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LASER INDUCED CHEMICAL REACTIONS

ANN ELIZABETH OREL
ABSTRACT

A classical model for the interaction of laser radiation with a
molecular system is derived. Within this model, all degrees of
freedom, molecular, radiation and their interaction are described in
a dynamically consistent framework. The classical dynami~s of such
a system xan be calculated with the addition of the two equations of
motion representing the field.

This model is used to study the enhancement of a chemical reaction
via a collision induced absorption. It was found that an infrared laser
will in general enhance the rate of a chemical reaction, even if the
reactants are infraréd inactive. Results for a illustrative analytically
solvable model are presented, as well as results from classical trajectory
studies on a number of systems. '

The collision induced absorption spectrum in these systems can be
written as the Fourier transform of a particular dipole correlation
function. This is used to obtain the collision induced absorption spectrum
for a state-selected, mono-energetic reactive colligion system. Examples
treated are a one-dimensional barrier problem, reactive and non-reactive
collisionsof H + HZ, and a modified H + H2 potential energy surface which
leads to a collision intermediate.

An extension of the cladsical model to treat laser-induced
electronically non-adiabatic collisicun processes is constructed.

The model treats all degrees of freedom, molecular, electronic and

radiation, in a dynamically consistent framework within classical
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mechanics. Application is made to several systems. Several interesting

phenomena are discovered including a Franck~Condon-like effact causing

maxima in the reaction probabllity at energies much below the classical

thresﬁold, laser de-enhancement of chemical reactions and an isotope effect.
In order to assess the valldity of the classical model for |

electronically noq-adiabatic process (without a laser field), a

model problem involving enétgy transfer in a collinear atom~diatom

system is studied, and the results compared to the available quantum

mechanical calculation. It is found that the calculations are in

qualitative agreement.
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I. INTRODUCTION

The subject of laser interactions with molecular proceasses has
generated great interest both experimentally and theoretically. This
interest has ‘been enhanced by the possibilities for laser-catalyzed
chemical reactions, isotopic selectivity and perhaps even the
determination of the transition state structure. The degree of
success in this area has been limited by the extreme difficulties of
the experiments involved and also the lack of simple and qualitatively
accurate theoretical models that can be applied to a wide range of
systems.

Classical mechanlcs has been widely used in studying a variety of
heavy particle systems. It has been found to provide qualitatively
accurate results and is relatively simple to apply. Therefore work
focused on developing a classical model for the interaction of
radiation with a molecular system.

This work can be divided into several broad areas. The first
chapter deals with the interaction of 2 high power laser with a
colliding molecular system. A model is developed which treats all
the degrees of freedom within a classical framework. Due to the
extreme simplicity of the model, which involves the addition of only
two more equations of motion to the system of equations governing thae
classical motion of the colliding molecular system, it was possible
to study a range of molecular systems including a three-dimensional
A + BEC type reaction. It was found that it is possihle to lower the
activation barrier for a chemical reaction by energy transfer from

the laser field to the collision system through a collision induced



absorption, even if the original reactants are infrared inactive.

A natural extension of this work is to study the effect of the
molecular dynamics on the laser field, that is the absorption and
emission of photons during the collision. Since the interaction between
the laser field and the colliding molecules in these systems otcurs
primarily in the transition state region of the potential energy
surface, it is possible to obtain informatiom about the
structure of the transition state directly, in general a difficult
if not impossible task. In Chapter III a simple extension of the
classical model of the previous chapter is usad to calculate the
collision induced absorption spectra for several model systems.

The previous chapters have concentrated on the interaction of an
infrared laser with a colliding molecular system, stﬁdying the effects
of energy transfec to transient vibrational modes. Iz is also possible
to study the interaction of visible/UV lasers with such systems, where
the energy is now used to make transitions between different electronic
potential energy surfaces. In Chapter IV, a previously derived
classical model describing electronically non-adiabatic processes is
combined with the classical model of the preceeding chapters to create
a classical model which treats all degrees of freedom, molecular,
electronic and radiation via classical mechanics. This theory is
applied to several systems, LiF + H -+ Li + HF both collinear and three-
dimensional, a model collinear reaction where the lower surface is
approximately H + H2 > H2 + H and collinear LiF + D > Li + DF.

Finally in Chapter V a study is made of vibrational energy
transfer without a laser field using the classical model for

electronically non-adiabatic processes. Comparison on this system can



be made to previous quantum mechanical studies and show that the model

can produce qualitarively accurate results.



II. INFRARED LASER ENHANCEMENT OF CHEMICAL REACTIONS

A. Introduction

It is well-known that an infrared laser can accelerate chemical
reactions by vibrationally exciting one of the reactants.l For

example, in che reactien
HCL(v) + K + KC&(v') + H

a laser can be tuned to the frequency which excites HC2(v=0) to HCRZ(v=1).
This excited reactant reacts at a much faster rate than the unexcited
species. This method of laser enhancement of chemical reactions
requires that the laser be tuned to a transition present in the
reactants. However in general there exists a collision induced
absorption that enhances the rates of chemical reactions by effectively
lowering the activation barrier, even if the laser is far from any
region where the reactants absorb, or even i1f the reactants are
infrared inactive.2’3

In order to gain a qualitative understanding of this phenomena,
conside; the simple prototype for a reaction with an accivation barrier,H+H2.

The reactants are infrared inactive, but in the transition state region

of the potential energy surface, the asymmetric stretch mode,
> “+ -
H.-.-Hnl..H
has a non-zero dipole moment which changes with this motion and hence

will absorb in the infrared. Notice that the dipole moment does not

vary with the displacement of the symmetric stretch,

* -+
Hees*Hee*H



and so this mode is infrared inactive. The asymmetric stretch is
motion along the reaction coordinate so the system will absorb energy
from the radiation field preferentially in that degree of/ freedom

most effective in promoting the reaction, that is helpisg it to surmount
the activation barrier. Thus the activatfon energy for the reaction

is lowered by the presence of the infrared laser. Without the field,
there are no trajectories which react at energies below the classical
threshold, while in the presence of the laser fleld, some of these
non-reactive trajectories gain sufficient energy from the field to
become reactive.

This is a general phenomena since displacement of a transition
state along the reaction coordinate is, in general, the least symmetric
displacementA and will therefore always be infrared active. It is
also clear, however, that the phenomena requires very intense radiation
(lelds (lasers) since the cystem is in the transition state region of
the potential energy surface for only a short period of time, that is
the “concentration of transition states™ is small.

In addition to interest in this process for the ohvious reason of
being able to accelerate chemical reactions, it is also interazsting
because it allows one in effect to "see" {i.e., to interact with)
the reactive gystem in the transition state region itself. In normal
scattering experiments one can observe the system only before and
after complete collisions. This collision induced absorption is thus
the closest in principle that one can come to infrared spectroscopy of
a transition state.

In the next section a classical model for the interaction of laser

radiation with molecular systems is introduced. In this model, the



entire system molecules, field and their interaction is treated on a
dynamically consistent framework, ipvoking the same approximation
(classical mechanics) for bath.5 It is thus possible to use classical
trajectories to describe the system with the extensior into three-
dimensional A + BC systems, an area almost impossible teo treat quantum
mechanically relatively simple to treai.

Section C presents a simplified one-dimensional model of the
phenomenon that 1s analytically solvable. This gives a qualitative
indication of the nature and order of the magnitudw of the effect, i.e.,
how much the activation energy of a reaction is expected to be lowered
by the radiastion field, The results of classical trajectory calcula~

tions, including the laser field, for the reactions
x+ﬂ21ux+u .

for X = H, F, C{ are presented in Sectlon D. The qualitative behavior
predicted by the l1-dimensional model of Sectiom C is seen to be borme
ocut by these results.

In closing this Introduction it should be noted that collision
induced absorptior is a well-known and much studied phenomenon in
itself, e.g., in mixed rave gases.6 In the present chapter our
interest is not so much in the absorption spectrum but rather in how
the absorption affects the collision dynmamics, e.g., by changing non-
reactive trajectories into reactive ones. Also, there has been
considerable interest in the effect of visible lasers on wmolecular
collision processes;7 this of course involves electronic excitation

and thus requires the existence of appropriate electronically excited

potential energy surfaces.



B. The Classical Model

First consider the quantum mechanical Hamiltonian for the system
in the presence of a single mode radiation field. The extension to

an arbitrary number of modes 1s straightforward., The Hamiltonian 158’9

Ho= B + Hpap + Hpyp (2.1

where HMOL 1s the Hamiltonian of the isolated molecular system, HRAD
is the Hamiltonian of the radiation field and HIWT describes their

interaction. Using second quantization

HRAD =hw a+ a (2.2)

where a+,a are the creation and annihilation operactors of the photon

field, and w is the frequency of the field. Within the dipole

approximation

= —-’ O-’ M
Hogp = 0G0 E (2.3

where ﬁ(x) is the dipole moment of the molecular system as a function

of the molecular coordinates x and E is the electric field,

-/ Ghae (2.4)

vhere £ 1s the polarization of the photon field and V is the volume
of the radiation cavity. With these substitutions the total Hamiltonian

becomes

M= By (pax) + huata + 1VEEE ¥y 0 (2.5)



where p,x are the molecular momentum and coordinates and u(x) = Tx(x) £
In order to better illustrate the classical limit, replace the

operators a and a+ by P and X where,

P =V —2"3 (a+a+) ) (2.6a)
b "‘[EE £(a-ah) (2.6n)

so the Hamiltonian l:ez:omes]'0

1
H(p.x,BsX) = Byoy (p2%) + 3 P2 + 3 ulx?

[T
- ueox 2.7

Notice that the Hamiltonian has the form of an oscillator coupled by
a forcing term to the molecular system through the dipole moment.
Since the "oscillator" (the field) is in a state described by large
quantum numbers (a large number of photons) a classical approximation
should be valid. Take the classical 1limit so that the operators,
pP»%,P,X become the classical variables and H(p,x,P,X) becomes the
classical Hamiltonian function. The equations of motion for the

system are,

3H
x=3p " p/m (2.8a)
: 2
s _BH_ v 4w au(x)
R i R (2.85)
g=30_, (2.8¢)



Z
: gH 2 4w
P o-oy = WX AV u(x) (2.8d)

Since the Hamiltonian is not an explicit function of time, the total
energy of the system is conserved. Classical trajectories can be
integrated for the colliding system in the presence of the field

through the addition of only two more equations of motion.
Tt 1s possible to manipulate Eq. (2.8) to eliminate the field

variabies. First combine (2.8¢) and (2.8d) to eliminate P which

yields

w“ 2
o) + %K) =V px(e) (2.9)

This 1s a linear inhomogeneous equation with solution

T
X(e) = X, (0) +v/‘"{;“ [ et -M——W—'p(f(t')) (2.10)
1

where

2] :
xo(:) = h sin(w(:—t')+ql) (2.11)

the solution to the homogeneous equation where (Nl,Ql) are the values

of the field action-angle variables at tl the initial time. (Nl’Ql)

are defined by11

X -Vz—m—““' sinQ (2.12a)
P = /2huN cosQ (2.12b)

Using Eq. (2.10), a closed form expression for (p,x), the molecular
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variables can be derived,

%(t) = p/m (2.13a)

- :
peey = - T o/ LU gy (et 4q)) (2.13b)

2 t '
T L e
~ tl -

This expression is exact. It is possible to apply perturbation theory

to this expression. To first order in V_llz, E(t) is given by
x(£) = xo(6) + Ax(e) + 0V (2.14)
where
- Wy
) o —— = (2
mfo(t, + 8§0 0 (2.15)

{Thus xo(t) is the field free trajectory) and

2 oyl
0% (xy) TGN aulx (£))
0 ] ax(t) L BE®) stafu(e-e,)4Q)  (2.16)

[L‘2.+_~_
dt2 3502 v 350

The initial conditions are

§o(tl) =% 3 3":0(:1) =p/m (2.17a)

ax(t,) = Ag(:l) =0 (2.17b)

Using these initial conditions Eq. (2.16) can be solved yielding the

following expression5 Af(:),
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mhol, 9x.(t) ox (t)
- 1.0, 8 07 3,
e v G Eg Ty W)
U
j de’ ulxy (")) sintw(t'-t)+q,) (2.18)
t

where fo(t) = §°(t;§l,pl), the field free trajectory as a function of
its initial conditions.

Thus it is possible to describe the interaction of a colliding
molecular system and a laser field within & dynamically consistent,
classical framework. Specific applications of the theory are

described in the following section:.

C. A One-Dimensional Model

To oi*tain a simple analytic solution to serve as a qualitative
guide to more quantitative calculations, we carry out in this section
a calculation for the simplest possible version of the process we
are describing. We thus assume for the present (1) that the potential
energy surface is separable in the region of the transition state, (2)
that only motion along the reaction coordinate is optically active,
and (3) that the potential barrier in the reactlion coordinate 1is
parabolic. A further approximation is (4) that the effect of the
radiation field of the motion along the reaction coordinate is treated
by lowest order perturbation theory. The calculation 1s carried out,
as are the numerical caiculatiuns reported in the next section, within
the framework of the classical theory developed to treat the inter-
action of molecular systems with electromagnetic radiation which was

described in the previous section.
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Letting x denote the coordinate for motion along the reactive
direction, consider a classical trajectory beginning at x Tef
Figure 1) at t = 0, with initial momentum P (xl < 0 and Py > 0).

The potential energy barrier V{(x) is parabolic,
1 2 2
V(x) = - F oo X , (2.19)

so that the znitial erergy in this degree of freedom, El, is

2
P
S S U S
El— oo 7 Wy Xy . (2.20)

If El < D, as shoun in Figure 1, thza the field~free trajectory will
clearlv he nzoi-ieactive.

Nl and Ql are the initial quantum number and phase of the
radiation field, and we first determine the trajectory ﬁ(t;xl,pl,ﬂl,Ql),
noting that it depends on the various initial conditions. According
to the perturbation result obtained in the previous chapter, x(t) is

given through first order in the interaction between molecuie and

radiation field by

x(t) = xo(t) + Mx(c) s (2.21)

where xo(c) is the field-free trajectory, which in this case is
P1
xo(t) = x cosh(u)ht) + —= smh(tubt) N (2.22)

1 i,

and where Ax(t) 1s the correction caused by the radiation field:



anﬂmul , axo(c;xl,pl) on (3 ;xl,pl)
Ax(t) = dt
v 391 axl

_ 3%y (t5%,.p,) 3xo(t’;x1,p1)

axl apl

] u'(xo(t')) sin(wt'+Q;);
(2.23)

u(x) is the dipole moment of the molecular system as a function of x.

Utilizing Eq. (2.22), Eq. (2.23) becomes

8nth1 -1
Ax(r) = v (mmb) -Zﬂdt' u'(xo(t')) sinh[mb(t-t')] sin(w:‘+Ql) .

(2.24)

To determine whether the trajectory is reactive or not, we
consider the limit t ++ to see 1f x(t+®) + += (reactive) or —»

(non-reactive). Eqs. (2.22) and (2.24) show that as t ++<,

x(t) = xo(t) + Ax(t)
t —— ey
P 1w, _ -w t'
n % ewb [xl + ""le+ ——v—i (mmb) lzd:' u'(xo(t'))e b sin{wt

! (2.25)
To simplify matters further we also assume that the dipole derivative
is comstant, M'(x) = u', so that
@, —u)bt
fdt' nix.(t') e sin(wt'+Q.)
o 0 1

u'[mcosQ1 + mbsinQI] 2.26)
= .26

h)2+(db2

and take xy large enough so that

13

"+
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2 22,172
xl.;,q-xl+(znuzl+mmbx Y ()
- Ell(wbzlxll) ] (2.27)

Eq. (2.25), with Eq. (2.26), then implies that the trajectory is
reactive or not depending on whether the following quantity is

positive or negative:

El ] nthi na (wcosQ1 + wbsinql)
2] -r-\/ v Cy 3 7 . (2.28)
oy, xll w® +

The characteristic function for reaction Xg (Nl,Ql;El), which Is 1 for

reactive trajectories and O for non-reartive ones, is thus given by
W, W,

h
_Rb
XR(NI’QI’EI) = h[E T+ —_— mz » (wcosQl + w sinQ )1 , (2.29)
b

where h{ ) is the usual step-functionm,

1,z2>0
h(z) ={ ’
0,2z2<0

and where W is the Rabi frequency for the trensition,

!
Iu'xl[ . (2.30)

The net reaction probability is obtained by averaging Xg over the

initial phase of the field,

-1 1l .
PR(Nl,El) = (2m) -Z dql xR(NL’Ql’El) , (2.31)
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and it is easy to show that with xR glven by Ey. (2.29) the result is
B (N ,E) = 2 + sin”Y(E /E_ ) /7 (2.32)
RYV1*71 2 1"~ th > *

where Eth’ the threshold for reaction, is given by

E,, = - hup @+ wP?)H2 (2.33)

th

Equations (2.32) and (2.33) are the principle results of this
model calculation, and they should be regarded as qualitative, order-
of-magnitude indicators. Figure 2 shows the reaction probability of
Eq. (2.32) as a function of energy El, compared to the field-free
result. The important feature is that the threshold for the reaction
has been depressed by the presence of the radiation field. Eq. (2.33)
shows that the amount by which the threshold energy is lowered is
roughly hwR.

The numerical classical trajectory calculations described in the
next section also show the qualitative behavior described by Eqs. (2.32)
and (2.33).

The dependence of this absorption on the frequency of the laser is
also easy to understand qualitatively within the framework of this one-
dimensional picture. For a reactive trajectory, i.e., one that passes
over the barrier in Figure 1, the time dependence of the molecular
dipole moment will be of the form sketched in Figure 3a. (This would
be the case, for example, for the H + H2 > H2 + H reaction.) In the
one photon perturbative limit the absorption coefficient, i.e., the
probability of the system absorbing a photon, is proportional to the

square modulus of the Fourier transform of u(t):
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I(w) « IZdr. O] (2.34)

Suppose, for example,

ux) = p' x exp(~ % xz/az) (2.35)

and

x(t) = vt . (2.36)
Eq. (2.34) then gives
I(w) = wz exp(-wzazlvz) , (2.37)

which is sketched in Fipure 3b. The probability of absorption is
largest in this case for

w=v/a H (2.38)
frequencies above or below this value are not as effective in promoting

the reactive, and this optimum laser frequency is seen to vary

monctonically with the collision energy.

D. Classical Trajectory Calculations

To obtain a more quantitatively reliable characterization of
how this collision induced absorption enhances the rate of reactioms,
we have carried out classical trajectory calculations within the
framework of the theoretical model developed in the previous section.
In this model the molecular degrees of freedom, and also the radiation
field--approximated as a single mode laser--are treated by classical

mechanics, i.e., by numerically integrating Hamilton's equations for
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[
the complete system, molecules plus radiation field.”
For the case of a collinear A + BC collision in a singie mode

radiation fleld, the classical Hamiltonian for the complete system

is
2 2 2
PR P K
H(pp,R,p ,T,py,%) = wtmt

L 22 fad
+ V(r,R) + 5 wX - - u(z,R)X . (2.39)

where (R,pR), (r,pr), and (X,px) are the coordinates and momenta for

the translation of A relative to the center of mass of BC, the relative
vibration of B-C, and the radiation field, respectively. u and m are
the corresponding reduced masses, w is the frequency of the laser, V
the volume of the radiation cavity, y(r,R) is the dipole moment of the
A-B-C system as a function of its configuration, and V(r,R) is the
field-free potential energy surface for the A-B-C system. (For the
three-dimensional case l(r,R) is replaced by E(;,ﬁ)'g, where ﬁ is the
dipole moment vector of the molecular syctem and € is the polarizacion
vector of the radiation field.) One sees that the radiation field
enters in this model as simply one additional mechanical degree of
freedom, a harmonic oscillator, that is coupled to the molecular
degrees of freedom. It is convenient to replace the field variables
(x,px) by the action-angle variables (N,Q), definaed in the usual :n.:nner,l

X = ZZ‘)—" sinQ (2.40a)

P -,/Zth'cosQ R (2.40b)
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and the Hamiltonian then becomes

2 2
PR T 1
H(ppsR,psT5N,Q) = 5 + 5o + V(T,R) + ha(N+3)

VERGR) sing . 2.41)

v

N is the quantum number of the radiation field oscillator, i.e., the
number of photons in the field, and Q is the phase of the field.

The initial conditions for the classical trajectories are
R(tl) = large (>> 0)
pplty) = - JZuEl

%

N(:l)
Q) =q

r(t;) = r(n;,q,)

Pp(t)) = plnyeq)) (2.42)

vwhere r(n,q) and p(n,q) are the algebraic functions expressing the
vibrational variables (r,pr) in terms of the vibrational action-
angle variables (n,q). (For the present examples the vibrational
potential of the isolated BC molecules is a Morse potential so that
the functions r{n,q) and p(n,q) are those given before.)12 El is the
initial translational energy, and the quantum numbers 0y and Nl are

integers, the initial vibrational state of BC and the initial number

of photons in the radiation field, respectively.
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To carry out the usual quasi-classical type CIlculltion13 it is
useful to define the characteristic function for resction xn(ql,Ql.nl,Nl;Bl),
which is 1 if the trajectory with these initial conditions is reactive,
and 0 if it is non-reactive. The total reaction probability from the
initial vibrational state ny, with initial translatfonal energy El,
and with “l photons initially in the radiation field, is then given in

the quasiclassical framework by

2 4
2
Pplny,Ny3E)) = (2m) _/omdql z.dol Xg{a;sQ»ny,N;3E,) - (2.43)

The above discussion is modified in a reasonably obvious fashion

to treat the three-dimensional version of an A + BC collision process.

a. H+H, +H, + H

Although this reaction is not of great interest in itself, it is
the simplest prototype chcmical reaction, and since it is so well-
characterized and since the reactants are infrared inactive, it is a
good example to illustrate this collisionally induced absorption.

The Porter-Karplus]'4 potential energy surface was emploved in the

trajectory calculations reported here, and the following dipole moment

function was used:
2
U(r,R) = s sech”(s) s (2.44)

where

s = % r-R H

s is the asymmet:ic stretch coordinate at the saddle point of the
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potential energy surface. Although not quantitative, this dipole
moment function is qualitatively correct, and an overall multiplicative
constant is absorbed in the definition of g~ Three field strengths
were studied, corresponding to huR = 0.001, 0.01, and 0.1 eV. At the
lowest value little effect is observable, but for hwR = .01 eV the
reactive threshold was lowered as expected and as explained by the
model in Section C. For the largest laser power (hwR = 0.1 e¥) the
effect is most significant, and these results are shown in Figure 4.
The variation of threshold lowering with laser frequency is
summarized in Table I. Since the dipole moment is similar to that
shown in Figure 3a, it was expected that the zbsorption would be
similar to that of Figure 3b and that the effect would thus peak at

This is observable in Table I, the

optimum laser frequency being v 500 cm-l.

some finite laser frequency.

b. 1?+}12"l HE + H

This system has a very asymmetric barrier. In the forward
direction it is enhanced by translational energy, and in the back-
ward direction HF will not react collinearly unless excited to the

v=2 vibrational state.

Polanyi's SEl surface,l5 a semi-empirical modified LEPS (London-
Eyring~Polanyi-Sato) potential surface, was used in this calculation,
the parameters for which are summarized in Table II. The dipole
moment function for F~H-H was approximated as the sum of the two
individual H-F dipole moments, where the H-F moment a~ a function of

internuclear distance is the theoretical result of Lie16 which was

fit to the form
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5
o e (2.45)

u(r) =
T, e n-o 'n

the parameters of this fit are given in Table III.

The collinea” :esults for F + Hz(v-O) + HF + H are shown in Figure
5 for hmR = 0.1 eV, corresponding to a lager power of ~ 30 gigauatts/cmz;
they are seen to be qualitatively similar to H + Hz > Hy + H above.
Similar results for the reverse reactio. , H + HF{v) + H,y + F, are shown
in Figure 6 for v=2, There is no reaction, with or without the laser,
for v=0,1, and for v=3 the increased vibrational energy damps ocut the
laser effect.

In contrast to the H + Hy reaction, the variation of the dipole
moment with time for F + H2 1 HF + H behaves qualitatively as a smooth
step-function, i.e., it rises from zero to a finite value along the
reaction coordinate, unlike that in Figure (3a). In this case its
Fourier transform is a monotonically decreasing function of frequency
w; 1.e., I(w) increases as w decreases. In this case one thus expects
the effect of the collision induced absorption to increase monotonically
with decreasing laser frequency. The dependence of the threshold

lowering on laser frequency for this reaction {cf. Table I) does indeed

show this behavior.

c. CL+ H2 < HC2+H

The parameters for the modified LEPS potential surface used in
the calculation are summarized in Table II.17 The dipole moment
function of HCL was fit to the same general shape as the HF dipole
moment but scaled so that the correct value was obtained for both the

dipole moment and dipole moment derivative at the equilibrium bond
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distance. The parameters are summarized in Table III.

The regults for collinear CR + Hz(v-o) + HCR + H are shown in
Figure 7 for hmR = 0.1 eV and for 0.0l eV, and the effect of varying
the laser frequency is summarized in Table I. Results for the
reverse reaction, H + HCR(v=0) + Kz + CL, are shown in Figure 8 for
hmR = 0.1 eV. The overall behavior is similar to that of F + H,
discussed above.

Note however that the effect in this case is much larger, with a
noticeable lowering occuring even at a laser field strength of 0.01 eV.
This can be explained simply in terms of a mass effect. The threshold
lowering is dependent not only on the field strength, but also on
the time the system spends in the interaction region. In the case
of chlorine, for a given translational energy, the system spends a

longer period of time near the transition region, hence the effect is

larger.

d. C& + HZ + HC2 + H (3 dimensions)

Finally, three dimensional trajectory calculations were carried
out for C% + Hz(v-o, j=0) + HCL + H for hwR = 0.1 eV. The interest
here is to see if the effect of threshold lowering is diminished by
the additional degrees of freedom present for the three dimensional
collision system. The potential surface and dipole moment function
are the same as those used above for the collinear calculation.

Another interesting feature of the three-dimensional system is
the effect of polarization of the laser beam. One thus imagines a
molecular beam experiment with beams of CL and of Hz crossed at

right angles,and with the laser beam perpendicular to the twe of them;
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i.e., the three beams form the edge of a cube. The electric field
vector of the laser beam, i.e., the polarization vector, then lies
in the plane of the two molecular beams, and we consider the two
canonical cases that the polarization vector is parallel tu the
initial relative velocity vector of C{ and Hy or that it is
perpendicular to the initial relative velocity vector.

If the reaction proceeds primarily through nearly collinear
geometries and is limited to small impact parameters, then one
expects the parallel pola;ization to be most effective in ernhancing
the reaction since the dipole moment function ﬁ(;,ﬁ) would then be
approximately parallel to the polarization vector €, so that ]é‘ﬁ]
has its largest value. Conversely, perpendicular polarization woeuld
cause E to be approximately perpendicular to £, so that |€'§[ “ 0.

Figure 9 shows the reactive cross section as a function of inictial
translation energy for the field-free case and for parallel and
perpendicular polarizations. One sees that parallel polarization is
indeed more effective--perpendicular polarization gives almost no
effect at all-- and one sees that the effect is not at all diminished
in three dimensions.

The frequency dependence of the threshold lowering is given in

Table I and is similar to t*e above results for the collinear case.

E. Conclusion

The classical trajectory calculations for the various A + BC +
AB + C reactions described in Section D give a good characterization
of how this collision induced absorption effects the reaction

probability, most significantly by lowering the activation energy
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for reaction. The three-dimensional calculations for CL + H2 -+ HCR + H
showed that the effect is not significantly diminished by the
additional degrees of freedom present in the three-~dimensional

cagse, and that the polarization of the laser field can be a very
interesting parameter of the process.

In these calculations the field strengths necessary to produce
noticeable effects were disappointingly large, However the value of
the calculations is in indicating that such an effect is indeed
possible but the ideal system for such an observation were not the
simple systems which were studied here. Such a system requires a
very large dipole moment in the transition state region, as well as
(for the largest possible effect), a system which spends several
vibrational periods in the transition state region, that is one that
forms a collision complex. If this does occur, ‘other properties
of the system, in some ways more interesting than the simple effects

described here, can be studied. A system of this type is discussed

in the next chapter.
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IIT. COLLISION INDUCED ABSORETION SPECTRA

A. Introduction

In the previous chapter it was shown that a high power infrared
laser could influence the rate of a chemical reaction.z’3 That
study concentrated on the influence of the laser field on the
molecular dynamics. However, the converse effect, that is the
effect of the molecular dynamics on the laser field in the form of
emission and absorption of photons, is in some ways much more
interesting. This chapter will study the collision induced
absorption (CIA) spectrug of the reacting system.18 This is the
analog of the well-known non-reactive CIA process for a reacting
system.4

As noted previously, the system gains and loses energy (thereby
absorbing or emitting photons) only in the region of the transition
state. Thus it should be possible to observe directly the molecular
motion in the transition state region of the potential ensrgy surface,
to perform spectroscopy of the transition state itself. This is
in contrast to the majority of conventional scattering experiments
which prepare the system in a given state before reaction and then
observe the products after the reaction is complete, gaining only
indirect information as to the transition state structure.

This method wculd also probe the reaction dynamics. Qualitatively,
1f the reaction was direct, the collision induced absorption spectrum
should be broad with differences perhaps between reactive and nom-
reactive systems. If a long-lived collision complex was formed

during the reaction, the spectrum would have structure, Information
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as to the lifetimes and structure of the complex could be abstracted
by considering the widths and positions of the absorption bands.

In this chapter two special features which arise in the study
of collision induced absorption for reactive systems are considered;
the differences due to reactive vs. non-reactive trajectories, and
the additional structure which appears in the CIA spectrum when a
collision complex is formed. Section B derives the theoretical basis
for the study of collision induced absorption in a completely
classical framework, building on the results of the previous chapter.
In order to gain a qualitative feel for the differences between CIA
spectra for :eactive vs. non-reactive processes, Section C treats the
model problem of a particle passing over (reacting) or being reflected
by (not reacting) a one-dimensional barrier. In Section D a more
realistic model, collinear H + H2 -+ H2 + H is studied and found ta
exhibit many of the features which were present in the one~dimensional
model of Section C. Finally, Section E treats a modified H + H,
like system where a small potential well is introduced at the saddle
point of the potential energy surface. This causes some trajectories
to form short-lived collision complexes which cause additional

features in the CI4 spectrum.

B. Theory

In the previous chapter it was shown that

2 f
X(8) = Xo(t) +\/‘”I,“’ ; aer SEROCEE)) 40y (3.1
t
1

Using the equations of motion and the definitions of N and Q,l1
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X =\/‘Tﬁ" singQ (3.2a)
P= Jikhw cosQ (3.2b)

it is possible to determine the photon number N at any time t, as

BuN(r,) = 3 %(e,)? + 3 mzx(:z)2 (3.3)

Using the expressions for X(t) and i(t) yields5

Nhw = N hw + f de ux(r))eos{w(z~t,)+Q;)

2 v

2 . N
[ e e e (3.4)
1

where Nn = N(tn), Q1 is the initial phase of the field and 5(:) is
the molecular trajectory determined from integrating the full
equations of motion of the system. The second term which has no N1
term present is the classical analog of spontaneous emission
within this model. It has been discussed elsewhere.5'19’20 In

the present application this term is insignificant and will be
ignored.

This zxpression for ANhw is exact within this model. In the
fellowing sectlons this expression is used to calculation collision
induced absorption spectra and to check more approximate
perturbation expressions. The perturbative limit of this equation
is very interesting and will also be used in this chapter.

-1/2

As before the perturbation limit is taken in terms of V vhere
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x(t) = xy(t) + Ax() + o™ (3.5)

and the equations for xo(t) and Ax(t) are given in the previous

chapter. (Eqs. 2.15 and 2.18). To order vl

snhm’ul 23
Anhw = ———;;——14: de ulx,(e)) cos(u(t~c,)+q,)
1
Bnhw3Nl 2 ENO)
+ 7 jt‘d: a;o * Ax(t) cos(w(:—t1)+Q1) (3.6)
1 *

Substituting in for Ax(t) and averaging over Ql the initial phase of

the field yields,5

41rhu)2N1 t £ Mxy(e)  Blxy(E))  Bulxg(e))  Buxole'))
BNhw = dt fd:' — - — -— - — )
t t |41 %1 *1 o1
1 1
sin(wt’-wt) 3.7

Therefore it is possible to compute the energy change of the
colliding molecular system (the change in the energy of the field)
and hence the absorption and emission properties of the system, by
integrating classical trajectories with the two additional equations

of motion for the field. Several examples of this technique are given

in the following sections.

C. A One Dimensional Barrier
This calculation was carried out, as were the calculations
presented in later sections, within the framework of the classical

theory developed in the previous chapters to treat the interaction
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of molecular systems with electromagnetic radia:ion.5 The usefulness
of this classical model is that it provides a dynamically consistent
description of the molecular system and of the radiation field and
permits essentially exact (i.e., non-perturbative) calculations to be
carried out. (Because the molecular dynamics is that of reactive
scattering, a completely quantum mechanical treatment would be
prohibitive.) Quantum effects could in principle be incorporated
via classical S-matrix theory,21 altheugh the nature of such effects
is well understood and are not expected to change any of the essential
features of the results.

As shown in the previous section the change in the energy of the

radiation field during the collision is given by

(Nz-Nl)hw = ANhw =
8mhuw™N) 2
—— f dr ufx(e)] cos[w(t—:l) + Ql] (3.8)
t
1

where Nl’Ql are the initial number of photons and initial phase of the

field, NZ is the final number of photons, 5(:) is the molecular
trajectory, u[f(t)] is the component of the dipole moment along the
polarization vector of the electric field as a function of time along
the trajectory, w is the frequency of the laser, V is the volume of
the radiation cavity and :1,:2 are the initial and final times,
respectively.

Though. this model allows the calculation of non-perturbative

results, it is useful to consider the analytic expression obtained in

the perturbative limit. If x and p denote the moiecular coordinates
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and momenta, then the fractional change in the photon energy for

initial conditions (xl,pl) is

Flw) = -S—N = [‘—3—@- Zd: Zdt' sinfw(t'-t)]

1
Bule) | duce')  du(r) | due!)
* Vop " ex % o I @9

By introducing the transformation

t'-t = At
t=t R
Eq. (3.9) can be written
4 o
F(w) = % fd(At) sin(uAt) C{at) (3.10)
0

where the correlation function C(At) is

o
du(e) , du(e-Ar)  du(r) | Bu(t-At)
- dt [ . - .
oo :[ " opy ) ox) o, :

< (3.11)

The correlation function must be averaged over the appropriate
distribution of initial conditions (51,21). If this were a Boltzmann
distribution, then F(w) would be proportional to the standard
expression22 for the absorption coefficient of a molecular systeu ...
would always be positive. For a state- and cnergy-selected collision
process, however, this average is only over the angle variables
conjugate to the bound degrees of freedom. For a collinear A + BC

collision, for er mple, with a specific initial translational energy

and a specific initial vibrational state of BC, the average over
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initial conditlons is only over the initial phasc of the vibrational
degree of freedom. As a consequence the averaged value F(w) need not
be positive.

To illustrate the qualitative nature of C(At) and F(w) as a
function of laser frequency, a simple one-dimensional potential

barrier was studied,

V(x) = - %—mwbxz . (3.12)

The initial energy is given by
P
E =——1——-]=nm2x2 (3.13)

and the trajectory is reactive or ncn-reactive for El > 0 or El <0,

respectively; cf. Figure 1. The field-free trajectory is given by

P
x(t) = x, cosh(u t) + E,l— sinh(wc) (3.14)
b

and dipoie moment W(x) selected for the calculation was

u(x) = x sech’x . (3.15)

Choosing mb (=.001 atomic unit), m (=1 amu) and xl (= -10.0 ao,
large enough that u(x) % 0.0) allows C(At) and F(w) to be calculated
for a series of fixed initial energies El. Figures 10 and 11 show
typical results for the case of a non-reactive (NR) trajectory

(E, = -0.1 eV) and a reactive (R) trajectory (El = Q0,1 eV). For

1
both C(At) and F(w) the NR result is very similar to conventional
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collision induced absorption spectra in non-reactive systems, but
the R case is seen to be qualitatively different: depending on th:
laser frequency w, the molecular system can either gain energy from
or lose energy to the radiation field. This was also indicated in
the previous chapter where, depending on the translational energy

and laser frequency, the reaction probability was either increased

or decreased.

D. Classical Trajectory Calculations

To obtain a more quantitatively reliable characterization of
the correlation function and its corresponding collision induced
absorption spectrum, classical trajectories were carried out for
the collinear H + HZ reaction within the framework of the theoretical
model described previously. The classical Hamiltonian for the

complete system, molecular system plus radiation field, is

2 2
H(p,x,P,R,N,Q) = gﬁ-+ §5-+ V(zr,R) + huN

—Va )

u(r,R) sinQ R (3.186)

and the initcial conditions for the trajectories are

R(tl) = large

P(cl) = -vﬁuEl
LIC R
Qt)) = Q

r(t;) = rln;,q,)
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p(:l) = p(n,.q,) (3.17)

where r(nl,ql), p(nl,ql) are the algebraic functions expressing the
vibrational variables (r,p) in terms of the vibrational action-
angle variables (n,q). In Eq. (3.16) V(r,R) is the potential energy
surface and p(r,R) the dipole moment of the H + H2 system. For

the potential energy surface a modified LEPS (London-Eyring-Polanyi-
Sato) function was used, the parameters of which are summarized in

Table IV.23 The dipole moment function was taken to be

H(r,R) = By s sechzs s (3.18)

where s = % v-R 1s the asymmetric stretch coordinate at the saddle
point of the potential surface. This form for the dipole moment is
qualitatively correct, although there is no reason to believe that
it is quantitative. Within the perturbation limit the constant ¥y
enters as simply a multiplicative constant in C(At) cnd F(w).

The CIA spectrum F( ) is given in an exact calculation by

3 |3
The™ N 2m 20
-1 1 -2
F = 0o "=y @0 fldq, [ld,

t"l

x’ dr ufx(e)] cosfuw(e-t;) + Q1 s (3.19)
t

it

where x(t) is the molecular trajectory determined by integrating
Hamilton's equations (generated from the Hamiltonian in Eq. (3.16)

with the initial conditions of Eq. (3.17). In a perturbative calcula-

tion only the field-free trajectory is calculated. This corresponds
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to the following equations of motion:

.

5 P/u

e e
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'
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L L A (3.20)

|
!

However since the derivatives of the dipole moment with respect to
the initial conditions as a function of time are also necessary,
the additional equations of motion governing the derivatives of the
dynamical variables with respect to the initial conditions must

also be integrated. These are24
d
T3 [R(E)] + [F(r)*R(t)] = O (3.21)
£ £ =

where

() ag(e)

LEN 9py
R(t) =
=
32(:) BE(!:)
3qy 3p)
_o%m %
3~33 apz
F(t) = -
= 3% 3%y
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where R(tl) is the unit matrix. This information allows the
construction of C{At) via [Eq. (3.11)], which is Fourier sine-
trangformed [Eq. (3.10)] to obtain I(w). As in the exact case
C(At), and hence I{w), requires an average over initial conditions,
which in the case of the collinear perturbative result is just an
average over the initial phase of the BC oscillator.

A typical correlation function generated by non-reactive
trajectories is shown in Figure 12. (The initial vibratiomal state
nl-D, the translational energy El = 0.1 eV, and all trajectories :n
this case are non-reactive.) The overall shape is basically the
same as the NR correlation function in Figure 10 except for a
superinmposed high frequency oscillation. This oscillation is due
to changes in the dipole moment caused by the H2 vibrational motion
relative to the incoming H [Eq. (3.18)]. The absorption spectra
(calculated perturbatively) is shown in Figure 13. There are two
peaks, one at low frequency due basically to translational motion
and one at high frequency (at the Hz vibrational frequency). The
spectrum was also computed non-perturbatively and found to agree
well with the perturbative calculation.

Figures 14 and 15 show the correlation function and corresponding
absorption spectrum, respectively, which are ge:ermined from
reactive trajectories of H + HZ' {In this case n1=0, El=0.30 eV
and 94% of the :rajecto;ies are reactive.) One again sees a high
frequency oscillation in C(At) which comes from vibration of Hy,
and apart from this the correlation function and spectrum are

similar to the reactive case of the one~dimensional model of

Section III.
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Referring to the absorption spectra in Figures 13 and 15,
one sees that the collision system will absorb frequencies in
the vicinity of the H2 vibrational frequency. The collisional
perturbation induces a dipole in Hy and thus'makes it IR active,
and such an effect would exist for any collision partner. Wormer
and Van Dijk,25 for example, have recently carried out calcularions
for absorption in H2 induced by collision with He atoms.
Absorption at the lower frequencies (cf. Figures 13 and 15),
however, is more relevant to the process of our interest; it is
related to translational motion alcng the reaction coordinate. It
is this region of the absorption spectrum, therefore, that is most

closely related to the reaction dynamics.

E. Model for a Short-Lived Collision Intermediate

To investigate the sensitivity of the correlation function and
absorption spectrum to the reaction dyna.ics, the H + H, potential
energy surface was modified b} introducing a well at the top of the
potential barrier. This causes R and B, to form a short-lived
collision intermediate, i.e., some trajectories oscillate several
times in the vicinity of the well before passing on to products
(or back to reactants).

The potential surface used in the calculation was the LEPS

surface described 1ln the previous section plus an additional term

v

well? where

2 2
v e e-a[(Rl—cl) + (Rz—cz) 1 (3.22)
well .



37

where @, ¢, Cl' c, are constants and Rl,R2 are the interatomic
distances. For this calculation, €y =y = 1.7574 a5, @ = -0.01,
which placed a gaussizn well at the saddle point. The frequencies
of the normal modes assactat-d with the bottom of the well are

w, = 0.008 and w, = 0,01 (atomic units).

The corvelation function for this system is shown in Figure 16
for a translational energy of 0.1 eV. Due to the changes in the
surface caused by the well Vv 82% of the trajectories reacted, " 37%
remained in the well for one or more complete vibrations, v 14%
for two or more complete vibrations and * 2% for three complete
vibrations. Due to these effects the correlation function has more
structure than in the calculation without the well, and it retains
a high frequency oscillation due to the H2 vibraéion.

Figure 17 shows the absorption spectrum, which also shows
considerably more structure. This spectrum is essentially that of
the collision complex, and one does, in fact, see peaks at w, and
Wy s the harmonic frequcncies related to the potential well, as well
as peaks of 2ml and ml + Wy There are other peaks, however, which
are not readily ldentified in terms of the harmonic frequencies.
Since the potential well is shallow and very unharmonic, this is
not surprising.

If the collision complex were long-lived, one would expect to
see much sharper lines in the absorption spectrum. From these one
could in principle determine the geometry and force constants of the

collision intermediate.
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F. Conclusion

We have given the basic equations (cf. Section B) which relate
the CIA absorption spectrum for a state-selected, mono-energetic
collision system to a particular dipole correlation function. A
Boltzmann average over initial states and collision energy converts
these expressions into the standard ones.22

The first application of these formulae (Section C) was to a
particle moving in one dimension over, or being reflected by, a
potential barrier. Application (in Section D) to a more realistic
model of a chemical reaction, collinear H + ﬂz, showed that the
qualititative behavior seen in the one~dimensional model also
appears in the more realistiic model.

Finally, the model treated in Section E showed how the CIA
spectrum is chaugéd when the reaction mechanism involves the
formation «f a collision intermediate. It is effects such as this
that would make experimental observation of these spectra informative

of the reaction dynamics.
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IV. LASER~INDUCED NON-ADIABATIC COLLISION PROCESSES

A. Introduction
There has been considerable interest recently in how high
power lasers affect molecular collision processes. Most papers on
2,3,5,7,18,26-31

the topic have been theoretical, although there

have been some report532-36 of experiments which show these effects.
Most workers, both theoretical and experimental, have dealt with
the effect of visible/UV lasers, i.e., those which can cause
electronic excitations, but it has been pointed out in the previous
chapters that high power infrared lasers can also modify collision
processes {e.g., increase rate constants for chemical reactions)
without causing electronic excitation.

The purpose of this chapter, which also considers the effect
of visible/UV lasers on collision phenomena, is two-fold. First,
we show how a completely classical model can be constructed for
such processes, 1.e., one which lescribes the nuclear motion
(translation, rotation, and vibration), electronic degrees of
freedom, and the laser radiation field all by classical mechanics
and thus in a dynamically consistent framework. The usefuiness of
this kind of approach is apparent if one wishes to describe
molecular collision phenomena, e.g., atom~diatom inelastic and
reactive collisions: the large number of quantum states (eclectronic,
vibrational, rotational, and photon) involved makes quantum
mechanical treatments extremely difficult and limited to special
cases (e.g., collinear A + BC collision systems). With the

classical model described below, on the other hand, calculations
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can be carried out with standard classical trajectory methods; for
A + BC collisions, for example, the only difference from the standard
situation is that there are two additional classical degrees of
freedom, the electronic degree of freedom and the photon degree of
freedom. Quantum effects, if they are thought to be significant,
can be incorporated to some extent within the "classical S-matrix"
model.21

This classical model, which we develop in Section B, is
essentially a synthesis of two earlier developments: In the
previous chapters a classical model has been developed and applied
for molecular collisions on one potential energy surface (i.e.,
one adiabatic electromic state) in a radiation field--i.e., a model
which treats the nuclear degrees of freedom (i.e., translationm,
rotation, and vibration) and the photon degree of freedom by
classical mechanics.2’3’5’18 Meyer, McCurdy, and M:i.ller37 have
developed a model for electronically non-adiabatic collision pro-
cesses which treats the nuclear degree of freedom and the electronic
degrees of freedom all classically. Here, therefore, we present
a classical model which treats everything--nuclear degrees of
freedom, electronic degrees of freedom, and the photon degrees of
freedom-~-classically. Again, the advantage of this approach is
that it is straightforward, via numerical integration of the
classical equationsAof motion, to describe the interaction of
all these degrees of freedom dynamically consistently.30

Section C of this chapter applys this classical model to a

test problem, the reaction
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LiF + H > Li + HF

as considered by Light and Altenbgrger-Siczek,zg wha carried out
quantum mechanical coupled-channel calculations. The interest is
to see how the reaction probability is affected by a wvisible/UV
laser which can cause eiectronic excitation during the collision.
The results of our classical model are consistent with the quantum
results, where the latter exist, but more importantly, we investigate
a wider range of initial collision energies and this reveals an
interesting structure in the energy dependence of the reaction
probability: at energies below the threshold for reaction without
the laser, the reaction probability is significantly enhanced at
particular collision energies (which depend on the frequency of the
laser). This effect is understood as a Franck-Condon-~like effect
and should pertain in general. Also in this section the additional
complications involved in a full three~dimensional calculation are
discussed and results presented for three dimensional LiF + H >

Li + FH for a variety of field strengths and frequencies.

Finally, in the last two sections we present calculations on
two other interesting phenomena. The possibility of laser
inhibition of a chemical reaction is studied using a collinear model
with parameters similar to H + HZ' This inhibition is a very large
effect which can be seen at quite small laser field strengths, and
which can sometimes destroy the effect of increased reaction
probability on the lower state. The last section deals with the
isotopic effects on reaction probability induced by the substitution

of deuterium for hydrogen in the collinear reaction LiF + H.
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B. The Classical Model
The classical Hamiltonlan for a molecular system and a single

mode radiation field has the standard form

mol cad * Hin: * (4.1

where the various terms are the molecular Hamiltonian, which involves
nuclear (i.e., translational, rotational, and vibrational) and
electronic degrees of freedom, the Hamiltonian for the pure

radiation field, and the interaction between the two, respectively.
If (f’B) denote the nuclear'coordinates and momenta and (n,q) the
classical action-angle variables for the electronic degrees of
freedom (assuming a 2-state electronic system), then the Meyer-

McCurdy-Miller37 theory gives the molecular Hamiltonian as

2
= B -
Hmol(g’f’n’q) st a n)Hoo(g) + Hll(§)
+ 2 n(l;;? H01(§) cosq R (4.2)
where Hn n,(:u), n,n' = 0,1, is the diabatic electronic potential
,n''2

energy surface. If (N,Q) are the classical action-angle variables
of the radiation field, then the theory of the previous chapters

glves Hrad and Hint (in the dipole approximation) as

B, = ol (4.3)

By, = -\ 13_’;,"2' V¥ sing uGx,n,q) 4.4)

where w is the frequency of the laser, V the volume of the radiation



cavity, and u(f,n,q) 1s the component of the molecular dipole
moment along the polarization vector of the laser. Finally, to
express the dipole moment M as a function of the classical
electronic action-angle variables (m,q) we invoke the Helsenherg
37a

correspondence relation as discussed by McCurdy and Miller;

this gives

u(g,n,q) = (1'“)”00(5) + oy, ()

+ 2,/n(l-nf u01(§) cosq s (4.5)

where un,n‘(f)' n,n’ = 0,1 is the matrix of the dipole moment
operator in the 2-state electronic basis, as a function of the
nuclear coordinates x.

Combining Eqs. (4.1)~(4.5) gives the complete classical
Hamiltonian for the nuclear (B,EL electronic (n,q), and photon

(N,Q) degrees of freedom as

2
H(p,x,n,q,N,Q) = g_m + (L1-n)Hy (%) + nHy (x)

+ 2,/ n(1-n) H01(x) cosq + hwN

-V-ivigvﬁr;inq((l-n)unn(f) + n”ll(f) + 2¢n(1—n)u01(§) cosq] .
(4.6)

From this Hamiltonian one can numerically integrate Hamilton's
equations in the standard way.l3 Initial conditions for the nuclear

coordinates and momenta (x,p) are specified in the usual way,l3 and

43
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for the electronic and photon variables, the initial values of n
and N are integers, the initial electronic state and the initial
numter of photons in the radiation field, respectively. If the
popular quasiclassical model13 is employed, them q and Q are chosen
initiairly by Monte Carlo sampling methods. (Section C discusses
this in more detail).

Fer the application in the next section, the ilamiltonian of

fq. (4.6) is simplified following Light et al:29

HOl = uoo(:f) = ”11(’5) =0 . 4.7)

Setting H01 = 0 corresponds to neglectiag electrunically non-
adiabatic effects in the abaence of the radiation field, and
setting uOO(E) = ull(g) = 0 corresponds to negleéting the inter-
action of nuclear motion within a given electronic state wirh the
radiation field (the effect studied in the previous chapter); at
the frequency of laser employed here (i.e., visual/UV), this latter
interaction is indeed negligible. The quantitites HOO(E) and Hll(g)
are thus the two adiabatic electronic potential energy surfaces
VO(E) and vl(f)' respectively, so that the Hamiltonian of Eq. (4.6)

sir:;plifies to

N

H(p,x,n,q,N,Q) = B+ (Q-n)v_(x) + V. (x) + hoN
0 Im 0~ 1

Y/ LTTRPY o Mgy (%) sinQ cosq . 4.8)

v

This is the classical Hamiltonian used for the applications in the
nexnt section. (The usual Langer-like modification37-—i.e., in the

last term, vn(l-n) =+ /(n+%~) (%—n)——is also made tc Eq. (4.8), N
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is so large that replacing N by N + % has no significant effecc).

c. Classical Trajectory Calculations

Light 55'51429 and later Kulander 25.5;;?1 considered a
collinear version of the above reaction, and this 1s the example we
also treat, using the same two potential energy surfaces as these
authors used. (The‘parameters defining the two LEPS potential
surfaces are given in Table II of reference 29). The classical
Hamiltonian of Eq. (4.8) then defines the collision systém, and
the calculations reported below were carried out within the
standard quasi-classical model.

The methodology of quasi-classical trajectory calculations is
well—known.l3 For this example, there are two nuclear degrees of
freedom, i.e., (g,f) = (P,p,R,r), where (R,P) are the coordinate
and momentum for relative translation of LiF and H, and (r,p) are
the coordinate and momentum for vibration for LiF. (n,§) denote
the vibrational action-angle variables for LiF, and r(i,3) and
p(ii,q) are the algebraic functions which express the carresian
vibrational variables in terms of their action~angle variables.

The initial conditions (at time tl) for a trajectory are

then specified as

n(tl) =n (the electronic quantum number) = 0 or 1

N(tl) = Nl (the photon quantum number) = integer
qlty) = qy
Qty) = Q

v(ty) = r(f;»q,)

p(ry) = p(p»d)) (4.9)
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where fil is an integer, the initial vibrational state,

R(tl) = large

tr

P(cl) = Y/ZuE

If xr(ql'Ql’ql’nl’nl’nl;Ecr) is the characteristic function for
reaction--i.e., X, =1 if the trajectory with the indicated initial
conditions is reactive, and is 0 otherwise--then the total reaction
probability for initial quantum numbers 0, Nl, fil and initial

translational energy Etr is

- 32w 2w 27 N -
PringuNpony3E) = (2m) £dql£dqlﬁql Xp(dy 50y o8y any o Ny sEey)

(4.10)
' The integrals over ql, Ql, and ?;'1 are performed by Monte Carlo.
The explicit form of Hamilton's equations for the present
example are (since Light et il_.zg assume that uOI(’f) = Yy is

coordinate independent)

.2
r..é_;i=p/m
. BE _

R=gp =B

q g-g = Vl(r,R) -V (r,R) - uoq fs—“:lﬂ l(t&f;—;—l:)—‘“) sinQ cosq
- n+3) (5-n
Vin+D G- ) 2

< BH wil s
Q= T hy - Hy vw —‘/ﬁ— sinQ cosg
v v

H 1
P=-3 = ~(1-n) ey (4.11)
avl

)
9H 0
-~ 0 R o

e
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. 8 By .

n=- g—;‘ = - ).Ioﬂ ’% 2 (n+7) (E—n) sinQ sing R
. '3 {7y

N= - -g—g = Hgy -—"—Jﬂ]- Z‘c/b?(n+-2-) (5_“) cosQ cosq ,

which are integrated with our usual variable step-size predictor-
corrector algorit:hm.21

Before presenting the results of these trajectory calculationms,
it is useful to discuss some qualitative aspects of the process.
Figure 18 shows a sketch of the energy profiles--the potential energy
along a "reaction coordinate"--for the two potential energy surfaces.
Referring to this figure, one sees that the ground state potential
energy surface has an activation barrier of ~ 0.4 eV, so with no
laser present the reaction probability as a function of initial
translational energy should have a threshold of ~ 0.4 eV. With a
laser of frequency w, though, the electronic energy gap Vl—V0 comes
into resonance with the laser when classical motion on the (initial)
ground state surface reaches the position 5, indicated in Figure 18,
i.e., s is the value for which Vl—V0 = hw. For initial translational
energies Etr > Vo(so), therefore, classical motion will reach this
position and there will be the possibility of resonant electronic
excitation; if this happens, then reaction (to electronically excited
i*+ HF) occurs with high probability because motion on the excited
potential surface i; "downhill all the way" to products.

Qualitatively, therefore, one expects a laser of frequency w
to reduce the threshold of the reaction to approximately VO(SO)'

(Note that for the surfaces in Figure 18 Vo(so) decreases with
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It is also clear that an initial translational energy

increasing ).
Etr f Vo(so) is the gpiimum translational energy for reaction (below
the laser-free threshold of "~ 0.4 eV) because in this case the
classical motion spends the most time in the resonant region V,-V,

= hw, i.e., for higher translational energies, the classical motion
will pass the “resonance region" with finite velocity and thus have
a smaller probability of being electronically excited.

The primary qualitative effect of the laser is thus to cavse a

peak in the reaction probability at the translational energy Etr =

Vo(so), i,e., where the classical turning point on the ground state
potential surface coincides with the resonance region Vl(so)—vo(so) =
f, This is the classical version of a Franck-Condon effect, and

one can characterize this behavior semi-quantitatively by calculating
the electronic transition probabilicy in the Landau-Zener approxi-
mation to the curve-crossing picture in the electronic-field
representation.7 (One considers the two potential curves v1 and

v_ + hw). Within this model, theé probability of the electronic

0
transition O + 1 with photon transition N + N -~ 1 is given by

-8
P =1 - .
1,N-1%0,N l-e (4.12)

with

22
25 Ho1

$=iv T&v, T

where
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52 _ 2mhuN
E v

L. t - '
AVO Vl (so) Vo (so)

v -VE (B v (sp)]

m erlo

In this approximation the probabillity of electronic excitation is
0 for E:r < Vo(so). jumps to 1 for Etr = Vo(so), and then falls for
higher Etr'

For still higher translational energies, Etr > 0.4 eV, the
reaction probability will again rise since reaction can then take
place on the ground state potential energy surface. Figure 19
shows a sketch of this expected energy dependence of the reaction
probability. One can estimate the width of the Franck-Condon peak
in the reaction probability rear Etr = VO(SO) by determining the
value of Etr—vo(so) for which P = %. Using Eq. (.12), this

"half-width" is easily found to be

2 =2
[E, ~V,(s,}] Y e I (4.13)
tr 0 %0’ Ip=1/2 7 2 [av,'T Tiin2 : :

which is seen to be proportional to the square of the laser
intensity.

This qualicatiye discussion above, which is based on the one
dimensional picture of the reaction in Figure 18 is modified in
several ways when the vibrational degree of freedom is taken into
account, Most significantly, the Franck-Condon maximum in the

cross section below the laser-free threshold will, in general, be
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split into two maxima. This is because the "Franck-Condon region",
i.e,, the place where the classical motion spends the most time, is
now where the vibrational motion, as well as the translational
motion, experiences a classical turning point. Vibrational motion
has two classical turning points, however, so there will be two
points on the ground state potentlal surface where the translational
and vibrational motion simultaneously experience classical turning
points (i.e., have zero momenta). The electronic energy gap vl—vo
will, in general, be different at these two points, and this leads
to two different Franck-Condon maxima. (If there were no translation-
vibration coupling in the potential energy surfaces and if the
vibrational potential functions for the two electronic states were
the same, then Vl—V0 would be the same at the t;o simultaneous
translation-vibration turning points and the two Franck-Condon
maxima would be coincident). This will be seen more explicitly
later in this discussion.

Figure 20 shows the total reaction probability is a function of
initial translational energy for the quasi-~classical trajectory
model as deseribed above. LiF is always in its ground vibrational
state initially. The dotted curve is the laser-free result, show-
ing the expected threshold at " 0.4 eV. The solid curve is
obtained for a laser with frequency hw = 6.2 eV and a power such
that ”01Eo = 0.0l eV (EO = ﬁﬂth1/V$, and the dashed curve is the
result for a laser of the same frequency but lower power, u01f0 =
0.008 eV.

Both laser-induced curves in Figure 20 show the two Franck-Condon

maxima as discussed at the end of the previous section, and the
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height and width of the peaks increase witk increasing laser power.
At the still lower power corresponding to u01E0 = 0,001 eV, the
peaks have disappeared.

The Franck-~Condon peaks in Figure 20 show the asymmetric
"line shape' suggested by the Landau-Zener model discussed above
with increasing tranmslational energy, the reaction probability rises
almost vertically to a maximum and then falls more gradually.
Quantum mechanical effects may, of course, modify this structure
in some of its details, but the gross features are expccted to
persist in a quantum description.

Figure 21 illustrates the effect of varying the laser frequency.
(The laser-free reaction probability is also shown again here). For
a power corresponding to “01Eo = 0,01 eV, the solid curve is for a
frequency hw = 6.2 eV (the same curve as shown in Figure 20), and
the dashed curve is for a frequency hw = 6.4 eV. The higher
frequency is thus seen to lead to a lower threshold for reaction,
as 1s understood from the discussion above. A surprise though,
is that the higher frequency (dashed curve in Figure 21) has ouly
one peak, not two, in the region below the laser-free threshold.

To understand this latter feature and to confirm that our
interpretation of these "Franck-Condon maxima' is actually correct,
we computed laser-free classical trajectories on the ground state
potential energy surface to determine the Franck-Condon transition
points. For a given translational energy Etr (and with LiF initially
in its ground vibrational state)} the initial vibrational angle
variable was varied over its range (0,27) to determine the two

points, (rl,Rl) and (rz,Rz), at which tramslation and vibration
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have simultaneous classical turning points. The electronic energy
gaps, Vl-Vo, at these two points define two frequencies, via hw =
Vl-Vo, for which Etr is a Franck-Condon maximum.

Figure 22 shows, as a function of translational energy Etr’

these two frequencies hw = Vl(Rk,rk) - Vo(Rk,rk), where (Rk,rk),

k = 1,2 are the two simultaneous turning points for energy Etr'

A horizontal line at a given frequency then gives the two
translational energies at which Franck-Condon maxima should appear
for that laser frequency.

For frequency hw = 6.2 eV, Figure 22 thus indicates that Franck-
Condon mcxima should appear at Etr 2 0.15 eV and 0.19 eV, and from
the Landau~Zener discussion it is clear that these are actually the
energles at which the reaction probability has its sharp vertical
rise at these energies.

For the higher frequency, hw = 6.4 eV, Figure 22 indicates the
two Franck-Condon energies to be Etr = 0,116 eV and 0.15 eV. The
reaction probability for this frequency (dashed curve in Figure 21)
does indeed show a sharp rise at E.= 0.116 eV and also a
broadened structure at Etr = 0,15 eV, but it is clear that this is
a case for which the two Franck-Condon maxima have merged into a
single broadened peak.

It seems clear, therefore, that this Franck-Condon picture of
the structure in the reaction probability is physically correct.
Note however that quantum mechanically the lowest vibrational state
is not peaked at the classical turning points so only one peak is
expected, Recent quantum mechanical studies of this system have

found a peak at the "outer” (that is "small r' vibrational turning
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point) These results are in qualitative agreement with the
classgical resul:s.31

In the three-dimensional calculations the equations of motion
become slightly more complicated. As in the collinear case u01(§)

1s taken as a constant. Howuver

e a
Hpp (%) = um-é = Mgy (A8) (4.14)

>
where Ho1 is a vector of constant magnitude ¥o1 in a direction

f which is perpendicular to the plane of the three atom system.
By, G
Iz
particles, 1s no longer zero as in the collinear case but a

Therefore » where x is the vector of coordinates of the
function of the relative positions of the atoms.

Besides this additional complication the calculation is carried
out using standard quasi-classical trajectory methods13 (which
have been described elsewhere) with the inclusion of the four
equations of motion describing the laser field and electronic
degree of freedom.

It was found that the cross-sections for three~dimensional
LiF + H on the ground state surface without the field were extremely
small. The cross—section at one laser intensity and several laser
frequencies is compared to that without the field in Figure 23.
The threshold for reaction was lowered in all cases. There was no
significant variation found with the polarization of the laser field.
At most frequencies there were no low translational energy peaks and
those that occurred were significantly reduced. This is due in

part to the three-dimensional nature of the problem since the simple



vibrational/translational turning point structure is washed out by
the rotation of the system. Also, the motion on the ground state
is primarily repulsive for many of the approach parameters so the
system cannot enter into a favorable region for excitation to the

upper potential energy surface.

D. Laser Inhibition of Chemical Reactions

The model used in this calculation is very similar to that
described by Light, et 5;;29 The ground state surface was taken
to be the Karplus~Porter potential surface for H + HZ.l The
excited state was taken to be a LEPS surface for H + HZ shifted
upward by 0.5 eV but with the Sato parameter § as 0.20. The effect
of this change is to lower the barrier to reaction and shift the
reaction path slightly. As described in the previous section it is
possible to predict for a given laser frequency the resonant
translational energies, that is the translational energies where
transitions to the excited potential energy come into resonance
causing a peak in the reactive probability. Figure 24 shows the
difference between the two potential energy surfaces at the
vibrational/translational turning points for the system as a
function of translational energy. To obtain the tramslational
energies where the Franck-Condon like factors are favorable for
transition to the upper surface, a horizontal line is drawn across
the graph at the laser frequency.

A quasi-classical calculation was carried out for this system
as described in the previous section. In Figure 25 the probability

of transition to the excited potential energy surface as a function

54
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of translational energy 1s plotted for one laser field strength and
a series of laser frequencies. Peaks occur at the predicted
;ranslational energies.

So far only the effect of the laser on the reactive
probability on the lower surface has been considered. It is also
possible to study the effect of the laser on the reaction
probability on the excited surface. At the laser frequencies
and field strengths studied for LiF + H the effect was small, due
to the large differences in the potential energy surfaces. However
in this model the two potential energy surfaces are very similar
so the region of favorable interaction overlaps considerably. 1In
Figure 26 the reaction probabllity in the presence of the field
at several laser frequencies is compared to th;: of the field-
free case. There is significant inhibition of reaction on the
upper state potential enmergy surface. In Figure 27 this effect
is 1llustrated as a function of field strengths. For even quite
low field strengths (U°E = 0,001l eV) the effect is still pronounced.
It is important to note that the largest probability for
transition to the upper state potential energy surface from the
lower surface occurs where a large inhibition of rhe reaction
probability on the upper surface occurs. These two effects tend
to cancel, resulting in the reaction probability on the lower
surface shown in Figure 28. Ouantum mechanically a similar effect
occurs, however a residual peak is still seen at the positions
marked in Figure 24.31 It 1s interesting to note that these again

occur at the "small r" (outer) turning point.
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E. Effect of Isotopic Substitution

In this section results on the effect of isatopic
substitution on the enhancement of chemical reactions via a
collision induced absorption is discussed. The system studied
is the same as that used in Section II but with the hydrogen
replaced with deuterium. All other parameters remained the
same. In Figure 29 the results for LiF + D are compared to
those of LiF + H for one laser frequency and field strength.

As can be seen, the peak is shifted and narrowed. This suggests
the interesting possibility that isotopic-specific enhancement

may occur during a chemical reaction.

F. Conclusion

The purpose of this paper was to illustrate the use of a
completely classical model to study the laser enhancement of
chemical reactioms via a collision induced absorption. Because
calculations can be carried out within the standard quasi-classical
framework, it was relatively easy to apply this model to a wide
range of collinear and three-dimensional systems. When comparison
was made to the avallable quantum mechanical results, they were
found to be in qualitative agreement though the quantitative
agreement was much worse.29’3l As will be illustrated by the
next chapter, the classical model while correctly predicting
positions of peaks, has the heights of the peaks always too large.
Therefore this method does as well (or as poorly) as do other
quasiclassical studies of more conventional processes (such as

vibrational or rotational excitation during a molecular cullision).
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However the quantum mechanical caleulation can only be carried out on
simple collinear systems. It is not possible (at present) to carry out
quantum mechanical three-dimensional calculations on these systems,
whereas the classical calculation is relatively simple to perform.

The Franck-Condon structure in the cross section is certainly
the most interesting feature revealed by the present calculations.

The fact that a laser of frequency w will significantly enhance the
reaction probability at a particular collision energy Etr (more
precisely, in a narrow range of collision energies) is an important
point to be aware of: knowing how this Franck-Condon energy varies
with w provides fairly direct information about the potential energy
surfaces that are involved in the process, and in a molecular beam
experiment, for example, the laser-induced effect will be largest when
the collision energy is "tuned" to this Franck-Condon region. It is
in predicting this Franck-~Condon structure that the method is the most
accurate. A simple calculation, even in regions where the classical
probability is very small, can predict the Franck-Condon structure in
the quantum mechanical reaction probabilities.

The other interesting feature pointed out in this chapter include
isotopic selectivity in these Franck-Condon peaks a result reflected
in the quantum mechanical s:udies,31 as well as a strong laser
inhibition of a chemical reaction. These effects seem to be quite
general and are expected to be sraon in other systems. The laser
inhibition or chemical reaction is of particular interest as the effect
is still noticeable for small field strengths (of the order of mega-

watts) and hence could be possibly seen experimentally in some systems.
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V. RESONANCE EFFECTS IN ELECTRONIC-VIBRATIONAL ENERGY TRANSFER

A.  Introduction

This final chapter illustrates another example of a completely
classical model for all degrees of freedom of a collinear system. A
series of papers37 over the last few years has developed and applied
a classical model for treating electronically non-adiabatic processes
in molecular cecllisions. The novel feature of this model is that
electronic, as well as heavy particle {(i.e., translation, rotation,
and vibration), degrees of freedom are described by classical mechanics,
and its attractiveness from a practical point of view is that calcu-
lations can be carried out within the framework of standard Monte Carlo
classical trajectory methodology.

One of the motivations for developing this completely classical
model was the realization38 that "mixed” dynamical models~--i.e., those
which characterize some degrees of freedom by classical mechanics and
others by quantum mechanics—-fail to describe some features of the
dynamics correctly. The very popular and often successful surface-
hopping model,39 for example, which treats heavy particle motion
classically but electronic degrees of freedom quantum mechanically
(as states, i.e., distinct potential Energy surfaces) is unable to
describe resomnance effects between electronic and heavy particle degrees
of freedom. Such resonance effects are important in the gquenching of
excited fluorine atoms (zPl/Z) by collision with H240 because the
404 cm-1 excitation energy of fluorine is roughly equal (within A~ 10%)
to the energy of the 0 -+ 2 rotational excitation of H,. Similarly,

Br*(zrllz) is thoughl:41 to be quenched efficiently by Hz because
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the vibraz_ional quantum of H2 approximately matches the 3685 cm_l
excitation energy of bromine. Since the classical mode137 treats all
degrees of freedom on the same dynamical footing, i.e., by classical
mechanics, it has been rezsoned that it should be able to describe
these aspects of resonance energy transfer at least qualitatively
correctly. To see how quantitative the model is, however, requires
numerical applications, and such is the purpose of this chapter.

Earlier calcula:ions37d have shown that the classical model does
indeed provide a reasonably good description of the resonance effect

between electronic and rotational degrees of freedom in F-H2 collisjions,

F*(ZPI/Z) + Hy(§=0) F(2P3/2) FH,G=2) 5 (5.1)

The cross section for this process is much larger at low collision

energies than for quenching by a comparable rare gas atom that does
not have rotational degrees of freedom. The present paper considers
a simple model of electronic~vibrational energy transfer that would

pertain, for example, to the quenching of Br* by HZ’

Br*(zpl/z) + Hy(v=0) -+ Br(2P3/2) +Hy(v=1) . 5.2)

The particular example we comsider is the collinear version of such
a system for which Lee, Lam, DeVries, and Gecvrgel'2 have recently
carried out quantum mechanical coupled channel calculations. Lee
et al.'s calculations provide the exact results for this model
problem, which can thus serve as a benchmark to see hov well the
classical model is able to describe such non-adiabatic processes.

Section B defines the system treated by Lee et al. and briefly
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summarizes the classical model as it applies to this example. The

results are dilscussed in Section C.

B. The Classical Model

Lee et gliéz conslder a collinear atom-diatom collision system,
A + BC, with two potential energy surfaces, i.e., two electronic
states, corresponding to ground and excited states of the atom A.

The 2 x 2 diahatic interaction potential surface is

A VZ A
Voo Rsx) Vo (Ror) 3 -5
Vlo(R,r) Vll(R,r) Vf;l %}
A 0
- 1 .
~a(k - 3 r-py) s (5.3)
+ e 0 Al

where r is the vibrational coordinate of BC and R the translational
coordinate, the distancé of A to the ceﬁ:er of mass of BC. it is

useful to make a unitary transformation of this potential matrix to
diagonalize the first term, the atomic part of the interaction that
survives as R + «. The approp?iate unitary transformation matrix is

i

3

g = _ /rI /TZ 5 (5.4)
3 3

and for the transformed potential matrix V ,
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The classical model37
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(5.5)
An
- , (5.6)
A
(5.7a)
(5.7b)
(5.7¢)

for the electronic degrees of freedom

replaces the diabatic potentfal matrix VN N,(R,r), N,N' = 0,1 of
s

Eq. (5.3) by a classical electronic Hamiltonian V(R,r,N,Q) which

is defined in terms of the matrix elements by

V(R,r,N,Q) = Nvll(n,r) + (l—N)VOO(R,r)
+ 2 ‘701(R’r) A (N+%) (-2--N3 cosQ

(N,Q) are the classical action-angle variables1

v (5.8)

1
for che electronic

degrees of freedom; i,e., N Is the classical electronic quantum

number. With Eq. (5.6) one notes that as R + © Eq. (5.8) becomes

V(R+o,x,N,Q) = NA

e

(5.9)

thus N is a conserved quantity in the asymptotic region, with N=0

corresponding to the ground electronic state of atom A (with energy
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*
0) and N=1 to the excited state A (with energy A).
To obtain the classical Hamiltonian for the complete system one
adds to V(R,r,N,Q) the potential energy for free vibrational motion

of BC and the kinetic energy for vibration and translation, and with

Eqs. (5.6) and (5.8) this gives

2 2
) 1 2 2
H(P,R,PToN,Q) = 50+ 5o+ 5 i (r-xg)

1
—a(R-5r- pg)

+ N 4+ e [(l-N)AOO + NAll
- _—
+2 By v+ G- cosal . (5.10)

where m and Y are the reduced masses for BC vibration and A-BC
translation, respectively. To obtair the final form of the
classical Hamiltonian one replaces the vibrational coordinate and
momentum (r,p) by their action-angle variablesll (n,q),

-1, =V%~ cosq {(5.11la)

p=-V@n+ldms sing s (5.11b)

giving
PZ 1
H(P,R,n,q,N,Q) = EE + (n+ Eﬁm + NA
1 /204l - -
+ exp{-a[R-R0 -V cosql} [(l—N)A00 + N All

+ 2 By JoueD G-m  cosq! . (5.12)
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The results presented in the next section corresponds to
implementation of the classical model within the framework of the
13,21

standard quasiclassical histogram approach. Thus to compute

the probability for the following vibration-to-electronic tramsition,
*
A + BC(n=1) -+ A + BC(n=0) R (5.13)

one integrates Hamiltonlan's equatinns {generated from the Hamiltonian

of Eq. (5.12) with initial conditicas

n(tl) =1z n,
N(tl) =0 = Nl
q(t;) = g,

ate,) = 2nE,

R(tl) = large

1 1 -
P(c)) = - VQ (B, ~(ny +3) -K,A] . (5.14)

where El and Ez are random numbers in (0,1) and Etr is the initial
tran lational energy. The final values of n and N that correspond

to Eq. (5.13) are n=0, N=1, and the quasiclassical approximation to
the probability of this transition is the fraction of trajectories
with the above initial conditions that have their actual final values
of n and N within a "box" of unit width about these values n=0, N=1.

The parameters in the classical Hamiltonian, Eq. (5.12), which

correspond to Lee et al.'s42 calculations are
w = 0.02 a =3
- 11 —~5
Ry = 4.7 Ay = 3% 10
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- i 213, 50
m = 1000 B, =8~
- _5 "
u = 389.1 Ky = —23'2 x 107> (5.15)

These values, in atomic units, correspond roughly to the Br-H2 system.
The pavameter A, the A + A* excitation energy, is varied in these
model calculations to assess the significance of resonance in the
electronic~vibrational energy transfer. Exact resonance, for

example, corresponds to A = w = 0.02, so for very low translational
energies, where resonance considerations are most important, one
would expect the transition probability for Eq. (5.13) to be largest
for A = 0.02. By varying A one ¢an sece how prominent the resonmance

effect is and how well the classical model is able to describe it.

C. Results and Discussion

Figures 30-32 show the transition probability for Eq. (5.12) as
a function of the atomic energy gap A for translational energies of
0.01 ev, 0.035 eV, and 0.055 eV, respectively. The solid curves are
the exact 7uantum mechanical results computed by Lee et al., 2 and
the broken curves the present results of the classical model. As
expected, the rasonance structures is sharpest at the lowest
translational energy; i.e., in Figure 30 the transition probability
peaks sharply at A ¥ 0.02. At higher translational energy the
resonance structure broadens and shifts.

The significant point to note is that this classical model does
describe the resonance features in this process reasonably well.
The position and width of the resonance peak are described well
over the entire energy range considered. Used in this primitive

histogram mode, however, the classical results do have shortcomings:
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the peak heights are too large (by a factor of two in the worst case,
Figure 1) and the classical results do not describe the wings of the
resonance line shape well. This latter failing is typical of all
quasiclassical histogram treatments, namely the inability to describe
weak (classically forbidden) prccesses.21

The encouraging note is that the quasiclassical results for this
electronically inelastic process are no worse than typical quasi-
classical results for rotationally and vibrationally inelastic
prccesses.43 Thus the classical model for electronic degrees of
freedom seems to do about as well (or as poorly, depending on one's
point of view) in describing electronically inelastic processes as
classical mechanics does for inelastic processes involving only
heavy particle degrees of freedom. To the extent that this level
of accuracy is sufficient one thus has a consistent dynamical model

for treating both electronically non-adiabatic as well as adiabatic

collision processes.



Table I. Dependence of Threshold Lowering on Laser Frequency.

a
AEth(eV)
—
Laser e cL + Hj
Frequency H+ HZ F + H2 H+HF CR+ Hz H + HCR 2
(em™H) 3-dimensional
47 - - - 0.13 - -
94 0.05 > 0.05 0.03 0.12 0.C4 0.07
219 0.06 - - - - -
472 - 0.01 0.03 0.05 0.02 0.03
519 0.09 - - - -— —
768 0.08 - - - - -
944 0.07 0 0.02 0.01 0.01 0.0L
2195 0.01 - - - - -

2 amount by which the threshold cf the reaction is lowered by a laser

field of a power corresponding to hwR = 0.1 eV,



Table IZ. LEPS Parameters for Potential Energy Surfaces.

H-H~F

—
HF
De(kcal/mole) 140.5
pea”h 2.22
t, ) 0.917

4 0.150

HH

109.5
1.94
0.742

0.080

H-H~C2
A——_—_-\
HCR HH
106.41 109.43
1.87 1.94
1.27 0.742
0.187 0.167



Table III.

Parameters for the HX Dipole Moment Function.

<

n

a _HF HCR

0 2.35 - 236.95
1 - 3.40 1151.69
2 - 40.16 -2011.50

3 112.15 1631.43
4 - 87.97 -~ 635.97

5 30.31 101.24

@ = 2.5 bohr .
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Table IV. LEPS parameters for H + H2 potential energy -urface.

De(kcal/mole) 109.5

°_
aa™h 1.542
7o () 0.7417

A 0.1413
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FIGURE CAPTIONS

Sketch of a one~dimensional potential energy barrier. x, is the
initial position and El the initial energy.

Reaction probability as a function of initial translational energy
[as given by Eq. (2.13] for the one-dimensicnal model problem.
(a) Sketch of the time dependence of the dipole moment of the
H-H-H system along a reactive trajectory H + H2 -+ H2 + H.

(b) Sketch of the absorption spectrum corresponding to the time-~
dependent dipole in (a).

Reaction probability for the collinear H + Hz he H2 + H reaction
as a function of initial translational energy, without the laser
field (—) and with it (==-); h = 944 cn © and huwy = 0.1 eV,
Same as Figure 4 except for the reaction F + Hz(v=0) + HF + H;

hw = 94 cm"l and hwR = 0.1 eV.

+
m

Same as Figure 4 except for the reaction H + HF(v=2)
h = 94 cm-l and hmR = 0.1 ev.

Same as Figure 4 except for the reaction CL + HZ(V=0) ~ HC& + H;

hu = 94 cn™", and huy = 0.01 eV and 0.1 eV as labeled.

Same as Figure & except for the reaction H + HCL(v=0) -+ H, + c2;

hw = 94 cm L (=), 472 ent (=--), and huy = 0.1 eV.

Reactive cross section for the three-dimensional reaction CL + Hz -+
HCR + H as a function of initial translational energy, without the
laser (—) and with it (---); } and | indicate the cases of
parallel and perpendicular polarization vector of the laser to

the initial relative velocity vector, respectively. hw = 94 cm_l,

= 0.1 ev.
hmR e
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14.

15.

16.

17.

18.

19.

20.
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Correlation function C(At) for the one-dimensional barrier in

the reactive (R, El > 0) and non-reactive (NR, E; < 0) cases.
Absorption spectrum corresponding to the correlation funcztion in
Figure 10.

Cor~czlation function for non-reactiwve trajectories of the collinear
H + H, collision.

2
Absorption spectrum corresponding to the correlation function in

Figure 12.
Correlation function for reactive trajectories of the collinear
H + H, collisiom.

2
Absorption spectrum corresponding to the correlation function in

Figure 14.

Correlation function for the modified H + H2 potential surface.
Absorption spectrum corresponding to the correlation function in
Figure 16.

Sketch of the potential energy along the reaction coordinate s
for the two electronic potential energy surfaces for the system
H + LiF - HF + Li. Etr denotes the initial transiational energy
and w the frequency of the laser.

Sketch of the qualitative dependence of the total react
probability on initial translational energy Etr'

Total reaction probability for H + LiF = HF + Li as a function of
the initial translational energy Eg,, from a quasi-classical
trajectory calculatior. LiF is initially in its ground vibrational
state. The dotted curve is the laser-free result. The other two
curves are for a laser frequency hw = 6.2 eV, the laser power

being such that p01E0 = 0.0l eV (solid curve) and 0.008 eV
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22,

23,

24,

74

(dashed curve).

Total reaction probability as in Figure 20. The dotted curve
is the laser-free result as in Figure 20. The other two curves
are for a laser power such that u01E0 = 0.01 eV and a frequency
hw = 6.2 eV (solid curve) and hw = 6.4 (dahsed curve).

Shown are the two Franck-Condon frequencies hw = Vl(Rk,rk) -
VD(Rk’rk)’ wvhere (Rk’rk)’ k = 1,2, 'are the two simultaneous
translation~vibration turning points on the ground state poten-
tial surface, as a function of the initial translational energy

Etr“ The intersection of the dashed line at frequency hw = 6.4 eV
with the two curves gives the two translation energies at which
Franck-Condon maxima should appear for that laser frequency,

and similarly for frequency hw = 6.2 eV.

Total cross-section (aoz) for three-dimensional H + LiF + HF + Li
as a function of the initial translaticnal energy Etr’ from a
quasi-classical trajectory calculations. LiF is initially in its
ground vibrational-rotational state. The dotted curve is the
laser-free result. The other two curves are for a laser power
such that u01E0 = 0.01 eV and a frequency hw = 6.5 eV (solid
curve) and 6.2 eV (dashed curve).

Shown are the Franck-Condon frequencies AV = Vl(Rk,rk) - Vo(Rk,rk)
where (Rk’rk)’ k = 1,2 are the two simultaneous translation-
vibration turning points on the ground state potential surface,

as a function of the initial translational energy, Etr’ for the
model system with H + H2 parameters, The position of peaks in

the quantum mechanical probability for u01E0 = 0.01 are marked

by crosses.,
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26,

27,
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The probability for transition to the upper state potential
surface for the model H + H2 system as a function of the

initial translational energy Ecr’ from a quasi-classical
trajectory calculntion. H2 is initially in its ground vibrational
state. The curves are for a laser power such that “01EO =

0.0l eV and a frequency hw = 0.017 a, (solid curve), 0.016% a,
(dashed cuive) and 0.016 a0 (dash-dot curve).

Total reaction probability on the upper state surface for the
model H + H, system as a function of initial tramslational

energy, Etr’ from a quasi-classical calculation. H2 is initially
in its ground vibrational state. The dotted curve is the laser-
free result. The curves are for a laser power such that UOlEO =
0.u1 eV and frequency hw = 0.017 a, (solid curve), 0.0165 a,
(dashed curve) and 0.016 ag (dot-dash curve).

Total reactinn probability as in Figure 26. The dotted curv.

is the laser-free result as in Figure 26. The laser frequency

is hw = 0.017 a, and the laser field strength is such that

”OlEO = 0.01 eV (solid curve), 0.005 eV (dashed curve) and 0.001
eV (dash-dot curve).

Total reaction probability on the state surface for the model

H + HZ system as a function of initial translational energy,

E from a quasi-classical calculation. HZ is inmitially in

tr’
its ground vibrational state. The dotted curve is the laser-
free result. The curves are for a laser power such that UOIEO =
0.01 eV and frequency hw = 0.017 a (solid curve), 0.0165 ag
(dashed curve) and 0.016 a, {dash-dot curve).

Total reaction probability for collinear LiF + 4 - HF + Li
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31.

32.
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(solid curve) and collinear LiF + D + DF + Li (dashed curve) as

a function of initial tranmslational energy, Etr’ from a quasi-~
classical calculation. LiF is initially in its ground vibratiomal
state. The cuives are for a laser power such that uOlED =

0.01 eV and a laser frequency hw = 6.2 eV.

Transition probability for Eq. (2.11) as a function of the atomic
excitation energy A, for am initial translational energy E,.=
0.01 eV. The solid curve is the exact quantum result of Lee et al.

(reference 42) and the broken curve the results of the presemt
classical model; the error bar is the usual Monte Carlo error
estimate.

Same as Figure 30 except Etr = 0.035 ev.

Same as Figure 30 except Etr = 0,055 eV.
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