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Abstract

Most approaches to modeling rational inference do not
take into account that in the real world, organisms make
inferences under limited time and knowledge. In this
tradition, the mind is treated as a calculating demon
equipped  with unlimited time, knowledge, and
computational might. We propose a family of satisficing
algorithms based on a simple psychological mechanism:
one-reason decision making. These fast and frugal
algorithms  violate fundamental tenets of classical
rationality, for example, they neither look up nor integrate
all information. By computer simulation, we held a
competition between the satisficing Take The Best
algorithm and various more “optimal” decision procedures.
The Take The Best algorithm matched or outperformed all
competitors in inferential speed and accuracy. Most
interesting was the finding that the best algorithms in the
competition, those which used a form of one-reason
decision making, exhibited a startling “less-is-more™
effect: they performed beiter with missing knowledge than
with complete knowledge. We discuss the less-is-more
effect and present evidence of it in human reasoning. This
counter-intuitive effect demonstrates that the mind can
satisfice and seize upon regularities in the environment to
the extent that it can exploit even the absence of
knowledge as knowledge.

Toward Satisficing

How does an organism make inferences about unknown
aspects of the environment? Three directions have been
searched in the hope of an answer. The first, which we
might call the computational demon approach, equates
reasoning with extensive calculation. It applies to models
of mind which describe basic cognitive processes, such as
estimation, inference, or categorization, as resulting from
sophisticated computations. Examples of this are models of
estimation based on multiple regression, or models of
foraging behavior based on Bayes' Theorem. How can the
mind carry out such tough statistical problems that took
millennja of cultural evolution to conquer? This is where
the demon comes in. The computational demon, common
to all such models, is a consultant to the reasoning agent,
capable computing all possible futures based on its
extensive and infallible memory of all things past. While
this approach is flattering to the organism doing the
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reasoning, it may posit more computational power than is
plausible to assume exists in ordinary minds. Yet, such
models abound in human and animal psychology.

Another way to look at reasoning came about in the past
few decades and has had a powerful impact on psychology
ever since. This is the heuristics-and-biases approach
(Kahneman, Slovic & Tversky, 1982), which suggests that
reasoning is governed by simple heuristics that generally do
the right thing, but that may be systematically and wholly
misled. In principle, it is a good idea: do away with
computational demons, and replace them with simple
principles which may do the job equally well. A problem
with the heuristics-and-biases approach comes in practice
where most of the research focuses more on biases than
heuristics and the heuristics offered are notoriously vague
(Gigerenzer & Goldstein, in press).

The third and most promising view comes from Herbert
Simon (1956). This view states that good reasoning can
come about by simple algorithms that "satisfice".  The
word satisficing is a blend of the words satisfying and

sufficing, and means just that: finding near-optimal
solutions to difficult problems under the limited
computational constraints of ordinary minds. As with the

heuristics-and-biases approach, the computational demon is
replaced with something more psychologically plausible,
though here the resultant reasoning is quick and clean. as
opposed to quick and dirty. Another good feature of Simon's
satisficing idea is that it stems from a computational
tradition which favors using algorithms as models, instead
of just simple heuristics in isolation. Algorithms are casily
coded up as computer programs that a researcher can use to
put a model through its paces.

What are these simple, intelligent satisficing algorithms
capable of making near-optimal inferences? How fast and
how accurate are they? In this research, we look at the
effectiveness of a satisficing algorithm that operates with
simple psychological principles that satisfy the constraints
of limited time, knowledge, and computational might. At
the same time, it is designed to be fast and frugal without a
significant loss of inferential accuracy since it can exploit
the structure of environments. For instance, this algorithm
uses the “recognition principle”, a simple form of one-
reason decision making, which seems at first a liability but
turns out to an effective and efficient heuristic. In
simulating this and other algorithms computationally, we
came across a surprising “less-is-more" effect: a certain class



of satisficing algorithms made better inferences under
conditions of missing knowledge than with complete
knowledge. This effect is discussed and its existence is
proven to be tied to the recognition principle. We begin
with the inference task we used to measure the effectiveness
of various algorithms.

The Task

We deal with inferential tasks in which a choice must be
made between two alternatives on a quantitative dimension.
Consider the following example: Which city has a larger
population? (a) Hamburg (b) Cologne. Assume that a
subject does not know or cannot deduce the answer to the
question, but needs to make an inductive inference from
related real-world knowledge. How is this inference derived?
How can we predict choice (Hamburg or Cologne) from a
person's state of knowledge?

We assume that to make an inference about which of two
objects has a higher value, knowledge about a reference class
is searched. In our example, knowledge about the reference
class “cities in Germany” could be searched. The knowledge
could consist of probability cues. For instance, when
making inferences about populations of German cities, the
fact that a city has a professional soccer team in the major
league ("Bundesliga") may come to a person's mind as a
potential cue. That is, when considering pairs of German
cities, if one city has a soccer team in the major league and
the other does not, then the city with the team is likely, but
not certain, to have the larger population. It may be useful
to think of a knowledge state of a matrix of objects and
Cues.

a b c d
Recognition + + S~ [
Cue 1 + - ? ?
Cue 2 ? + R
Cue 3 - + ? ?
Cue 4 ? - - ?
Cue 5 ? ? - ?

Figure I: Possible knowledge state for 4 objects (a-d), 5
cues, and recognition knowledge.

Figure 1 models a possible limited knowledge state of a
person. Limited knowledge means that the matrix of objects
by cues has missing entries (that is, objects, cues, or cue
values may be unknown). She has heard of three German
cities, a, b, and c, but not of d (represented by three positive
and one negative “Recognition” values). She knows some
facts (cue values) about these cities with respect to five
binary cues. For a binary cue, there are two cue values,
“"positive” (e.g., the city has a soccer team), or "negative" (it
does not). "Positive" refers to a cue value that signals a
higher value on the target variable (for example, having a
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soccer team is correlated with high population). Unknown
cue values are shown by a question mark. Since she has
never heard of object d, the recognition value of d is negative
and all its other cue values are necessarily unknown,

The Environment

We tested the performance of the Take The Best algorithm
on how accurately it made inferences about a real-world
environment (for a more complete description of these
simulations, see Gigerenzer & Goldstein, in press). The
environment was the set of all cities in Germany with more
than 100,000 inhabitants (83 cities after German
reunification), with population as the target variable. The
model of the environment consisted of 9 binary ecological
cues (such as the soccer team cue), and the actual 9 x 83 cue
values.

Each cue had an associated ecological validity which is
indicative of its predictive power. The ecological validity of
a cue is the relative frequency, in a reference class, that
objects with positive cue values have higher target variable
values than objects with negative cue values (e. g., the
relative frequency that cities with soccer teams are more
populous than cities without teams in all possible pairs).
The ecological validity of the 9 cues we chose ranged over
the whole spectrum: from .51 (only slightly better than
chance) to 1.0 (certainty).

We simulated subjects with varying degrees of knowledge
about this environment. To model limited recognition
knowledge, we created subjects who recognized between 0
and 83 German cities. For each of these types of subject,
we created 500 simulated individuals, who differed randomly
from one another in the particular cities they knew. The
simulation needed to be realistic in the sense that people are
more likely to recognize large cities than small ones. We
performed a survey to get an empirical estimate of the actual
covariation between recognition of cities and city
populations. In a pilot study of 26 undergraduates at the
University of Chicago, we found that the cities they
recognized (within the 83 largest in Germany) were larger
than the cities they did not recognize in about 80% of all
possible comparisons. We refer to this value as the
“recognition validity”. This value was incorporated into our
simulations by choosing sets of cities (for each knowledge
state, that is, for each number of cities recognized) where the
known cities were larger than the unknown cities in about
80% of all cases. Thus, the cities known by the simulated
subjects had the same relationship between recognition and
population as did those of the human subjects.

Algorithms

We held a competition in which five decision algorithms,
specially designed for two-alternative inference tasks, were
matched against each other in a contest. The winner would
be the algorithm which made the most correct inferences in
the least amount of time. The first competitor is called the
Take The Best algorithm (Gigerenzer & Goldstein, in press),
because its policy is "take the best, ignore the rest".

The Take The Best algorithm assumes a subjective rank
order of cues according to their validities. We call the



highest ranking cue the "best" cue. Here are the steps of the
algorithm:

(1) Recognition principle: The recognition principle is
invoked when the mere recognition of an object is a
predictor of the target variable (here, population). The
recognition principle states: if only one of the two objects is
recognized, then choose the recognized object. If neither of
the two objects is recognized, then choose randomly between
them. If both of the objects are recognized, then proceed to
Step 2.

(2) Search for the values of the best cue: For the two
objects, retrieve the cue values of the best cue from
memory.

(3) Discrimination rule: Decide whether the cue
discriminates. The cue is said to discriminate between two
objects if one has a positive cue value and the other does
not.

(4) Cue substitution principle: If the cue discriminates,
then stop searching for cue values. Else, go back to Step 2
and continue with the next best cue until a cue that
discriminates is found.

(5) Maximizing rule for choice: Choose the object with
the positive cue value. If no cue discriminates, then choose
randomly.

One important feature of this algorithm is that search
extends through only a portion of the total knowledge in
memory (as shown by the shaded parts of Figure 1), and
stops immediately when the first discriminating cue is
found. Thus, the algorithm is well suited to situations of
limited time or knowledge. A seemingly irrational feature
of the algorithm is that it does not attempt to integrate
information, but uses cue substitution instead. This idea of
basing an entire decision on one single cue is what we call
one-reason decision making.  Note that the recognition
principle (Step 1), is a form of one-reason decision making.
We shall later see how this satisficing mechanism can
actually improve inferential accuracy.

Testing the Algorithms

With the help of some of our colleagues and statistician
friends, we created five, more traditional competitors to
compare to the Take The Best algorithm. In Tallying, the
number of positive cue values for each object is tallied
across all cues and summed to give a score for each city.
The city with the largest number of positive cue values is
chosen. Weighted Tallying is identical to tallying except
that the values added to each city’s score are weighted by the
respective ecological cue validities. The Unit-Weight Linear
Model adds one point to a city’s score for each positive
value, but subtracts one point for each negative cue value,
and chooses the city with the best score. Finally, the
Weighted Linear Model is similar its unit-weighted
counterpart, except that it adds and subtracts weighted values
(the ecological cue validities) instead of whole points.

We tested how well subjects using the various algorithms
did at answering questions of the kind, “Which city has more
inhabitants? (a) Heidelberg (b) Bonn.” Each of the 500
simulated subjects in each of the 84 types was tested on the
exhaustive set of 3403 city pairs resulting in a total of 500
x 84 x 3403 tests, that is, about 143 million for each
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algorithm. The number of correct inferences, and the
amount of cue values looked up were recorded for each
subject and algorithm.

Results

The competition had two quite surprising results, First of
all, even though the Take the Best algorithm used far less
information than the other algorithms (on average, less than
a third of all available cue values), it matched or
outperformed all other algorithms in the proportion of
correct inferences (Figure 2).

-Take the Best
-Weighted Tallyin
“Tallying

.75

[ 65

I L L

[ .55

Weighted Linear Mcdel [
Unit-Weight Linear Modelf

Proportion of Correct Inferences

0 10 20 30 40 50 60 70 80

Number of Cities Recognized

Figure 2: Less-is-more effect appearing for a variety of
decision algorithms.

The second, very surprising result was that the best
algorithms in the competition performed better with missing
knowledge than with complete knowledge, as the non-
monotonic upper curvas suggest. Notice how for these
curves, at any level of limited recognition knowledge of
cities, learning more German cities will eventually cause a
decrease in proportion correct, We call this intriguing
finding the “less-is-more effect”.

The Less-is-More Effect

What is behind the less-is-more effect? The most important
factor is the recognition principle. All the algorithms which
exhibit the less-is-more effect follow the recognition
principle. In the case of Take The Best, it is a defining
characteristic of the model, in the tallying variants, it arises
as a side-effect. The linear models violate the recognition
principle regularly; they often predict an unrecognized city to
be larger than a recognized one (to understand why, see
Gigerenzer & Goldstein, in press). Once this is realized, the
reason for the effect can be seen analytically. We will build
up to the more complicated analytic result from a simple
thought experiment.



Imagine three brothers who sit down to take a quiz on the
100 largest German cities. The youngest brother is
ignorant: he has never even heard of Germany before. The
middle brother is savvy: he recognizes 25 of the 50 largest
cities from what he has overheard from day to day. The
eldest brother is quite the scholar: one day he took it upon
himself to memorize the names of all the cities on his map
of Germany. None of the brothers knows anything
significant about the cities other than their names. Now
suppose all three brothers adopt the same strategy for taking
the test. Each decides that he will use the recognition cue
wherever he can: in situations where he is given one city he
recognizes and one city he does not, he will always pick the
city he recognizes. In all other situations -- two
unrecognized or two recognized cities -- he will just guess.

Consider how the brothers will perform. Clearly, the
youngest brother will have to guess on every question -- his
long-run score will be 50% correct. To the middle brother,
the test will look a little different. In 50% of the questions
he will be able to use the recognition cue and in the other
50% he will not. As luck would have it, the recognition
validity for the middle brother is 80% (a realistic
assumption, as our survey showed). By guessing on half
the questions and using the 80% successful recognition cue
on the other half, a simple calculation shows that the middle
brother will end up getting 65% of all questions correct.
The eldest and most knowledgeable brother, never being able
to activate the recognition cue, will have to guess on every
question and thus score 50% correct. Figure 3 shows how
the three brothers, and all intermediate knowledge states,
would perform in this domain.

0.7 ‘ | "
E‘g
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R ]
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(&)
g 0.62 brother
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<
3 1 1
E 0.54 Youngest Eldest
brother brother \]
050 25 5 75 |

Proportion of objects recognized

Figure 3: Performance for the three brothers and all
intermediate knowledge states.

It becomes clear that the less-is-more effect is brought
about by the variable applicability of the recognition
principle in various knowledge states. When the recognition
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cue is not able to be activated, the system is forced to guess.
This thought experiment may explain why an elder brother
with no real knowledge beyond recognition may perform so
poorly, but what about the simulation results, where a less-
is-more effect persisted even when the simulated subjects had
knowledge in the form of actual cue values? The following
proof explains.

Suppose the number of objects (e.g., cities) in the
reference class is N. Let n be the number of objects
recognized by a subject. These two variables determine the

proportions of question types that will appear on a quiz. In
n\N-n

recognized and the other not. In {ﬂ—_—" M) of the

N N-1
queslions both cities will be unrecognized, whereas in

( N) NoT I of the questions, both cities will be recognized.

When both cities are unrecognized, there is nothing to do
but guess, and in the long run, half of these guesses will be
correct. If one city is recognized and the other not, the
recognition principle says to pick the recognized city. Let o
be the probability of choosing the right answer via the
recognition principle. If both cities are recognized, the
inference has to be made using knowledge other than mere
recognition. Let f be the probability of getting the right
answer in this case. If o and f§ are both roughly constant
and independent of n, the following function f{n) gives the
expected proportion of correct inferences

son =2 ) =)o+ (MR ARE  + (R

N N-1 ]2 N—I

By analyzing the graph of ¢(n), the continuous version of
fln), one sees that the less-is-more effect occurs if this curve
has a maximum between n=0and n =N - 1/2. Solving the
equation ¢(n) =0, when ¢'(n) is simply the first derivative
of ¢(n), one locates the maximum of ¢(n) at:

-(1-28-2N + 4aN)
2(1-4a +2p) *)

A simple calculation shows that when a=p, the location
of the curve’s maximum is equal to N-1/2.  Either
increasing o or decreasing f from this point causes the
fraction (*) to decrease, which implies the maximum of ¢(n)
will be displaced to the left. From this, we can conclude that
there will be a less-is-more effect whenever & > J3, that is,
whenever the accuracy of mere recognition is greater than the
accuracy achievable when both objects are recognized.

Discussion

Two surprising results came out of this competition
between algorithms. One is that a non-standard, satisficing
algorithm performed as well as or better than all other
algorithms in the competition, while looking up only one-
third of the knowledge used by the competitors. The second
was that the best algorithms in the competition did better
with missing knowledge than with complete knowledge.
The strong force most accountable for both these results was
the simple and bold recognition principle, a form of one-
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reason decision making. The first result is an existence
proof that a satisficing algorithm can do as well
computationally-expensive  models that use more
information. The second suggests that, given the correct
environment and an organism that follows the recognition
principle, the less-is-more effect ought to emerge in the real
world.

How difficult is it to find a less-is-more effect in real
human behavior? Doing so depends on finding an
environment with the correct structure, and people who
apply the recognition principle. It is a relatively simple
matter to find a reference class where a less-is-more effect
should occur: simply find one where recognition is a better
predictor than the environmental cues, and where the
ecological validities of recognition and the cues do not
change drastically as a more and more objects become
recognized. This information about environment structures
could be obtained from surveys and interviews about what
objects people recognize, and how good they are at making
inferences about these objects. Several experimental studies
(Goldstein, 1994; Goldstein & Gigerenzer, 1996), show
subjects exhibit a high degree of recognition principle
adherence, even in cases where they are given information
which suggests doing otherwise. The analytic results we
have denived allow one to predict when and to what extent
the less-is-more effect will occur.

The results of this study paint a new picture of the mind,
not a picture where the mind is a computational demon, and
not one where it is doomed to follow shoddy heuristics that
lead it astray. Rather, it paints the mind as a time-pressed
scavenger, one which uses the structures of natural
environments to the degree that it can depend on a single,
well-chosen cue as opposed to the costly aggregation of
many, and one that can exploit any information -- even the
very absence of knowledge -- to make accurate inferences
about unknown features of the world.
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