UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

A hierarchical model of metacognition

Permalink

https://escholarship.org/uc/item/8fg5t98j

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 42(0)

Authors

Conway-Smith, Brendan West, Robert

Publication Date

2020

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

A hierarchical model of metacognition

Brendan Conway-Smith

Carleton University, Ottawa, Ontario, Canada

Robert West

Carleton University, Ottawa, Ontario, Canada

Abstract

I present a novel method of conceptualizing metacognition in a computational hierarchy. Metacognition is commonly described as cognition acting on itself, and correlates with enhanced performance in memory, reasoning, emotional regulation, and motor skills. Understanding metacognition requires surmounting two barriers: its high-level abstraction and disputed terminology. To overcome these barriers I employ a computational cognitive architecture to first define the base units of cognition and how they come to act on themselves. Well-defined computational units are built up into a hierarchy of cognitive processes. These forms of cognition are then connected back to clarify the research literature. Each form is built into working models within ACT-R to support this hierarchical systems viability. The intention of this hierarchical model is to help clarify the nature of metacognition by supplementing verbal cognitive definition with rigorous computational terminology.