , B
S
0 ) is unique up to ∼. Let {Sn}∞n=1 be a nested

compact exhaustion of M and now we would like to conclude that for n < m we have that

(φSm0 |Sn , B
Sm
0 ∩ Sn) ∼ (φSn0 , BSn

0 ).

Notice that

D
dRk
Sn

(φSm0 |Sn , φt) = D
dRk
Sn

(φSm0 , φt) 6 D
dRk
Sm

(φSm0 , φt).

because Sn ⊂ Sm. Since D
dRk
Sm

(φSm0 , φt)→ 0 as t→ 0 we know that D
dRk
Sn

(φSm0 |Sn , φt)→ 0 as t→ 0.

From Lemma 9.5.6 we know that such a limit with domain a subset of Sn is unique up to ∼. Thus

we conclude that φSm0 |Sn ∼ φ
Sn
0 . This means that the symmetric difference of their domains has zero

volume, so µV

(
(BSn

0 M BSm
0 ) ∩ Sn

)
= 0, and also they are equal almost everywhere on the overlap

of their domains. So now we can define B0 =
⋃∞
n=1B

Sn
0 and φ0 : B0 → Rk almost everywhere by

φ0(x) = φSn0 (x) where x ∈ Sn

and this is well defined. Since φt
D
dRk
Sn−−−−→ φ0 as t → 0 for all Sn in a compact exhaustion of M we

know by definition that φt D−−→ φ0 as t→ 0.

Now we are ready to prove that (M∼,D) is complete.

Lemma 9.5.8. Suppose that {Sn}∞n=1 is a nested exhaustion of M by finite measure sets and that d

is a metric on N induced by a Riemannian metric. Then
(
M∼,Dd

{Sn}
)

is complete if and only if

(N, d) is complete.
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Figure 9.7: {φ̌t}t∈(0,1) is a family of maps into Rk.

Proof. It is sufficient to show that Cauchy families indexed by (0, 1) converge as t→ 0. First assume

that (N, d) is complete and let {(φt, Bt)}t∈(0,1) ∈ F(M) be Cauchy as t → 0. Now, by the Nash

embedding theorem [59, Theorem 3] we know there exists an isometric embedding ρ : N → Rk for

some k ∈ N. In fact, since N is a complete Riemannian manifold we can choose ρ to have a closed

image [58, Theorem 0.2].

Let dN denote the distance on N induced by the metric and let dRk denote the standard

distance on Rk. Notice for y1, y2 ∈ N we have that

dRk(ρ(y1), ρ(y2)) 6 dN (y1, y2). (9.5)

(See Remark 9.5.4). Define

φ̌t := ρ ◦ φt : Bt → Rk

as is shown in Figure 9.7. From Equation (9.5) above we know that

D
dRk
S (φ̌t, φ̌s) 6 Dd

S(φt, φs)

for all compact S ⊂M so we can conclude that {(φ̌t, Bt}t∈(0,1) is also Cauchy with respect to D. By

Lemma 9.5.7 we know that there exists some φ̌0 : B0 → Rk such that φ̌t D−−→ φ̌0 as t → 0 and by
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Lemma 9.5.2 we can conclude, up to measure zero corrections, that

φ̌0(B0) ⊂ ρ(N).

Thus we may define

φ0 := ρ−1 ◦ φ̌0 : B0 → N.

By Lemma 9.5.3 we know that φ̌t D−−→ φ̌0 as t→ 0 implies that φt D−−→ φ0 as t→ 0 and so we can

conclude that the Cauchy sequence converges.

It is easy to see that if N is not complete then M∼ is not complete. Consider a sequence of

constant functions {φt : M → N}t∈(0,1) such that

φt(x) = yt

where yt is a Cauchy family in N which does not converge.

Theorem 9.3.1 follows from Proposition 9.4.8, Lemma 9.4.11, Lemma 9.5.8, and the fact that

every manifold admits a complete Riemannian metric [60, Theorem 1].

9.6 Almost everywhere convergence and D

We already have a definition of convergence in distance, so in this section we will define

and explore the properties of a way in which these maps can converge pointwise almost everywhere.

To talk about convergence of a family in F(M) we must have both the domains and the mappings

converge. First, we will describe the convergence of the domains.

Let a, b, c ∈ R with a < b and c ∈ [a, b]. Now let {Bt ⊂ M}t∈(a,b) be a collection of

measurable subsets of M . Recall the limit inferior and limit superior of a family of sets, given by

lim
t→c

(Bt) :=
⋃

δ∈(0,1)

 ⋂
t∈(a,b),
|t−c|<δ

Bt

 (9.6)
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and

lim
t→c

(Bt) :=
⋂

δ∈(0,1)

 ⋃
t∈(a,b),
|t−c|<δ

Bt

 (9.7)

respectively. So the limit inferior of the family is the collection of all points which are eventually

in every Bt as t→ c and the limit superior is the collection of all points which are not eventually

outside of every Bt. Clearly it can be seen that lim(Bt) ⊂ lim(Bt). We say that the family converges

if these two sets only differ by a set of measure zero. That is,

Definition 9.6.1. Let a, b, c ∈ R with a < b and c ∈ [a, b] and let {(φt, Bt)}t∈(a,b) ∈ F(M). If

µV

{
lim
t→c

(Bt) \ lim
t→c

(Bt)

}
= 0

we say that the collection of sets {Bt}t∈(a,b) converges to limt→c(Bt) as t → c or {(φt, Bt)}t∈(a,b)

has converging domains as t→ c. Furthermore, if {[φt, Bt]}t∈(a,b) ∈ F(M∼) is such that {Bt}t∈(a,b)

converges for one choice of representative we say it has converging domains.

Remark 9.6.2. Notice that any nested family of subsets will converge by this definition. For a, b ∈ R

with a < b let {Bt}t∈(a,b) be a family of subsets such that for s, t ∈ (a, b) we have that s < t implies

Bt ⊂ Bs. Then

lim
t→a

Bt = lim
t→a

Bt =
⋃

t∈(a,b)

Bt.

�

Remark 9.6.3. Notice that if {[φt, Bt]}t∈(a,b) ∈ F(M∼) has converging domains as t → c, for

a, b, c ∈ R, a < b, c ∈ [a, b], then we can always choose some collection of representatives {(φ′t, B′t) ∈

[φt, Bt]}t∈(a,b) such that limB′t = limB′t where both limits are taken as t→ c. �

Now that we understand the convergence of domains we are prepared to describe almost

everywhere convergence in M. Let a, b, c ∈ R with a < b and c ∈ [a, b]. Notice that if x ∈ limt→c(Bt)

then there exists some δ > 0 such that if t ∈ (a, b) and |t− c| < δ then x ∈ Bt. This means that

φt(x) exists for such t so we may ask if {φt(x)}t∈(a,b)∩(c−δ,c+δ) converges as a family of points in N
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as t→ c. If it does converge than we have a limit

lim
t→c

φt(x)

and thus we arrive at Definition 9.3.4.

Remark 9.6.4. Here it is important to notice that the limit (φ,B) from Definition 9.3.4 is not

unique in M but by Corollary 9.6.7 we know it does represent a unique element in M∼. Furthermore,

given {[φt, Bt]}t∈(a,b) ∈ F(M∼) we can create a family in F(M) by making a choice of representative

for each t ∈ (a, b). If a choice exists such that the resulting family in F(M) converges than we say

that {[φt, Bt]}t∈(a,b) converges almost everywhere pointwise. Corollary 9.6.6 shows that any limit

computed in this way gives the same element of M∼. In such a case we would write [φt] a.e.−−→ [φ0] as

t→ c. Note that the existence of one choice of representatives which converges does not guarantee

that all choices will converge. �

We are now ready to prove Theorem 9.3.5.

Proof of Theorem 9.3.5. It is sufficient to prove for families indexed by (0, 1) and limits as t→ 0. Let

{Sn}∞n=1 be a nested exhaustion of M by finite volume sets, (φ,B) ∈M, and {(φt, Bt)}t∈(0,1) ∈ F(M)

such that φt a.e.−−→ φ as t → 0. For the duration of this proof let lim(Bt) denote limt→0(Bt) and

limBt denote limt→0Bt.

Recall that for x ∈ B we have that x ∈ limBt and φt(x)→ φ(x) as t→ 0 by Definition 9.3.4.

Thus

lim
t→0

pdφtφ(x) = lim
t→0

min{1, d(φt(x), φ(x))} = min
{

1, d
(

lim
t→0

φt(x), φ(x)
)}

= 0.

Also notice that for any x ∈M \ limBt we know that x /∈ B and also for small enough t we know

x /∈ Bt. That is, there exists some T ∈ (0, 1) such that t < T implies that x /∈ Bt so for such t we

have that x /∈ B ∪Bt. This means that for t < T we have that pdφtφ(x) = 0. Thus

lim
t→0

pdφtφ(x) = 0

for any x ∈M \ limB as well. Every x ∈ S must either
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1. be in B or M \ limBt and thus satisfy lim pdφtφ(x) = 0 as t→ 0;

2. be in limBt \B0, which is a set of measure zero.

This means that pdφtφ → 0 as t → 0 pointwise almost everywhere. Also notice that each pdφtφ is

bounded by the constant function 1, which is integrable on M because ν{Sn} (M) = 1. These two

facts allow us to invoke the Lebesgue Dominated Convergence Theorem to conclude that

lim
t→0

Dd
{Sn}(φt, φ) = lim

t→0

w

M

pdφtφ dν{Sn} =
w

M

lim
t→0

pdφtφ dν{Sn} = 0.

Remark 9.6.5. Notice that the converse of Theorem 9.3.5 does not hold. We know because of

Example 9.4.13 in which the family converges in D but not pointwise almost everywhere. �

The following two results are a consequence of Theorem 9.3.5 and the fact that (M∼,Dd
{Sn})

is a metric space.

Corollary 9.6.6. Almost everywhere pointwise limits of families in F(M∼) are unique in M∼. That

is, let a, b, c ∈ R with a < b and c ∈ [a, b]. Now suppose {[φt, Bt]}t∈(a,b) ∈ F(M∼), (φ1
t , B

1
t ), (φ2

t , B
2
t ) ∈

[φt, Bt] for t ∈ (a, b), and (φ1, B1), (φ2, B2) ∈M such that (φit, B
i
t)

a.e.−−→ (φi, Bi) as t→ c for i = 1, 2.

Then [φ1, B1] = [φ2, B2] in M∼.

Proof. Let {[φt, Bt]}t∈(a,b), (φ
1
t , B

1
t ), (φ2

t , B
2
t ), (φ1, B1), and (φ2, B2) be as in the statement of the

Corollary. Thus for any choice of a nested exhaustion of M by finite volume sets {Sn}∞n=1, a complete

metric d on N which is induced by a Riemannian metric, and t ∈ (a, b) we have that

0 6 Dd
{Sn}(φ

1, φ2) 6 Dd
{Sn}(φ

1, φ1
t ) + Dd

{Sn}(φ
1
t , φ

2
t ) + Dd

{Sn}(φ
2
t , φ

2).

The middle term on the right side is zero because (φ1
t , B

1
t ) ∼ (φ2

t , B
2
t ) and the remaining terms both

approach zero as t→ c because (φit, B
i
t)

D−−→ (φi, Bi) ∈M∼ as t→ c by Theorem 9.3.5.

Corollary 9.6.7. Almost everywhere pointwise limits of families in F(M) are unique up to ∼. That

is, suppose that a, b, c ∈ R with a < b and c ∈ [a, b] and further suppose that {(φt, Bt)}t∈(a,b) ∈ F(M)

and φ, φ′ ∈M. If φt a.e.−−→ φ and φt a.e.−−→ φ′ then φ ∼ φ′.
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Figure 9.8: A figure of the relevant maps when defining a smooth family of embeddings.

9.7 Families with singular limits

We will be considering one parameter families of mappings in F(M∼). For this type of family

we can adapt the definition of smoothness from [74] which is visualized in Figure 9.8.

Definition 9.7.1. Let a, b ∈ R with a < b. We say that a family of smooth maps {(φt, Bt)}t∈(a,b) ∈

F(M) is smooth if:

1. each element of {Bt} is a submanifold of M ;

2. there exists a smooth manifold B and a smooth map g : (a, b)×B →M such that

(a) the mapping gt : b 7→ g(t, b) is a smooth immersion;

(b) for each t ∈ (a, b) we have gt(B) = Bt.

3. the map (t, b) 7→ φt ◦ gt(b) is smooth.

Despite the choice of terminology, it is unknown if this sense of smoothness implies that the

family is continuous with respect to the topology on M.

Definition 9.7.2. We say that a smooth family {(φt, Bt)}t∈(a,b) ∈ F(Emb⊂(M,N)) has a singular

limit if either

1. the family does not converge in D as t→ a;
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2. there exists some φ0 ∈M such that φt D−−→ φ0 as t→ a but [φ0] /∈ Emb∼⊂(M,N).

In Case 1 we say that the singularity is essential because Theorem 9.3.8 assures it cannot be removed

by arbitrarily small changes.

Recall the function rd{Sn} : F(M) → [0,∞] from Definition 9.3.7. This function quantifies

how far a family is from converging by measuring how much each embedding must be changed in

order to create a new family which does converge. It is straightforward to show that r is surjective.

Proposition 9.7.3. For any q ∈ [0,∞] there exists some choice of manifolds M and N , an exhaustion

{Sn}∞n=1 of M , a distance d induced by a complete Riemannian metric on N , a, b ∈ R such that

a < b, and a smooth family {(φt, Bt)}t∈(a,b) ∈ F(M) for which rd{Sn}({(φt, Bt)}t∈(a,b)) = q.

Proof. From the existence of families of embeddings which do converge we know that 0 is in the image

of r. Also, notice that if φt : (0, 1)→ R, φt(x) = (1/t) sin(1/t) then rd{Sn}({(φt, Bt)}t∈(a,b)) =∞.

Pick some q ∈ (0, 1) and let φt : (0, 3q)→ R for t ∈ (0, 1) via

φt(x) =
x

9q
+

1

3
sin(1/t).

So in this case Bt = (0, 3q) for all t, a = 0, b = 1, M = (0, 3q) with the usual measure inherited from

R, and N = R with the usual distance. Since M is finite throughout this example let D := Dd
{M}

and r := rd{M} where d is the standard distance on R. Notice that if we perturbed this family to

converge to some limit which did not have (0, 3q) as its domain we could change the domain of the

limit to (0, 3q) and have a smaller perturbation. So we can assume that the domain of the limit is

(0, 3q). Suppose that we wanted to change this family so it converged to some map φ0 : (0, 3q)→ R.

We can see that the φt oscillate to the left and right, so let

φL(x) =
x

9q
− 1/3

and

φR(x) =
x

9q
+ 1/3.
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Now let

ln =
2

(4n+ 1)π
and rn =

2

(4n+ 3)π

so that φln = φL and φrn = φR for all n ∈ N. Notice

d(φL(x), φR(x)) = 2/3

for all x ∈ (0, 3q) so

d(φL(x), φ0(x)) + d(φ0(x), φR(x)) > 2/3.

Clearly this implies that

min{1, d(φL(x), φ0(x))}+ min{1, d(φ0(x), φR(x))} > 2/3

and so integrating each side over (0, 3q) gives

D(φL, φ0) + D(φ0, φR) > 2q

so one of the two terms must be greater than or equal to q. Without loss of generality suppose that

D(φL, φ0) > q. In such a case choose any ε > 0 and find some T ∈ (0, 1) such that t < T implies

D(φ̃t, φ0) < ε where {φ̃t} is any family which converges to φ0. Then pick some n ∈ N such that

ln < T and let t = ln. Now

D(φt, φ̃t) + D(φ̃t, φ0) > D(φt, φ0)

so D(φt, φ̃t) > q − ε for all ε > 0. This allows us to conclude that r({(φt, Bt)}) > q.

Now let φ̃t : (0, 3q)→ R with φ̃t(x) = x
9q be a family of maps which is clearly smooth and

has limit φ0(x) = x
9q . Now notice

D(φt, φ̃t) =
w

(0, 3q)

min{1, d(φt, φ̃t)} dµV = q |sin(1/t)| 6 q

and it is important to notice that D(φt, φ̃t) = q is achieved infinitely often. Thus we know that

r({(φt, Bt)}) 6 q so in fact we know that r({(φt, Bt)}) = q.
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It it unknown if having zero radius of convergence is independent of the chose of parameters

d and {Sn}∞n=1 (see Section 9.8.2). In the case that rd{Sn}({(φt, Bt)}) = 0 we say that the family has

a removable singularity with respect to Dd
{Sn}. Now we are prepared to prove Theorem 9.3.8.

Proof of Theorem 9.3.8. Suppose that {(φt, Bt)}t∈(a,b) ∈ F(M) and r({(φt, Bt)}t∈(a,b)) = 0. Fix

some compact S ⊂M and we will show that {(φt, Bt)}t∈(a,b) is Cauchy with respect to DS.

Fix some ε > 0. Let δ = ε/4 and since r({(φt, Bt)}t∈(a,b)) = 0 define some other family

{(φ̃δt , B̃δt )} such that

1. D(φt, φ̃δt ) < δ for all t ∈ (a, b);

2. Bt = B̃δt for all t ∈ (a, b);

3. there exists some φ̃δ ∈ Emb⊂(M,N) such that φ̃δt
a.e.−−→ φ̃δ as t→ a.

From Theorem 9.3.5 and item (3) above we know that

φ̃δt
Dd

S−−→ φ̃δ0

as t→ a so we can choose some T ∈ (a, b) such that t < T implies DS(φ̃δt , φ̃
δ) < δ. Finally, we can

conclude that for any t, s < T we have that

DS(φt, φs) 6 DS(φt, φ̃δt ) + DS(φ̃δt , φ̃
δ) + DS(φ̃δ, φ̃δs) + DS(φ̃δs, φs)

< 4δ = ε.

This means that {(φt, Bt)}t∈(a,b) is Cauchy as t→ a for each DS so by Proposition 9.4.6 we know

that it is Cauchy with respect to D as t→ a. Finally, since (M∼,D) is complete by Theorem 9.3.1

we can come to the first conclusion of this Theorem.

Now we will show the second claim. Suppose that the domains satisfy the required property

for T ∈ (a, b) and that φt D−−→ φ0 as t→ a. Fix ε > 0 and find some T1 ∈ (a, T ) such that s, t < T1

implies that D(φt, φs) < ε. Now let B : (a, b)→ [0, 1] be a smooth bump function such that B(t) = 0

for t > T1 and b(t) = 1 for t < T1+a/2. Now define f : (a, b)→ [T1+a/2, b) via

f(t) =
(
1−B(t)

)
t+ B(t)

T1 + a

2
.
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Finally let

φ̃t = φf(t)|Bt

and notice that {(φ̃t, Bt)} is a smooth family satisfying φ̃t a.e.−−→ φT1/2 as t → a. By the choice of

T1 we can see that for all t ∈ (a, b) we have D(φt, φ̃t) < ε. Also, because of the requirement on the

domains we know that Bt ⊂ Bf(t) and thus φ̃t : Bt → N is defined on all of Bt.

Remark 9.7.4. It is natural to wonder if r({(φt, Bt)}t∈(a,b)) = 0 implies the family must in fact

converge pointwise almost everywhere in M∼. The answer to this question is no; again consider

Example 9.4.13. The functions in Example 9.4.13 converge in D and all have the same domain so

we know that rd{Sn} = 0 for these functions, but we also know that they do not converge pointwise

almost everywhere. �

9.8 Further questions

9.8.1 Approaches to prove a converse to Theorem 9.3.8

Now we have set up all of the machinery to begin to explore the converse of Theorem 9.3.8

in the case that the domains are not restricted to shrink or stabilize eventually. That is, we will

outline some potential avenues to answer the following question.

Question 9.8.1 Is it true that {(φt, Bt)}t∈(a,b)
D−−→ φ0 implies that rd{Sn}({(φt, Bt)}t∈(a,b)) = 0?

There are two approaches in the general case: we can attempt to extend embeddings or we

can smooth singular limits by understanding the singularities locally.

Extending embeddings to remove singularities

This follows the method used to prove the partial converse direction of Theorem 9.3.8

given in the statement of the theorem. The idea is that if {(φt, Bt)}t∈(a,b)
D−−→ φ0 as t → c (for

a, b, c ∈ R, a < b, c ∈ [a, b]) then in order to get an ε-perturbation of {(φt, Bt)}t∈(a,b) we choose
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some T ∈ (a, b) such that s, t < T implies that Dd
{Sn}(φt, φs) < ε. Then, just as in the proof of

Theorem 9.3.8, we must smoothly change the family so that t < T+a
2 implies that φ̃t = φT+a

2
. The

difficultly here is dealing with the domains. If limBt 6⊂ BT
2

then this idea we have outlined will not

define an embedding with domain all of B0, so this embedding would have to be extended. It is

important to notice that µV

(
B0 M BT+a

2

)
< ε and so the embedding can be defined in any way on

the extension, as long as it does not change on BT+a
2

. Thus, this questions comes down to asking

when an embedding of some subset of M can be extended to a larger domain in M . Extending

embeddings or smooth maps has been of independent interest for many years. See for example the

Tietze Extension Theorem [32, Theorem 4.16], the Whitney Extension Theorem [81, Theorem I], and

the Extension Lemma [52, Lemma 2.27]. For a collection of more recent work in extension problems

see [9].

Removing singularities locally

The basic strategy is the following. Suppose for a, b, c ∈ R, a < b, c ∈ [a, b] that

{(φt, Bt)}t∈(a,b) ∈ F(M)

satisfies φt D−−→ φ as t→ a for some φ ∈M and suppose further that S ⊂ B is a closed subset of M

containing all of the singular points of the limiting map φ and that eventually S ⊂ Bt for all t. That

is, we assume that

φ|B\S : B \ S ↪→ N

is an embedding and there exists some T ∈ (a, b) such that t < T implies S ⊂ Bt. Then for some

neighborhood of S we can define φ̃ by φt0 restricted to that neighborhood for some small enough

t0 ∈ (a, b). Then to define φ̃ outside of a slightly larger neighborhood of S we simply use φ unchanged.

We must then connect these two pieces in a way which makes the result an embedding. Finally each

φt can then be changed on a neighborhood of S to converge to φt0 and outside of that neighborhood

they converge to φ = φ̃ already. A schematic of this idea is shown in Figure 9.9. The difficulty comes

when we must connect the two embeddings; it is well known that partition of unity type arguments

can be used to smoothly transition between two smooth maps [52] but in this case we must also
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Figure 9.9: The strategy is to connect the embedding φt0 with the map φ which is an
embedding away from S. In this way we are able to avoid the singular part of φ while only
changing it slightly on a small set.

preserve the embedding structure.

9.8.2 Implications of a positive answer to Question 9.8.1

If the answer to Question 9.8.1 were yes, then there are several implications. First, we will

have a new characterization of families with removable singularities, namely these are exactly the

families which converge in D. Second, there is then an easy proof that rd{Sn}({(φt, Bt)}) = 0 does

not depend on the choices of {Sn}∞n=1 and d. The proof is the following:

Let {Sn}∞n=1, {S′n}∞n=1, d, and d′ be choices of finite exhaustion and metric. Suppose that

a, b ∈ R with a < b and {(φt, Bt)}t∈(a,b) ∈ F(M) is a smooth family such that

rd{Sn}({(φt, Bt)}t∈(a,b)) = 0.

Then by Theorem 9.3.8 we know that limDd
{Sn}(φt, φ) = 0 as t → a for some φ ∈ M. By

Theorem 9.3.1 this means that limDd′

{S′n}
(φt, φ) = 0 as t → a and thus by the assumed positive

answer to Question 9.8.1 we know that rd
′

{S′n}
({(φt, Bt)}t∈(a,b)) = 0.

9.8.3 Applications in symplectic and Riemannian geometry

In [67] the authors produce a metric on the space of toric integrable systems. An integrable

system is a 2n-dimensional symplectic manifold (M,ω) along with a map F : M → Rn such that the

components of F Poisson commute and are independent almost everywhere. The metric defined in
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the present chapter could potentially be used to define a metric on more general spaces of integrable

systems, as long as those systems could be viewed as subsets of the same manifold.

It would be interesting to study Question 9.8.1 restricted to a specific type of embedding. For

example, thinking back to the original motivation from Section 9.1, one could consider whether this

is true for the collection of symplectic embeddings where the original smooth family {(φt, Bt)}t∈(a,b)

consists exclusively of symplectic embeddings and the perturbed family {(φ̃t, B̃t)t∈(a,b)} from the

definition of the radius of convergence is also required to be symplectic. Resolving singular points

of symplectic manifolds is related to this in spirit and has been studied extensively such as in [54].

Symplectic manifolds have been shown to admit a high degree of flexibility (see for example Moser’s

Theorem [57] or Darboux’s Theorem [10]) although Gromov’s nonsqueezing theorem [35] represents

a level of rigidity that symplectic embeddings do need to respect. One could also consider the case

of isometric embeddings of Riemannian manifolds, even in the case of M(R,R2). Clearly studying

further types of embeddings would be enlightening as it would allow us to gain a greater understanding

of the rigidity of these structures. Indeed, it is the purpose of this chapter to create a foundation off

of which many types of families of embeddings may be studied.
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Action-Angle theorem, 19

admissible measure, 41

admissible packing, 173

admissible semitoric packing, 179

affine invariant, see polygon invariant

almost everywhere locally free, 159

blowdown, 28

blowup, 28

blowup/down, 120

commute fake and Delzant corners, 84

convergence

almost everywhere pointwise, 196, 221

convergenct perturbation, 196

in D, 195

sets, 222

corner chop, 83, 172

Cotangent bundle, 10

Darboux theorem, 10

Delzant

corner, 34

polytope, 27

triangle, 102

equivariant Gromov radius, 151, 155

everywhere finite height, 36

fake corner, 34

fan, see also toric fan, 80

four fan transformations, 83

Gmf × G, 35

Gromov radius, 14, 15

equivariant, 155

Hamiltonian

dynamical system, 16

flow action, 159

group action, 12, 159

vector field, 16

harmonic oscillator, 18

Hessian, Hp, 22

hidden corner, 34

Hirzebruch trapezoid, 102

integrable system, 17

and group actions, 159

semitoric, 30

simple semitoric, 30

toric, 27, 58, 161

labeled Delzant semitoric polygon, 35
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labeled weighted polygon, 33

Lagrangian submanifold, 11

linear summable sequence, 40

mf , 31

metric on maps, 194

minimal models

toric, 80, 102

moduli space of maps, 191

momentum map

actions vs. integrable systems, 18

of a group action, 13, 159

of an integrable system, 17

non-degenerate singular point, 23

non-squeezing theorem, 14, 15

penalty function, 191

Poisson bracket, 17

polygon invariant, 32

Q(TpM), 21

quadratic form, 21

removal of hidden corner, 84

reverse corner chop, 83

semitoric

ball packing, 166

blowup/down, 120

completion of moduli space, 45, 62

embedding, 166

fan, 81, 111

integrable system, 30

invariants of system, 36

isomorphism, 30

list of ingredients, 36

manifold, 30

metric, 45

optimal packing function, 182

packing capacity, 152, 166

radius capacity, 187

special cases of metric, 46

singularity

elliptic, 30

focus-focus, 30, 32

smooth angle, 182

standard semitoric fan, 83, 105

straightening map, 165

symplectic

ball, 14, 153

capacity, 15

category, 15

cylinder, 14, 153

embedding, 14, 231

form, 8

G-capacity, 169

G-embedding, 153

generalized G-capacity, 153

group action or G-action, 12, 153

manifold, 8

(Tk × Rd−k)-capacity, 155
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symplectomorphism, 8

tame, 154

tautological form, 10

Taylor series invariant, 32

toric

ball packing, 162

blowup/down, 119

fan, 28, 78, 80, 97

integrable system, 27

optimal density function, 162

variety, 80

twisting index invariant, 32

equivalence of, 42

volume invariant, 36

Williamson type, 26

winding number, 96, 123

winding number (of vectors), 85

zero section, 12
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[30] A. Figalli, J. Palmer, and Á. Pelayo, Symplectic g-capacities and integrable systems,
arXiv:1511.04499.
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Comment. Math. Helv. 3 (1931), no. 1, 209–225.

[46] E.T. Jaynes and F.W. Cummings, Comparison of quantum and semiclassical radiation theories
with application to the beam maser, Proceedings of the IEEE 51 (1963), no. 1, 89–109.
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[79] S. Vũ Ngo.c, Systèmes intégrables semi-classiques: du local au global, Panoramas et Synthèses
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