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Conditioning and categorization
Some common effects of informational variables in animal and human learning

Mark A. Gluck & Gordon H. Bower
Stanford Univeraity

To what extent do the processes of human learning emerge from complex
configurations and elaborations of the ‘‘elementary’ learning processes observed in
animals? Research in the two areas of human and infra-human learning share a long his-
tory which focussed on elementary associative learning (Ebbinghaus, 1885; Pavlov, 1927).
About twenty years ago, however, animal and human learning research became divorced
from each other. Animal research continued to be primarily concerned with elementary
associative processes (Mackintosh, 1983; Mackintosh & Honig, 1969; Rescorla & Holland,
1982); while human learning (or ““‘memory’’) tended to be characterized in terms of
information-processing and rule-based, symbol-manipulation, an approach borrowed from
artificial intelligence. Few current theories of learning attempt to bridge the gap between
human and infra-human learning (some exceptions include Alloy & Tabachnick, 1984;
Estes, 1985; Dickinson & Shanks, 1985; Medin, 1984; Holland, Holyoak, Nisbett, & Tha-
gard, in press). Recently, however, interest in relating human cognition to configurations
of elementary associative connections has revived. Among theorists using parallel-
distributed processing models, the works of McClelland, Rumelhart, Hinton, Sejnowski,
and James Anderson are notable for demonstrating the computational power and psycho-
logical verisimilitude of these ‘“‘connectionist’” networks (see e.g., Hinton & Anderson,
1981; McClelland & Rumelhart, 1981; Ackley, Hinton, & Sejnowski, 1985, Rumelhart &
McClelland, 1986).

Given the voluminous studies of learning in animals alongside current attempts to
model cognition with elementary associative processes, it would seem particularly timely
to search for and exploit any correspondences which might exist between animal and
human associative learning. This was our goal in these experiments.

Informational Variables in Classical Conditioning

A simple but powerful theory describing animals’ learning in classical Pavlovian
conditioning was presented by Rescorla and Wagner in the early 1970's (Rescorla &
Wagner, 1972; Wagner & Rescorla, 1972). In classical conditioning, a previously neutral
stimulus, the conditioned stimulus (CS), such as a bell, comes to be associated with a bio-
logically significant stimulus, the uncondstioned stimulus (US), such as food or an electric
shock. Early learning theories assumed that the simple temporal contiguity or joint
occurrence of a CS and US was sufficient for associative learning (e.g. Hull, 1943; Spence,
19568). Later experiments made clear, however, that simple contiguity was not sufficient.
The ability of a CS to become conditioned to a US depended on its imparting reliable and
non-redundant information about the occurrence of the US (Kamin, 1969; Rescorla, 1968;
Wagner, 1969).
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To illustrate, suppose that a light, the CS, has already been conditioned to predict
a shock, the US. If a compound stimulus consisting of a light and a tone is then paired
with the shock, learning of the tone—shock association hardly occurs at all compared to
control subjects who received no pretraining to the light (Kamin, 1969). This result, simi-
lar to Pavlov's work on the overshadowing of one cue by another, is called *‘blocking”
because prior training of the light—shock association blocks later learning of the
tone—shock association during the second, (light + tone)}—shock stage of training.

The Rescorla- Wagner Model

The blocking effect suggested that the effectiveness of a US for producing associa-
tive learning depends on the relationship between the CS and the ezpected outcome
(Rescorla, 1968; Wagner, 1969; Kamin, 1969). Rescorla and Wagner provided a precise
formulation of this proposal (Rescorla & Wagner, 1972; Wagner & Rescorla, 1972). Their
formulation assumes that the association which accrues between a stimulus and its out-
come on a trial is proportional to the degree to which the outcome is unexpected (or
unpredicted) given all the stimulus elements that are present on that trial. We let V;
denote the strength of association between stimulus element C'S; and the US. If CS; is fol-
lowed by a reinforcing unconditioned stimulus, US, then the change in the association
strength between CS; and the US, A V,, can be described by Equation (1):

AV, =afi() - Evi}: (1)
keS

where a; reflects the intensity or salience of CS;, 8, reflects the rate of learning on trials
with US presentations, )\, is the maximum possible level of association strength condition-

able with that US intensity, and ¥, V} is the sum of the associative strengths between all
keS
the CS stimulus elements occuring on that trial and the US. If CS,;is presented on a trial

without the US, then the association between CS; and the US decreases analogously, viz.,

AV, = afy; - ESV&), (2)

where X, is the level of associative strength supported by non-presentation of the US (usu-
ally taken to be zero), and f, reflects the rate of change of the association due to nonrein-
forcement. Generally f, is assumed to be larger than f,, but this is not critical for most
predictions (see Rescorla & Wagner, 1972).

The Rescorla-Wagner model is the most widely accepted description of associative
changes during classical conditioning. The wealth of confirmed implications arising from
this deceptively simple model has been substantial. This model accounts for the blocking
effect as follows: When in Phase 1, CS; has been initially conditioned to the US, V,
approaches \,. If the associative strength of the novel stimulus, V, is assumed to be zero,
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then the compound stimulus strength, V, + V, = \,. By Equation 1, the incremental
learning accruing to the novel stimulus, AV,, when the compound is paired with the US is
thus predicted to be zero--as observed.

Learning in Associative Networks

A learning rule used in many of the "‘connectionist’” network models of cognition is
the delta rule, a variant of the perceptron convergence procedure (Rosenblatt, 1961) first
proposed as a learning mechanism for adaptive networks by Widrow and Hoff (1960).
Such networks connect a set of input nodes to some output nodes with ‘‘connection
weights'' w;; from node s to node j. Given a training trial relating an input vector to an
output vector, the weights are changed according to (3):

[ ]
Aw,-,- = ﬂ(Z,' = E wkjui)“i,
k=1

where i is an input node, jis an output node, a, is the activation on input node s, the
summation is over all the input nodes to node 5, and z is a special ‘‘teaching” input signal
to ~utput node j indicating what the activation of that node should be to get the correct
response. The delta rule provides an iterative solution to a set a linear equations which
will converge on discriminating weights if they exist. Otherwise, the algorithm will con-
verge on weights which minimize the ‘‘least-squares™ error between the resulting and
desired output patterns (Kohonen, 1977).

Recently, Rumelhart, Hinton, and Williams (1986) have generalized the delta rule
so it may be applied to perform learning in a multi-layered net of feed-forward elements
with some “‘hidden" units between the input and output layers. They show how the delta
rule, combined with back-propagation of weight adjustments, can learn many difficult
discriminations such as parity, exclusive-or, and symmetry relationships.

As Sutton and Barto (1981) noted, the delta rule is essentially identical to the
Rescorla-Wagner equations (with 8, = f#,). If, in Equation 3, we let V; = w;; set the
training signal in the delta rule, z;, equal to )\, when the US is present and to zero other-
wise, and let a,=1 when CS, is present and 0 otherwise, then the delta rule reduces to
Equations 1 and 2 of the Rescorla-Wagner model. Curiously, associative network theorists
have adopted the delta rule because of its computational power, convergence properties,
and generalizability to multi-layered networks. Nonetheless, associative networks which
implement the delta rule can be viewed as a framework for modeling the emergent proper-
ties of complex configurations of elementary associative processes observed in animals.
However, few studies have asked whether the delta rule is an appropriate characterization
of the algorithm underlying human associative learning.

Some earlier investigators have noted the need for bridging experiments. Rudy
(1974) noted a parallel between human paired-associate learning and animal associative
learning and pointed to a form of blocking in human learning. Specifically, when
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redundantly relevant cues are compounded with stimuli that are already sufficient to cue

the associated response, the added cues are unlikely to become associated with the
response (Trabasso & Bower, 1968). Dickinson and Shanks (1985) demonstrated some

conditioning phenomena in human learning: They showed that human judgments of event
correlation were influenced by the conditional status of other events that are present, in a

manner reminiscent of blocking or overshadowing phenomena in animal conditioning.

Schank (1982) has recently postulated a similar “‘expectation failure’ as the driving force

behind learning; EPAM used a similar rule long ago (Feigenbaum, 1959; Feigenbaum &
Simon, 1961).

Ezperiment 1

Because category learning is a currently active area in cognitive research, we
decided to test out the delta rule as it applied to subjects’ learning to classify stimulus
patterns into categories. In our experiment, university students served as hypothetical
medical diagnosticians. They saw a series of 250 “‘patients,”’ each described by the pres-
ence or absence of each of four symptoms. The student diagnostician classified each
patient as having one or the other of two fictitious diseases, received feedback about that
patient’s correct diagnosis. Over training, subjects learned which symptoms are more or
less diagnostic of which diseases.

Figure 1 illustrates a simple associative network to represent this category learn-
ing. Each of the four symptoms is represented by an input node at the left, and the two
disease categories by nodes at the right. The connections from symptom s to category j
has weight, w;;, reflecting the strength of evidence that presence of symptom ¢ provides
towards disease ;. The w; will be adjusted trial by trial according to the delta rule.

The pattern of features presented on a trial causes a pattern of activation of the
features. If the presence or absence of each feature is represented by activations of 1 and
0, respectively, the activation at a given category node will equal the sum of the weights
from presented features to that category node. This reflects the model’s expectation for
that category given the symptom pattern. Once activation values are computed for the
category nodes, the next step is for the model to select a response. Several measures of
associative strength are possible. One we have used is to ask subjects to judge directly the
probability that a given patient has one disease or the other. We will suppose that the
greater the difference in net strength of evidence for category 1 vs. 2, the higher will be
subject’s estimate that the patient has disease 1 rather than disease 2. A second measure
asks subjects to choose disease 1 or 2 for a particular patient. For this case, we use the
ratio response rule of Luce (1963) which says that the probability of choosing Category 1

1
(Vi+ V)
details of the response rule.

1s the ratio Qualitative aspects of the predictions do not depend on the

The “‘training signal” provided to each category node (Figure 1) is the
experimenter’s feedback (after the subject’s response) regarding the correct response. We
assume that if category j is the correct classification, then z; will be set equal to one on
that trial; if an alternative category is correct on a given trial, then z; will be 0 for that
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Symptom 1  — A\
l
Wy — Category 1
Symptom 2 —
)\2
Symptom 3 — |
— Category 2

Symptom 4 —

Figure 1. A simple “‘connectionist’’ network which learns to diagnose patterns

of up to four symptoms as having one of two diseases using the Rescorla-Wagner/delta
rule.
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trial. We assume a single learning rate parameter, 8, for adjusting the weights. However,
if a fixed set of training patterns is presented many times in random order to the learning
model, the convergence properties of the delta rule lead to parameter free predictions
about the expected asymptotic levels of the w,'s, feature-to-category associations (Rescorla
& Wagner, 1972; Stone, 1986).

We will compare the predictions of the delta rule in our category learning task
with the predictions of three competing models of category learning (Estes, 1988): 1)
ezemplar models which presume that the learner stores all the exemplars of each category,
and then classifies a new instance according to its similarity to the stored exemplars of
each category (e.g. Medin & Schaffer, 1978; Nosofsky, 1984), 2) feature-frequency which
presume that the learner stores relative frequencies of occurrence of cues within the
categories, and then classifies an instance according to the relative likelihood of its partic-
ular pattern of features arising from each of the categories (Reed, 1972; Franks & Brans-
ford, 1971), and 3) prototype models which presume the learner abstracts the central ten-
dency (modal description) of each category and then classifies instances according to their
similarity to this central prototype (Fried & Holyoak, 1984).

Applying models to our task where subjects estimate the probability of each
category given each feature, the models make one of two predictions. Exemplar models
and feature-frequency models predict that subjects’ estimates will simply reflect the
observed conditional feature-to-category probabilities of the training sequence, a form of
‘“probability matching.” On the other hand, prototype models and feature-frequency
models which ignore variations in category base-rate frequencies would predict that sub-
jects’ estimates of the probability of the category given the feature will reflect simply the
relative likelihood of the feature given the alternate categories, viz.,

Afley)
P(fley)+P(flcy)

In our experiment, we arranged to have the ordinal relationships among the condi-
tional probabilities for different cues differ from the ordinal relationships among the
expected asymptotic association strengths predicted by the Rescorla-Wagner/delta rule.
This was achieved by unbalancing the relative frequency of the two diseases, making the
common disease far more likely than the rare disease. The question was whether people’s
probability estimates would be more closely predicted by the Rescorla-Wagner/delta rule
than by the alternative models.

Procedure

Nineteen subjects were trained to classify medical charts of hypothetical patients
into one of two mutually exclusive disease categories. Disease names were fictitious but we
will refer to them as the rare (R) disease and the common (C) disease. Among the train-
ing exemplars, patients with the common disease were three times as frequent as patients
with the rare disease. A patient chart consisted of one to four symptoms drawn from a
set of four possible symptoms: bloody nose, stomach cramps, puffy eyes, and discolored
gums. In the training phase subjects were shown a set of symptoms corresponding to a
patient, asked to make a diagnosis, and then given feedback as to the correct diagnosis.
Figure 2a shows the probability of each of the four symptoms occurring in patients
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Figure 2. Experiment 1 design: (a) The probabilities of each of the four symp-
toms occurring in patients suffering from each of the two diseases. The lower numbered
symptoms were more typical for the rare disease while the higher numbered symptoms
were more typical of the common disease. (b) The conditional probabilities of each of the
two diseases given the presence of each of the symptoms computed from (a) using Bayes
Theorem.
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suffering from each of the two diseases. The lower numbered symptoms were more typical
for the rare disease while the higher numbered symptoms were more typical of the com-
mon disease. All symptoms, however, occurred in some patients with both diseases.
Symptoms 1, 2, 3, and 4 were assigned actual symptom names randomly for each subject.
Each subject received a novel set of training patients which were generated during the
experiment according to a probabilistic procedure. First, each patient was randomly
designated as suffering from either the rare disease (with probability .25) or the common
disease (with probability .75). Second, given his disease, a patient’s symptom chart was
generated by choosing symptoms according to the independent probabilities shown in Fig-
ure 2a. Thus, if the patient suffered from the rare disease, then with probability .68, the
chart would include symptom 1; with probability .4, symptom 2; with probability .3,
symptom 3; and with probability .2, symptom 4 (and analogously, but inversely, for
patients suffering from the common disease). From one to four symptoms were presented
or a single chart (patients with no symptoms were eliminated from the training sequence).
For the subjects, the diseases were identified by fictitious names which were counterbal-
anced across subjects in being assigned to the rare or common disease. Subjects were
instructed that there was no simple rule for making the diagnosis and that the order of
presentation of the symptoms within a patient’s chart was irrelevant.

Using the base rates of AR) = .25 and A C) = .75 and the probabilities in Figure
2a, Bayes Theorem provides the conditional probability of the two diseases given the four
symptoms considered seperately (see Figure 2b). For any single symptom the normative
probability of the rare disease was always less than or equal to the probability of the more
common disease.

Following 250 training trials of predicting diseases and receiving feedback, subjects
were finally asked to estimate directly the probability that a patient exhibiting a particu-
lar symptom was suffering from one or the other disease. They gave a numerical esti-
mates of AR|s,) and P(Cls;) on a 0 to 100 scale for each of the four symptoms. These
estimates are the data of primary interest in this report.

Results and Predictions

Because the conditional probabilities of the two diseases sum to 1 for any particu-
lar symptom, we will combine these conditional probabilities into a single probabslsty
difference measure, P(R|s;) — P(Cls,), for each of the four symptoms. This measure, shown
in Figure 3, reflects both the actual (normative) probabilities in the training patterns as
well the probability matching behavior predicted by exemplar-storage and feature-
frequency models. But, the Rescorla-Wagner/delta rule predicts that following training,
subjects’ estimates of the probability differences will follow a different pattern, reflecting
the underlying strengths of the feature-to-category associative connections. These asymp-
totic connection weights can be calculated by deriving equations for the expected trial-by-
trial weight change in each of the feature-to-category connections, setting these expected
changes to zero, and solving the resulting four simultaneous equations in four variables for
each of the two categories. The resulting asymptotic association strengths to the rare
disease are .45, .18, .06, and -.09 for symptoms 1 through 4, respectively, and for the asso-
ciations to the common disease, .02, .22, .37, and .68. The differences between these
asymptotic strengths are plotted in Figure 3b; this is the theoretical index to be compared
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Figure 3. Results and predictions for Experiment 1. (a) Normative probability
differences for each symptom. These correspond to the predictions of exemplar and
feature-frequency learning models. (b) Predictions of the Rescorla-Wagner/delta rule based
on asympotic levels of associations. (c) Subject’s estimates of the probability differences.
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to the observed probability difference measures.

The most striking difference between the normative probability measures in Figure
3a and the predicted associative weights in Figure 3b is evident in symptom 1, #;: This
symptom was paired equally often with the rare disease, R, as with the common disease,
C, and hence the difference between the conditional probabilities of R versus C to this cue
is zero. However, the delta-rule predicts that the the #,— R association will be consider-
ably stronger than the s,— C association.

This prediction of the delta rule is understandable when one appreciates the com-
petitive nature of the learning algorithm. The overall magnitude of the symptom— disease
weight reflects the degree to which a symptom has been an informative and reliable pred-
ictor of a disease, relative to the predictive value of other co-present symptoms for that
same disease. Although symptom 1 has the same predictive value for the two diseases,
relative to the predictive value of the other symptoms for the common disease, it is not a
very informative predictor. However, for the rare disease symptom 1 is a relatively better
predictor than the other symptoms. It is this relative validity of a symptom for the two
categories that determines its relative degrees of association to them.

Having described the model's predictions, we turn now to the data. Comparing
the actual with the estimated conditional probabilities indicated that while subjects
correctly learned the relative strengths of the conditional probabilities within a particular
discase category, they considerably overestimated the conditional probability of the rare
disease given each of the symptoms. Subjects’ estimates of the probability of disease R
versus C were converted into differences and graphed in Figure 3¢c. Our preceding analyses
suggested that the data for symptom 1 are would be most critical for distinguishing
between the models. As predicted by the delta rule, the data indicate that subjects
believed that patients with symptom 1 were significantly more likely to be suffering from
the rare disease than from the common disease (p < .01, 1 tailed, t=2.76, df==18). This
simple result disconfirms the alternative models. By the same token, the delta rule expects
the probability difference for symptoms 2, 3, and 4 to be much less than predicted by the
probability matching theories, and this data pattern was also observed.

It would appear that our learners fell prey to a common form of ** base rate
neglect” in making predictive judgments: They erroneously judged that the presence of a
symptom, &, highly representative of the rare disease was strong evidence for diagnosing
the rare as opposed to the common disease. This result, predicted by the delta rule, is
consistent with many results in research on judgment: People consistently overestimate
the degree to which evidence that is representative or typical of a rare event is actually
predictive of it (Tversky & Kahneman, 1972). When answering questions such as: “What
is the probability that object A belongs to class B”, people often resort to a representa-
tiveness heuristic in which their judgment reflects the degree to which A resembles a pro-
totype of B (Tversky & Kahneman, 1982b). For example, in estimating the probability
that a particular student is an English major in a classroom known to consist of 80%
computer science majors, people base their predictions largely on the degree to which the
personality characteristics of the student are representative of their stereotypes of com-
puter wizards, thus neglecting the influence that base rate should have. (Kahneman &
Tversky, 1972). Most studies demonstrating neglect of base rate in classification
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judgments have used natural categories with familiar prototypes (e.g. feminists or
engineers); base rate information is generally presented to subjects as additional numerical
information (Tversky & Kahneman, 1982a). Ours is one of the first studies to demon-
strate base rate neglect in a category learning experiment in which information about
categories and base rates was induced by subjects from examples.

One might try explaining our results by supposing that subjects ignore base rates
of the two categories in making their judgments. Earlier we indicated how a prototype
model or a feature-frequency model could be interpreted as insensitive to base rates of the
two categories. But this explanation fails because if subjects had been ignoring base rates,
then they should have judged symptoms 1 and 2 to be as diagnostic of the rare disease as
symptoms 3 and 4 were for the common disease, respectively (see Figure 2a). But as Fig-
ure 3¢ shows, this pattern was not obtained. Only symptom 1 was judged to be a
significantly stronger predictor of the rare disease than the common disease. Though sub-
jects’ probability estimates reflected less attention to base rates than normatively
required, the estimates show sensitivity to the differing base rates. These results are con-
sistent with current decision making studies which suggest that in most situations base-
rate information is not ignored, only underutilized (Borgida & Brekke, 1981; Kassin,
1979). Alternative category learning models, which predict either total neglect of base
rates or full use of base rate information, do not provide a satisfactory account for these
data. The Rescorla-Wagner/delta rule, however, correctly predicts that in our situation
only symptom 1 will be perceived as stronger evidence for the rare versus the common
disease; the other symptoms are predicted to be stronger evidence for the common disease.

Discussion

We believe that our results provide discriminating evidence in favor of the
Rescorla-Wagner/delta rule as applied to a simple cue-to-category learning task for human
adults. The unique nature of the predictions depends on the competitive nature of the
learning algorithm. A cue that is paired with category 1 will acquire relatively little asso-
ciative strength towards that category if the cue occurs in the company of others that
already strongly predict that category. As indicated, this echoes the many results in
animal conditioning on overshadowing, blocking, and CS-US correlations (see Prokasy,
1965; Rescorla, 1968). We are currently conducting further tests of implications of the
delta rule in the symptom-disease learning paradigm, and those tests provide even further
confirmation of the rule. We are encouraged that the delta rule of connectionist theories
not only links up to the Rescorla-Wagner model of conditioning, but that they also imply
the phenomenon of base-rate neglect which has proven to be a robust effect in the litera-
ture of judgment and decision. Such theoretical connections across disparate research
areas are especially encouraging to the goals of cognitive science.
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