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Abstract

Conformal-Geodesics-Preserving Local Diffeomorphisms and Their Holographic

Interpretation
by
Tzu-Mo Kuo

We study unparametrized conformal geodesics, or called conformal circles, and
study local diffeomorphisms mapping conformal geodesics to conformal geodesics in
pseudo-Riemannian conformal manifolds. We show that such local diffeomorphisms
are conformal local diffeomorphisms. Our result extends the result of Yano and
Tomonaga. We also present a holographic interpretation for our result on Poincaré-

Einstein manifolds. The proofs take suitable variations of conformal geodesics.
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Chapter 1

Introduction

Riemannian geodesics, as fundamental geometric objects, are often considered when
studying Riemannian structures. One classic problem concerning geodesics and Rie-
mannian structures is the following: If there is a diffeomorphism that maps geodesics
to geodesics, is it an isometry? The answer is negative due to affine transformations on
Euclidean spaces. In general, one may need to further assume irreducible Riemannian
manifolds for the diffeomorphism to be an isometry [1,2]. The parallel problems for
CR manifolds [3] and conformal manifolds [4, 5] are affirmative in some sense.

In the context of a pseudo-Riemannian conformal manifold (M", [g]) withn > 2,
a distinguished family of curves known as conformal geodesics or called conformal
circles emerges. These curves satisfy a third-order differential equation for non-
null conformal geodesics [6]. The derivation of these conformal geodesics is based
on various perspectives of conformal manifolds, including Cartan geometry [7], the
standard tractor bundle [8], and the Poincaré-Einstein manifold [9]. The persepectives
are based on the conformal model, Mébius sphere S(»?. For the Riemann signature,

by identifying the sphere with the Euclidean space, the conformal geodesics are either



Chapter 1 Introduction

straight lines or planar circles [10]. In the context of the Poincaré ball B™! each
circle on the boundary S® = 8B™! can be orthogonally extended to form a totally
geodesic surface within B™!. Based on the case of the Riemannian conformally flat
model, each conformal geodesic in a Riemannian conformal manifold (M, [g]) can
be formally extended to an asymptotically totally geodesic surface in the Poincaré-
Einstein space (M., g+) by holographic construction [9] where the term holography
comes from physics, e.g., [11]. We use the term "holography" to mean the geometry
from Poincaré-Einstein space (M, g4).

In this dissertation, we solve a classical problem: if a local diffeomorphism f be-
tween pseudo-Riemannian conformal manifolds (M", [g]), (N", [h]) with the same
metric signature maps conformal geodesics to conformal geodesics, then it is a con-
formal local diffeomorphism provided some conditions on f. We also consider the
parallel problem in the holographic settings F: M, — N,. The problem for a Rie-
mannian conformal manifold can be traced back to Carathéodory [4]. He showed a
bijection on R?, which doesn’t need to be continuous, that maps straight lines (resp.
circles) to straight lines (resp. circles) is a conformal transformation. Later on, K.
Yano and Y. Tomonaga [5, 12] showed that an infinitesimal transformation on a Rie-
mannian conformal manifold is a conformal killing vector field if and only if it carries
unit-speed conformal circles to unit-speed conformal circles where the unit speed is
with respect to a metric in the conformal class. The problem is also discussed in terms
of distinguished curves by Cartan geometry [13].

The conformal geodesic equation can be derived from the integral curve equation
of a vector field on the normal Cartan geometry modeled on $(P9. The Riemannian

geodesic equation can also be derived in the sense of Cartan geometry. In Chapter 2,



we starts from considering model manifolds of Riemannian manifolds and conformal
manifolds. We introduce geodesics as the projection of integral curves of constant
horizontal vector fields derived from the Maurer-Cartan form. In Chapter 3, we review
the backgrounds of principal bundles, Cartan geometry, and the category equivalence
between Riemannian manifolds, conformal manifolds and Cartan geometries. In sub-
section 3.4.1, we derive the integral equation for Riemannian geodesics. In subsection
3.6.1, we review the integral equation for conformal geodesics and review their ge-
ometric properties. In Chapter 4, we review some background of Poincaré-Einstein
manifolds and extend the results from Fine and Herfray to pseudo-Riemannian setting.
In Chapter 5, we show our main theorems, Theorem 5.1.1 for the classical problem of
conformal geodesics, and Theorem 5.2.5 for the parallel problem in the holographic

settings. Our proof is motivated by the work from Yano and Tomonaga.



Chapter 2

Introduction to Model Manifolds

In this chapter, we review model manifolds and geodesics in the Riemannian model
and the conformal model. As mentioned in Chapter 1, we consider geodesics as the
quotient of integral curves in the transformation group of the model. Particularly,
Theorem 2.1.1 shows constant velocity straight lines in the Euclidean space is the
quotient of integral curves, and Theorem 2.2.7 is the parallel result for conformal
geodesics in the Riemannian sphere S". The concepts from model manifolds will be
further generalized to Cartan geometry in Chapter 3.

A manifold M is called a model if it’s a homogeneous G-space G/H where the
manifold M is of some geometric structure, the Lie group G preserves the structure,

and H is a subgroup of G.

Example 2.0.1. For Riemannian Manifolds, the automorphism group G is the isometry

group.

1. The Euclidean space (R", gsq). Its isometry group is the Euclidean group

Euc(n) = R = 0(n) and R" Z R % 0(n)/0(n).



2. The hyperbolic space (H", gy). Its isometry group is O4+(n+ 1,1) and H" =

O,(n+1,1)/0(n+1).

Example 2.0.2 ([14, 1.6.2; 15, Chapter 2]). For conformal manifolds, the group G is
the conformal automorphism group. The model is the Mébius sphere S(»? := C/R*
with the conformal class induced from the standard inner product of R?? where C is

the light cone in RP+1-a*+!

and n = p+q > 3. The conformal transformation group of
SP9is PO(p+1,q+1) and $?P9 = PO(p + 1, q+ 1) /PPyine where O(p+1,q+ 1) is the
orthogonal group of RP*1-4*! and Py, is the stabalizer of a null line in RP*1-4*!. The
letter P before both of the groups O and Py;,. 1s the quotient by +idrpq. Particularly,
S0 = g and PO(n+1,1) = 0,(n+ 1, 1) where the group O, is the time preserving
orthogonal group on R™1!; that is, with respect to the standard basis (t, x), the (0, 0)

components of O,(n + 1, 1) matrices are all positive.

Let 7: G —» G/H = M be the quotient map of a model M. Recalling that the

Maurer-Cartan form w on a Lie group G is defined by Vp € G
wy: TG — g
(2.0.1)
Vs dL,1(V)

where dL -1 is the differential of the left action L,-1: G — G, g — p~'g. Since the
inverse of L,-1 is Lp, the map (2.0.1) is an isomorphism. The isomorphism property
lets us introduce a vector field Vx = w~!(X) on G for any given element X € g. The
following Propositions 2.0.3 and 2.0.4 give us the preliminary notions of geodesics on

model manifolds.
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Proposition 2.0.3. Let by be the Lie algebra of H. Then,
(2.0.2) dn(Vx) =0 VX € b.

Proof. Recalling the fundamental vector field is defined by {x(p) := % p - e for
t=0
X € b, the result follows from w({x) = X and dn({x) = 0. O

Proposition 2.0.4. Let X € g and yx: I — G be the integral curve of Vx = w™(X)

with the initial condition g € G. Then,
(2.0.3) yx(t) =g-e¥
where - is the group action of G.

Proof. Note that

sX d

.-e e
g ds

g- e(t+s)X =g- etXi X

d
2.0.4 L(t) = —
( ) yx (t) s » s »

s=t

Recalling the definition of the Maurer-Cartan form, then

: d s
(205) wgerx ()/X(t)) = E B L(getX)*l (g . etX - e X) = X.

s=0

Assume the Lie algebra g is of the form g = n @b, where 1 is a subalgebra. Because
of Proposition 2.0.3, we consider the integral curve yx C G introduced from X € n in

Section 2.1 and Section 2.2.



§2.1 Riemannian Geodesics in the Euclidean Space

§ 2.1 Riemannian Geodesics in the Euclidean Space

Theorem 2.1.1. Let m: Euc(n) — R" be the quotient map. Let X € R™ C euc(n)
where euc(n) = R™ & o(n) is the Lie algebra of Euc(n). Let yx: I — Euc(n) be the
integral curve of w™'(X). The projection m(y(t)) is a constant velocity straight line
in R". Conversely, any constant velocity straight line is the projection of an integral

curve induced from some X € R™ C euc(n).

1 0
Proof. Assume g = . Then,
b A

10 00 1 0
(2.1.1) yx(t) =g ¥ = I+t = .
b A X 0 b+tAX A

So, m(yx(t)) = b +tAX. The converse direction can be easily seen from the proof we

just did. m|

§ 2.2 Conformal Geodesics in the Euclidean Space

Letn = p+q > 3. We've seen Example 2.0.2 that S?®9 is a PO(p + 1,q + 1)-
homogeneous space and its conformal transformation group is PO(p+1, q+1). In this
section, we review the structure of the Lie algebra o(p+1, g+ 1) of PO and the structure
of PPjine. We also review the conformal transformation group of RP-4. Finally, while
n = p and identifying R" and S™ \ {pt}, we derive that the conformal geodesics in
R™ are either straight lines or circles. In this section, (v, w) means the standard inner

product of v, w in RP-9,
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Proposition 2.2.1 ([14] Proposition 1.6.2). The Mobius sphere S'P9 is diffeomorphic

to PO(p+1,q+ 1)/PPjine.

Proof. (Sketched) Consider the quotient map of the light cone
7 C 5 Rp™!

where C = {v € RP*14*1 | (v, v) = 0}. Since Im(xr) = SP? and the group action of

PO(p +1,q + 1) is transitively on the Im(x), then SP? = PO(n + 1, 1) /PPjine. O

The Lie algebra structure of o(p+1, g+ 1) can be precisely described if we introduce

p+l,g+1

a new coordinate on R such that its standard inner product is of the following

form with respect to the new coordinate

0 0 1
I, O
2.2.1) 0 l,q O where [, ; =
0 -l
1 0 O
For instance, let
S~ bw), =6 forl <is (@ + )
e =— (&) —€ns1), € =26 rl1 <i<n, e, =—(é+éu
\/z + + \/E +

where (éi)lfl:()l is the standard basis for RP*14*1, We call (e, e;, e;) the light cone

basis.

Proposition 2.2.2 ([14] 1.6.3). Denote the Lie algebra o(p+1,q+1) byg. Letn = p+q.
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Then, any element in g with respect to the light cone basis is of the form

a Z 0
X A =7,
0 X' -a

wherea € R, X € R", Z € R™ and A € o(p, q). Therefore, § = g_1 ® go ® g1 where

g-1 = R" g0 = 0(p,q) ® R and g; = R™. Their Lie bracket relations are as follows

30 X §-1 = g-1 [(A,a),X] = AX —aX
80 X 80 — 8o [(A,a), (B,b)] = ([A, B],0)
8o X g1 — @i [(A,a),Z] =aZ - ZA
g-1Xg1 — 8o [X,Z] = (XZ - (X2)' - ZX).

Definition 2.2.3. The group Pj;,. is defined to stabalize the null line generated by e_.

Proposition 2.2.4 ([14] Proposition 1.6.3). With respect to the light cone basis, any

element in Py, is of the form

YRV A= VAR A
(2.2.2) 0 ¢ -czt |,
0 0 A

where A € R\ {0}, C € O(p,q) and Z € R™. Furthermore, PP, = Go =< P, where
Gy is the group for Z = 0 and A > 0, and P, = exp (§1) which corresponds to A = 1

and C = l,. Their Lie algebras are

Piine =80 D 81, G0, P+ =01
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for PPiine, Go and P, respectively. Moreover, the adjoint action of Gy on §-1 is

AC _ .
X (i—>) A~'CX and G preserves the grading of § under the same action.

Remark 2.2.5. Due to the Gy action on g_1, the group Gy is isomorphic to conformal

orthogonal group CO(p, q) [14, proof of Proposition 1.6.3] where
CO(p, q) = {A € GL(n)| 3c > 0 such that (Av, Aw) = c{v,w) Yv,w € RP1}
and the inner product (, ) is the standard one on R?-4. Henceforth, its Lie algebra is
g0 = co(p,q) =R" @ 0(p, ).

To know the conformal geodesic in the model case, we need to review the conformal

transformation group of R?4 forn=p+q > 3.

Proposition 2.2.6. Let U be an open set in RP4. Then, each conformal transformation

¢: U — RP1 s a composition of the following conformal transformations
1. TranslationY —»Y+X, X e R"=g_y;
2. Conformal orthogonal transformation X — A~'CX, C € O(p, q) and A > 0;

3. Special conformal transformation

1 X, X
(2.2.3) X 1 (X + uZf)
1+ ZX + 34X, X)(Z, Z) 2
where Z € R™ = q.
The 3 is the composition of inversion X +— Y = ﬁ, translation Y — W =Y + %Zf

w

and inversion W TWIE when X is not null, where ||X|| is the standard inner product

of RP1 on X.

10



§2.2 Conformal Geodesics in the Euclidean Space

Identify g_1 = RP1 and SP1\ {pt} by

i:g.1 — SP1=C/R"
(2.2.4) 1
X = [expX)e-] = [(1,X, -5(X, X))]
where C is the light cone in RP*L8+ (1, X, —%(X, X)) is with respect to the light cone

basis, and [ | denotes an equivalence class in C/R*. Then,

1. exp(Y) € exp(g-1) € O(p, q) induces a translation on RP4;

A 0 O

2.1l0 ¢ 0| € O(p,q) with C € O(p,q) and A > 0 induces a conformal
0 0 Al

orthogonal transformation on RP4;

3. exp(Z) € exp(g1) € O(p, q) induces a special conformal transformation on an

open set of RP4,

Proof. The first 1,2, 3 are in [15, Theorem 1.9 and Theorem 2.9]. The matrix exp(Y)

inO(p+1,q+1)forY eg_;is

0 0 0 1 0 0
exp(Y) =exp|ly 0 O0f= Y I 0
0 -y 0/ \-3(v,v) -v 1

LetY € g_i. Therefore, for X € g_;

exp(Y)exp(X) = exp(Y + X)

11
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which implies the translation. For 5, we have

A 0 O
0 ¢ 0 |(exp(X)e- = [(2,CX, 55 (X, X))]
00 2!

1
— -1 _
=[(1,A7°CX, 2 (X, X)]

which gives a conformal orthogonal transformation. Finally,

(2.2.5)

1z -3(zt,z% _ i

01 -z e = |[ezxe itz xR S|
00 1 »

_, 1 e IR
- > 1 5 5 + 2 , ¥
|\ 1+Zx+ 21171 Z]]

where ||X||? and ||Z||?> mean the inner products of X and Z themselves, and the middle

component is in the form of (2.2.3). m|

Theorem 2.2.7. Let m: Oy (n+ 1,1) — S™ be the quotient map. Given X € g_;
and let yx: 1 — O.(n+ 1,1) be an integral curve of Vx = w™'(X) where w is the
Maurer-Cartan form of O.(n + 1, 1). Identify R™ and S™ \ {pt} by i: R™ — S™\ {pt}

from (2.2.4). Then, n(yx(t)) is either a planar circle or a straight line in R".

Proof. Recall the diffeomorphism of a homogeneous space (see e.g. [16, Theorem

21.18))
I:0,(n+1,1)/Prgy = S"=C/R"
(2.2.6)
g-P > [ge].

12
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Assume yx(0) = [ the identity matrix in O,. Then, yx(t) = e* by Proposition 2.0.4.

Therefore,

I (yx(v)) = [(l,tX,—%(X,X)tz)] =1i(tX)

which is a straight line through the origin in R". Now consider yx(t) = ¢Z - e where

Ze g withZX =0,(X,X) =1and (Z,Z) = 1. Then,

I — i (i ¢ zt
(rx(t)) =i 1—£ tX + 5
where the equation is because of (2.2.5). The curve inside the argument of i is the

circle centered at Z* with the radius 1 and it is in the plane spanned by X and Z*. It is

because

Observe that s(t) = g - yx(t) is still an integral curve of w~'(X) for all given
g € O.(n+1,1). Since O,(n+ 1,1) is the conformal transformation group of R"
by Proposition 2.2.6, we know the conformal geodesics of R" are conformal trans-
formations of straight lines or planar circles which are still straight lines or planar

circles. o

13



Chapter 3

Cartan Geometry

In Section 3.1, we review principal bundles, principal connection, and the curvature
forms defined from the connections. In Section 3.2, we review the notions of an
associated bundle. We also review a linear connection and its curvature tensor on an
associated vector bundle through a bijective relation Proposition 3.2.5 from a principal
connection and the curvature form. In Section 3.3, we review Cartan geometries,
Cartan curvatures, and torsion functions.

In Section 3.4, we review the category equivalence between Riemannian manifolds
and torsion-free Cartan geometries modeled on the Euclidean space R". We also
review that the Cartan curvature is composed of the torsion tensor and the curvature
tensor on the tangent bundle of a Riemannian manifold. In subsection 3.4.1, we
derive the Riemannian geodesic equation by considering an integral curve equation
introduced by the torsion-free Cartan connection. The same consideration for the
Riemannian model R" is already derived in Theorem 2.1.1.

In Section 3.5, we review affine Cartan connections and introduce Weyl connections

in the end of the section. In Section 3.6, we review the category equivalence between

14



§3.1 Principal Bundle, Connection and Curvature

conformal manifolds and normal Cartan geometries modeled on the Mobius sphere
s(P-9) We also review how Weyl connections induce normal Cartan connection. In
the end of the section, we briefly describe how the normal Cartan geometry derives
the standard tractor bundle. In subsection 3.6.1, we review the integral curve equation

for conformal geodesics. We also review their geometric properties.

§ 3.1 Principal Bundle, Connection and Curvature

In the following, E, M, F are smooth manifolds and H is a Lie group with the Lie

algebra h. The main reference of this section are [17, 18]

Definition 3.1.1 (Fiber Bundle). Let 7: E — M be a smooth map. The quadruple
(E,m, M, F) is called a fiber bundle with fiber F if each x € M has an open neigh-
borhood U C M such that there is a diffeomorphism ¢: 77! (U) — U X F to make the

following diagram commute

x1(U) S UXF
x /
U

The pair (U, ¢) is called a chart and a collection {(Uy, ¢po)} is called an atlas if {U,}

covers M.

Assume & = (E,, M, F) to be a fiber bundle and the fiber F to have a smooth

H-left-action. Then,

Definition 3.1.2 (H-atlas, H-structure and H-bundle). A H-atlas on £ is an atlas

15



Chapter 3 Cartan Geometry

{(Ug, p4)} such that transition maps are of the form

¢ao¢’gl: (UgNU) XF — (U NUB) X F

(X’f) = (X, ¢’O(ﬂ(x) ' f),

where ¢qp: Uy N Ug — H is a smooth map. Two H-atalses are equivalent if their
union is a H-atlas.
An equivalence class of H-atlases is called a H-structure on £ and H-bundle means a

specified H-structure on £.

Definition 3.1.3 (Principal Bundle). A fiber bundle (P, r, M, H) is called a principal
H-bundle if it is a H-bundle and the Lie group H, as the fiber, acts on itself by the left

translation.

Remark 3.1.4. Every principal bundle has a free and transitive right action on its

fibers defined by H-structure {(Uy, ¢q) }:
Vp € Uy with da(p) = (x,0),  p-hi= gy ((x,ah)).
So, the above charts are H-equivariant
$a(p-h) = (x,ah) = (x,a) - h = ¢u(p) - h.

Conversely, if m: P — M is a surjective submersion and H acts on P from the right
freely and transitively on its fibers, then (P, zr, M) is a principal H-bundle ([19] 10.3

Lemma).

Proposition 3.1.5. Given a principal H-bundle m: P — M. There is a bijective

16



§3.1 Principal Bundle, Connection and Curvature

relation between local sections of P — M and H-equivariant local charts

¢s: 1 (U) —-UXH
(s:U—>P)—
s(x)h — (x, h)

¢ (x, id) ((j) a1 (U) - U x H)
Definition 3.1.6 (Reduction). Let Hy C H be a Lie subgroup and P — M be a principal

H-bundle. Then, a submanifold Py C P is called a Hy-reduction of P if Py — M is a

principal Hyp-bundle and its Hy-right-action is the restriction of H-action on P.

Example 3.1.7. The projection H — = from a Lie group H to a point * is a principal

H-bundle.

Example 3.1.8 (Frame Bundle). Given a vector bundle E — M of the rank r and
Fr(Ey) is the collection of bases of E,. Then, the bundle Fr(E) = I_IMFr(Ex) is a
X€E

principal GL(r, R)-bundle on M with the right action

() - A= (ex[A]¥), V basis (¢;) € Fr(Ex) VA € GL(r,R).

i
If there is a metric on E, then the orthonormal frame bundle Fro() (E) is defined by

collecting orthonormal bases.

Definition 3.1.9 (Fundamental Vector Field and Vertical Subbundle). Given a principal

H-bundle £ = (P, , M, H). Let A € }). The associated vector field on P is given by

d tA
= — : T,P
¢a(p) I tzop e’ e T,P,

called fundamental vector field. The kernel VP = kerdr is called the vertical sub-

bundle.

17



Chapter 3 Cartan Geometry

Remark 3.1.10. Note that every fundamental vector field is vertical, so
kerdm, =f) VpeP.

Definition 3.1.11 (Principal Connection). A smooth f-valued 1-form y on P is called

a principal connection if it satisfies the followings

1. yp(la(p)) =AforallAeh

2. H-equivariance: Ry y = Ad(h™1) y for all h € H, where Ry, is the right action on

P as mentioned in the Remark 3.1.4 and Ad is the adjoint action on b.

Example 3.1.12 (Maurer-Cartan Form). Recall Example 3.1.7, the projection H — .
Let h € H and denote the left action on H by L,: H — H, a +— ha. Then, the

Maurer-Cartan form w is a principal connection on H defined by

w:TH — b

(h,V) - dL,-1V.
Sometimes, we need the local description of p.

Proposition 3.1.13. [19, Chapter 3, 11.4, Lemma (6)] Let £ = (P, n,M,H) be a
principal H-bundle with a principal connection y. Let ¢: n~'(U) — U X G be a H-
equivariant local chart and s: U — P be its corresponding local section in Proposition

3.1.5. Then, for all (x,h) € UX H

(3.1.1) (DY) e = wir(h) + Ad(h") (s*p)x

where wy (h) is the Maurer-Cartan form of H at h.

18



§3.1 Principal Bundle, Connection and Curvature

Remark 3.1.14. One can define a principal connection in an equivalent way by con-

sidering a horizontal smooth distribution HP C TP such that
1. Right-invariant: dR,(H,P) = H;nP Vh € H
2. TP =VP® HP.
Their relation is HP = kery. Note that H,P = T;(,,M Vp € P.

Definition 3.1.15 (Curvature). Assume there is a principal connection y on a principal
H-bundle € = (P, , M, H). The curvature form Q is a §)-valued two-form on P defined
by

QX,Y) =dy(X,Y) + [y(X),y(Y)] X,Y €TP.
Proposition 3.1.16. [17, Theorem 30.4] The curvature form Q satisfies two properties

1. Horizontal: Q(X,Y) = Q(X"",Y"") where X" is the projection of X onto HP

along VP;

2. Equivariant: R, Q = Ad(h™") Q for all h € H where Ad is the adjoint action on

b.

Example 3.1.17. Example 3.1.12 defines the Maurer-Cartan form w on H. Its curva-

ture Q turns out to be 0.

Definition 3.1.18 (Category of a Principal H-bundle). One can define category on

principal H-bundles.
* Objects: Principal H-bundles (P, x, M, H)

* Morphisms: (P, x, M) i) (P',n’,M’) where ¢p: P — P’ is fiberwise with

¢(p-h)=¢(p)-h, pePandh e H.
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Note that if ¢: P — P’ is fiberwise, then there is a unique smooth map ¢: M — M’

such that the following diagram commutes

§ 3.2 Associated Bundle

The concepts of associated bundles bring the bridge between principal bundles and
vector bundles. Take the tangent bundle of a manifold as an example, it’s an associated
bundle of its frame bundle. Due to this relation, we’ll see how the connections and

curvatures we defined earlier on principle bundles relate to associated vector bundles.

Let S be a manifold with a smooth H-left-action and 7w: P — M be a principal

H-bundle. Define P Xy S = (P X S)/~ where each equivalence class is of the relation
[P'h:h_l's]:[Pas] :hEH: [p:s]GPXHS-
Define rs: P Xy S — M, [p,s] — x(p).

Definition 3.2.1 (Associated Bundle). The fiber bundle (P Xy S, 75, M, S) is called
an associated bundle for the left H-action on S if it is a H-bundle with the induced

H-structure from the principal bundle (P, &, M, H).

Remark 3.2.2. The induced H-structure is the following. Let {(Uy, ¢+)} be a H-atlas
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§3.2 Associated Bundle

from the principal bundle (P, &, M, H)
bo: 1 (Uy) = Uy x H
p > ((p), Ya(p)) -
The induced H-atlas on the associated bundle (P Xy S, s, M, S) is

15! (Uy) = Uy X S

[pss] = (ﬂ'(p),l,ba([’) 'S) .

Example 3.2.3. Given a smooth manifold M™. Its tangent bundle is in fact an associated
vector bundle TM = Fr(M") Xg1(n) R" where Fr(M") is the frame bundle of the tangent

bundle TM. The isomorphism is

TM — Fr(M") Xgrm) R"
vieg - [ (e),v'é; ],
where (e;) € Fr(M"™) and (¢é;) is the standard basis of R".

The curvature form Q we defined earlier on a principal bundle by a principal con-
nection satisfies horizontal and equivariant properties in Proposition 3.1.16. With an
associated vector bundle, the principal connection’s curvature should give rise to the
curvature form with corresponding linear connection on the vector bundle. In the

following, we’ll deal with the correspondent relations.

Given a principal H-bundle P X Manda representation H 2 6L (V) withE = PxyV.
Definition 3.2.4. Define QE(P: V) to be the set of all smooth V-valued k-forms on P
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such that V¢ € QF (P, V),
* Equivariant: Ry ¢ = p(h™") - ¢;
* Horizontal: ¢ vanishes if one of its arguments is vertical.
The form ¢ € QF (P, V) is called a tensorial form and I';(P,V) := Q%(P,V).

Proposition 3.2.5 ([14] Corollary 1.2.7). Define QX(M,E) := T ((A*T*M) ® E).

There is a bijective relation between QX(M, E) and Q'C‘;(P, V). The relation is Vp € P

Ur(p) (£, s §6) = [P, @p(&1, -, €)1,
where a € QX(M, E), @ € Qé(P, V) and dar(fj) =& € TM.

Example 3.2.6. Recall Proposition 3.1.16. The curvature form Q on a principal bundle

with a principal connection is a tensorial form.

Given a principal H-bundle P 5 M witha principal connection y. Assume there
. . p . . _ .
is a representation H — V. In the following, we will see how principal connection
induces a linear connection and corresponding curvature on the associated vector

bundle E = P xy V.

Definition 3.2.7 (Covariant Derivative). The covariant derivative D on a tensorial

form ¢ € Q’C‘;(P, V) is defined by D¢p := (d¢p)"*", where
(d)"" (X1, .0 Xie) = (d) (X, ..., X2)

for X; € TP and X l.hor is the projection of X; onto HP along VP.
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§3.2 Associated Bundle

Proposition 3.2.8 ([17] Proposition 31.16). The covariant derivative D has the prop-

erty,
.k k+1
D: Q§(P,V) — QT (P, V).

Corollary 3.2.9. The covariant derivative D on a principal bundle P 5 M with a
principal connection gives rise to a linear connection V on the associated vector
bundle E = P Xy V. For any x € M, X € TyM and u € n~'(x), the linear connection
atx on ¢ € T(E) is

Vx$(x) = [u, Dz (u)]

where dn(X) = X and ¢ € Ty (P, V) by Proposition 3.2.5

Proposition 3.2.10. Assume the previous settings in Corollary 3.2.9. Since the princi-
pal connection’s curvature Q is tensorial, it induces a two-form on M, R € Q*(M, g).

In fact, VX, Y € T(TM) and ¢ € T(E) with the corresponding ¢ € Ty (P,V)

(RX,V)¢) (n(w)) = [u, Qu(X, V) - p(w)]

= (VxVy = VyVx = Vixy))®,

where u € P, X and Y are uniquely horizontal lifts of X and Y, the action - for

Qu(X,Y) - ¢ is induced by infinitesimal representation dp: § — gl(V).

To prove the proposition, we need some knowledge on horizontal lifts of vector

fields.

Proposition 3.2.11 ([20] Proposition 1.2 in Chapter 2). Given a principal H-bundle

PS5 Manda principal connection y. Then, for any vector field X on M, there is a
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uniquely horizontal lift X such that dRyX = X for all h € H. Precisely, the lift comes

from the isomorphism of dm between the horizontal distribution HP and TM.

Proposition 3.2.12. Assuming the previous settings and assuming there is a represen-
tation p: H — GL(V). Let ¢ € Q’;I(P,V) and X; € T(TM). Then, ¢(X1,...,X) €

Ty (P, V) where X; are the uniquely horizontal lifts.
Proof. Leth € H andu € P. Then,
Ry (bu(Xi (w), o, Xk () = dun (X1 (uh), ..., Xi(uh))
= Gun (dRn (X1 (1)), ..., dRp (Xi (1))

= (Rp)u(X1, ..., Xp)

= Ad(h™") (u(X1, ..., Xx)) -
O

Proposition 3.2.13 ([20] Proposition 1.3 in Chapter 2). Let X and Y be the horizontal
lifts of X,Y € T(TM). Then, the horizontal component of [X,Y] is the horizontal lift

of [X,Y].
Let’s begin to prove Proposition 3.2.10.

Proof. Recall y is a principal connection on the principal bundle P S MandH S

GL(V) is a representation. Let ¢ € T'(E) with the corresponding ¢ € T';(P,V). Due to
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§3.2 Associated Bundle

Propositions 3.2.8 and 3.2.12, we know DzDy¢ € Tz (P,V). So,
(VxVy = VyVx = Vixn1) p(x(w) = |u, (DsDy — DyDy ~ Digg)) $(w)|
= [w (B7 - 7% = (71 ) ()| = [, &y G@)]
[ ]2 ) o
= [u, - (y([X,Y]) - ()]

where the action - in the last equality is dp action. Also, since X and Y are horizontal,

the curvature form Q becomes
QX,7)- ¢ = (dyX V) + [yX), y(N]) - d(w)
- (y(IX, YD) - ¢(w)
]
Sometimes, it may be helpful to have the following formula for covariant derivative.

Proposition 3.2.14 ([17] Proposition 31.19). For all ¢ € Ty(P,V),

Dgd =X(¢) +dp(y(X))$, X eTP.
Note that X here is not horizontal in general.

The local description of Christoffel symbols in terms of a principal connection is in

the following proposition.

Proposition 3.2.15. Let ty: FryM — M be a H-reduction of the frame bundle FrM
and y a principal connection on FryM with the induced linear connection V on

TM = FryM Xy R™. Given a H-equivariant chart ¢ : Jrl}l(U) — U X H with the
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corresponding section s: U — FryM in Proposition 3.1.5. Define the Christoffel

symbols Fl.lj. for (e;); € FryuyM by Ve; = I‘i';ek. Then,

(sy)(e) - éj = Filj-ék
where - is the Lie algebra action gl(n) on R™ and (&;); is the standard basis of R".
Proof. Let cf)j € I'y(FrgM) such that ci;j((ei)i) = é;. Using Corollary 3.2.9,

Fi];.ek = Veiej = [(ei)s, Dds(ei([)j((ei)i)]

= [(e)i, 0+ (s*y)(e) - éj]

11

where the 2nd equality is due to Proposition 3.2.14. Using the identification TM

Fry xg R™, vie; — [(e;);, v'é;], we get the result. O

§ 3.3 Cartan Connection and Curvature

Let H C G be a closed Lie subgroup of a Lie group G with the corresponding Lie

algebras b and g. The main reference of this section is [14].

Definition 3.3.1 ([14]). Given a principal H-bundle Py — M. It is called Cartan

geometry of type (G, H,w) where w € Q' (Py, g) satisfies
L w(la(u) =A, VAebh;
2. H-equivariant: Ryw = Ad(hYw, VheH;

3. wy: T,Py — g is a linear isomorphism Yu € Py.
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§3.3 Cartan Connection and Curvature

Proposition 3.3.2. Assume g =n @ b and denote w by w = (w)y + (w)y with respect
to the Lie algebra decomposition. Then, (w)y is a principal connection if and only if

1 is H-stable under the Adjoint action of H.

Proof. By the equivariance property of w, we have

Ryw = Ry (w)n + Ry (w)y
(3.3.1) = Ad(h""w = Ad (k™) (W), + Ad(h™) (w)y,

If n is H-stable, then R} (w)n = Ad(h™")(w)y and R} (w)y = Ad(h™") (w)p.

Let A € I). Because w generates A, we get

A=w({a) = (W)y({a).

Therefore, (w)y is a principal connection if n is H-stable.
Conversely, since R} (w)y = Ad(h™1) (w)y, then R (w)y = Ad(h™)(w)y from (3.3.1).
With the linear isomorphism property w,, : T,Py = n @ ), we have

Ad(h~")n c n. O

In general, the n subspace for g = n @ f) may not be H-stable. One may induce a

principal connection on an associated principal bundle from a given Cartan geometry.

Proposition 3.3.3 ([14] special case in Theorem 1.5.6). Given a Cartan geometry

(G,w) — M in the type (G, H). Consider the canonical injective map

i:G— GxyG

u [u,id],

where G Xy G is a principal G-bundle due to the Remark 3.1.4. Then, there exists a
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Chapter 3 Cartan Geometry

unique principal connection'’y on G Xy G such that i*y = w. In particular,

Vi (di(§) +{a(iw)) =wu(§) +A Vue G, §€TG, Acg.

Note that the above assignment is functorial; that is, any morphism of Cartan geome-
tries in Definition 3.3.12 induces a principal bundle morphism preserving principal

connections.

Apart from inducing principal connections, one may sometimes have an induced
Cartan geometry from a given one. The following proposition will be considered in

Section 3.6.

Proposition 3.3.4. [14, spcial case in Lemma 1.5.15] Given a Cartan geometry
(Go, 0) = M"™in the type (R" < Gy, Go) and a Gy-equivariant global section s: Gy —
G0 X6y PPiine for Go X, PPiine — Go. Then, 3! Cartan connection w® on Gy X, PPjine

in the type (O+(n + 1, 1), PPyine) such that s*w® = o. In particular,

(332)  w, (ds(€) + Las(w)) = 0u(§) +A Vu€ Go, £ € TuGo, A€ .

Given a Cartan geometry of the type (G, H, w) with Py M. Recalling § = ker dm,

for all u € Py, so we have dim g/} = dimT, M for x € M. In fact,

Proposition 3.3.5. There is the isomorphsim for TM by the Cartan connection

Py Xaq (8/h) ~TM
[p,V+b] = drpw,' (V)

[p,w,(X) +h] — X, where dm,(X) = X.

The action Ad is the adjoint action Ad: H — g/}.
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§3.3 Cartan Connection and Curvature

Definition 3.3.6 (Curvature Form and Curvature Function). The Cartan curvature

K € Q?(Py, g) is defined by

K(&,n) = dw(§,n) + [w(&),wn)].

The corresponding curvature function x: Py — A%(g/h)* ® g is defined by
K(X,Y) = Kw™' (X),w ' (Y)), VXY € g/
The above definition for x is well-defined. In fact, we have

Proposition 3.3.7 ([14] Lemma 1.5.1). The Cartan curvature K is horizontal and

H-equivariant. Therefore, for the curvature function k: Py — A*(g/h)* ® g,
koR,=h' k;
that is, for all p € Py and h € H
Kpn(X,Y) = Ad(h™ ") x,(Ad(h) X, Ad(h)Y), VX,Y € g/b.

So, k € Ty (Pu, A*(3/h)* ® g).

Assume g = n @ ). Compared to the curvature form from a principal connection,

there is one extra n-valued component for a Cartan curvature.

Definition 3.3.8 (Torsion). Let q/5: g — g/b be the quotient map. Define the torsion

function

T =gy 0 k € I'y(PH, A*(g/D)* ® (3/h)).

It thus defines a torsion tensor T € Q?(M, TM) by the bijective relation Proposition

3.2.5 between I'y (P, A%(g/H)* ® (g/h)) and T (M, A’T*M @ TM) = Q*(M,TM). If T
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vanishes, then it’s called torsion-free.

Remark 3.3.9. The torsion function turns out to be the torsion tensor in Riemannian

geometry (See Section 3.4).

Example 3.3.10 (Riemannian Model). As in the Example 2.0.1, the quotient map
([Rn > O(Tl),wo(n)) — R" O(n)/O(n) = R"

is the Cartan geometry of the type (R" = O(n), O(n), wo(n)) where won) is the Maurer-

Cartan form on O(n).

Example 3.3.11 (Conformal Model). Recall Example 2.0.2, the quotient map
(PO(p+1,q+1),wpo) = PO(p+1,q+1)/PPyjn = SP*

is the Cartan geometry of the type (PO(p + 1,q + 1), PPjin., wpo) Where wpg is the

Maurer-Cartan form on PO(p + 1,qg + 1).

Definition 3.3.12 (Category). Let H C G be a Lie subgroup of a Lie group G. The

category of the Cartan geometry of the type (G, H) is defined by

* Objects: (P, m, M,w), which is a principal H-bundle with a Cartan connection

w.

* Morphisms: (P, 7, M,w) 2, (P',n’,M’,w’) where ¢ is a principal bundle

morphism with the property

/

b(p) ATE linear isomorphisms,

Remark 3.3.13. Given a point p € P. Because w, and w
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we know d¢ is invertible. Therefore, ¢ and its base map ¢: M — M’ are local

diffeomorphisms.

§ 3.4 Riemannian Manifold in Cartan Geometry

The Riemannian model in Example 3.3.10 motivates that there should be an induced
Cartan geometry in the type (R" = 0O(n), O(n)) for each Riemannian manifold (M", g).
That is, there should be a principal O(n)-bundle with a R™ @ o(n)-valued Cartan con-
nection. In this section, we focus on the construction of torsion-free Cartan geometry
and briefly introduce the equivalence between Riemannian manifold and torsion-free
Cartan geometry. In the following, we only consider Cartan geometry in the type

(R" > 0O(n),0(n)).

Recall a Riemannian manifold (M", g) is a smooth manifold M with a positive
definite metric tensor g. The induced Levi-Civita connection V is a unique linear

connection satisfying: VX,Y,Z € T'(TM)
1. Torsion-free: T(X,Y) = VxY — VyX — [X,Y] = 0.
2. Metric connection: X(Y,Z) = (VxY,Z) + (Y, VxZ) where (, ) is the metric g.

The 2nd property gives rise to a principal connection y on the orthonormal frame
bundle Fro,) M. We need a R"-valued form on Frp,,)M to get a Cartan connection.

It’s called a canonical form, or called a soldering form.

Definition 3.4.1 (Canonical form). Let m: FrM — M be the frame bundle of M.
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Recall that any element (e;) € Fr,M can be considered as a linear isomorphism
(e;)): TyM — R", vie; - v

where (&;) is the standard basis of R™. Define the canonical form © € Q' (Fr M, R")
by
Oe) (§) = (&) o d(§)

where (e;) is the linear isomorphism we just defined.
The defintion of the canonical form directly gives the following proposition.

Proposition 3.4.2. The canonical form © is in QéL(n) (FrM,R") and it’s strictly

horizontal; that is ©(£) = 0 if and only if € € VFr M.

The one form 6 € Q!

o(n) (Fron)M) by pulling back ® to Fro,)M through the

reduction FromyM — FrM is also strictly horizontal. We also call 6 the canonical

form on Frp(,) M.

Proposition 3.4.3. Let & = (Fron)M, m, M, O(n)) be the orthonormal frame. Given a
Cartan connection w in the type (R" % O(n), 0(n)) on FromM. Assume w = 0 +y
with respect to the Lie algebra decomposition R™ & o(n) where the R"-valued of w is

equal to the canonical form 6. Then,

1. The o(n)-valued y is a principal O(n)-connection. Denote the induced linear

connection by V on TM, recalling TM = FromyM Xom) R™.
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2. The R"-valued part of the Cartan curvature K is

(3.4.1)
K (€, 1) = £(6(7) +y(8) - 0(7) ~ [7(6(&)) +y (7)) - 6(§)] ~ 6([&,71])

=do(&, 1) +y(§) - 6() — y (i) - 6(§)

where E,1j € I(TFromM) and - is the usual gl(n) action on R". It gives the

torsion tensor by Proposition 3.2.5

T(X,Y) = Vx¥ - VyX — [X,Y].

3. The o(n)-valued part of the Cartan curvature K is

(3.4.2) Koy (€,7) = dy(§,7) + [y(§), y(A)].

It gives the curvature tensor of V on M.

Proof. Since R" C R" @ o(n) is O(n)-stable, the o(n)-valued y of the Cartan con-
nection w is a principal O(n)-connection by Proposition 3.3.2. Equations (3.4.1) and
(3.4.2) are due to the definition of Cartan curvature. Let £, 7j be the uniquely hor-
izontal lifts of X,Y € I'(TM). Because the horizontal lifts are O(n)-right-invariant
as Proposition3.2.11, then 8(£), 6(7j) € To(n) (FromyM, R™). By the tangent bundle

isomorphism in Example 3.2.3, we know Vu € Fro,) M
X(x(w) = [1,0(8)], Y(n(w)=[u,0()] € TM = FromM Xo(m R".

By the covariant derivative properties in Propositions 3.2.8 and 3.2.14, we get Krn €
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Q3 (FromM, R") and Vu € Fro(m M

T(X,Y)(w(w) = (Vx¥ = VyX - [X,Y]) (7 (u))

= |u De(O@) - D3(6(8) - 6(IE D | = [, Knn (€ D(W)]
The o(n)-valued part is already proven in Proposition 3.2.10 O

Let y be the principal connection from the Levi-Civita connection of V. By 2
in Proposition 3.4.3, we know (M, g) induces a torsion-free Cartan geometry on
FromyM — M in the type (R" > O(n),0(n)). Furthermore, we have the following

theorem.
Theorem 3.4.4 ([14] Theorem 1.6.1).

1. Given an O(n)-reduction Po(,y < FrM and any Cartan connection w in the
form w = 0 +y where 0 is the canonical form and y is the o(n)-value of w.
Then, w is uniquely determined by its torsion function. Besides, there exists a

uniquely torsion-free Cartan connection on Poy).

2. The category of torsion-free Cartan geometries in the formw = 6 +y from I on
O(n)-reductions Po(n) < Fr M is equivalent to the category of O(n)-reductions
of Fr M where the morphism between O(n)—reductions are principal bundle

morphisms preserving canonical forms.

In Section 3.5, we will consider reduction P — FrM for a closed subgroup
H C GL(n) and review the corresponding theorem for Theorem 3.4.4, particularly for

H =0(n) and H = CO(p, q).
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3.4.1 Riemannian Geodesics

Recall in Theorem 2.1.1 that Riemannian geodesics in the Euclidean are the projection
of integral curves of constant horizontal vector fields on the Euclidean group Euc(n).
The integral curve interpretation of Riemannian geodesics in the Euclidean model
can be generalized to Riemannian manifolds [20, Proposition 6.3 in Chapter III]. In
this subsection, we derive the integral curve equations from the torsion-free Cartan

connection w in the type (R" < O(n), O(n)) of the Riemannian manifold (M, g).

Theorem 3.4.5. Given an orthonormal frame (e;) of m: FromM — M defined on an

open set U C M. The frame induces a local trivialization

¢: 171 (U) - Ux0(n)

(X’ (ei) ' C) = (X’ C)

Let X = X6 € R" C R™ @ o(n) where (&;) is the standard basis of R". Let
V: 1 — FromM be an integral curve of w™(X) with n(§) C U. The local coordinate
of ¥ is denoted by (x(t),C'j(t)) € U x O(n). Identifying TeM and R" by v'e; — v'é;
for all x € U. Then,

xt = XICl;
(3.4.3)

¢l = —XkClkFliaCaj,
where F;k is the Christoffel symbols defined from the Levi-Civita connection V.e; =
l"gek of g where (e;) is the given orthonormal frame. It can be shown that x(t)
is a Riemmanian geodesic. Conversely, any Riemannian geodesics are locally the

projection of an integral curve of w™' (X) for some X € R" C euc(n).
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Proof. We first show that (3.4.3) implies x(t) is a Riemannian geodesic.
# = XICl = XTI X ChTy C
_ eaelpi
= —xX'Ty,

where the last equality is because of the 1st equation of (3.4.3).

Next, we want to show

(3.4.4) X = (¢ "W G©)

implies (3.4.3) where y(t) is the derivative of 7 (t) with respect to t. Recallw = 8 +y
in Theorem 3.4.4 where 0 is the canonical form from FrM and y is the principal

connection from the Levi-Civita connection V of g. Since X € R", (3.4.4) is equal to

@00 F©) = (@00 (x(0)) =X
@ PioFE®) =0

(3.4.5)

The first equality is because 0 is strictly horizontal in Proposition 3.4.2. Let x(t) =
x(t)ei(t) = X' (t)u;(t) where u;(t) = ex(t)C*;(t). Using Definition 3.4.1 of 6, the 1st

equation in (3.4.5) implies

X'&; = 0, (A~ (x(1))) = (wi(t))i - d (7 0 d™") (& (D)ue(r))

= J;Ci(t)é\i

where 7: Fro;y — M. So, X' = Xi(t) which implies the 1st equation of (3.4.3).

Recall the local description of a principal connection in Proposition 3.1.13, the 2nd
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equation in (3.4.5) implies

(34.6)  0=y(ye(dd™ (F(D) = wom)(C()(C(1) + Ad(C™" (1)) (s"y) (x(1))

where s: U — Frp,,)M is the corresponding section of ¢ in Proposition 3.1.5 and

Wo(n) (C(t)) is the Maurer-Cartan form of O(n) at C(t). Note that

Woim (C(O)(C®) = (R wow) (€0 -C7(1)
(3:4.7) = Ad(C™ (O)wom (N (C® - (1)
= Ad(CT () (CO) - ¢ )

where - is the matrix multiplication and [ is the identity matrix. Also,

(3.4.8) (") k()] a = [(s"P)(XICj(D)er()]'a = XCk ()T, (¢)

where the last equality comes from Proposition 3.2.15. Combining (3.4.7) and (3.4.8)

into (3.4.6), we get the 2nd equation of (3.4.3). O

§ 3.5 Affine Cartan Connections
Let (b, g) € R" xGL(n). The affine transformation R" < GL(n) on R" is defined by

Vi g-v+bh,
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If R" is considered as the hyperplane in R™!, R = {(1,v)| v € R"}, then the affine

transformations can be identified as n + 1-square matrices

R" < GL(n) = b e R", g € GL(n)

bg‘

Let H C GL(n) be a Lie subgroup with Lie algebra ). Define the affine extension
R" < H by
1 0
' beR" heH
b h

It’s direct to prove the following proposition.

Proposition 3.5.1. The adjoint action of R" <~ H on R™ C R" & V) is just usual linear
transformations h - v on R". Henceforth, R" C R" & V) is H-stable under the adjoint

action.

Given a smooth manifold M" and assume there is a H-reduction of Fr M, Py —
Fr M. Consider Cartan connections on Py in the type (R" < H, H) with the form
w = 0+y where the R"-value of w is equal to the canonical form 6 and y is the )-value
of w. Because of Propositions 3.5.1 and 3.3.2, we know y is a principal connection.

Denote the collection of all such Cartan connections by S.
Definition 3.5.2. Any w € S is called affine Cartan connection of H on Py.

Proposition 3.5.3. The affine Cartan connections form an affine space; that is,
Vi and w € S, there exists an unique H-equivariant smooth map : Py — h ® R™
such that

w=w-1Yob,
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and conversely, Vw € S and Vi € Ty (P, h @ R™), b = w — 1 0 0 is an affine Cartan

connection.
Proof. Since W,w € QL (Py,b), define p o 6 on TPy

—thob=7 -y
where w =0 +pandw =0 +y. O
Corollary 3.5.4. Given W and w € S. Their torsion functions are in the relation
(3.5.1) T, =1, — 0P, Vue€ Py,

where 3: L(R™, §) — L(A’R", R") is H-equivariant linear map defined by

al/)u(X: Y) = [X, lpu(Y)] - [y, lpu(X)]:

and L(V,W) is the set of linear maps from V to W. The brackets in (3.5.1) are Lie

algebra brackets of R™ & §).

Proof. The formula of the R"-valued Cartan curvature of an affine Cartan connection

w is same as (3.4.1)

K (§,77) = dO(E,7) +y(§) - 0(7) —y(7) - 6(§)  V&,7j € [(TPy).
Because y (&) = 0 if £ is horizontal, we have forall X,Y e R® C R" @ §
(3.5.2) 2(X,Y) —t(X,Y) =do(~ ' (X), o (Y)) = dO(w ™ (X), w  (Y)).
By Proposition 3.5.3, we have

w(™ (X)) =X - h(X)
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which implies
o (X) =w (X) + {px
where {_y(x) is the fundamental vector field generated by —(X). After direct com-

putation, (3.5.2) is equal to

(3.5.3)

(X, V) = (X, Y) = Ly @) (0w (V) = Ly (@ (O(w ™ (X)) u € Py.

The first term is

Ly @O (1)) = T Oyrmin (w7 (1)
t=0
(3.5.4) = % t:OAd(e“l’(X)) (Qu(dRenp(x)w_l(Y)))
= [$(X),Y]

where R is the H-right action of Py, and the last equality is because Ad(eX)) =
e X) and 0, (dRpow ™' (Y)) = 6,(w™'(Y)) = Y. Using similar arguments, one

gets the second term in (3.5.3). ]

Definition 3.5.5. The kernel of 9, denoted by pD) = ker 9 C h ® R™, is called the

first prolongation of .
With the previous settings, we have the general version of Theorem 3.4.4.

Theorem 3.5.6 ([14] Theorem 1.6.1). Identify L(A’R",R") = R" ® A’R™. Assume

R" @ A2R™ = R & Im 9 where R is H-invariant. Then,
1. There exists w € S such that its torsion function’s value is in R.
2. If5N) = {0}, then any w € S is uniquely defined by its torsion.
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3. With §V) = {0}, the following categories are equivalent

A.  * Objects: Affine Cartan geometries Py — M with torsions’ values in

R where each Py is a H-reduction of Fr M .
* Morphisms: Cartan geometry morphisms.

B. ¢ Objects: H-reductions of FrM, (Py,0) — M where each 6 is the

canonical form.
* Morphisms: Principal bundle morphisms preserving canonical forms.

In particular, the bottom smooth maps between base manifolds in the

category B are local diffeomorphisms.

Example 3.5.7 ([14], Example 1.6.1). When H = O(n), then o(n)(!) = {0} and

R" ® A’R"™ = Im 4.

Example 3.5.8 ([14], 1.6.4). Consider the conformal orthogonal group

H = CO(p,q) = Gp in Remark 2.2.5. Its first prolongation gél) C L(g-1,90) is

identified to g; by the following map
g1 — g(()l), Zad Z.
Also, Im 3 = R" ® A’R™.

Example 3.5.8 shows a torsion-free Cartan connection in the type (Go>=R", Gy) is not

unique. Such a Cartan connection is called a Weyl connection (See Definition 3.6.2).
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§ 3.6 Conformal Manifold in Cartan Geometry

Letn = p+q > 3. As what was done in Section 3.4, the conformal model in
Example 2.0.2 implies that we need to find out a Cartan geometry in the type
(PO(p + 1,q + 1), PPyjjp) for a pseudo-Riemannian conformal manifold (M", [g]).
In this section, we review the equivalence between pseudo-Riemannian conformal
manifold (M", [g]) with signature (p,q) and normal Cartan geometry in the type
(PO(p + 1,q + 1), PPyjye) in Theorem 3.6.11. In the end, we briefly mention how to
have the standard tractor bundle with the linear connection from the normal Cartan

geometry. The reference of this section is [14].

Recall PPjin. = Go=<exp (g1) in Proposition 2.2.4 and note that Gy is identified as the
conformal orthogonal group CO(p, q). So, to have a principal PPy;,.-bundle, one can
first get a principal Go-bundle and then associate it with PP, to become a principal

PPjine-bundle. The Gy-bundle can be got from the conformal structure [g].

Definition 3.6.1. Define the conformal frame bundle Frg,M for (M", [g]). Its fiber is
(Frg,M) . = {(e;) € Fr,M| 3g € [g] such that g(e;, e;) = &;;}.

Since it’s a principal Go-bundle, in the following, we denote it by Go.

Example 3.5.8 implies that there are lots of torsion-free Gg-affine Cartan connec-
tions. We use these connections to help us to find out the unique Cartan connection

on the principal PPj;p.-bundle.

Definition 3.6.2. The torsion-free Gy-affine Cartan connections on G are called Weyl

connections where affine Cartan connections are in Definition 3.5.2.
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Proposition 3.6.3. Weyl connections form an affine space; that is, given two Weyl

connections 6 =0 + 9 and 0 = 0 +y. Then, 3! Gy-equivariant Y : Gy — ¢ such that

6u(8) = 0u(&) + [6u(8), Y(W)]  Vu € Go, £ € TuGo.

Conversely, for any Weyl connection o and Y € Ig,(Go,81), 6 = 0+ [0, Y] is a Weyl

connection.
Proof. Recalling Proposition 3.5.3, we have an unique 1 € I'g,(Go, 8o ® g1) such that
6=0-1Yob.

Since their torsion functions are both zero, we have 9ip = 0 from Corollary 3.5.4. By

Example 3.5.8, we know ¢ = —ad(Y) where Y € I'z,(Go, 91)- |

Remark 3.6.4. [14, 1.6.5] A Levi-Civita connection of g € [g] induces a Weyl
connection on Go by using a similar approach from (3.3.2). Note that not all Weyl

connections are Levi-Civita connections.
Definition 3.6.5. Define the principal Pjip.-bundle by G = Gy X, Pline — M.

We first show a Weyl connection o on Gy induces a Cartan connection w’ in
the type (PO(p + 1,q + 1), PPj;.) on G. Fix a Weyl connection o. Then, every Weyl
connection 6 = o+ [0, Y] from Proposition 3.6.3 has a corresponding uniquely defined

Go-equivariant global section s5: Go — G of G — Go:
(3.6.1) se(u) =so(w) - exp(Y(w) Vu € Go,

where s (u) = [u, id].
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Remark 3.6.6. In fact, for fixed o, all Go-equivariant global sections are defined by

(3.6.1) [14, Proposition 1.6.4 and Proposition 5.1.1].

Proposition 3.6.7. According to Proposition 3.3.4, every Weyl connection 6 induces

a unique Cartan connection w® on G in the type (PO(p + 1,q + 1), PPyjine) such that

%6

w’ =6.
o

Proposition 3.6.8. [14, Proposition 1.6.4] Let J'L'goi G — Go, [u, p] — u. Given any
Weyl connections 6 and o with respective Cartan connection w® and w® on G. Denote
w? =07, + 6] + 67 with respect to the Lie algebra decomposition § = g1 ® go @ g1 in
Proposition 2.2.2. Then,

6%, +05=0° +6;.

Proof. Letsys: Go — G, u +— [u,id] be the map defined by o in (3.6.1). Given Z € g

and u € Gy. We first show
(3.6.2) (6%, +60)s, (w2 © drg = (0= (ad Z) 0 0),

where 0 is the canonical form on Gy from FrM. From the right equivariant property

of w?, we have

(3.6.3) w?

so(u)-eZ

= Ad(e “)w’, dR,z.

5q(w)

Noting that for all A € g; and p € G,
w’(dR,2¢a(p)) = Ad(e")w’({a(p)) = €' Pw(La(p)) = A.
Therefore,

(3.6.4) (87, +60)s,(wdRe-z = (67 +6)s, w)-
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Recall from Proposition 3.3.4

W (ds(€) +Eals(w)) = 0u(§) +A VA e gy,

Because Ad(e™?) = e %) = 1 - qd(Z) mod g;, (3.6.3), (3.6.4), and the above

equation, we have (3.6.2). Let 6 = 0 — ad(Y) o 0 from Proposition 3.6.3. Then,

(Gfl + Gg)sa(u)-ez = (9?1 + Gg)sﬁ(u).e—wr(uwz
=(6-ad(-Y+2Z)00),0 d"go
=(oc—ad(Z)o0),o0 dn-go

= (931 + eg)sa(u)-ez
where the first equality is from (3.6.1) and the second equality is from (3.6.2). O

Definition 3.6.9. Let S be the collection of all Cartan connections w on G in the type
(PO(p+1,q+1), PPjin) of the form w = 6_; + 6y +w; where 0_; + 6 is defined from

Proposition 3.6.8 and w; is the g;-value of w.

In the following, we identify the Lie algebra components of g = g_1 ® go @ g1 as

gi = g'/g™! where ¢' = @, 6 and g = {0} if [k| > 1.

Proposition 3.6.10. The collection S forms an affine space; that is, Vio,w € S, 3P €

Tppy (G, 81 © 87, ) such that

(3.6.5) Ww=w-Pob_.

Their curvature functions in §—1 and gy values are

(3.6.6) K.i=k_1=0 ,Ko =Ko — 0P,
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where 9: L(8-1,81) — L(A’g-1,80), P(X,Y) = [X, P(Y)] = [Y,P(X)]. The map d

is PPjine-equivariant map and L(V, W) is the set of linear maps fromV to W.

Proof. Letw = 0_; + 0y + 61 € S where 0, is the g;-value of w. From the definition

of the Cartan curvature K, its corresponding g_; and go values are

(3.6.7) Ky, (&,7) = dO_1(€,7) + [60(£), 0-1()] + [6-1(§), B0 ()]

(3.6.8) Ky(&,17) = d6o(&,1) + [61(£), 01 ()] + [80(£), O (71)] + [6-1(£), 61 ()]

Since every element in S shares same g_; and go values, let’s assume that w is the
Cartan connection induced by a Weyl connection o on Gy with the corresponding map
s: Go — G,u > [u,id]. Note that s*(0_1+6p) = 0 = O+y by Proposition 3.3.4 where
the decomposition of o is due to the arguments after Proposition 3.5.1. Considering
the action of gy on g_; by the Lie bracket, then s*Ky |, = Ku%n = 0 where Kugan is the
R"-value of the Cartan curvature of o.

Let Po 6_; = —(w — w). Similar to the proof of Proposition 3.5.3, one can get the
second identity in (3.6.6) from (3.6.8). To show 9 is PPjjp.-equivariant, first note that

if P € L(g-1, 91), then Vg € PPy,

(g P)(X) := Ad(g)(P(Ad(g™")X)).

Then, the equivariancy means (Ad(g)dP) = d(g - P). The identity comes from direct

computations on both sides of the equivariancy identity. O

Similar to the conditions in Theorem 3.5.6, it can be shown that L(A%g_;, g9) has

the PP;j.-invariant decomposition

L(A%g_1,00) =R & Ima.
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Then, there exists a unique w € S such that the gg-value of its Cartan curvature function

is in R. In the following, we still identify g; = g'/g™*! and denote the components of

Kk € L(A%g-1,g0) by
(3.6.9) K (8, 6))(&) = [k(&:,8)), é1] := ki e,

where g_; = R" in Proposition 2.2.2 and (¢é;) is the standard basis of R". We also

denote P(X) = X'P;; & where X € g_; and P € L(g-1, g1).
Theorem 3.6.11. Let R = {k € L(A%g_1, g0)| Kkikj = 0}. Then,
1. The subspace R is P,qy-invariant.

2. Letx € L(A%’g_1,00). Then, 3!P;; € L(9-1,81) such that L = k — 9P satisfying

Lii® j = 0. The corresponding P is
(3.6.10) Pj =L (Kkikj + L (rex*i — reii®5) — ﬁ&lb’{kakb&j)
where &;j is the Kronecker delta.

3. L(A%*g_1,80) =R ®Ima.

Proof. For 1, note that if k € L(Azg_l, o), then V p = goe? € PPy Where g € Gy

and Z € g; by Proposition 2.2.4

(p-x)(X,Y) = Ad(p)(x(Ad(p~")X,Ad(p™)Y))  VX,Yg_i.
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Denote ¥’ = p - k. Then,

K ek = (p 1) (81, 8)) - &

= [Ad(p)x(Ad(p~")é;, Ad(p™')e;), &l

= Ad(g0) [k (Ad(gy")é:, Ad (g5 )é)), Ad (g5 ")éll.

k

Since i;; = 0 with respect to any basis of g_;, we have k. = 0. The 2 is in

ki J
[14, Lemma 1.6.6] and 3 is the result of 2. O
Remark 3.6.12. From Remark 3.6.4, if o corresponds to a Levi-Civita connection V
of g € [g], then P;; in (3.6.10) corresponds to the Schouten tensor

. R
Ricij — 57——=8ij

Pi: =
Y 2(n-1)

n-—2

where Ric 1s the Ricci curvature and R is the scalar curvature.

Definition 3.6.13. A Cartan geometry (G,w) — M" in the type (PO(p + 1,q +
1), PPyine) is called normal if its Cartan curvature function is torsion-free and Ricci-

trace-free; that is, k_; = 0 and (o)k*; = 0.

Using Proposition 3.6.10 and Theorem 3.6.11, it can be shown normal Cartan

connection is uniquely defined in S where S is from Definition 3.6.9.

Corollary 3.6.14. There exists a unique Cartan connection w € S on G in the type

(PO(p+1,q+ 1), PPjine) such that w is normal.

Proposition 3.6.15. [14, 1.6.8] Given a Weyl connection o and let w° be the induced
Cartan connection on G due to Proposition 3.6.7. Let w"™" = w® — P o 0_; be the

normal Cartan connection by Corollary 3.6.14. Then, the respective values §_1, §o
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and g1 of the curvature function k™" of W™ are

K =%, =0, K" =kj-0P €Ty, (G a0 ), K7 €Tlg(G,00Ag)

The components of ki are

(B:6.11)  (cg™)ij'k = (k)ij'k — [8:Pjk — 85Pix — Pj'8ic + P! 8 — (Pij — Pj1) 8]

where 63. is the Kronecker delta. If o corresponds to a Levi-Civita connection V on
M, then Kgor induces the Weyl curvature tensor and K‘O’ induces the Riemann curvature
tensor of V. Lets: Go — G, u > [u, id] be the map by o. Then, s*k'{*" induces the

Cotton-York tensorY on M
(3.6.12) Yijk = _V[ipj]k-

It turns out we have the following theorem.

Theorem 3.6.16. [14, Theorem 1.6.7] Let n = p + q > 3. The following categories

are equivalent.
1. The category of normal Cartan geometries in the type (PO(p+1,q+ 1), PPjine).
2. The category of CO(p, q)-reductions of FrM.

Remark 3.6.17. Note that g_; C g is not PPjj,.—stable, so the p = gy ® g;-value

nor

of w™" is not a principal PPy, connection by Proposition 3.3.2. To have a principal

connection from w™"

, one can associate G with PO(p+1, g+1) to have a principal PO-
bundle Gpp with the induced principal connection y from w™" by Proposition 3.3.3.
Forn = p > 3, recalling PO(n+1,1) = O.(n+ 1, 1) in Example 2.0.2, the associated

vectorbundle 7~ = Go, X0, R™!:! has the induced linear connection V from y. The 7~ is
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called the standard tractor bundle, and V is called the normal tractor connection
[21]. The O4(n + 1, 1)-representations are special cases of (g, P)-modules whose
associated vector bundles are called tractor bundles [22]. For indefinite signature
(p,q), since PO(p + 1,q + 1) doesn’t have a standard representation, another natural
choice of normal Cartan geometries is in the type (O(p+1, g+1), Prqy). The associated
vector bundle with the standard representation of O(p + 1,q + 1) gives the standard
tractor bundle with the normal tractor connection [23].

Recall Proposition 3.1.5, a choice of a local conformal frame (e;) € I'(Gp) and a

Weyl connection o determine a local chart of G

(3.6.13) v G %6

One can therefore derive the formula of the normal tractor connection V on the
standard tractor bundle with respect to a Weyl connection o by using Corollary 3.2.9.

The formula for V is in [24, Equation (22)].

3.6.1 Conformal Geodesics

Given a conformal manifold (M", [g]) and the corresponding Cartan geometry in
the type (PO(p + 1,q + 1), PPjjn., w) with the corresponding principal-PP;;,, bundle
m: G — M where G = Frg,M X¢, PPjin.. Let g € [g] and V be its Levi-Civita connec-
tion. Recalling Remark 3.6.6, there is a corresponding global section s: Frg,M — G.
Recall Proposition 2.2.4, PP, = Go < exp(g-;) where g_; = R". Let (e;) be an

orthonormal frame of TM with respect to g defined on an open set U C M. Then, (e;)
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and s induce a local chart of G:

Tl_'_l(U) — U X Gy Xg-1

s((ep)x - C) - exp(b) ¥ (x,C,b).

Identify T,M and R" by v'e; — v'é; where (e;) is the chosen orthonormal frame.

Theorem 3.6.18. [7] Let X = X'é; € g_1 = R" and yx: I — G be an integral curve
of w™(X) so that n(yx) C U. Denote the coordinate of yx(t) by (x(t), Cij(t), bi(t)).
Then,
xt=ChXY;
(3.6.14) C'j = = (I}, + b CX"Cly;
. 1 .
bk = (bjrijk + Ebjbgk + Pik)Cln{\,n,
where x = X'e;, Fl.’; is the Christoffel symbols of V defined by V,.e; = Fiﬁek, and b{k is
defined by
(3.6.15) bl = 81b; + &by — gkig b
where 6{ = g/*gi. It turns out the integral curve equations of (3.6.14) can be written
as
(Vex)l = —b;'.kfcffck;
(3.6.16) (Vicj)' = —bix'Ck;
(Vib); = (3bjb, + Pii)xk,
where cj = ekaj.
Since x(t) and b(t) can be determined by the first and third equations of (3.6.16).
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Then, one can define the conformal geodesic equation as in the following.

Definition 3.6.19. Let g € [g] and V be the corresponding Levi-Civita connection. A
conformal geodesic with respectto gisacurvey: I — M and a 1-form b along y such

that they satisfy

(3.6.17) V;rt = =Splby R,

1 .
(3.6.18) Vibi = (5b;biSi + Pro)y"
where Sijkl is defined by
(3.6.19) S = 818, +818] — gug.

The equations (3.6.17) and (3.6.18) are conformally invariant for conformal change

§=0%ify=yandb; =b; - Q7'V;Q.

Denote gijviwj by (v,w) for g € [g]. Wecallacurve y: I — M null if (y,p) =0

on I and it is called non-null if it’s not null. Direct computation from (3.6.17) shows
(3.6.20) iy, ) = =200, )by

Therefore, if a conformal geodesic has a null velocity at some point, then it’s a null con-
formal geodesic. For completeness, we recall null pseudo-Riemannian geodesics are
necessary and sufficient to be null conformal geodesics with some reparametrization
[10,25].

Assume a conformal geodesic y is non-null. By solving b; in (3.6.17)

. Vi
Vi)

(3.6.21) bi = —— (Vi — Vil >
G\ 7, 7)
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one can have a third-order differential equation from (3.6.18). The third-order differ-
ential equation is equivalent to the system of the equations (3.6.17) and (3.6.18) if one

defines the one form b; back.

Definition 3.6.20. Given g € [g] with corresponding Levi-Civita connection V. A

parametrized non-null conformal geodesic y is defined to satisfy

(3.6.22)  V;V;ji=3 G T T2 '+ 0P = 2P

with initial conditions y(0), y(0), V;y(0). The equation is invariant under conformal

change § = Q°g.

Since the induced metric on a non-null curve y is nondegenerate, we can consider
the orthogonal decomposition of the pullback bundle of TM by y [26]. We call y
satisfies the tangential (resp. normal) part of (3.6.22) if it is a solution of the equation
that is the orthogonal projection of (3.6.22) to the tangent (resp. normal) bundle of y.
It is known [6] that any regular curve can be reparametrized to satisfy the tangential
part of (3.6.22). The normal part of (3.6.22) is invariant under reparametrization of
y and it is only satisfied by non-null conformal geodesics. Since (3.6.22) is derived

from (3.6.18), it’s convenient to introduce a vector field along an arbitrary curve y
(3.6.23) E'(y,v,8) = V;u' — (3070iSity + Pih)pk

where v is a vector field along y. If v satisfies the right-hand side of (3.6.21) by
descending index, then we denote the vector field E*(y, v, g) by EX(y, g).
For completeness, we recall another third-order differential equation for a non-null

conformal geodesic y. If y: I — M is reparametrized so that it is of unit tangent
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velocity with respect to g € [g], then it satisfies [10]
(3.6.24) ViVt == (30, Vid) + PudyE) i+ P ) = 1
(3.6.25) ViVt = (V0. Vib) = Padb3%) 9+ P i G p) = -1

The first line is the equation introduced by Yano [12]. Recalling conformal geodesics
in the Euclidean space are either straight lines or planar circles in Theorem 2.2.7, P.

Tod has derived the same result by considering (3.6.24) in [10].
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Poincaré-Einstein Manifold

This chapter reviews a Poincaré-Einstein manifold and the asymptotic isothermal
coordinate expansion of a surface therein.
Let (M, [g]) be a pseudo-Riemannian conformal manifold with signature (p, q)

and n > 2. There exists a pseudo-Riemannian manifold (M?*!, g,) with boundary

oM, = M [27]. The signature of g, is (p + 1,q). Let r € C*(M;) be a defining
function for M, that is r > 0 on the interior MQ, r=0on M and dr # 0 on M. Then,

g+ and r satisfy

(i) r’g. can be smoothly extended to be a metric on M, so that
= 2 .
8lm ==17"g+lm € [g];

(ii) Ric(g+) +ng+ =O(r).

The pair (M., g+) is called a Poincaré-Einstein manifold for (M, [g]) and the pair
(M, [g]) is called the conformal infinity to (M4, g+).
Let g € [g]. There exists a unique defining function r, called geodesic defining

function, such that |dr|§ = 1 near M C M,. The function r makes an identification
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between a neighborhood U of M in M, and a neighborhood U of M x{0} in M X [0, o).
By the identification, g, is in normal form relative to g; that is, g, = dri# on U where
g = g — P +0(r’). The tensor P is the Schouten tensor of g for n > 3. When
n = 2, P is a symmetric two-tensor on M satisfying P;' = %R and P;;/ = %R,i where R
is the scalar curvature of g. By the pulling back of an even diffeomorphism between
neighborhoods of M x {0} C M X [0, co) which restricts to the identity map on M x {0},

the normal forms g, relative to conformal related metrics are identical modulo O(r).

Remark 4.0.1. Note that the orders of r above in the Ricci condition and in g, can be

further refined to higher orders depending on dimension n. See details in [27].

Remark 4.0.2. For n = 2, the trace and the divergence conditions of P are conformally

invariant. ( [27], arguments after Theorem 3.7)

Surfaces in the Poincaré-Einstein Manifold

Let (M1, g,) be a Poincaré-Einstein manifold in normal form relative to g € [g]
where r is its corresponding geodesic defining function. Let y: I — M be a non-
null curve. The interval I can be shrunk if necessary. Choose a local coordinate
{x{|1 < i < n} on an open set ‘W in M containing y(t) for t € I. The coordinate
of y(t) is denoted by yi(t). If & C M, is an embedded surface orthogonal to M with
¥ N M =y, then one can have an asymptotic isothermal coordinate of X near y; that

is, there is a diffeomorphism o: (t, 1) — (x'(t, 1), 7(t, 1)) from I X I to £ C M, such
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that

o(t,0) = y'(t)

(4.0.1) (-1 0 ,
0'g = c(t, 1) +0(A%)

where c(t,0) # 0and € = 0if (p,yp) > O and € = 1 otherwise. In fact, to satisfy (4.0.1)
for ¥ orthogonal to M, the expansions of x', r and o*g, with respect to A are in the

following forms.

Proposition 4.0.3. [9] Let g, be a Poincaré-Einstein metric and ¥ C M, a surface as

above. Then, the asymptotic isothermal coordinate in (4.0.1) satisfies

(4.0.2)
XA = yiee) + 0+ a2y e
r) = 0+ i+ 0+ S key,v,0) - 35, 9) 0, 0)] A
and
(4.0.3) 0*g+:% (=07 0 (1+(_13)E 2K(y,v,g))tz)+0(it),
0 1

where the expansions of x' and r are modulo O(A*), the || denotes the square root
of <y, 7))\, the V' satisfies (y,v) = <)'/,V)-, (()IYT»’ the u' satisfies {(y,u) = 0 and
k(y,v,8) = (E(y,v,g), ) which is the tangential part of (3.6.23). Note that V; ((}'YT)
is equal to the right-hand side of the b-form in (3.6.21) by lowering index.

Since 0*g is pseudo-Riemannian for small A, the tangent bundle TM, has the

orthogonal decomposition along TY near M [26]. Let (ey) be a local orthonormal
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frame of the normal bundle of X with respect to g near XN M. After direct computation,

the Taylor expansions of e,» with respect to A are [9]

€12
@04) eu(t,2) =pu(2) - 7

(bor (1), 800)g + (vVaig = 2P (b (), 1) 7

— (¢ (1), [PIV)g A 3, +O(1Y),
where ¢4 (1) is a family of sections of the normal bundle of y in M.

Proposition 4.0.4. [9] Considering the projection of the second fundamental form of
X on ey with respect to g., then, its asymptotic expansion is
(4.0.5)

! (_1)S< ((V V)) Vs ¢“'(A)> = ?)Yaygl))l ¥

2
A (E(y,v,8), o (1))A (—1)e S (1)) ?}y“y(f»l

+0(1).

Due to Proposition 4.0.3, the asymptotic minimal condition H = O(r?) of T is equiva-
lenttov =1V, (<y y>) which is exactly the same as the b-form in (3.6.21). The asymp-
totic totally geodesic condition K = O(r?) is equivalently satisfied when v = v, (#)

u = 0 and y being an unparametrized conformal circle.

Note that if one considers the first variation of renormalized area of X with free
boundary in M, then the critical point is a minimal surface with u = 0 [9, 28] (need to

rewrite this last statement).

Definition 4.0.5. Let X C M, be an embedded surface orthogonal to M so that % N M
is a non-null curve. It is called a proper surface if it is asymptotic totally geodesic

K = O(r?) where K is the second fundamental form of ¥ with respect to g;.
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Preserving Geodesics

§ 5.1 Geodesics in Riemannian Manifolds and
Pseudo-Riemannian Conformal Manifolds

In this section, we derive in Theorem 5.1.1 that if a local diffeomorphism f between
manifolds M" and N" maps conformal geodesics to conformal geodesics, then f is a
conformal local diffeomorphism. We also mention in Remark 5.1.4 that the idea of the
proof of the theorem can apply to the parallel problem for parametrized Riemannian
geodesics.

Given a local diffeomorphism f: M — N between pseudo-Riemannian conformal
manifolds (M", [g]) and (N", [h]). Assume both of the conformal classes have same
signature (p,q). If f is a conformal local diffeomorphism, it’s direct to see f maps
unparametrized conformal geodesics to unparametrized conformal geodesics. The

converse direction is also true if the map f preserves some nullity condition.

Theorem 5.1.1. Let (M", [g]) and (N, [h]) be pseudo-Riemannian conformal mani-

folds with same signature (p, q). Assume a local diffeomorphism f: M — N satisfying
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(i) df(v) is non-null (resp. null) Ynon-null (resp. null) v € TM if p # q;
(i) sgn(v,v)g= sgn{df(v),df(v))n Yv € TM if p = q.

If f maps unparametrized non-null conformal geodesics to unparametrized non-null

conformal geodesics, then f is a conformal local diffeomorphism.

Proof. Given y € M. Let g € [g] and h € [h]. Choose a normal coordinate of g
centered at y, {x!|1 < i < n}. Since f is a local diffeomorphism, we can identify the
coordinate system near f(y) as {xi}?z ,- Lety(t) be a parametrized non-null conformal
geodesic satisfying (3.6.22) with initial conditions )'115, j/"(; at y = y(0) where j/"(; is the
coordinate of V;y(0) with respect to g. Since f oy is an unparametrized non-null
conformal geodesic, it satisfies the normal part of (3.6.22) with the given parameter t,
which is the following in the coordinate we chose.

<E(Y9 h), Y>h . k —

(5.1.1) Ef(y, h) - >
7, ¥n

0

where E(y, h) is a vector field along y defined from (3.6.23). In the following, we are
considering t = 0 for (5.1.1). Observe that (5.1.1) is a degree-two polynomial of ji'g
with coefficients depending on the derivatives of g and h. It is because y(t) satisfies
the third order differential equation (3.6.22) with respect to g. Now let )'/’5 = V¥ and
y§ = eAX where V, A € R™" are fixed. The variable ¢ € R is an arbitrary number in
an open interval containing 1. Because the non-null conformal geodesic equation is
an autonomous ODE, (5.1.1) depends smoothly on €. Based on the arguments we just

made, we know (5.1.1) at t = 0 is a polynomial of ¢ with degree two. Therefore, the
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Manifolds

coefficient of €2 vanishes. After direct computation, the coefficient gives

(5.1.2) V. Al (Ak _ Mv) _ WA VAR

(V,V)q V.V ) (V, V) v, V)3

If (V,A)s = 0, we get

VA e AR

5.1.3 =
G149 V.,V (v, V)2

Assume the normal coordinate we chose is g;;(y) > Ofor 1 <i < p and g;;(y) < O for
p+1<i<p+q. IfVk = 8% and A* = §/% for i # j, then h;j(y) = O from (5.1.3). If
gii = gjj for i # j, we then let V¥ = § + 8% and A* = § — §/%; 50, we have h;; = h;;

from (5.1.3). Therefore, the pullback metric (f*h);; is of the form

Bl,
—Cly
for some B, C # 0. If p # q, then B and C are positive because h is of the signature
(p,q). If p = q, then B and C can be both positive or both negative. Recalling that
the f preserves the nullity of null vectors, we know (9; + d;) is null at y with respect
to f*h when g;; # g;; which implies B = C. The sign of B and C is positive for p = q

since the sign of h;; is the same as the sign of gj;. O

Remark 5.1.2. Note that if (M, [g]) is Riemannian, that is p = n and q = 0, then any

local diffeomorphism f: M — N automatically satisfies (i) and (ii) in Theorem 5.1.1.

Remark 5.1.3. The particular case for Theorem 5.1.1 has been studied in the literature
if one assumes the f to be a bijection (no need to be continuous) and M = N = R" with
the standard Riemannian conformal structure [4,29]. Note that the proof in [4,29]

needs the global property of conformal geodesics; that is, f maps straight lines (resp.
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circles) to straight lines (resp. circles). However, by assuming additional regularity of
f in this paper, we only need the local condition of conformal geodesics, namely the

conformal geodesic equation, to establish Theorem 5.1.1.

Remark 5.1.4. One can give a different proof from ([30], Chapter 6, Addendum 1)
for the parallel problem of parametrized Riemannian geodesics by following the proof

idea of Theorem 5.1.1.

Remark 5.1.5. Though the initial condition jig = eA¥ in the proof gives an e-family
of conformal geodesics which induce a Jacobi field, we do not need the Jacobi field

equation introduced by [31,32] to prove the theorem.

We follow similar arguments of Theorem 5.1.1 to prove Theorem 5.2.5 in §5.2.

§ 5.2 Holorgraphic Interpretation to Preserving
Conformal Geodesics

In this section, we consider a local diffeomorphism F: M, — N, which smoothly
extends a local diffeomorphism f: M — N. We introduce the definition of asymp-
totic local isometry and cosider its local conditions. We also introduce an adapted
coordinate for a surface X in M,. We prove Theorem 5.2.5 in this section.

Let (N", [h]) be a pseudo-Riemannian conformal manifold with same signature
(p,q) as (M, [g]) and with a Poincaré-Einstein space (N, hy). We keep {xi}?:] asa

coordinate system on an open set ‘W in M.
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§5.2 Holorgraphic Interpretation to Preserving Conformal Geodesics

Definition 5.2.1. A local diffeomorphism F: M, — N, is called an asymptotic local

isometry if
(5.2.1) F*hy — gy = O(r).

It’s useful to realize Definition 5.2.1 in terms of local coordinates. Let r and s be
geodesic defining functions for g € [g] and h € [h] respectively. Identifying some
neighborhoods of M € M, and N C N, to neighborhoods U of M x {0} € M x [0, co)
and V of N x {0} € N X [0, o) respectively, a local diffeomorphism F: M, — N,

can be identified near M C M, and N C N, as a local diffeomorphism from U to V
(5.2.2) (x,r) = (F(x,r),F(x,1))

where # (x,0) = f(x), so F = F* on U and F*(x,0) = 0. Then, (5.2.1) is equivalent

to
(5.2.3) F*h - (F/r)?g = 0(),

where g = dr’ + g, and h = ds®> + h,. Since f is a local diffeomorphism, we denote
the coordinate of % (x,r) by Fi(x,r) with Fi(x,0) = x'. In terms of the coordinates

(x',7) on M, and (x',s) on Ny, (5.2.3) is given by

(5.2.4) O(r?) = FF%; + FKF (s 0 F)iy — (F°/r)” (&),
(5.2.5) O(r*) = FSF, + FKFL. (hs o F)iy — (F° )%,
(5.2.6) O(r) = F,FS, + FF(hs o F)y

where we have used commas to express partial derivatives with respect to the coordi-
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nates (x',7) on M,. Atr =0, (5.2.4) and (5.2.6) give

f*h=e*°g, F.=¢° forsomeo e C (M),

,r

5.2.7)
Fi,=0 forl<i<n,

If we choose g € [g] and h € [h] suitably such that f is homothetic, that is o constant,

then (5.2.4)-(5.2.6) further imply atr = 0

F..=F, =0 forl <i<n,

(5.2.8)

andatr=0
(5.2.9) Ffrrr =0.

Conversely, if F satisfies (5.2.7)-(5.2.9), then F is an asymptotic local isometry.

Let £ C M, be a surface orthogonal M and (t, A) its asymptotic isothermal coor-
dinate (4.0.2). Since we are considering (5.2.7) to (5.2.9), it’s better to introduce a
change of variables on X, (¢, 1) — (t,r(t, A)), where r(t, A) is equal to the right-hand
side of r(t, ) in (4.0.2) modulo O(A*). Then, the expansions of x! and r in terms of r

are

(5:2.10) x(e,r) = YO +0+ 52+ Hmrd +0(r?),
r(t,r) = r+0(*

where v' and u' remain the same conditions as in Proposition 4.0.3 and in Proposition

4.0.4. We call (t,r) the adapted coordinate of X.
Proposition 5.2.2. Let F: My — N, be a local diffeomorphism in terms of (5.2.2).
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Assume F maps non-null vectors in TM to non-null vectors in TN. Then, ;% = 0 at
r = 0 if and only if F(Z) is orthogonal to N for any surface % in M, that is orthogonal
to M and intersects M along a non-null curve. In addition, if F maps proper surfaces

in M, to proper surfaces in Ny, then 3% =0 atr = 0.

Proof. Let y(t) be a non-null curve in a coordinate open set ‘W C M with the
coordinate y'(t). Then, the adapted coordinate (t,r) in (5.2.10) locally defines a

surface £ C M, orthogonal to M with N\ M = y. Since F(Z) is orthogonal to N, then

(dF (X;), dF (X))
(5.2.11) dF(X;) — EEARTTEA) dF(X,)

is orthogonal to TN C TM, where {X;,X,} is the coordinate basis for the adapted
coordinate (t,r). The orthogonal condition gives atr = 0
Fop'hij

(5.2.12) 0="rk - 2= _—pk
VA

I

Since y is an arbitrary non-null vector at t = 0, we get F ’§ =0 atr = 0. Conversely, let
(t,r) be the adapted coordinate of ¥. Projecting (5.2.11) to TN C TN, orthogonally,
it gives the right-hand side of (5.2.12) which turns to be 0 due to Ffr =0atr=0.

If y(t) is a non-null conformal geodesic, then the formula of the adapted coordinate
locally extends y(t) to a proper surface in M,. One can follow the same arguments

just made to get 9, F =0atr =0. O

As mentioned at the end of Section 5.1, the idea for proving Theorem 5.2.5 is to
consider a suitable family of proper surfaces X.. Then, the dependence of € in the
second fundamental forms of proper surfaces F(Z.) may imply F is an asymptotic local

isometry where its local conditions are (5.2.7)-(5.2.9). However, recalling Proposition
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4.0.3, Proposition 4.0.4 and the adapted coordinate (5.2.10), a proper surface X is
characterized by v', u' and y being an unparametrized conformal geodesic. Therefore,
we can utilize the adapted coordinate of F(Z,) to avoid the tedious computation of
the second fundamental forms. The following Lemma 5.2.3 and Proposition 5.2.4
respectively give the coordinate change of F(X) to its adapted coordinate and provide

that F satisfies (5.2.7) and (5.2.8), except for (5.2.9), for F preserving proper surfaces.

Lemma 5.2.3. Let (M, g+) be a Poincaré-Einstein space in the normal form relative
to g € [g] and & C M, be a surface orthogonal to M with £\ M = y being a non-null
curve. Assume it has a parametrization (t,r) — (¥'(t,r),7(t,r)) fromIxIto £ C M,
where )?f_r =0and7 =0 both atr = 0. The existence of the adapted coordinate (1, p)
of & implies there is a coordinate change t = t(n, p), r = r(n, p) with t(n,0) = n. The

coordinate change is in the following modular higher orders.

t(n, p) =N +top* +t3p°,
(5.2.13)

r(n,p) = r(p + 12y +13)p°

where

1 T —1 (2~ ta) + P (1)) + OF )
ryy=—, o) = ————=, I'(3) = — Tl 7o (T F ()T )
(1) R (2 2(;,{)3 (3) or tr P ER2) T Frrr AP (1) e ()T(2)

1 i 1 i i
t(2) = 2()}} }’> (Ul))i - xfr_ryi(r(l))z) B t(3) = —6(y, )/> ((r?]))xf_r_r_r)’i + 6r(1)r(2)xf_r_ryi) .

The partial derivatives of X' and ¥ above are at r = 0. The term v in t)is Vy (#)

Note that y' = J?ft(t, 0) = J?fn(n, 0) and J?ftt(t, 0) = )?f,m(n, 0).
Proposition 5.2.4. Let F: M, — N, be a local diffeomorphism such that

(i) dF(v) is non-null (resp. null) Ynon-null (resp. null) v € TM if p # q;

66



§5.2 Holorgraphic Interpretation to Preserving Conformal Geodesics

(ii) sgn{v,v)e= sgn(dF(v),dF(v)), Vv € TM if p = q.

The F satisfies (5.2.7) and (5.2.8) if and only if F maps proper surfaces in M, to proper

surfaces in N;.

Proof. Let y(t) be a non-null conformal geodesic in a coordinate open set of M with
the initial conditions )'/’6 and j/"g at y(0) = p. Let & C M, be its extended proper
surface defined by the adapted coordinate (t,r) in (5.2.10). Since F(X) N N is still an
unparametrized conformal geodesic from Proposition 4.0.4, we know f: M — Nisa
conformal local diffeomorphism due to Theorem 5.1.1. Without loss of generality, we
assume that f is the identity map on (M, g) where g € [g] and that the local coordinate
of its extended local diffeomorphism is F: (x!,r) — (Fi(x,r), F"(x,r)) where r is the
geodesic defining function of g. From Proposition 5.2.2 and Lemma 5.2.3, we let
(n(t,r), p(t,r)) be the coordinate change of F(X) to its adapted coordinate.

Let p§ = VK, j§ = eA* with [V| = 1 and (V, A) = 0 where € € R is arbitrary near 1.
The variable € gives an e-family of non-null conformal geodesics y¢(t). The extended
proper surfaces X, is defined by the formula of the adapted coordinate (5.2.10) where
the coefficients in the expansion of x'(t,r) depend on y.(t). Because Z. depends
smoothly on €, we know the adapted coordinate for F(Z.) defined from Lemma 5.2.3

depends smoothly on €. Since F(X¢) are proper surfaces, we have

. i
Ve ;
(5.2.14) 2 (—) =F atp=0
: (VesVe) PP P
and
(5.2.15) 0=F,, atp=0.
i
Following the formulas and the conventions from (5.2.13), we know t(5) = — ZJEI:;; at the
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point p. Using chain rule on Ffp o for (t(n, p),r(n, p)), the straightforward computation

for (5.2.14) at p is

. 1 o o
_ )
(5.2.16) A= o (eAl +F —ViF, vl) .

Therefore, F'. = 1 and Ffrr = 0 atr = 0. The results we got imply r() = —F,. atr =0
and t(3) = éF’ijj at p from (5.2.13). Doing chain rule again, (5.2.15) is equal to the

following at p.
(5.2.17) 0=-3¢F, A +F _ +F. VvV

So, F!,. =0 and Ffrrr =0atr=0.

Conversely, assume (Fi(x,r), F"(x,r)) = (x'+0(r*), r +O(r?)) where we assume f
is the identity map on (M, g). Let & C M, be a proper surface and (t, r) be its adapted
coordinate. From Proposition 5.2.2, we know F(X) orthogonal to N. Considering the
coordinate change (n(t,r), p(t,r)) of F(Z) to its adapted coordinate and following the

formula from (5.2.13), we have
ra) = 1, rQ) = 0, to) = 0, t3) = 0.

Computing Ffpp and Ffp op directly from chain rule, we have at p = 0

. i
Fl :V( . )JFl =0
PP T\, py) 0 opeP

which implies F(ZX) is proper by (5.2.10) and Proposition 4.0.4. O

Theorem 5.2.5. Let (M, g+) and (N, hy) be Poincaré-Einstein manifolds for (M, [g])
and (N, [h]) respectively with same signature (p+1, q). Given a local diffeomorphism

F: My — N, such that it smoothly extends a local diffeomorphism f: M — N. Assume
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F satisfies
(i) dF(v) is non-null (resp. null) Ynon-null (resp. null) v € TM if p # q,
(ii) sgn{v,v)e,= sgn({dF(v),dF(v)), Vv € TM if p = q.

If the F maps proper surfaces in M, to proper surfaces in N, then there is a local

diffeomorphism G on an open neighborhood W of M C M,,
G: W —> M,,

where G smoothly extends the identity map on M, such that F = F o G is an asymptotic

local isometry.

Proof. From Proposition 5.2.4, we can choose g € [g] and h € [h] suitably to let f be

a local isometry. Consider the identification of F in (5.2.2)
F: 7/[_>(v; (X,T') = (g(X,r),FS(X,T)).

We aim to find out an open set W C U such that it contains M X {0} and the following
map is well-defined

G: W - Uu

(e,r) = or =R = (x, pe(r))

(5.2.18)

where R(x) = 83F*(x,0)/6 and py(r) = r — & (x)r.
For any x € M, it has open neighborhoods B, N, in M such that
x€By CC N,y and Ny x[0,e)CU Fe>0
where 8, CC N, means its closure 376 is compact in N,. Here we choose € small
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enough such that the polynomial p,, (r) of r on [0, €) is strictly increasing forall y € B,

Hence, there exists 0 < €} < € so that
B, X [0,€.) = By x[0,e) CU
(. 1) = (¥, py(r).

Let W = Uyem Bx X [0,€). Since we know the asymptotic expansion of F from

Proposition 5.2.4, we get F = F o G: ‘W — V is an asymptotic local isometry. O

Corollary 5.2.6. Let F: My — Ny and G: W — M, be local diffeomorphisms as
stated in Theorem 5.2.5. Assume there is a geodesic defining function r for some

g € [g] and C > 0 such that
(5.2.19) 102(s o F)(p)] <C VpeM C M,,

where 3, = &Vr is the gradient of r with respect to § = r’g, and s is the geodesic

defining function of h € [h] to make f: M — N be a local isometry.

(i) If C > 0O, then G can be chosen as an embedding with its image while W is small

enough.

(ii) If C =0, then G can be chosen to be the identity map on W. Particularly, F is an

asymptotic local isometry.

Proof. Recall the definition of G in (5.2.18),

G: W — U

(1) = (r =R = (x, pe(r)).

70



§5.2 Holorgraphic Interpretation to Preserving Conformal Geodesics

Let ‘W be small enough so that W C M X [0, €) for some € > 0. If € is small enough,

then p,(r) is strictly increasing because for r € [0, €)
3-px(r) = 1 = 3% (x)r* > 1 - 3Cr?.

Hence, G is an open injective immersion for C > 0. The case for C = 0 is straightfor-

ward due to the definition of G. m|

The following proposition gives geometric conditions to satisfy the presumptions

of Corollary 5.2.6.

Proposition 5.2.7. Let F: M, — N, and G: W — M, be local diffeomorphisms as
stated in Theorem 5.2.5. Assume there is a geodesic defining function r for some

g € [g] and a > 0 such that

(5.2.20) (F*hy — g4)BVr,8Vr) = 0(r9).

Let s be a geodesic defining function of h € [h] to make f be a local isometry.
(i) If a = 0, there exists C > 0 such that |3>(s o F)| < C on M.
(ii) Ifa =1, we have 3>(s o F) = 0 on M.

Proof. Consider the identification of F near M C M, and N C N, in (5.2.2), U —

V, (x,r) = (F(x,r),F(x,r)). Then, (5.2.20) is equivalent to
O(r**?) = F.F’. + FL.F).(hy o F);; — (F*r)?,

where the right-hand side above is exactly from (5.2.5) while considering local condi-

tions of an asymptotic local isometry. Then, the Taylor expansion for the right-hand
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side gives the following.

2
O(T‘a+2) — Z {
c=0

(b+1)(c=b+1) £ s
Z (b+1)! (c—b+ 1) &) (c=b+D)

c>b>0
b+1)(c-b-d+1) ;
' bZ.; oD+ DI(c—b-d+ 1)!d!F(b+1)F(c—b—d+1)(h(d))ij
c>b+d>
Z 1 F F }rc
) b+1)" (c—b+1 )
czbzo(b+1)!(c—b+1)! (b+1)7 (c=b+1)

where FEb), F zb) and h(;) mean the bth-order partial derivative of r at r = 0 of F?, Fi

and h; o F respectively. So, we have from above
0=F F.h,
(5.2.21) 0=FSF, +3F.F,hj,
a 2 S S 3 s \2 i
O(T’ ) = §F,rF,rrr + Z(F,rr) + F,rrF,rrhij’

where the third equality above is when Ffr =0atr =0. We know F. = 1, F},. = 0 and

Ffrr = 0 atr = 0 from Proposition 5.2.4. This completes the proof. m]

Remark 5.2.8. It is straightforward to observe Ffr =0and F,. = 0atr =0 from
(5.2.21) when considering Riemannian conformal classes [g] and [h]. However,

(5.2.21) alone still can’t simply imply F3,. =0 atr = 0.
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