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ABSTRACT 

Observers of restructured electricity markets emphasize: (1) Spot prices are extremely 
variable, because electricity is not storable; (2) long-dated forward markets rarely exist – 
those in California were a single day ahead.  Actually, the first observation implies the 
second.  With the aid of a simulation model, which replicates the seasonality, 
heteroskedasticity, and serial correlation in load, the precise constellations of forward 
prices can be deduced in a setting of perfect competition, risk neutrality, and best 
possible forecasting.  Even at extreme conditions in the idealized spot market, the 
constellations of these forward prices converge to long-run seasonal means at the horizon 
of just a few days.  Another reason long-dated forward markets for electricity are 
redundant is the futures market for natural gas on NYMEX, functioning at a horizon 
beyond two years, as demonstrated by analyses of forecasting power using the 
simulation data as well as the data from NYMEX and California over 1998-2000. 
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1. INTRODUCTION 

An often-noted consequence of restructured electricity markets has been price volatility.  Some of 

the movements in spot wholesale prices are predictable, such as those resulting from diurnal or 

seasonal cycles in loads or input availability, and must have been present implicitly in the 

management of vertically integrated utilities.  Some other volatility is due to truly unpredictable 

events.  Other commodities experience “weather shocks,” but, as is also often noted, the short-

run constraints on generation, the fixing of retail prices, and the inability to store electricity 

combine to create large spot price movements out of weather shocks.   

Economists instinctively believe that a full constellation of forward prices, stretching hour by 

hour to the distant horizon, would ameliorate the volatility in electricity spot prices.  

Distribution-oriented utilities could contract at these long-term prices to match their obligations 

to retail customers, while generators could use these forward prices as a signal for the timing of 

maintenance, investment, and so forth.  Actual forward markets for electricity have nowhere near 

this horizon.  Although some year-ahead contracts have been observed in England and Wales 

(Green, 1999), futures markets for electricity have failed even on the New York Mercantile 

Exchange (NYMEX), the most successful energy futures exchange (EIA, 2002).  In California, the 

Power Exchange (CalPX) traded merely one day ahead while the distribution-oriented utilities 

signed few long-term contracts (Bushnell, 2004). 

Because actual exchanges are costly to operate, economists’ wish for a full constellation of 

forward prices may not be appropriate.  Many of those forward prices could be redundant for all 

practical purposes.  Is the forward price for electricity delivered during hour 18 on August 1 

three years from now likely to differ from the corresponding price, as of today, for August 1 two 

years from now or from hour 18 on August 2 three years from now?  Should a weather shock 

occur later today, are those three distant forward prices likely to change by tomorrow?  If not, 

one of those three forward prices serves for the other two as an allocative signal or as a hedging 

mechanism.  Furthermore, do any of these three forward prices add information beyond a 

general estimate of a normal “spark spread” and the futures price for natural gas in August two 

years ahead already traded on NYMEX?   

The answers to these questions about redundant prices depend on the constellation of 

electricity forward prices themselves, specifically, how quickly they converge to some long-run 

averages and how closely their temporal movements relate to those in the futures market for a 

related commodity.  But electricity forward prices do not exist sufficiently far ahead to 
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demonstrate that even further ahead they would be redundant.  This situation exposes a 

fundamental issue, one much more general than electricity: the endogeneity of whether prices 

can be observed.  In this paper, we suggest three approaches to address this endogeneity issue.  

A first approach to the lack of actual forward prices for electricity would be to find another 

commodity sharing many features with electricity yet having an actual forward market at a 

longer horizon.  The best analogy is the lowly potato.  Although storable for a few months after 

the fall harvest, potatoes are not carried over to the next cropyear.  That crop, planted in the 

spring, is subject to considerable weather shocks, which result in prices differing by a factor of 

five to six from year to year (Paul et al., 1981).  Before 1952, potato prices were controlled by 

many government programs; a “restructured” environment prevailed from 1952 through the mid 

1970s; since the mid 1970s, the increasing importance of processed potatoes and the small 

number of processors have made market power the dominant issue.  During the twenty-five 

years of relatively free trading, NYMEX offered a potato futures market (the demise of which 

encouraged the exchange to try energy futures).  That futures market was controversial (Gray, 

1964), for dubious reasons that any economist familiar with special interests in electricity would 

recognize, even though the futures prices were sensible by any ex ante standard (Tomek and 

Gray, 1970).  Most interesting for an analogy with electricity, the spring-time futures price for 

November delivery was essentially constant from year to year, regardless of the spot price of 

potatoes at the same moment.  As Gray and Tomek (1971) and Gray (1972) emphasized, the 

futures prices for November ought to have been constant at that horizon, because none of the 

previous weather conditions carried over to the new crop by way of potato inventories and no 

one could know in the spring whether growing conditions during the summer would be good or 

bad.  Only as those weather conditions transpired did the harvest-time futures prices succeed in 

forecasting the ultimate harvest-time spot price.  For corn, a commodity more storable than 

potatoes, Tomek and Gray (1970) presented evidence that futures prices more than one year 

ahead differ from year to year, which gave them an allocative role and a reason to exist.  By this 

analogy, the constellation of forward prices for electricity, a commodity less storable than even 

the potato, should not go as far ahead as potato futures prices. 

A second approach, one followed in this paper, is to construct an idealized electricity market, 

with known parameters in the stochastic processes as representing the weather and generators’ 

cost functions.  In the idealized setting, the constellation of forward prices can be calculated as far 

ahead as desired.  Should the profile of forward prices in the idealized setting quickly converge 

to long-run averages, many prices are redundant because they could be inferred from others.  

The presumption would be that long-dated contracts would be redundant in actual electricity 

markets too.  Similarly, the price of natural gas, one of the major inputs to electricity generation, 
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can be represented by a known seasonal and stochastic process, albeit with patterns different 

from those for electricity loads.  In these conditions, the constellations of forward prices for 

natural gas can also be determined as far ahead as desired.  If prices of electricity and natural gas 

are related in a predictable way, as they are in actual settings as well as the idealized setting, a 

long-dated forward price of electricity can be duplicated from an estimate of this cross-

commodity price relationship and existing forward prices of natural gas.  If those “synthetic 

prices” forecast the subsequently realized spot price of electricity as accurately as equally 

distanced forward prices of electricity, which, in the idealized setting, is the best possible forecast, 

the electricity forward prices are redundant.  

The ability of long-dated synthetic prices to forecast the subsequently realized spot price can 

also be compared to the forecasting ability of short-dated forward prices, such as the day-ahead 

market of the CalPX.  The forecasting abilities of long-dated synthetic forward prices and the 

observed short-dated forward price of electricity place bounds on the forecasting ability of long-

dated forward prices of electricity, had they been observed.  Presumably, a long-dated forward 

price of electricity, had it existed in California, would have been more accurate than the synthetic 

price in predicting subsequent spot prices of electricity for it should have reflected information 

about factors other than the price of the primary input to generation, while it would have been 

less accurate than the short-dated forward price reflecting the information available at the period 

closer to dispatch.  Should the long-dated synthetic forward price be only slightly less accurate as 

a forecast than the existing short-dated forward price of electricity, as will be shown in the final 

section here for the NYMEX natural gas and the CalPX market over 1998-2000, separate long-

dated forward markets for electricity would not have added much to the existing forward prices 

of natural gas and, hence, would have been redundant.  This bounding through forecasting 

ability is a third approach to the endogeneity of observed prices. 

Of course, the idealized market in this paper is much less complicated than actual electricity 

markets, yet it is more complicated than the setting supposed in the typical model of hedging or 

oligopoly pressure.  Previous studies of hedging pressure have not contemplated whether long 

positions in the futures market for the principal input commodity would be effective substitutes.1  

Similarly, studies of oligopolistic power have not considered how the opportunity to trade 

forward in input markets could have affected the exercise of oligopolistic power.  Moreover, 

these studies typically consider a simple two-period model, in which the number and horizon of 

forward trading and the spot price volatility are exogenous.  In this restricted setting, studies of 

oligopolistic pricing have suggested, both theoretically and empirically, that the creation of 

                                                      
1 For example, see Bessembinder and Lemmon (2001) or Longstaff and Wong (2004). 
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forward markets mitigates the degree of oligopolistic pricing.2  However, without specifying the 

term length of the forward contract, these studies imply that existing short-dated forward 

markets, such as the day-ahead market of the CalPX, should be as effective as long-dated forward 

markets in mitigating the degree of oligopolistic pricing.  Similarly, studies of hedging pressure, 

although capable of examining the equilibrium relationship between the spot and a single 

forward price, cannot address the questions of the sensible number of forward markets and how 

far ahead they should cover.  In contrast, the price variance is endogenous to the idealized 

market model as a function of the parameters characterizing the underlying stochastic factors, 

such as weather and fuel price, and is determined simultaneously with the natural term length of 

forward contracts. 

2. DESCRIPTION OF THE IDEALIZED ELECTRICITY MARKET 

2.1 A model of an idealized electricity market 

The model of an idealized market needs to be constructed so that the resulting price series share 

features observed in actual settings such as California.  In particular, the model should 

emphasize the seasonal and diurnal variations, heteroskedasticity, and serial correlation of the 

electricity load resulting from those of the underlying weather as well as the convexity of the 

electricity supply curve.  The weather also affects the price dynamics of key inputs to electricity 

generation such as natural gas or hydro resources, yet the storability of these input commodities 

likely results in the distributions of their prices being different from those of electricity load.  The 

simulation model seeks to accommodate these patterns with a manageable number of parameters 

so that the sensitivity of forward price profiles to these parameters is traceable.   

The model constructed here is similar to a general equilibrium model of Bessembinder and 

Lemmon (2002) in their analysis of optimal hedging in an electricity forward market, except for 

their assumptions of risk-averse traders with an identical risk-aversion coefficient and of only one 

delivery period forward with trading of that forward contract on only one occasion.  Some of key 

structures imposed on the idealized electricity market include: 

• Generating and retailing firms trade wholesale electricity hour by hour for a full constellation 

of delivery hours, as far ahead into the future as can be imagined. 

                                                      
2 See, for example, Powell (1993), Green (1999) and Wolak (2000) for mitigation of oligopolistic pricing through forward 
trading in the restructured electricity markets and Allaz (1990) in a more general case.  In an empirical analysis of 
Australian (NEM1) market by Wolak (2000), the number and the term length of forward markets as well as forward 
position of each trader are exogenous to the model. 
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• Retailing firms meet exogenously determined hourly retail load at a fixed retail rate.3  The 

complications of intertemporal substitution in demand are absent.  

• Both retailers and generators are risk-neutral and price-taking. 

• The aggregate cost function is characterized by, TC(Q) = FC + cQ
c

bw
where the first and 

second term are the fixed and variable cost, respectively, Q is the industry’s aggregate 

supply, and w is the price of the primary input, fuel.  The multi-period complications of 

ramping up or down are not present.  This specification of the aggregate cost function allows 

a single parameter, c, to represent the degree of non-linearity (Wright, 1979).   

 

Under these circumstances, the equilibrium spot price in any hour t is:  

 

 0
tP  = ( ) 1−cD

tt Qbw  (1) 

 

where 0
tP  is the spot price of wholesale electricity, D

tQ  is the aggregate retail demand, and the 

subscript t represents that the variables are in hour t.   

In (1), only the fuel price and the load level vary over time, implying that the supply curve is 

constant over time aside from the temporal variations in the fuel price.  Of course, in reality, 

electricity is generated from various resources whose availability varies across seasons.4  To 

accommodate such seasonal variation, a stochastic component is added to (1): 

 

 Pt = 0
tP (1 + σAS e1,t) e1,t = ρAS e1,t–1 + u1,t (2) 

 

where u1,t is independently, identically distributed (iid) N(0, 1) and σAS, and ρAS are parameters.  

In (2), 0
tP = ( ) 1−cD

tt Qbw  should be considered as representing the long-term average supply curve, 

any deviation from which is mean-reverting and has variance proportional to 0
tP .   

In (1) and (2), the spot electricity price is endogenously determined, given two exogenous 

factors, D
tQ  and wt.  With the fixed retail price, the retail electricity demand is perfectly price 

                                                      
3 A load exogenous to the model is consistent with the extreme price inelasticity of retail demand observed in California 
and many other regions where the retail price has been fixed even after the restructuring of the industry. 
4 For example, roughly 40% of electricity in the Northern California is generated from hydroelectric resources, supply of 
which is more abundant during the winter and early spring than in the rest of the year.  Supply capacity of fossil fuel 
generation units also fluctuates due to required maintenance, either periodically or randomly.  Such supply seasonality 
can be incorporated into (1) and (2) by allowing parameters to be time-variant.  Such a modification will not alter the 
model’s implication for the sensible number of forward markets. 
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inelastic and is largely determined by weather conditions such as temperature.  We specify the 

seasonal and diurnal cycles of the electricity load by the following sinusoidal function, using a 

standard representation of weather (Hansen and Driscoll, 1977),5 

 

 DT
tQ = 0DT

tQ (1 + σQF e2,t)  e2,t = ρQF e2,t -1 + u2t (3) 

 0DT
tQ = ⎟
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where u2,t  ~ iid N(0, 1) and α’s, σQF, and ρQF are parameters.  In (3), 0DT
tQ  creates the seasonal 

and diurnal cycles in retail demand as a function of two variables; h(t), the hour count of 

observation t starting from January 1, hour 1 of the year, and, WKENDt, a weekend dummy.  

Since these two variables will not replicate the complexity of electricity load dynamics in the real 

world, a stochastic term 0DT
tQ σQFe2,t is added to create the deterministic load, DT

tQ , which is 

mean-reverting, with σQF determining the variance of DT
tQ  in ratio to 0DT

tQ .  These properties of 

the load are known to the market to prior to t.6   

The realized load deviates from the deterministic pattern due to factors unknown prior to t.  

This deviation is specified in a similar manner, 

 

 D
tQ  = DT

tQ (1 + σQA e3,t) e3,t = ρQA e3,t–1 + u3,t (4) 

 

where u3,t  ~ iid N(0, 1) and σQA and ρQA are parameters.7  

The fuel price, wt, is modeled as, 

 

 wd(t) = w0,d(t) + σw,d(t) e4,d(t) e4,d(t) = ρw e4,d(t)–1 + u4,d(t) (5) 
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 σw,d(t) = σw
2

0

)(0 1 w
tdv

ρ
γ

β
−  

                                                      
5 The specification of the deterministic load in (3) is rather restrictive as it assumes the degree as well as the shape of 
diurnal variation to be identical across seasons.  It can be replaced with more flexible functional form; yet, because this 
seasonality would be known to the market, this more complicated specification will not alter the model’s implications for 
the temporal dynamics of electricity forward prices. 
6 Here, e2,t is stochastic in a statistical sense in that it is independent of 0DT

tQ , yet is deterministic as it is assumed 

observable by economic agents. 
7 A load variance proportional to the load level is evident in California, as shown in figure 1. 
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where w0,d(t) and vd(t) are, respectively, seasonal variations in the long-run expected value and 

variance of the fuel price, u4,d(t) ~ iid N(0, 1), β’s, γ’s, σw, and ρw are parameters, and the subscript 

d(t) represents that the variables are for day d(t).  The two sinusoidal functions acknowledge that 

the price of the primary input to electricity generation exhibits a seasonal trend, albeit in a pattern 

different from that of the electricity load.  Specifically, the temporal price movements of a 

storable commodity with an efficient futures market, such as natural gas, should be characterized 

by an essentially linear increase at the rate of the storage cost (plus interest) during the period 

with positive inventory (Williams and Wright, 1991).  (5) does not replicate such linearity 

completely; rather, it smoothes the seasonal variation of the equilibrium price without storage 

with a relatively large price drop at the end of the peak-demand period, after which inventory 

implicitly starts to build up.  In addition, the price of a storable commodity is likely less volatile 

when inventory is ample, for shocks can be absorbed by releasing inventory.  Separate sinusoidal 

functions in (5) seek to accommodate these features.  The stochastic component, σw,d(t) e4,d(t), 

creates the realized fuel price, which is mean-reverting and is heteroskedastic with variance 

determined by the function vd(t). 

2.2 Forward price as the best, unbiased forecast  

In this idealized setting, suppose that forward trading takes place k periods prior to the actual 

dispatch, where k is any non-negative integer.  Under the risk-neutrality and price-taking 

assumptions, an efficient forward price should form the best possible forecast of the spot price 

based on the information available at the time of forward trading.  That is, the k-period-ahead 

forward price of the electricity for delivery at t is, 

 

 Ft,t–k = Et–k[Pt] (6) 

 

where Ft,t–k is the equilibrium forward price with the first and second subscripts representing the 

delivery and trading period, respectively, and Et–k[⋅] denotes that the expectation is conditional on 

information available at t – k.  To clarify the notation, we emphasize that k is a set of non-negative 

integers rather than a single number and, for each delivery hour t, there are as many forward 

prices as the number of values in this set.  That is, there are J forward prices with 
jkttF −,  where kj 

is one value in the sequence {k1, …, kJ}.  The spot price at t is merely one in the constellation of 
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prices observed at t, the price with k = 0.8  We further assume that the set of k is identical for all t 

whereas it often differs from one delivery hourly to another in real markets.9  The spot price at t 

is thus also the culmination of a time-series first recorded kJ periods previously. 

With the aggregate supply function as specified in (1) and (2), the conditional expectation of 

the spot price, for any combination of t and k, is, 

 

 Et–k[Pt] = b Et–k[wd(t)] Et–k[ 1−c
tQA ] (1 + σAS

k
ASρ e1,t–k) (7) 

 

where the independence of u1,t, u3,t and u4,t and E[u3,t–s] = 0, ∀ s = 0, …, k – 1, are used.  In (7), the 

conditional expectation of the fuel price is, 

 

 Et–k[wd(t)] = w0,d(t) + σw,d(t) 
),( kt

w
δρ  e4,d(t–k) (8) 

 

where δ(t, k) = d(t) – d(t – k).  The error in forecasting the fuel price is, 

 

 wd(t) – Et–k[wd] = σw,d(t) ∑
−

=
−

1),(

0
)(,4

kt

j
jtd

j
w u

δ

ρ  (9) 

 

Since u4,d(t)–i ~ iid N(0, 1) ∀ i = 0, …, δ(t, k) – 1, the forecast error has its conditional distribution, 

 

 wd(t) – Et–k[wd(t)] | ℑt-k ~ N ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−

2

),(2
2

)(, 1
1

,0
w

kt
w

tdw ρ
ρ

σ
δ

 (10) 

 

where ℑt-k is the information set available at t – k. 

An analytic expression for Et–k[ 1−c
tQA ] in (7) is difficult to obtain due to the non-linearity 

within the expectation operator.  Hence, for each t and k, it is calculated numerically by 

generating 1,000 values of QAt from its conditional distribution,   

 

                                                      
8 The definition of a spot price could be extended to, say, a month-long block of hours. 
9 For example, in the CalPX day-ahead market, the bids for all 24 hourly blocks were closed at 7AM on the day previous 
to the actual dispatch.  The CalPX also operated an “hour-ahead” market where the bids for 24 hourly blocks were closed 
on a rolling basis three hours before dispatch.  In January 1999, that market was reconfigured and called the “day-of” 
market, where bids were closed three times a day: 4PM of previous day for delivery at hours 1-10, 6AM for delivery at 
hours 11-16, and noon for delivery at hours 17-24).  In this trading sequence, the value of k corresponding to the day-
ahead market ranges between 17 and 41 for hour 1 though hour 24 and that corresponding to the day-of market ranges 
between 5 and 18 hours depending on the delivery hour.  There was no trading during the time between the two auctions.   
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and averaging the associated 1,000 values of 1−c
tQA .  In (11), QFt,t–k is the k-period-ahead forecast 

of period t load with its expression, 

 

 QFt,t–k = Et–k[QAt] = DT
tQ (1 + σQA

k
QAρ e3,t–k) (12) 

 

The model as specified in (1) through (5) has more state variables and parameters than 

models of electricity price dynamics suggested in previous studies, in which a common approach 

has been to model directly the stochastic dynamics of the electricity spot price with a few 

parameters, without including the companion stochastic processes labeled here the “fuel price” 

and “electricity load” (for example, Burger et al., 2004; Escribano et al., 2002; Etheir and Mount, 

1998; Knittel and Roberts, 2005; Lucia and Schwartz, 2002; and Villaplana, 2003).10  Implicit in this 

approach is the assumption that the stochastic dynamics of the spot electricity price can be 

expressed analytically in reduced-form.  In contrast, in the idealized market model, the dynamics 

of the electricity spot price are endogenous, being determined by non-linear interactions of the 

three underlying factors whose stochastic dynamics are specified with twenty-six distinct 

parameters.11  However, these differences among models are in degree rather than kind.  All 

these models imply constellations of forward prices, the variability within which speaks to the 

sensible number of forward markets. 

2.3 Descriptive analyses of the simulated electricity data 

We constructed time series of the simulated electricity prices with different sets of the parameter 

values as shown in table 1.  These time series are examined for sensitivity to: (i) the convexity of 

aggregate supply, (ii) the persistence of deviations from the deterministic load, fuel price, and 

long-run average supply curve, and (iii) the variance of the deviations from the deterministic 

load and fuel price.  The intercept in supply function (1) is set as b = 10–2c+1 in all scenarios so that 

the price according to the long-run average supply remains ten times the fuel price when D
tQ = 

100.  All variance parameters (σi) are multiplied by 21 iρ− , i = QF, QA, w, AS, so that the 

                                                      
10 Pirrong and Jamakyan (2001) and Burger et al. (2004) follow an approach similar to ours by modeling the stochastic 
dynamics of underlying factors and thus electricity spot prices as a (non-linear) function of these underlying factors. 
11 Due to this non-linearity, forward price formula in the idealized market cannot be expressed in a closed form, implying 
that the studies following a reduced-form approach are inherently subject to errors in approximating true stochastic 
dynamics of electricity spot prices.  
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parameters before multiplying by this term represent the variances of the three stochastic 

components in proportion to the corresponding deterministic values.  For each set of parameter 

values, 8,640 hourly observations were generated in one replication.12   

Figure 1 and table 2 present the key distributional features of the simulation data and 

compare them with those of California data.13  In figure 1, the idealized market model with the 

base parameter set creates seasonal and diurnal variation of load and load variance similar to 

those observed in California.  Descriptive statistics of the simulation data in table 2 illustrate that 

the parameter values in table 1 create plausible seasonal cycles in the mean and variance of the 

simulated fuel price.  The average price is the lowest in April and gradually increases until it 

reaches the annual high in the following March.  This gradual increase of the average price and 

rapid drop at the end of the high demand season is appropriate for a storable commodity such as 

natural gas.  The shape of the seasonal heteroskedasticity is also plausible for a storable 

commodity: Price variance is proportional to the price level while it is inversely related to the 

level of inventory as implied by the seasonal price cycle.  

These seasonal and diurnal variations are amplified into the electricity spot price through the 

supply function, quadratic in the base parameter case (c = 3) according to table 2.  The simulated 

electricity spot prices are highly volatile with the sample standard deviation ranging from 47% to 

above 60% of the mean spot price in the base parameter case, depending on hour of the day and 

on the season.  Forward prices as well as spot price are positively skewed, with skewness 

increasing in the values of the cost function and variance parameters.14 

The load and fuel price forecasts in (7) and (12) and the electricity forward price obtained by 

the method of numerical integration are, by construction, the best possible forecasts of their 

corresponding values in the spot market.15  Nevertheless, large differences between the spot and 

previous forward prices for the same delivery period are not infrequent.  The standard deviation 

of the price forecast error ranges from 8.387 to 12.810 or 75.1% to 85.5% of the mean of 24-hours-

ahead forward price (k = 24) in base parameter case, depending on the hour of the day and the 

season.  In other words, the forecasting performance of the forward prices is poor, even at such a 

short horizon, the result of the very properties causing the highly volatile spot prices. 

                                                      
12  In the simulations, we assumed 30 days per month for all twelve months of a year, resulting in 8,640 hourly 
observations per year. 
13 The California Independent System Operator (CAISO)’s website (www.caiso.com), includes, for Hour 1 of April 1, 1998 
through Hour 24 of November 30, 2000, the actual and day-ahead forecast load for CAISO’s control area (covering 
roughly 70% of the state), hourly zonal electricity prices from the CAISO’s real-time imbalance energy (spot) market, and 
the day-ahead forward market operated by the CalPX for NP15 and SP15, the two major market regions within the 
CAISO control area. 
14 The positively skewed distribution of electricity prices is emphasized in Knittel and Roberts (2005). 
15 We verified this numerically: For each set of the underlying parameter values, the average, over 1,000 replications, of 
the sample means of the forecast errors is not significantly different from zero for the three variables by a t-test using their 
Monte Carlo standard errors.   
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3. TEMPORAL MOVEMENTS OF THE SIMULATED ELECTRICITY FORWARD 
PRICES  

If two prices are closely related, one price can be deduced from the other.  Thus, the sensible 

number of forward markets and how far ahead they should cover from the perspective of their 

price signaling function depend on the predictability of the price relationships among the 

forward contracts.  Specifically, for these two interrelated questions, we seek answers in the 

temporal movements of the following three price relationships: (1) prices of electricity forward 

contracts for the same delivery traded in distinct periods some time ahead, (2) prices of electricity 

forward contracts for distinct delivery periods traded in the same period, and (3) the relationship 

between the forward prices of electricity and those of the major input to generation. 

3.1 Movements of electricity forward price and spread 

For the first two of these three price relationships, if forward prices of electricity for delivery at a 

particular period are closely related between two distinct trading periods or if forward prices for 

two distinct delivery periods are closely related at a particular trading period, one price is 

redundant, as it can be deduced from the other.  Thus, the number of explicit forward markets 

necessary for price signaling is reduced to the extent that possible forward prices are closely 

related.   

Figure 2 plots one particular realization, out of many possible sequences, of the simulated 

forward prices for delivery at August 1, hour 18 traded during a week-long period before 

dispatch, contrasting it with the movement of spot prices hour-by-hour during the 168 hours of 

the same week.16  The figure illustrates how the price of a particular forward contract moves over 

time in response to the underlying shocks, which are manifest in the contemporaneous 

movement of spot prices.  In the figure, the forward price, in the base parameter case, stays 

virtually constant until close to dispatch (panel b), even though the market experiences large 

shocks around two and five days before August 1, hour 18 (panel a).  Changes in the forward 

price are visible only within 48 hours of delivery and diminish with the time to maturity.  The 

figure can be extended to cover a longer horizon, yet, we can safely presume no noticeable 

movements before the week shown in the figure.  

The sensitivity of the forward price movements to the values of the parameters in the data 

generating process (DGP) in figure 2 is intuitive.  The changes in the forward prices between two 

                                                      
16 This particular period is chosen for illustration since the spot electricity price as well as forward prices for August 1, 
hour 18 is inherently the most volatile according to the data generating process of the simulation data.  However, since 
the spot and forward prices shown in figure 2 are standardized to their long-run averages, the implication for the sensible 
number of forward markets would not differ were other delivery periods used.  
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trading hours are larger for the series generated with large variance parameters (σ’s = 0.20) or 

cost function parameter (c = 5) while they become visible earlier with higher AR(1) parameters 

(ρ’s).  The forward prices start fluctuating earlier when ρ’s = 0.95, yet no earlier than 4 days 

before delivery.   

From the temporal movements of the forward price shown in figure 2, it can be easily 

inferred, for the second of the three price relationships, that the spread between forward prices 

for two distinct delivery periods does not exhibit any noticeable movements until a few days 

before delivery for the first of the two contracts.  Clearly, many long-dated forward prices, even 

those for merely three or four days to maturity, are redundant, because from one price can be 

deduced others.  

These implications from the temporal movements of the forward price are not an artifact of 

the realization shown in figure 2.  Figure 3 plots the standard deviation, over 1,000 realizations, of 

the forward price standardized to the deterministic price at each trading hour for the same 168 

hours preceding hour 18 of August 1.  It illustrates how the forward prices for this particular 

delivery hour vary at each trading hour over the 1,000 realizations and how this variation 

changes over the 168 hours.  In the base parameter case, the standard deviation stays close to zero 

until around 36 hours prior to delivery and increases non-linearly after this point as the trading 

hour approaches delivery.  In other words, for all 1,000 realizations, 36-hours-ahead and longer-

dated forward prices for delivery on August 1 hour 18 do not deviate from the deterministic price 

level.17  As for the sensitivity to the parameters in the DGP, the forward price variation across 

1,000 replications is higher when the σ’s = 0.20 or c = 5, yet, in either of these two cases, the 

variation is essentially zero 36 hours before delivery and earlier.  When the ρ’s = 0.95, the 

standard deviation starts rising earlier, but no earlier than 48 hours before delivery.  

Temporal movements of forward prices necessarily depend on the DGP of the simulation 

data, especially the persistence of the three underlying stochastic factors.  Depending on the 

degree of the persistence, current deviations from the long-run averages of fuel price, load, and 

aggregate supply curve deliver information about their future states.  Specifically, the current 

forecasts of the future states of these three factors are given as their long-run expected levels 

multiplied by the current deviations from the long-run expectations discounted at the rates of the 

autoregressive coefficients.  Because the discount factor converges to zero at an exponential rate 

with time to maturity of the contract, the current deviations become less important with the 

                                                      
17 The standard deviation jumps up at 18 hours prior to delivery due to the particular trading sequence assumed in the 
idealized setting: a daily series of the spot price of fuel input is observed at hour 1 every day, 18 hours prior to the 
realization of the spot electricity price for hour 18 delivery.  Consequently, electricity forward prices for hour 18 delivery 
traded within 18 hours of delivery representing the variation in the spot price of fuel exhibit large variations across 
replications. 
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forecast horizon.18  Figures 2 and 3 illustrate that the current deviations affect the price of long-

dated forward contracts only near the delivery period, even when the deviations from the long-

run expected levels of the three stochastic factors are highly persistent. 

What if the time series of the underlying factors are so persistent as to be characterized by a 

random walk?  If so, the long-dated forward prices fluctuate every period exactly by the amount 

of the current deviations from the deterministic states of the three underlying factors.  

Nevertheless, in this extreme example, the spread between the prices of forward contracts for two 

distinct delivery periods will not fluctuate to any significant extent even until the delivery of the 

first of the two contracts.  That is, to say, the two forward prices will be nearly perfectly 

correlated.  Hence, forward contracts for a small number of delivery periods would suffice.  

Although the idealized market model presupposes risk-neutral behavior, the same 

conclusion can be derived from a perspective of hedging motivated by risk aversion.  In figure 4, 

the standard deviation of the spot electricity price conditional on the information available at 

each trading period stays constant until near the delivery period.19  In other words, information 

arriving more than a few days before delivery does not reduce the price risk.  Given the 

simulation results on the equilibrium spot-forward price relationships of Bessimbinder and 

Lemmon (2002), the figure implies that the equilibrium forward price deduced under the 

alternative assumption of risk-averse agents would not fluctuate until near delivery. 

These examples may seem unrealistic, yet are the implications of the idealized market.  The 

frequency of forward trading necessary for perfect price signaling increases with the horizon at 

which the information arrives regarding the future market conditions, or more precisely, 

regarding future deviations from the long-run expected state, whereas the number of contracts 

with distinct delivery periods in each trading period decreases with the persistence of stochastic 

deviations from the long-run expected state.  Figures 2 and 3 provide one example, in which the 

current realizations persist only briefly.  Consequently, the forward markets further away from 

the delivery period are unnecessary as the realizations during these periods express little 

additional information about the future.  

3.2 Relationship between forward electricity prices and input prices 

Should the price of the forward contract for a particular delivery period or the spread between 

two prices with distinct delivery periods be stable over multiple trading periods, only one price is 

                                                      
18 Models directly representing the stochastic dynamics of electricity spot prices should imply a similar result because all 
have a mean-reverting process.  Even models with stochastic jumps (for example, Villaplana, 2003) imply similar 
movements of forward prices because the stochastic jumps are unpredictable.    
19 The conditional variance of the electricity spot price was obtained by the numerical method used to determine risk-
neutral forward price. 
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necessary, as it can be used to deduce the prices of contracts for related trading or delivery 

periods.  The same logic applies to cross-commodity price relationships, which have long been 

studied in the agricultural economics under the term “cross hedging” (e.g, Anderson and 

Danthine, 1981).  Sorghum is distinct from corn in use and production, but not very much, and 

not very far ahead.  By the logic concerning redundant prices, the corn futures market suffices for 

both except at the short end of the constellation of prices (Williams, 1986).  For electricity, of 

particular relevance is natural gas, which serves among the primary inputs to electricity 

generation and has been actively traded on NYMEX, with futures contracts covering a horizon 

beyond two years.  To the extent that the relationship between the prices of these two 

commodities is predictable, long-dated forward contracts for electricity can be duplicated from 

existing natural gas futures contracts.  Separate markets are necessary only at the horizon that 

forecasts of this price relationship diverge from the long-run expectation.  

This cross-commodity price relationship is not necessarily constant across seasons.  Indeed, 

the efficiency of transferring natural gas and other generation inputs into electricity (namely, the 

physical heat rate) varies both at the market level due to the heterogeneity across generation 

units and at the individual unit level since the efficiency of transforming fuel into electricity 

decreases as the unit’s rated capacity is approached.  Given the extremely price inelastic demand 

and the seasonality in load, the market-clearing price of wholesale electricity is determined by the 

heat rate of the least efficient unit operating and the price of the input used at this marginal unit.  

Such seasonal variation in the heat rate should be reflected in the natural gas-electricity price 

relationship, or in what is often termed the “market-implied heat rate,” and anticipated in the 

forward markets of the two commodities.  To the extent that this temporal variation in the 

market-implied heat rate is predictable at a particular horizon, forward markets of only one 

commodity that time ahead should provide essentially the same information as a forward market 

for the other commodity.  

The idea of a cross-commodity relationship is closely related to the “spark spread,” often 

defined as the implicit positions from taking explicit long and short positions, respectively, in 

natural gas and electricity futures markets.  Emery and Liu (2002), for example, have examined, 

with the following regression, how the spark spread in a constant spread ratio or the market-

implied heat rate varies over time, 

 

 Ft,t–k = a0 + a1 wt,t–k + et,k (13) 
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where wt,t–k is the k-period ahead futures price of natural gas for delivery at t, et,k is the 

disturbance term with zero unconditional mean, and the two parameters, a0 and a1, can be time-

variant to allow for seasonal variation in the price relationship.20   

The specification (13), when estimated with the forward prices of the two commodities, 

should capture seasonal variation in the price relationship.  Here, the existence of separate long-

dated forward markets for electricity depends not only on the estimated forward price 

relationship but also on its accuracy in forecasting the same relationship in the respective spot 

markets.21  More directly, we are interested in how accurately the futures price of the fuel input 

together with the estimated market implied heat rate forecasts the spot electricity price relative to 

the forward price of electricity.  Such relative forecasting ability can be measured by the 

difference between the R-squared from the regression (13) with the spot electricity price as a 

regressand and that from the regression of the spot electricity price on the futures price of 

electricity.  Because the electricity-fuel price relationship, in both simulation and empirical 

settings, often depends on the retail demand due to the non-linear aggregate supply curve, with 

the inclusion of the forecasted load into the right-hand side of (13), we have, 

 

 pt = b0 + b1 ωt,t–k + b2 qft,t–k + et (14) 

 

where pt is the log of spot electricity price at period t, ωt,t–k and qft,t–k are, respectively, log of the k-

period-ahead futures price of the input for period t delivery and k-period-ahead forecast of the 

period t load.22  The R-squared from (14) is compared with that from the alternative, 

 

 pt = β0+ β1 ft,t-k + et (15) 

 

where ft,t-k is the log of the k-period-ahead electricity forward price for time t delivery.  In the 

idealized setting, it is the best, unbiased forecast of pt at t – k.  Thus, the R-squared from (15) is the 

                                                      
20 For example, Emery and Liu (2003) estimated (13), using data from the NYMEX, by including monthly dummy 
variables and a time trend in the right-hand side of equation, which allows the electricity-natural gas futures price 
relationship to differ across the 12 delivery months per year.   
21 Our argument here suggests that data used in previous studies of the cross-commodity price relationship are 
endogenous to the price relationship itself.  That is, price data for commodities for which price relationship is predictable 
would be precluded from an empirical analysis.  Consequently, an empirical analysis of cross-commodity price 
relationship is limited to markets in which any significant price relationships are inherently difficult to depict or markets 
that are inactive for any rational traders should not trade through the exchange to avoid transaction costs.  Inactive 
trading in the NYMEX electricity futures market that Emery and Liu (2003) studied provides one such example. 
22 The specification in (14) is the true DGP of the simulation data aside from the non-normal distribution of the error term.  
In empirical analyses, the true DGP is unknown, yet, since the non-linearity in the supply function is widely 
acknowledged, the log-linear specification will be a normal choice.  Besides, the model, including only one regressor in 
addition to the fuel price, is more restrictive than Emery and Liu (2003) whose model includes eleven monthly dummies 
and a linear trend. 
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highest attainable given the information available at t – k.  The difference in the R-squared 

between the two regressions represents the information contained in the explicit forward price of 

electricity beyond that provided by the “synthetic” forward price, a forecast of subsequently 

realized spot electricity price, based on the forecast of the market implied heat rate as well as the 

futures price of the input and the load forecast.23  An R-squared considerably lower for (14) than 

(15) would indicate that a large share of the variation in the spot electricity price originates in 

factors other than the input price and load level and, hence, a separate forward market for 

electricity would be necessary, at least at the forecast horizon compared. 

We estimated (14) and (15) with the simulation data for six different forecast horizons: k = 3, 

12, 24, 48, 72, and 168 hours ahead of the delivery period.  For each of these k’s, the two 

regression models were estimated with 8,640 hourly observations and the process was repeated 

1,000 times.  Figure 5 plots the averages of these 1,000 R-squared values from the OLS estimates 

of (14) and (15).  In panel a, the two variables in the right-hand side of (14) account for 

approximately 80 percent of the variation in the spot electricity price in the base parameter case, 

even when forecast variables from one week prior to the realization are used in estimation.  The 

mean R-squared increases to only slightly above 0.808 when the model is estimated with 24-hour-

ahead forecasts.  An improvement in the R-squared is noticeable only with forecasts within 24 

hours of delivery (0.835 and 0.905, respectively, for forecasts of 12 and 3 hours ahead).  Panel b 

shows essentially the same picture for the regressions with the electricity forward price as the 

regressor.  The electricity forward price explains above 80 percent of the variation in the spot 

electricity price and more so for the regressions with the forward price closer to the actual 

dispatch as a regressor (R-squared of 0.808, 0.837, and 0.921, respectively, for forecasts of 24, 12, 

and 3 hours ahead).   

For both regressions (14) and (15), the R-squared increases with the persistence of the 

deviation from the deterministic load (ρQ) while it is inversely related to the values of the 

variance parameters for all three stochastic factors.  This sensitivity to the DGP parameters is not 

surprising, because demand and, hence, the electricity-fuel price relationship is more accurately 

forecasted when the deviation from the deterministic load is highly persistent.  In contrast, higher 

volatility of the three factors simply causes large stochastic variation relative to deterministic 

variation within the electricity spot price, which results in lower forecast power.  Of the three 

factors, the persistence and variance of the deviation from the deterministic load have the largest 

impact on the R-squared, largely because of the non-linearity in the supply function. 

                                                      
23 For the simulation data, such additional information is the prediction of the time t deviation from the long-run average 
supply curve based on the current deviation at t – k.   
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The difference in the R-squared from the two regressions (14) and (15) is very small, for all 

sets of parameter values and at all horizons considered (panel c).  In the base parameter case, the 

3-hour-ahead forward price of electricity accounts for the spot price variation less than one 

percentage point more than the forward input price and the forecasted load, which increment is 

negligible given that 92% of spot price variation is accounted for by either regression.  Even that 

small disadvantage disappears when the forecasts further away from the delivery period are 

used in estimation.  As for the sensitivity to the DGP parameters, the difference in the R-squared 

increases with both the volatility and persistence of the deviation from the long-run average 

supply curve, the results as expected because the current supply condition delivers more 

information regarding its future state when they are more persistent or volatile.  The electricity 

forward price, incorporating this information, predicts the spot price more accurately than the 

synthetic forward price.  Nonetheless, the sensitivity to the two parameters is marginal, given the 

large share of the spot price variation explained by either regression. 

While the high volatility of electricity prices has been emphasized in the literature, it is often 

unstated that this price volatility is partly predictable, just by knowing the hour, day, and month 

of the delivery period.  The current deviation from this long-run expected price further improves 

the accuracy of price forecasts when it is persistent, yet only marginally so, given that the 

deterministic price variation accounts for a large share of the total.24  In such a case, the forward 

price stays close to the long-run expected level for that hour, day, and month even until near the 

delivery period.  In other words, a large share of the total price variation is accounted for by 

variation in the long-run expected price level, the rest in the last days of forward contracts’ lives, 

and almost nothing in the medium term. 

4. NYMEX NATURAL GAS FUTURES AS FORECASTS OF THE CAISO SPOT 
ELECTRICITY PRICE 

In this section, we construct a synthetic forward price based on the NYMEX natural gas futures 

prices and load forecast in California and examine the ability of this synthetic forward price to 

predict the California spot electricity price over 1998-2000, relative to the predictive ability of the 

                                                      
24 The relative magnitudes of stochastic and deterministic price variation can be inferred by comparing the unconditional 
variances of spot and forward prices.  In the base parameter case, the standard deviation of the forward prices over all 
seasons and hours ranges from 16.634 to 18.079 ($/MWh) with numbers smaller for forward prices of longer maturity.  
These numbers correspond to about 64% to 95% of the standard deviations of the spot price, which represent the shares of 
the total price variation predicted at the time of forward trading.  The forward prices converge to the long-run expected 
level as the trading takes place further away from the delivery period and, accordingly, the share of spot price variation 
accounted for by the forward price decreases with the time to maturity at a decreasing rate. 
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CalPX day-ahead forward prices, the only active forward market in California.25  This long-dated 

synthetic forward price should predict the spot electricity price less accurately than the CalPX 

day-ahead electricity forward price, which, established on the day previous to actual dispatch, 

should reflect more updated information on the natural gas price and load level as well as other 

market conditions such as unscheduled outages of generation units.  The forecasting ability of 

longer-dated forward prices of electricity, had they existed, would have fallen within these two 

boundaries. 

Unlike in the previous section, the relative forecasting ability of the long-dated synthetic 

price and the CalPX forward price is measured by an out-of-sample test.  We divide the available 

observations into two periods: April 3, 1998-March 31, 2000 and April 1, 2000-November 30, 2000, 

the latter of which starts shortly before the period identified as the California Energy Crisis.  We 

estimate from the first observation period the aggregate supply function or market-implied heat 

rate, using the realized natural gas and electricity spot price as well as the realized load in the 

right-hand side of (14), 

 

 pt = b0 + b1 ωt + b2 qt + et (16) 

 

where ωt and qt are the spot natural gas price and the realized load level.  The estimate of (16) is 

then used to construct a time series of synthetic forward prices for the Energy Crisis period, 

 

 ft,t–k = b0 + b1 ωt,t–k + b2 qft,t–k + et (17) 

 

where ft,t–k is the k-period-ahead synthetic forward price of electricity for deliver at hour t, ωt,t–k is 

the k-period-ahead futures price natural gas, and qft,t–k is the k-period-ahead load forecast.   

Unfortunately, due to the limited availability of California load data as well as the specific 

trading sequence of the NYMEX natural gas market, estimation of (16) requires several 

refinements.  First, the data on the realized load in the right-had side of (16) is available only at 

the California Independent System Operator (CAISO)’s system-wide level, which comprises five 

congestion zones, whereas the electricity prices in the CAISO market is established for each 

zone.26  Moreover, the load forecast in the right-hand side of (17) is available only for the CAISO’s 

day-ahead and hour-ahead schedules.  Because of the absence of the zonal-level realized load 

data, we estimated (16) using the CAISO system-wide realized load while using the CAISO real-

                                                      
25 Data used in this section include, in addition to those used in section 2, the NYMEX natural gas futures price and the 
spot natural gas price at the PG&E Malin delivery point located at the California-Oregon border for the period between 
April 1, 1998 and November 30, 2000. 
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time imbalance energy (spot) price from NP15, one of the five zones, the one covering a majority 

of the Northern California, as a regressand.  We constructed a time series of CAISO system-wide 

load forecasts based on the following load seasonality model estimated with the CAISO system-

wide realized load during the first observation period,27 
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where i(⋅) is an indicator variable with value one if its argument is true and zero otherwise, ht is 

the hour count from the beginning of the calendar year, wkdayt is the day of the week (1 = 

Sunday, 2 = Monday, and so on), and ut is assumed iid N(0, σ2).  A time series of the k-period-

ahead forecasts is constructed using the estimate of (18) as, 
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where et–k is the regression residual at t – k. 

Second, specification (16), including only the natural gas price and the load forecast on the 

right-hand side, implicitly assumes that natural gas generation units, each with a different 

efficiency level, are always the marginal unit, setting the market-clearing price, regardless of the 

load level and the amount of electricity supplied by generation units of other types.  

Unfortunately, the absence of data on operations of individual generation units and price/ 

availability of these non-natural-gas generation resources allows us neither to verify this 

assumption nor to model explicitly the resulting temporal variations in the electricity-natural gas 

price relationship.28  As an alternative, we consider the following specification for the three 

parameters in (16), 
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26 Prices differ among the five zones whenever the transmission lines connecting them congest. 
27 Specification (16), which allows the seasonal cycle as well as the day-of-the-week effect to vary across the 24 hourly 
blocks a day, is more flexible than (3), for the purpose here is to obtain a function that fits well the observed load cycle. 
28 In California, electricity is supplied by various generation units, such as nuclear and hydroelectric plants whose 
availability varies across seasons.  Of particular relevance are the hydroelectric units, which serve 40% of total electricity 
generation in the Northern California while their availability exhibits strong seasonal pattern with its supply lower 
during the summer than in the winter. 
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where i = 0, 1, and 2.  The specification (16’), while it still assumes that a natural gas generation 

unit is the marginal unit at all times, seeks to capture seasonal variation in the link between 

natural gas-electricity price relationship and load level resulting from that of the availability of 

other generation resources.29  If anything, the inevitable imprecision leading to (16’) widens the 

boundaries for the comparison of forecasting abilities. 

Third, because of the price cap imposed on the CAISO real-time imbalance energy market, 

the observed prices in this spot market reflect the true generation cost only below the price cap.30  

A standard method to compensate for such censoring of the dependent variable is the tobit 

model, which is easy to estimate in the case where the censoring point is known.  With the 

assumption of normality for et in the right-hand side of (16), the likelihood function becomes,31 
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where Φ(⋅) and φ(⋅) are, respectively, the distribution and density function of the standard 

normal, cap
tP  is a price cap at t, P*t = b0 + b1 ωt + b2 qt, and σ is the variance of et.   

Finally, the differences in the frequency of the natural gas and electricity price data and the 

specific delivery terms of a NYMEX contract complicate the construction of the synthetic price in 

(17).  The NYMEX natural gas futures contracts are defined in monthly blocks and traded daily 

whereas electricity is traded in hourly blocks in both the CAISO and CalPX market.  Hence, we 

constructed the hourly series of natural gas futures prices by using, for each combination of t and 

k, the closing price on trading day, d(t – k), of the NYMEX futures contract for delivery in month, 

m(t), where d(⋅) and m(⋅) converts observation in hour into day and month, respectively.  A 

related issue is that because the NYMEX natural gas futures market trades only on weekdays and 

trading ends on three business days prior to the first calendar day of the delivery month, futures 

prices do not exist for some combinations of t and k with d(t – k) corresponding to these non-

trading days.  For weekends and holidays, we utilized the futures price from the nearest previous 

                                                      
29 The validity of this assumption relies on the operational inflexibility as well as ability to arbitrage temporally non-
natural-gas-powered generation units.  For example, units with low operational flexibility, such as nuclear plants due to 
high start-up cost, cannot adjust their generation schedules in response to the market price of electricity and hence submit 
their supply bids lower than the expected market-clearing price.  On the other hand, hydroelectric units, with their 
relative operational flexibility due to substantially lower start-up cost and relative storability of their generation inputs 
before transforming to electricity, should operate when the spot price is expected to be high. 
30 The price cap was initially set at $250/MWh.  It was raised to $750 on September 1, 1999, then reduced to $500 on July 
first and further to $250 on August 7, 2000.  The price cap was hit repeatedly during the summer 2000 and after. 
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trading day.  Because d(t – k) and the nearest previous trading day can take large values for 

observations toward the end of the delivery month, we constructed the synthetic forward price in 

two ways: (a) k ranging from 1 to 30 days (k = 24 to 720) in every one-day step and 35 to 364 days 

(k = 816 to 8736) in every seven-day step, using the k-period lagged daily spot natural gas price, 

and (b) for k from 35 to 364 days in every seven-day step, using the NYMEX natural gas futures 

price.32  That is,  

 

 ft,t–k = )ˆln(ˆ)ln(ˆˆ
,2)(10 kt

PGE
ktd FQbwbb −− ++  for all k considered (17a) 

 ft,t–k = )ˆln(ˆ)ln(ˆˆ
,2)(),(10 kt

NYMEX
ktdtm FQbwbb −− ++  for k above 34 days (17b) 

 

where ft,t–k is the k-period-ahead synthetic forward price for period t delivery at NP15, NYMEX
ktdtmw )(),( −  is 

the closing price on d(t – k) of the NYMEX natural gas futures contract for delivery in m(t), PGE
ktdw )( −  

is the spot natural gas price observed at the PG&E Malin delivery point located on California-

Oregon border on d(t – k), kttFQ −,
ˆ  is the estimate of k-period-ahead load forecast from (19), and ib̂ , 

i = 0, 1, 2 are the parameters in (16’) estimated with the first observation period. 

To summarize, we estimated the parameters, b’s, ρ, and σ in (16) and (18), using the realized 

spot prices of electricity and natural gas as well as the realized load for the period between April 

3, 1998 through March 31, 2000.  Using these estimated functions and the NYMEX natural gas 

futures price or the lagged spot price of natural gas, we constructed a time series of synthetic 

forward prices for the period between April 1 and November 30, 2000.33  The root-mean-squared 

error (RMSE) of the synthetic forward price as a forecast of the realized CAISO NP15 spot price is 

compared with the RMSE of the CalPX day-ahead forward price.  

In figure 6, the RMSE of the synthetic forward price constructed with the lagged natural gas 

spot price gradually increases with k, yet stays around $120/MWh for k as large as 10 weeks, only 

20% above the RMSE of the CalPX day-ahead forward price.  The RMSE of the synthetic forward 

price then increases at a relatively rapid rate, reaching 150 at k = 7 months, after which it stays at 

this level for the range of k considered.  The RMSE of the synthetic forward price constructed 

with the NYMEX natural gas futures price exhibits the similar movements over the range of k.  

                                                                                                                                                              
31 Clearly, the normality assumption does not hold given the heteroskedasticity and serial correlation of the electricity 
price series.  Nonetheless, because we are only interested in the forecasting ability rather than the coefficient estimates in 
(16’) and their distributions, we estimated (20) by the standard tobit method. 
32 For example, for any t from the 30th day of the month, the nearest previous trading day is more than 33 days prior to t.  
Clearly, using the nearest previous closing price in place of the missing prices for these observations reduces the 
informational content of the natural gas futures prices in the right-hand side of (17) by a large extent. 
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Figure 7 illustrates the accuracy of the two forecast variables in the right-hand side of (17).  In 

panel a of the figure, the RMSE of the load forecast by (19) as a forecast of the CAISO system-

wide realized load in the same period is initially low at k = 1 day, only 20% higher than the RMSE 

of the CAISO day-ahead load forecast.  The RMSE of the load forecast by (19) increases rapidly to 

slightly above 2000MWh and stays at this level for k greater than 6 days.  Even though this is 

almost twice the magnitude of the RMSE of the CAISO day-ahead load forecast, it is only of 

marginal importance relative to the amount of load variation explained by either forecast.34  In 

contrast, the RMSE of the lagged natural gas spot price as a forecast of the spot natural gas price 

rapidly increases with k for k less than 21 days, after which it gradually increases and stays 

around $2.5/MBTu for k as large as 10 weeks (panel b).  The RMSE then increases rapidly after 

this point until k reaches 7 months, after which it gradually increases and stays around 

$3.5/MBTu for k up to 12 months.  The RMSE of the NYMEX natural gas futures price exhibits 

similar movements as that of the lagged spot price, except that it is slightly lower for the former 

than for the latter over the range of k considered.  Apparently, the poor forecasting ability of 

natural gas price forecasts contribute to that of the synthetic forward price.  

What is less apparent in figure 7 is that the RMSE of the synthetic electricity forward prices in 

forecasting the electricity spot prices exhibits only a mild increase whereas the RMSE of either of 

the two natural gas price forecast increases rather rapidly over the range of k considered.  

Although not presented in the figure, a close examination of the forecasting errors by the 

synthetic electricity forward price and the natural gas price forecasts provides two plausible 

explanations for the inconsistency of their sensitivity to the forecasting horizon (k).  First, the 

lagged spot natural gas price and the NYMEX natural gas futures price, especially for those with 

longer forecast horizon, under-forecasted the subsequently realized spot natural gas price by 

large magnitude during October and November 2000.  During these two months, the spot natural 

gas price increased dramatically from $5.33/MBTu on October 1, 2000 to $16.35/Mbtu on 

December 1, 2000 whereas the NYMEX natural gas futures price increased only moderately from 

$5.31/Mbtu for the October 2000 contract traded on September 27, 2000 to $6.02/Mbtu for the 

December 2000 contract traded on November 28, 2000.35  These large forecasting errors in the 

natural gas spot price in California are expected to follow similarly large forecasting errors of the 

                                                                                                                                                              
33 Whenever the predicted price by (17a) and (17b) exceeded the price cap, we replaced them with the price cap.  This 
replacement was necessary only for a few hours while the CAISO spot price for NP15 hit the price cap frequently during 
the summer 2000 and after.  
34 The comparison of the predicting accuracy of (16) relative to the CAISO day-ahead load forecast as measured by Theil’s 
U statistics, U = ∑∑ −− −

i
i

i
ii QnQQn 2121 )ˆ( where Qi and 

iQ̂  are the realized and forecasted load, respectively, and n is 

the number of periods being forecasted, is 0.04 and 0.07 for the two forecasts, respectively, for k = 4 days and higher. 
35 This large increase in the price of natural gas within California relative to other areas of the U.S. has itself been 
controversial. 
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synthetic forward prices for electricity.  Nonetheless, the forecasting errors of the synthetic 

forward price of electricity during the same two-month period of late 2000 are rather moderate 

even for large k, mainly due to the low price caps set in the CAISO spot electricity market. 36   

Second, even though a small forecasting error by the lagged spot natural gas price at a short 

horizon, say 2-days, is expected to follow accordingly a small forecasting error by the synthetic 

electricity forward price during this two-month period, the forecasting error by even 2-day-ahead 

synthetic forward price exceeds that of the CalPX day-ahead forward price by a considerable 

extent.  By implication, that under-forecasting of the natural gas spot price is not only the source 

of the under-forecasting by the synthetic forwards.  Rather, the high RMSE must trace to the 

estimated aggregate supply functions, (17a) and (17b), forecasting the market implied heat rate 

well below the realized heat rate during these two odd months.  This under-forecasting is 

consistent with the structural changes of the California market discussed in Bushnell (2004).  

Among these changes, a dramatic increase in the cost of emission permits and a rapid increase in 

outages of generation units resulted in upward shifts of aggregate supply curve, which appears 

insufficiently captured by the specification (16’).37   

In short, the results from out-of-sample forecast tests indicate that spot electricity prices in 

the California market were highly volatile such that even the existing CalPX day-ahead forward 

price anticipated less than half of that variation during the period of its operation.  The synthetic 

forward price, constructed from a simple load seasonality model of (16) and either of the NYMEX 

futures price or the lagged spot price of natural gas, is less accurate than the CalPX day-ahead 

electricity forward price in predicting the subsequent period spot price.  Yet, what is most 

important for present purposes is that the forecasting is only slightly less accurate for the price 

constructed based on even three-months-ahead forecast of these two variables.  Forward markets 

of electricity longer dated than the CalPX day-ahead market, had they existed, would 

presumably have fallen between these bounds of forecasting ability.  In other words, they would 

have added little information beyond that contained in the synthetic forward price.  In particular, 

it is unlikely that they would have predicted the dramatic price increases in late 2000. 

                                                      
36 Aside from these structural changes, inaccurate forecasting of the synthetic forward price in the latter half of 2000 is also 
attributable to a dramatic increase in natural gas price.  Nonetheless, the price cap lowered well ahead of such dramatic 
increase in natural gas price limited the forecasting errors by the synthetic forward price in the two-month period. 
37 Bushnell argues that the reported outages increased in fall 2000 due to a potential suspension of payments from the 
incumbent utilities after wholesale price repeatedly have exceeded the fixed retail rate during summer 2000. 
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5. CONCLUSION 

Having examined the temporal movements of representative forward price series generated from 

a model of an idealized electricity market, we find that forward prices fluctuate only near actual 

dispatch and that the constellation converges to the long-run expected level in a matter of days.  

By implication, prices of long-dated forward contracts, were the market to exist, would not 

fluctuate and, hence, the price from one representative period could be used to deduce those in 

other periods, just as positions in that representative period could serve as hedges for the others.  

By the same logic, because the relationship between electricity and natural gas prices can be 

predicted fairly accurately, long-term forward contracts for electricity can be duplicated using the 

existing forward contracts for the principal input and the seasonal heat rate.   

Although the results from our simulation rely on assumed data generating processes, 

including that for natural gas, the implications for actual electricity markets should not be much 

different, as suggested by our application to three years of data from California.  The relationship 

between electricity and natural gas forward prices in the real world is determined by factors 

other than the retail demand level, such as the availability of hydro resources, prices of emission 

quota, or even market power.  Our analysis implies that even when forward markets for these 

factors are absent, the forecasts of the future states of these factors, including the exercise of 

market power, could be incorporated into the predictions of the relationship between natural gas 

and electricity prices.  Indeed, the NYMEX natural gas futures prices, incorporated into a model 

of seasonal and diurnal cycles of load, predicted well the variation in the spot electricity price in 

California, only slightly less accurately than the CalPX day-ahead forward price, even in the 

extreme conditions experienced during the summer and fall of 2000.  

These extreme, not to say notorious, conditions within California in the summer and fall of 

2000 can be used to restate the main conclusions of this paper.  As part of the restructuring that 

commenced in 1998, the two main distribution-oriented utilities had agreed to satisfy retail 

demand at the equivalent of $60/MWh (Borenstein, 2002).  When the wholesale price of 

electricity exceeded that $60/MWh for long stretches of 2000, the two utilities’ financial condition 

deteriorated, further discouraging those selling wholesale electricity.  At least with the benefit of 

hindsight, it seems obvious that before 2000, if not in 1996 when the fixed retail price became part 

of the restructuring law, the utilities should have contracted for electricity to the horizon of their 

obligation.  Given that restructuring within California amounted to a giant bet on natural gas 

prices, the distribution-oriented utilities could have offset that position directly in the NYMEX 

natural gas futures market.  Consider a simple hedging strategy: From April 1996, month by 

month they could have gone “long” in the NYMEX delivery month two years in proportion to 
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their forecasted seasonal loads,38 and later could have liquidated that position for Henry Hub 

natural gas as it matured.39  Given the rise in natural gas prices over April 1998 through 

December 2000, this hedging strategy would have resulted ex post in some $3.7 billion,40 

comparable to the ex post oligopoly profits extracted by generators (as estimated by Borenstein, et 

al., 2002).  The “California Energy Crisis” happened for other reasons than because a long-term 

forward market for electricity had not been initiated as part of the original restructuring.  Close 

substitutes did exist. 

Because organized exchanges are themselves costly and because liquidity is desirable, 

relentless pressure concentrates trading into a few benchmark forward markets.  The Henry Hub 

in Louisiana has the longest-dated forward market for natural gas, by virtue of being the delivery 

location for NYMEX futures.  It may be that another location for distant forward prices would 

serve better but only one such benchmark location is necessary.  Given that an active futures 

market exists for natural gas, to expect an active futures market for electricity in addition is rather 

like expecting a futures market for french fries in addition to the futures market for potatoes. 

 

                                                      
38 Alternatively, the utilities could have “stacked” positions in the distant delivery months to reach the horizon of their 
commitment to the fixed retail price.  Each month through 1998-2000, they could have rolled the stack into the newly 
traded delivery months, the spreads among those distant prices likely staying constant.  For corn, soybeans, and cotton, 
Gardner (1989) concluded that farmers could stack six years of output by placing six times annual output in the farthest 
available futures contract, typically 18 months ahead, and rolling the remainder each year into newly traded contracts as 
they become available. 
39 A more sophisticated hedging strategy would transfer the NYMEX positions upon liquidation into one-month contracts 
for California natural gas.  This more sophisticated strategy, or even a less sophisticated one in which procurement would 
have been a constant amount per month, would have been resulted in much the same ex post hedging result, because the 
general rise in natural gas prices from early 2000 dominates the calculations.  Similarly, the revenue from this simple 
strategy at different hedging horizons (say 12 months ahead rather than 24 months ahead) would have accomplished 
much the same ex post result over 1998-2000, provided the horizon was at least six months.  Of course, even this simple 
strategy would have had complications such as the regulatory treatment of the financial results, the illiquidity in the 
distant NYMEX delivery months, and the basis risk between nearby California and Henry Hub natural gas prices at the 
time of liquidation of the long positions. 
40 Revenue from cross-hedging with the NYMEX natural gas futures market is calculated under the scenario where all 
distribution-oriented utilities in the CAISO control area fully hedge their procurement needs including those from their 
self-owned generation units, two years before that gas would be normally used.  Under this scenario, the distribution-
oriented utilities include what would be the equivalent in terms of natural gas of their inputs from hydro or nuclear.  The 
price of natural gas measures the marginal value of these other fuels so they should be included to the extent that the 
utilities owned or had long-term contracts for those inputs, these hedging positions are overstated.)   The ex post revenue 
from the hedge is calculated, for each delivery hour, TRt = Et–k[Pt/wt] Et–k[Qt]( NYMEX

ktdtm
NYMEX

tm ww )(),()( −− ), and summed over the 

hours between April 1, 1998 through December 31, 2000.  In this formula, Et–k[Pt/wt] = NYMEX
ktdt wP )(/ˆ

−
represents the forecast 

of the market-implied heat rate.  That is, the number of the NYMEX natural gas contracts to be purchased at t – k 
incorporates the extent that in the peak summer hours more natural gas is needed for the same amount of electricity, 
regardless of whether that greater need is caused by an inefficient generator at the margin or by an exercise of market 
power.   The expected spot price,

tP̂ , is obtained as the predicted electricity spot price from the estimate of (14).  The 

second term, Et–k[Qt], is the load forecast according to the estimate of (16), which, multiplied by Et–k[Pt/wt], yields the 
number of the NYMEX natural gas futures contracts required to full hedge.  The last term in parentheses is the sum of 
changes in the price of the natural gas futures for delivery in month m(t) from d(t – k) to the last trading day of the 
contract (3 business days prior to the first calendar day of the delivery month).  That is, natural gas for April, 1998 was 
supposedly purchased in April 1996 while gas for December 2000 in December 1998. 
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Table 1.  Parameter values used in the data generation process 

Parameters and their values are used in the following stochastic processes defining the idealized market 
model: 

Price-load curve: P0t = ( ) 1−cD
tt Qbw  (1 + σAS e1,t), e1,t = ρAS e1,t -1 + u1,t 

Fuel price equation: wd = w0,d + σw,d e4,d , e4,d = ρw e4,d-1 + u4,d  
 w0,d = ( ) ( ) ( ) ( )180

2
4180

2
3360

2
2360

2
10 cossincossin dddd ππππ βββββ ++++  

 σw,d = σw,0 21
0
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 vd = ( ) ( ) ( ) ( )180
2

4180
2

3360
2

2360
2
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Load Equation: QDt = QDTt (1 + σQA e3,t) , e3,t = ρQA e3,t -1 + u3,t,      
 QDTt = QDT0t (1 + σQF e2,t)  e2,t = ρQF e2,t -1 + u2t 
 0DT

tQ = ( ) ( ) ( ) ( ) t
thththth WKEND524
)(2

424
)(2

38640
)(2

28640
)(2

10 cossincossin αααααα ππππ +++++   

 

Parameters Base Case Convexity Volatility Persistence
Seasonal and diurnal variation in load    

α0 110   
α1 -15   
α2 -15   
α3 -20   
α4 -10   
α5 -20   
ρQF 0.9  0.95
σQF 0.1  0.2  

Seasonal variation in fuel price    
β0 3   
β1 -0.075   
β2 0.3   
β3 0.15   
β4 0.075      

Seasonal variation in fuel price variance    
γ0 1   
γ1 1/7   
γ2 3/7   
γ3 2/7   
γ4 -2/7      

Aggregate supply function    
c 3 5  
ρAS 0.9  0.95
σAS 0.1  0.2  

Load deviation     
ρQA 0.9  0.95
σQA 0.1  0.2  

Fuel price deviation     
ρw 0.9  0.95
σw0 0.1  0.2  

 

 



Table 2.  Descriptive statistics of the simulated series for electricity price, load, and fuel price
Statistics are calculated for each of 1,000 sets of 8,640 hourly observations.  Reported values are means over the 1,000 replications.

Parameters Mean Standard Deviation Skewness
Curvature Fuel Realized Spot Fuel Realized Spot Price forecast error (k -hours Fuel Realized Spot 
in supply price load price price load price ahead, P t  − F t ,t-k ) price load price

function (c ) (w t ) (QA t ) (P t ) (w t ) (QA t ) (P t ) k = 3 24 168 (w t ) (QA t ) (P t ) k = 3 24 168
Base parameter set

By month
1 3 0.1 0.90 3.372 86.54 26.94 0.254 22.01 14.03 6.060 8.705 8.716 -0.017 0.271 0.962 0.830 0.623 0.589
2 3 0.1 0.90 3.255 83.60 24.29 0.343 21.72 13.03 5.869 8.472 8.484 -0.027 0.267 1.000 0.864 0.661 0.603
3 3 0.1 0.90 2.985 85.94 23.50 0.353 22.12 12.53 6.042 8.652 8.662 0.026 0.269 0.999 0.870 0.675 0.609
4 3 0.1 0.90 2.727 93.42 25.21 0.255 22.80 12.70 6.531 9.426 9.438 0.092 0.291 0.974 0.839 0.640 0.592
5 3 0.1 0.90 2.633 104.53 30.23 0.137 23.52 14.03 7.287 10.475 10.481 -0.003 0.301 0.932 0.795 0.591 0.578
6 3 0.1 0.90 2.755 115.11 38.25 0.098 24.72 17.03 8.007 11.535 11.551 0.007 0.294 0.904 0.777 0.580 0.571
7 3 0.1 0.90 2.937 121.45 45.23 0.137 25.32 19.66 8.450 12.150 12.160 0.107 0.319 0.930 0.806 0.594 0.581
8 3 0.1 0.90 3.031 125.71 49.85 0.214 25.29 21.15 8.712 12.525 12.536 0.019 0.304 0.927 0.800 0.590 0.555
9 3 0.1 0.90 3.011 122.83 47.36 0.256 25.06 20.44 8.506 12.257 12.270 0.015 0.308 0.932 0.812 0.610 0.570
10 3 0.1 0.90 2.989 114.34 40.91 0.222 24.52 18.39 7.964 11.523 11.539 -0.006 0.316 0.956 0.822 0.618 0.587
11 3 0.1 0.90 3.085 103.95 35.08 0.178 23.75 16.45 7.242 10.426 10.437 -0.026 0.292 0.926 0.797 0.602 0.578
12 3 0.1 0.90 3.258 94.09 30.49 0.191 22.69 15.01 6.590 9.500 9.519 0.024 0.282 0.936 0.798 0.595 0.571

By hour
1 3 0.1 0.90 - 89.45 25.24 - 21.74 12.55 6.256 9.119 9.144 - 0.292 1.039 0.903 0.697 0.664
2 3 0.1 0.90 - 85.64 23.20 - 21.41 11.82 6.007 8.744 8.768 - 0.283 1.038 0.901 0.699 0.666
3 3 0.1 0.90 - 83.08 21.89 - 21.21 11.34 5.831 8.493 8.516 - 0.280 1.040 0.905 0.705 0.672
4 3 0.1 0.90 - 81.98 21.34 - 21.14 11.16 5.768 8.387 8.410 - 0.280 1.052 0.915 0.709 0.674
5 3 0.1 0.90 - 82.40 21.55 - 21.18 11.24 5.796 8.428 8.452 - 0.280 1.051 0.911 0.706 0.671
6 3 0.1 0.90 - 84.31 22.52 - 21.33 11.58 5.934 8.623 8.648 - 0.286 1.048 0.910 0.705 0.671
7 3 0.1 0.90 - 87.57 24.22 - 21.58 12.19 6.145 8.937 8.965 - 0.291 1.045 0.908 0.700 0.668
8 3 0.1 0.90 - 91.97 26.64 - 21.97 13.05 6.437 9.380 9.411 - 0.298 1.043 0.907 0.697 0.665
9 3 0.1 0.90 - 97.23 29.67 - 22.42 14.11 6.795 9.900 9.931 - 0.308 1.038 0.903 0.693 0.663
10 3 0.1 0.90 - 102.96 33.17 - 22.91 15.30 7.186 10.459 10.491 - 0.314 1.034 0.897 0.689 0.658
11 3 0.1 0.90 - 108.78 36.94 - 23.44 16.58 7.577 11.022 11.057 - 0.318 1.025 0.889 0.681 0.651
12 3 0.1 0.90 - 114.29 40.68 - 23.96 17.81 7.939 11.562 11.597 - 0.319 1.003 0.880 0.670 0.644
13 3 0.1 0.90 - 119.11 44.11 - 24.42 18.95 8.273 12.050 12.085 - 0.317 0.994 0.869 0.659 0.634
14 3 0.1 0.90 - 122.96 46.97 - 24.81 19.89 8.558 12.442 12.478 - 0.318 0.990 0.865 0.655 0.629
15 3 0.1 0.90 - 125.50 48.89 - 25.06 20.53 8.717 12.687 12.724 - 0.319 0.991 0.857 0.652 0.627
16 3 0.1 0.90 - 126.61 49.75 - 25.19 20.83 8.794 12.810 12.848 - 0.320 0.995 0.864 0.651 0.625
17 3 0.1 0.90 - 126.20 49.42 - 25.12 20.70 8.768 12.778 12.815 - 0.321 0.991 0.866 0.653 0.626
18 3 0.1 0.90 - 124.29 47.97 - 24.95 20.24 8.639 12.599 12.636 - 0.321 0.990 0.870 0.656 0.629
19 3 0.1 0.90 - 121.02 45.52 - 24.62 19.43 8.402 12.259 12.294 - 0.317 0.992 0.869 0.656 0.629
20 3 0.1 0.90 - 116.61 42.31 - 24.18 18.36 8.099 11.815 11.850 - 0.317 1.003 0.871 0.661 0.634
21 3 0.1 0.90 - 111.35 38.65 - 23.66 17.13 7.733 11.286 11.318 - 0.316 1.014 0.878 0.669 0.641
22 3 0.1 0.90 - 105.62 34.85 - 23.12 15.84 7.345 10.710 10.741 - 0.311 1.015 0.883 0.676 0.647
23 3 0.1 0.90 - 99.80 31.21 - 22.60 14.60 6.958 10.136 10.165 - 0.304 1.024 0.895 0.685 0.653
24 3 0.1 0.90 - 94.28 27.94 - 22.13 13.48 6.592 9.605 9.630 - 0.296 1.028 0.901 0.690 0.659

All hours and months
3 0.1 0.90 3.003 104.29 34.78 0.377 28.01 19.03 7.356 10.704 10.737 0.268 0.319 1.160 1.024 0.824 0.791

Sensitivity to DGP parameters
All hours and months

3 0.1 0.95 3.004 104.27 34.78 0.366 27.99 18.98 5.530 10.263 10.717 0.236 0.319 1.149 1.075 0.850 0.797
3 0.2 0.90 3.006 104.25 36.89 0.653 38.54 30.48 14.923 21.719 21.784 0.217 0.694 2.179 1.877 1.365 1.278
5 0.1 0.90 3.003 104.29 51.76 0.377 28.01 58.04 7.356 10.704 10.737 0.268 0.319 2.890 2.524 2.056 2.026

Variance 
(σ )

AR(1) (ρ ) Forward price
(k -hours ahead, F t ,t-k )



Figure 1. Seasonal and diurnal cycles of the simulated load series and the coefficient of 
variation compared to CAISO realized load (April 1, 1998 - December 31, 2000)

(a)  Seasonal mean in load
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(c)  Coefficeint of variation in load by month
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(d)  Coefficeint of variation in load by hour
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(b)  Diurnal mean in load
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Figure 2. A representative path of spot prices and the corresponding movement of a 
forward price originally one week ahead

One sequence of the random processes for the week ending in August 1, Hour 18

(b) Movement of the forward price for August 1, Hour 18 standardized to the 
long-run expected value
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(a) Realizations of the electricity spot prices standardized to the long-run
expected value
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c  = 5 (instead of c  = 3 in base parameter set)



Monte Carlo standard deviation, over 1,000 realizations, of the forward price for August 1, hour 18 delivery, 
standardized to the long-run expected value, obtained for each trading hour within 168 hours of the delivery period. 

Standard deviation of forward prices as a function of the time aheadFigure 3.

Figure 4. A representative path of standard deviation of the price forecast error as a 
function of the time ahead

Standard deviation of the spot electricity price for August 1, hour 18 delivery, conditional on the information available 
at each trading period, is obtained for 168 hours within the delivery period.
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Eqns. (14) and (15) were estimated for six different forecast horizons (3, 12, 24, 48, 72, and 168 hours ahead).  
Equations were estimated with one year of hourly observations for each of 1,000 replications.  Averages over these 
1,000 replications are plotted.

Relative forecasting ability of explicit and implicit forward pricesFigure 5.

(b) R-squared from the regressions of spot electricity price on forward 
electricity price (Eqn. 15)
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(a) R-squared from the regressions of spot electricity price on 
forecasted load and futures price of fuel input (Eqn. 14)
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(c) Difference in the R-squared from Eqns. (14) and (15)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

312244872168

Hours ahead

D
if

fe
re

nc
e 

in
 R

-s
qu

ar
ed

base
ρ QA   = 0.20 (instead of 0.10 in base parameter set)

ρ AS   = 0.20 (instead of 0.10 in base parameter set)

ρ w    = 0.20 (instead of 0.10 in base parameter set)

ρ QA  = 0.95 (instead of 0.90 in base parameter set)

ρ AS   = 0.95 (instead of 0.90 in base parameter set)

ρ w    = 0.95 (instead of 0.90 in base parameter set)
c      = 5      (instead of 3 in base parameter set)



Figure 6.  RMSE from the out-of-sample forecast test for the estimated synthetic electricity price

Figure 7.  RMSE from the out-of-sample forecast test for the natural gas price and load forecast
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(b) Natural gas price forecast
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(a) Load forecast
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