UC San Diego
UC San Diego Previously Published Works

Title
Automatic translation of MPI source into a latency-tolerant, data-driven form

Permalink
https://escholarship.org/uc/item/8fh786n4

Authors
Nguyen, Tan
Cicotti, Pietro

Bylaska, Eric

Publication Date
2017-08-01

DOI
10.1016/j.jpdc.2017.02.009

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/8fh786n4
https://escholarship.org/uc/item/8fh786n4#author
https://escholarship.org
http://www.cdlib.org/

J. Parallel Distrib. Comput. 106 (2017) 1-13

journal homepage: www.elsevier.com/locate/jpdc

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

PARALLELAND
DISTRIBUTED
COMPUTING

Automatic translation of MPI source into a latency-tolerant,

data-driven form

@ CrossMark

Tan Nguyen **, Pietro Cicotti?, Eric Bylaska®, Dan Quinlan¢, Scott Baden?

2 Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA
b Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
¢ Center for Advanced Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

HIGHLIGHTS

Bamboo supports both point-to-point and collective communication.

Bamboo is a translator that can reformulate MPI source into a task graph form.

Bamboo supports GPUs, hiding communication among GPUs and between hosts and GPUs.
Bamboo speeds up applications containing elaborate data and control structures.

ARTICLE INFO ABSTRACT

Article history:

Received 5 July 2016

Received in revised form

31 January 2017

Accepted 21 February 2017
Available online 6 March 2017

Keywords:

Automatic communication hiding
Source-to-source translator

Task dependency graph
Data-driven execution

Hiding communication behind useful computation is an important performance programming technique
but remains an inscrutable programming exercise even for the expert. We present Bamboo, a code
transformation framework that can realize communication overlap in applications written in MPI without
the need to intrusively modify the source code. We reformulate MPI source into a task dependency
graph representation, which partially orders the tasks, enabling the program to execute in a data-driven
fashion under the control of an external runtime system. Experimental results demonstrate that Bamboo
significantly reduces communication delays while requiring only modest amounts of programmer
annotation for a variety of applications and platforms, including those employing co-processors and
accelerators. Moreover, Bamboo’s performance meets or exceeds that of labor-intensive hand coding. The
translator is more than a means of hiding communication costs automatically; it demonstrates the utility
of semantic level optimization against a well-known library.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

At present, distributed-memory systems have evolved to
a sophisticated level that requires applications to be heavily
optimized to harness all resources provided by the hardware.
An important consideration is how to minimize communication
overheads in tandem with improvements in computational
rates. There are two approaches to reducing communication
overheads: tolerate them [55,29,57,4,61,60,32,22,20,33,58,40,21,
38,46] or avoid them [56,5,42]. It is also possible to use both
approaches in the same application. In this paper, we discuss an
automated translation strategy that implements the first approach.

* Corresponding author.
E-mail address: nnguyenthanh@eng.ucsd.edu (T. Nguyen).

http://dx.doi.org/10.1016/j.jpdc.2017.02.009
0743-7315/© 2017 Elsevier Inc. All rights reserved.

We describe a domain-specific solution that applies to MPI
applications. Since MPI is the de facto standard for distributed-
memory programming, our approach has a broad application
space.

Although MPI enables one to write communication tolerant
code, it does not support the activity. For example, MPI pro-
vides immediate mode communication to express split phase
algorithms [65,37,17], a common technique for masking commu-
nication overheads under computations. However, it does not as-
sist the programmer in pipelining and scheduling computation
and communication, nor how to manage a sufficiently large pool
for work needed to realize overlap (e.g. processor virtualization
or overdecomposition in Charm++ [34]). As a result, policy deci-
sions affecting performance become entangled with the applica-
tion, greatly affecting code development time and performance
robustness. Such requirements impose a significant burden on the

http://dx.doi.org/10.1016/j.jpdc.2017.02.009
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2017.02.009&domain=pdf
mailto:nnguyenthanh@eng.ucsd.edu
http://dx.doi.org/10.1016/j.jpdc.2017.02.009

2 T. Nguyen et al. /]. Parallel Distrib. Comput. 106 (2017) 1-13

domain-science focused programmer who will usually defer to the
expert.

To address obstacles to realizing communication overlap on
high-end systems, we have developed a source-to-source trans-
lation framework, called Bamboo [46,44,45]. Bamboo transforms
applications written in subset of MPI into a data-driven form that
overlaps communication with computation automatically. Unlike
other approaches [40,15] that offer an explicit data-driven model,
we use information about communication operations embedded in
an MPI program to reason about the data dependencies among pro-
cesses in order to improve performance. Armed with such knowl-
edge, Bamboo can reformulate MPI source that does not overlap
communication with computation into a task dependency graph
representation that realizes overlap. The graph maintains a partial
ordering over the execution of tasks of the graph, and the program
executes in a dataflow-like fashion under the control of an exter-
nal scheduler, which can overlap communication with computa-
tion automatically.

The Bamboo translation framework includes a programming
model and a source-to-source translator. The programmer anno-
tates the application with program directives, which inform Bam-
boo’s transformations. Compared to the conventional split phase
technique, these transformations not only realize overlap but also
prevent policy decisions from becoming intertwined with the ap-
plication. The effect is to insulate application logic from technolog-
ical change, allowing the original code to continue to run correctly
and to retain its familiar code structure.

The Bamboo software stack comprises 2 layers: core message
passing and utility layers. The core layer transforms a minimal
subset of MPI point-to-point routines (Bamboo does not support
MPI’s one sided communication), whereas the second translates a
subset of higher level MPI functionality into equivalent point-to-
point encodings, which will be then translated by the core layer.
This multi-layer design allows one to customize MPI collectives,
which may benefit from a specialized interconnect topology or be
tailored to the application [13].

Though Bamboo supports only a subset of MPI, we have found
that it can improve the performance of a wide range of applications
taken from well-known application motifs on diverse platforms.
We ran at scale on Edison (Cray XC30) and Hopper (Cray XE6)
systems at the National Energy Research Scientific Computing
Center (NERSC) and on the Stampede system at the Texas Advanced
Computing Center (TACC), which has advanced node architectures
based on NVIDIA’s Kepler and the Intel’s Phi. We evaluated Bamboo
against basic MPI and hand optimized code variants written by
an expert to overlap communication with computation. Bamboo
consistently realized a significant reduction in communication
delays of the basic MPI variant. We observed that performance of
applications translated with Bamboo met or exceeded that of the
hand optimized code variants requiring only modest amounts of
user annotation.

The remainder of the paper is organized as follows. Section 2
presents the Bamboo source-to-source translation framework.
Section 3 discusses the design and implementation of the Bamboo
source-to-source translator. Next, Section 4 presents experimental
validation for various applications. Section 5 presents Bamboo
support on advanced node technologies. Section 6 reviews related
work. Section 7 concludes the paper and presents future work.

2. Bamboo
2.1. Motivation
Scalable applications are generally written under the SPMD

(Same Program Multiple Data) model, and message passing has
been the preferred vehicle for over two decades. The Message

Passing Interface (MPI) [43] accounts for the lion’s share of scalable
application software, which may employ the two tier MPI+X
programming model to unfold node level parallelism via OpenMP,
CUDA or OpenCL.

MPI enables the application programmer to cater optimizations
that benefit performance using heuristics, in particular, involving
data motion and locality. Such domain specific knowledge is
difficult to capture via general-purpose language constructs and
associated compilation strategies that are unaware of application
and library semantics and this helps explain the persistence of
MPIL. The MPI software community has been prolific, building
a large body of knowledge and experience for writing high
quality application software and tools. This knowledge and
experience holds important clues for optimizing high performance
applications. This observation motivates the design of Bamboo:
a custom translator tailored to the MPI interface that effectively
treats the API's members as primitives in an embedded domain
specific language.

Bamboo extracts data and control dependencies from the
pattern of MPI call sites and constructs a task precedence
graph corresponding to the partial ordering of tasks. These
tasks execute according to dataflow semantics [3,23]. A dataflow
model has two appealing attributes. First, it can automatically
mask data motion costs and hence improve performance without
programmer intervention [6,20,33,58,19,21]. Second, it simplifies
code development and maintenance by separating concerns
surrounding policy decisions (e.g., scheduling) from program
correctness. Since static analysis is not sufficient to infer matching
sends and receives in a running program [47], Bamboo requires
some modest amounts of programmer annotation of the original
MPI program.

2.2. The bamboo programming model

To illuminate our discussions about translation under Bamboo,
we will use a simple example: an iterative finite difference
solver for Laplace’s equation in two dimensions (Fig. 1). The MPI
implementation partitions the solution meshes across processors,
introducing data dependencies among adjacent mesh elements
that straddle the boundaries between subproblems assigned to
different processors. To treat these data dependencies, the solver
stores copies of off-processor boundary values in ghost cells. Since
a conventional compiler will ignore the annotations, the code in
Fig. 1 is also a legal MPI program. We next describe Bamboo’s
underlying programming model and its annotations.

A Bamboo program is a legal MPI program, augmented with
one or more code regions called olap-regions as shown in Fig. 1.
An olap-region is a section of code containing communication to
be overlapped with computation. The entry into an olap-region is
called an evaluation point, where a task either continues or it yields
control to another task because the required input data is not yet
available. Receive operations residing within an olap-region will
be included in the input window corresponding to the evaluation
point of the olap-region. Bamboo preserves the execution order of
olap-regions, which a task runs sequentially, one after the other.
However, there is no implicit barrier at the exit of an olap-region.
This allows a task to exit an olap-region and continue executing
until it reaches the next olap-region, which it can enter if all the
inputs defined by the corresponding evaluation point and input
window are ready.

Within an olap-region, send and receive calls are grouped within
enclosing communication blocks. All code appearing within an
overlap region must be properly enclosed in a communication
block, of which there are two kinds: send and receive. A send block
contains Sends (MPI_Send and MPI_Isend) only. In most cases, a
receive block contains Recvs (MPI_Recv and MPI_Irecv) only, except

T. Nguyen et al. /]. Parallel Distrib. Comput. 106 (2017) 1-13 3

1 Compute processID of

left /right /up/down processors

2 for it = 1 to num_iterations {

3 #pragma bamboo olap

4

5 #pragma bamboo receive

6 { MPI_Irecv(RecvGhostcells) from left/right/up/down
7 }

8 #pragma bamboo send

9 { Pack boundary values to SendGhostcells

10 MPI_Isend (SendGhostcells) to left/right/up/down
11 }

12 MPI_Waitall () ;

13 Unpack RecvGhostcells

14 for j = 1 to N/Nprocs .Y — 2

15 for i = 1 to N/Nprocs_.X — 2

16 VI, i]=(U[j—1,1]4+U[j+1,i]4U[j , i —14U[, i +1]) /4
17 swap (U,V)

18

19 }

20 free U, V, SendGhostcells ,
21 MPI_Finalize () ;

RecvGhostcells

Fig. 1. Annotated MPI program for 2DJacobi. For purposes of clarifying, some code has been omitted.

for the following situation. If a Send consumes data obtained from
a prior Recv (read after write dependence), then it has to reside
within an appropriate receive block, either the same block as the
Recv, or a later one.

Communication blocks specify a partial ordering of communi-
cation operations at the granularity of a block, including associated
statements that set up arguments for the communication routines,
e.g. establish a destination process. While the statements within
each block are executed in order, the totality of the statements con-
tained within all the send blocks are independent of the totality
of statements contained within all the receive blocks. This partial
ordering enables Bamboo to reorder send and receive blocks. For
example, Bamboo can move all send blocks up front and outside of
the olap-region, enabling all outputs to be sent out to fulfill inputs
from the current olap-region onwards. Bamboo does not reorder
blocks of the same type. However, because a Bamboo program ex-
ecutes asynchronously, inputs can arrive in any order, as they can
be buffered upon arrival and then injected into tasks in the order
specified by the programmer.

3. Implementation

For the sake of portability, we split the Bamboo translator into
2 software layers as shown in Fig. 2(a). The lower level layer
consists of a minimal set of MPI point-to-point primitives, hence
the name core message passing. An implementation of this layer
highly depends on a runtime system that executes the generated
task graph program. We will present the execution model and
the implementation of the runtime system in Section 3.2. On top
of the core message passing layer, we implement a utility layer,
which supports a substantially richer set of MPI routines, including
communicator splitting and collective operations.

3.1. MPI subset

Bamboo supports an important subset of MPI used in a
wide range of applications: point-to-point operations (Send/Isend/
Recv/Irecv/Wait/WaitAll); a variety of collectives (see Table 2);
communicator splitting, MPI status, derived datatypes (struct,
contiguous and vector). Bamboo does not support one-sided
communication currently. Since Bamboo’s runtime requires that
task graphs be run time static structures (Section 3.2). Bamboo
does not support MPI dynamic process creation. It can, however,
support dynamic adaptive meshes, which are treated successfully
with dynamic process creation. However, Bamboo would not be
applicable to graph algorithms, for example, that employed fine
grained communication, dynamic process creation, or both.

3.2. Runtime system

A Bamboo program runs as a set of tasks coupled by data
dependencies. The program can over-decompose the problem,
creating more tasks than the number of processing cores. The
task scheduling and communication handling jobs are handled by
Bamboo’s runtime system called Tarragon [20,19].

3.2.1. Task scheduling

Tasks have state, and this state is used to manage task
execution. A typical Bamboo task spends most of its time
circulating among the following 3 states: eXecuting (X), Waiting
(W) or Runnable (R) as shown in Fig. 3. A waiting task will become
runnable when all inputs are ready. The collection of all inputs of
a task is represented by task’s firing rule, which is visible to the
runtime. Tasks are executed by workers. A runnable task will start
executing when the runtime identifies an available worker. Since
a task cannot execute unless it has first become runnable, there is
no explicit message waiting within a task; this activity is factored
out of task execution and handled via a callback made by the
runtime. Additional task state variables can be defined by Bamboo.
For example, we use task state to control iterative methods, folding
the iteration inside the tasks. Tasks and Task Graphs are run time
static entities. Thus, once instantiated, their structure, including
tasks dependencies, cannot change at run time.

Currently Tarragon uses Pthreads to implement workers. The
runtime can be configured to have either a shared task queue
among all workers or multiple private queues. The former
configuration allows the workload to be easily balanced but also
incur some overhead for memory protection.

3.2.2. Communication handler

As a task is running, it produces data. Tasks can register certain
data with the runtime as outputs, which enable other tasks to
become runnable (R) and ultimately execute (X). Tasks will not
block when producing outputs. Instead, outputs will be buffered
and processed by the communication handler. Data sent out from
a task will not become visible at the destination until the recipient
has entered the W state. When a task is in the R or X state, incoming
messages are hidden by the runtime system, in the order they were
received, and only be made visible when the task enters the W state
again.

Currently, Tarragon uses MPI to implement the communication
handler. It uses non-blocking routines (MPI_Isend, MPI_Irecv,

4 T. Nguyen et al. /]. Parallel Distrib. Comput. 106 (2017) 1-13

Annotated MPI

User-defined subprograms

Utility

Collective

Subcommunicator

Core message passing

Task graph code
>

MPI compiler

(a) The Bamboo software stack.

(b) Bamboo uses the ROSE compiler framework.

Fig. 2. The Bamboo design and implementation.

All inputs are ready

Some inputs
are not ready T

Require more inputs

Task is scheduled

v No more

work to do °

All inputs are already ready
(e.g. for the next iteration)

Fig. 3. Except for the initial state (I) and the final state (D), a task circulates among 3 states W, R, and X. Tasks never wait for inputs and hold computing resource at the

same time. In addition, tasks only receive new inputs at the W state.

Table 1

An intermediate code transformation that reorders blocks of code. Left: a typical
MPI input program that requires code reordering. Sends within the send block of
a process match with receives within the receive block of another process in the
same iteration. Right: The same code with send reordered. Note that the replicated
MPI_Send calls will not pose a deadlock issue. Bamboo will reinterpret MPI calls
later, allowing the generated code to work correctly.

Before reordering After reordering

1i=1
2 if (i<=niters){
3 MPI_Send (sbuf0 ,...) ;

1 #fpragma bamboo olap MPI_Send(sbufl ,...);

4
2 for (i=1;i<=nlters;i++){ 5}
’ > 6 #pragma bamboo olap
3 #pragma bamboo receive 7 for (;i<—nlters;){
Lrl {MPI’IYQCV(rbu{.O v) 8 #pragma bamboo receive
o MPIIrecy (rbufl, ...); } 9 {MPI_Irecv(rbufo, ...);
6 #p’ragma bamboo ‘send 10 MPI_Irecv(rbufl, ...); }
7 {MPILSend(sbuf0,...); 11 MPI.Waitall (...) :
8 MPI_Send(sbufl ,...); } 12 Compute block ’
9 MPI_Waitall (...) ; 13 s
10 Compute block 14 if(i<=niters){
11 15 MPLSend(sbuf0,...);
16 MPI_Send (sbufl ,...) ;
17}
18 }

and MPI_Test) to handle inter-process communication requests.
For intra-process communication requests, outputs of a task are
injected directly to the recipient. To keep the communication
handler responsive to requests, the runtime can dedicate a
processor core to run the handler.

3.3. Translation: core message passing layer

3.3.1. Block reordering

To use Bamboo, the MPI source is annotated with olap-regions,
each consisting of communication blocks, send and receive blocks,
which further contain MPI function calls. Due to the way in which
the generated code executes, Bamboo performs an intermediate
code transformation called block reordering. Bamboo will reorder
certain communication blocks in certain situations. For example,
the left side of Table 1 shows a common communication pattern
used in MPI applications that will be restructured by Bamboo.
Specifically, Sends (in the send block) issued by a process match
up with Recvs (in the receive block) of the other process encoded

in the same iteration. Bamboo has to reorder the send block due to
the following reason. A task is runnable only when all necessary
data is available. If we place the corresponding send within the
same iteration as the corresponding receive, data sent in one
iteration will not be received until the next. But, the algorithm
needs to receive data within the same iteration. To cope with
this timing problem, Bamboo reorders the send block, advancing
it in time so that the sending and receiving activities reside in
different iterations. Bamboo will set up a pipeline, replicating the
send block to the front of, and outside, the iteration loop. It also
migrates the existing call to the end of the loop body, adding
an appropriate guard derived from the loop iteration control
logic. After reordering, the transformed code appears as shown in
the right side of Table 1. The matching send and receive blocks
now reside in different iterations. We next present how Bamboo
reinterprets all MPI calls produced in this phase as task’s inputs
and outputs.

3.3.2. MPI reinterpretation

Bamboo translates MPI calls into task methods. For MPI_Comm_
rank and MPI_Comm_size, Bamboo simply rewrites these routines
to corresponding method invocations that return the task ID
and number of tasks in the graph, since over-decomposition
does not change the communication pattern. For MPI_Send and
MPI_Isend, Bamboo creates a message and copies communicated
data from the outgoing buffer into the data buffer of the message.
Bamboo then generates a signal code notifying the communication
handler of the runtime system that the output data is ready to
be sent out. MPI_Recv and MPI_Irecv, however, are handled in
a different way since tasks do not explicitly invoke any method
to receive data from other tasks. Instead, the runtime receives
and buffers incoming messages. When a task is scheduled to
execute, it can pull these messages from the runtime. Bamboo
uses all Recv calls within an olap-region, together with any
conditional statements connected with them, to generate firing
rule which decides when a task becomes executable. Details of this
implementation will be discussed in Section 3.3.3. Besides using
MPI_Recv and MPI_Irecv to generate firing rules, Bamboo also uses
the information encoded in these routines to generate code that

T. Nguyen et al. /]. Parallel Distrib. Comput. 106 (2017) 1-13 5

»| Void multiGridSolver(){

#pragma bamboo olap

for(int level=0; level<nLevels; level++){

#pragma bamboo send
Send_to_neighbors();

for(cycle=0 to nVcycles invoke
{ BB\
multiGridSolver(); inlin€
}
inline

invoke
inline

#pragma bamboo receive
Receive_from_neighbors();
Update the data grid

B

invoke

Void send_to_neighbors(){
forall neighbors
if(neighbor) MPI_Isend(neighbor)

Void receive_from_neighbors(){
forall neighbors

if(neighbor) MPI_Irecv(neighbor)
}

Fig.4. A multigrid solver with call chains containing MPI invocations. Bamboo registers procedures that directly or indirectly invoke MPI calls as an MPI-invoking procedure.

It then inlines all MPI-invoking procedures from the lowest to the highest calling levels.

pulls messages from the runtime system. Specifically, messages
are sorted by source, destination, and tag. Bamboo transforms
this information into queries to the runtime system. Finally, for
MPI_Wait and MPI_Waitall Bamboo simply removes these calls
since each olap-region requires all inputs to be available before it
can execute.

3.3.3. Firing rule and yielding rule

As previously mentioned, the task state often changes from X
into W and from W to R. The condition that determines when the
runtime can enable a transition from W to R is called the firing rule.
Upon scheduled to execute, the task state changes from R to X. The
formula that the runtime uses to reverse the state transition from X
into W is called the yielding rule. Bamboo extracts information from
MPI receive calls and associated conditional statements to generate
firing and yielding rules.

Let m and C be, respectively, a message possibly received by
an MPI process in an olap-region and the associated conditional
statements. Whether a particular process should wait for message
m or not is subject to the evaluation of the condition C. Thus,
the firing rule for an olap-region can be written in the conjunctive
normal form.

INGEAYAD) (1)

On the contrary, we express the yielding rule in disjunctive
normal form, where i ranges from 1 to the number of messages
possibly received by a process in an olap-region and m; is true
means that message i has arrived.

\/(Ci /\ —m).

3.3.4. Inter-procedural translation

The code transformation and analysis modules of Bamboo
may need to span procedure boundaries. For instance, Fig. 4
gives an example where the source codes of an olap-region
and its communication blocks (i.e. send block and receive block)
reside in different procedures. To generate firing and yielding
rules for the olap-region, the translator needs information in the
receive block. Inlining is a technique that exposes the calling
context to the procedure’s body and the procedure’s side effect
on the caller. Bamboo performs inlining, and the process is as
follows. If a procedure directly or indirectly invokes MPI calls,
Bamboo registers it as an MPI-invoking procedure. Bamboo will
subsequently inline all MPI-invoking procedures from the lowest to
the highest calling levels. The inlining process is transparent to the
programmer and does not require any annotation. However, due to
the static nature of the strategy Bamboo currently does not support
recursive procedures. This requires a redesign of the graph library
and run time system.

(2)

Table 2

Default Bamboo implementation of collective operations. We use the o8 model
to estimate the cost of collective operations, where « is latency and 8 is inverse
bandwidth [62].

Collective API Algorithm Complexity

MPI_Barrier Bruck’s algorithm [lgPo

MPI_Bcast Binomial Tree [1gPT(c +sB)

MPI_Reduce Binomial Tree [IgP] (o +sB +sizexopCost)
MPI_Allreduce Recursive doubling [1gP] (o +sB +sizexopCost)
MPI_Scatter Binomial Tree [IgPlo + totalSize * 8
MPI_Gather Binomial Tree [IgPo + totalSize *
MPI_Allgather Bruck’s algorithm [IgPlo + totalSize * S
MPI_Alltoall Bruck’s algorithm [lgP1(e 4 58)

3.4. Translation: utility layer

To handle MPI functionality outside the core message passing
substrate, we take a library-based approach that allows system
providers and MPI programmers to easily translate a custom
implementation of these routines into a task graph form. Bamboo
includes default implementations of commonly used primitives.

3.4.1. Collectives

Bamboo maintains a library implementing widely used collec-
tives, by breaking them down into their point-to-point compo-
nents. The source-to-source translator will automatically detect
non-point-to-point MPI calls in the MPI input source and inline
corresponding implementations into the program’s source code
before translating these codes together into a task graph form.
Bamboo employs the AST merge mechanism provided by the ROSE
compiler framework. This mechanism allows the ASTs generated
from source codes in different files to be merged into a single AST.
Table 2 shows algorithms that Bamboo uses to implement common
collectives and the corresponding latency and bandwidth costs.

3.4.2. Communicators

An MPI Communicator is a namespace describing the set of
MPI processes that each process can communicate with for a
particular MPI routine. MPI_COMM_WORLD is the only predefined
communicator in the MPI environment, defining the order of
all processes of an MPI program. Bamboo currently supports
MPI_Comm_split, which partitions an existing communicator into
multiple disjoint groups, reorders MPI ranks, or both. New
communicators can be further split in the same way. We support
MPI_Comm_split’s color-key filtering mechanism which relies on
a many-to-many mapping from the task ID set into the color set,
where the color set is normally smaller than the task ID set. We
also use key, a one-to-one mapping to sort tasks within a common
color set. Bamboo implements the MPI_Comm_split routine using

6 T. Nguyen et al. /]. Parallel Distrib. Comput. 106 (2017) 1-13

MPI point-to-point primitives as follows. All MPI processes in
the existing communicator exchange information of color, key,
and the corresponding rank in MPI_COMM_WORLD. Eventually
each process holds information of the other processes. Based on
the information retrieved from others, each process filters out
processes with the same color. Such processes will be sorted on key
before being assigned a new rank in the new communicator. Once
the new communicator has been created, a communicator name
and a process rank within the communicator will be sufficient to
locate the corresponding rank in MPI_COMM_WORLD.

4. Results

In this section, we describe computational results with 4
applications on various platforms: NERSC’s Hopper and Edison
platforms, and TACC's Stampede platform, using nodes that include
NVIDIA Kepler K20 GPUs. In order to assess the performance
benefits of Bamboo, we built a set of variants for each application.
The first variant, MPI-basic, is the simplest implementation
that does not overlap communication with computation. All
remaining variants are obtained from MPI-basic. The Bamboo
variant was obtained by translating MPI-Basic with Bamboo.
MPI-Olap was obtained by restructuring the application to overlap
communication with computation via split phase coding. The
third variant, MPI-Olap, has been manually restructured to employ
split phase coding to overlap communication with computation.
The fourth variant, MPI-nocomm was obtained by suppressing
communication in the code, and is a loose upper bound on the
potential performance benefit of overlapping communication with
computation.

In some applications running on CPUs, we found it advanta-
geous to use a mixed mode model MPI+OpenMP rather than “flat”
MPI. To express variants based on this approach, we use an intu-
itive notation e.g. MPI+OMP-ncomm is an MPI+OMP code variant in
which communication has been suppressed.

4.1. Dense linear algebra

Dense linear algebra is a class of computations on matrices
where all elements are stored explicitly. Typically, this class of ap-
plications delivers a high fraction of peak processor performance.
Thus, the overall performance will become much more sensitive
to communication overheads as computing capability is expected
to be substantially increasing in years to come. In this section, we
evaluate Bamboo using matrix multiplication and matrix factoriza-
tion, two operations commonly used as building blocks in dense
linear algebra problems.

4.1.1. 2.5D Cannon’s algorithm

2.5D Cannon (AKA communication avoiding, or CA) matrix
multiplication algorithm [56] targets small matrices. Small matrix
products arise, for example, in electronic structure calculations
(e.g. ab-initio molecular dynamics using planewave bases [41,13]).
At a high level, the 2.5D algorithm generalizes the traditional
2D Cannon algorithm [49] by employing an additional process
dimension to replicate the 2D process grid. The degree of
replication is controlled by a replication factor called c. When ¢ =
1, we regress to 2D Cannon. When ¢ = cpqx = nprocs'/3, we elide
the shifting communication pattern and employ only broadcast
and reduction. This algorithm is referred to as the 3D algorithm.
The sweet spot for c falls somewhere between 1 and ¢, hence the
name 2.5D algorithm. As in the 2D algorithm, the 2.5D algorithm
shifts data in the X and Y directions. In addition, the 2.5D algorithm
performs a broadcast and a reduction along the Z dimension.

Through experimentation, we observed that, for the small
matrices targeted by the 2.5D algorithm, the hybrid execution

i 210.4
S= Speedup= Bamboo+OMP/MPI+OMP
100 $=1.08
% TE MPHOMP —
80 -
% 70 B MPI+OMP-olap P~y :
S 60 Bamboo+OMP -
o
= 50 "B MP-OMP-nocomm
40 S=T1.11
30 1 s=112 =
20 - —
10 —
o = =
4096 8192 16384 32768

Fig. 5. A weak scaling study on the 2.5D Cannon algorithm. We ran codes on up to
32K cores on Hopper. We used small matrices (N = 20668 on 4K cores).

model MPI+OMP yields higher performance than a pure MPI
implementation, which spawns only one MPI process per core.
Therefore, we used the following 3 variants: MPI+OMP, MPI+OMP-
olap, and Bamboo+OMP. All variants perform communication at
the node level, using the OpenMP interface of the ACML math
library to multiply the submatrices (dgemm). MPI+OMP is the
basic MPI implementation without any overlap. MPI+OMP-olap is
the optimized variant of MPI+OMP that pipelines computations
of a step of the algorithm with communication for the next step.
Bamboo+OMP is the result of passing the annotated MPI+OMP
variant through Bamboo. As with the previous two applications,
we also present results with communication shut off in the basic
variant, i.e. MPI[+OMP-nocomm, which uses the same code as
MPI+OMP. We conducted a weak scaling study on 4K, 8K, 16K and
32K cores on Hopper. We chose problem sizes that enabled us to
demonstrate the algorithmic benefit of data replication.

Fig. 5 shows the results with the different variants. Both
Bamboo+OMP and MPI+OMP-olap deliver the same speedup over
the MPI+OMP variant on up to 8K cores. With 16K cores or more,
Bamboo+OMP overtakes MPI+OMP-olap. Although Bamboo+OMP is
still faster than the other variants on 32K cores, the speedup
provided by Bamboo+OMP has dropped. We believe this behavior
is the result of an interaction between the allowable replication
factor c, and the degree of virtualization v.

To understand the interaction, we first look at Table 3, which
shows the values of ¢ that maximize performance for the different
variants. Note that the 2.5D algorithm requires that the first two
dimensions of the processor core geometry must be equal. For
the two MPI variants, the available values for the replication
factor ¢ are limited while Bamboo+OMP has more options due
to the flexibility offered by virtualization. For example, on 8K
cores MPI+OMP and MPI+OMP-olap can set ¢ = 2 orc = 8,
i.e. other values are illegal. On 16K cores, ¢ can be 1, 4 or 16 while
on 32K cores c¢ can take on values of 2 or 8. For Bamboo+OMP,
performance depends not only on our choice of ¢ but also on
the degree of virtualization v. Thus, we choose a combination of
replication and virtualization that is optimal and cannot choose
these parameters independently. As a result, performance is not
stable as we grow the number of cores. The benefit of the 2.5D
algorithm is that the communication volume shrinks with c and p.
The cost is O(n?/ A/cp), where p is the number of cores. However,
the effect of increasing v does not benefit from this cost function,
since communication among virtualized tasks must be performed
serially (hence p does not effectively change in that formula.)
The effect is to improve pipelining as in the other applications.
However, the number of messages is O(«/ﬁ/cz/3 + log(c)). It will
grow as we increase v, because the message starts are serialized.
The effect is to damp c as v increases, and this is evident from the
data in Table 3.

T. Nguyen et al. /]. Parallel Distrib. Comput. 106 (2017) 1-13 7

Table 3

The effects of replication and virtualization. The MPI+OMP and MPI+OMP-olap code variants have limited options for c.
The boldface values within the curly braces yield the highest performance.

#Cores 4K 8K 16K 32K
MPI+OMP c=1{1,4} c=1{2,8} c=1{1,4, 16} c={2,8}
MPI+OMP-olap c=1{1,4} c=1{2,8} c=1{1,4,16} c=1{2,8}
Bamboo+OMP c=2,VF=8 c=2,VF=4 c=2,VF=2 c=4,VF=2

4.1.2. High Performance Linpack

The High Performance Linpack benchmark (HPL or Linpack for
short) [26,25,24] is a well-known benchmark that solves a dense
system of linear equations using LU factorization, and is often
used to measure the performance of supercomputers. HPL uses a
blocked cyclic data decomposition scheme. The HPL benchmark
comprises 2 code variants. Pdgesv0 does not make any attempt
to overlap communication with computation, whereas pdgesvk2
applies an overlapping technique called lookahead. We applied
Bamboo annotations to pdgesv0. Details of the 3 code variants are
as follows.

The pdgesv0 code consists of 3 key operations: panel factoriza-
tion pFact, panel broadcast pBcast, and the trailing submatrix up-
date pUpdate. pFact finds the pivots in column panel c. This step
is costly since we have to factorize a skinny matrix over a subset
of the processes that own the panel, including a sequence of row
swap-broadcasts, one for each pivot within a single columns of the
panel. HPL provides various panel factorization implementations,
classified into recursive and non-recursive variants.

We evaluated both variants and observed no difference in
performance. Thus, we used the non-recursive variants. Once
the panel has been factorized it must be broadcast to column
processes within the same row (pBcast). This is an efficient
implementation that uses a ring broadcast algorithm, shifting data
to the right along column processes. The pUpdate operation swap-
broadcasts U among row processes and then performs a rank-1
update. It accounts for the lion’s share of LU’s computational work,
performing O(N3) multiply-adds. The pdgesvK2 variant applies
lookahead [26], a technique for overlapping communication with
computation that fills idle gaps in the execution of LU. Lookahead
utilizes the dependence structure of the blocked algorithm to
orchestrate computation and data motion. It uses split-phase
coding [65], and may compute multiple iterations in advance. The
underlying communication structure for this synchronization is
complicated and difficult to implement and follow because the
application must poll for arriving data in several places in the
program. These complications have prevented lookahead from
being used in practice. For example, lookahead is not employed
in the widely-used ScaLAPACK [7] library. This predicament has
motivated new algorithmic reformulations [14] or data-driven
implementations [33,8,14,39] to realize overlap.

We annotated the pdgesv0 module and translated it with
Bamboo. We also added scheduling policies via task prioritization
using a bamboo priority pragma' so that communication could
be overlapped with communication more efficiently. The common
wisdom in scheduling a non-preemptive task graph is that tasks
should hold the core as long as they are still executable and
only yield control when they need input from other tasks. This
greedy strategy is intended to maintain the high hit rates of caches
and TLB. However, LU factorization is an exception. Specifically,
many tasks are waiting for data from the root task so that they
can begin executing. Moreover, if for some reason the task that
will become the next root is not scheduled soon, the next panel

1 We did not present this pragma earlier since Bamboo simply translates the
pragma into a method that sets task priority.

broadcast will be delayed. If this happens, performance could be
significantly penalized since no overlap can be realized. Bamboo’s
olap-regions generally reside within an outer iteration, and HPL is
no exception. Bamboo handles overlap regions as follows. When
control reaches the end of an overlap region, if the priority is
negative, the task yields processor/core, even if inputs are ready for
the next iteration. To this end, we used 3 different values (0, —1,
and 1) to represent for the priority of scheduling a task to run next.
Among runnable tasks, those with higher priorities will be inserted
at the top of the priority scheduling queue. Tasks with priority of 0
or 1 will execute until they cannot continue, since they await data
from other tasks that have not yet completed. However, tasks with
priority —1, must yield the core at the end of the olap region, even
if they have the data needed to continue executing. Note that this
scheme is not preemptive. Neither the runtime system nor task can
force another task to yield control. Depending on the availability
of the input and the current priority, a task decides whether it
should continue or yield processor/core to another task. For more
information about how we prioritize the LU task graph, see [45].

We performed experiments on Stampede [59], located at the
Texas Advanced Computing Center (TACC), using the Sandy Bridge
processors only. We ran on up to 128 nodes (4096 cores). The
results appear in Fig. 6. We chose small problems sizes to ensure
that communication overhead is significant and thus we can see
the benefit of overlapping communication with computation. Fig. 6
shows that Bamboo was able to meet, and sometimes slightly
exceed, the performance of the painstakingly coded lookahead
variant, so long as prioritization was employed.

The vital role of task prioritization is inevitable. Theoretically,
if we use a random scheduling algorithm and we run the
unprioritized Task Graph variant for a large number of times,
there is possibility that we observe the performance of the
prioritized Task Graph variant. However, the required number
of experiments could grow exponentially in k * N, where N is
the number of panel columns of the input matrix and k is the
number of communication events occurring for a particular N. We
repeated each experiment more than 10 times and took the best
performance, but results without task prioritization were always
far below the performance of lookahead. Compared to the no-
lookahead variant, the performance of the unprioritized task graph
was at best comparable and in some cases it was even lower.

4.2. Structured grid-multigrid solver

Multigrid [10,66,12,27] is a family of methods to accelerate
the convergence rate of conventional iterative methods such as
Gauss-Seidel Red-Black and SOR. A multigrid solver consists of
multiple cycles which solve an equation via a hierarchy of meshes.
At each cycle, multigrid recursively solves an error equation on a
coarser grid, which it uses to correct the solution. The recursion
ends at some specified bottom-most level, where a bottom solver
solves the error equation on the coarsest grid. The solution from
this grid is then projected (via interpolation) up through the
hierarchy of finer meshes until reaching the finest level. At this
point the cycle completes. The cycle can have a V or W shape, or
may be truncated at a certain level where the bottom solver can
perform more efficiently.

8 T. Nguyen et al. /]. Parallel Distrib. Comput. 106 (2017) 1-13

7500
7300
7100
6900
© 6700
-9
S 6500
G
6300
®-No Lookahead
6100 — n
“®Unprioritized Scheduling
5900 — :
=#Prioritized Scheduling
5700
=¢Lookahead
5500
65536 73728 81920 90112 98304 106496
Problem size N
(a) 32 Stampede nodes.
15000
14500 -
14000
w
L 13500
[
e
G 13000
12500 “®No Lookahead
=“B=Unprioritized Scheduling
12000 =+Prioritized Scheduling
“&Lookahead
11500
106496 114688 122880 131072 139264 147456 155648
Problem size N
(c) 64 Stampede nodes.

100% 1 100% 100%
20% 20% 90%
80% | 80% 80%

70%
60% |
50%
40%
30%
20%
10%

0%

70%
60%
50%
40%
30%
20%
10%

0%

70%
60%
50%
40%
30%
20%
10%

0%

N\N

NANNNNNNNNNNNNN
147456 INNNNNNNNNNNNNNNNNNY

NN
NNANNNNNNNNNNNNY

ANANNNNNNNNNNNNNNN
163840 ANNNNNNNNNNNNNNWNW\
172032 ANNNNNNNNNNNNNNNNN
180224 RNNNNNNNNNNNNNNNNWN

106496 E\\\\\\\\\\\\\\\\\\\

73728 RANNNNNNNNNNNNNNNNN
81920 ANNNNNNNNNNNNNNNNNWN
90112 INNNNNNNNNNNNNNNNNNN
98304 INNNNNNNNNNNNNNNNNNNN
114688 INNNNNNNNNNNNNNNNN\N
131072 INNNNNNNNNNNNNNNNNNWN
139264 INNNNNNNNNNNNNNNNNNN
155648 NNNNNNNNNINNNINNNNNNINN
147456 NNNNNNNNNNNNNNNWN
155648 NNNNNNNNNNNNNN\W\WN

65536
106496
139264

32 nodes 64 nodes

[y
N
=]
>
Q
o
m
v

(b) Time distribution. In all experiments, time for dgemm (green, lower bars)
varies from 57% to 73%. Panel broadcast accounts for most of the rest of the
time

27000
26500
26000
25500

=®-No Lookahead
nprioritized Scheduling
=#Prioritized Scheduling
“€Lookahead

/

147456

139264 155648 163840

Problem size N

172032 180224

(d) 128 Stampede nodes.

Fig. 6. Results comparing our scheduling strategies for the transformed code without lookahead and with lookahead. Prioritization significantly improves performance,
enabling our transformed code to meet the performance of lookahead for many problem sizes.

We translated MiniGMG, a multigrid solver developed at
Lawrence Berkeley National Laboratory [67]. This is an MPI+
OpenMP code consisting of 4000 lines, 1000 of which are MPI
code that need to be translated. It does not overlap communication
with computation. Owing to the complexity of restructuring
this third-party code by hand, we do not provide an MPI-Olap
variant.

This solver employs truncated V-cycles. On the way down of each
cycle, smooths are applied to reduce the error before restrictions
are used to determine the right-hand side of the coarser grids.
Each smooth is a Gauss-Seidel Red-Black relaxation (GSRB). The
V-cycle is truncated when the mesh reaches the minimal size
threshold of 43, and the bottom solver consists of a significant
number of GSRB sweeps. Finally, the solution is interpolated and
smoothed upward to the next finer mesh. The GSRB kernel is
optimized further with a DRAM avoiding technique, which changes
the communication pattern significantly. In particular, in addition
to nearest neighbor communication, adjacent processes along the
diagonals also communicate. The effect of this optimization is to
increase the number of neighbors that a process communicates
from 6 to 26.

We conducted a weak scaling study on Edison, fixing the
problem size at 8 x 1283 boxes per core. The left part of
Table 4 shows the execution time of modules of the MPI variant.
Communication (comm) accounts for about 20% of the total
execution time, and thus we have enough available computation
to hide communication. While the communication cost grows
slightly as the number of cores increases, the execution time for
the other activities is stable, i.e. time to update data elements
(compute), serialize and deserialize messages (pack/unpack), and
copy ghost cells among boxes of the same MPI process (box
copy). The right part of Table 4 shows the relative overhead
of communication at each grid level. It can be seen that

3.5

Time (secs)

32768 Cores

2048

4096 8192 16384

Fig. 7. Weak scaling study of algebraic multigrid on up to 32,768 processor cores
of Edison. At the finest level, each processor accounts for 8 x 1283 boxes. Thus, in
each V-cycle the finest grid size is 128> and the coarsest grid size is 4°.

communication overhead increases by a factor of 2 from the finest
grid LO to L1, slowly increases (L1 to L2 and L2 to L3), or saturates
from L3 to the coarsest level grids, L4.

Fig. 7 compares the performance between MPI and Bamboo
code variants in a weak scaling study. We can see that both
MPI and Bamboo are highly scalable (in a weak sense) and that
Bamboo improves the performance by up to 14%. These results
are promising, given that overlap strategies for multigrid present
three challenges. First, communication is effective at finest grids
only as the message size on these grid levels is still significant.
At coarser levels, the message size gets smaller and smaller,
increasing the overhead of virtualization. In addition, when moving
from a fine to a coarser grid, computation shrinks by a factor of 8
whereas communication reduces by only a factor of 4, reducing the
efficiency of the overlapping technique. Furthermore, the number
of messages that each processor has to communicate messages
with its 26 neighbors is significant. This increases the processing
overhead of the runtime system that manages overlap.

Table 4

T. Nguyen et al. /]. Parallel Distrib. Comput. 106 (2017) 1-13

Left: execution time in seconds of different modules in the multigrid solver. Right: the relative cost of communication at each grid level (the smaller level, the finer the grid).

Cores Comm Compute pack/unpack box copy Comm)/total time per level
LO L1 L2 L3 L4
2,048 0.448 1.725 0.384 0.191 12% 21% 36% 48% 48%
4,096 0.476 1.722 0.353 0.191 12% 24% 37% 56% 50%
8,192 0.570 1.722 0.384 0.191 13% 27% 45% 69% 63%
16,384 0.535 1.726 0.386 0.192 12% 30% 48% 53% 49%
32,768 0.646 1.714 0.376 0.189 17% 28% 44% 63% 58%

5. Advanced node technologies

At present, it appears that further improvements to HPC
systems will mainly come from enhancements at the node
level [52,9,51]. Node architectures are changing rapidly, and
a heterogeneous design that uses devices (i.e. coprocessors or
accelerators) to amplify node performance is gaining traction.
Bamboo supports state-of-the-art computing platforms employing
advanced technologies such as Graphical Processing Units (GPUs)
and Many Integrated Core (MIC). In this paper we present the
results on the former. Results on MIC can be found in our previous
work [44].

5.1. Graphical processing units

GPUs are a powerful means of accelerating compute-intensive
and bandwidth-intensive applications and for lowering the
power/performance ratio. CUDA (Compute Unified Device Archi-
tecture) is a well-known parallel programming model for GPUs
developed by NVIDIA. Under this model, each GPU works as a de-
vice attached to a CPU called host. The host offloads compute ker-
nels and dependent data to its device(s) each running thousands of
CUDA threads to parallelize the workloads. The results are then col-
lected back to the host. The host-device communication is routed
over a PCle bus, which can easily become a performance bottleneck
due to its limited bandwidth.

As the demand for compute and memory increases, applications
require a cluster of many GPUs. MPI+CUDA is a hybrid program-
ming model commonly used to parallelize the application work-
loads across multiple GPUs. This model spawns an MPI process per
GPU to work as the host. The communication between MPI pro-
cesses is called host-host communication. We extend Bamboo to
hide the host-host and host-device communication overheads in
MPI+CUDA applications.

5.2. A GPU-aware interface

Because MPI is not aware of device memory, Bamboo can
realize overlap among hosts only. It cannot overlap data motion
between host and device. We defined and implemented a GPU-
aware MPI interface, which allows MPI communication routines
to specify device memory as the buffer for sending and receiving
message data. Since distinguishing device and host buffers is
challenging at static time and costly at dynamic time, we also
have the programmer specify a different MPI_COMM_WORLD
communicator called CUDA_COMM_WORLD.

With a GPU-aware MPI, the programmer can manage the
communication between devices without the need to explicitly
route data via the hosts. Instead, the compiler and runtime system
are responsible for handling the data transfer between host and
device. Our proposal is similar to those proposed by MPI-ACC [1,2]
and MVAPICH2-GPU [64]. However, we integrated GPU-aware MPI
with Bamboo. The result is that we can rewrite an MPI+CUDA
program to a task dependency graph form, where host-device
transfers are factored out of the task and are represented as edges
of the graph. The runtime system can mask both host-device

communication automatically using the same mechanism it uses
for host-host communication.’

5.3. Performance evaluation

We evaluated our GPU-aware programming model on the 3D
Jacobi solver running on a portion of Stampede containing hybrid
CPU/GPU nodes. Only 32 such nodes were available at a time, so
experimentation was limited to this configuration. A GPU node
has a single K20 “Kepler” GPU with 5GB of fast device memory.
Our applications ran out of this memory rather than on the more
generous 32GB host memory, which is connected two 8-core Intel
Xeon E5 “Sandy Bridge” processors. Nodes communicate via a
Mellanox FDR InfiniBand interconnect. We use the Intel compiler
to compile code running on the host and CUDA 5.5 to compile GPU
kernel code. Mvapich handled communication among GPU nodes.

We compared 5 code variants. The first and second variants,
MPI-basic and MPI-olap, employ the traditional MPI+CUDA pro-
gramming model. The third variant, Bamboo, is the task graph
program obtained by translating MPI-basic. The fourth variant,
Bamboo-GPU, is generated by the Bamboo translator from a ba-
sic MPI+CUDA code written under the GPU-aware programming
model, i.e. MPI-basic except with MPI data motion calls replaced
by the equivalent CUDA-aware MPI and CUDA calls that trans-
fer data between the host and device disabled. The fifth variant,
MPI-nocomm, was obtained by removing all host-host and
host-device communication calls in MPI-basic. We conducted a
weak scaling study on Stampede. During normal production time,
this platform supports jobs with at most 32 K20 GPU nodes, so we
limited ourselves to 32 nodes. Due to this small scale, 1D decom-
position scheme was sufficient to meet the needs of the applica-
tion (though not scalable for larger configurations). We evaluated
all code variants with a base problem size of 510 x 512 x 128 per
GPU, which consumes 0.765 GB of device memory per node. This
problem size is intended to mimic a more realistic application sce-
nario, in which Jacobi would comprise one step of a multiphase
algorithm. Though Jacobi uses 3 variables per mesh zone, a more
realistic application would use many variables — a factor of 5 or
more. Thus, a production application would consume 3/4 or more
of the node’s available memory and in some cases the mesh size
per node would have to be reduced to avoid exceeding available
memory capacity. The problem scaling size we use thus stresses
communication at a level appropriate for production applications.

Fig. 8 shows the performance in GFLOP/s of all code variants.
It can be seen that Bamboo-GPU and MPI-olap significantly out-
perform Bamboo and MPI-basic. We attribute the performance im-
provements of Bamboo-GPU compared to Bamboo and MPI-basic to
the following optimizations. First, the knowledge of host-device
transfer enables Bamboo-GPU to take advantage of locality, such
as tasks computing on the same GPU only exchange the header
information of messages. This optimization can save significant
bandwidth of the PCI Express bus connecting host and device. We

2 We note that MPI-ACC and MVAPICH2-GPU cannot realize this optimization.

10 T. Nguyen et al. /]. Parallel Distrib. Comput. 106 (2017) 1-13

1400
E MPI-basic OO MPIl-olap
1200
O Bamboo Bamboo-GPU
1000
ﬁsm B MPI-nocomm
[=%
<
B 600
400
200 EggﬁwTi%gll
, Bl
4 8 16 32

GPUs

Fig. 8. Weak scaling results of 3D Jacobi on up to 32 GPUs on Stampede. Bamboo-
GPU outperforms MPI-basic, though it runs slightly slower than the hand optimized
code.

found that this optimization is very significant at small scales,
where the bandwidth between host and device is more critical than
between hosts. Second, we modified the runtime to use pinned
memory to buffer messages. Using pinned memory can signifi-
cantly increase the bandwidth between host and device [63,16].
Third, we used asynchronous memory copies to avoid implicit syn-
chronization on the GPU.

5.4. Future implementation for performance portability

With the current implementation of our runtime system,
messages among GPUs are always routed through their hosts.
This policy is not optimal when all or some pairs of GPUs can
communicate on a direct path. NVIDIA refers to this capability
as GPUdirect, which can be enabled when either (1) GPUs of
the same compute node share a common PCle bus or (2) the
interconnection network allows the communication among GPUs
on different compute nodes to bypass their hosts. Although
Stampede provides neither of these, Bamboo’s users may have
access to GPUs clusters that have GPUdirect (e.g. the Comet system
at San Diego Supercomputer Center). As a results, we plan to
modify our implementation to support GPUdirect as follows.

Our runtime system employs a single MPI process per com-
pute node to handle the communication. Thus, for inter-node com-
munication, we plan to use MPI implementations that support
GPUdirect as the communication backend (e.g. MPI-ACC and
MVAPICH2-GPU). For intra-node communication, we will need to
provide our own implementation of GPUdirect. Specifically, once
the runtime detects that the sender and receiver tasks locate on
the same compute node, it sends the message descriptor instead of
the raw data. The receiver opens the descriptor and pulls data di-
rectly from the sender using CUDA memory copy. In order to hide
the communication cost, data dependency is only considered satis-
fied when this memory copy operation completes. We plan to use
the asynchronous memory copy version so that we will not block
the communication handler at the receiver side. It is worth noting
that these two extensions will not require any modification on the
Bamboo’s programming API.

6. Related work

Danalis et al. [22] implemented transformations of MPI that re-
alize communication overlap in collective operations. Strout et al.
presented a framework for inter-procedural analysis of message-
passing SPMD programs; generating MPI inter-procedural control-
flow graphs that help reduce storage requirements [31]. Shires
et al. [53] presented a program flow representation of an MPI pro-
gram, which is useful in code optimization. 8-MPI [54] generates

the runtime dataflow graph of an MPI program, in order to assess
communication volume. It overloads the MPI calls using macros,
but does not perform source code analysis or code restructuring.

Latency tolerant applications and infrastructure for expressing
them have been previously reported in the literature including
Charm++ [35], KeLP2 [4,28], Adaptive MPI [32] (built on top of
Charm++), Tarragon [20,19], Thyme [58], and others [55,57,61,60,
50,18,29].

Charm++ supports virtualization and latency tolerance. KeLP2
is a C++ framework that supports an explicit hierarchical execution
model, and masks latency. Adaptive MPI virtualizes MPI processes
to support communication overlap and task scheduling. When a
thread blocks on an MPI call, it yields to another thread. There is
no explicit dataflow graph and the MPI source is not manipulated.
Bamboo transforms MPI source into an explicit graph, which can
be used to guide scheduling. Thyme is a C++ library with goals
similar to Tarragon. Husbands and Yelick [33] have implemented
thread-scheduling techniques for tolerating latency in dense LU
factorization and use a dataflow interpretation of the algorithm
that exposes the latent parallelism.

PLASMA [38] is a library for dense linear algebra and it
represents applications with a dataflow graph. To conserve
memory, it allocates only a portion of the graph at a time, inhibiting
global optimizations. Bamboo can avoid graph expansion by
controlling the outer iteration within task state.

We used the Rose source-to-source translator [48] to develop
Bamboo. Rose is a member of the family of language processors
that support semantic-level optimizations including Telescoping
languages [36,11] and Broadway [30]. Such language processors
are able to treat a library like MPI as a domain specific language,
in which the MPI entries may be optimized as language intrinsics,
embedded within an ordinary language like C, C++, or Fortran.
Embedded domain specific languages are expected to play an
important role in Exascale computing.

7. Conclusions

This paper presented a novel interpretation of Message Passing
Interface to execute MPI applications under a data-driven model
that can overlap communication with computation automatically.
This interpretation factors scheduling issues and communication
decisions out of program execution. Specifically, by reformulating
MPI source into the form of a task dependency graph, which
maintains the data dependency among tasks of the graph, we can
rely on a runtime system to schedule tasks based on the availability
of data and computing resources.

To implement our approach we developed Bamboo, a custom
source-to-source translator that transforms MPI code into the task
dependency graph representation. Bamboo treats the MPI API as
an embedded domain specific language, and it requires only a
modest amount of programmer annotation. The implementation
of Bamboo comprises 2 software layers: core message passing and
utility layers. The core message passing layer transforms a minimal
subset of MPI point-to-point primitives, whereas the utility layer
implements high-level routines by breaking them into their point-
to-point components, which will be then translated by the core
message passing layer. Such a multi-layer design allows one to
customize the implementation of MPI high-level routines such as
collectives, which may take advantage of special purpose hardware
provided on some platforms. In addition, this design can reduce
the amount of programming effort needed to port the core message
passing layer to a different runtime system.

We demonstrated that Bamboo improved performance by
hiding communication. We showed that by using Bamboo, we can
avoid the complications of the lookahead algorithm implemented
in the High Performance Linpack (HPL) benchmark, while realizing

T. Nguyen et al. /]. Parallel Distrib. Comput. 106 (2017) 1-13 11

the benefits. For structured grid, we translated an iterative
solver for Poisson’s equation and a geometric multigrid solver
for Helmholtz's equation. For all applications, we have validated
our claim that, by interpreting an MPI program in terms of data
flow execution, we can overlap communication with computation
and thereby improving the performance significantly. Moreover,
Bamboo performance meets or exceeds that of labor-intensive
hand coding, at scale. Bamboo also improves performance of
communication avoiding matrix multiplication (2.5D Cannon’s
algorithm). The result on this application demonstrates that the
translated code not only avoids communication, but tolerates
what it cannot avoid. We believe that this dual strategy will
become more widespread as data motion costs continue to
grow. We also validated Bamboo on advanced node architectures,
which accelerate node performance by offloading compute-
intensive kernels to devices such as GPUs. Bamboo not only
improves performance of a program written under the MPI+CUDA
programming model, but also offers a simpler interface that
allows communication between GPUs to be transparent to the
programmer.

Lastly, Bamboo enables the programmer to specify scheduling
hints as task priorities in order to optimize the scheduler.
A task with higher priority will have a higher chance to be
scheduled quickly. Such task prioritization support is important in
applications that consist of irregular workloads. While Bamboo’s
scheduler employs a non-preemptive task scheduling [19-21],
it allows tasks to voluntarily yield the processor, enabling tasks
of the graph to work in a more cooperative manner. This dual
scheduling scheme allows hardware resources to be efficiently
shared among tasks. We evaluated the task prioritization support
using the High Performance Linpack benchmark. Experimental
results demonstrated that we gained significant performance
benefits by employing simple prioritization schemes.

In the future we can extend Bamboo to support complicated,
heterogeneous computing. A compute node may contain multiple
types of multicore and manycore processors. Thus, processor cores
may run at different speeds with the result that data partitioning
and mapping are non-trivial programming tasks. Bamboo allevi-
ates these challenges by supporting process virtualization. How-
ever, in the future Bamboo needs to provide an analytical model
and/or auto-tuning support for finding optimal or near-optimal
virtualization factors and task mapping schemes. For irregular ap-
plications, hints from the programmer may be useful to effective
task migration.

Acknowledgments

This research was supported by the Advanced Scientific Com-
puting Research (ASCR), the U.S. Department of Energy, Of-
fice of Science, contracts No. DE-ER08-191010356-46564-95715,
DE-FC02-12ER26118, and DE-AC05-76RL01830. A portion of the
research was conducted at EMSL (Environmental Molecular Sci-
ences Laboratory) at Pacific Northwest National Laboratory,
operated for the U.S. Department of Energy by Battelle under Con-
tract Number DE-AC05-76RL01830. This work also used the Ex-
treme Science and Engineering Discovery Environment (XSEDE),
which is supported by National Science Foundation Grant Number
0CI-1053575. We would like to thank Samuel Williams for provid-
ing us with the MPI source code of the multigrid application. Tan
Nguyen was a fellow of the Vietnam Education Foundation (VEF)
while conducting this research, and was supported in part by the
VEF. Scott Baden dedicates his portion of this work to Hans Petter
Langtangen (1962-2016).

References

[1] A.M. Aji,]. Dinan, D. Buntinas, P. Balaji, W.-c. Feng, K.R. Bisset, R. Thakur, Mpi-
acc: An integrated and extensible approach to data movement in accelerator-
based systems, in: Proc. 2012 IEEE 14th Int’l Conf. High Perf. Computing and
Communication & 2012 IEEE 9th Intl Conf. Embedded Software and Sys., HPCC
’12, Washington, DC, USA, IEEE Computer Society, 2012, pp. 647-654.

[2] A.M. Aji, LS. Panwar, F. Ji, M. Chabbi, K. Murthy, P. Balaji, K.R. Bisset,]. Dinan,
W.-c. Feng,]. Mellor-Crummey, X. Ma, R. Thakur, On the efficacy of gpu-
integrated mpi for scientific applications, in: Proceedings of the 22nd Int’l
Symp on High-performance Parallel and Distributed Computing, HPDC’13, NY,
NY, ACM, 2013, pp. 191-202.

[3] Arvind, Executing a program on the mit tagged-token dataflow architecture,
IEEE Trans. Comput. 39 (1990) 300-318.

[4] S.B.Baden, SJ. Fink, Communication overlap in multi-tier parallel algorithms,
in: Proc. of SC 98, Orlando, Florida, November 1998.

[5] R.E.Bank, M. Holst, A new paradigm for parallel adaptive meshing algorithms,
SIAM Rev. 45 (2003) 292-323.

[6] M. Beynon, T.M. Kurc, U.V. Catalyurek, C. Chang, A. Sussman,]J.H. Saltz,
Distributed processing of very large datasets with datacutter, Parallel. Comput.
(2001) 1457-1478.

[7] L.Blackford,]. Choi, A. Cleary, E. D’Azevedo,]. Demmel, I. Dhillon,]. Dongarra, S.
Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, R. Whaley, ScaLAPACK
Users’ Guide, Society for Industrial and Applied Mathematics, 1997.

[8] G.Bosilca, A.Bouteiller, A. Danalis, T. Herault, P. Lemarinier,]. Dongarra, Dague:
A generic distributed dag engine for high performance computing, Parallel
Comput. 38 (2012) 37-51.

[9] K.D.Bosschere, E.H. D’Hollander, G.R. Joubert, D. Padua, F. Peters, Applications,
Tools and Techniques on the Road to Exascale Computing, 10S Press,
Amsterdam, The Netherlands, The Netherlands, 2012.

[10] W.L. Briggs, A Multigrid Tutorial, SIAM, 1987.

[11] B. Broom, R. Fowler, K. Kennedy, Kelpio: A telescope-ready domain-specific
ifo library for irregular block-structured applications, in: Proc. First [IEEE/ACM
International Symposium on Cluster Computing and the Grid, IEEE, 2001,
pp. 148-155.

[12] A.M.Bruaset, A. Tveito, Numerical Solution of Partial Differential Equations on
Parallel Computers, Vol. 51, Springer, 2006.

[13] E. Bylaska, K. Tsemekhman, N. Govind, M. Valiev, Large-scale plane-wave-
based density functional theory: Formalism, parallelization, and applications,
in: J.R. Reimers (Ed.), Computational Methods for Large Systems: Electronic
Structure Approaches for Biotechnology and Nanotechnology, John Wiley and
Sons, Inc., 2011.

[14] E. Chan, R. van de Geijn, A. Chapman, Managing the complexity of lookahead
for lu factorization with pivoting, in: Proceedings of the Twenty-second
Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA
'10, NY, NY, ACM, 2010, pp. 200-208.

[15] S. Chatterjee, S. Tasirlar, Z. Budimlic, V. Cave, M. Chabbi, M. Grossman, V.
Sarkar, Y. Yan, Integrating asynchronous task parallelism with mpi, in: Proc.
of the 2013 IEEE 27th Int’l Symp. Parallel Distrib. Processing, IPDPS 13, 2013,
pp. 712-725.

[16] Y. Chen, X. Cui, H. Mei, Large-scale fft on gpu clusters, in: Proceedings of the
24th ACM International Conference on Supercomputing, ICS *10, NY, NY, ACM,
2010, pp. 315-324.

[17] W.-Y. Chen, C. lancu, K. Yelick, Communication optimizations for fine-grained
upc applications, in: Proceedings of the 14th International Conference on
Parallel Architectures and Compilation Techniques, PACT '05, Washington, DC,
USA, IEEE Computer Society, 2005, pp. 267-278.

[18] N. Chrisochoides, K. Barker, J. Dobbelaere, D. Nave, K. Pingali, Data movement
and control substrate for parallel adaptive applications, Concurrency, Pract.
Exp. (2002) 77-101.

[19] P. Cicotti, Tarragon: a Programming Model for Latency-Hiding Scientific Com-
putations (Ph.D. thesis), Department of Computer Science and Engineering,
University of California, San Diego, 2011.

[20] P. Cicotti, S.B. Baden, Asynchronous programming with tarragon, in: Proc. 15th
IEEE International Symposium on High Performance Distributed Computing,
Paris, France, Jun. 2006, pp. 375-376.

[21] P.Cicotti, S.B.Baden, Latency hiding and performance tuning with graph-based
execution, in: The Seventh IEEE eScience Conference, Data-Flow Execution
Models for Extreme Scale Computing, DFM 2011, Galveston Island, Texas,
2011.

[22] A. Danalis, K.-Y. Kim, L. Pollock, M. Swany, Transformations to parallel codes
for communication-computation overlap, in: Proceedings of the ACM/IEEE SC
2005 Conference, November 2005, pp. 58-68.

[23] J. Dennis, Data flow supercomputers, [IEEE Comput. 13 (1980) 48-56.

[24]].J. Dongarra, The linpack benchmark: An explanation, in: Supercomputing,
Springer, 1988, pp. 456-474.

[25]]J.J. Dongarra,].R. Bunch, C.B. Moler, G.W. Stewart, LINPACK Users’ Guide, Vol.
8, SIAM, 1979.

[26]]J. Dongarra, P. Luszczek, A. Petitet, The linpack benchmark: Past, present, and
future. concurrency and computation: Practice and experience, Concurrency
Comput. Pract. Exp. 15 (2003) 2003.

[27] S. Feigh, M. Clemens, T. Weiland, Geometric multigrid method for electro-
and magnetostatic field simulations using the conformal finite integration
technique, in: 2003 Copper Mountain Conference on Multigrid Methods,
Copper Mountain, Colorado, Citeseer, 2003.

http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref1
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref2
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref3
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref5
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref6
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref7
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref8
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref9
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref10
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref11
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref12
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref13
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref14
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref16
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref17
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref18
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref19
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref23
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref24
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref25
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref26
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref27

12 T. Nguyen et al. /]. Parallel Distrib. Comput. 106 (2017) 1-13

[28] S.J. Fink, Hierarchical Programming for Block-Structured Scientific Calcula-
tions (Ph.D. thesis), Dept. of Comput. Sci. and Eng., Univ. of Calif., San Diego,

1998.

[29] A. Gupta, G. Karypis, V. Kumar, Highly scalable parallel algorithms for sparse
matrix factorization, IEEE Trans. Parallel Distrib. Syst. 8 (1997) 502-520.

[30] S.Z. Guyer, C. Lin, An annotation language for optimizing software libraries,
ACM SIGPLAN Notices 35 (2000) 39-52.

[31] M.M.S.B.K.P.D. Hovland, Data-flow analysis for mpi programs, in: Intl. Conf. on
Parallel Processing, ICPP 2006, Aug. 2006, pp. 175-184.

[32] C. Huang, O. Lawlor, L. Kalé, Adaptive mpi, in: Proc. 16th International
Workshop on Languages and Compilers for Parallel Computing, LCPC 03, 2003.

[33] P. Husbands, K. Yelick, Multithreading and one-sided communication in
parallel lu factorization, in: Proc 2007 ACM/IEEE Conf. on Supercomputing, SC
'07, Reno, NV, Nov., ACM, 2007.

[34] L.V.Kale, S. Krishnan, Charm++: a portable concurrent object oriented system
based on c++, in: Proceedings of the Eighth Annual Conference on Object-
oriented Programming Systems, Languages, and Applications, OOPSLA 93, NY,
NY, ACM, 1993, pp. 91-108.

[35] L.V.Kale, S. Krishnan, Charm++: a portable concurrent object oriented system
based on c++, in: Proceedings of the Eighth Annual Conference on Object-
oriented Programming Systems, Languages, and Applications, OOPSLA '93, NY,
NY, ACM, 1993, pp. 91-108.

[36] K.Kennedy, B. Broom, A. Chauhan, R. Fowler, J. Garvin, C. Koelbel, C. McCosh,].
Mellor-Crummey, Telescoping languages: A system for automatic generation
of domain languages, Proc. IEEE 93 (2005) 387-408.

[37] A. Krishnamurthy, D.E. Culler, A. Dusseau, S.C. Goldstein, S. Lumetta, T. von
Eicken, K. Yelick, Parallel programming in split-c, in: Proceedings of the 1993
ACM/IEEE Conference on Supercomputing, Supercomputing '93, NY, NY, ACM,
1993, pp. 262-273.

[38] J. Kurzak, J. Dongarra, Fully dynamic scheduler for numerical computing on
multicore processors, lapack working note 220.

[39] J. Lifflander, P. Miller, R. Venkataraman, A. Arya, L. Kale, T. Jones, Mapping
dense lu factorization on multicore supercomputer nodes, in: 2012 IEEE 26th
International Parallel Distributed Processing Symposium (IPDPS), May 2012,
pp. 596-606.

[40] V. Marjanovi¢, J. Labarta, E. Ayguadé, M. Valero, Overlapping communication
and computation by using a hybrid mpi/smpss approach, in: Proceedings of
the 24th ACM International Conference on Supercomputing, ICS '10, 2010, pp.
5-16.

[41] D.Mar, J. Hutter, Ab-initio molecular dynamics: Theory and implementation,
in: J. Grotendorst (Ed.), Modern Methods and Algorithms of Quantum
Chemistry, Forschungszentrum Jiilich, i ed., NIC, 2000, pp. 301-449. ch. 13.
Publicly available at the URL:
http://www?2.fz-juelich.de/nic-series/Volume3/marx.pdf.

[42] P. McCorquodale, P. Colella, G.T. Balls, S.B. Baden, Local corrections algorithm
for solving Poisson’s equation in three dimensions, Commun. Appl. Math.
Comput. Sci. 2 (2007) 57-81.

[43] Message-Passing Interface Standard, MPI: A Message-passing Interface
Standard, University of Tennessee, Knoxville, TN, 1995, June.

[44] T. Nguyen, S.B. Baden, Preliminary scaling results on multiple hybrid
nodes of knights corner and sandy bridge processors, in: Accepted to
Third International Workshop on Domain-Specific Languages and High-Level
Frameworks for High Performance Computing, 2013.

[45] T. Nguyen, S.B. Baden, Lu factorization: Towards hiding communication
overheads with a lookahead-free algorithm, in: 2015 IEEE International
Conference on Cluster Computing, Sept 2015, pp. 394-397.

[46] T. Nguyen, P. Cicotti, E. Bylaska, D. Quinlan, S.B. Baden, Bamboo: translating
mpi applications to a latency-tolerant, data-driven form, in: Proceedings of
the International Conference on High Performance Computing, Networking,
Storage and Analysis, SC’12, 2012, pp. 39:1-39:11.

[47] R. Preissl, M. Schulz, D. Kranzlmuller, B. de Supinski, D. Quinlan, Using mpi
communication patterns to guide source code transformations, in: Computa-
tional Science, ICCS 2008, in: Lecture Notes in Computer Science, vol. 5103,
Springer, Berlin / Heidelberg, 2008, pp. 253-260.

[48] D. Quinlan, D. Miller, B. Philip, M. Schordan, Treating a user-defined parallel
library as a domain-specific language, in: Proceedings of the 16th International
Parallel and Distributed Processing Symposium, [IPDPS 2002, Los Alamitos, CA,
USA, April, IEEE, 2002.

[49] MJ. Quinn, Parallel Programming in C with MPI and OpenMP, McGraw-Hill
Education Group, 2003.

[50] P.Raghavan, K. Teranishi, E. Ng, A latency tolerant hybrid sparse solver using
incomplete cholesky factorization, Numer. Linear Algebra Appl. 10 (2003)
541-560.

[51] V. Sarkar, W. Harrod, A.E. Snavely, Software challenges in extreme scale
systems, in: Journal of Physics: Conference Series, Vol. 180, IOP Publishing,
2009, 012045.

[52] J. Shalf, S. Dosanjh, J. Morrison, Exascale computing technology challenges,
in: Proceedings of the 9th International Conference on High Performance Com-
puting for Computational Science, VECPAR'10, Berlin, Heidelberg, Springer-
Verlag, 2011, pp. 1-25.

[53] D.R.Shires, L.L. Pollock, S. Sprenkle, Program flow graph construction for static
analysis of mpi programs, in: PDPTA, 1999, pp. 1847-1853.

[54] R.Silva, G. Pezzi, N. Maillard, T. Diverio, Automatic data-flow graph generation
of mpi programs, in: 17th International Symposium on Computer Architecture
and High Performance Computing, 2005, SBAC-PAD 2005, 24-27 Oct. 2005, pp.
93-100.

[55] A. Sohn, R. Biswas, Communication studies of DMP and SMP machines, Tech.
Rep. NAS-97-004, NAS, 1997.

[56] E. Solomonik,]J. Demmel, Communication-optimal parallel 2.5d matrix
multiplication and lu factorization algorithms, Tech. Rep. UCB/EECS-2011-72,
EECS Department, University of California, Berkeley, 2011, Jun.

[57] AK. Somani, AM. Sansano, Minimizing overhead in parallel algorithms
through overlapping communication/computation, Tech. Rep. 97-8, ICASE,
1997, February.

[58] J. Sorensen, S.B. Baden, Hiding communication latency with non-spmd, graph-
based execution, in: Proc. 9th Intl Conf. Computational Sci., ICCS '09, Berlin,
Heidelberg, Springer-Verlag, 2009, pp. 155-164.

[59] Stampede user guide. http://www.tacc.utexas.edu/user-services/user-
guides/stampede-user-guide.

[60] K. Teranishi, P. Raghavan, E. Ng, A new data-mapping scheme for latency-
tolerant distributed sparse triangular solution, in: Proceedings of the 2002
ACM/IEEE conference on Supercomputing, Supercomputing '02, Los Alamitos,
CA, USA, IEEE Computer Society Press, 2002, pp. 1-11.

[61] J.D. Teresco, M.W. Beall, J.E. Flaherty, M.S. Shephard, A hierarchical partition
model for adaptive finite element computation, Comput. Methods. Appl. Mech.
Engrg. 184 (2000) 269-285.

[62] R. Thakur, R. Rabenseifner, Optimization of collective communication
operations in mpich, Int. J. High Perform. Comput. Appl. 19 (2005) 49-66.

[63] V. Volkov, J.W. Demmel, Benchmarking gpus to tune dense linear algebra,
in: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, SC '08,
Piscataway, NJ, USA, IEEE Press, 2008, pp. 31:1-31:11.

[64] H. Wang, S. Potluri, M. Luo, AK. Singh, S. Sur, D.K. Panda, Mvapich2-gpu:
Optimized gpu to gpu communication for infiniband clusters, Comput. Sci. 26
(2011) 257-266.

[65] C. Wen, K. Yelick, Portable runtime support for asynchronous simulation, in:
International Conference on Parallel Processing, 1995.

[66] P. Wesseling, C. Oosterlee, Geometric multigrid with applications to computa-
tional fluid dynamics, in: Numerical Analysis 2000. Vol. VII: Partial Differential
Equations, J. Comput. Appl. Math. 128 (2001) 311-334.

[67] S. Williams, D.D. Kalamkar, A. Singh, A.M. Deshpande, B. Van Straalen, M.
Smelyanskiy, A. Almgren, P. Dubey,]. Shalf, L. Oliker, Optimization of geometric
multigrid for emerging multi- and manycore processors, in: Proceedings of
the International Conference on High Performance Computing, Networking,
Storage and Analysis, SC’12, 2012, pp. 96:1-96:11.

Tan Nguyen received his Ph.D. degree in Computer Sci-
ence from University of California, San Diego in 2014.
Nguyen’s research interests include programming abstrac-
tions, communication hiding, and compiler-based perfor-
mance modeling and optimization. Nguyen is currently
a postdoctoral researcher at Lawrence Berkeley National
Laboratory.

Pietro Cicotti is a senior computational scientist at SDSC.
His research deals with aspects of emerging technology
and novel system architecture. His work includes the de-
velopment of runtime systems to hide communication,
improve locality, and increase energy efficiency. He de-
veloped software tools for capturing and analyzing data
movement, and is currently investigating the use of this
information for managing data in NUMA, heterogeneous,
and non-volatile memory hierarchies. Current optimiza-
tion work also includes IO and hierarchical storage sys-
tems. Finally, he collaborates on scientific data analysis
projects utilizing map-reduce and emerging programming models.

Eric Bylaska has conducted extensive research in geo-
chemistry and heavy element chemistry for the last
15 years and is an expert in developing first principles sim-
ulations to accurately model the thermodynamics, kinetics
and dynamics of molecular and condensed phase systems.
He also has formal training in electronic structure meth-
ods and detailed knowledge of models and model de-
velopment. He is also primary developer of the first
principles plane-wave module in NWChem software.
NWChem is an award-winning computational chemistry
package for parallel computers developed at EMSL. Re-
cently, he has also developed EMSL Arrows, which combines molecular modeling,
SQL and NOSQL databases, email, and social networks to make molecular and ma-
terials modeling accessible to all scientists and engineers.

http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref28
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref29
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref30
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref33
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref34
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref35
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref36
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref37
http://www2.fz-juelich.de/nic-series/Volume3/marx.pdf
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref42
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref43
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref47
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref48
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref49
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref50
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref51
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref52
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref55
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref56
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref57
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref58
http://www.tacc.utexas.edu/user-services/user-guides/stampede-user-guide
http://www.tacc.utexas.edu/user-services/user-guides/stampede-user-guide
http://www.tacc.utexas.edu/user-services/user-guides/stampede-user-guide
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref60
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref61
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref62
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref63
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref64
http://refhub.elsevier.com/S0743-7315(17)30077-1/sbref66

T. Nguyen et al. /]. Parallel Distrib. Comput. 106 (2017) 1-13 13

" Dan Quinlan is the leader of the ROSE project in
| the Center for Advanced Scientific Computing. His re-
| search is in numerous areas that intersect computer
science and numerical analysis. Research interests in-
clude object-oriented numerical frameworks, parallel
4 adaptive mesh refinement, parallel multigrid algorithms,
semantics-based source code transformations, C++ com-
piler tools/infrastructure/design, cache-based optimiza-
tions, parallel array classes, parallel data distribution
mechanisms, and parallel load balancing algorithms. Dr.
* Quinlan earned his Ph.D. in Computational Mathematics
from the University of Colorado.

Scott B. Baden is Professor in the Computer Science and
Engineering at the University of California, San Diego
and is currently on leave at Lawrence Berkeley National
Laboratory, where he leads the Computer Languages and
Systems Software Group. His research focuses on domain-
specific translation, language and run time support for low
cost communication, adaptive and irregular applications.
| Dr. Baden has a Ph.D. in computer science from the
University of California, Berkeley. He is a senior member
of IEEE, a member of SIAM, and a senior fellow at the San
Diego Supercomputer Center.

	Automatic translation of MPI source into a latency-tolerant, data-driven form
	Introduction
	Bamboo
	Motivation
	The bamboo programming model

	Implementation
	MPI subset
	Runtime system
	Task scheduling
	Communication handler

	Translation: core message passing layer
	Block reordering
	MPI reinterpretation
	Firing rule and yielding rule
	Inter-procedural translation

	Translation: utility layer
	Collectives
	Communicators

	Results
	Dense linear algebra
	2.5D Cannon's algorithm
	High Performance Linpack

	Structured grid-multigrid solver

	Advanced node technologies
	Graphical processing units
	A GPU-aware interface
	Performance evaluation
	Future implementation for performance portability

	Related work
	Conclusions
	Acknowledgments
	References

