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Abstract

Conformal-Geodesics-Preserving Local Diffeomorphisms and Their Holographic

Interpretation

by

Tzu-Mo Kuo

We study unparametrized conformal geodesics, or called conformal circles, and

study local diffeomorphisms mapping conformal geodesics to conformal geodesics in

pseudo-Riemannian conformal manifolds. We show that such local diffeomorphisms

are conformal local diffeomorphisms. Our result extends the result of Yano and

Tomonaga. We also present a holographic interpretation for our result on Poincaré-

Einstein manifolds. The proofs take suitable variations of conformal geodesics.

iv



Acknowledgements

I am deeply grateful to my advisor, Jie Qing. He introduced me to the work

of Fefferman and Graham and spent considerable time supporting and guiding me

throughout my PhD at UCSC. His mentorship extended beyond the transfer of knowl-

edge; he inspired me to interact more with other researchers and facilitated my growth

in academic communication.

I would also like to thank the UCSC Mathematics Department for providing an

enriching academic environment. The geometry knowledge and academic taste I

acquired there have significantly shaped this dissertation.

Additionally, I am thankful for the unwavering support from my family in Taiwan

and California. Their care and consideration reminded me of the importance of

maintaining physical and mental health, even during the most demanding phases of

my research.

v





Chapter 1

Introduction

Riemannian geodesics, as fundamental geometric objects, are often considered when

studying Riemannian structures. One classic problem concerning geodesics and Rie-

mannian structures is the following: If there is a diffeomorphism that maps geodesics

to geodesics, is it an isometry? The answer is negative due to affine transformations on

Euclidean spaces. In general, one may need to further assume irreducible Riemannian

manifolds for the diffeomorphism to be an isometry [1, 2]. The parallel problems for

CR manifolds [3] and conformal manifolds [4, 5] are affirmative in some sense.

In the context of a pseudo-Riemannian conformal manifold (𝑀𝑛, [𝑔]) with 𝑛 ≥ 2,

a distinguished family of curves known as conformal geodesics or called conformal

circles emerges. These curves satisfy a third-order differential equation for non-

null conformal geodesics [6]. The derivation of these conformal geodesics is based

on various perspectives of conformal manifolds, including Cartan geometry [7], the

standard tractor bundle [8], and the Poincaré-Einstein manifold [9]. The persepectives

are based on the conformal model, Möbius sphere 𝑆(𝑝,𝑞) . For the Riemann signature,

by identifying the sphere with the Euclidean space, the conformal geodesics are either
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Chapter 1 Introduction

straight lines or planar circles [10]. In the context of the Poincaré ball 𝐵𝑛+1, each

circle on the boundary 𝑆𝑛 = 𝜕𝐵𝑛+1 can be orthogonally extended to form a totally

geodesic surface within 𝐵𝑛+1. Based on the case of the Riemannian conformally flat

model, each conformal geodesic in a Riemannian conformal manifold (𝑀, [𝑔]) can

be formally extended to an asymptotically totally geodesic surface in the Poincaré-

Einstein space (𝑀+, 𝑔+) by holographic construction [9] where the term holography

comes from physics, e.g., [11]. We use the term "holography" to mean the geometry

from Poincaré-Einstein space (𝑀+, 𝑔+).

In this dissertation, we solve a classical problem: if a local diffeomorphism 𝑓 be-

tween pseudo-Riemannian conformal manifolds (𝑀𝑛, [𝑔]), (𝑁𝑛, [ℎ]) with the same

metric signature maps conformal geodesics to conformal geodesics, then it is a con-

formal local diffeomorphism provided some conditions on 𝑓 . We also consider the

parallel problem in the holographic settings 𝐹 : 𝑀+ → 𝑁+. The problem for a Rie-

mannian conformal manifold can be traced back to Carathéodory [4]. He showed a

bĳection on ℝ2, which doesn’t need to be continuous, that maps straight lines (resp.

circles) to straight lines (resp. circles) is a conformal transformation. Later on, K.

Yano and Y. Tomonaga [5, 12] showed that an infinitesimal transformation on a Rie-

mannian conformal manifold is a conformal killing vector field if and only if it carries

unit-speed conformal circles to unit-speed conformal circles where the unit speed is

with respect to a metric in the conformal class. The problem is also discussed in terms

of distinguished curves by Cartan geometry [13].

The conformal geodesic equation can be derived from the integral curve equation

of a vector field on the normal Cartan geometry modeled on 𝑆(𝑝,𝑞) . The Riemannian

geodesic equation can also be derived in the sense of Cartan geometry. In Chapter 2,

2



we starts from considering model manifolds of Riemannian manifolds and conformal

manifolds. We introduce geodesics as the projection of integral curves of constant

horizontal vector fields derived from the Maurer-Cartan form. In Chapter 3, we review

the backgrounds of principal bundles, Cartan geometry, and the category equivalence

between Riemannian manifolds, conformal manifolds and Cartan geometries. In sub-

section 3.4.1, we derive the integral equation for Riemannian geodesics. In subsection

3.6.1, we review the integral equation for conformal geodesics and review their ge-

ometric properties. In Chapter 4, we review some background of Poincaré-Einstein

manifolds and extend the results from Fine and Herfray to pseudo-Riemannian setting.

In Chapter 5, we show our main theorems, Theorem 5.1.1 for the classical problem of

conformal geodesics, and Theorem 5.2.5 for the parallel problem in the holographic

settings. Our proof is motivated by the work from Yano and Tomonaga.

3



Chapter 2

Introduction to Model Manifolds

In this chapter, we review model manifolds and geodesics in the Riemannian model

and the conformal model. As mentioned in Chapter 1, we consider geodesics as the

quotient of integral curves in the transformation group of the model. Particularly,

Theorem 2.1.1 shows constant velocity straight lines in the Euclidean space is the

quotient of integral curves, and Theorem 2.2.7 is the parallel result for conformal

geodesics in the Riemannian sphere 𝑆𝑛. The concepts from model manifolds will be

further generalized to Cartan geometry in Chapter 3.

A manifold 𝑀 is called a model if it’s a homogeneous 𝐺-space 𝐺/𝐻 where the

manifold 𝑀 is of some geometric structure, the Lie group 𝐺 preserves the structure,

and 𝐻 is a subgroup of 𝐺.

Example 2.0.1. For Riemannian Manifolds, the automorphism group𝐺 is the isometry

group.

1. The Euclidean space (ℝ𝑛, 𝑔𝑠𝑡𝑑). Its isometry group is the Euclidean group

Euc(𝑛) = ℝ ⋊ 𝑂(𝑛) and ℝ𝑛 ∼= ℝ ⋊ 𝑂(𝑛)/𝑂(𝑛).
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2. The hyperbolic space (𝐻𝑛, 𝑔𝐻). Its isometry group is 𝑂+(𝑛 + 1, 1) and 𝐻𝑛 ∼=

𝑂+(𝑛 + 1, 1)/𝑂(𝑛 + 1).

Example 2.0.2 ([14, 1.6.2; 15, Chapter 2]). For conformal manifolds, the group 𝐺 is

the conformal automorphism group. The model is the Möbius sphere 𝑆(𝑝,𝑞) := 𝐶/ℝ∗

with the conformal class induced from the standard inner product of ℝ𝑝,𝑞 where 𝐶 is

the light cone in ℝ𝑝+1,𝑞+1 and 𝑛 = 𝑝 + 𝑞 ≥ 3. The conformal transformation group of

𝑆𝑝,𝑞 is 𝑃𝑂(𝑝+ 1, 𝑞+ 1) and 𝑆(𝑝,𝑞) ∼= 𝑃𝑂(𝑝+ 1, 𝑞+ 1)/𝑃𝑃𝑙𝑖𝑛𝑒 where 𝑂(𝑝+ 1, 𝑞+ 1) is the

orthogonal group of ℝ𝑝+1,𝑞+1 and 𝑃𝑙𝑖𝑛𝑒 is the stabalizer of a null line in ℝ𝑝+1,𝑞+1. The

letter 𝑃 before both of the groups 𝑂 and 𝑃𝑙𝑖𝑛𝑒 is the quotient by ±𝑖𝑑ℝ𝑝,𝑞 . Particularly,

𝑆(𝑛,0) ∼= 𝑆𝑛 and 𝑃𝑂(𝑛 + 1, 1) ∼= 𝑂+(𝑛 + 1, 1) where the group 𝑂+ is the time preserving

orthogonal group on ℝ𝑛+1,1; that is, with respect to the standard basis (𝑡, x), the (0, 0)

components of 𝑂+(𝑛 + 1, 1) matrices are all positive.

Let 𝜋 : 𝐺 → 𝐺/𝐻 = 𝑀 be the quotient map of a model 𝑀. Recalling that the

Maurer-Cartan form 𝑤 on a Lie group 𝐺 is defined by ∀𝑝 ∈ 𝐺

(2.0.1)
𝑤𝑝 : 𝑇𝑝𝐺 → 𝔤

𝑉 ↦→ 𝑑𝐿𝑝−1 (𝑉)

where 𝑑𝐿𝑝−1 is the differential of the left action 𝐿𝑝−1 : 𝐺 → 𝐺, 𝑔 ↦→ 𝑝−1𝑔. Since the

inverse of 𝐿𝑝−1 is 𝐿𝑝, the map (2.0.1) is an isomorphism. The isomorphism property

lets us introduce a vector field 𝑉𝑋 = 𝑤−1(𝑋) on 𝐺 for any given element 𝑋 ∈ 𝔤. The

following Propositions 2.0.3 and 2.0.4 give us the preliminary notions of geodesics on

model manifolds.
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Chapter 2 Introduction to Model Manifolds

Proposition 2.0.3. Let 𝔥 be the Lie algebra of 𝐻. Then,

(2.0.2) 𝑑𝜋(𝑉𝑋 ) = 0 ∀𝑋 ∈ 𝔥.

Proof. Recalling the fundamental vector field is defined by 𝜁𝑋 (𝑝) := 𝑑
𝑑𝑡

����
𝑡=0

𝑝 · 𝑒𝑡𝑋 for

𝑋 ∈ 𝔥, the result follows from 𝑤(𝜁𝑋 ) = 𝑋 and 𝑑𝜋(𝜁𝑋 ) = 0. □

Proposition 2.0.4. Let 𝑋 ∈ 𝔤 and 𝛾𝑋 : 𝐼 → 𝐺 be the integral curve of 𝑉𝑋 = 𝑤−1(𝑋)

with the initial condition 𝑔 ∈ 𝐺. Then,

(2.0.3) 𝛾𝑋 (𝑡) = 𝑔 · 𝑒𝑡𝑋

where · is the group action of 𝐺.

Proof. Note that

(2.0.4) 𝛾′𝑋 (𝑡) =
𝑑

𝑑𝑠

����
𝑠=𝑡

𝑔 · 𝑒𝑠𝑋 =
𝑑

𝑑𝑠

����
𝑠=0
𝑔 · 𝑒(𝑡+𝑠)𝑋 = 𝑔 · 𝑒𝑡𝑋 𝑑

𝑑𝑠

����
𝑠=0
𝑒𝑠𝑋 .

Recalling the definition of the Maurer-Cartan form, then

(2.0.5) 𝑤𝑔𝑒𝑡𝑋 (𝛾′𝑋 (𝑡)) =
𝑑

𝑑𝑠

����
𝑠=0
𝐿(𝑔𝑒𝑡𝑋 )−1

(
𝑔 · 𝑒𝑡𝑋 · 𝑒𝑠𝑋

)
= 𝑋.

□

Assume the Lie algebra 𝔤 is of the form 𝔤 = 𝔫 ⊕ 𝔥, where 𝔫 is a subalgebra. Because

of Proposition 2.0.3, we consider the integral curve 𝛾𝑋 ⊆ 𝐺 introduced from 𝑋 ∈ 𝔫 in

Section 2.1 and Section 2.2.
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§2.1 Riemannian Geodesics in the Euclidean Space

§ 2.1 Riemannian Geodesics in the Euclidean Space

Theorem 2.1.1. Let 𝜋 : Euc(𝑛) → ℝ𝑛 be the quotient map. Let 𝑋 ∈ ℝ𝑛 ⊆ 𝔢𝔲𝔠(𝑛)

where 𝔢𝔲𝔠(𝑛) = ℝ𝑛 ⊕ 𝔬(𝑛) is the Lie algebra of 𝐸𝑢𝑐(𝑛). Let 𝛾𝑋 : 𝐼 → Euc(𝑛) be the

integral curve of 𝑤−1(𝑋). The projection 𝜋(𝛾(𝑡)) is a constant velocity straight line

in ℝ𝑛. Conversely, any constant velocity straight line is the projection of an integral

curve induced from some 𝑋 ∈ ℝ𝑛 ⊆ 𝔢𝔲𝔠(𝑛).

Proof. Assume 𝑔 =
©­­«
1 0

b 𝐴

ª®®¬. Then,

(2.1.1) 𝛾𝑋 (𝑡) = 𝑔 · 𝑒𝑡𝑋 =
©­­«
1 0

b 𝐴

ª®®¬
𝕀 + 𝑡

©­­«
0 0

𝑋 0

ª®®¬
 =

©­­«
1 0

b + 𝑡𝐴𝑋 𝐴

ª®®¬.
So, 𝜋(𝛾𝑋 (𝑡)) = b + 𝑡𝐴𝑋 . The converse direction can be easily seen from the proof we

just did. □

§ 2.2 Conformal Geodesics in the Euclidean Space

Let 𝑛 = 𝑝 + 𝑞 ≥ 3. We’ve seen Example 2.0.2 that 𝑆(𝑝,𝑞) is a 𝑃𝑂(𝑝 + 1, 𝑞 + 1)-

homogeneous space and its conformal transformation group is 𝑃𝑂(𝑝+1, 𝑞+1). In this

section, we review the structure of the Lie algebra 𝔬(𝑝+1, 𝑞+1) of 𝑃𝑂 and the structure

of 𝑃𝑃𝑙𝑖𝑛𝑒. We also review the conformal transformation group of ℝ𝑝,𝑞. Finally, while

𝑛 = 𝑝 and identifying ℝ𝑛 and 𝑆𝑛 \ {𝑝𝑡}, we derive that the conformal geodesics in

ℝ𝑛 are either straight lines or circles. In this section, ⟨𝑣, 𝑤⟩ means the standard inner

product of 𝑣, 𝑤 in ℝ𝑝,𝑞.

7



Chapter 2 Introduction to Model Manifolds

Proposition 2.2.1 ([14] Proposition 1.6.2). The Möbius sphere 𝑆(𝑝,𝑞) is diffeomorphic

to 𝑃𝑂(𝑝 + 1, 𝑞 + 1)/𝑃𝑃𝑙𝑖𝑛𝑒.

Proof. (Sketched) Consider the quotient map of the light cone

𝜋 : 𝐶 𝜋→ ℝ𝑃𝑛+1

where 𝐶 = {𝑣 ∈ ℝ𝑝+1,𝑞+1 | ⟨𝑣, 𝑣⟩ = 0}. Since Im(𝜋) = 𝑆𝑝,𝑞 and the group action of

𝑃𝑂(𝑝 + 1, 𝑞 + 1) is transitively on the Im(𝜋), then 𝑆(𝑝,𝑞) ∼= 𝑃𝑂(𝑛 + 1, 1)/𝑃𝑃𝑙𝑖𝑛𝑒. □

The Lie algebra structure of 𝔬(𝑝+1, 𝑞+1) can be precisely described if we introduce

a new coordinate on ℝ𝑝+1,𝑞+1 such that its standard inner product is of the following

form with respect to the new coordinate

(2.2.1)

©­­­­­«
0 0 1

0 𝕀𝑝,𝑞 0

1 0 0

ª®®®®®¬
where 𝕀𝑝,𝑞 =

©­­«
𝕀𝑝 0

0 −𝕀𝑞

ª®®¬ .
For instance, let

𝑒− =
1
√

2
(𝑒0 − 𝑒𝑛+1), 𝑒𝑖 = 𝑒𝑖 for 1 ≤ 𝑖 ≤ 𝑛, 𝑒+ =

−1
√

2
(𝑒0 + 𝑒𝑛+1)

where (𝑒𝑖)𝑛+1𝑖=0 is the standard basis for ℝ𝑝+1,𝑞+1. We call (𝑒−, 𝑒𝑖, 𝑒+) the light cone

basis.

Proposition 2.2.2 ([14] 1.6.3). Denote the Lie algebra𝔬(𝑝+1, 𝑞+1) by 𝔤. Let 𝑛 = 𝑝+𝑞.

8



§2.2 Conformal Geodesics in the Euclidean Space

Then, any element in 𝔤 with respect to the light cone basis is of the form

©­­­­­«
𝑎 𝑍 0

𝑋 𝐴 −𝑍𝑡

0 −𝑋 𝑡 −𝑎

ª®®®®®¬
,

where 𝑎 ∈ ℝ, 𝑋 ∈ ℝ𝑛, 𝑍 ∈ ℝ𝑛∗ and 𝐴 ∈ 𝔬(𝑝, 𝑞). Therefore, 𝔤 ∼= 𝔤−1 ⊕ 𝔤0 ⊕ 𝔤1 where

𝔤−1 ∼= ℝ𝑛, 𝔤0 ∼= 𝔬(𝑝, 𝑞) ⊕ ℝ and 𝔤1 ∼= ℝ𝑛∗. Their Lie bracket relations are as follows

𝔤0 × 𝔤−1 → 𝔤−1 [(𝐴, 𝑎), 𝑋] = 𝐴𝑋 − 𝑎𝑋

𝔤0 × 𝔤0 → 𝔤0 [(𝐴, 𝑎), (𝐵, 𝑏)] = ( [𝐴, 𝐵], 0)

𝔤0 × 𝔤1 → 𝔤1 [(𝐴, 𝑎), 𝑍] = 𝑎𝑍 − 𝑍𝐴

𝔤−1 × 𝔤1 → 𝔤0 [𝑋, 𝑍] = (𝑋𝑍 − (𝑋𝑍)𝑡 − 𝑍𝑋).

Definition 2.2.3. The group 𝑃𝑙𝑖𝑛𝑒 is defined to stabalize the null line generated by 𝑒−.

Proposition 2.2.4 ([14] Proposition 1.6.3). With respect to the light cone basis, any

element in 𝑃𝑙𝑖𝑛𝑒 is of the form

(2.2.2)

©­­­­­«
𝜆 𝜆𝑍 −𝜆

2 ⟨𝑍
𝑡, 𝑍𝑡⟩

0 𝐶 −𝐶𝑍𝑡

0 0 𝜆−1

ª®®®®®¬
,

where 𝜆 ∈ ℝ \ {0}, 𝐶 ∈ 𝑂(𝑝, 𝑞) and 𝑍 ∈ ℝ𝑛∗. Furthermore, 𝑃𝑃𝑙𝑖𝑛𝑒 = 𝐺0 ⋉ 𝑃+ where

𝐺0 is the group for 𝑍 = 0 and 𝜆 > 0, and 𝑃+ = 𝑒𝑥 𝑝 (𝔤1) which corresponds to 𝜆 = 1

and 𝐶 = 𝕀𝑛. Their Lie algebras are

𝔭𝑙𝑖𝑛𝑒 = 𝔤0 ⊕ 𝔤1, 𝔤0, 𝔭+ = 𝔤1

9



Chapter 2 Introduction to Model Manifolds

for 𝑃𝑃𝑙𝑖𝑛𝑒, 𝐺0 and 𝑃+ respectively. Moreover, the adjoint action of 𝐺0 on 𝔤−1 is

𝑋
(𝜆,𝐶)
↦→ 𝜆−1𝐶𝑋 and 𝐺0 preserves the grading of 𝔤 under the same action.

Remark 2.2.5. Due to the 𝐺0 action on 𝔤−1, the group 𝐺0 is isomorphic to conformal

orthogonal group 𝐶𝑂(𝑝, 𝑞) [14, proof of Proposition 1.6.3] where

𝐶𝑂(𝑝, 𝑞) = {𝐴 ∈ 𝐺𝐿(𝑛) | ∃𝑐 > 0 such that ⟨𝐴𝑣, 𝐴𝑤⟩ = 𝑐⟨𝑣, 𝑤⟩ ∀𝑣, 𝑤 ∈ ℝ𝑝,𝑞}

and the inner product ⟨, ⟩ is the standard one on ℝ𝑝,𝑞. Henceforth, its Lie algebra is

𝔤0 ∼= 𝔠𝔬(𝑝, 𝑞) ∼= ℝ𝑛 ⊕ 𝔬(𝑝, 𝑞).

To know the conformal geodesic in the model case, we need to review the conformal

transformation group of ℝ𝑝,𝑞 for 𝑛 = 𝑝 + 𝑞 ≥ 3.

Proposition 2.2.6. LetU be an open set inℝ𝑝,𝑞. Then, each conformal transformation

𝜙 : U → ℝ𝑝,𝑞 is a composition of the following conformal transformations

1. Translation 𝑌 ↦→ 𝑌 + 𝑋 , 𝑋 ∈ ℝ𝑛 ∼= 𝔤−1;

2. Conformal orthogonal transformation 𝑋 ↦→ 𝜆−1𝐶𝑋 , 𝐶 ∈ 𝑂(𝑝, 𝑞) and 𝜆 > 0;

3. Special conformal transformation

𝑋 ↦→ 1
1 + 𝑍𝑋 + 1

4 ⟨𝑋, 𝑋⟩⟨𝑍, 𝑍⟩

(
𝑋 + ⟨𝑋, 𝑋⟩

2
𝑍𝑡

)
(2.2.3)

where 𝑍 ∈ ℝ𝑛∗ ∼= 𝔤1.

The 3 is the composition of inversion 𝑋 ↦→ 𝑌 = 𝑋
| |𝑋 | |2 , translation 𝑌 ↦→ 𝑊 = 𝑌 + 1

2𝑍
𝑡

and inversion𝑊 ↦→ 𝑊
| |𝑊 | |2 when 𝑋 is not null, where | |𝑋 | | is the standard inner product

of ℝ𝑝,𝑞 on 𝑋 .

10



§2.2 Conformal Geodesics in the Euclidean Space

Identify 𝔤−1 ∼= ℝ𝑝,𝑞 and 𝑆𝑝,𝑞 \ {𝑝𝑡} by

(2.2.4)
𝑖 : 𝔤−1 → 𝑆𝑝,𝑞 = 𝐶/ℝ∗

𝑋 ↦→ [𝑒𝑥 𝑝(𝑋)𝑒−] = [(1, 𝑋,−
1
2
⟨𝑋, 𝑋⟩)]

where 𝐶 is the light cone in ℝ𝑝+1,𝑞+1, (1, 𝑋,−1
2 ⟨𝑋, 𝑋⟩) is with respect to the light cone

basis, and [ ] denotes an equivalence class in 𝐶/ℝ∗. Then,

1. 𝑒𝑥 𝑝(𝑌 ) ∈ 𝑒𝑥 𝑝(𝔤−1) ⊆ 𝑂(𝑝, 𝑞) induces a translation on ℝ𝑝,𝑞;

2.

©­­­­­«
𝜆 0 0

0 𝐶 0

0 0 𝜆−1

ª®®®®®¬
∈ 𝑂(𝑝, 𝑞) with 𝐶 ∈ 𝑂(𝑝, 𝑞) and 𝜆 > 0 induces a conformal

orthogonal transformation on ℝ𝑝,𝑞;

3. 𝑒𝑥 𝑝(𝑍) ∈ 𝑒𝑥 𝑝(𝔤1) ⊆ 𝑂(𝑝, 𝑞) induces a special conformal transformation on an

open set of ℝ𝑝,𝑞.

Proof. The first 1, 2, 3 are in [15, Theorem 1.9 and Theorem 2.9]. The matrix 𝑒𝑥 𝑝(𝑌 )

in 𝑂(𝑝 + 1, 𝑞 + 1) for 𝑌 ∈ 𝔤−1 is

𝑒𝑥 𝑝(𝑌 ) = 𝑒𝑥 𝑝

©­­­­­«
0 0 0

𝑌 0 0

0 −𝑌 0

ª®®®®®¬
=

©­­­­­«
1 0 0

𝑌 𝕀 0

−1
2 ⟨𝑌, 𝑌⟩ −𝑌 1

ª®®®®®¬
.

Let 𝑌 ∈ 𝔤−1. Therefore, for 𝑋 ∈ 𝔤−1

𝑒𝑥 𝑝(𝑌 )𝑒𝑥 𝑝(𝑋) = 𝑒𝑥 𝑝(𝑌 + 𝑋)

11



Chapter 2 Introduction to Model Manifolds

which implies the translation. For 5, we have

©­­­­­«
𝜆 0 0

0 𝐶 0

0 0 𝜆−1

ª®®®®®¬
(𝑒𝑥 𝑝(𝑋))𝑒− = [(𝜆, 𝐶𝑋,−

1
2𝜆
⟨𝑋, 𝑋⟩)]

= [(1, 𝜆−1𝐶𝑋,− 1
2𝜆2 ⟨𝑋, 𝑋⟩]

which gives a conformal orthogonal transformation. Finally,

(2.2.5)©­­­­­«
1 𝑍 −1

2 ⟨𝑍
𝑡, 𝑍𝑡⟩

0 𝕀 −𝑍𝑡

0 0 1

ª®®®®®¬
(𝑒𝑥 𝑝(𝑋))𝑒− =

[(
1 + 𝑍𝑋 + 1

4
𝑋 | |2 | |𝑍 | |2, 𝑋 + ||𝑋 | |

2

2
𝑍𝑡,
−1
2
| |𝑋 | |2

)]

=

[(
1,

1
1 + 𝑍𝑋 + 1

4 | |𝑋 | |2 | |𝑍 | |2

(
𝑋 + ||𝑋 | |

2

2
𝑍𝑡

)
, ∗

)]
where | |𝑋 | |2 and | |𝑍 | |2 mean the inner products of 𝑋 and 𝑍 themselves, and the middle

component is in the form of (2.2.3). □

Theorem 2.2.7. Let 𝜋 : 𝑂+(𝑛 + 1, 1) → 𝑆𝑛 be the quotient map. Given 𝑋 ∈ 𝔤−1

and let 𝛾𝑋 : 𝐼 → 𝑂+(𝑛 + 1, 1) be an integral curve of 𝑉𝑋 = 𝑤−1(𝑋) where 𝑤 is the

Maurer-Cartan form of 𝑂+(𝑛 + 1, 1). Identify ℝ𝑛 and 𝑆𝑛 \ {𝑝𝑡} by 𝑖 : 𝑅𝑛 → 𝑆𝑛 \ {𝑝𝑡}

from (2.2.4). Then, 𝜋(𝛾𝑋 (𝑡)) is either a planar circle or a straight line in ℝ𝑛.

Proof. Recall the diffeomorphism of a homogeneous space (see e.g. [16, Theorem

21.18])

(2.2.6)
I : 𝑂+(𝑛 + 1, 1)/𝑃𝑟𝑎𝑦 → 𝑆𝑛 = 𝐶/ℝ∗

𝑔 · 𝑃 ↦→ [𝑔𝑒−].

12



§2.2 Conformal Geodesics in the Euclidean Space

Assume 𝛾𝑋 (0) = 𝕀 the identity matrix in 𝑂+. Then, 𝛾𝑋 (𝑡) = 𝑒𝑡𝑋 by Proposition 2.0.4.

Therefore,

I(𝛾𝑋 (𝑡)) =
[(

1, 𝑡𝑋,−1
2
⟨𝑋, 𝑋⟩𝑡2

)]
= 𝑖(𝑡𝑋)

which is a straight line through the origin in ℝ𝑛. Now consider 𝛾𝑋 (𝑡) = 𝑒𝑍 · 𝑒𝑡𝑋 where

𝑍 ∈ 𝔤1 with 𝑍𝑋 = 0, ⟨𝑋, 𝑋⟩ = 1 and ⟨𝑍, 𝑍⟩ = 1. Then,

I(𝛾𝑋 (𝑡)) = 𝑖

(
1

1 + 𝑡2

4

(
𝑡𝑋 + 𝑡

2

2
𝑍𝑡

))
where the equation is because of (2.2.5). The curve inside the argument of 𝑖 is the

circle centered at 𝑍𝑡 with the radius 1 and it is in the plane spanned by 𝑋 and 𝑍𝑡. It is

because �����𝑍𝑡 − 1
1 + 𝑡2

4

(
𝑡𝑋 + 𝑡

2

2
𝑍𝑡

)�����2 = |𝑍𝑡 |2
©­­«1 − 𝑡2

2
(
1 + 𝑡2

4

) ª®®¬
2

+ 𝑡2

1 + 𝑡2

4

|𝑋 |2

= 1.

Observe that 𝑠(𝑡) = 𝑔 · 𝛾𝑋 (𝑡) is still an integral curve of 𝑤−1(𝑋) for all given

𝑔 ∈ 𝑂+(𝑛 + 1, 1). Since 𝑂+(𝑛 + 1, 1) is the conformal transformation group of ℝ𝑛

by Proposition 2.2.6, we know the conformal geodesics of ℝ𝑛 are conformal trans-

formations of straight lines or planar circles which are still straight lines or planar

circles. □
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Chapter 3

Cartan Geometry

In Section 3.1, we review principal bundles, principal connection, and the curvature

forms defined from the connections. In Section 3.2, we review the notions of an

associated bundle. We also review a linear connection and its curvature tensor on an

associated vector bundle through a bĳective relation Proposition 3.2.5 from a principal

connection and the curvature form. In Section 3.3, we review Cartan geometries,

Cartan curvatures, and torsion functions.

In Section 3.4, we review the category equivalence between Riemannian manifolds

and torsion-free Cartan geometries modeled on the Euclidean space ℝ𝑛. We also

review that the Cartan curvature is composed of the torsion tensor and the curvature

tensor on the tangent bundle of a Riemannian manifold. In subsection 3.4.1, we

derive the Riemannian geodesic equation by considering an integral curve equation

introduced by the torsion-free Cartan connection. The same consideration for the

Riemannian model ℝ𝑛 is already derived in Theorem 2.1.1.

In Section 3.5, we review affine Cartan connections and introduce Weyl connections

in the end of the section. In Section 3.6, we review the category equivalence between

14



§3.1 Principal Bundle, Connection and Curvature

conformal manifolds and normal Cartan geometries modeled on the Möbius sphere

𝑆(𝑝,𝑞) . We also review how Weyl connections induce normal Cartan connection. In

the end of the section, we briefly describe how the normal Cartan geometry derives

the standard tractor bundle. In subsection 3.6.1, we review the integral curve equation

for conformal geodesics. We also review their geometric properties.

§ 3.1 Principal Bundle, Connection and Curvature

In the following, 𝐸, 𝑀, 𝐹 are smooth manifolds and 𝐻 is a Lie group with the Lie

algebra 𝔥. The main reference of this section are [17, 18]

Definition 3.1.1 (Fiber Bundle). Let 𝜋 : 𝐸 → 𝑀 be a smooth map. The quadruple

(𝐸, 𝜋, 𝑀, 𝐹) is called a fiber bundle with fiber 𝐹 if each 𝑥 ∈ 𝑀 has an open neigh-

borhood 𝑈 ⊆ 𝑀 such that there is a diffeomorphism 𝜙 : 𝜋−1(𝑈) → 𝑈 × 𝐹 to make the

following diagram commute

𝜋−1(𝑈) 𝑈 × 𝐹

𝑈

𝜙

𝜋 𝜋1

The pair (𝑈, 𝜙) is called a chart and a collection {(𝑈𝛼, 𝜙𝛼)} is called an atlas if {𝑈𝛼}

covers 𝑀.

Assume 𝜉 = (𝐸, 𝜋, 𝑀, 𝐹) to be a fiber bundle and the fiber 𝐹 to have a smooth

𝐻-left-action. Then,

Definition 3.1.2 (𝐻-atlas, 𝐻-structure and 𝐻-bundle). A 𝐻-atlas on 𝜉 is an atlas

15



Chapter 3 Cartan Geometry

{(𝑈𝛼, 𝜙𝛼)} such that transition maps are of the form

𝜙𝛼 ◦ 𝜙−1
𝛽 : (𝑈𝛼 ∩ 𝑈𝛽) × 𝐹 → (𝑈𝛼 ∩ 𝑈𝛽) × 𝐹

(𝑥, 𝑓 ) ↦→ (𝑥, 𝜙𝛼𝛽 (𝑥) · 𝑓 ),

where 𝜙𝛼𝛽 : 𝑈𝛼 ∩ 𝑈𝛽 → 𝐻 is a smooth map. Two 𝐻-atalses are equivalent if their

union is a 𝐻-atlas.

An equivalence class of 𝐻-atlases is called a 𝐻-structure on 𝜉 and 𝐻-bundle means a

specified 𝐻-structure on 𝜉.

Definition 3.1.3 (Principal Bundle). A fiber bundle (𝑃, 𝜋, 𝑀, 𝐻) is called a principal

𝐻-bundle if it is a 𝐻-bundle and the Lie group 𝐻, as the fiber, acts on itself by the left

translation.

Remark 3.1.4. Every principal bundle has a free and transitive right action on its

fibers defined by 𝐻-structure {(𝑈𝛼, 𝜙𝛼)}:

∀ 𝑝 ∈ 𝑈𝛼 with 𝜙𝛼(𝑝) = (𝑥, 𝑎), 𝑝 · ℎ := 𝜙−1
𝛼 ((𝑥, 𝑎ℎ)).

So, the above charts are 𝐻-equivariant

𝜙𝛼(𝑝 · ℎ) = (𝑥, 𝑎ℎ) = (𝑥, 𝑎) · ℎ = 𝜙𝛼(𝑝) · ℎ.

Conversely, if 𝜋 : 𝑃 → 𝑀 is a surjective submersion and 𝐻 acts on 𝑃 from the right

freely and transitively on its fibers, then (𝑃, 𝜋, 𝑀) is a principal 𝐻-bundle ([19] 10.3

Lemma).

Proposition 3.1.5. Given a principal 𝐻-bundle 𝜋 : 𝑃 → 𝑀. There is a bĳective

16



§3.1 Principal Bundle, Connection and Curvature

relation between local sections of 𝑃 → 𝑀 and 𝐻-equivariant local charts

(𝑠 : 𝑈 → 𝑃) ↦→
©­­«
𝜙𝑠 : 𝜋−1(𝑈) → 𝑈 × 𝐻

𝑠(𝑥)ℎ ↦→ (𝑥, ℎ)

ª®®¬
𝜙−1(𝑥, 𝑖𝑑) ←[

(
𝜙 : 𝜋−1(𝑈) → 𝑈 × 𝐻

)
Definition 3.1.6 (Reduction). Let 𝐻0 ⊆ 𝐻 be a Lie subgroup and 𝑃 → 𝑀 be a principal

𝐻-bundle. Then, a submanifold 𝑃0 ⊆ 𝑃 is called a 𝐻0-reduction of 𝑃 if 𝑃0 → 𝑀 is a

principal 𝐻0-bundle and its 𝐻0-right-action is the restriction of 𝐻-action on 𝑃.

Example 3.1.7. The projection 𝐻 → ∗ from a Lie group 𝐻 to a point ∗ is a principal

𝐻-bundle.

Example 3.1.8 (Frame Bundle). Given a vector bundle 𝐸 → 𝑀 of the rank 𝑟 and

Fr(𝐸𝑥) is the collection of bases of 𝐸𝑥 . Then, the bundle Fr(𝐸) = ⊔
𝑥∈𝑀

Fr(𝐸𝑥) is a

principal 𝐺𝐿(𝑟,ℝ)-bundle on M with the right action

(𝑒𝑖) · 𝐴 = (𝑒𝑘 [𝐴]𝑘𝑖 ), ∀ basis (𝑒𝑖) ∈ Fr(𝐸𝑥) ∀𝐴 ∈ 𝐺𝐿(𝑟,ℝ).

If there is a metric on 𝐸, then the orthonormal frame bundle Fr𝑂(𝑟) (𝐸) is defined by

collecting orthonormal bases.

Definition 3.1.9 (Fundamental Vector Field and Vertical Subbundle). Given a principal

𝐻-bundle 𝜉 = (𝑃, 𝜋, 𝑀, 𝐻). Let 𝐴 ∈ 𝔥. The associated vector field on 𝑃 is given by

𝜁𝐴(𝑝) =
𝑑

𝑑𝑡

����
𝑡=0

𝑝 · 𝑒𝑡𝐴 ∈ 𝑇𝑝𝑃,

called fundamental vector field. The kernel VP = ker 𝑑𝜋 is called the vertical sub-

bundle.

17



Chapter 3 Cartan Geometry

Remark 3.1.10. Note that every fundamental vector field is vertical, so

ker 𝑑𝜋𝑝
∼= 𝔥 ∀𝑝 ∈ 𝑃.

Definition 3.1.11 (Principal Connection). A smooth 𝔥-valued 1-form 𝛾 on 𝑃 is called

a principal connection if it satisfies the followings

1. 𝛾𝑝(𝜁𝐴(𝑝)) = 𝐴 for all 𝐴 ∈ 𝔥

2. H-equivariance: 𝑅∗
ℎ
𝛾 = Ad(ℎ−1) 𝛾 for all ℎ ∈ 𝐻, where 𝑅ℎ is the right action on

𝑃 as mentioned in the Remark 3.1.4 and 𝐴𝑑 is the adjoint action on 𝔥.

Example 3.1.12 (Maurer-Cartan Form). Recall Example 3.1.7, the projection 𝐻 → ∗.

Let ℎ ∈ 𝐻 and denote the left action on 𝐻 by 𝐿ℎ : 𝐻 → 𝐻, 𝑎 ↦→ ℎ𝑎. Then, the

Maurer-Cartan form 𝑤 is a principal connection on 𝐻 defined by

𝑤 : 𝑇𝐻 → 𝔥

(ℎ, 𝑉) ↦→ 𝑑𝐿ℎ−1𝑉.

Sometimes, we need the local description of 𝛾.

Proposition 3.1.13. [19, Chapter 3, 11.4, Lemma (6)] Let 𝜉 = (𝑃, 𝜋, 𝑀, 𝐻) be a

principal 𝐻-bundle with a principal connection 𝛾. Let 𝜙 : 𝜋−1(𝑈) → 𝑈 × 𝐺 be a 𝐻-

equivariant local chart and 𝑠 : 𝑈 → 𝑃 be its corresponding local section in Proposition

3.1.5. Then, for all (𝑥, ℎ) ∈ 𝑈 × 𝐻

(3.1.1) (𝜙−1∗𝛾)(𝑥,ℎ) = 𝑤𝐻 (ℎ) + Ad(ℎ−1) (𝑠∗𝛾)𝑥

where 𝑤𝐻 (ℎ) is the Maurer-Cartan form of 𝐻 at ℎ.

18



§3.1 Principal Bundle, Connection and Curvature

Remark 3.1.14. One can define a principal connection in an equivalent way by con-

sidering a horizontal smooth distribution HP ⊆ 𝑇𝑃 such that

1. Right-invariant: 𝑑𝑅ℎ(𝐻𝑝𝑃) = 𝐻𝑝ℎ𝑃 ∀ℎ ∈ 𝐻

2. 𝑇𝑃 = VP ⊕ HP.

Their relation is 𝐻𝑃 = ker 𝛾. Note that 𝐻𝑝𝑃
∼= 𝑇𝜋(𝑝)𝑀 ∀𝑝 ∈ 𝑃.

Definition 3.1.15 (Curvature). Assume there is a principal connection 𝛾 on a principal

𝐻-bundle 𝜉 = (𝑃, 𝜋, 𝑀, 𝐻). The curvature form Ω is a 𝔥-valued two-form on 𝑃 defined

by

Ω(𝑋, 𝑌 ) = 𝑑𝛾(𝑋, 𝑌 ) + [𝛾(𝑋), 𝛾(𝑌 )] 𝑋, 𝑌 ∈ 𝑇𝑃.

Proposition 3.1.16. [17, Theorem 30.4] The curvature form Ω satisfies two properties

1. Horizontal: Ω(𝑋, 𝑌 ) = Ω(𝑋ℎ𝑜𝑟, 𝑌ℎ𝑜𝑟) where 𝑋ℎ𝑜𝑟 is the projection of 𝑋 onto HP

along VP;

2. Equivariant: 𝑅∗
ℎ
Ω = Ad(ℎ−1) Ω for all ℎ ∈ 𝐻 where 𝐴𝑑 is the adjoint action on

𝔥.

Example 3.1.17. Example 3.1.12 defines the Maurer-Cartan form 𝑤 on 𝐻. Its curva-

ture Ω turns out to be 0.

Definition 3.1.18 (Category of a Principal 𝐻-bundle). One can define category on

principal 𝐻-bundles.

• Objects: Principal 𝐻-bundles (𝑃, 𝜋, 𝑀, 𝐻)

• Morphisms: (𝑃, 𝜋, 𝑀)
𝜙
→ (𝑃′, 𝜋′, 𝑀′) where 𝜙 : 𝑃 → 𝑃′ is fiberwise with

𝜙(𝑝 · ℎ) = 𝜙(𝑝) · ℎ, 𝑝 ∈ 𝑃 and ℎ ∈ 𝐻.
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Chapter 3 Cartan Geometry

Note that if 𝜙 : 𝑃 → 𝑃′ is fiberwise, then there is a unique smooth map 𝜙 : 𝑀 → 𝑀′

such that the following diagram commutes

𝑃 𝑃′

𝑀 𝑀′

𝜙

𝜋 𝜋′

𝜙

.

§ 3.2 Associated Bundle

The concepts of associated bundles bring the bridge between principal bundles and

vector bundles. Take the tangent bundle of a manifold as an example, it’s an associated

bundle of its frame bundle. Due to this relation, we’ll see how the connections and

curvatures we defined earlier on principle bundles relate to associated vector bundles.

Let 𝑆 be a manifold with a smooth 𝐻-left-action and 𝜋 : 𝑃 → 𝑀 be a principal

𝐻-bundle. Define 𝑃 ×𝐻 𝑆 = (𝑃 × 𝑆)/∼ where each equivalence class is of the relation

[𝑝 · ℎ, ℎ−1 · 𝑠] = [𝑝, 𝑠] , ℎ ∈ 𝐻 , [𝑝, 𝑠] ∈ 𝑃 ×𝐻 𝑆.

Define 𝜋𝑆 : 𝑃 ×𝐻 𝑆→ 𝑀, [𝑝, 𝑠] ↦→ 𝜋(𝑝).

Definition 3.2.1 (Associated Bundle). The fiber bundle (𝑃 ×𝐻 𝑆, 𝜋𝑆, 𝑀, 𝑆) is called

an associated bundle for the left 𝐻-action on 𝑆 if it is a 𝐻-bundle with the induced

𝐻-structure from the principal bundle (𝑃, 𝜋, 𝑀, 𝐻).

Remark 3.2.2. The induced 𝐻-structure is the following. Let {(𝑈𝛼, 𝜙𝛼)} be a 𝐻-atlas
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§3.2 Associated Bundle

from the principal bundle (𝑃, 𝜋, 𝑀, 𝐻)

𝜙𝛼 : 𝜋−1(𝑈𝛼) → 𝑈𝛼 × 𝐻

𝑝 ↦→ (𝜋(𝑝), 𝜓𝛼(𝑝)) .

The induced 𝐻-atlas on the associated bundle (𝑃 ×𝐻 𝑆, 𝜋𝑆, 𝑀, 𝑆) is

𝜋−1
𝑆 (𝑈𝛼) → 𝑈𝛼 × 𝑆

[ 𝑝, 𝑠 ] ↦→ (𝜋(𝑝), 𝜓𝛼(𝑝) · 𝑠) .

Example 3.2.3. Given a smooth manifold𝑀𝑛. Its tangent bundle is in fact an associated

vector bundle 𝑇𝑀 ∼= Fr(𝑀𝑛)×𝐺𝐿(𝑛)ℝ𝑛 where Fr(𝑀𝑛) is the frame bundle of the tangent

bundle 𝑇𝑀. The isomorphism is

𝑇𝑀 → Fr(𝑀𝑛) ×𝐺𝐿(𝑛) ℝ𝑛

𝑣𝑖𝑒𝑖 ↦→ [ (𝑒𝑖), 𝑣𝑖𝑒𝑖 ],

where (𝑒𝑖) ∈ Fr(𝑀𝑛) and (𝑒𝑖) is the standard basis of ℝ𝑛.

The curvature form Ω we defined earlier on a principal bundle by a principal con-

nection satisfies horizontal and equivariant properties in Proposition 3.1.16. With an

associated vector bundle, the principal connection’s curvature should give rise to the

curvature form with corresponding linear connection on the vector bundle. In the

following, we’ll deal with the correspondent relations.

Given a principal 𝐻-bundle 𝑃 𝜋→ 𝑀 and a representation 𝐻
𝜌
→ 𝐺𝐿(𝑉) with 𝐸 = 𝑃×𝐻𝑉.

Definition 3.2.4. Define Ω𝑘
𝐻 (𝑃, 𝑉) to be the set of all smooth 𝑉-valued 𝑘-forms on 𝑃
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such that ∀𝜙 ∈ Ω𝑘
𝐻 (𝑃, 𝑉),

• Equivariant: 𝑅∗
ℎ
𝜙 = 𝜌(ℎ−1) · 𝜙;

• Horizontal: 𝜙 vanishes if one of its arguments is vertical.

The form 𝜙 ∈ Ω𝑘
𝐻 (𝑃, 𝑉) is called a tensorial form and Γ𝐻 (𝑃, 𝑉) := Ω0

𝐻 (𝑃, 𝑉).

Proposition 3.2.5 ([14] Corollary 1.2.7). Define Ω𝑘(𝑀, 𝐸) := Γ
( (
Λ𝑘𝑇∗𝑀

)
⊗ 𝐸

)
.

There is a bĳective relation between Ω𝑘(𝑀, 𝐸) and Ω𝑘
𝐺 (𝑃, 𝑉). The relation is ∀𝑝 ∈ 𝑃

𝛼𝜋(𝑝) (𝜉1, ..., 𝜉𝑘) = [𝑝, 𝛼̃𝑝(𝜉̃1, ..., 𝜉̃𝑘)],

where 𝛼 ∈ Ω𝑘(𝑀, 𝐸), 𝛼̃ ∈ Ω𝑘
𝐺 (𝑃, 𝑉) and 𝑑𝜋(𝜉̃ 𝑗) = 𝜉 𝑗 ∈ 𝑇𝑀.

Example 3.2.6. Recall Proposition 3.1.16. The curvature form Ω on a principal bundle

with a principal connection is a tensorial form.

Given a principal 𝐻-bundle 𝑃 𝜋→ 𝑀 with a principal connection 𝛾. Assume there

is a representation 𝐻
𝜌
→ 𝑉. In the following, we will see how principal connection

induces a linear connection and corresponding curvature on the associated vector

bundle 𝐸 = 𝑃 ×𝐻 𝑉.

Definition 3.2.7 (Covariant Derivative). The covariant derivative 𝐷 on a tensorial

form 𝜙 ∈ Ω𝑘
𝐺 (𝑃, 𝑉) is defined by 𝐷𝜙 := (𝑑𝜙)ℎ𝑜𝑟, where

(𝑑𝜙)ℎ𝑜𝑟 (𝑋1, ..., 𝑋𝑘) = (𝑑𝜙) (𝑋ℎ𝑜𝑟1 , ..., 𝑋ℎ𝑜𝑟𝑘 )

for 𝑋𝑖 ∈ 𝑇𝑃 and 𝑋ℎ𝑜𝑟
𝑖

is the projection of 𝑋𝑖 onto 𝐻𝑃 along 𝑉𝑃.
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Proposition 3.2.8 ([17] Proposition 31.16). The covariant derivative 𝐷 has the prop-

erty,

𝐷 : Ω𝑘
𝐺 (𝑃, 𝑉) → Ω𝑘+1

𝐺 (𝑃, 𝑉).

Corollary 3.2.9. The covariant derivative 𝐷 on a principal bundle 𝑃
𝜋→ 𝑀 with a

principal connection gives rise to a linear connection ∇ on the associated vector

bundle 𝐸 = 𝑃 ×𝐻 𝑉. For any 𝑥 ∈ 𝑀, 𝑋 ∈ 𝑇𝑥𝑀 and 𝑢 ∈ 𝜋−1(𝑥), the linear connection

at 𝑥 on 𝜙 ∈ Γ(𝐸) is

∇𝑋𝜙(𝑥) := [𝑢, 𝐷𝑋̃ 𝜙̃(𝑢)]

where 𝑑𝜋( 𝑋̃) = 𝑋 and 𝜙̃ ∈ Γ𝐻 (𝑃, 𝑉) by Proposition 3.2.5

Proposition 3.2.10. Assume the previous settings in Corollary 3.2.9. Since the princi-

pal connection’s curvature Ω is tensorial, it induces a two-form on 𝑀, 𝑅 ∈ Ω2(𝑀, 𝔤).

In fact, ∀𝑋, 𝑌 ∈ Γ(𝑇𝑀) and 𝜙 ∈ Γ(𝐸) with the corresponding 𝜙̃ ∈ Γ𝐻 (𝑃, 𝑉)

(𝑅(𝑋, 𝑌 )𝜙) (𝜋(𝑢)) := [𝑢,Ω𝑢( 𝑋̃ , 𝑌̃ ) · 𝜙̃(𝑢)]

= (∇𝑋∇𝑌 − ∇𝑌∇𝑋 − ∇[𝑋,𝑌 ])𝜙,

where 𝑢 ∈ 𝑃, 𝑋̃ and 𝑌̃ are uniquely horizontal lifts of 𝑋 and 𝑌 , the action · for

Ω𝑢( 𝑋̃ , 𝑌̃ ) · 𝜙̃ is induced by infinitesimal representation 𝑑𝜌 : 𝔥→ 𝔤𝔩(𝑉).

To prove the proposition, we need some knowledge on horizontal lifts of vector

fields.

Proposition 3.2.11 ([20] Proposition 1.2 in Chapter 2). Given a principal 𝐻-bundle

𝑃
𝜋→ 𝑀 and a principal connection 𝛾. Then, for any vector field 𝑋 on 𝑀, there is a
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uniquely horizontal lift 𝑋̃ such that 𝑑𝑅ℎ 𝑋̃ = 𝑋̃ for all ℎ ∈ 𝐻. Precisely, the lift comes

from the isomorphism of 𝑑𝜋 between the horizontal distribution HP and 𝑇𝑀.

Proposition 3.2.12. Assuming the previous settings and assuming there is a represen-

tation 𝜌 : 𝐻 → 𝐺𝐿(𝑉). Let 𝜙̃ ∈ Ω𝑘
𝐻 (𝑃, 𝑉) and 𝑋𝑖 ∈ Γ(𝑇𝑀). Then, 𝜙̃( 𝑋̃1, ..., 𝑋̃𝑘) ∈

Γ𝐻 (𝑃, 𝑉) where 𝑋̃𝑖 are the uniquely horizontal lifts.

Proof. Let ℎ ∈ 𝐻 and 𝑢 ∈ 𝑃. Then,

𝑅∗ℎ
(
𝜙̃𝑢( 𝑋̃1(𝑢), ..., 𝑋̃𝑘(𝑢)

)
= 𝜙̃𝑢ℎ

(
𝑋̃1(𝑢ℎ), ..., 𝑋̃𝑘(𝑢ℎ)

)
= 𝜙̃𝑢ℎ

(
𝑑𝑅ℎ( 𝑋̃1(𝑢)), ..., 𝑑𝑅ℎ( 𝑋̃𝑘(𝑢))

)
= (𝑅∗ℎ𝜙)𝑢( 𝑋̃1, ..., 𝑋̃𝑘)

= 𝐴𝑑(ℎ−1)
(
𝜙̃𝑢( 𝑋̃1, ..., 𝑋̃𝑘)

)
.

□

Proposition 3.2.13 ([20] Proposition 1.3 in Chapter 2). Let 𝑋̃ and 𝑌̃ be the horizontal

lifts of 𝑋, 𝑌 ∈ Γ(𝑇𝑀). Then, the horizontal component of [𝑋̃ , 𝑌̃ ] is the horizontal lift

of [𝑋, 𝑌 ].

Let’s begin to prove Proposition 3.2.10.

Proof. Recall 𝛾 is a principal connection on the principal bundle 𝑃 𝜋→ 𝑀 and 𝐻
𝜌
→

𝐺𝐿(𝑉) is a representation. Let 𝜙 ∈ Γ(𝐸) with the corresponding 𝜙̃ ∈ Γ𝐻 (𝑃, 𝑉). Due to
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Propositions 3.2.8 and 3.2.12, we know 𝐷𝑋̃𝐷𝑌̃ 𝜙̃ ∈ Γ𝐻 (𝑃, 𝑉). So,

(
∇𝑋∇𝑌 − ∇𝑌∇𝑋 − ∇[𝑋,𝑌 ]

)
𝜙(𝜋(𝑢)) =

[
𝑢,

(
𝐷𝑋̃𝐷𝑌̃ − 𝐷𝑌̃𝐷𝑋̃ − 𝐷[𝑋̃ ,𝑌̃ ]

)
𝜙̃(𝑢)

]
=

[
𝑢,

(
𝑋̃𝑌̃ − 𝑌̃ 𝑋̃ − [𝑋̃ , 𝑌̃ ]ℎ𝑜𝑟

)
𝜙̃(𝑢)

]
=

[
𝑢, 𝜁𝛾( [𝑋̃ ,𝑌̃ ]) (𝜙̃(𝑢))

]
=

[
𝑢,

𝑑

𝑑𝑡

���
𝑡=0
𝜙̃(𝑢 · 𝑒𝑡 𝛾( [𝑋̃ ,𝑌̃ ]))

]
=

[
𝑢,

𝑑

𝑑𝑡

���
𝑡=0
𝜌

(
𝑒−𝑡 𝛾( [𝑋̃ ,𝑌̃ ])

)
(𝜙̃(𝑢))

]
=

[
𝑢,−

(
𝛾( [𝑋̃ , 𝑌̃ ])

)
· 𝜙̃(𝑢)

]
where the action · in the last equality is 𝑑𝜌 action. Also, since 𝑋̃ and 𝑌̃ are horizontal,

the curvature form Ω becomes

Ω( 𝑋̃ , 𝑌̃ ) · 𝜙̃(𝑢) =
(
𝑑𝛾( 𝑋̃ , 𝑌̃ ) + [𝛾( 𝑋̃), 𝛾(𝑌̃ )]

)
· 𝜙̃(𝑢)

= −
(
𝛾( [𝑋̃ , 𝑌̃ ])

)
· 𝜙̃(𝑢)

□

Sometimes, it may be helpful to have the following formula for covariant derivative.

Proposition 3.2.14 ([17] Proposition 31.19). For all 𝜙̃ ∈ Γ𝐻 (𝑃, 𝑉),

𝐷𝑋̃ 𝜙̃ = 𝑋̃ (𝜙̃) + 𝑑𝜌(𝛾( 𝑋̃))𝜙̃, 𝑋̃ ∈ 𝑇𝑃.

Note that 𝑋̃ here is not horizontal in general.

The local description of Christoffel symbols in terms of a principal connection is in

the following proposition.

Proposition 3.2.15. Let 𝜋𝐻 : Fr𝐻𝑀 → 𝑀 be a 𝐻-reduction of the frame bundle Fr𝑀

and 𝛾 a principal connection on Fr𝐻𝑀 with the induced linear connection ∇ on

𝑇𝑀 ∼= Fr𝐻𝑀 ×𝐻 ℝ𝑛. Given a 𝐻-equivariant chart 𝜙 : 𝜋−1
𝐻 (𝑈) → 𝑈 × 𝐻 with the
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corresponding section 𝑠 : 𝑈 → Fr𝐻𝑀 in Proposition 3.1.5. Define the Christoffel

symbols Γ𝑘
𝑖 𝑗

for (𝑒𝑖)𝑖 ∈ Fr𝐻𝑀 by ∇𝑒𝑖𝑒 𝑗 = Γ𝑘
𝑖 𝑗
𝑒𝑘. Then,

(𝑠∗𝛾) (𝑒𝑖) · 𝑒 𝑗 = Γ𝑘𝑖 𝑗𝑒𝑘

where · is the Lie algebra action 𝔤𝔩(𝑛) on ℝ𝑛 and (𝑒𝑖)𝑖 is the standard basis of ℝ𝑛.

Proof. Let 𝜙̃ 𝑗 ∈ Γ𝐻 (Fr𝐻𝑀) such that 𝜙̃ 𝑗((𝑒𝑖)𝑖) = 𝑒 𝑗. Using Corollary 3.2.9,

Γ𝑘𝑖 𝑗𝑒𝑘 = ∇𝑒𝑖𝑒 𝑗 = [(𝑒𝑖)𝑖, 𝐷𝑑𝑠(𝑒𝑖𝜙̃ 𝑗((𝑒𝑖)𝑖)]

= [(𝑒𝑖)𝑖, 0 + (𝑠∗𝛾) (𝑒𝑖) · 𝑒 𝑗]

where the 2nd equality is due to Proposition 3.2.14. Using the identification 𝑇𝑀 ∼=

Fr𝐻 ×𝐻 ℝ𝑛, 𝑣𝑖𝑒𝑖 ↦→ [(𝑒𝑖)𝑖, 𝑣𝑖𝑒𝑖], we get the result. □

§ 3.3 Cartan Connection and Curvature

Let 𝐻 ⊆ 𝐺 be a closed Lie subgroup of a Lie group 𝐺 with the corresponding Lie

algebras 𝔥 and 𝔤. The main reference of this section is [14].

Definition 3.3.1 ([14]). Given a principal 𝐻-bundle 𝑃𝐻 → 𝑀. It is called Cartan

geometry of type (𝐺, 𝐻, 𝑤) where 𝑤 ∈ Ω1(𝑃𝐻 , 𝔤) satisfies

1. 𝑤(𝜁𝐴(𝑢)) = 𝐴, ∀𝐴 ∈ 𝔥 ;

2. H-equivariant: 𝑅∗
ℎ
𝑤 = Ad(ℎ−1) 𝑤, ∀ℎ ∈ 𝐻 ;

3. 𝑤𝑢 : 𝑇𝑢𝑃𝐻 → 𝔤 is a linear isomorphism ∀𝑢 ∈ 𝑃𝐻 .
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§3.3 Cartan Connection and Curvature

Proposition 3.3.2. Assume 𝔤 = 𝔫 ⊕ 𝔥 and denote 𝑤 by 𝑤 = (𝑤)𝔫 + (𝑤)𝔥 with respect

to the Lie algebra decomposition. Then, (𝑤)𝔥 is a principal connection if and only if

𝔫 is 𝐻-stable under the Adjoint action of 𝐻.

Proof. By the equivariance property of 𝑤, we have

𝑅∗ℎ𝑤 = 𝑅∗ℎ(𝑤)𝔫 + 𝑅
∗
ℎ(𝑤)𝔥

= 𝐴𝑑(ℎ−1)𝑤 = 𝐴𝑑(ℎ−1) (𝑤)𝔫 + 𝐴𝑑(ℎ−1) (𝑤)𝔥.(3.3.1)

If 𝔫 is 𝐻-stable, then 𝑅∗
ℎ
(𝑤)𝔫 = 𝐴𝑑(ℎ−1) (𝑤)𝔫 and 𝑅∗

ℎ
(𝑤)𝔥 = 𝐴𝑑(ℎ−1) (𝑤)𝔥.

Let 𝐴 ∈ 𝔥. Because 𝑤 generates 𝐴, we get

𝐴 = 𝑤(𝜁𝐴) = (𝑤)𝔥 (𝜁𝐴).

Therefore, (𝑤)𝔥 is a principal connection if 𝔫 is 𝐻-stable.

Conversely, since 𝑅∗
ℎ
(𝑤)𝔥 = 𝐴𝑑(ℎ−1) (𝑤)𝔥, then 𝑅∗

ℎ
(𝑤)𝔫 = 𝐴𝑑(ℎ−1) (𝑤)𝔫 from (3.3.1).

With the linear isomorphism property 𝑤𝑢 : 𝑇𝑢𝑃𝐻 ∼= 𝔫 ⊕ 𝔥, we have

𝐴𝑑(ℎ−1)𝔫 ⊆ 𝔫. □

In general, the 𝔫 subspace for 𝔤 = 𝔫 ⊕ 𝔥 may not be 𝐻-stable. One may induce a

principal connection on an associated principal bundle from a given Cartan geometry.

Proposition 3.3.3 ([14] special case in Theorem 1.5.6). Given a Cartan geometry

(G, 𝑤) → 𝑀 in the type (𝐺, 𝐻). Consider the canonical injective map

𝑖 : G → G ×𝐻 𝐺

𝑢 ↦→ [𝑢, 𝑖𝑑],

where G ×𝐻 𝐺 is a principal 𝐺-bundle due to the Remark 3.1.4. Then, there exists a
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unique principal connection 𝛾 on G ×𝐻 𝐺 such that 𝑖∗𝛾 = 𝑤. In particular,

𝛾𝑖(𝑢) (𝑑𝑖(𝜉) + 𝜁𝐴(𝑖(𝑢))) = 𝑤𝑢(𝜉) + 𝐴 ∀𝑢 ∈ G, 𝜉 ∈ 𝑇𝑢G, 𝐴 ∈ 𝔤.

Note that the above assignment is functorial; that is, any morphism of Cartan geome-

tries in Definition 3.3.12 induces a principal bundle morphism preserving principal

connections.

Apart from inducing principal connections, one may sometimes have an induced

Cartan geometry from a given one. The following proposition will be considered in

Section 3.6.

Proposition 3.3.4. [14, spcial case in Lemma 1.5.15] Given a Cartan geometry

(G0, 𝜎) → 𝑀𝑛 in the type (ℝ𝑛 ⋊ 𝐺0, 𝐺0) and a 𝐺0-equivariant global section 𝑠 : G0 →

G0×𝐺0 𝑃𝑃𝑙𝑖𝑛𝑒 for G0×𝐺0 𝑃𝑃𝑙𝑖𝑛𝑒 → G0. Then, ∃! Cartan connection𝑤𝜎 on G0×𝐺0 𝑃𝑃𝑙𝑖𝑛𝑒

in the type (𝑂+(𝑛 + 1, 1), 𝑃𝑃𝑙𝑖𝑛𝑒) such that 𝑠∗𝑤𝜎 = 𝜎. In particular,

(3.3.2) 𝑤𝜎
𝑠(𝑢) (𝑑𝑠(𝜉) + 𝜁𝐴(𝑠(𝑢))) = 𝜎𝑢(𝜉) + 𝐴 ∀𝑢 ∈ G0, 𝜉 ∈ 𝑇𝑢G0, 𝐴 ∈ 𝔭.

Given a Cartan geometry of the type (𝐺, 𝐻, 𝑤)with 𝑃𝐻
𝜋→ 𝑀. Recalling 𝔥 ∼= ker 𝑑𝜋𝑢

for all 𝑢 ∈ 𝑃𝐻 , so we have dim 𝔤/𝔥 = dim𝑇𝑥𝑀 for 𝑥 ∈ 𝑀. In fact,

Proposition 3.3.5. There is the isomorphsim for 𝑇𝑀 by the Cartan connection

𝑃𝐻 ×Ad (𝔤/𝔥) ≃ 𝑇𝑀

[𝑝, 𝑉 + 𝔥] ↦→ 𝑑𝜋𝑝𝑤
−1
𝑝 (𝑉)

[𝑝, 𝑤𝑝( 𝑋̃) + 𝔥] ←[ 𝑋, where 𝑑𝜋𝑝( 𝑋̃) = 𝑋.

The action Ad is the adjoint action Ad : 𝐻 → 𝔤/𝔥.
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Definition 3.3.6 (Curvature Form and Curvature Function). The Cartan curvature

𝐾 ∈ Ω2(𝑃𝐻 , 𝔤) is defined by

𝐾 (𝜉, 𝜂) = 𝑑𝑤(𝜉, 𝜂) + [𝑤(𝜉), 𝑤(𝜂)].

The corresponding curvature function 𝜅 : 𝑃𝐻 → Λ2(𝔤/𝔥)∗ ⊗ 𝔤 is defined by

𝜅(𝑋, 𝑌 ) = 𝐾 (𝑤−1(𝑋), 𝑤−1(𝑌 )), ∀𝑋, 𝑌 ∈ 𝔤/𝔥.

The above definition for 𝜅 is well-defined. In fact, we have

Proposition 3.3.7 ([14] Lemma 1.5.1). The Cartan curvature 𝐾 is horizontal and

𝐻-equivariant. Therefore, for the curvature function 𝜅 : 𝑃𝐻 → Λ2(𝔤/𝔥)∗ ⊗ 𝔤,

𝜅 ◦ 𝑅ℎ = ℎ−1 · 𝜅;

that is, for all 𝑝 ∈ 𝑃𝐻 and ℎ ∈ 𝐻

𝜅𝑝·ℎ(𝑋, 𝑌 ) = Ad(ℎ−1) 𝜅𝑝(Ad(ℎ) 𝑋, Ad(ℎ) 𝑌 ), ∀𝑋, 𝑌 ∈ 𝔤/𝔥.

So, 𝜅 ∈ Γ𝐻 (𝑃𝐻 , Λ2(𝔤/𝔥)∗ ⊗ 𝔤).

Assume 𝔤 = 𝔫 ⊕ 𝔥. Compared to the curvature form from a principal connection,

there is one extra 𝔫-valued component for a Cartan curvature.

Definition 3.3.8 (Torsion). Let𝜋𝔤/𝔥 : 𝔤→ 𝔤/𝔥 be the quotient map. Define the torsion

function

𝜏 = 𝜋𝔤/𝔥 ◦ 𝜅 ∈ Γ𝐻 (𝑃𝐻 , Λ2(𝔤/𝔥)∗ ⊗ (𝔤/𝔥)).

It thus defines a torsion tensor 𝑇 ∈ Ω2(𝑀,𝑇𝑀) by the bĳective relation Proposition

3.2.5 between Γ𝐻 (𝑃𝐻 , Λ2(𝔤/𝔥)∗ ⊗ (𝔤/𝔥)) and Γ(𝑀, Λ2𝑇∗𝑀 ⊗ 𝑇𝑀) = Ω2(𝑀,𝑇𝑀). If 𝜏
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vanishes, then it’s called torsion-free.

Remark 3.3.9. The torsion function turns out to be the torsion tensor in Riemannian

geometry (See Section 3.4).

Example 3.3.10 (Riemannian Model). As in the Example 2.0.1, the quotient map

(ℝ𝑛 ⋊ 𝑂(𝑛), 𝑤𝑂(𝑛)) → ℝ𝑛 ⋊ 𝑂(𝑛)/𝑂(𝑛) ∼= ℝ𝑛

is the Cartan geometry of the type (ℝ𝑛⋊𝑂(𝑛), 𝑂(𝑛), 𝑤𝑂(𝑛)) where𝑤𝑂(𝑛) is the Maurer-

Cartan form on 𝑂(𝑛).

Example 3.3.11 (Conformal Model). Recall Example 2.0.2, the quotient map

(𝑃𝑂(𝑝 + 1, 𝑞 + 1), 𝑤𝑃𝑂) → 𝑃𝑂(𝑝 + 1, 𝑞 + 1)/𝑃𝑃𝑙𝑖𝑛𝑒 ∼= 𝑆𝑝,𝑞

is the Cartan geometry of the type (𝑃𝑂(𝑝 + 1, 𝑞 + 1), 𝑃𝑃𝑙𝑖𝑛𝑒, 𝑤𝑃𝑂) where 𝑤𝑃𝑂 is the

Maurer-Cartan form on 𝑃𝑂(𝑝 + 1, 𝑞 + 1).

Definition 3.3.12 (Category). Let 𝐻 ⊆ 𝐺 be a Lie subgroup of a Lie group 𝐺. The

category of the Cartan geometry of the type (𝐺, 𝐻) is defined by

• Objects: (𝑃, 𝜋, 𝑀, 𝑤), which is a principal 𝐻-bundle with a Cartan connection

𝑤.

• Morphisms: (𝑃, 𝜋, 𝑀, 𝑤)
𝜙
→ (𝑃′, 𝜋′, 𝑀′, 𝑤′) where 𝜙 is a principal bundle

morphism with the property

𝜙∗𝑤′ = 𝑤.

Remark 3.3.13. Given a point 𝑝 ∈ 𝑃. Because𝑤𝑝 and𝑤′
𝜙(𝑝) are linear isomorphisms,
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we know 𝑑𝜙 is invertible. Therefore, 𝜙 and its base map 𝜙 : 𝑀 → 𝑀′ are local

diffeomorphisms.

§ 3.4 Riemannian Manifold in Cartan Geometry

The Riemannian model in Example 3.3.10 motivates that there should be an induced

Cartan geometry in the type (ℝ𝑛⋊𝑂(𝑛), 𝑂(𝑛)) for each Riemannian manifold (𝑀𝑛, 𝑔).

That is, there should be a principal 𝑂(𝑛)-bundle with a ℝ𝑛 ⊕ 𝔬(𝑛)-valued Cartan con-

nection. In this section, we focus on the construction of torsion-free Cartan geometry

and briefly introduce the equivalence between Riemannian manifold and torsion-free

Cartan geometry. In the following, we only consider Cartan geometry in the type

(ℝ𝑛 ⋊ 𝑂(𝑛), 𝑂(𝑛)).

Recall a Riemannian manifold (𝑀𝑛, 𝑔) is a smooth manifold 𝑀 with a positive

definite metric tensor 𝑔. The induced Levi-Civita connection ∇ is a unique linear

connection satisfying: ∀𝑋, 𝑌, 𝑍 ∈ Γ(𝑇𝑀)

1. Torsion-free: 𝑇 (𝑋, 𝑌 ) = ∇𝑋𝑌 − ∇𝑌 𝑋 − [𝑋, 𝑌 ] = 0.

2. Metric connection: 𝑋 ⟨𝑌, 𝑍⟩ = ⟨∇𝑋𝑌, 𝑍⟩ + ⟨𝑌,∇𝑋𝑍⟩ where ⟨, ⟩ is the metric 𝑔.

The 2nd property gives rise to a principal connection 𝛾 on the orthonormal frame

bundle Fr𝑂(𝑛)𝑀. We need a ℝ𝑛-valued form on Fr𝑂(𝑛)𝑀 to get a Cartan connection.

It’s called a canonical form, or called a soldering form.

Definition 3.4.1 (Canonical form). Let 𝜋 : Fr𝑀 → 𝑀 be the frame bundle of 𝑀.
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Recall that any element (𝑒𝑖) ∈ Fr𝑥𝑀 can be considered as a linear isomorphism

(𝑒𝑖) : 𝑇𝑥𝑀 → ℝ𝑛, 𝑣𝑖𝑒𝑖 ↦→ 𝑣𝑖𝑒𝑖

where (𝑒𝑖) is the standard basis of ℝ𝑛. Define the canonical form Θ ∈ Ω1(Fr𝑀,ℝ𝑛)

by

Θ(𝑒𝑖) (𝜉̃) = (𝑒𝑖) ◦ 𝑑𝜋(𝜉̃)

where (𝑒𝑖) is the linear isomorphism we just defined.

The defintion of the canonical form directly gives the following proposition.

Proposition 3.4.2. The canonical form Θ is in Ω1
𝐺𝐿(𝑛) (Fr𝑀,ℝ𝑛) and it’s strictly

horizontal; that is Θ(𝜉̃) = 0 if and only if 𝜉̃ ∈ VFr M.

The one form 𝜃 ∈ Ω1
𝑂(𝑛) (Fr𝑂(𝑛)𝑀) by pulling back Θ to Fr𝑂(𝑛)𝑀 through the

reduction Fr𝑂(𝑛)𝑀 → Fr𝑀 is also strictly horizontal. We also call 𝜃 the canonical

form on Fr𝑂(𝑛)𝑀.

Proposition 3.4.3. Let 𝜉 = (Fr𝑂(𝑛)𝑀, 𝜋, 𝑀, 𝑂(𝑛)) be the orthonormal frame. Given a

Cartan connection 𝑤 in the type (ℝ𝑛 ⋊ 𝑂(𝑛), 𝑂(𝑛)) on Fr𝑂(𝑛)𝑀. Assume 𝑤 = 𝜃 + 𝛾

with respect to the Lie algebra decomposition ℝ𝑛 ⊕ 𝔬(𝑛) where the ℝ𝑛-valued of 𝑤 is

equal to the canonical form 𝜃. Then,

1. The 𝔬(𝑛)-valued 𝛾 is a principal 𝑂(𝑛)-connection. Denote the induced linear

connection by ∇ on 𝑇𝑀, recalling 𝑇𝑀 ∼= Fr𝑂(𝑛)𝑀 ×𝑂(𝑛) ℝ𝑛.
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2. The ℝ𝑛-valued part of the Cartan curvature 𝐾 is

(3.4.1)
𝐾ℝ𝑛 (𝜉̃, 𝜂̃) = 𝜉̃(𝜃(𝜂̃)) + 𝛾(𝜉̃) · 𝜃(𝜂̃) − [𝜂̃(𝜃(𝜉̃)) + 𝛾(𝜂̃) · 𝜃(𝜉̃)] − 𝜃( [𝜉̃, 𝜂̃])

= 𝑑𝜃(𝜉̃, 𝜂̃) + 𝛾(𝜉̃) · 𝜃(𝜂̃) − 𝛾(𝜂̃) · 𝜃(𝜉̃)

where 𝜉̃, 𝜂̃ ∈ Γ(𝑇Fr𝑂(𝑛)𝑀) and · is the usual 𝔤𝑙(𝑛) action on ℝ𝑛. It gives the

torsion tensor by Proposition 3.2.5

𝑇 (𝑋, 𝑌 ) = ∇𝑋𝑌 − ∇𝑌 𝑋 − [𝑋, 𝑌 ].

3. The 𝔬(𝑛)-valued part of the Cartan curvature 𝐾 is

(3.4.2) 𝐾𝔬(𝑛) (𝜉̃, 𝜂̃) = 𝑑𝛾(𝜉̃, 𝜂̃) + [𝛾(𝜉̃), 𝛾(𝜂̃)].

It gives the curvature tensor of ∇ on 𝑀.

Proof. Since ℝ𝑛 ⊆ ℝ𝑛 ⊕ 𝔬(𝑛) is 𝑂(𝑛)-stable, the 𝔬(𝑛)-valued 𝛾 of the Cartan con-

nection 𝑤 is a principal 𝑂(𝑛)-connection by Proposition 3.3.2. Equations (3.4.1) and

(3.4.2) are due to the definition of Cartan curvature. Let 𝜉̃, 𝜂̃ be the uniquely hor-

izontal lifts of 𝑋, 𝑌 ∈ Γ(𝑇𝑀). Because the horizontal lifts are 𝑂(𝑛)-right-invariant

as Proposition3.2.11, then 𝜃(𝜉̃), 𝜃(𝜂̃) ∈ Γ𝑂(𝑛) (Fr𝑂(𝑛)𝑀,ℝ𝑛). By the tangent bundle

isomorphism in Example 3.2.3, we know ∀𝑢 ∈ Fr𝑂(𝑛)𝑀

𝑋 (𝜋(𝑢)) = [𝑢, 𝜃(𝜉̃)], 𝑌 (𝜋(𝑢)) = [𝑢, 𝜃(𝜂̃)] ∈ 𝑇𝑀 ∼= Fr𝑂(𝑛)𝑀 ×𝑂(𝑛) ℝ𝑛.

By the covariant derivative properties in Propositions 3.2.8 and 3.2.14, we get 𝐾ℝ𝑛 ∈
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Ω2
𝑂(𝑛) (Fr𝑂(𝑛)𝑀,ℝ𝑛) and ∀𝑢 ∈ Fr𝑂(𝑛)𝑀

𝑇 (𝑋, 𝑌 ) (𝜋(𝑢)) = (∇𝑋𝑌 − ∇𝑌 𝑋 − [𝑋, 𝑌 ]) (𝜋(𝑢))

=

[
𝑢, 𝐷𝜉̃(𝜃(𝜂̃)) − 𝐷𝜂̃ (𝜃(𝜉̃)) − 𝜃( [𝜉̃, 𝜂̃])

]
=

[
𝑢, 𝐾ℝ𝑛 (𝜉̃, 𝜂̃) (𝑢)

]
.

The 𝔬(𝑛)-valued part is already proven in Proposition 3.2.10 □

Let 𝛾 be the principal connection from the Levi-Civita connection of ∇. By 2

in Proposition 3.4.3, we know (𝑀, 𝑔) induces a torsion-free Cartan geometry on

Fr𝑂(𝑛)𝑀 → 𝑀 in the type (ℝ𝑛 ⋊ 𝑂(𝑛), 𝑂(𝑛)). Furthermore, we have the following

theorem.

Theorem 3.4.4 ([14] Theorem 1.6.1).

1. Given an 𝑂(𝑛)-reduction 𝑃𝑂(𝑛) ↩→ Fr𝑀 and any Cartan connection 𝑤 in the

form 𝑤 = 𝜃 + 𝛾 where 𝜃 is the canonical form and 𝛾 is the 𝔬(𝑛)-value of 𝑤.

Then, 𝑤 is uniquely determined by its torsion function. Besides, there exists a

uniquely torsion-free Cartan connection on 𝑃𝑂(𝑛) .

2. The category of torsion-free Cartan geometries in the form 𝑤 = 𝜃 + 𝛾 from 1 on

𝑂(𝑛)-reductions 𝑃𝑂(𝑛) ↩→ Fr𝑀 is equivalent to the category of 𝑂(𝑛)-reductions

of Fr𝑀 where the morphism between 𝑂(𝑛)−reductions are principal bundle

morphisms preserving canonical forms.

In Section 3.5, we will consider reduction 𝑃𝐻 → Fr𝑀 for a closed subgroup

𝐻 ⊆ 𝐺𝐿(𝑛) and review the corresponding theorem for Theorem 3.4.4, particularly for

𝐻 = 𝑂(𝑛) and 𝐻 = 𝐶𝑂(𝑝, 𝑞).
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3.4.1 Riemannian Geodesics

Recall in Theorem 2.1.1 that Riemannian geodesics in the Euclidean are the projection

of integral curves of constant horizontal vector fields on the Euclidean group Euc(𝑛).

The integral curve interpretation of Riemannian geodesics in the Euclidean model

can be generalized to Riemannian manifolds [20, Proposition 6.3 in Chapter III]. In

this subsection, we derive the integral curve equations from the torsion-free Cartan

connection 𝑤 in the type (ℝ𝑛 ⋊ 𝑂(𝑛), 𝑂(𝑛)) of the Riemannian manifold (𝑀, 𝑔).

Theorem 3.4.5. Given an orthonormal frame (𝑒𝑖) of 𝜋 : Fr𝑂(𝑛)𝑀 → 𝑀 defined on an

open set 𝑈 ⊆ 𝑀. The frame induces a local trivialization

𝜙 : 𝜋−1(𝑈) → 𝑈 × 𝑂(𝑛)

(𝑥, (𝑒𝑖) · 𝐶) ↦→ (𝑥, 𝐶).

Let X = X 𝑖𝑒𝑖 ∈ ℝ𝑛 ⊆ ℝ𝑛 ⊕ 𝔬(𝑛) where (𝑒𝑖) is the standard basis of ℝ𝑛. Let

𝛾̃ : 𝐼 → Fr𝑂(𝑛)𝑀 be an integral curve of 𝑤−1(X) with 𝜋(𝛾̃) ⊆ 𝑈. The local coordinate

of 𝛾̃ is denoted by (𝑥 (𝑡), 𝐶 𝑖 𝑗(𝑡)) ∈ 𝑈 × 𝑂(𝑛). Identifying 𝑇𝑥𝑀 and ℝ𝑛 by 𝑣𝑖𝑒𝑖 ↦→ 𝑣𝑖𝑒𝑖

for all 𝑥 ∈ 𝑈. Then,

(3.4.3)


¤𝑥 𝑖 = X 𝑗𝐶 𝑖 𝑗;

¤𝐶 𝑖 𝑗 = −X𝑘𝐶 𝑙𝑘Γ𝑖𝑙𝑎𝐶
𝑎
𝑗,

where Γ𝑖
𝑗𝑘

is the Christoffel symbols defined from the Levi-Civita connection ∇𝑒𝑖𝑒 𝑗 =

Γ𝑘
𝑖 𝑗
𝑒𝑘 of 𝑔 where (𝑒𝑖) is the given orthonormal frame. It can be shown that 𝑥 (𝑡)

is a Riemmanian geodesic. Conversely, any Riemannian geodesics are locally the

projection of an integral curve of 𝑤−1(X) for some X ∈ ℝ𝑛 ⊆ 𝔢𝔲𝔠(𝑛).
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Proof. We first show that (3.4.3) implies 𝑥 (𝑡) is a Riemannian geodesic.

¥𝑥 𝑖 = X 𝑗 ¤𝐶 𝑖 𝑗 = −X 𝑗X𝑘𝐶 𝑙𝑘Γ
𝑖
𝑙𝑎𝐶

𝑎
𝑗

= −¤𝑥𝑎 ¤𝑥 𝑙Γ𝑖𝑙𝑎

where the last equality is because of the 1st equation of (3.4.3).

Next, we want to show

(3.4.4) X = (𝜙−1∗𝑤)𝛾̃(𝑡) ( ¤̃𝛾(𝑡))

implies (3.4.3) where ¤̃𝛾(𝑡) is the derivative of 𝛾̃(𝑡) with respect to 𝑡. Recall 𝑤 = 𝜃 + 𝛾

in Theorem 3.4.4 where 𝜃 is the canonical form from Fr𝑀 and 𝛾 is the principal

connection from the Levi-Civita connection ∇ of 𝑔. Since X ∈ ℝ𝑛, (3.4.4) is equal to

(3.4.5)


(𝜙−1∗𝜃)𝛾̃(𝑡) ( ¤̃𝛾(𝑡)) = (𝜙−1∗𝜃)𝛾̃(𝑡) ( ¤𝑥 (𝑡)) = X

(𝜙−1∗𝛾)𝛾̃(𝑡) (𝛾̃(𝑡)) = 0
.

The first equality is because 𝜃 is strictly horizontal in Proposition 3.4.2. Let ¤𝑥 (𝑡) =

¤𝑥 𝑖(𝑡)𝑒𝑖(𝑡) = ¤̃𝑥 𝑖(𝑡)𝑢𝑖(𝑡) where 𝑢𝑖(𝑡) = 𝑒𝑘(𝑡)𝐶𝑘𝑖(𝑡). Using Definition 3.4.1 of 𝜃, the 1st

equation in (3.4.5) implies

X 𝑖𝑒𝑖 = 𝜃(𝑢𝑖)𝑖 (𝑑𝜙−1( ¤𝑥 (𝑡))) = (𝑢𝑖(𝑡))𝑖 · 𝑑(𝜋 ◦ 𝜙−1) ( ¤̃𝑥 𝑖(𝑡)𝑢𝑡 (𝑡))

= ¤̃𝑥 𝑖(𝑡)𝑒𝑖

where 𝜋 : Fr𝑂(𝑛) → 𝑀. So, X 𝑖 = ¤̃𝑥 𝑖(𝑡) which implies the 1st equation of (3.4.3).

Recall the local description of a principal connection in Proposition 3.1.13, the 2nd
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equation in (3.4.5) implies

0 = 𝛾(𝑒𝑖) ¤𝐶 (𝑑𝜙
−1( ¤̃𝛾(𝑡)) = 𝑤𝑂(𝑛) (𝐶(𝑡)) ( ¤𝐶(𝑡)) + Ad(𝐶−1(𝑡)) (𝑠∗𝛾) ( ¤𝑥 (𝑡))(3.4.6)

where 𝑠 : 𝑈 → Fr𝑂(𝑛)𝑀 is the corresponding section of 𝜙 in Proposition 3.1.5 and

𝑤𝑂(𝑛) (𝐶(𝑡)) is the Maurer-Cartan form of 𝑂(𝑛) at 𝐶(𝑡). Note that

(3.4.7)

𝑤𝑂(𝑛) (𝐶(𝑡)) ( ¤𝐶(𝑡)) =
(
𝑅∗𝐶(𝑡)𝑤𝑂(𝑡)

)
𝕀
( ¤𝐶(𝑡) · 𝐶−1(𝑡))

= Ad(𝐶−1(𝑡))𝑤𝑂(𝑛) (𝕀) ( ¤𝐶(𝑡) · 𝐶−1(𝑡))

= Ad(𝐶−1(𝑡)) ( ¤𝐶(𝑡) · 𝐶−1(𝑡))

where · is the matrix multiplication and 𝕀 is the identity matrix. Also,

[(𝑠∗𝛾) ( ¤𝑥 (𝑡))] 𝑖𝑎 = [(𝑠∗𝛾) (X 𝑗𝐶 𝑙 𝑗(𝑡)𝑒𝑙 (𝑡))] 𝑖𝑎 = X𝑘𝐶 𝑙𝑘(𝑡)Γ𝑖𝑙𝑎(𝑡)(3.4.8)

where the last equality comes from Proposition 3.2.15. Combining (3.4.7) and (3.4.8)

into (3.4.6), we get the 2nd equation of (3.4.3). □

§ 3.5 Affine Cartan Connections

Let (b, 𝑔) ∈ ℝ𝑛 ⋊ 𝐺𝐿(𝑛). The affine transformation ℝ𝑛 ⋊ 𝐺𝐿(𝑛) on ℝ𝑛 is defined by

v ↦→ 𝑔 · v + b, .
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If ℝ𝑛 is considered as the hyperplane in ℝ𝑛+1, ℝ𝑛 ∼= {(1, v) | v ∈ ℝ𝑛} , then the affine

transformations can be identified as 𝑛 + 1-square matrices

ℝ𝑛 ⋊ 𝐺𝐿(𝑛) ∼=


©­­«
1 0

b 𝑔

ª®®¬
���� b ∈ ℝ𝑛, 𝑔 ∈ 𝐺𝐿(𝑛)

 .
Let 𝐻 ⊆ 𝐺𝐿(𝑛) be a Lie subgroup with Lie algebra 𝔥. Define the affine extension

ℝ𝑛 ⋊ 𝐻 by 
©­­«
1 0

b ℎ

ª®®¬
���� b ∈ ℝ𝑛, ℎ ∈ 𝐻

 .
It’s direct to prove the following proposition.

Proposition 3.5.1. The adjoint action of ℝ𝑛 ⋊ 𝐻 on ℝ𝑛 ⊆ ℝ𝑛 ⊕ 𝔥 is just usual linear

transformations ℎ · v on ℝ𝑛. Henceforth, ℝ𝑛 ⊆ ℝ𝑛 ⊕ 𝔥 is 𝐻-stable under the adjoint

action.

Given a smooth manifold 𝑀𝑛 and assume there is a 𝐻-reduction of Fr𝑀, 𝑃𝐻 ↩→

Fr𝑀. Consider Cartan connections on 𝑃𝐻 in the type (ℝ𝑛 ⋊ 𝐻, 𝐻) with the form

𝑤 = 𝜃+𝛾 where the ℝ𝑛-value of𝑤 is equal to the canonical form 𝜃 and 𝛾 is the 𝔥-value

of 𝑤. Because of Propositions 3.5.1 and 3.3.2, we know 𝛾 is a principal connection.

Denote the collection of all such Cartan connections by 𝑆.

Definition 3.5.2. Any 𝑤 ∈ 𝑆 is called affine Cartan connection of 𝐻 on 𝑃𝐻 .

Proposition 3.5.3. The affine Cartan connections form an affine space; that is,

∀𝑤̂ and 𝑤 ∈ 𝑆, there exists an unique 𝐻-equivariant smooth map 𝜓 : 𝑃𝐻 → 𝔥 ⊗ ℝ𝑛∗

such that

𝑤̂ = 𝑤 − 𝜓 ◦ 𝜃,
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and conversely, ∀𝑤 ∈ 𝑆 and ∀𝜓 ∈ Γ𝐻 (𝑃𝐻 , 𝔥 ⊗ℝ𝑛∗), 𝑤̂ = 𝑤−𝜓 ◦ 𝜃 is an affine Cartan

connection.

Proof. Since 𝑤̂ , 𝑤 ∈ Ω1
𝐻 (𝑃𝐻 , 𝔥), define 𝜓 ◦ 𝜃 on 𝑇𝑃𝐻

−𝜓 ◦ 𝜃 = 𝛾̂ − 𝛾

where 𝑤̂ = 𝜃 + 𝛾̂ and 𝑤 = 𝜃 + 𝛾. □

Corollary 3.5.4. Given 𝑤̂ and 𝑤 ∈ 𝑆. Their torsion functions are in the relation

𝜏̂𝑢 = 𝜏𝑢 − 𝜕𝜓𝑢 ∀𝑢 ∈ 𝑃𝐻 ,(3.5.1)

where 𝜕 : 𝐿(ℝ𝑛, 𝔥) → 𝐿(Λ2ℝ𝑛,ℝ𝑛) is 𝐻-equivariant linear map defined by

𝜕𝜓𝑢(𝑋, 𝑌 ) = [𝑋, 𝜓𝑢(𝑌 )] − [𝑌, 𝜓𝑢(𝑋)],

and 𝐿(𝑉,𝑊) is the set of linear maps from 𝑉 to 𝑊. The brackets in (3.5.1) are Lie

algebra brackets of ℝ𝑛 ⊕ 𝔥.

Proof. The formula of the ℝ𝑛-valued Cartan curvature of an affine Cartan connection

𝑤 is same as (3.4.1)

𝐾ℝ𝑛 (𝜉̃, 𝜂̃) = 𝑑𝜃(𝜉̃, 𝜂̃) + 𝛾(𝜉̃) · 𝜃(𝜂̃) − 𝛾(𝜂̃) · 𝜃(𝜉̃) ∀𝜉̃, 𝜂̃ ∈ Γ(𝑇𝑃𝐻).

Because 𝛾(𝜉̃) = 0 if 𝜉̃ is horizontal, we have for all 𝑋, 𝑌 ∈ ℝ𝑛 ⊆ ℝ𝑛 ⊕ 𝔥

(3.5.2) 𝜏̂(𝑋, 𝑌 ) − 𝜏(𝑋, 𝑌 ) = 𝑑𝜃(𝑤̂−1(𝑋), 𝑤̂−1(𝑌 )) − 𝑑𝜃(𝑤−1(𝑋), 𝑤−1(𝑌 )).

By Proposition 3.5.3, we have

𝑤(𝑤̂−1(𝑋)) = 𝑋 − 𝜓(𝑋)
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which implies

𝑤̂−1(𝑋) = 𝑤−1(𝑋) + 𝜁−𝜓(𝑋)

where 𝜁−𝜓(𝑋) is the fundamental vector field generated by −𝜓(𝑋). After direct com-

putation, (3.5.2) is equal to

(3.5.3)

𝜏̂𝑢(𝑋, 𝑌 ) − 𝜏𝑢(𝑋, 𝑌 ) = 𝜁−𝜓(𝑋) (𝑢) (𝜃(𝑤−1(𝑌 ))) − 𝜁−𝜓(𝑌 ) (𝑢) (𝜃(𝑤−1(𝑋))) 𝑢 ∈ 𝑃𝐻 .

The first term is

(3.5.4)

𝜁−𝜓(𝑋) (𝑢) (𝜃(𝑤−1(𝑌 ))) = 𝑑

𝑑𝑡

����
𝑡=0
𝜃𝑢𝑒−𝑡𝜓(𝑋 ) (𝑤−1(𝑌 ))

=
𝑑

𝑑𝑡

����
𝑡=0

𝐴𝑑(𝑒𝑡𝜓(𝑋))
(
𝜃𝑢(𝑑𝑅𝑒𝑡𝜓(𝑋 )𝑤−1(𝑌 ))

)
= [𝜓(𝑋), 𝑌 ]

where 𝑅 is the 𝐻-right action of 𝑃𝐻 , and the last equality is because 𝐴𝑑(𝑒𝑡𝜓(𝑋)) =

𝑒𝑎𝑑(𝑡𝜓(𝑋)) and 𝜃𝑢(𝑑𝑅𝑒𝑡𝜓(𝑋 )𝑤−1(𝑌 )) = 𝜃𝑢(𝑤−1(𝑌 )) = 𝑌 . Using similar arguments, one

gets the second term in (3.5.3). □

Definition 3.5.5. The kernel of 𝜕, denoted by 𝔥(1) = 𝑘𝑒𝑟 𝜕 ⊆ 𝔥 ⊗ ℝ𝑛∗ , is called the

first prolongation of 𝔥.

With the previous settings, we have the general version of Theorem 3.4.4.

Theorem 3.5.6 ([14] Theorem 1.6.1). Identify 𝐿(Λ2ℝ𝑛,ℝ𝑛) = ℝ𝑛 ⊗ Λ2ℝ𝑛∗ . Assume

ℝ𝑛 ⊗ Λ2ℝ𝑛∗ = R ⊕ 𝐼𝑚 𝜕 where R is 𝐻-invariant. Then,

1. There exists 𝑤 ∈ 𝑆 such that its torsion function’s value is in R.

2. If 𝔥(1) = {0}, then any 𝑤 ∈ 𝑆 is uniquely defined by its torsion.
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3. With 𝔥(1) = {0}, the following categories are equivalent

A. • Objects: Affine Cartan geometries 𝑃𝐻 → 𝑀 with torsions’ values in

R where each 𝑃𝐻 is a 𝐻-reduction of Fr𝑀 .

• Morphisms: Cartan geometry morphisms.

B. • Objects: 𝐻-reductions of Fr𝑀, (𝑃𝐻 , 𝜃) → 𝑀 where each 𝜃 is the

canonical form.

• Morphisms: Principal bundle morphisms preserving canonical forms.

In particular, the bottom smooth maps between base manifolds in the

category 𝐵 are local diffeomorphisms.

Example 3.5.7 ([14], Example 1.6.1). When 𝐻 = 𝑂(𝑛), then 𝔬(𝑛) (1) = {0} and

ℝ𝑛 ⊗ Λ2ℝ𝑛∗ = 𝐼𝑚 𝜕.

Example 3.5.8 ([14], 1.6.4). Consider the conformal orthogonal group

𝐻 = 𝐶𝑂(𝑝, 𝑞) ∼= 𝐺0 in Remark 2.2.5. Its first prolongation 𝔤
(1)
0 ⊆ 𝐿(𝔤−1, 𝔤0) is

identified to 𝔤1 by the following map

𝔤1 → 𝔤
(1)
0 , 𝑍 ↦→ 𝑎𝑑 𝑍.

Also, 𝐼𝑚 𝜕 = ℝ𝑛 ⊗ Λ2ℝ𝑛∗ .

Example 3.5.8 shows a torsion-free Cartan connection in the type (𝐺0⋊ℝ
𝑛, 𝐺0) is not

unique. Such a Cartan connection is called a Weyl connection (See Definition 3.6.2).
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§ 3.6 Conformal Manifold in Cartan Geometry

Let 𝑛 = 𝑝 + 𝑞 ≥ 3. As what was done in Section 3.4, the conformal model in

Example 2.0.2 implies that we need to find out a Cartan geometry in the type

(𝑃𝑂(𝑝 + 1, 𝑞 + 1), 𝑃𝑃𝑙𝑖𝑛𝑒) for a pseudo-Riemannian conformal manifold (𝑀𝑛, [𝑔]).

In this section, we review the equivalence between pseudo-Riemannian conformal

manifold (𝑀𝑛, [𝑔]) with signature (𝑝, 𝑞) and normal Cartan geometry in the type

(𝑃𝑂(𝑝 + 1, 𝑞 + 1), 𝑃𝑃𝑙𝑖𝑛𝑒) in Theorem 3.6.11. In the end, we briefly mention how to

have the standard tractor bundle with the linear connection from the normal Cartan

geometry. The reference of this section is [14].

Recall 𝑃𝑃𝑙𝑖𝑛𝑒 = 𝐺0⋉𝑒𝑥 𝑝 (𝔤1) in Proposition 2.2.4 and note that𝐺0 is identified as the

conformal orthogonal group 𝐶𝑂(𝑝, 𝑞). So, to have a principal 𝑃𝑃𝑙𝑖𝑛𝑒-bundle, one can

first get a principal 𝐺0-bundle and then associate it with 𝑃𝑃𝑙𝑖𝑛𝑒 to become a principal

𝑃𝑃𝑙𝑖𝑛𝑒-bundle. The 𝐺0-bundle can be got from the conformal structure [𝑔].

Definition 3.6.1. Define the conformal frame bundle Fr𝐺0𝑀 for (𝑀𝑛, [𝑔]). Its fiber is

(
Fr𝐺0𝑀

)
𝑥
= {(𝑒𝑖) ∈ Fr𝑥𝑀 | ∃𝑔 ∈ [𝑔] such that 𝑔(𝑒𝑖, 𝑒 𝑗) = 𝛿𝑖 𝑗}.

Since it’s a principal 𝐺0-bundle, in the following, we denote it by G0.

Example 3.5.8 implies that there are lots of torsion-free 𝐺0-affine Cartan connec-

tions. We use these connections to help us to find out the unique Cartan connection

on the principal 𝑃𝑃𝑙𝑖𝑛𝑒-bundle.

Definition 3.6.2. The torsion-free 𝐺0-affine Cartan connections on G0 are called Weyl

connections where affine Cartan connections are in Definition 3.5.2.
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Proposition 3.6.3. Weyl connections form an affine space; that is, given two Weyl

connections 𝜎̂ = 𝜃 + 𝛾̂ and 𝜎 = 𝜃 + 𝛾. Then, ∃! 𝐺0-equivariant Υ : G0 → 𝔤1 such that

𝜎̂𝑢(𝜉̃) = 𝜎𝑢(𝜉̃) + [𝜃𝑢(𝜉̃),Υ(𝑢)] ∀𝑢 ∈ G0, 𝜉̃ ∈ 𝑇𝑢G0.

Conversely, for any Weyl connection 𝜎 and Υ ∈ Γ𝐺0 (G0, 𝔤1), 𝜎̂ = 𝜎 + [𝜃,Υ] is a Weyl

connection.

Proof. Recalling Proposition 3.5.3, we have an unique 𝜓 ∈ Γ𝐺0 (G0, 𝔤0 ⊗ 𝔤1) such that

𝜎̂ = 𝜎 − 𝜓 ◦ 𝜃.

Since their torsion functions are both zero, we have 𝜕𝜓 = 0 from Corollary 3.5.4. By

Example 3.5.8, we know 𝜓 = −𝑎𝑑(Υ) where Υ ∈ Γ𝐺0 (G0, 𝔤1). □

Remark 3.6.4. [14, 1.6.5] A Levi-Civita connection of 𝑔 ∈ [𝑔] induces a Weyl

connection on G0 by using a similar approach from (3.3.2). Note that not all Weyl

connections are Levi-Civita connections.

Definition 3.6.5. Define the principal 𝑃𝑙𝑖𝑛𝑒-bundle by G = G0 ×𝐺0 𝑃𝑙𝑖𝑛𝑒 → 𝑀.

We first show a Weyl connection 𝜎 on G0 induces a Cartan connection 𝑤𝜎 in

the type (𝑃𝑂(𝑝 + 1, 𝑞 + 1), 𝑃𝑃𝑙𝑖𝑛𝑒) on G. Fix a Weyl connection 𝜎. Then, every Weyl

connection 𝜎̂ = 𝜎+ [𝜃,Υ] from Proposition 3.6.3 has a corresponding uniquely defined

𝐺0-equivariant global section 𝑠𝜎̂ : G0 → G of G → G0:

𝑠𝜎̂(𝑢) = 𝑠𝜎(𝑢) · 𝑒𝑥 𝑝(Υ(𝑢)) ∀𝑢 ∈ G0,(3.6.1)

where 𝑠𝜎(𝑢) = [𝑢, 𝑖𝑑].
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Remark 3.6.6. In fact, for fixed 𝜎, all 𝐺0-equivariant global sections are defined by

(3.6.1) [14, Proposition 1.6.4 and Proposition 5.1.1].

Proposition 3.6.7. According to Proposition 3.3.4, every Weyl connection 𝜎̂ induces

a unique Cartan connection 𝑤𝜎̂ on G in the type (𝑃𝑂(𝑝 + 1, 𝑞 + 1), 𝑃𝑃𝑙𝑖𝑛𝑒) such that

𝑠∗
𝜎̂
𝑤𝜎̂ = 𝜎̂.

Proposition 3.6.8. [14, Proposition 1.6.4] Let 𝜋GG0
: G → G0, [𝑢, 𝑝] ↦→ 𝑢. Given any

Weyl connections 𝜎̂ and 𝜎 with respective Cartan connection𝑤𝜎̂ and𝑤𝜎 on G. Denote

𝑤𝜎 = 𝜃𝜎−1 + 𝜃
𝜎
0 + 𝜃

𝜎
1 with respect to the Lie algebra decomposition 𝔤 = 𝔤−1 ⊕ 𝔤0 ⊕ 𝔤1 in

Proposition 2.2.2. Then,

𝜃𝜎̂−1 + 𝜃
𝜎̂
0 = 𝜃𝜎−1 + 𝜃

𝜎
0 .

Proof. Let 𝑠𝜎 : G0 → G, 𝑢 ↦→ [𝑢, 𝑖𝑑] be the map defined by 𝜎 in (3.6.1). Given 𝑍 ∈ 𝔤1

and 𝑢 ∈ G0. We first show

(3.6.2) (𝜃𝜎−1 + 𝜃
𝜎
0)𝑠𝜎 (𝑢)·𝑒𝑍 ◦ 𝑑𝜋

G
G0

= (𝜎 − (𝑎𝑑 𝑍) ◦ 𝜃)𝑢

where 𝜃 is the canonical form on G0 from Fr𝑀. From the right equivariant property

of 𝑤𝜎, we have

(3.6.3) 𝑤𝜎
𝑠𝜎 (𝑢)·𝑒𝑍 = 𝐴𝑑(𝑒−𝑍)𝑤𝜎

𝑠𝜎 (𝑢)𝑑𝑅𝑒−𝑍 .

Noting that for all 𝐴 ∈ 𝔤1 and 𝑝 ∈ G,

𝑤𝜎(𝑑𝑅𝑒−𝑍𝜁𝐴(𝑝)) = 𝐴𝑑(𝑒𝑍)𝑤𝜎(𝜁𝐴(𝑝)) = 𝑒𝑎𝑑(𝑍)𝑤𝜎(𝜁𝐴(𝑝)) = 𝐴.

Therefore,

(3.6.4) (𝜃𝜎−1 + 𝜃
𝜎
0)𝑠𝜎 (𝑢)𝑑𝑅𝑒−𝑍 = (𝜃

𝜎
−1 + 𝜃

𝜎
0)𝑠𝜎 (𝑢) .
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Recall from Proposition 3.3.4

𝑤𝜎
𝑠(𝑢) (𝑑𝑠(𝜉) + 𝜁𝐴(𝑠(𝑢))) = 𝜎𝑢(𝜉) + 𝐴 ∀𝐴 ∈ 𝔤1.

Because 𝐴𝑑(𝑒−𝑍) = 𝑒−𝑎𝑑(𝑍) ≡ 1 − 𝑎𝑑(𝑍) mod 𝔤1, (3.6.3), (3.6.4), and the above

equation, we have (3.6.2). Let 𝜎̂ = 𝜎 − 𝑎𝑑(Υ) ◦ 𝜃 from Proposition 3.6.3. Then,

(𝜃𝜎̂−1 + 𝜃
𝜎̂
0)𝑠𝜎 (𝑢)·𝑒𝑍 = (𝜃

𝜎̂
−1 + 𝜃

𝜎̂
0)𝑠𝜎̂ (𝑢)·𝑒−Υ (𝑢)+𝑍

= (𝜎̂ − 𝑎𝑑(−Υ + 𝑍) ◦ 𝜃)𝑢 ◦ 𝑑𝜋GG0

= (𝜎 − 𝑎𝑑(𝑍) ◦ 𝜃)𝑢 ◦ 𝑑𝜋GG0

= (𝜃𝜎−1 + 𝜃
𝜎
0)𝑠𝜎 (𝑢)·𝑒𝑍

where the first equality is from (3.6.1) and the second equality is from (3.6.2). □

Definition 3.6.9. Let 𝑆 be the collection of all Cartan connections 𝑤 on G in the type

(𝑃𝑂(𝑝+ 1, 𝑞+ 1), 𝑃𝑃𝑙𝑖𝑛𝑒) of the form 𝑤 = 𝜃−1 +𝜃0 +𝑤1 where 𝜃−1 +𝜃0 is defined from

Proposition 3.6.8 and 𝑤1 is the 𝔤1-value of 𝑤.

In the following, we identify the Lie algebra components of 𝔤 = 𝔤−1 ⊕ 𝔤0 ⊕ 𝔤1 as

𝔤𝑖
∼= 𝔤𝑖/𝔤𝑖+1 where 𝔤𝑖 =

⊕
𝑘≥𝑖 𝔤𝑘 and 𝔤𝑘 = {0} if |𝑘| > 1.

Proposition 3.6.10. The collection 𝑆 forms an affine space; that is, ∀ 𝑤̂, 𝑤 ∈ 𝑆, ∃!𝑃 ∈

Γ𝑃𝑃𝑙𝑖𝑛𝑒 (G, 𝔤1 ⊕ 𝔤∗−1) such that

(3.6.5) 𝑤̂ = 𝑤 − 𝑃 ◦ 𝜃−1.

Their curvature functions in 𝔤−1 and 𝔤0 values are

(3.6.6) 𝜅̂−1 = 𝜅−1 = 0 , 𝜅̂0 = 𝜅0 − 𝜕𝑃,
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where 𝜕 : 𝐿(𝔤−1, 𝔤1) → 𝐿(Λ2𝔤−1, 𝔤0), 𝜕𝑃(𝑋, 𝑌 ) = [𝑋, 𝑃(𝑌 )] − [𝑌, 𝑃(𝑋)]. The map 𝜕

is 𝑃𝑃𝑙𝑖𝑛𝑒-equivariant map and 𝐿(𝑉,𝑊) is the set of linear maps from 𝑉 to 𝑊.

Proof. Let 𝑤 = 𝜃−1 + 𝜃0 + 𝜃1 ∈ 𝑆 where 𝜃1 is the 𝔤1-value of 𝑤. From the definition

of the Cartan curvature 𝐾, its corresponding 𝔤−1 and 𝔤0 values are

𝐾𝔤−1 (𝜉̃, 𝜂̃) = 𝑑𝜃−1(𝜉̃, 𝜂̃) + [𝜃0(𝜉̃), 𝜃−1(𝜂̃)] + [𝜃−1(𝜉̃), 𝜃0(𝜂̃)].(3.6.7)

𝐾𝔤0 (𝜉̃, 𝜂̃) = 𝑑𝜃0(𝜉̃, 𝜂̃) + [𝜃1(𝜉̃), 𝜃−1(𝜂̃)] + [𝜃0(𝜉̃), 𝜃0(𝜂̃)] + [𝜃−1(𝜉̃), 𝜃1(𝜂̃)].(3.6.8)

Since every element in 𝑆 shares same 𝔤−1 and 𝔤0 values, let’s assume that 𝑤 is the

Cartan connection induced by a Weyl connection 𝜎 on G0 with the corresponding map

𝑠 : G0 → G, 𝑢 ↦→ [𝑢, 𝑖𝑑]. Note that 𝑠∗(𝜃−1+𝜃0) = 𝜎 = 𝜃+𝛾 by Proposition 3.3.4 where

the decomposition of 𝜎 is due to the arguments after Proposition 3.5.1. Considering

the action of 𝔤0 on 𝔤−1 by the Lie bracket, then 𝑠∗𝐾𝔤−1 = 𝐾𝜎
ℝ𝑛 = 0 where 𝐾𝜎

ℝ𝑛 is the

ℝ𝑛-value of the Cartan curvature of 𝜎.

Let 𝑃 ◦ 𝜃−1 = −(𝑤̂ − 𝑤). Similar to the proof of Proposition 3.5.3, one can get the

second identity in (3.6.6) from (3.6.8). To show 𝜕 is 𝑃𝑃𝑙𝑖𝑛𝑒-equivariant, first note that

if 𝑃 ∈ 𝐿(𝔤−1, 𝔤1), then ∀𝑔 ∈ 𝑃𝑃𝑙𝑖𝑛𝑒

(𝑔 · 𝑃) (𝑋) := 𝐴𝑑(𝑔) (𝑃(𝐴𝑑(𝑔−1)𝑋)).

Then, the equivariancy means (𝐴𝑑(𝑔)𝜕𝑃) = 𝜕(𝑔 · 𝑃). The identity comes from direct

computations on both sides of the equivariancy identity. □

Similar to the conditions in Theorem 3.5.6, it can be shown that 𝐿(Λ2𝔤−1, 𝔤0) has

the 𝑃𝑃𝑙𝑖𝑛𝑒-invariant decomposition

𝐿(Λ2𝔤−1, 𝔤0) = R ⊕ 𝐼𝑚 𝜕.
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Then, there exists a unique𝑤 ∈ 𝑆 such that the 𝔤0-value of its Cartan curvature function

is in R. In the following, we still identify 𝔤𝑖
∼= 𝔤𝑖/𝔤𝑖+1 and denote the components of

𝜅 ∈ 𝐿(Λ2𝔤−1, 𝔤0) by

(3.6.9) 𝜅(𝑒𝑖, 𝑒 𝑗) (𝑒𝑙) = [𝜅(𝑒𝑖, 𝑒 𝑗), 𝑒𝑙] := 𝜅𝑖 𝑗
𝑘
𝑙 𝑒𝑘,

where 𝔤−1 ∼= ℝ𝑛 in Proposition 2.2.2 and (𝑒𝑖) is the standard basis of ℝ𝑛. We also

denote 𝑃(𝑋) = 𝑋 𝑖𝑃𝑖 𝑗 𝑒
𝑗 where 𝑋 ∈ 𝔤−1 and 𝑃 ∈ 𝐿(𝔤−1, 𝔤1).

Theorem 3.6.11. Let R = {𝜅 ∈ 𝐿(Λ2𝔤−1, 𝔤0) | 𝜅𝑘𝑖𝑘 𝑗 = 0}. Then,

1. The subspace R is 𝑃𝑟𝑎𝑦-invariant.

2. Let 𝜅 ∈ 𝐿(Λ2𝔤−1, 𝔤0). Then, ∃!𝑃𝑖 𝑗 ∈ 𝐿(𝔤−1, 𝔤1) such that 𝐿 = 𝜅 − 𝜕𝑃 satisfying

𝐿𝑘𝑖
𝑘
𝑗 = 0. The corresponding 𝑃 is

(3.6.10) 𝑃𝑖 𝑗 =
1
𝑛−2

(
𝜅𝑘𝑖

𝑘
𝑗 + 1

𝑛
(𝜅𝑘 𝑗𝑘𝑖 − 𝜅𝑘𝑖𝑘 𝑗) − 1

2(𝑛−1)𝛿
𝑎𝑏𝜅𝑘𝑎

𝑘
𝑏𝛿𝑖 𝑗

)
where 𝛿𝑖 𝑗 is the Kronecker delta.

3. 𝐿(Λ2𝔤−1, 𝔤0) = R ⊕ 𝐼𝑚 𝜕.

Proof. For 1, note that if 𝜅 ∈ 𝐿(Λ2𝔤−1, 𝔤0), then ∀ 𝑝 = 𝑔0𝑒
𝑍 ∈ 𝑃𝑃𝑙𝑖𝑛𝑒 where 𝑔0 ∈ 𝐺0

and 𝑍 ∈ 𝔤1 by Proposition 2.2.4

(𝑝 · 𝜅) (𝑋, 𝑌 ) := 𝐴𝑑(𝑝) (𝜅(𝐴𝑑(𝑝−1)𝑋, 𝐴𝑑(𝑝−1)𝑌 )) ∀𝑋, 𝑌𝔤−1.
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Chapter 3 Cartan Geometry

Denote 𝜅′ = 𝑝 · 𝜅. Then,

𝜅′𝑖 𝑗
𝑘
𝑙𝑒𝑘 = (𝑝 · 𝜅) (𝑒𝑖, 𝑒 𝑗) · 𝑒𝑙

= [𝐴𝑑(𝑝)𝜅(𝐴𝑑(𝑝−1)𝑒𝑖, 𝐴𝑑(𝑝−1)𝑒 𝑗), 𝑒𝑙]

= 𝐴𝑑(𝑔0) [𝜅(𝐴𝑑(𝑔−1
0 )𝑒𝑖, 𝐴𝑑(𝑔

−1
0 )𝑒 𝑗), 𝐴𝑑(𝑔

−1
0 )𝑒𝑙].

Since 𝜅𝑘𝑖
𝑘
𝑗 = 0 with respect to any basis of 𝔤−1, we have 𝜅′

𝑘𝑖
𝑘
𝑗 = 0. The 2 is in

[14, Lemma 1.6.6] and 3 is the result of 2. □

Remark 3.6.12. From Remark 3.6.4, if 𝜎 corresponds to a Levi-Civita connection ∇

of 𝑔 ∈ [𝑔], then 𝑃𝑖 𝑗 in (3.6.10) corresponds to the Schouten tensor

𝑃𝑖 𝑗 =
1

𝑛 − 2

(
𝑅𝑖𝑐𝑖 𝑗 −

𝑅

2(𝑛 − 1) 𝑔𝑖 𝑗
)

where 𝑅𝑖𝑐 is the Ricci curvature and 𝑅 is the scalar curvature.

Definition 3.6.13. A Cartan geometry (G, 𝑤) → 𝑀𝑛 in the type (𝑃𝑂(𝑝 + 1, 𝑞 +

1), 𝑃𝑃𝑙𝑖𝑛𝑒) is called normal if its Cartan curvature function is torsion-free and Ricci-

trace-free; that is, 𝜅−1 = 0 and (𝜅0)𝑘𝑖𝑘 𝑗 = 0.

Using Proposition 3.6.10 and Theorem 3.6.11, it can be shown normal Cartan

connection is uniquely defined in 𝑆 where 𝑆 is from Definition 3.6.9.

Corollary 3.6.14. There exists a unique Cartan connection 𝑤 ∈ 𝑆 on G in the type

(𝑃𝑂(𝑝 + 1, 𝑞 + 1), 𝑃𝑃𝑙𝑖𝑛𝑒) such that 𝑤 is normal.

Proposition 3.6.15. [14, 1.6.8] Given a Weyl connection 𝜎 and let 𝑤𝜎 be the induced

Cartan connection on G due to Proposition 3.6.7. Let 𝑤𝑛𝑜𝑟 = 𝑤𝜎 − 𝑃 ◦ 𝜃−1 be the

normal Cartan connection by Corollary 3.6.14. Then, the respective values 𝔤−1, 𝔤0
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§3.6 Conformal Manifold in Cartan Geometry

and 𝔤1 of the curvature function 𝜅𝑛𝑜𝑟 of 𝑤𝑛𝑜𝑟 are

𝜅𝑛𝑜𝑟−1 = 𝜅𝜎−1 = 0, 𝜅𝑛𝑜𝑟0 = 𝜅𝜎0 − 𝜕𝑃 ∈ Γ𝑃𝑟𝑎𝑦 (G, 𝔤0 ⊗ Λ2𝔤∗−1), 𝜅𝑛𝑜𝑟1 ∈ Γ𝐺0 (G, 𝔤1 ⊗ Λ2𝔤∗−1)

The components of 𝜅𝑛𝑜𝑟0 are

(3.6.11) (𝜅𝑛𝑜𝑟0 )𝑖 𝑗
𝑙
𝑘 = (𝜅𝜎0)𝑖 𝑗

𝑙
𝑘 − [𝛿𝑙𝑖𝑃 𝑗𝑘 − 𝛿

𝑙
𝑗𝑃𝑖𝑘 − 𝑃 𝑗

𝑙𝛿𝑖𝑘 + 𝑃𝑖 𝑙𝛿 𝑗𝑘 − (𝑃𝑖 𝑗 − 𝑃 𝑗𝑖)𝛿𝑙𝑘]

where 𝛿𝑖
𝑗
is the Kronecker delta. If 𝜎 corresponds to a Levi-Civita connection ∇ on

𝑀, then 𝜅𝑛𝑜𝑟0 induces the Weyl curvature tensor and 𝜅𝜎0 induces the Riemann curvature

tensor of ∇. Let 𝑠 : G0 → G, 𝑢 ↦→ [𝑢, 𝑖𝑑] be the map by 𝜎. Then, 𝑠∗𝜅𝑛𝑜𝑟1 induces the

Cotton-York tensor 𝑌 on 𝑀

(3.6.12) 𝑌𝑖 𝑗𝑘 = −∇[𝑖𝑃 𝑗]𝑘.

It turns out we have the following theorem.

Theorem 3.6.16. [14, Theorem 1.6.7] Let 𝑛 = 𝑝 + 𝑞 ≥ 3. The following categories

are equivalent.

1. The category of normal Cartan geometries in the type (𝑃𝑂(𝑝+ 1, 𝑞+ 1), 𝑃𝑃𝑙𝑖𝑛𝑒).

2. The category of 𝐶𝑂(𝑝, 𝑞)-reductions of Fr𝑀.

Remark 3.6.17. Note that 𝔤−1 ⊆ 𝔤 is not 𝑃𝑃𝑙𝑖𝑛𝑒−stable, so the 𝔭 = 𝔤0 ⊕ 𝔤1-value

of 𝑤𝑛𝑜𝑟 is not a principal 𝑃𝑃𝑙𝑖𝑛𝑒 connection by Proposition 3.3.2. To have a principal

connection from𝑤𝑛𝑜𝑟, one can associate G with 𝑃𝑂(𝑝+1, 𝑞+1) to have a principal 𝑃𝑂-

bundle G𝑃𝑂 with the induced principal connection 𝛾 from 𝑤𝑛𝑜𝑟 by Proposition 3.3.3.

For 𝑛 = 𝑝 ≥ 3, recalling 𝑃𝑂(𝑛 + 1, 1) ∼= 𝑂+(𝑛 + 1, 1) in Example 2.0.2, the associated

vector bundleT = G𝑂+×𝑂+ℝ𝑛+1,1 has the induced linear connection∇ from 𝛾. TheT is
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Chapter 3 Cartan Geometry

called the standard tractor bundle, and ∇ is called the normal tractor connection

[21]. The 𝑂+(𝑛 + 1, 1)-representations are special cases of (𝔤, 𝑃)-modules whose

associated vector bundles are called tractor bundles [22]. For indefinite signature

(𝑝, 𝑞), since 𝑃𝑂(𝑝 + 1, 𝑞 + 1) doesn’t have a standard representation, another natural

choice of normal Cartan geometries is in the type (𝑂(𝑝+1, 𝑞+1), 𝑃𝑟𝑎𝑦). The associated

vector bundle with the standard representation of 𝑂(𝑝 + 1, 𝑞 + 1) gives the standard

tractor bundle with the normal tractor connection [23].

Recall Proposition 3.1.5, a choice of a local conformal frame (𝑒𝑖) ∈ Γ(G0) and a

Weyl connection 𝜎 determine a local chart of G

(3.6.13) 𝑈
(𝑒𝑖)→ G0

𝜎→ G.

One can therefore derive the formula of the normal tractor connection ∇ on the

standard tractor bundle with respect to a Weyl connection 𝜎 by using Corollary 3.2.9.

The formula for ∇ is in [24, Equation (22)].

3.6.1 Conformal Geodesics

Given a conformal manifold (𝑀𝑛, [𝑔]) and the corresponding Cartan geometry in

the type (𝑃𝑂(𝑝 + 1, 𝑞 + 1), 𝑃𝑃𝑙𝑖𝑛𝑒, 𝑤) with the corresponding principal-𝑃𝑃𝑙𝑖𝑛𝑒 bundle

𝜋 : G → 𝑀 where G = Fr𝐺0𝑀×𝐺0 𝑃𝑃𝑙𝑖𝑛𝑒. Let 𝑔 ∈ [𝑔] and ∇ be its Levi-Civita connec-

tion. Recalling Remark 3.6.6, there is a corresponding global section 𝑠 : Fr𝐺0𝑀 → G.

Recall Proposition 2.2.4, 𝑃𝑃𝑙𝑖𝑛𝑒 ∼= 𝐺0 ⋉ exp(𝔤−1) where 𝔤−1 ∼= ℝ𝑛. Let (𝑒𝑖) be an

orthonormal frame of 𝑇𝑀 with respect to 𝑔 defined on an open set 𝑈 ⊆ 𝑀. Then, (𝑒𝑖)
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§3.6 Conformal Manifold in Cartan Geometry

and 𝑠 induce a local chart of G:

𝜋−1(𝑈) → 𝑈 × 𝐺0 × 𝔤−1

𝑠((𝑒𝑖)𝑥 · 𝐶) · exp(𝑏) ↦→ (𝑥, 𝐶, 𝑏).

Identify 𝑇𝑥𝑀 and ℝ𝑛 by 𝑣𝑖𝑒𝑖 ↦→ 𝑣𝑖𝑒𝑖 where (𝑒𝑖) is the chosen orthonormal frame.

Theorem 3.6.18. [7] Let X = X 𝑖𝑒𝑖 ∈ 𝔤−1 ∼= ℝ𝑛 and 𝛾̃𝑋 : 𝐼 → G be an integral curve

of 𝑤−1(X) so that 𝜋(𝛾̃𝑋 ) ⊆ 𝑈. Denote the coordinate of 𝛾̃𝑋 (𝑡) by (𝑥 (𝑡), 𝐶 𝑖 𝑗(𝑡), 𝑏𝑘(𝑡)).

Then,

(3.6.14)

¤𝑥 𝑖 = 𝐶 𝑖 𝑗X 𝑗;

¤𝐶 𝑖 𝑗 = −(Γ𝑖𝑘𝑙 + 𝑏
𝑖
𝑘𝑙)𝐶

𝑘
𝑛X𝑛𝐶 𝑙 𝑗;

¤𝑏𝑘 = (𝑏 𝑗Γ 𝑗𝑖𝑘 +
1
2
𝑏 𝑗𝑏

𝑗

𝑖𝑘
+ 𝑃𝑖𝑘)𝐶 𝑖𝑛X𝑛,

where ¤𝑥 = ¤𝑥 𝑖𝑒𝑖, Γ𝑘𝑖 𝑗 is the Christoffel symbols of ∇ defined by ∇𝑒𝑖𝑒 𝑗 = Γ𝑘
𝑖 𝑗
𝑒𝑘, and 𝑏

𝑗

𝑖𝑘
is

defined by

𝑏
𝑗

𝑘𝑖
= 𝛿

𝑗

𝑘
𝑏𝑖 + 𝛿 𝑗𝑖𝑏𝑘 − 𝑔𝑘𝑖𝑔

𝑗𝑙𝑏𝑙 .(3.6.15)

where 𝛿 𝑗
𝑖
= 𝑔 𝑗𝑘𝑔𝑘𝑖. It turns out the integral curve equations of (3.6.14) can be written

as

(3.6.16)

(∇ ¤𝑥 ¤𝑥) 𝑖 = −𝑏𝑖𝑗𝑘 ¤𝑥
𝑗 ¤𝑥𝑘;

(∇ ¤𝑥𝑐 𝑗) 𝑖 = −𝑏𝑖𝑙𝑘 ¤𝑥
𝑙𝐶𝑘 𝑗;

(∇ ¤𝑥𝑏)𝑖 = ( 12𝑏 𝑗𝑏
𝑗

𝑘𝑖
+ 𝑃𝑘𝑖) ¤𝑥𝑘,

where 𝑐 𝑗 = 𝑒𝑘𝐶
𝑘
𝑗.

Since 𝑥 (𝑡) and 𝑏(𝑡) can be determined by the first and third equations of (3.6.16).
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Chapter 3 Cartan Geometry

Then, one can define the conformal geodesic equation as in the following.

Definition 3.6.19. Let 𝑔 ∈ [𝑔] and ∇ be the corresponding Levi-Civita connection. A

conformal geodesic with respect to 𝑔 is a curve 𝛾 : 𝐼 → 𝑀 and a 1-form 𝑏 along 𝛾 such

that they satisfy

∇¤𝛾 ¤𝛾𝑖 = −𝑆 𝑗𝑘𝑖 𝑙𝑏𝑙 ¤𝛾 𝑗 ¤𝛾𝑘,(3.6.17)

∇¤𝛾𝑏𝑖 = (
1
2
𝑏 𝑗𝑏𝑙𝑆𝑘𝑖

𝑗 𝑙 + 𝑃𝑘𝑖) ¤𝛾𝑘(3.6.18)

where 𝑆𝑖 𝑗𝑘𝑙 is defined by

𝑆𝑖𝑘
𝑗𝑙 = 𝛿

𝑗

𝑖
𝛿𝑙𝑘 + 𝛿

𝑙
𝑖𝛿

𝑗

𝑘
− 𝑔𝑖𝑘𝑔 𝑗𝑙 .(3.6.19)

The equations (3.6.17) and (3.6.18) are conformally invariant for conformal change

𝑔̂ = Ω2𝑔 if ¤̂𝛾 = ¤𝛾 and 𝑏̂𝑖 = 𝑏𝑖 − Ω−1∇𝑖Ω.

Denote 𝑔𝑖 𝑗𝑣𝑖𝑤 𝑗 by ⟨𝑣, 𝑤⟩ for 𝑔 ∈ [𝑔]. We call a curve 𝛾 : 𝐼 → 𝑀 null if ⟨¤𝛾, ¤𝛾⟩ = 0

on 𝐼 and it is called non-null if it’s not null. Direct computation from (3.6.17) shows

(3.6.20) ∇¤𝛾⟨¤𝛾, ¤𝛾⟩ = −2⟨¤𝛾, ¤𝛾⟩𝑏𝑖 ¤𝛾𝑖.

Therefore, if a conformal geodesic has a null velocity at some point, then it’s a null con-

formal geodesic. For completeness, we recall null pseudo-Riemannian geodesics are

necessary and sufficient to be null conformal geodesics with some reparametrization

[10, 25].

Assume a conformal geodesic 𝛾 is non-null. By solving 𝑏𝑖 in (3.6.17)

(3.6.21) 𝑏𝑖 =
1
⟨¤𝛾, ¤𝛾⟩

(
∇¤𝛾 ¤𝛾𝑖 − 2

⟨¤𝛾,∇¤𝛾 ¤𝛾⟩
⟨¤𝛾, ¤𝛾⟩ ¤𝛾𝑖

)
,

52



§3.6 Conformal Manifold in Cartan Geometry

one can have a third-order differential equation from (3.6.18). The third-order differ-

ential equation is equivalent to the system of the equations (3.6.17) and (3.6.18) if one

defines the one form 𝑏𝑖 back.

Definition 3.6.20. Given 𝑔 ∈ [𝑔] with corresponding Levi-Civita connection ∇. A

parametrized non-null conformal geodesic 𝛾 is defined to satisfy

∇¤𝛾∇¤𝛾 ¤𝛾𝑖 = 3
⟨¤𝛾,∇¤𝛾 ¤𝛾⟩
⟨¤𝛾, ¤𝛾⟩ ∇¤𝛾 ¤𝛾

𝑖 −
3⟨∇¤𝛾 ¤𝛾,∇¤𝛾 ¤𝛾⟩

2⟨¤𝛾, ¤𝛾⟩ ¤𝛾𝑖 + ⟨¤𝛾, ¤𝛾⟩ ¤𝛾 𝑗𝑃 𝑗 𝑖 − 2𝑃 𝑗𝑘 ¤𝛾 𝑗 ¤𝛾𝑘 ¤𝛾𝑖(3.6.22)

with initial conditions 𝛾(0), ¤𝛾(0), ∇¤𝛾 ¤𝛾(0). The equation is invariant under conformal

change 𝑔̂ = Ω2𝑔.

Since the induced metric on a non-null curve 𝛾 is nondegenerate, we can consider

the orthogonal decomposition of the pullback bundle of 𝑇𝑀 by 𝛾 [26]. We call 𝛾

satisfies the tangential (resp. normal) part of (3.6.22) if it is a solution of the equation

that is the orthogonal projection of (3.6.22) to the tangent (resp. normal) bundle of 𝛾.

It is known [6] that any regular curve can be reparametrized to satisfy the tangential

part of (3.6.22). The normal part of (3.6.22) is invariant under reparametrization of

𝛾 and it is only satisfied by non-null conformal geodesics. Since (3.6.22) is derived

from (3.6.18), it’s convenient to introduce a vector field along an arbitrary curve 𝛾

(3.6.23) 𝐸𝑖(𝛾, 𝑣, 𝑔) = ∇¤𝛾𝑣𝑖 − ( 12𝑣
𝑗𝑣𝑙𝑆𝑘

𝑖
𝑗𝑙 + 𝑃𝑘𝑖) ¤𝛾𝑘

where 𝑣 is a vector field along 𝛾. If 𝑣 satisfies the right-hand side of (3.6.21) by

descending index, then we denote the vector field 𝐸𝑖(𝛾, 𝑣, 𝑔) by 𝐸𝑖(𝛾, 𝑔).

For completeness, we recall another third-order differential equation for a non-null

conformal geodesic 𝛾. If 𝛾 : 𝐼 → 𝑀 is reparametrized so that it is of unit tangent
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velocity with respect to 𝑔 ∈ [𝑔], then it satisfies [10]

∇¤𝛾∇¤𝛾 ¤𝛾𝑖 = −
(
⟨∇¤𝛾 ¤𝛾,∇¤𝛾 ¤𝛾⟩ + 𝑃 𝑗𝑘 ¤𝛾 𝑗 ¤𝛾𝑘

)
¤𝛾𝑖 + 𝑃𝑖𝑗 ¤𝛾

𝑗 if ⟨¤𝛾, ¤𝛾⟩ = 1;(3.6.24)

∇¤𝛾∇¤𝛾 ¤𝛾𝑖 =
(
⟨∇¤𝛾 ¤𝛾,∇¤𝛾 ¤𝛾⟩ − 𝑃𝑖𝑘 ¤𝛾𝑖 ¤𝛾𝑘

)
¤𝛾 𝑗 + 𝑃 𝑗

𝑖
¤𝛾𝑖 if ⟨¤𝛾, ¤𝛾⟩ = −1;(3.6.25)

The first line is the equation introduced by Yano [12]. Recalling conformal geodesics

in the Euclidean space are either straight lines or planar circles in Theorem 2.2.7, P.

Tod has derived the same result by considering (3.6.24) in [10].
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Poincaré-Einstein Manifold

This chapter reviews a Poincaré-Einstein manifold and the asymptotic isothermal

coordinate expansion of a surface therein.

Let (𝑀𝑛, [𝑔]) be a pseudo-Riemannian conformal manifold with signature (𝑝, 𝑞)

and 𝑛 ≥ 2. There exists a pseudo-Riemannian manifold (𝑀𝑛+1
+ , 𝑔+) with boundary

𝜕𝑀+ = 𝑀 [27]. The signature of 𝑔+ is (𝑝 + 1, 𝑞). Let 𝑟 ∈ 𝐶∞(𝑀+) be a defining

function for 𝑀, that is 𝑟 > 0 on the interior 𝑀0
+, 𝑟 = 0 on 𝑀 and 𝑑𝑟 ≠ 0 on 𝑀. Then,

𝑔+ and 𝑟 satisfy

(i) 𝑟2𝑔+ can be smoothly extended to be a metric on 𝑀+ so that

𝑔̄ |𝑀 := 𝑟2𝑔+ |𝑀 ∈ [𝑔];

(ii) 𝑅𝑖𝑐(𝑔+) + 𝑛𝑔+ = 𝑂(𝑟).

The pair (𝑀+, 𝑔+) is called a Poincaré-Einstein manifold for (𝑀, [𝑔]) and the pair

(𝑀, [𝑔]) is called the conformal infinity to (𝑀+, 𝑔+).

Let 𝑔 ∈ [𝑔]. There exists a unique defining function 𝑟, called geodesic defining

function, such that |𝑑𝑟 |2𝑔̄ = 1 near 𝑀 ⊆ 𝑀+. The function 𝑟 makes an identification
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Chapter 4 Poincaré-Einstein Manifold

between a neighborhood𝑈 of 𝑀 in 𝑀+ and a neighborhoodU of 𝑀×{0} in 𝑀×[0,∞).

By the identification, 𝑔+ is in normal form relative to 𝑔; that is, 𝑔+ = 𝑑𝑟2+𝑔𝑟
𝑟2 onU where

𝑔𝑟 = 𝑔 − 𝑟2𝑃 + 𝑂(𝑟3). The tensor 𝑃 is the Schouten tensor of 𝑔 for 𝑛 ≥ 3. When

𝑛 = 2, 𝑃 is a symmetric two-tensor on 𝑀 satisfying 𝑃𝑖
𝑖 = 1

2𝑅 and 𝑃𝑖 𝑗,
𝑗 = 1

2𝑅,𝑖 where 𝑅

is the scalar curvature of 𝑔. By the pulling back of an even diffeomorphism between

neighborhoods of 𝑀×{0} ⊆ 𝑀× [0,∞) which restricts to the identity map on 𝑀×{0},

the normal forms 𝑔+ relative to conformal related metrics are identical modulo 𝑂(𝑟).

Remark 4.0.1. Note that the orders of 𝑟 above in the Ricci condition and in 𝑔𝑟 can be

further refined to higher orders depending on dimension 𝑛. See details in [27].

Remark 4.0.2. For 𝑛 = 2, the trace and the divergence conditions of 𝑃 are conformally

invariant. ( [27], arguments after Theorem 3.7)

Surfaces in the Poincaré-Einstein Manifold

Let (𝑀𝑛+1
+ , 𝑔+) be a Poincaré-Einstein manifold in normal form relative to 𝑔 ∈ [𝑔]

where 𝑟 is its corresponding geodesic defining function. Let 𝛾 : 𝐼 → 𝑀 be a non-

null curve. The interval 𝐼 can be shrunk if necessary. Choose a local coordinate

{𝑥 𝑖 | 1 ≤ 𝑖 ≤ 𝑛} on an open set W in 𝑀 containing 𝛾(𝑡) for 𝑡 ∈ 𝐼. The coordinate

of 𝛾(𝑡) is denoted by 𝛾𝑖(𝑡). If Σ ⊆ 𝑀+ is an embedded surface orthogonal to 𝑀 with

Σ ∩ 𝑀 = 𝛾, then one can have an asymptotic isothermal coordinate of Σ near 𝛾; that

is, there is a diffeomorphism 𝜎 : (𝑡, 𝜆) ↦→ (𝑥 𝑖(𝑡, 𝜆), 𝑟(𝑡, 𝜆)) from 𝐼 × 𝐼 to Σ ⊆ 𝑀+ such
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that

(4.0.1)



𝜎(𝑡, 0) = 𝛾𝑖(𝑡)

𝜎∗𝑔̄ =
©­­­«
(−1)𝜀 0

0 1

ª®®®¬ 𝑐(𝑡, 𝜆) + 𝑂(𝜆
3)

,

where 𝑐(𝑡, 0) ≠ 0 and 𝜀 = 0 if ⟨¤𝛾, ¤𝛾⟩ > 0 and 𝜀 = 1 otherwise. In fact, to satisfy (4.0.1)

for Σ orthogonal to 𝑀, the expansions of 𝑥 𝑖, 𝑟 and 𝜎∗𝑔+ with respect to 𝜆 are in the

following forms.

Proposition 4.0.3. [9] Let 𝑔+ be a Poincaré-Einstein metric and Σ ⊆ 𝑀+ a surface as

above. Then, the asymptotic isothermal coordinate in (4.0.1) satisfies

𝑥 𝑖(𝑡, 𝜆) ≡ 𝛾𝑖(𝑡) + 0 + | ¤𝛾 |2𝑣𝑖
2 𝜆2 + 𝑢𝑖

3 𝜆
3

𝑟(𝑡, 𝜆) ≡ 0 + | ¤𝛾 |𝜆 + 0 + (−1)𝜀 | ¤𝛾 |
6

[
𝜅(𝛾, 𝑣, 𝑔) − 3

2 ⟨¤𝛾, ¤𝛾⟩⟨𝑣, 𝑣⟩
]
𝜆3

(4.0.2)

and

(4.0.3) 𝜎∗𝑔+ =
1
𝜆2

©­­«
(−1)𝜀 0

0 1

ª®®¬
(
1 + (−1)𝜀 2

3
𝜅(𝛾, 𝑣, 𝑔)𝜆2

)
+ 𝑂(𝜆),

where the expansions of 𝑥 𝑖 and 𝑟 are modulo 𝑂(𝜆4), the | ¤𝛾 | denotes the square root

of |⟨ ¤𝛾, ¤𝛾⟩|, the 𝑣𝑖 satisfies ⟨¤𝛾, 𝑣⟩ =

〈
¤𝛾,∇¤𝛾

(
¤𝛾
⟨¤𝛾, ¤𝛾⟩

)〉
, the 𝑢𝑖 satisfies ⟨¤𝛾, 𝑢⟩ = 0 and

𝜅(𝛾, 𝑣, 𝑔) = ⟨𝐸(𝛾, 𝑣, 𝑔), ¤𝛾⟩ which is the tangential part of (3.6.23). Note that ∇¤𝛾
(
¤𝛾
⟨¤𝛾, ¤𝛾⟩

)
is equal to the right-hand side of the 𝑏-form in (3.6.21) by lowering index.

Since 𝜎∗𝑔̄ is pseudo-Riemannian for small 𝜆, the tangent bundle 𝑇𝑀+ has the

orthogonal decomposition along 𝑇Σ near 𝑀 [26]. Let (𝑒𝛼′) be a local orthonormal
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Chapter 4 Poincaré-Einstein Manifold

frame of the normal bundle of Σ with respect to 𝑔̄ near Σ∩𝑀. After direct computation,

the Taylor expansions of 𝑒𝛼′ with respect to 𝜆 are [9]

𝑒𝛼′ (𝑡, 𝜆) =𝜙𝛼′ (𝜆) −
(−1)𝜀𝜆2

2

[
⟨𝜙𝛼′ (𝜆), 𝜕𝑡𝑣⟩𝑔 +

(
𝑣𝑖𝜕𝑖𝑔 − 2𝑃𝑔

)
(𝜙𝛼′ (𝜆), ¤𝛾)

]
¤𝛾(4.0.4)

− ⟨𝜙𝛼′ (𝜆), | ¤𝛾 |𝑣⟩𝑔 𝜆 𝜕𝑟 + 𝑂(𝜆3),

where 𝜙𝛼′ (𝜆) is a family of sections of the normal bundle of 𝛾 in 𝑀.

Proposition 4.0.4. [9] Considering the projection of the second fundamental form of

Σ on 𝑒𝛼′ with respect to 𝑔+, then, its asymptotic expansion is

(4.0.5)

1
𝜆2

©­­«
(−1)𝜀

〈
∇¤𝛾

(
¤𝛾
⟨¤𝛾, ¤𝛾⟩

)
− 𝑣, 𝜙𝛼′ (𝜆)

〉
− ⟨𝑢,𝜙𝛼′ (𝜆)⟩⟨¤𝛾, ¤𝛾⟩ 𝜆 ∗

⟨𝐸(𝛾, 𝑣, 𝑔), 𝜙𝛼′ (𝜆)⟩𝜆 (−1)𝜀 ⟨𝑢,𝜙𝛼′ (𝜆)⟩⟨¤𝛾, ¤𝛾⟩ 𝜆

ª®®¬ + 𝑂(1).
Due to Proposition 4.0.3, the asymptotic minimal condition 𝐻 = 𝑂(𝑟2) of Σ is equiva-

lent to 𝑣 = ∇¤𝛾
(
¤𝛾
⟨¤𝛾, ¤𝛾⟩

)
which is exactly the same as the 𝑏-form in (3.6.21). The asymp-

totic totally geodesic condition 𝐾 = 𝑂(𝑟2) is equivalently satisfied when 𝑣 = ∇¤𝛾
(
¤𝛾
⟨¤𝛾, ¤𝛾⟩

)
,

𝑢 = 0 and 𝛾 being an unparametrized conformal circle.

Note that if one considers the first variation of renormalized area of Σ with free

boundary in 𝑀, then the critical point is a minimal surface with 𝑢 = 0 [9, 28] (need to

rewrite this last statement).

Definition 4.0.5. Let Σ ⊆ 𝑀+ be an embedded surface orthogonal to 𝑀 so that Σ ∩ 𝑀

is a non-null curve. It is called a proper surface if it is asymptotic totally geodesic

𝐾 = 𝑂(𝑟2) where 𝐾 is the second fundamental form of Σ with respect to 𝑔+.
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Chapter 5

Preserving Geodesics

§ 5.1 Geodesics in Riemannian Manifolds and

Pseudo-Riemannian Conformal Manifolds

In this section, we derive in Theorem 5.1.1 that if a local diffeomorphism 𝑓 between

manifolds 𝑀𝑛 and 𝑁𝑛 maps conformal geodesics to conformal geodesics, then 𝑓 is a

conformal local diffeomorphism. We also mention in Remark 5.1.4 that the idea of the

proof of the theorem can apply to the parallel problem for parametrized Riemannian

geodesics.

Given a local diffeomorphism 𝑓 : 𝑀 → 𝑁 between pseudo-Riemannian conformal

manifolds (𝑀𝑛, [𝑔]) and (𝑁𝑛, [ℎ]). Assume both of the conformal classes have same

signature (𝑝, 𝑞). If 𝑓 is a conformal local diffeomorphism, it’s direct to see 𝑓 maps

unparametrized conformal geodesics to unparametrized conformal geodesics. The

converse direction is also true if the map 𝑓 preserves some nullity condition.

Theorem 5.1.1. Let (𝑀𝑛, [𝑔]) and (𝑁𝑛, [ℎ]) be pseudo-Riemannian conformal mani-

folds with same signature (𝑝, 𝑞). Assume a local diffeomorphism 𝑓 : 𝑀 → 𝑁 satisfying
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Chapter 5 Preserving Geodesics

(i) 𝑑 𝑓 (𝑣) is non-null (resp. null) ∀non-null (resp. null) 𝑣 ∈ 𝑇𝑀 if 𝑝 ≠ 𝑞;

(ii) sgn⟨𝑣, 𝑣⟩𝑔= sgn⟨𝑑 𝑓 (𝑣), 𝑑 𝑓 (𝑣)⟩ℎ ∀𝑣 ∈ 𝑇𝑀 if 𝑝 = 𝑞.

If 𝑓 maps unparametrized non-null conformal geodesics to unparametrized non-null

conformal geodesics, then 𝑓 is a conformal local diffeomorphism.

Proof. Given 𝑦 ∈ 𝑀. Let 𝑔 ∈ [𝑔] and ℎ ∈ [ℎ]. Choose a normal coordinate of 𝑔

centered at 𝑦, {𝑥 𝑖 | 1 ≤ 𝑖 ≤ 𝑛}. Since 𝑓 is a local diffeomorphism, we can identify the

coordinate system near 𝑓 (𝑦) as {𝑥 𝑖}𝑛
𝑖=1. Let 𝛾(𝑡) be a parametrized non-null conformal

geodesic satisfying (3.6.22) with initial conditions ¤𝛾𝑘0 , ¥𝛾𝑘0 at 𝑦 = 𝛾(0) where ¥𝛾𝑘0 is the

coordinate of ∇¤𝛾 ¤𝛾(0) with respect to 𝑔. Since 𝑓 ◦ 𝛾 is an unparametrized non-null

conformal geodesic, it satisfies the normal part of (3.6.22) with the given parameter 𝑡,

which is the following in the coordinate we chose.

𝐸𝑘(𝛾, ℎ) − ⟨𝐸(𝛾, ℎ), ¤𝛾⟩ℎ⟨¤𝛾, ¤𝛾⟩ℎ
¤𝛾𝑘 = 0(5.1.1)

where 𝐸(𝛾, ℎ) is a vector field along 𝛾 defined from (3.6.23). In the following, we are

considering 𝑡 = 0 for (5.1.1). Observe that (5.1.1) is a degree-two polynomial of ¥𝛾𝑘0
with coefficients depending on the derivatives of 𝑔 and ℎ. It is because 𝛾(𝑡) satisfies

the third order differential equation (3.6.22) with respect to 𝑔. Now let ¤𝛾𝑘0 = 𝑉𝑘 and

¥𝛾𝑘0 = 𝜖𝐴𝑘 where 𝑉, 𝐴 ∈ ℝ𝑛 are fixed. The variable 𝜖 ∈ ℝ is an arbitrary number in

an open interval containing 1. Because the non-null conformal geodesic equation is

an autonomous ODE, (5.1.1) depends smoothly on 𝜖. Based on the arguments we just

made, we know (5.1.1) at 𝑡 = 0 is a polynomial of 𝜖 with degree two. Therefore, the
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Manifolds

coefficient of 𝜖2 vanishes. After direct computation, the coefficient gives

⟨𝑉, 𝐴⟩𝑔
⟨𝑉, 𝑉⟩𝑔

(
𝐴𝑘 − ⟨𝑉, 𝐴⟩ℎ⟨𝑉, 𝑉⟩ℎ

𝑉𝑘
)
=
⟨𝑉, 𝐴⟩ℎ
⟨𝑉, 𝑉⟩ℎ

𝐴𝑘 −
⟨𝑉, 𝐴⟩2

ℎ

⟨𝑉, 𝑉⟩2
ℎ

𝑉𝑘.(5.1.2)

If ⟨𝑉, 𝐴⟩𝑔 = 0, we get

0 =
⟨𝑉, 𝐴⟩ℎ
⟨𝑉, 𝑉⟩ℎ

𝐴𝑘 −
⟨𝑉, 𝐴⟩2

ℎ

⟨𝑉, 𝑉⟩2
ℎ

𝑉𝑘.(5.1.3)

Assume the normal coordinate we chose is 𝑔𝑖𝑖(𝑦) > 0 for 1 ≤ 𝑖 ≤ 𝑝 and 𝑔𝑖𝑖(𝑦) < 0 for

𝑝 + 1 ≤ 𝑖 ≤ 𝑝 + 𝑞. If 𝑉𝑘 = 𝛿𝑖𝑘 and 𝐴𝑘 = 𝛿 𝑗𝑘 for 𝑖 ≠ 𝑗, then ℎ𝑖 𝑗(𝑦) = 0 from (5.1.3). If

𝑔𝑖𝑖 = 𝑔 𝑗 𝑗 for 𝑖 ≠ 𝑗, we then let 𝑉𝑘 = 𝛿𝑖𝑘 + 𝛿 𝑗𝑘 and 𝐴𝑘 = 𝛿𝑖𝑘 − 𝛿 𝑗𝑘; so, we have ℎ𝑖𝑖 = ℎ 𝑗 𝑗

from (5.1.3). Therefore, the pullback metric ( 𝑓 ∗ℎ)𝑖 𝑗 is of the form

©­­«
𝐵𝕀𝑝

−𝐶𝕀𝑞

ª®®¬
for some 𝐵, 𝐶 ≠ 0. If 𝑝 ≠ 𝑞, then 𝐵 and 𝐶 are positive because ℎ is of the signature

(𝑝, 𝑞). If 𝑝 = 𝑞, then 𝐵 and 𝐶 can be both positive or both negative. Recalling that

the 𝑓 preserves the nullity of null vectors, we know (𝜕𝑖 + 𝜕 𝑗) is null at 𝑦 with respect

to 𝑓 ∗ℎ when 𝑔𝑖𝑖 ≠ 𝑔 𝑗 𝑗 which implies 𝐵 = 𝐶. The sign of 𝐵 and 𝐶 is positive for 𝑝 = 𝑞

since the sign of ℎ𝑖𝑖 is the same as the sign of 𝑔𝑖𝑖. □

Remark 5.1.2. Note that if (𝑀, [𝑔]) is Riemannian, that is 𝑝 = 𝑛 and 𝑞 = 0, then any

local diffeomorphism 𝑓 : 𝑀 → 𝑁 automatically satisfies (i) and (ii) in Theorem 5.1.1.

Remark 5.1.3. The particular case for Theorem 5.1.1 has been studied in the literature

if one assumes the 𝑓 to be a bĳection (no need to be continuous) and 𝑀 = 𝑁 = ℝ𝑛 with

the standard Riemannian conformal structure [4, 29]. Note that the proof in [4, 29]

needs the global property of conformal geodesics; that is, 𝑓 maps straight lines (resp.
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circles) to straight lines (resp. circles). However, by assuming additional regularity of

𝑓 in this paper, we only need the local condition of conformal geodesics, namely the

conformal geodesic equation, to establish Theorem 5.1.1.

Remark 5.1.4. One can give a different proof from ([30], Chapter 6, Addendum 1)

for the parallel problem of parametrized Riemannian geodesics by following the proof

idea of Theorem 5.1.1.

Remark 5.1.5. Though the initial condition ¥𝛾𝑘0 = 𝜖𝐴𝑘 in the proof gives an 𝜖-family

of conformal geodesics which induce a Jacobi field, we do not need the Jacobi field

equation introduced by [31, 32] to prove the theorem.

We follow similar arguments of Theorem 5.1.1 to prove Theorem 5.2.5 in §5.2.

§ 5.2 Holorgraphic Interpretation to Preserving

Conformal Geodesics

In this section, we consider a local diffeomorphism 𝐹 : 𝑀+ → 𝑁+ which smoothly

extends a local diffeomorphism 𝑓 : 𝑀 → 𝑁. We introduce the definition of asymp-

totic local isometry and cosider its local conditions. We also introduce an adapted

coordinate for a surface Σ in 𝑀+. We prove Theorem 5.2.5 in this section.

Let (𝑁𝑛, [ℎ]) be a pseudo-Riemannian conformal manifold with same signature

(𝑝, 𝑞) as (𝑀, [𝑔]) and with a Poincaré-Einstein space (𝑁+, ℎ+). We keep {𝑥 𝑖}𝑛
𝑖=1 as a

coordinate system on an open setW in 𝑀.
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§5.2 Holorgraphic Interpretation to Preserving Conformal Geodesics

Definition 5.2.1. A local diffeomorphism 𝐹 : 𝑀+ → 𝑁+ is called an asymptotic local

isometry if

𝐹∗ℎ+ − 𝑔+ = 𝑂(𝑟).(5.2.1)

It’s useful to realize Definition 5.2.1 in terms of local coordinates. Let 𝑟 and 𝑠 be

geodesic defining functions for 𝑔 ∈ [𝑔] and ℎ ∈ [ℎ] respectively. Identifying some

neighborhoods of 𝑀 ⊆ 𝑀+ and 𝑁 ⊆ 𝑁+ to neighborhoodsU of 𝑀 × {0} ⊆ 𝑀 × [0,∞)

and V of 𝑁 × {0} ⊆ 𝑁 × [0,∞) respectively, a local diffeomorphism 𝐹 : 𝑀+ → 𝑁+

can be identified near 𝑀 ⊆ 𝑀+ and 𝑁 ⊆ 𝑁+ as a local diffeomorphism fromU toV

(5.2.2) (𝑥, 𝑟) ↦→ (ℱ(𝑥, 𝑟), 𝐹𝑠(𝑥, 𝑟))

where ℱ(𝑥, 0) = 𝑓 (𝑥), 𝑠 ◦ 𝐹 = 𝐹𝑠 on U and 𝐹𝑠(𝑥, 0) = 0. Then, (5.2.1) is equivalent

to

𝐹∗ℎ̄ − (𝐹𝑠/𝑟)2 𝑔̄ = 𝑂(𝑟3),(5.2.3)

where 𝑔̄ = 𝑑𝑟2 + 𝑔𝑟 and ℎ̄ = 𝑑𝑠2 + ℎ𝑠. Since 𝑓 is a local diffeomorphism, we denote

the coordinate of ℱ(𝑥, 𝑟) by 𝐹 𝑖(𝑥, 𝑟) with 𝐹 𝑖(𝑥, 0) = 𝑥 𝑖. In terms of the coordinates

(𝑥 𝑖, 𝑟) on 𝑀+ and (𝑥 𝑖, 𝑠) on 𝑁+, (5.2.3) is given by

𝑂(𝑟3) = 𝐹𝑠,𝑖𝐹
𝑠
, 𝑗 + 𝐹

𝑘
,𝑖𝐹

𝑙
, 𝑗(ℎ𝑠 ◦ 𝐹)𝑘𝑙 − (𝐹

𝑠/𝑟)2 (𝑔𝑟)𝑖 𝑗,(5.2.4)

𝑂(𝑟3) = 𝐹𝑠,𝑟𝐹
𝑠
,𝑟 + 𝐹𝑘,𝑟𝐹 𝑙,𝑟 (ℎ𝑠 ◦ 𝐹)𝑘𝑙 − (𝐹𝑠/𝑟)2 ,(5.2.5)

𝑂(𝑟3) = 𝐹𝑠,𝑟𝐹
𝑠
,𝑖 + 𝐹

𝑘
,𝑟𝐹

𝑙
,𝑖(ℎ𝑠 ◦ 𝐹)𝑘𝑙(5.2.6)

where we have used commas to express partial derivatives with respect to the coordi-
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nates (𝑥 𝑖, 𝑟) on 𝑀+. At 𝑟 = 0, (5.2.4) and (5.2.6) give

𝑓 ∗ℎ = 𝑒2𝜎𝑔, 𝐹𝑠,𝑟 = 𝑒𝜎 for some 𝜎 ∈ 𝐶∞(𝑀),

𝐹 𝑖,𝑟 = 0 for 1 ≤ 𝑖 ≤ 𝑛,
(5.2.7)

If we choose 𝑔 ∈ [𝑔] and ℎ ∈ [ℎ] suitably such that 𝑓 is homothetic, that is 𝜎 constant,

then (5.2.4)-(5.2.6) further imply at 𝑟 = 0

𝐹 𝑖,𝑟𝑟 = 𝐹 𝑖,𝑟𝑟𝑟 = 0 for 1 ≤ 𝑖 ≤ 𝑛,

𝐹𝑠,𝑟𝑟 = 0,
(5.2.8)

and at 𝑟 = 0

𝐹𝑠,𝑟𝑟𝑟 = 0.(5.2.9)

Conversely, if 𝐹 satisfies (5.2.7)-(5.2.9), then 𝐹 is an asymptotic local isometry.

Let Σ ⊆ 𝑀+ be a surface orthogonal 𝑀 and (𝑡, 𝜆) its asymptotic isothermal coor-

dinate (4.0.2). Since we are considering (5.2.7) to (5.2.9), it’s better to introduce a

change of variables on Σ, (𝑡, 𝜆) ↦→ (𝑡,
¯
𝑟(𝑡, 𝜆)), where

¯
𝑟(𝑡, 𝜆) is equal to the right-hand

side of 𝑟(𝑡, 𝜆) in (4.0.2) modulo 𝑂(𝜆4). Then, the expansions of 𝑥 𝑖 and 𝑟 in terms of
¯
𝑟

are

𝑥 𝑖(𝑡,
¯
𝑟) = 𝛾𝑖(𝑡) + 0 + 𝑣𝑖

2 ¯
𝑟2 + 𝑢𝑖

3| ¤𝛾 |3 ¯
𝑟3 + 𝑂(

¯
𝑟4),

𝑟(𝑡,
¯
𝑟) =

¯
𝑟 + 𝑂(

¯
𝑟4)

(5.2.10)

where 𝑣𝑖 and 𝑢𝑖 remain the same conditions as in Proposition 4.0.3 and in Proposition

4.0.4. We call (𝑡,
¯
𝑟) the adapted coordinate of Σ.

Proposition 5.2.2. Let 𝐹 : 𝑀+ → 𝑁+ be a local diffeomorphism in terms of (5.2.2).
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Assume 𝐹 maps non-null vectors in 𝑇𝑀 to non-null vectors in 𝑇𝑁. Then, 𝜕𝑟ℱ = 0 at

𝑟 = 0 if and only if 𝐹(Σ) is orthogonal to 𝑁 for any surface Σ in 𝑀+ that is orthogonal

to 𝑀 and intersects 𝑀 along a non-null curve. In addition, if 𝐹 maps proper surfaces

in 𝑀+ to proper surfaces in 𝑁+, then 𝜕𝑟ℱ = 0 at 𝑟 = 0.

Proof. Let 𝛾(𝑡) be a non-null curve in a coordinate open set W ⊆ 𝑀 with the

coordinate 𝛾𝑖(𝑡). Then, the adapted coordinate (𝑡,
¯
𝑟) in (5.2.10) locally defines a

surface Σ ⊆ 𝑀+ orthogonal to 𝑀 with Σ ∩ 𝑀 = 𝛾. Since 𝐹(Σ) is orthogonal to 𝑁, then

𝑑𝐹(𝑋
¯
𝑟) −
⟨𝑑𝐹(𝑋

¯
𝑟), 𝑑𝐹(𝑋𝑡)⟩ℎ̄

⟨𝑑𝐹(𝑋𝑡), 𝑑𝐹(𝑋𝑡)⟩ℎ̄
𝑑𝐹(𝑋𝑡)(5.2.11)

is orthogonal to 𝑇𝑁 ⊆ 𝑇𝑀+ where {𝑋𝑡, 𝑋
¯
𝑟} is the coordinate basis for the adapted

coordinate (𝑡,
¯
𝑟). The orthogonal condition gives at 𝑟 = 0

0 = 𝐹𝑘,𝑟 −
𝐹 𝑖,𝑟 ¤𝛾 𝑗ℎ𝑖 𝑗
⟨¤𝛾, ¤𝛾⟩ℎ

¤𝛾𝑘.(5.2.12)

Since ¤𝛾 is an arbitrary non-null vector at 𝑡 = 0, we get 𝐹𝑘,𝑟 = 0 at 𝑟 = 0. Conversely, let

(𝑡,
¯
𝑟) be the adapted coordinate of Σ. Projecting (5.2.11) to 𝑇𝑁 ⊆ 𝑇𝑁+ orthogonally,

it gives the right-hand side of (5.2.12) which turns to be 0 due to 𝐹 𝑖,𝑟 = 0 at 𝑟 = 0.

If 𝛾(𝑡) is a non-null conformal geodesic, then the formula of the adapted coordinate

locally extends 𝛾(𝑡) to a proper surface in 𝑀+. One can follow the same arguments

just made to get 𝜕𝑟ℱ = 0 at 𝑟 = 0. □

As mentioned at the end of Section 5.1, the idea for proving Theorem 5.2.5 is to

consider a suitable family of proper surfaces Σ𝜖. Then, the dependence of 𝜖 in the

second fundamental forms of proper surfaces 𝐹(Σ𝜖) may imply 𝐹 is an asymptotic local

isometry where its local conditions are (5.2.7)-(5.2.9). However, recalling Proposition
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4.0.3, Proposition 4.0.4 and the adapted coordinate (5.2.10), a proper surface Σ is

characterized by 𝑣𝑖, 𝑢𝑖 and 𝛾 being an unparametrized conformal geodesic. Therefore,

we can utilize the adapted coordinate of 𝐹(Σ𝜖) to avoid the tedious computation of

the second fundamental forms. The following Lemma 5.2.3 and Proposition 5.2.4

respectively give the coordinate change of 𝐹(Σ) to its adapted coordinate and provide

that 𝐹 satisfies (5.2.7) and (5.2.8), except for (5.2.9), for 𝐹 preserving proper surfaces.

Lemma 5.2.3. Let (𝑀+, 𝑔+) be a Poincaré-Einstein space in the normal form relative

to 𝑔 ∈ [𝑔] and Σ̃ ⊆ 𝑀+ be a surface orthogonal to 𝑀 with Σ̃ ∩𝑀 = 𝛾 being a non-null

curve. Assume it has a parametrization (𝑡,
¯
𝑟) ↦→ ( 𝑥̃ 𝑖(𝑡,

¯
𝑟), 𝑟(𝑡,

¯
𝑟)) from 𝐼 × 𝐼 to Σ̃ ⊆ 𝑀+

where 𝑥̃ 𝑖,
¯
𝑟 = 0 and 𝑟 = 0 both at

¯
𝑟 = 0. The existence of the adapted coordinate (𝜂, 𝜌)

of Σ̃ implies there is a coordinate change 𝑡 = 𝑡(𝜂, 𝜌),
¯
𝑟 =

¯
𝑟(𝜂, 𝜌) with 𝑡(𝜂, 0) = 𝜂. The

coordinate change is in the following modular higher orders.

(5.2.13)
𝑡(𝜂, 𝜌) = 𝜂 + 𝑡(2)𝜌2 + 𝑡(3)𝜌3,

¯
𝑟(𝜂, 𝜌) = 𝑟(1)𝜌 + 𝑟(2)𝜌2 + 𝑟(3)𝜌3

where

𝑟(1) =
1
𝑟,

¯
𝑟

, 𝑟(2) = −
𝑟,

¯
𝑟
¯
𝑟

2(𝑟,
¯
𝑟)3

, 𝑟(3) = −
1

6𝑟,
¯
𝑟

(
2𝑟,𝑡

¯
𝑟 𝑟(1)𝑡(2) + 𝑟,

¯
𝑟
¯
𝑟
¯
𝑟 (𝑟(1))3 + 6𝑟,

¯
𝑟
¯
𝑟𝑟(1)𝑟(2)

)
,

𝑡(2) =
1

2⟨¤𝛾, ¤𝛾⟩

(
𝑣𝑖 ¤𝛾𝑖 − 𝑥̃ 𝑖,

¯
𝑟
¯
𝑟 ¤𝛾𝑖(𝑟(1))2

)
, 𝑡(3) =

1
6⟨¤𝛾, ¤𝛾⟩

(
(𝑟3
(1)) 𝑥̃

𝑖
,
¯
𝑟
¯
𝑟
¯
𝑟 ¤𝛾𝑖 + 6𝑟(1)𝑟(2) 𝑥̃ 𝑖,

¯
𝑟
¯
𝑟 ¤𝛾𝑖

)
.

The partial derivatives of 𝑥̃ 𝑖 and 𝑟 above are at
¯
𝑟 = 0. The term 𝑣 in 𝑡(2) is ∇¤𝛾

(
¤𝛾
⟨¤𝛾, ¤𝛾⟩

)
.

Note that ¤𝛾𝑖 = 𝑥̃ 𝑖,𝑡 (𝑡, 0) = 𝑥̃ 𝑖,𝜂 (𝜂, 0) and 𝑥̃ 𝑖,𝑡𝑡 (𝑡, 0) = 𝑥̃ 𝑖,𝜂𝜂 (𝜂, 0).

Proposition 5.2.4. Let 𝐹 : 𝑀+ → 𝑁+ be a local diffeomorphism such that

(i) 𝑑𝐹(𝑣) is non-null (resp. null) ∀non-null (resp. null) 𝑣 ∈ 𝑇𝑀 if 𝑝 ≠ 𝑞;
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(ii) sgn⟨𝑣, 𝑣⟩𝑔= sgn⟨𝑑𝐹(𝑣), 𝑑𝐹(𝑣)⟩ℎ ∀𝑣 ∈ 𝑇𝑀 if 𝑝 = 𝑞.

The 𝐹 satisfies (5.2.7) and (5.2.8) if and only if 𝐹 maps proper surfaces in 𝑀+ to proper

surfaces in 𝑁+.

Proof. Let 𝛾(𝑡) be a non-null conformal geodesic in a coordinate open set of 𝑀 with

the initial conditions ¤𝛾𝑘0 and ¥𝛾𝑘0 at 𝛾(0) = 𝑝. Let Σ ⊆ 𝑀+ be its extended proper

surface defined by the adapted coordinate (𝑡,
¯
𝑟) in (5.2.10). Since 𝐹(Σ) ∩ 𝑁 is still an

unparametrized conformal geodesic from Proposition 4.0.4, we know 𝑓 : 𝑀 → 𝑁 is a

conformal local diffeomorphism due to Theorem 5.1.1. Without loss of generality, we

assume that 𝑓 is the identity map on (𝑀, 𝑔) where 𝑔 ∈ [𝑔] and that the local coordinate

of its extended local diffeomorphism is 𝐹 : (𝑥 𝑖, 𝑟) ↦→ (𝐹 𝑖(𝑥, 𝑟), 𝐹𝑟 (𝑥, 𝑟)) where 𝑟 is the

geodesic defining function of 𝑔. From Proposition 5.2.2 and Lemma 5.2.3, we let

(𝜂(𝑡,
¯
𝑟), 𝜌(𝑡,

¯
𝑟)) be the coordinate change of 𝐹(Σ) to its adapted coordinate.

Let ¤𝛾𝑘0 = 𝑉𝑘, ¥𝛾𝑘0 = 𝜖𝐴𝑘 with |𝑉 | = 1 and ⟨𝑉, 𝐴⟩ = 0 where 𝜖 ∈ ℝ is arbitrary near 1.

The variable 𝜖 gives an 𝜖-family of non-null conformal geodesics 𝛾𝜖(𝑡). The extended

proper surfaces Σ𝜖 is defined by the formula of the adapted coordinate (5.2.10) where

the coefficients in the expansion of 𝑥 𝑖(𝑡,
¯
𝑟) depend on 𝛾𝜖(𝑡). Because Σ𝜖 depends

smoothly on 𝜖, we know the adapted coordinate for 𝐹(Σ𝜖) defined from Lemma 5.2.3

depends smoothly on 𝜖. Since 𝐹(Σ𝜖) are proper surfaces, we have

∇¤𝛾𝜖
(
¤𝛾𝜖

⟨¤𝛾𝜖, ¤𝛾𝜖⟩

) 𝑖
= 𝐹 𝑖,𝜌𝜌 at 𝜌 = 0(5.2.14)

and

0 = 𝐹 𝑖,𝜌𝜌𝜌 at 𝜌 = 0.(5.2.15)

Following the formulas and the conventions from (5.2.13), we know 𝑡(2) = −
𝑉 𝑗𝐹

𝑗
,𝑟𝑟

(𝐹𝑟,𝑟)2
at the
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point 𝑝. Using chain rule on 𝐹 𝑖,𝜌𝜌 for (𝑡(𝜂, 𝜌),
¯
𝑟(𝜂, 𝜌)), the straightforward computation

for (5.2.14) at 𝑝 is

𝜖𝐴𝑖 =
1
(𝐹𝑟,𝑟)2

(
𝜖𝐴𝑖 + 𝐹 𝑖,𝑟𝑟 − 𝑉 𝑗𝐹

𝑗
,𝑟𝑟 𝑉

𝑖
)
.(5.2.16)

Therefore, 𝐹𝑟,𝑟 = 1 and 𝐹 𝑖,𝑟𝑟 = 0 at 𝑟 = 0. The results we got imply 𝑟(2) = −𝐹𝑟,𝑟𝑟 at 𝑟 = 0

and 𝑡(3) = 1
6𝐹

𝑗
,𝑟𝑟𝑟𝑉 𝑗 at 𝑝 from (5.2.13). Doing chain rule again, (5.2.15) is equal to the

following at 𝑝.

0 = −3𝜖 𝐹𝑟,𝑟𝑟 𝐴𝑖 + 𝐹 𝑖,𝑟𝑟𝑟 + 𝐹
𝑗
,𝑟𝑟𝑟𝑉 𝑗 𝑉

𝑖.(5.2.17)

So, 𝐹𝑟,𝑟𝑟 = 0 and 𝐹 𝑖,𝑟𝑟𝑟 = 0 at 𝑟 = 0.

Conversely, assume (𝐹 𝑖(𝑥, 𝑟), 𝐹𝑟 (𝑥, 𝑟)) = (𝑥 𝑖 +𝑂(𝑟4), 𝑟 +𝑂(𝑟3)) where we assume 𝑓

is the identity map on (𝑀, 𝑔). Let Σ ⊆ 𝑀+ be a proper surface and (𝑡,
¯
𝑟) be its adapted

coordinate. From Proposition 5.2.2, we know 𝐹(Σ) orthogonal to 𝑁. Considering the

coordinate change (𝜂(𝑡,
¯
𝑟), 𝜌(𝑡,

¯
𝑟)) of 𝐹(Σ) to its adapted coordinate and following the

formula from (5.2.13), we have

𝑟(1) = 1, 𝑟(2) = 0, 𝑡(2) = 0, 𝑡(3) = 0.

Computing 𝐹 𝑖,𝜌𝜌 and 𝐹 𝑖,𝜌𝜌𝜌 directly from chain rule, we have at 𝜌 = 0

𝐹 𝑖,𝜌𝜌 = ∇¤𝛾
(
¤𝛾
⟨¤𝛾, ¤𝛾⟩

) 𝑖
, 𝐹 𝑖,𝜌𝜌𝜌 = 0

which implies 𝐹(Σ) is proper by (5.2.10) and Proposition 4.0.4. □

Theorem 5.2.5. Let (𝑀+, 𝑔+) and (𝑁+, ℎ+) be Poincaré-Einstein manifolds for (𝑀, [𝑔])

and (𝑁, [ℎ]) respectively with same signature (𝑝+1, 𝑞). Given a local diffeomorphism

𝐹 : 𝑀+ → 𝑁+ such that it smoothly extends a local diffeomorphism 𝑓 : 𝑀 → 𝑁. Assume
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𝐹 satisfies

(i) 𝑑𝐹(𝑣) is non-null (resp. null) ∀non-null (resp. null) 𝑣 ∈ 𝑇𝑀 if 𝑝 ≠ 𝑞,

(ii) sgn⟨𝑣, 𝑣⟩𝑔= sgn⟨𝑑𝐹(𝑣), 𝑑𝐹(𝑣)⟩ℎ ∀𝑣 ∈ 𝑇𝑀 if 𝑝 = 𝑞.

If the 𝐹 maps proper surfaces in 𝑀+ to proper surfaces in 𝑁+, then there is a local

diffeomorphism 𝐺 on an open neighborhood 𝑊 of 𝑀 ⊆ 𝑀+,

𝐺 : 𝑊 → 𝑀+,

where 𝐺 smoothly extends the identity map on 𝑀, such that 𝐹 = 𝐹 ◦𝐺 is an asymptotic

local isometry.

Proof. From Proposition 5.2.4, we can choose 𝑔 ∈ [𝑔] and ℎ ∈ [ℎ] suitably to let 𝑓 be

a local isometry. Consider the identification of 𝐹 in (5.2.2)

𝐹 : U → V, (𝑥, 𝑟) ↦→ (ℱ(𝑥, 𝑟), 𝐹𝑠(𝑥, 𝑟)).

We aim to find out an open setW ⊆ U such that it contains 𝑀×{0} and the following

map is well-defined

𝐺 : W → U

(𝑥, 𝑟) ↦→ (𝑥, 𝑟 −ℛ(𝑥)𝑟3) = (𝑥, 𝑝𝑥 (𝑟))
(5.2.18)

where ℛ(𝑥) = 𝜕3
𝑟 𝐹

𝑠(𝑥, 0)/6 and 𝑝𝑥 (𝑟) = 𝑟 −ℛ(𝑥)𝑟3.

For any 𝑥 ∈ 𝑀, it has open neighborhoods B𝑥 , N𝑥 in 𝑀 such that

𝑥 ∈ B𝑥 ⊆⊆ N𝑥 and N𝑥 × [0, 𝜖) ⊆ U ∃ 𝜖 > 0

where B𝑥 ⊆⊆ N𝑥 means its closure B𝑥 is compact in N𝑥 . Here we choose 𝜖 small
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enough such that the polynomial 𝑝𝑦 (𝑟) of 𝑟 on [0, 𝜖) is strictly increasing for all 𝑦 ∈ B𝑥 .

Hence, there exists 0 < 𝜖′𝑥 < 𝜖 so that

B𝑥 × [0, 𝜖′𝑥) → B𝑥 × [0, 𝜖) ⊆ U

(𝑦, 𝑟) ↦→ (𝑦, 𝑝𝑦 (𝑟)).

Let W =
⋃

𝑥∈𝑀 B𝑥 × [0, 𝜖′𝑥). Since we know the asymptotic expansion of 𝐹 from

Proposition 5.2.4, we get 𝐹 = 𝐹 ◦ 𝐺 : W →V is an asymptotic local isometry. □

Corollary 5.2.6. Let 𝐹 : 𝑀+ → 𝑁+ and 𝐺 : 𝑊 → 𝑀+ be local diffeomorphisms as

stated in Theorem 5.2.5. Assume there is a geodesic defining function 𝑟 for some

𝑔 ∈ [𝑔] and 𝐶 ≥ 0 such that

(5.2.19) |𝜕3
𝑟 (𝑠 ◦ 𝐹) (𝑝) | ≤ 𝐶 ∀𝑝 ∈ 𝑀 ⊆ 𝑀+,

where 𝜕𝑟 = 𝑔̄∇𝑟 is the gradient of 𝑟 with respect to 𝑔̄ = 𝑟2𝑔+ and 𝑠 is the geodesic

defining function of ℎ ∈ [ℎ] to make 𝑓 : 𝑀 → 𝑁 be a local isometry.

(i) If 𝐶 > 0, then 𝐺 can be chosen as an embedding with its image while𝑊 is small

enough.

(ii) If 𝐶 = 0, then 𝐺 can be chosen to be the identity map on𝑊. Particularly, 𝐹 is an

asymptotic local isometry.

Proof. Recall the definition of 𝐺 in (5.2.18),

𝐺 : W → U

(𝑥, 𝑟) ↦→ (𝑥, 𝑟 −ℛ(𝑥)𝑟3) = (𝑥, 𝑝𝑥 (𝑟)).
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LetW be small enough so thatW ⊆ 𝑀 × [0, 𝜖) for some 𝜖 > 0. If 𝜖 is small enough,

then 𝑝𝑥 (𝑟) is strictly increasing because for 𝑟 ∈ [0, 𝜖)

𝜕𝑟 𝑝𝑥 (𝑟) = 1 − 3ℛ(𝑥)𝑟2 > 1 − 3𝐶𝑟2.

Hence, 𝐺 is an open injective immersion for 𝐶 > 0. The case for 𝐶 = 0 is straightfor-

ward due to the definition of 𝐺. □

The following proposition gives geometric conditions to satisfy the presumptions

of Corollary 5.2.6.

Proposition 5.2.7. Let 𝐹 : 𝑀+ → 𝑁+ and 𝐺 : 𝑊 → 𝑀+ be local diffeomorphisms as

stated in Theorem 5.2.5. Assume there is a geodesic defining function 𝑟 for some

𝑔 ∈ [𝑔] and 𝑎 ≥ 0 such that

(5.2.20) (𝐹∗ℎ+ − 𝑔+) ( 𝑔̄∇𝑟, 𝑔̄∇𝑟) = 𝑂(𝑟𝑎).

Let 𝑠 be a geodesic defining function of ℎ ∈ [ℎ] to make 𝑓 be a local isometry.

(i) If 𝑎 = 0, there exists 𝐶 > 0 such that |𝜕3
𝑟 (𝑠 ◦ 𝐹) | ≤ 𝐶 on 𝑀.

(ii) If 𝑎 = 1, we have 𝜕3
𝑟 (𝑠 ◦ 𝐹) = 0 on 𝑀.

Proof. Consider the identification of 𝐹 near 𝑀 ⊆ 𝑀+ and 𝑁 ⊆ 𝑁+ in (5.2.2), U →

V, (𝑥, 𝑟) ↦→ (ℱ(𝑥, 𝑟), 𝐹𝑠(𝑥, 𝑟)). Then, (5.2.20) is equivalent to

𝑂(𝑟𝑎+2) = 𝐹𝑠,𝑟𝐹
𝑠
,𝑟 + 𝐹 𝑖,𝑟𝐹

𝑗
,𝑟 (ℎ𝑠 ◦ 𝐹)𝑖 𝑗 − (𝐹𝑠/𝑟)2,

where the right-hand side above is exactly from (5.2.5) while considering local condi-

tions of an asymptotic local isometry. Then, the Taylor expansion for the right-hand
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side gives the following.

𝑂(𝑟𝑎+2) =
2∑︁
𝑐=0

{ ∑︁
𝑐≥𝑏≥0

(𝑏 + 1) (𝑐 − 𝑏 + 1)
(𝑏 + 1)! (𝑐 − 𝑏 + 1)!𝐹

𝑠
(𝑏+1)𝐹

𝑠
(𝑐−𝑏+1)

+
∑︁

𝑐≥𝑏+𝑑≥0

(𝑏 + 1) (𝑐 − 𝑏 − 𝑑 + 1)
(𝑏 + 1)! (𝑐 − 𝑏 − 𝑑 + 1)! 𝑑!

𝐹 𝑖(𝑏+1)𝐹
𝑗

(𝑐−𝑏−𝑑+1) (ℎ(𝑑))𝑖 𝑗

−
∑︁
𝑐≥𝑏≥0

1
(𝑏 + 1)! (𝑐 − 𝑏 + 1)!𝐹

𝑠
(𝑏+1)𝐹

𝑠
(𝑐−𝑏+1)

}
𝑟𝑐,

where 𝐹𝑠(𝑏) , 𝐹
𝑖
(𝑏) and ℎ(𝑏) mean the 𝑏th-order partial derivative of 𝑟 at 𝑟 = 0 of 𝐹𝑠, 𝐹 𝑖

and ℎ𝑠 ◦ 𝐹 respectively. So, we have from above

0 = 𝐹 𝑖,𝑟𝐹
𝑗
,𝑟ℎ𝑖 𝑗 ,

0 = 𝐹𝑠,𝑟𝐹
𝑠
,𝑟𝑟 + 3𝐹 𝑖,𝑟𝐹

𝑗
,𝑟𝑟ℎ𝑖 𝑗 ,

𝑂(𝑟𝑎) = 2
3
𝐹𝑠,𝑟𝐹

𝑠
,𝑟𝑟𝑟 +

3
4
(𝐹𝑠,𝑟𝑟)2 + 𝐹 𝑖,𝑟𝑟𝐹

𝑗
,𝑟𝑟ℎ𝑖 𝑗,

(5.2.21)

where the third equality above is when 𝐹 𝑖,𝑟 = 0 at 𝑟 = 0. We know 𝐹𝑠,𝑟 = 1, 𝐹𝑠,𝑟𝑟 = 0 and

𝐹 𝑖,𝑟𝑟 = 0 at 𝑟 = 0 from Proposition 5.2.4. This completes the proof. □

Remark 5.2.8. It is straightforward to observe 𝐹 𝑖,𝑟 = 0 and 𝐹𝑠,𝑟𝑟 = 0 at 𝑟 = 0 from

(5.2.21) when considering Riemannian conformal classes [𝑔] and [ℎ]. However,

(5.2.21) alone still can’t simply imply 𝐹𝑠,𝑟𝑟𝑟 = 0 at 𝑟 = 0.
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