
UCLA
UCLA Electronic Theses and Dissertations

Title
Necessary and Sufficient Conditions for General Interaction Patterns for MPC

Permalink
https://escholarship.org/uc/item/8fh0n0n0

Author
Mittal, Manika

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8fh0n0n0
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Necessary and Sufficient Conditions for General Interaction Patterns for MPC

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Computer Science

by

Manika Mittal

2017

c© Copyright by

Manika Mittal

2017

ABSTRACT OF THE THESIS

Necessary and Sufficient Conditions for General Interaction Patterns for MPC

by

Manika Mittal

Master of Science in Computer Science

University of California, Los Angeles, 2017

Professor Rafail Ostrovsky, Chair

The standard model of Secure Multi-Party Computation (MPC) allows a set of parties with

private inputs to compute some joint function of their inputs. The aim of MPC is to allow

this computation without revealing any more information than the output of the function.

However, achieving this requires a full interaction among the participating parties, which is

not always feasible in real life. On the other hand, in certain restricted interaction patterns

it is possible for the adversary to learn the output of the function on honest inputs and

every possible combination of the corrupted inputs. This motivates the study of different

interaction patterns and their properties to better understand and formalize the scenarios

under which we can limit the amount of information an adversary can derive.

The interaction pattern that different parties participate in, to compute a function, can

be modeled as a graph. This thesis studies the different properties of this graph and answers

the following question - “What is the minimum sequence of edges that are needed to ensure

that an adversary cannot collude with other corrupted parties to learn different outputs

of the function?”. We analyze different scenarios with different bounds on the number of

corrupted and output parties.

ii

The thesis of Manika Mittal is approved.

Raghu Meka

Alexander Sherstov

Rafail Ostrovsky, Committee Chair

University of California, Los Angeles

2017

iii

Table of Contents

1 Introduction . 1

1.1 Our Results . 2

2 Problem Formulation . 4

2.1 Problem Statement . 6

2.2 Types of Nodes . 7

2.2.1 Output Node . 7

2.2.1.1 Properties . 7

2.2.2 Non-Output Node . 8

2.2.2.1 Properties . 8

2.2.3 Hanging Node . 9

2.2.3.1 Properties . 9

2.2.4 Target Node . 9

2.2.4.1 Properties . 9

3 Two-Way Chain Interaction Pattern . 12

4 Single Cycle Interaction Pattern . 17

5 General Interaction Pattern with Single Output Node 19

6 Generalized Interaction Pattern . 25

7 Double Cycle Interaction Pattern . 28

8 Related work . 30

iv

References . 31

v

List of Figures

2.1 Graphical representation of a star interaction pattern 5

2.2 Graphical representation of a two-way chain interaction pattern 5

2.3 Symbol for Output node . 7

2.4 Symbol for Non-Output node . 8

2.5 An example of Property 2.2.4.1. 10

3.1 Graph 1 with 2 nodes and 1 edge . 13

3.2 Graph 2 with 2 nodes and 1 edge . 13

vi

Acknowledgments

I would like to sincerely thank my academic advisor Prof. Rafail Ostrovsky for providing

invaluable support throughout my Master’s program. I also want to thank Prof. Yuval Ishai

for his support and valuable discussions, without which this work would not have existed. I

am also enormously grateful to my Graduate Student Affairs Officers: Steve Arbuckle and

Jeanette Reyes, for their great support and guidance during the process of filing this thesis.

At last, I would like to gratefully thank the Computer Science Department of UCLA for

providing me with the opportunity to work with great research scholars and learn some

invaluable lessons.

vii

CHAPTER 1

Introduction

Secure Multi-Party Computation (MPC) enables a set of parties to compute a function on

their inputs in such a way that the parties only learn the output of the function and nothing

about the inputs of the other parties. Most of the prior work [Yao82, GMW87] in the area

of MPC involves protocols with full interaction i.e. all the parties involved in MPC must

remain online and send messages to all other parties. However, realizing full interaction can

be expensive and sometimes even infeasible in real world applications. Computing a function

with MPC will require Ω(n2) messages (where n is the number of parties) even for functions

(like majority) that can be computed in n− 1 messages. Moreover, it might not be possible

for all the parties to be online at the same time.

All these reasons motivated the study of restricted [HLP11] and general [HIJ16] interac-

tion patterns. While [HLP11] studies the properties of secure MPC under specific interaction

patterns like a star pattern, [HIJ16] tries to understand the impact of a general interaction

pattern on MPC, or more specifically if a function can be securely realized by a protocol

that complies with an arbitrary interaction pattern. It was observed that under certain con-

ditions the traditional definition of security cannot be achieved and so the notion of “best

possible security” was formulated. The aim of this thesis is to formulate the conditions when

traditional definition of security can be achieved by a general interaction pattern.

A general interaction pattern can be modeled as a graph where the sequence of messages

that are sent amongst the parties can be represented as an edge sequence. The edge sequence

ends in an output party that computes the function. If x1, x2, ..., xn are the inputs of the n

parties that wish to compute a function, then the traditional model of MPC enforces that

1

the corrupted parties must only learn the value of function f on a single input (x1, x2, ..., xn).

However, in certain interaction patterns this cannot be achieved and instead we rely on “best

possible security” that captures everything that the adversaries can learn by varying some

of the inputs from (x1, x2, ..., xn). The inputs that can be varied by the corrupted parties are

called free inputs, while all other inputs are fixed inputs. While the inputs from honest parties

are always fixed, some inputs from corrupted parties can also be made fixed. In particular, if

a corrupted party has a message path or a subsequence in the interaction pattern that goes

through an honest party to the output party, then the input of such a corrupted party can

be considered fixed. If the corrupted party has no subsequence that goes through an honest

party then the input is considered as a free input.

1.1 Our Results

This work formulates the conditions and the constraints that a general interaction pattern

must follow in order to achieve the traditional definition of security. It answers the following

question : “What is the minimum sequence of edges that are needed to ensure that a general

interaction pattern achieves the traditional model of security?”.

Contributions of this dissertation can be summarized as follows:

Theorem 1 (Informal). The two-way chain is an optimal interaction pattern that achieves

traditional security when there is a single output party and a single honest party.

Theorem 2 (Informal). The number of edges required for n parties, with a single corrupted

party and a single output party, to achieve traditional model of MPC security is at least n.

Theorem 3 (Informal). The number of edges needed for n parties, with one output party

and at most c corrupted parties, to achieve traditional model of MPC is given by :

No. of Edges ≥ n+ c− 1

Theorem 4 (Informal). The number of edges needed for n parties, with o output parties and

2

at most c corrupted parties, that achieve traditional model of MPC is given by :

No. of Edges ≥ min{n+ (c− 1) + (o− 1), 2n}

3

CHAPTER 2

Problem Formulation

This chapter introduces the definitions, terms and terminologies that will be used throughout

the dissertation. It formulates the problem and enlists some important properties. In all

definitions we let U = {u1, ..., un} denote the set of parties that participate in the MPC

protocol.

Definition 1 (Interaction Pattern). An N-message interaction pattern for the set of parties

U is specified as a sequence of messages given by,

p = (u1, e1, u2, ..., eN , un)

where {ui : 1 ≤ i ≤ n} ∈ U are the participating parties, and ei : 1 ≤ i ≤ N signifies a

message sent from the party before ei in p to a party after ei in p. The edge/message ei in

p must be unique and is given a unique sequence number, i. Note that p is a trail i.e. the

nodes in p can be repeated but the edges are unique. It is possible that 2 or more parties

send messages to a single node simultaneously, in which case the messages/edges are still

given unique (increasing) sequence numbers and the final interaction pattern is always in the

ascending order of sequence numbers. In such a case, the pattern can be given by,

p = (u1, e1, [u2, e2], [u3, e3], u4, e4, ..., eN , un)

Here u1, u2, u3 send messages e1, e2, e3 simultaneously to u4.

Note that the interaction patterns can be modeled as a graph.

Some examples:

Star interaction pattern: Following is an example of a star interaction pattern p with

4

four parties u1, u2, u3, u4, where u4 is the output node.

p = (u1, e1, [u2, e2], [u3, e3], u4)

Figure 2.1: Graphical representation of a star interaction pattern

Two-way chain interaction pattern: Following is an example of a two-way chain

interaction pattern p with three parties u1, u2, u3, where u1 is the output node.

p = (u1, e1, u2, e2, u3, e3, u2, e4, u1)

Figure 2.2: Graphical representation of a two-way chain interaction pattern

Definition 2 (Fixed v/s Free Inputs). Given a set of corrupted parties C ⊂ U , an interaction

pattern p and parties ui, uj ∈ U such that uj is an output party, an input of party ui is

considered fixed if either

5

• ui /∈ C or

• ∃ a subsequence in p from ui to uj through an honest node uh : uh /∈ C with strictly

increasing sequence numbers.

Definition 3 (Traditional Model of MPC v/s Best Possible Security). In the traditional

model of MPC, the corrupted parties can learn no more than the output of the function f on

(x1, x2, ..., xn). Best Possible Security, on the other hand, is defined using residual function

that captures everything that the corrupted parties can learn by computing the function f on

arbitrary choices of free inputs.

For example, in the star interaction pattern, p = (u1, e1, [u2, e2], [u3, e3], [u4, e4], ..., un),

if the last k parties are corrupted then the adversary can learn the value of the function

f(x1, ..., xn−k, xn−k+1, ..., xn) on fixed xi : 1 ≤ i ≤ n− k and all possible combinations of the

remaining inputs xi : n− k + 1 ≤ i ≤ n.

2.1 Problem Statement

Clearly the goal is to formulate a general interaction pattern that always achieves the security

required by the traditional model of MPC. In order to ensure that, we need to restrict the

value of the residual function to the value of the function f on a single input (x1, x2, ..., xn).

This can be achieved by ensuring that the inputs from all the parties are fixed. The idea

is to formulate the conditions of a general interaction pattern in such a way that for every

subset of corrupted nodes, the inputs are fixed. More formally,

Given:

– Set of parties/nodes U such that |U | = n

– Maximum number of corrupted parties = c

– Set of output nodes O such that |O| = o

Find the minimum sequence of edges such that:

6

Condition 1. For every pair of nodes (x, y) : x ∈ U, y ∈ O, there exists a path (subsequence)

from x→ y

Condition 2. For every subset C ⊂ U : |C| ≤ c and every pair of nodes (x, y) : x ∈ C, y ∈

O ∩ C there exists a path (subsequence) x→ y going through some node h ∈ U\C

These conditions ensure that all the parties have fixed inputs and thus achieve the tra-

ditional security model of MPC.

An edge sequence is said to be [n, c, o]-valid if it satisfies the above two conditions.

2.2 Types of Nodes

This sections defines the various types of nodes, used in this thesis, and some of their

interesting properties.

2.2.1 Output Node

The output node is the node that computes the joint function and announces/ outputs it.

It is denoted by the following symbol:

Figure 2.3: Symbol for Output node

2.2.1.1 Properties

Property 2.2.1.1. Every output node will have an outdegree of at least 1 and an indegree

of at least 1.

Proof 2.2.1.1. To satisfy Condition 1 every non-output node must have a path till the

output node, thus the output node needs at least one incoming edge. In some subset when the

7

output node is corrupt, in order to satisfy Condition 2 the output node must have a path to

itself through an honest node, thus every output node will have at least one outgoing edge.

2.2.2 Non-Output Node

If a node is not an output node, it is a non-output node. It is denoted by the following

symbol:

Figure 2.4: Symbol for Non-Output node

2.2.2.1 Properties

Property 2.2.2.1. Every non-output node will have an outdegree of at least 1.

Proof 2.2.2.1. To satisfy Condition 1 every non-output node must have a path till the

output node, thus it needs at least one outgoing edge.

Property 2.2.2.2. For a non-output node, in a minimal [n, c, o]-valid edge sequence, the

maximum of outgoing edge sequence numbers will always be greater than the maximum of

incoming edge sequence numbers.

Proof 2.2.2.2. If there is an incoming edge (to a non-output node) which has sequence

number greater than the maximum of outgoing edge sequence numbers then that means, this

incoming edge does not have an outgoing edge with a higher sequence number. Since the

node is a non-output node, this incoming edge can be removed without affecting the solution

because it serves none of the 2 conditions in the problem statement. But this contradicts our

assumption that the [n, c, o]-valid edge sequence is minimal.

8

2.2.3 Hanging Node

A non-output node with NO incoming edges is called a hanging node.

2.2.3.1 Properties

Property 2.2.3.1. In a minimal [n, c, o]-valid edge sequence, a hanging node cannot have

more than 1 outgoing edges to the same node.

Proof 2.2.3.1. More than 1 outgoing edges from a non-output node with no incoming edges

to the same node can simply be combined to a single outgoing edge with the highest sequence

number. This does not affect the two conditions. But this contradicts our assumption that

the the [n, c, o]-valid edge sequence is minimal.

2.2.4 Target Node

A non-output node with exactly one outgoing and one incoming edge is called a target node.

2.2.4.1 Properties

Property 2.2.4.1. A non-output node with outdegree = 1 and indegree > 1 in an [n, c, o]-

valid edge sequence can be transformed to a target node without violating the two conditions.

Proof 2.2.4.1. Suppose there is an [n, c, o]-valid edge sequence that has a non-output node

(uz) with outdegree 1 and indegree = l > 1, then from Property 2.2.2.2, we know

suz→any > max{sui→uz : 1 ≤ i ≤ l}

where sx→y denotes the sequence number of the edge/message x→ y and U ′ = {ui : 1 ≤ i ≤

l} ⊆ U denote the set of nodes that have an outgoing edge to uz.

Transformation: Pick the node u ∈ U ′ that has sequence number = max{sui→uz : 1 ≤ i ≤

l}. Remove all the edges ui → uz where ui ∈ U ′\u and add edges to ui → u and keep the

same sequence numbers. Since sui→uz < su→uz ∀ui ∈ U ′\u, this modification still satisfies

9

the two conditions. In this transformed edge sequence, uz has an indegree and outdegree of

1.

One example of this transformation, where u5 is the non-output node with outdegree = 1

and indegree > 1, is shown in Figure 2.5.

Figure 2.5: An example of Property 2.2.4.1.

Property 2.2.4.2. There will be at least c− 1 distinct nodes between a target node and the

first output node in an [n, c, o]-valid edge sequence.

Proof 2.2.4.2. Let ut be a target node. Since ut has only one incoming and one outgoing

edge, it only appears once in the [n, c, o]-valid edge sequence, which means that there must

10

be ≥ c− 1 distinct nodes (not including uO) between ut and uO, where uO is the first output

node in the sequence. If there are < c− 1 distinct nodes between ut and uO then it violates

Condition 2 in the subset where ut, uO and the < c− 1 nodes are corrupt because there will

not be any path from ut to uO through an honest node. Note that the c − 1 distinct nodes

cannot have uO as one of the distinct nodes.

11

CHAPTER 3

Two-Way Chain Interaction Pattern

In this chapter we will show that the two-way chain interaction pattern achieves the

traditional model of MPC security when there is a single output node and a single honest

node. In particular, we will prove that not only does the two-way chain interaction pattern

satisfy the two conditions of the problem statement but it does so with minimal number of

edges.

Theorem 5. The two-way chain forms a minimal [n, c = n− 1, o = 1]-valid edge sequence.

OR

For c = n− 1 and o = 1, the length of an [n, c = n− 1, o = 1]-valid edge sequence is given by

Length of [n, c = n− 1, o = 1]-valid edge sequence ≥ 2n− 2

Proof. Proof by Induction

Base Case: For n = 2, c = 1 and o = 1

Length of [n = 2, c = 1, o = 1]-valid edge sequence ≥ 2

Let’s assume that for n = 2 there is a sequence of at most 1 edge satisfying the two conditions.

With 1 edge and 2 nodes there are only 2 graphs that are possible that are shown in Figure 3.1

and Figure 3.2. The graph in Figure 3.1 violates Condition 1 because there is no path from

12

Figure 3.1: Graph 1 with 2 nodes and 1 edge

Figure 3.2: Graph 2 with 2 nodes and 1 edge

the non-output node u2 to the output node u1. The graph in Figure 3.2 violates Condition

2 in the subset when u1 is corrupt, since there is no path from the corrupt node u1 to the

output node u1 through an honest node u2. Since both the possibilities of 1 edge graphs do

not satisfy the two conditions, we know that for [n = 2, c = 1, o = 1]-valid edge sequence,

we need at least 2 edges.

While the base case can easily be verified by inspection, we prove a more general claim

below.

Claim 1. When c = n− 1 , every node will have an indegree ≥ 1 and outdegree ≥ 1.

Proof. In sets where |C| = c = n − 1, there is only 1 honest node. Thus every non-output

node needs at least one incoming edge, because it could be the only honest node in set N for

some subset of corrupted nodes |C| = c. From Property 2.2.1.1 we know that the output node

also has at least 1 incoming edge.

From Properties 2.2.1.1 and 2.2.2.1, we know that every node will have at least 1 outgoing

edge.

Inductive Hypothesis:

Suppose for n = k, c = k − 1 and o = 1

Length of [n = k, c = k − 1, o = 1]-valid edge sequence ≥ 2k − 2

13

Inductive Step:

We need to prove that for n = k + 1, c = k and o = 1

Length of [n = k + 1, c = k, o = 1]-valid edge sequence ≥ 2(k + 1)− 2

Let’s assume that there is a [n = k + 1, c = k, o = 1]-valid edge sequence of length at most

2(k + 1) − 3. Consider such a minimal sequence, and let G be the corresponding graph.

We label the edges of G by their order in the given sequence, and refer to these labels as

sequence numbers.

We want to prove that if G exists then a better solution exists for [n = k, n = k−1, o = 1]

in less than 2k − 2 edges, contradicting the inductive hypothesis.

Claim 2. There exists a non-output node ∈ G with outdegree 1 and indegree 1 which can be

removed along with 2 edges, to give a solution for n = k, c = k − 1 and o = 1 with 2k − 3

edges

Proof. The proof of Claim 2 relies on the following lemma.

Lemma 1. There exists at least one target node i.e. one non-output node ∈ G with outdegree

= 1 and indegree = 1.

Proof. Out of k+ 1 nodes, there are k non-output nodes. Each of those k non-output nodes

need to have at least one outgoing edge from Property 2.2.2.1. Since the total number of

outdegrees (i.e. total edges in a directed graph) are 2(k + 1) − 3, we know that some nodes

must have an outdegree more than 1. But at least one non-output node needs to have an

outdegree of exactly 1 because 2k > 2(k + 1)− 3 = 2k − 1.

By the same argument, we can argue that there exists at least one node with an indegree

1, but these nodes (one with outdegree 1 and one with indegree 1) need not be the same node.

However using Property 2.2.4.1 we can transform a non-output node with outdegree = 1

and indegree > 1 to a non-output node with outdegree = 1 and indegree = 1.

Let the solution i.e. the sequence of edges for graph G that satisfies the 2 conditions for

14

[n = k+1, c = k, o = 1] in 2(k+1)−3 edges be denoted by p = (u1, e1, ..., ut−1, et−1, ut, et, ut+1, ..., uo),

where ut is the target node and uo is the output node.

We want to use this graph to create a graph for [n = k, c = k − 1, o = 1] in 2k − 3 edges

which will contradict our inductive hypothesis.

Algorithm to get a solution for [n = k, c = k− 1, o = 1] by removing a node and 2 edges:

– If ut+1 = ut−1 then remove ut, et−1 and et.

Explanation : From Property 2.2.4.2 we know that there are at least c − 1 = k − 1

distinct non-output nodes in G between ut and uo, which implies that there are at least

k − 2 distinct non-output nodes between ut+1 = ut−1 and uo, which means that when

ut+1 is corrupt, it will always have some honest node path to uo because c ≤ k− 1. So

removing ut does not violate condition 2 for any node when c = k − 1.

– If ut+1 6= ut−1 then remove ut and et and all outgoing edges from ut+1 that have a

sequence number less than t+ 1.

Explanation : Remove ut and et and patch the graph by connecting et−1 to ut+1 and

the new solution will look like p = (u1, e1, ..., ut−1, et−1, ut+1, ..., uo). Again there are at

least k−2 distinct nodes between ut+1 and uo. We can remove all the outgoing edges of

ut+1 that have sequence number less than t+ 1, because it has an edge et+1 using which

ut+1 has a path through every other k − 2 nodes till it ends in the output node uo. So

the edge et+1 makes all the other outgoing edges of ut+1 with sequence number less than

t+ 1 redundant. And we know that there is at least 1 such outgoing edge with sequence

number less than t + 1 in the original graph G because ut+1 needed a path through ut

to uo in the case when ut is the only honest node. And since the only outgoing edge of

ut was et, ut+1 needs at least one outgoing edge with sequence number < t.

Hence we have proved that if we have a solution for [n = k+1, c = k, o = 1] in 2(k+1)−3

edges, then we can get a solution for [n = k, c = k−1, o = 1] in 2k−3 edges which contradicts

our inductive hypothesis. Thus we need ≥ 2n − 2 edges for [n, c = n − 1, o = 1] . This

15

completes the proof by induction. �

It can be verified that the two-way chain interaction pattern with n nodes has 2n − 2

edges and is an [n, c = n − 1, o = 1]-valid edge sequence. Thus the lower bound in this

theorem is tight.

16

CHAPTER 4

Single Cycle Interaction Pattern

In this chapter we will show that the single cycle interaction pattern achieves the tra-

ditional model of MPC security when there is a single output node and a single corrupted

node. In particular, we will prove that not only does the single cycle interaction pattern

satisfy the two conditions of the problem statement but it does so with minimal number of

edges.

Theorem 6. The single cycle forms a minimal [n, c = 1, o = 1]-valid edge sequence.

OR

For c = 1 and o = 1, the length of an [n, c = 1, o = 1]-valid edge sequence is given by

Length of [n, c = 1, o = 1]-valid edge sequence ≥ n

Proof. From Property 2.2.2.1 and Property 2.2.1.1, we know that every node must have at

least one outgoing edge. Since there are n nodes, this means that we need at least n edges

to satisfy the problem conditions.

17

A single cycle interaction pattern, that starts an ends in the single output node, has

exactly n edges and it clearly satisfies the two conditions in the problem statement. Every

node has a path/subsequence to the output node and in the subset when the output node is

corrupt, the output node has a path to itself through an honest node. In all other subsets,

where some non-output node is corrupt, since the output node is honest Condition 2 is always

satisfied since O ∩ C = φ.

Thus the lower bound mentioned in this theorem is tight. �

18

CHAPTER 5

General Interaction Pattern with Single Output Node

In this chapter we will prove a lower bound for the number of edges needed by a general

interaction pattern with a single output node to satisfy the two conditions in the problem

statement i.e. we will prove a lower bound for the length of an [n, c, o = 1]-valid edge

sequence.

Theorem 7. For o = 1, the length of an [n, c, o = 1]-valid edge sequence is given by

Length of [n, c, o = 1]-valid edge sequence ≥ n+ (c− 1)

Proof. Consider a minimal [n, c, o = 1]-valid edge sequence and let G be the corresponding

graph. We label the edges of G by their order in the given sequence, and refer to these labels

as sequence numbers. The proof depends on the following claims.

Claim 3. The minimum number of nodes ∈ G that need at least one incoming edge is given

by max{c+ 1, o}

Proof. We know that every output node needs at least one incoming edge, thus the number

of nodes that have at least one incoming edge is at least o. If c ≥ o, and if ≤ c nodes

have incoming edges, then in the subset where all these ≤ c nodes are corrupt, there will

be no honest node with an incoming edge, violating Condition 2. Thus, we need at least

max{c+ 1, o} nodes to have incoming edges.

Remark 1. Since o = 1, c+ 1 > o is always true.

Let’s assume that G has exactly c+1 nodes with incoming edges. The remaining n−c−1

nodes are hanging nodes and have at least a single outgoing edge to satisfy Condition 1.

19

Consider the subgraph G′ ⊆ G that contains just c + 1 nodes, with the hanging nodes and

their corresponding outgoing edges removed. This subgraph must meet the 2 conditions for

[n = c + 1, c, o = 1] because G meets the 2 conditions in the subset where the n − c − 1

hanging nodes are honest.

of edges for [n = c+ 1, c, o = 1] ≥ 2(c+ 1)− 2 (from Theorem 5)

=⇒ # of edges for [n, c, o = 1] ≥ 2(c+ 1)− 2 + n− c− 1

=⇒ # of edges for [n, c, o = 1] ≥ n+ c− 1

∴ Length of [n, c, o = 1]-valid edge sequence ≥ n+ (c− 1)

From Claim 3 we know that there cannot be a solution for [n, c, o = 1] that has less than

c+ 1 nodes with incoming edges.

Now let’s assume that G has more than c + 1 distinct nodes with incoming edges. Let

the number of nodes that have at least 1 incoming edge be k : k > c + 1. The remaining

n− k nodes are hanging nodes.

Claim 4. In the subgraph G′, having k nodes (s.t. k > c + 1) where the hanging nodes are

removed, there will always exist a non output node with one incoming and one outgoing edge.

Proof. The subgraph is a minimal solution for [n = k, c, o = 1] (The subgraph is a minimal

solution because if it wasn’t and a better solution existed then we can add the hanging nodes

back to this better solution and get a better solution than G which is a contradiction as G is

a minimal solution). From the two-way chain proof we know that

Length of a minimal [n = k, c, o = 1]-valid edge sequence ≤ 2k − 2 (5.1)

We also know that every node (including the output node) needs at least one outgoing edge.

If every non output node has more than 1 outgoing edges then the total number of outgoing

edges including the minimum of one outgoing edge for the output node is:

of outgoing edges for = # of edges for [n = k, c, o = 1] ≥ 2(k − 1) + 1

20

But that contradicts Equation 5.1 so there will be at least 1 non output node with a single

outgoing edge. And from Property 2.2.4.1 we know that this node will have (or can be

transformed to one with) one incoming edge.

Claim 5. In the subgraph G′, having k nodes (s.t. k > c + 1) where the hanging nodes are

removed, if the target node has different parent and child nodes, then it can be transformed

to another solution with k nodes with same number of edges but one hanging node.

Proof. Let the sequence of edges for G′ be given by p = (..., uA, eA, uB, eB, uC , ..., uO) where

uO is the output node and uB is the target node with one incoming edge from uA and one

outgoing edge to uC .

From Property 2.2.4.2 we know that there are at least c−1 distinct non-output nodes between

uB and uO.

The edge eA can be shifted to point to uC directly instead of uB while uB now becomes

a hanging node. This shift will not affect the solution, if uA is a non-output node and has

at least c − 1 distinct non-output nodes between uA and uO or if uA = uO and has at least

c distinct non-output nodes before the sequence ends in uO. This is to ensure that there is

at least one honest node till the path to uO when uA is corrupt. All the other nodes remain

unaffected by this change.

A more intricate transformation is needed in the case when either there are less than c−1

distinct non-output nodes between the non-output uA and uO or there are less than c distinct

non-output nodes between uA = uO and uO. Since there are at least c−1 distinct non-output

nodes between uB and uO, both these cases happen when there are exactly c nodes after uB

including the final output node uO and uA is one of these c nodes.

Since we have k > c + 1 nodes with incoming edges, we know that there are k − c − 1

nodes that come before uA (thus uA has some incoming edge that comes before eA). From uA

traverse backwards in the solution sequence till you reach one of the k − c − 1 nodes, let’s

call this node uX . Let eX be the outgoing edge from uX , that we just traversed to reach uX .

Shift eX and make it point to uC and shift the edge eA to point to uX . Reassign eA and all

21

the other edges between eX and eA a sequence number less than eX . Since uX was one of the

nodes that did not appear between uB and uO, now uX and uO have at least c − 1 distinct

non-output nodes between them and all other paths are still valid.

Both these transformations lead to a graph where uB is now a hanging node.

Remark 2. When the target node’s parent and child nodes are the same, i.e. uA = uC, then

the above transformation will not work. For these cases we use the transformation in Claim

6.

Claim 6. In the subgraph G′, having k nodes (s.t. k > c + 1) where the hanging nodes are

removed, if the target node has same parent and child nodes, then it can be transformed to a

solution for [k − 1, c− 1, o = 1] by removing that node along with its incoming and outgoing

edges.

Proof. This transformation follows from the algorithm seen in the two-way chain proof. Let

the sequence of edges for G′ be given p = (..., uA, eA, uB, eB, uA, ..., uO) where uO is the output

node and uB is the target node with parent node = child node = uA . From Property 2.2.4.2

we know that there are at least c − 1 distinct non-output nodes between uB and uO. Since

uB has incoming and outgoing edge from and to the same node uA, we know that there are

at least c− 2 distinct non-output nodes between uA and uO, which means that if we remove

uB with its incoming and outgoing edge the remaining graph will satisfy the two problem

conditions for [k − 1, c− 1, o = 1].

Algorithm : To count the minimum number of edges in a solution(G) for [n, c, o = 1]

that has k distinct nodes with incoming edges such that k > c + 1. We remove the the

n− k hanging nodes and pass the subgraph G′ with k nodes to the algorithm. Note in this

subgraph all nodes have at least one incoming edge.

22

Algorithm 1: To count the number of edges in the solution graph

1 Procedure countEdges(subgraph G′, k, c)

2 if k = c+ 1 then

3 // From Theorem 5

4 return 2(c+ 1)− 2 ;

5 else if c == 1 then

6 // From Theorem 6

7 return k ;

8 // From Claim 4 we know that

9 // a target node will always exist

10 else if ∃ a target node with different parent and child then

11 Use Claim 5 to transform G′ to G′′ with one hanging node ;

12 G′ ← G′′ with hanging node removed ;

13 return 1 + countEdges(G′, k − 1, c) ;

14 else

15 // happens when the target node as same parent

16 // and child nodes

17 Use Claim 6 to transform G′ to G′′ ;

18 return 2 + countEdges(G′′, k − 1, c− 1) ;

19 end

Analysis : Let y be the number of times Claim 5 was used and let z be the number of

times Claim 6 was used.

Base Case 1 : Suppose the algorithm ended with base case 1 and returned 2(c′+1)−2.

We know that the initial subgraph G′ has k nodes where k > c + 1. Since only Claim 5

reduces the gap between k and c+ 1 until they are equal we know

y = k − c− 1

23

Since Claim 5 does not change the value of c and only Claim 6 could have changed it, we

know

z = c− c′

So the total number of edges are at least

≥ n− k︸ ︷︷ ︸
initial hanging nodes

+ 2(c′ + 1)− 2︸ ︷︷ ︸
returned edges

+ y︸︷︷︸
from Claim 5

+ 2z︸︷︷︸
from Claim 6

≥ n− k + 2(c′ + 1)− 2 + k − c− 1 + 2(c− c′)

≥ n+ c− 1

Base Case 2 : Suppose the algorithm ended with base case 2 and returned k′. We

know that the initial subgraph G′ has k nodes where k > c+1. Since the first base condition

was not met, we also know that k′ > 1. Since only Claim 6 could have reduced the number

of corrupted nodes from c to 1, we know

z = c− 1

Since both the claims reduce the value of k by 1, we know

k′ = k − y − z

y = k − k′ − z

So the total number of edges are at least

≥ n− k︸ ︷︷ ︸
initial hanging nodes

+ k′︸︷︷︸
returned edges

+ y︸︷︷︸
from Claim 5

+ 2z︸︷︷︸
from Claim 6

≥ n− k + k′ + k − k′ − (c− 1) + 2(c− 1)

≥ n+ c− 1

�

24

CHAPTER 6

Generalized Interaction Pattern

In this chapter we will prove a lower bound for the number of edges needed by a general

interaction pattern to satisfy the two conditions in the problem statement i.e. we will prove

a lower bound for the length of an [n, c, o]-valid edge sequence.

Theorem 8. If n+ (c− 1) + (o− 1) < 2n, then

Length of [n, c, o]-valid edge sequence ≥ n+ (c− 1) + (o− 1)

Proof. In order to prove this we need the following two claims:

Claim 7. Given a minimal [n, c, o]-valid edge sequence of length k , where k < 2n and o < n

, one can construct an [n, c, o+ 1]-valid edge sequence of length k+ 1. This [n, c, o+ 1]-valid

edge sequence is minimal.

Proof. Let p be a minimal [n, c, o]-valid edge sequence that meets the two conditions in k

edges (s.t. k < 2n and o < n) and is given by p = (u1, e1, ..., ek, uk+1). We know that uk+1 is

an output node (because if it is a non-output node, it can be removed from the sequence along

with the edge ek without affecting the two conditions but that contradicts that our solution is

minimal).

Algorithm 1: To construct a [n, c, o+ 1]-valid edge sequence from a [n, c, o]-valid edge se-

quence :

Pick any non-output node (ui : 1 ≤ i ≤ k) from the [n, c, o]-valid edge sequence p =

(u1, e1, ..., ek, uk+1) and add an edge from the last node i.e. uk+1 to this non-output node and

make it an output node. The [n, c, o+1]-valid edge sequence is p′ = (u1, e1, ..., ek, uk+1, ek+1, ui) :

25

1 ≤ i ≤ k). which has k + 1 edges.

Correctness : Since p satisfies the two conditions, every node has a path to the output

node uk+1. Since in p′, the last edge ek+1 connects uk+1 to the new output node ui, every

node will have a path to this new output node, satisfying Condition 1. Similarly, since for

every subset (|C| ≤ c), corrupted nodes have a path till uk+1 through an honest node, they

will also have a path till ui. Thus this new edge sequence p′ is [n, c, o+ 1]-valid.

Proof of Optimality : To prove that the new solution is optimal, let’s assume that

there exists a better edge sequence for [n, c, o+ 1] in k edges. Then we can construct an edge

sequence for [n, c, o] that has < k edges which contradicts our initial assumption that p is a

minimal [n, c, o]-valid edge sequence.

Algorithm 2: To construct a [n, c, o]-valid edge sequence from a [n, c, o + 1]-valid edge

sequence :

Let the edge sequence for [n, c, o+ 1] be given by p′ = (u1, e1, ..., ek, uk+1) which has k edges.

Again we know that uk+1 is an output node. Make this a non-output node. Now we can

remove this node from the edge sequence and the corresponding edge, till we reach the second

last output node (From Claim 8 below we can see that one will never remove more than one

edge). This new edge sequence will have one less output node and will satisfy the conditions

in strictly less than k edges contradicting that p is minimal.

Claim 8. In a minimal [n, c, o]-valid edge sequence, the last o nodes will always be output

nodes.

Proof. Let the minimal [n, c, o]-valid edge sequence be given by p = (u1, e1, ..., uk, ek, uk+1).

We know that the two conditions in the problem statement must be satisfied for all the o output

nodes. Let uo be the first output node to output in the sequence p. For p to be a solution

both the conditions must be satisfied for uo. The claim is that all the nodes after uo in p are

26

output nodes. Suppose that there is a non output node in the portion of the subsequence from

uo to uk+1, this non-output node and the corresponding edge can be removed because if the

conditions are satisfied for uo, then a direct edge to the next output node is sufficient for the

next output node to meet the conditions (like we saw in Algorithm 1 of Claim 7) . But that

contradicts our assumption that our sequence of edges is minimal, thus the last o nodes in

the solution trail all always output nodes.

From Algorithm 2 of Claim 7, we know that we can get a minimal [n, c, o− 1]-valid edge

sequence from a minimal [n, c, o]-valid edge sequence by changing the last output node in

the sequence to a non output node and removing the edges till the second to last output

node is reached. From Claim 8 we know that the last o nodes in the minimal [n, c, o]-valid

edge sequence are output nodes. Thus starting with a minimal [n, c, o]-valid edge sequence

we can change the last o− 1 output nodes in the sequence to non-output nodes and remove

the last o− 1 edges to get a minimal [n, c, o = 1]-valid edge sequence. From Theorem 7, we

already know that for a [n, c, o = 1]-valid edge sequence we need ≥ n+ (c− 1) edges, thus

Length of [n, c, o]-valid edge sequence ≥ n+ (c− 1) + (o− 1)

�

27

CHAPTER 7

Double Cycle Interaction Pattern

In this chapter we will show that a minimal [n, c, o]-valid edge sequence can have at most

2n edges.

Theorem 9. For a minimal [n, c, o]-valid edge sequence

Length of a minimal [n, c, o]-valid edge sequence ≤ 2n

Proof. With 2n edges we can make a double cycle graph which will always satisfy the two

conditions. To prove that it’s sufficient to show that the double cycle graph satisfies the

two conditions for [n, c = n − 1, o = n], because if a graph satisfies the conditions for

[n, c = n− 1, o = n], then it does so ∀c ≤ n− 1 and ∀o ≤ n.

For [n, c = n − 1, o = n], we can verify that the double cycle graph satisfies the two

conditions by observing the figure above. In a double cycle graph, every output node has

a path through every other node before it outputs. And thus, it will satisfy both the

conditions. �

28

Corollary.

Length of [n, c, o]-valid edge sequence ≥ min{n+ (c− 1) + (o− 1), 2n}

Proof. From Theorem 8 and Theorem 9.

29

CHAPTER 8

Related work

This work is motivated by the work [HIJ16], that studies the impact of a general interaction

pattern on MPC. More specifically it answers the question - ”Can a function f be securely

realized by a protocol that complies with some given interaction pattern?”. This work gener-

alizes all interaction patterns, including some common ones like the star interaction pattern,

chain, etc. [HIJ16] highlights that full security cannot always be achieved in general inter-

action patterns. In this thesis, we answer a different question. We look at what conditions

a general interaction pattern must satisfy in order to ensure full security. After formalizing

the conditions, we study what is the minimum number of messages that are needed in a

general interaction pattern to satisfy those conditions.

30

References

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. “How to play any mental
game.” In Proceedings of the nineteenth annual ACM symposium on Theory of
computing, pp. 218–229. ACM, 1987.

[HIJ16] Shai Halevi, Yuval Ishai, Abhishek Jain, Eyal Kushilevitz, and Tal Rabin. “Secure
Multiparty Computation with General Interaction Patterns.” In Proceedings of
the 2016 ACM Conference on Innovations in Theoretical Computer Science, pp.
157–168. ACM, 2016.

[HLP11] Shai Halevi, Yehuda Lindell, and Benny Pinkas. “Secure computation on the web:
Computing without simultaneous interaction.” In Annual Cryptology Conference,
pp. 132–150. Springer, 2011.

[Yao82] Andrew C Yao. “Protocols for secure computations.” In Foundations of Com-
puter Science, 1982. SFCS’08. 23rd Annual Symposium on, pp. 160–164. IEEE,
1982.

31

	Introduction
	Our Results

	Problem Formulation
	Problem Statement
	Types of Nodes
	Output Node
	Properties

	Non-Output Node
	Properties

	Hanging Node
	Properties

	Target Node
	Properties

	Two-Way Chain Interaction Pattern
	Single Cycle Interaction Pattern
	General Interaction Pattern with Single Output Node
	Generalized Interaction Pattern
	Double Cycle Interaction Pattern
	Related work
	References

