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Abstract. Quasi-polar spaces are sets of points having the same intersection numbers with
respect to hyperplanes as classical polar spaces. Non-classical examples of quasi-quadrics
have been constructed using a technique called pivoting in a paper by De Clerck, Hamilton,
O’Keefe and Penttila. We introduce a more general notion of pivoting, called switching,
and also extend this notion to Hermitian polar spaces.

The main result of this paper studies the switching technique in detail by showing that,
for q ⩾ 4, if we modify the points of a hyperplane of a polar space to create a quasi-polar
space, the only thing that can be done is pivoting. The cases q = 2 and q = 3 play a
special role for parabolic quadrics and are investigated in detail. Furthermore, we give a
construction for quasi-polar spaces obtained from pivoting multiple times.

Finally, we focus on the case of parabolic quadrics in even characteristic and determine
under which hypotheses the existence of a nucleus (which was included in the definition
given in the De Clerck–Hamilton–O’Keefe–Penttila paper) is guaranteed.
Keywords. Projective geometry, quadrics, hyperplanes, quasi-quadrics, intersection num-
bers
Mathematics Subject Classifications. 51E20

1. Introduction

The characterisation of polar spaces by their intersection properties can be traced back to the
1950’s, with seminal work done by Segre and Tallini and their schools. In general, polar spaces
are not characterised by their intersection numbers with hyperplanes. In [DHOP00] De Clerck,
Hamilton, O’Keefe and Penttila constructed sets which were not quadrics but shared the inter-
section numbers with quadrics. We refer to [DD11] for a survey of these classical results.
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We define a quasi-polar space to be a set of points in PG(m, q), m ⩾ 2, with the same inter-
section sizes with hyperplanes as a non-degenerate classical polar space embedded in PG(m, q).

Consequently, in PG(2n + 1, q) we will distinguish between elliptic and hyperbolic quasi-
quadrics, while in PG(2n, q) the only quasi-quadrics are parabolic. Quasi-Hermitian varieties
exist in odd and even dimension. We also say that the quasi-polar space is of elliptic, hyperbolic,
parabolic or Hermitian type. Throughout this paper, all polar spaces will be assumed to be non-
symplectic.

We will call quadrics of types Q+(2n + 1, q) and Q−(2n + 1, q) of opposite type. When
talking about hyperplanes meeting in an elliptic (or hyperbolic) quadric, we say that the hyper-
plane is of elliptic (or hyperbolic) type. A hyperplane meeting a quasi-quadric in the number of
points of a singular quadric is a singular hyperplane; the singular hyperplanes of a quadric are
then precisely those meeting in a cone with vertex a point and base a quadric of the same type.
We denote a cone with vertex P and base Q as PQ.

In this paper, we introduce the notion of switching, which takes as input a quasi-polar spaceP
in PG(m, q). One fixes a hyperplane π of PG(m, q) in which a set R of points is replaced with
a set R′ forming the new set P ′ = (P \ R) ∪ R′. We say that P ′ is obtained by switch-
ing P in the hyperplane π. Pivoting is a particular type of switching, and was introduced
in [DHOP00]: we pivot a polar space P if we switch in a singular hyperplane π of P , and
replace the cone π ∩ P = PQ by PQ′ where Q′ is a quasi-polar space of the same type as Q.

Outline and main results of the paper: We refer to the statements in the paper for a pre-
cise version of the statements in this overview, since many have exceptions for small q and are
technical to state. In Section 2 we show that in all cases except for the parabolic quasi-quadric,
the number of points of a quasi-polar space easily follows from the definition. In Section 3 we
discuss switching, and we determine under which conditions a set P ′ obtained by switching a
quasi-polar space is a quasi-polar space. In Subsection 3.1 we show that switching preserves
the type of the quasi-polar space (Lemma 3.1). In Subsection 3.2 we show that switching in
non-singular hyperplanes is not possible (Lemma 3.5). In Section 4 we investigate switching
in singular hyperplanes. Our main result appears in Subsection 4.1. It states that if P is not a
parabolic quadric with q even, then switching in a singular hyperplane with vertex P is pivoting
(Theorem 4.8). In Section 5 we provide a repeated pivoting construction (Proposition 5.2). In
Section 6 we investigate parabolic quasi-quadrics when q is even. In Subsection 6.1 we study
the original definition given in [DHOP00] where a parabolic quasi-quadric is required to have
a nucleus. We study the latter’s properties in Subsection 6.2. In Subsection 6.3 we show that
we can pivot in a parabolic quadric and more generally obtain a quasi-quadric without nucleus
(Proposition 6.4). We also determine what happens if we require the quasi-parabolic quadric to
retain a nucleus (Corollary 6.6). We conclude the paper in Subsection 6.4 by providing a suffi-
cient condition for a parabolic quasi-quadric to have a nucleus (Lemma 6.8), along with a set of
seemingly weaker conditions which prove to be equivalent to those of a parabolic quasi-quadric
with nucleus (Proposition 6.11). Finally, the second case of the proof of Theorem 4.8 (which is
similar to the first case), and results forQ(2n, 2) (Proposition 7.2) andQ(2n, 3) (Proposition 7.3)
have been collected in an Appendix.
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2. Cardinality of quasi-polar spaces

We first show that in all cases except for parabolic quasi-quadrics and two exceptional low-
dimensional cases, the number of points of a quasi-polar space easily follows from the definition.
Throughout this paper, we will use the following convention to treat the elliptic and hyperbolic
quadric simultaneously: we use the ± symbol where ± reads as + when we are in the hyperbolic
case and − in the elliptic case (and vice versa for ∓). All statements and their proofs should be
read by choosing either the top or bottom row of the symbols ± and ∓ consistently (and as such
every statement containing the symbol ± proves two different statements, one for the hyperbolic
case, and one for the elliptic case.)

Lemma 2.1. (i) Let S be a set of points in PG(2n + 1, q), n ⩾ 1, such that every hyper-
plane meets in |Q(2n, q)| or |PQ±(2n− 1, q)| points, then |S| = |Q±(2n+ 1, q)| unless
n = 1 and S is the set of q + 1 points on a line in PG(3, q) (thus meeting every plane in
|Q(2, q)| = q + 1 or |PQ−(1, q)| = 1 points).

(ii) Let T be a set of points in PG(m, q2), m ⩾ 2, such that every hyperplane meets T in
|H(m− 1, q2)| or |PH(m− 2, q2)| points, then |T | = |H(m, q2)| unless m = 2 and T is
the set of q2+q+1 points of a Baer subplane (thus meeting every line in |H(1, q2)| = q+1
or |PH(0, q2)| = 1 points).

Moreover, in all of the above cases, except for n = 1 in (i) and m = 2 in (ii), the number of
hyperplanes of a fixed type is a constant.

Proof. (i) Let α be the number of hyperplanes meeting S in u = |Q(2n, q)| points and β be
the number of hyperplanes meeting S in v = |PQ±(2n−1, q)| points. Standard counting
yields that

α + β =
q2n+2 − 1

q − 1
(2.1)

αu+ βv = |S|q
2n+1 − 1

q − 1
(2.2)

αu(u− 1) + βv(v − 1) = |S|(|S| − 1)
q2n − 1

q − 1
. (2.3)

Using the first two equations to write α and β in function of |S|, we see that the third yields
a quadratic equation in |S| whose sum of roots is given by

Σ = 1 +
(q2n+1 − 1)(u+ v − 1)

q2n − 1
.

One of those roots is |S| = |Q±(2n + 1, q)|, which is an integer so the other root is an
integer if and only Σ is an integer. Now u+ v− 1 = 2 q2n−1

q−1
± qn − 1. This implies that Σ

is an integer if and only if q2n − 1 divides

(q2n+1 − 1)(2
q2n − 1

q − 1
± qn − 1),
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so if and only if q2n − 1 divides (q2n+1 − 1)(±qn − 1). This is equivalent to (q2n − 1)
divides (qn ∓ 1)(q2n+1 − 1), and hence, to the condition that qn ± 1 divides q2n+1 − 1.
We see that in the hyperbolic case, this never happens, while in the elliptic case, Σ is an
integer if and only if n = 1. In that case, q+1 is the root for S, different from |Q−(3, q)|.
Since S is a set of q + 1 points in PG(3, q) such that every plane intersects it in 1 or q + 1
points, it is easy to see (see also [BB66]) that in this case, the q + 1 points of S form a
line.

(ii) We proceed in the same way as above. Let α be the number of hyperplanes meeting
T in r = |H(m − 1, q2)| points and β be the number of hyperplanes meeting T in
s = |PH(m− 2, q2)| points.
Standard counting now yields that

α + β =
q2m+2 − 1

q2 − 1
(2.4)

αr + βs = |T |q
2m − 1

q2 − 1
(2.5)

αr(r − 1) + βs(s− 1) = |T |(|T | − 1)
q2m−2 − 1

q2 − 1
. (2.6)

Using the first two equations to write α and β in function of |T |, we see that the third
yields a quadratic equation in |T | whose sum of roots is given by

Σ = 1 +
(q2m − 1)(r + s− 1)

q2m−2 − 1
.

One of those roots is |T | = |H(m, q2)|, which is an integer so the other root is an in-
teger if and only Σ is an integer. Using ± and ∓ where the top row represents the
case that m is even and the bottom row represents the case that m is odd, we find that
r + s− 1 = qm−1±1

q2−1
(2qm ∓ (q2 + 1)). This implies that Σ is an integer if and only if

q2m−2 − 1 divides
(q2m − 1)(qm−1 ± 1)(2qm ∓ (q2 + 1))

q2 − 1

so if and only if qm−1∓1 divides q2m−1
q2−1

(2qm∓ (q2+1)). This is equivalent to (qm−1∓1)
divides

(qm − 1)(qm + 1)(q − 1)2

q2 − 1
,

and hence simplifies further to the condition that qm−1 ∓ 1 divides (qm ± 1)(q − 1), and
hence, qm−1∓ 1 divides (q− 1)2. It follows that there are no solutions if m is odd, and for
m is even, we only find a solution when m = 2. In the latter case, we find that q2 + q + 1
is the second root for |T |, different from |H(2, q2)|, and it is easy to see that in this case,
T is the set of points of a Baer subplane.

Finally, we see that the values of α, β are uniquely determined when |S|, resp. |T | is fixed.
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3. Switching quasi-polar spaces

We investigate switching in more detail. First we show that switching is type-preserving (Sub-
section 3.1), and then we show that switching is impossible in non-singular hyperplanes (Sub-
section 3.2).

3.1. Switching is type-preserving

The following lemma shows that, if q /∈ {2, 4}, switching preserves the type of a quasi-polar
space.

Lemma 3.1. Let P be a quasi-polar space. Suppose that P ′ is a quasi-polar space obtained
by switching in the hyperplane π. Then P ′ is a quasi-polar space of the same type as P , un-
less {P ,P ′} is the set of

• a parabolic quasi-quadric in PG(2, 4) and a Baer subplane PG(2, 2) in PG(2, 4), or

• an elliptic and hyperbolic quasi-quadric in PG(2n+ 1, 2).

Proof. Suppose first that P is a quasi-Hermitian variety in PG(2n + 1, q2), n ⩾ 1. Then P
meets π in either C1 = |H(2n, q2)| or C2 = |PH(2n − 1, q2)| points. Note that C2 > C1

for all q. Now suppose that P ′ is a quasi-polar space of a different type, then necessarily,
P ′ is an elliptic or hyperbolic quasi-quadric. Hence, |P ′ ∩ π| = D1 = |PQ±(2n − 1, q2)|,
or |P ′ ∩ π| = D2 = |Q(2n, q2)|. By Lemma 2.1, if P ′ is not the set of q2 + 1 points on a line,
then |P ′| = |Q±(2n+1, q2)| = (q2n+2∓1)(q2n±1)

q2−1
and |P| = |H(2n+1, q2)| = (q2n+1+1) q

2n+2−1
q2−1

.
Thus |H(2n+ 1, q2)| − |Q±(2n+ 1, q2)| = q2n(q2n+2−1)

q+1
+ q2n ∓ q2n.

Since q2n(q2n+2−1)
q+1

+ q2n ∓ q2n > C2 > C1 for all n ⩾ 1, q ⩾ 2, we see that for all i, j,

|H(2n+ 1, q2)| ≠ |Q±(2n+ 1, q2)|+ Ci −Dj.

Recall that P and P ′ coincide outside π. Since the number of points of P , not in π
is |H(2n+1, q2)|−Ci for some i, and the number of points ofP ′, not in π, is |Q±(2n+1, q2)|−Dj

for some j, we obtain a contradiction.
If n = 1 and |P ′| = q2 + 1, we find that C2 = q3 + q2 + 1, D1 = 1 and D2 = q2 + 1. As

above, we see that |H(3, q2)| − (q2 + 1) > C2, so |H(3, q2)| − (q2 + 1) ̸= Ci −Dj for all i, j, a
contradiction. By reversing the roles of P and P ′, we deduce that it is impossible for a switched
quasi-quadric in PG(2n+ 1, q) to be a quasi-Hermitian variety.

Suppose that P is a quasi-quadric embedded in PG(2n+1, q) such that P ′ is a quasi-quadric
of a different type. W.l.o.g. suppose that P is a hyperbolic quasi-quadric and P ′ is an elliptic
quasi-quadric. By Lemma 2.1, if |P ′| ̸= |Q−(2n + 1, q)|, then P ′ is the set of q + 1 points
on a line. It is impossible for P ′ to be the set of q + 1 points on a line of PG(3, q) since the
complement of a hyperplane meets Q+(3, q) in at least q2 points; whereas it has q or 0 points in
common with the q+1 points of a line. This implies that |P ′| = |Q−(2n+1, q2)| and hence, that
the hyperplane π needs to contain |Q+(2n+1, q)|−|Q−(2n+1, q)| = 2qn points ofP\(P∩P ′);
let S = P \ (P ∩ P ′), then S is a set of 2qn points contained in π.
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Consider a hyperplane µ, different from (possibly) π, meeting P in |PQ+(2n−1, q)| points.
Since this hyperplane contains |Q(2n, q)| or |PQ−(2n− 1, q)| points of P ′, it has to intersect S
in |PQ+(2n− 1, q)| − |Q(2n, q)| = qn or |PQ+(2n− 1, q)| − |PQ−(2n− 1, q)| = 2qn points,
which are contained in the codimension 2-space π ∩ µ.

Moreover, a hyperplane that has |Q(2n, q)| points of P either contains |Q(2n, q)| or
|PQ−(2n− 1, q)| points of P ′. This implies that every hyperplane of π meets S in 0, qn or 2qn
points. Standard counting yields that

α + β + γ =
q2n+1 − 1

q − 1
(3.1)

βqn + γ2qn = 2qn
q2n − 1

q − 1
(3.2)

βqn(qn − 1) + γ2qn(2qn − 1) = 2qn(2qn − 1)
q2n−1 − 1

q − 1
, (3.3)

whereα, β, γ denotes the number of hyperplanes of π meeting S in 0, qn, 2qn points respectively.
Subtracting the second from the last equation and simplifying gives that

γ =
−q3n + q2n + 2q3n−1 − q2n−1 − qn

qn(q − 1)
,

so γ < 0 if q > 2, a contradiction.
If q = 2, we find that (α, β, γ) = (2n−1, 22n+1 − 2n, 2n−1 − 1) and S is a set of 2n+1 points

in PG(2n, 2) meeting every hyperplane in 0, 2n or 2n+1 points. We will show that S is the set
of points of an (n+ 1)-dimensional affine subspace. Since γ equals the number of hyperplanes
containing an (n + 1)-dimensional space in PG(2n, 2) and since |S| = 2n+1 the intersection
of hyperplanes containing S is an (n + 1)-dimensional space Πn+1. Since α > 0, there is a
hyperplane H with 0 points of S. This hyperplane necessarily meets Πn+1 in a hyperplane µ
of Πn+1, so all points of S are contained in the affine subspace Πn+1 \ µ. Since S has 2n+1

points, S equals this affine subspace.
Consider an (n − 1)-space contained in a generator of Q+(2n + 1, 2), then we see that the

symmetric difference of the two n-spaces thus found forms an affine (n + 1)-space. It follows
that it is possible to switch Q+(2n+ 1, q) to obtain a quasi-elliptic quadric.

Finally, suppose that P is a quasi-Hermitian variety in PG(2n, q2). Let π be a hyperplane of
PG(2n, q2). Suppose that P ′ is a parabolic quasi-quadric obtained from switching P in π. First
assume that n > 1. Note that π meetsP in at most |H(2n−1, q2)| points since |H(2n−1, q2)| >
|PH(2n−2, q2)|. Since there are q4n−1

q2−1
hyperplanes of π and q4n−2−1

q2−1
hyperplanes of π through a

point of π, this implies that there exists a hyperplane µ of π with at most
k := |H(2n − 1, q2)| q4n−2−1

q4n−1
points of π. A hyperplane ρ of PG(2n, q2) through µ has at least

|PH(2n− 2, q2)| points of P , so it has at least |PH(2n− 2, q2)| − k points of P outside of π.
This implies that |ρ ∩ P ′| ⩾ |PH(2n− 2, q2)| − k.

Now ρ ∩ P ′ is either |Q+(2n − 1, q2)|, |Q−(2n − 1, q2)| or |PQ(2n − 2, q2)|, and hence,
ρ ∩ P ′ has at most |Q+(2n − 1, q2)| points. Since |PH(2n − 2, q2)| − k > |Q+(2n − 1, q2)|
for n > 1 and q ⩾ 2, we obtain a contradiction.
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Now let n = 1. From Lemma 2.1, we know that a quasi-Hermitian variety in PG(2, q2) has
either q3 + 1 points or is a Baer subplane PG(2, q2).

First assume that P has q3 + 1 points. Then there are at least q3 − q points of P outside π.
Let R be a point of π, not in P , then R lies on q2 lines, different from π. Since each of these
lines has either 1 or q + 1 points of P , R lies on at least one line with q + 1 points of P . Since
these q + 1 points belong to P ′, and q + 1 > 2, we find a contradiction.

Now assume that P is a Baer subplane. Since P ′ is a parabolic quasi-quadric, every line
meets P ′ in 0, 1 or 2 points. Any line, different from π meeting P in q + 1 points has at least
q points of P ′, a contradiction if q > 2. If (n, q) = (1, 2), then a Baer subplane B = PG(2, 2)
in PG(2, 4) is a quasi-Hermitian variety. Let L be a line meeting B in 3 points. If we switch P
in L by removing the 3 points of B ∩L, we find a set P ′ of 4 points such that every line meets it
in 0 = |Q−(1, 4)|, 1 = |PQ(0, 4)| or 2 = |Q+(1, 4)| points, which means that P ′ is a parabolic
quasi-quadric. By reversing the roles of P and P ′, we deduce that it is impossible for a switched
quasi-quadric in PG(2n, q) where (n, q) ̸= (1, 2) to be a quasi-Hermitian variety.

Corollary 3.2. Let P be an elliptic or hyperbolic quasi-quadric in PG(2n + 1, q), q ̸= 2, or a
quasi-Hermitian variety in PG(m, q), and let P ′ be the quasi-polar space obtained by switch-
ing P with respect to a hyperplane π. Then |P| = |P ′|.

Proof. Let P be as in the statement, then we have shown in Lemma 3.1 that the type of P does
not change when switching. If P is an elliptic or hyperbolic quasi-quadric or a quasi-Hermitian
variety, then by Lemma 2.1 the number of points in P is determined by its type, so |P| = |P ′|,
unless P is an elliptic quasi-quadric in PG(3, q) or P is a quasi-Hermitian variety in PG(2, q),
q square. If P is an elliptic quasi-quadric in PG(3, q) of size q2 + 1 and P ′ is an elliptic quasi-
quadric of size q+1, then the complement of π contains at least q2− q points of P , whereas the
complement of π contains at most q points of P ′. Since P and P ′ coincide outside π, and q > 2
this is a contradiction. Similarly, if P is a quasi-Hermitian variety in PG(2, q) of size q

√
q + 1

and P ′ is a Baer subplane, then the complement of π contains at least q√q − √
q points of P

and at most q + √
q points of P ′, a contradiction if q ̸= 4. If q = 4, we see that the 6 points

obtained by removing 3 points of a secant line to a unital cannot be the set of 6 points obtained
by removing one point of a Baer subplane; for the latter set there is a unique point lying on three
2-secants, whereas the former set has at most two 2-secants through each point.

3.2. Switching in non-singular hyperplanes is impossible

We start with an easy lemma which we will use frequently.

Lemma 3.3. Let P and P ′ be two point sets in PG(m, q), such that for every hyperplane π
of PG(m, q) one has |π ∩ P| = |π ∩ P ′|. Then P = P ′.

Proof. Counting pairs (x,H), where x ∈ P and where H is a hyperplane containing x, in two
ways yields that |P| qm−1

q−1
=

∑
H∈PG(m,q) |H ∩ P|. Similarly, we have that

|P ′| qm−1
q−1

=
∑

H∈PG(m,q) |H∩P ′|. Since |H∩P| = |H∩P ′| for all H , it follows that |P| = |P ′|.
Let Q be a point in PG(m, q) and let IP(Q) be the indicator function with respect to P .

Considering triples (Q,R,H) where the point R ̸= Q is contained in P and the hyperplane H



8 Jeroen Schillewaert , Geertrui Van de Voorde

contains both Q and R we obtain

(|P| − IP(Q))
qm−1 − 1

q − 1
=

∑
H∋Q

(|H ∩ P| − IP(Q)).

A similar equation holds for P ′, with indicator function IP ′ . Since |P| = |P ′| and since
|H ∩ P| = |H ∩ P ′| for all hyperplanes H this implies that IP(Q) = IP ′(Q). Hence, for
all points Q, we have that Q ∈ P if and only if Q ∈ P ′, so P = P ′.

In most of what follows, we will consider quasi-polar spaces in PG(m, q), m ⩾ 3. The
following proposition shows that this condition is not a restriction since switching for quasi-
polar spaces contained in PG(2, q) is essentially trivial. We use standard terminology to call
a parabolic quasi-quadric of size |Q(2, q)| = q + 1 an oval, and a quasi-Hermitian variety
in PG(2, q) a unital.

Proposition 3.4. Let L be a line in PG(2, q).

1. Let P be a unital in PG(2, q) and let P ′ be a unital obtained by switching P in L. If q > 4
is a square, then P = P ′.

2. Let P be an oval in PG(2, q), and let P ′ be an oval obtained by switching P in the line L.

• If q > 3 is odd, then P = P ′.
• If q is even, then either P = P ′ or L is a tangent to P , say at the point P , and P ′

consists of the points of P \ {P} ∪ {N} where N is the nucleus of P .

Proof. Let P be a unital. Recall that |P| = |P ′| by Corollary 3.2, and that P and P ′ coincide
outside L, so |P ∩ L| = |P ′ ∩ L|. Let Q be a point of L, not in P , then Q lies on at least one
tangent line and at least one secant line to P , different from L. It follows that Q /∈ P ′ for all
points on π not in P . But since |P ∩ L| = |P ′ ∩ L|, this implies that the points of L ∩ P need
to be contained in L ∩ P ′. Hence, P = P ′.

Let P be an oval in PG(2, q), q odd. Since we assume that P ′ is an oval, we have that
|P ∩ L| = |P ′ ∩ L|. If Q is a point of π, not in P , then, since q > 3 is odd, Q lies on at least
one 2-secant and at least one passant to Q, different from π. It follows that Q /∈ P ′, and hence,
as above, that P = P ′.

Finally, let P be an oval in PG(2, q), q even and let N be its nucleus. Since we assume that P ′

is an oval, we have that |P ∩ L| = |P ′ ∩ L|, so if P ≠ P ′, necessarily L is a secant or tangent
line. Every point Q of L not in P , different from the nucleus N , lies on at least one passant and
2-secant. It therefore follows that Q /∈ P ′. Hence, we see that P ′ is different from P only if L is
a tangent line to P , say at the point P , and P ′ is obtained by removing the point P and adding
the point N .

Lemma 3.5. Let P be a quadric or a Hermitian variety in PG(m, q), m ⩾ 3 with q ̸= 2 for
elliptic and hyperbolic quadrics and q ⩾ 4 for parabolic quadrics. Let P ′ ̸= P be a quasi-
quadric or quasi-Hermitian variety obtained from switching P in the hyperplane π, then π is a
singular hyperplane.

Proof. The proof is split in three cases.
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Case 1: P = Q±(2n + 1, q). We know that every hyperplane meets P in |Q(2n, q)| or
|PQ±(2n − 1, q)| points. Suppose that π is a non-singular hyperplane (i.e., meeting P in a
Q(2n, q)), and thatP ′ is a quasi-quadric obtained by switching in π. We will deduce thatP = P ′

by showing that the conditions of Lemma 3.3 are met.
From Corollary 3.2, we know that P ′ has size |P|, which implies that |π∩P ′| = |Q(2n, q)|.

Let µ be a hyperplane in π, then µ meets Q(2n, q) in either an elliptic quadric, a cone
PQ(2n− 2, q) or a hyperbolic quadric.

If µ is a hyperplane of π meeting P in a Q∓(2n − 1, q), then µ lies only on non-singular
hyperplanes, since aPQ±(2n−1, q) does not have hyperplanes meeting in aQ∓(2n−1, q). That
means that µ has either |Q∓(2n− 1, q)| or |Q∓(2n− 1, q)|+ ||PQ±(2n− 1, q)| − |Q(2n, q)|| =
|Q∓(2n− 1, q)|+ qn points of P ′ in π.

If µ is a hyperplane of π meeting P in a Q±(2n − 1, q), then µ lies on exacty two singular
and q − 1 non-singular hyperplanes, one of which is π. Hence, if q > 2, there is at least one
hyperplane through µ, different from π with ||Q(2n, q)| − |Q±(2n− 1, q)|| points of P outside
of µ and there are two hyperplanes through µ with |PQ±(2n− 1, q)| − |Q±(2n− 1, q)| points
outside of µ. This means that µ has to meet P ′ in exactly |Q±(2n− 1, q)| points.

If µ is a hyperplane of π meeting P in a PQ(2n− 2, q), then µ lies on a unique hyperplane
meeting P in a PQ±(2n− 1, q) and q hyperplanes meeting P in a Q(2n, q), one of which is π.
It follows that µ needs to contain exactly |PQ(2n− 2, q)| points of P ′.

So we find that T = P ′ ∩ π is a set of |Q(2n, q)| points in PG(2n, q) such that every hyper-
plane meets in T in |Q±(2n− 1, q)|, |PQ(2n− 2, q)|, |Q∓(2n− 1, q)| points. But furthermore,
the set of hyperplanes meeting in |PQ(2n− 2, q)| or |Q±(2n− 1, q)| points is the same as the
set of hyperplanes meeting a fixed Q = Q(2n, q). In Lemma 2.1, we have shown that the num-
ber of hyperplanes of each type meeting a quasi-quadric is a constant. Since the hyperplanes
meeting P ∩ π in |PQ(2n− 2, q)| or |Q±(2n− 1, q)| points respectively are meeting P ′ ∩ π in
|PQ(2n − 2, q)| or |Q±(2n − 1, q)| points respectively, it follows that all hyperplanes meeting
P ∩ π in |Q∓(2n− 1, q)| points also meet P ′ ∩ π in |Q∓(2n− 1, q)| points. By Lemma 3.3 we
obtain that P ∩ π = P ′ ∩ π, and hence, since P and P ′ coincide outside π, that P = P ′.

Case 2: P = Q(2n, q), n ⩾ 2. We know that every hyperplane meets P in either
|Q−(2n − 1, q)|, |PQ(2n − 2, q)| or |Q+(2n − 1, q)| points. Suppose that π is a non-singular
hyperplane (i.e., meeting P in a Q±(2n − 1, q)), and that P ′ is a quasi-quadric obtained by
switching in π. We will show that P = P ′.

If µ is a hyperplane of π meeting Q±(2n − 1, q) in |PQ±(2n − 3, q)| points, then µ is
contained in exactly 1 singular hyperplane and q non-singular hyperplanes. So the hyperplanes
through µ have either |PQ(2n−2, q)|−|PQ±(2n−3, q)| or |Q±(2n−1, q)|−|PQ±(2n−3, q)|
points of P outside π. This implies that µ ∩ P ′ has either |Q(2n − 2, q)| or |PQ±(2n − 3, q)|
points.

If µ is a hyperplane of π meeting Q±(2n − 1, q) in |Q(2n − 2, q)| points, then µ lies on at
most 2 singular hyperplanes, and on at least (q − 1)/2 hyperplanes of elliptic and hyperbolic
type. Hence, if q ⩾ 4, there is at least one elliptic and one hyperbolic hyperplane through µ,
different from π. It follows that |µ ∩ P ′| = |Q(2n− 2, q)|.

Hence, we find that P ′ ∩ π is a set T of points in PG(2n− 1, q) such that every hyperplane



10 Jeroen Schillewaert , Geertrui Van de Voorde

meets T in either |Q(2n − 2, q)| or |PQ±(2n − 3, q)| points. Thus P ′ ∩ π is a quasi-quadric
in PG(2n − 1, q), and has, since q > 2 by Lemma 2.1, |Q±(2n − 1, q)| points. Moreover, we
see that hyperplanes meeting P ∩ π in |Q(2n − 2, q)| points meet T in |Q(2n − 2, q)| points.
There are only two types of hyperplanes, and the number of each of them is determined (see
Lemma 2.1). It follows that hyperplanes of π meeting P in |PQ±(2n− 3, q)| points meet P ′ in
|PQ±(2n−3, q)| points. By Lemma 3.3, the point sets P ∩π and P ′∩π coincide. This implies
that P = P ′.

Case 3: P = H(m, q2). Let P = H be a Hermitian variety H(m, q2). We know that every
hyperplane meets H in either |H(m − 1, q2)| or |PH(m − 2, q2)| points. Suppose that π is a
non-singular hyperplane (i.e., meeting H in a H(m − 1, q2)) and that H′ is a quasi-Hermitian
variety obtained by switching in π. We will show that H = H′. By Corollary 3.2 we know
that |H| = |H′|.

If µ is a hyperplane of π, then µ lies on both singular and non-singular hyperplanes, different
from π. This implies that µ meets H in the same number of points as H′. Using Lemma 3.3 we
find that H ∩ π and H′ ∩ π coincide. Hence, H = H′.

Remark 3.6. In [DHOP00, Theorems 13-16], it is shown that for Q−(2n + 1, 2) and
Q+(2n + 1, 2), it is possible to switch in a non-singular hyperplane and obtain a quasi-quadric
which is not a quadric when n ⩾ 2 (Every hyperbolic or elliptic quasi-quadric in PG(3, 2) is a
quadric.). Hence, the condition q ̸= 2 in the above theorem is necessary.

In the Appendix, we will show that there exists a quasi-quadric, which is not a quadric,
obtained by switching in non-singular hyperplane of the parabolic quadrics Q(2n, 2), n ⩾ 2
(Proposition 7.2) and Q(2n, 3), n ⩾ 2 (Proposition 7.3). We will discuss pivoting for ovals
in PG(2, 3) there too (Proposition 7.1).

4. Switching singular hyperplanes

4.1. Switching is pivoting

A proof of the following result from the theory of polar spaces can be extracted from [HT16,
Sections 22.3 and 22.4]. It will be used to prove that certain intersection sizes with hyperplanes
need to be preserved after switching, which severely restricts the possibilities.

Lemma 4.1. Let P be a non-singular, non-symplectic polar space in PG(m, q) and let π be a
singular hyperplane meeting P in the cone PC. The following holds:

• If ν is a hyperplane of π through P , then the q hyperplanes through ν, different from π,
are all of the same type as ν ∩ C.

• If ν is a hyperplane of π, not through P , then

– If P is a quadric but not Q(2n, q), q even, then there are 2 singular and q − 1 non-
singular hyperplanes through ν. Furthermore, if P is a parabolic quadric and q is
odd, then (q − 1)/2 of the non-singular hyperplanes are elliptic, and (q − 1)/2 of
the non-singular hyperplanes are hyperbolic.
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– If P = Q(2n, q), q even, and ν does not contain the nucleus N , then there are q/2
elliptic and q/2 hyperbolic hyperplanes through ν.

– IfP is a quasi-Hermitian variety, then there are√q singular and q−√
q non-singular

hyperplanes through ν, different from π.

In what follows, we use the terminology truncated line through a point P to denote the set
of points on that line, except the point P . Similarly, a truncated cone with vertex a point P and
base a point set C consists of the point set of the cone PC where the point P is removed. The
following lemma is the crucial technical result needed to prove that switching is pivoting.

Lemma 4.2. Let K be a set of points in PG(m, q) and let P1 and P2 be two points of PG(m, q),
not in K, such that all hyperplanes of PG(m, q) containing neither P1 nor P2 contain a fixed
number s of points of K. Then every plane through P1P2 meets K \ P1P2 in a set of (truncated)
lines through Pi, where depending on the plane i is either 1 or 2. Moreover the set K ∩ P1P2

contains all or none of the points of P1P2 different from P1 and P2.

Proof. Consider an (m− 2)-dimensional space µ meeting the line P1P2 in a point Q, different
from P1 and P2. Let π = ⟨µ, P1⟩, then P1P2 ∈ π. Denote |K ∩ µ| by xµ. The q hyperplanes
through µ, different from ⟨µ, P1⟩, then each contain s− xµ points not in µ. It follows that

|K| = |K ∩ π|+ q(s− xµ).

It follows that xµ is uniquely determined by |K ∩ π|. In other words, all hyperplanes, not
through P1 nor P2 in the (m − 1)-space π contain a fixed number of points. Repeating this
argument inductively, we find that for every plane ξ through P1P2, each line of ξ not through P1

nor P2 meets K in a fixed number, say y points. Note that y as well as other quantities below
depend on ξ but we omit this in our notation.

Consider the points in ξ ∩ K, not contained in the line P1P2. We first show that either all
points of P1P2, different from P1 and P2 belong to K, or none of those belong to K. Counting
incident pairs (P,L), where P is a point of K and L is a line not through P1 or P2, yields:

(q2 − q)y = |K ∩ P1P2|q + |K \ (K ∩ P1P2)|(q − 1).

Since the left hand side is a multiple of q− 1, it follows that K∩P1P2 is a multiple of q− 1. So
K ∩ P1P2 = 0 or q − 1 as claimed.

This implies that every line, not through P1 nor P2 has a fixed number, say x, of points of
the set K′ := (ξ ∩ K) \ (K ∩ P1P2) (note that x = y or x = y − 1).

Let Q be a point of P1P2, different from P1 and P2. Since every line in ξ through Q contains
x points of K′, we have that |K′| = qx.

If K′ does not consist of the points of a set of lines through P1 with P1 removed, then we find
a point R of K′ and a point S /∈ K′, not on P1P2, on RP1.

Counting points of K′ on lines through R yields

(q − 1)(x− 1) + |P1R ∩ K′|+ |P2R ∩ K′| − 1 = qx,
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and similarly for S, we find

(q − 1)x+ |P1S ∩ K′|+ |P2S ∩ K′| = qx.

It follows that |P1R ∩ K′| + |P2R ∩ K′| = q + x and |P1S ∩ K′| + |P2S ∩ K′| = x. Since
P1R = P1S, it follows that

|P2R ∩ K′| − |P2S ∩ K′| = q.

Now recall thatP2 /∈ K′ so |P2R∩K′| ⩽ q. It follows that |P2R∩K′| = q and |P2S∩K′| = 0.
We see that for every point R′ in K on P1R, the points of R′P2 \ {P2} belong to K′, and for

every point S ′ /∈ K′, there are no points of K′ on the line S ′P2. It follows that K′ consists of the
point set of a set of lines through P2, with P2 removed. Since K ∩ ξ consists of the set K′ with
all or none of the points of P1P2 different from P1 and P2 added, the lemma is proved.

Corollary 4.3. Let K be a set of points in PG(m, q) and let P be a point of PG(m, q) such
that all hyperplanes of PG(m, q) not containing P contain a fixed number s of points of K.
Then K ∪ {P} consists of the qs+ 1 points of a cone with vertex P and base a set of s points.

Proof. If Q is an arbitary point of PG(m, q), then applying Lemma 4.2 to P1 = P and P2 = Q
shows that K is a union of lines through P and Q (without P,Q). Since this holds for every
choice of Q, we find that K consist of lines through P only.

Recall that there are two different intersection sizes for hyperplanes with quasi-polar spaces
of elliptic, hyperbolic or Hermitian type. In what follows, we will use the following convention
for these sizes in PG(m, q): we let Am−1 and Bm−1 denote the sizes of their intersection with
hyperplanes, where we assume that Am−1 < Bm−1. More precisely, if the quasi-polar space P
in PG(m, q) is

• elliptic, then Am−1 = |PQ−(m− 2, q)| and Bm−1 = |Q(m− 1, q)|,

• hyperbolic, then Am−1 = |Q(m− 1, q)| and Bm−1 = |PQ+(m− 2, q)|,

• quasi-Hermitian with m even, then Am−1 = |PH(m− 2, q)| and Bm−1 = |H(m− 1, q)|,

• quasi-Hermitian with m odd, then Am−1 = |H(m− 1, q)| and Bm−1 = |PH(m− 2, q)|.

It can be checked that in all cases Bm−1 − Am−1 = q(Bm−3 − Am−3).

Proposition 4.4. Let P be a polar space of elliptic, hyperbolic or Hermitian type in PG(m, q),
q arbitary, or of parabolic type in PG(m, q), q odd, m ⩾ 3. Suppose that P ′ is a quasi-polar
space with |P| = |P ′|, obtained by switching in a singular hyperplane π of P with vertex P .
Then P ′ is the point set of a cone with vertex P over a quasi-polar space of the same type as P .

Proof. Let µ be a hyperplane of π, not through P . Then µmeets the coneP∩π in a non-singular
polar space of the same type as P . If P is of elliptic, hyperbolic or Hermitian type, then there
are two types of hyperplanes. By Lemma 4.1, µ lies on hyperplanes, different from π, of both
types. Since P and P ′ coincide outside π, and P and P ′ need to have the same intersection
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sizes with hyperplanes, it follows that |µ∩P ′| = |µ∩P|. Since this holds for all hyperplanes µ
not through π, and |µ ∩ P| is independent of the choice of µ, we find by Corollary 4.3 that P ′

is indeed the point set of a cone with vertex P . Note that P needs to be included in P ′ since
|P ∩ π| = |P ′ ∩ π| = 1 (mod q) and the set of points of a cone, without the vertex P has
size 0 (mod q).

Suppose first that P is of elliptic, hyperbolic of Hermitian type. Since we already know that
P ′ is the point set of a cone with vertex P , in order to prove the proposition, we only need to
show that for all hyperplanes ν of π through P , |µ ∩ P ′| ∈ {qAm−3 + 1, qBm−3 + 1}.

Consider a hyperplane H of PG(m, q), different from π, through ν and suppose
that |ν ∩ P| = qAm−3 + 1. By Lemma 4.1, |H ∩ P| = Am−1 and it follows that
|H∩P ′| = |(H \π)∩P ′|+ |µ∩P ′| = |(H \π)∩P|+ |µ∩P ′| = Am−1−(qAm−3+1)+ |µ∩P ′|.
Since |H ∩ P ′| ∈ {Am−1, Bm−1}, it follows that either |µ ∩ P ′| = qAm−3 + 1 or
|µ ∩ P ′| = Bm−1 − Am−1 + qAm−3 + 1 = qBm−3 + 1. If |H∩P| = Bm−1, we obtain the same
conclusion, using again that Bm−1 − Am−1 = q(Bm−3 − Am−3).

Now assume that P is a non-singular quadric Q(2n, q), q odd. Let ν be a hyperplane of π
through P and let 2n = m, Am−1 = |Q−(m − 1, q)|, Bm−1 = |PQ(m − 2, q)|,
Cm−1 = |Q+(2n − 1, q). Since we already know that P ′ is the point set of a cone with ver-
tex P , and |P| = |P ′|, in order to prove the proposition, we only need to show that for all
hyperplanes ν of π through P , |µ ∩ P ′| ∈ {qAm−3 + 1, qBm−3 + 1, qCm−3 + 1}.

Consider a hyperplane H of PG(m, q), different from π, through ν and suppose that
|ν ∩ P| = qAm−3 + 1. By Lemma 4.1, |H ∩ P| = Am−1 and it follows that
|H∩P ′| = |(H \π)∩P ′|+ |µ∩P ′| = |(H \π)∩P|+ |µ∩P ′| = Am−1−(qAm−3+1)+ |µ∩P ′|.
Since |H ∩ P ′| ∈ {Am−1, Bm−1, Cm−1}, it follows that either |µ ∩ P ′| = qAm−3 + 1 or
|µ ∩ P ′| = Bm−1 − Am−1 + qAm−3 + 1 = qBm−3 + 1, or |µ ∩ P ′| = Cm−1 − Am−1 +
qAm−3 + 1 = qCm−3 + 1. Similarly, if |ν ∩ P| = qBm−3 + 1, then |µ ∩ P ′| = qBm−3 + 1 or
|µ∩P ′| = Am−1−Bm−1+qBm−3+1 = qAm−3+1, or |µ∩P ′| = Cm−1−Bm−1+qBm−3+1 =
qCm−3 +1. Finally, if |ν ∩P| = qBm−3 +1, then |µ∩P ′| = qBm−3 +1 or |µ∩P ′| = Am−1 −
Bm−1+ qBm−3+1 = qAm−3+1, or |µ∩P ′| = Cm−1−Bm−1+ qBm−3+1 = qCm−3+1.

Proposition 4.4 does not treat the case Q(2n, q), q even. For parabolic quadrics in even
characteristic, it is no longer true that pivoting in a singular hyperplane π can only be done by
replacing P ∩ π with a cone over a quasi-quadric. For Q(4, q), we will be able to describe
exactly what other possibilities we have for P ′ ∩ π (see Proposition 4.6) whereas for Q(2n, q),
n > 2, q even, we find a strong restriction on the set P ′∩π but no full classification. We provide
an example of switching in a singular hyperplane which is not pivoting in Q(2n, q), q even, in
Example 4.7.

Proposition 4.5. Let P = Q(2n, q), q even, n ⩾ 2, and suppose that P ′ is a parabolic quasi-
quadric with |Q(2n, q)| points, obtained by switching in a singular hyperplane π of P with
vertex P . Then P ′∩π is the point set of q2n−2−1

q−1
truncated lines through P or N , to which either

all points of the line PN or exactly one of the points P and N is added. The only points lying
on more than one line are possibly P and N . Furthermore, every hyperplane through P or N
meets P ′ in |PQ−(2n− 3, q)|, |Q(2n− 2, q)|, or |PQ+(2n− 3, q)| points.
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Conversely, the point set of any set of q2n−2−1
q−1

truncated lines through P or N , to which
either all points of the line PN or exactly one of the points P and N is added, which satisfies
the property that every hyperplane through P orN meetsP ′ in |PQ−(2n−3, q)|, |Q(2n−2, q)|,
or |PQ+(2n− 3, q)| points, gives rise to a parabolic quasi-quadric.

Proof. Let µ be a hyperplane of π, not through P or N . Then µ meets the cone P ∩ π in a
Q(2n− 2, q), and by Lemma 4.1, µ lies on at least one hyperbolic and one elliptic hyperplane.
This implies that |µ∩P ′| = |µ∩P| = |Q(2n− 2, q)|. It follows from Lemma 4.2 that P ′ is the
set L of (truncated) lines through P and N . Since |P ′| = 1 mod q, we have that if PN is not
a line of this set, exactly one of P and N are in P ′, and there are exactly q2n−2−1

q−1
lines in L.

Now consider a hyperplane ν of π through N . All hyperplanes through ν are
singular, and hence, a hyperplane different from π through ν has precisely
|PQ(2n− 2, q)| − |Q(2n− 2, q)| = q2n−2 points of P , not in π. It follows that ν ∩ P ′ has
|PQ−(2n− 3, q)|, |Q(2n− 2, q)|, or |PQ+(2n− 3, q)| points.

A hyperplane ξ of π throughP contains |PQ−(2n−3, q)|, |Q(2n−2, q)|, or |PQ+(2n−3, q)|
points of P , and by Lemma 4.1, it follows that, in all these cases, every hyperplane, different
from π through ξ has the same number, namely q2n−2, of points of P not in π. It again follows
that ν ∩ P ′ has |PQ−(2n− 3, q)|, |Q(2n− 2, q)|, or |PQ+(2n− 3, q)| points.

It is clear from the above reasoning that any set S of |PQ(2n − 2, q)| points such that all
hyperplanes not throughP orN contain |Q(2n−2, q)| points ofS and all hyperplanes throughP
or N contain |PQ−(2n − 3, q)|, |Q(2n − 2, q)|, or |PQ+(2n − 3, q)| points of S satisfy the
property that every hyperplane meets the set P\(P∩π)∪S in |Q−(2n−1, q)|, |PQ(2n−2, q)|,
or |Q+(2n− 1, q)| points, and hence, gives rise to a parabolic quasi-quadric.

Corollary 4.6. Let P = Q(4, q), q even, and suppose that P ′ is a parabolic quasi-quadric
with |Q(4, q)| points, obtained by switching in a singular hyperplane π of P with vertex P .
Then P ′ ∩ π is one of the following:

• a cone with vertex P and base an oval;

• a cone with vertex N and base an oval;

• the union of a truncated cone with vertexP and base a q-arc together with one line through
N disjoint from the truncated cone, and different from PN ;

• the union of a truncated cone with vertexN and base a q-arc together with one line through
P disjoint from the truncated cone, and different from PN ,

and for all of the above possibilities, P ′ is indeed a parabolic quasi-quadric.

Proof. By Proposition 4.5, we have that P ′ consists of the point set of q + 1 truncated lines L,
to which either the points of the line PN , or exactly one of the points P and N are added.

Note that the roles ofP andN are the same, so assume without loss of generality thatP ∈ P ′.
If all lines ofL go throughP then we get a cone with vertexP . Let µ be a plane not throughP

or N , then µ meets the lines of L in a set S of q + 1 points. Since every plane through P has at
most 2q + 1 points of P ′, we have that every line of µ has at most 2 points of S; so S is an oval.
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If there is exactly one line, say L, through P , different from PN , contained in L, then L is
union of L with a cone with vertex N . Since every plane through N contains at most 2q + 1
points, the set C meets every line of µ in at most 2 points, and hence, C is a q-arc.

Assume thus there are two lines, L1, L2 through P contained in L but not all q+1 lines of L
go through P . Then there is a line L3 through N , different from PN , such that L3 \ {N} is
contained in P ′. But this implies that the plane ⟨L1, L2⟩ contains at least 2q+1+1 points of P ′,
namely those on L1, L2 together with N ∩ ⟨L1, L2⟩, a contradiction. By reversing the roles of P
and N , we see that P ′ is one of the four possibilities of the statement.

Finally, it is easy to see that all the above sets have the property that every plane not throughP
or N meets this set in q+1 points, while the planes through P and N meet in 1, q+1 or 2q+1
points. We will show that for all solids H , |H ∩ P ′| ∈ {q2 + 1, q2 + q + 1, q2 + 2q + 1}.

It is clear that all solids H not through P or N have |H ∩ π ∩ P| = |H ∩ π ∩ P ′| which
implies |H ∩ P| = |H ∩ P ′|. By Lemma 4.1, we see that all solids, different from π, though P
have q2 points of P , not in π. Likewise, all solids different from π through N have q2 points
of P outside π: all those solids are singular, and hence, meet P in q2 + q + 1 points, and all
planes through N in π have q + 1 points of P . Since |P ′ ∩ π| ∈ {1, q + 1, 2q + 1} we find that
all solids through P or N meet P ′ in q2 +1, q2 + q+1 or q2 +2q+1 points as desired. Finally,
we see that if H = π, then |H ∩ P ′| = q2 + q + 1.

Example 4.7. Consider a hyperplane π intersecting P = Q(2n, q), q even, n ⩾ 2, in a cone
PQ(2n− 2, q), where we take the base to be contained in a hyperplane µ of π, not through P .
Let νP be an (n− 2)-space contained in the base Q(2n− 2, q), and let νN be an (n− 2)-space
of µ, disjoint from Q(2n − 2, q) \ νP . Note that νN always exists since νP is contained in a
unique (n − 1)-space which intersects Q(2n − 2, q) exactly in νP . To see this, consider the
quotient with a hyperplane πH of νP : there is a unique tangent line through the point νP/πH to
the conic Q(2n− 2, q)/πH .

Let S be the set (PQ(2n − 2, q) \ PνP ) ∪ PνN . Then it is easy to check that this set S
satisfies the conditions of Proposition 4.5: any hyperplane of π not through P and N clearly
has |Q(2n − 2, q)| points of S. Any hyperplane of π containing both PνP and NνN has the
same intersection size with S as with PQ(2n− 2, q), and hence, meets S in |PQ−(2n− 3, q)|,
|Q(2n − 2, q)|, or |PQ+(2n − 3, q)| points. If a hyperplane Σ contains PνP but not NνN ,
it meets NνN in an (n − 2)-space. Since Σ contains PνP , it meets P in |Q(2n − 2, q)| or
|PQ+(2n−3, q)| points, so it meets inS in |Q(2n−2, q)|−|PνP |+ qn−1−1

q−1
= |PQ−(2n−3, q)| or

|PQ+(2n−3, q)|−|PνP |+ qn−1−1
q−1

= |Q(2n−2, q)| points. Similarly, ifΣ does not containPνP

but does contain NνN , it meets S in |PQ−(2n− 3, q)| − qn−1−1
q−1

+ |NνN | = |Q(2n− 2, q)| or
|Q(2n− 2, q)| − qn−1−1

q−1
+ |NνN | = |PQ+(2n− 3, q)| points.

Parabolic quasi-quadrics in even characteristic will be looked at in more detail in Section 6.

4.2. Switching quasi-quadrics

Theorem 4.8. Let P be a quasi-polar space of elliptic, hyperbolic or Hermitian type
in PG(m, q), m ⩾ 3, where q is square in the case P is Hermitian, or P is a parabolic quasi-
quadric in PG(2n, q), n ⩾ 2, of size |Q(2n, q)|. Suppose that P contains a hyperplane π such
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that π ∩ P is a cone with vertex a point P and base a quasi-polar space P̃ of the same type as
P in a hyperplane µ not through P of π. Let P̃ ′ be a quasi-polar space of the type of P in µ,
then the set P ′ = (P \ P P̃) ∪ P P̃ ′ is a quasi-polar space of the type of P .

Proof. The proof is split in two cases.

Case 1: Let H be a hyperplane of PG(m, q). We need to show that

H ∩ P ′ ∈ {Am−1, Bm−1}.

Note that P ∩ (H \ π) = P ′ ∩ (H \ π).
If H does not contain P , then H ∩ π has Am−2 points of both P and P ′, so

|H ∩ P ′| = |H ∩ P| ∈ {Am−1, Bm−1}. So suppose that H contains P , then, since ev-
ery hyperplane of µ meets the base P̃ in either Am−3 or Bm−3 points, H ∩ π meets in P in
qAm−3 +1 or qBm−3 +1 points. Likewise, H ∩ π meets P ′ in qAm−3 +1 or qBm−3 +1 points.
If |H∩π∩P| = qAm−3+1, then |H∩P | = Am−1 by Lemma 4.1. We find that |H∩P ′| is either
Am−1 orAm−1−(qAm−3+1)+(qBm−3+1). Since qBm−3−qAm−3 = Bm−1−Am−1, we indeed
have that |H ∩ P ′| ∈ {Am−1, Bm−1}. Similarly, if |H ∩ π ∩ P| = qBm−3 + 1, by Lemma 4.1,
|H∩P| = Bm−1, and it follows that |H∩P ′| is eitherBm−1 orBm−1−qBm−3+qAm−3 = Am−1.

Case 2: P is a parabolic quasi-quadric in PG(2n, q) of size |Q(2n, q)|. The proof is included
at the end of the Appendix and is similar to that of Case 2, this time with three intersection
numbers.

5. Repeated pivoting

In [DD11, page 19], the authors write that “one can repeat pivoting as much as one wants,
implying that the family of quasi-quadrics is quite wild”. But since they define pivoting as
cone replacement, it is not clear that one can repeat this procedure as much as one wants: after
each pivot, in order to be able to pivot again, there still should be a hyperplane meeting the
obtained quasi-quadric in a cone. In fact, [DD11] does not show how to pivot more than once.
In Proposition 5.2 we give a construction enabling us to pivot q + 1 times.

Recall that if ⊥ denotes the polarity associated with a polar space P in PG(m, q) and P is
a point of P , then P⊥ ∩ P is a cone PCP , where CP is a classical polar space of the same type
as P in PG(m− 2, q).

While there is no orthogonal polarity associated to Q = Q(2n, q), q even, we still have that
for every point P ∈ Q, there is a unique hyperplane πP containing all points which are collinear
with P in Q, and these form a cone PC where C is a non-singular parabolic quadric contained
in a hyperplane of πP . We will, by abuse of notation, denote this hyperplane πP by P⊥. Note
that the nucleus N of Q is contained in all spaces P⊥.

Using this definition for hyperplanesP⊥ defined for points on a parabolic quadric, q even, the
following now holds for all non-singular polar spaces P in PG(m, q): if Q is a point collinear
with P in P , then P⊥ ∩ Q⊥ is an (m − 2)-dimensional space meeting P in a cone LP̃ with
vertex the line L = PQ and base a non-singular polar space P̃ of the same type as P contained
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in an (m − 4)-dimensional subspace of P⊥ ∩ Q⊥, disjoint from PQ. The q + 1 hyperplanes
of PG(m, q) through P⊥ ∩Q⊥ are precisely those of the form S⊥ for a point S on the line PQ.

The following lemma is a classical result, so we omit the proof, which is (hidden in) [HT16,
Sections 22.3 and 22.4].

Lemma 5.1. Let P be a non-singular, non-symplectic polar space contained in PG(m, q) and
let π be a hyperplane of PG(m, q). Let µ be an (m−3)-dimensional subspace of π such thatP∩µ
is a cone PC, where C is a non-singular polar space of the same type as P .

Then all but one hyperplane of π through µ intersects P in a non-singular polar space of
the same type as P . The last hyperplane, P⊥ meets P as follows:

• if P = Q±(2n+ 1, q), then P⊥ ∩P is a cone PQ(2n− 2, q) if P ∩H = Q(2n, q) and a
cone LQ±(2n− 3, q) if P ∩H = PQ±(2n− 1, q).

• if P = H(m, q), then P⊥ ∩ P is a cone PH(m − 3, q) if P ∩ H = H(m − 1, q) and a
cone LH(m− 4, q) if P ∩H = PH(m− 2, q).

• if P = Q(2n, q), then P⊥ ∩P is a cone PQ±(2n− 3, q) if P ∩H = Q±(2n− 1, q), and
a cone LQ(2n− 4, q) if H ∩ P = PQ(2n− 2, q).

The following proposition shows that we can construct a quasi-polar space by pivoting q+1
times. This construction can be thought of as repeated pivoting in the singular hyperplanes
defined by each of the q+1 points on a fixed line. But since we are not modifying the intersection
of any two of these singular hyperplanes, these q+1 pivots can be done simultaneously and their
order does not matter.

Proposition 5.2. LetP be a non-singular, non-symplectic polar space in PG(m, q). LetP andQ
be two collinear points in P and let ξ be the (m− 2)-space P⊥ ∩Q⊥.

For every point R ∈ PQ, consider a cone RC ′
R contained in R⊥, such that RC ′

R ∩ ξ =
R⊥∩P ∩ ξ, and such that C ′

R is a polar space of same type as P . Then the set P ′ = ∪R∈PQRC ′
R

is a quasi-polar space (of the same type as P).

Proof. Let H be a hyperplane of PG(m, q). We need to show that |H∩P ′| is one of the intersec-
tion numbers of hyperplanes with respect to P . We distinguish 3 cases, according to whether H
contains ξ, H meets ξ in a hyperplane containing the line PQ, or H meets ξ in a hyperplane not
containing the line PQ.

Case 1: H contains ξ. In this case, we have seen that H = S⊥ for some S ∈ PQ, so
|H ∩ P ′| = |SC ′

S| = |SCS| = |H ∩ P|.

Case 2: H does not contain the line PQ. LetR be the unique intersection point of PQwithH .
Note that

|H ∩ P ′| =
∑
S∈PQ

|(H ∩ (S⊥ \ ξ)) ∩ P ′|+ |(H ∩ ξ) ∩ P ′|.

By our construction, ξ∩P = ξ∩P ′, and hence, |(H∩ξ)∩P ′| = |(H∩ξ)∩P|. We also see
that |(H ∩ S⊥) ∩ P ′| = |(H ∩ S⊥) ∩ P| for all points S ̸= R in PQ: the hyperplane S⊥ meets
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both P and P ′ in a cone with vertex S and base a polar space CS and C ′
S of the same type as P .

Since H ∩ S⊥ is a hyperplane of S⊥, not through the vertex S, it indeed meets both cones in
|CS| = |C ′

S| points. Since, ξ∩P = ξ∩P ′, we have that |H∩(S⊥\ξ))∩P ′| = |(H∩(S⊥\ξ))∩P|.
Now consider the intersection H ∩R⊥ ∩ P ′. We know that R⊥ ∩ P and R⊥ ∩ P ′ are cones

with vertex R and base a polar space P̃ , P̃ ′, resp. of the same type as P in a hyperplane σ of R⊥.
Suppose first that P is of elliptic, hyperbolic or Hermitian type, then there are two intersection
numbers of hyperplanes with respect to P . As before, let these be denoted by Am−1 and Bm−1

with Am−1 < Bm−1. Every hyperplane of σ then meets the base P̃ in either Am−3 or Bm−3

points and since R ∈ H , (H ∩R⊥)∩P then has two intersection sizes, namely qAm−3 + 1 and
qBm−3+1. If |H ∩P| = Am−1, then by Lemma 5.1, H ∩R⊥ meets the cone RP̃ in qAm−3+1
points. Hence, if |H ∩ R⊥ ∩ P| ̸= |H ∩ R⊥ ∩ P ′|, then |H ∩ R⊥ ∩ P ′| = qBm−3 + 1. It
follows that |H ∩P ′| = |H ∩P|+ qBm−3 − qAm−3. Since qBm−3 − qAm−3 = Bm−1 −Am−1,
it follows that |H ∩ P ′| = Bm−1. Similarly, if |H ∩ P| = Bm−1 and |H ∩ P ′| ̸= Bm−1, then
|H ∩ P ′| = Am−1.

If P is of parabolic type, then P = Q(2n, q) and all hyperplanes meet in
A2n−1 = |Q−(2n − 1, q)|, B2n−1 = |PQ(2n − 2, q)|, or C2n−1 = |Q+(2n − 1, q)| points.
As above, we know that R⊥ ∩ P and R⊥ ∩ P ′ are cones with vertex R and base a polar space
Q(2n−2) in a hyperplane σ of R⊥. We see that every hyperplane of σ then meets the base P̃ in
either A2n−3, B2n−3, or C2n−3 points and since R ∈ H , (H∩R⊥)∩P then has three intersection
sizes, namely qA2n−3+1, qB2n−3+1 and qC2n−3+1. If |H ∩P| = A2n−1, then by Lemma 5.1,
H∩R⊥ meets the cone RP̃ in qA2n−3+1 points. Hence, if |H∩R⊥∩P| ̸= |H∩R⊥∩P ′|, then
|H∩R⊥∩P ′| ∈ {qB2n−3+1, qC2n−3+1}. It follows that |H∩P ′| = |H∩P|+qB2n−3−qA2n−3

or |H∩P ′| = |H∩P|+qC2n−3−qA2n−3. Since qC2n−3−qA2n−3 = C2n−1−A2n−1, it follows
that |H ∩ P ′| = C2n−1. The cases where |H ∩ P| = B2n−1 and |H ∩ P| = C2n−1 follow by an
analogous reasoning. We conclude that |H ∩ P ′| ∈ {A2n−1, B2n−1, C2n−1}.

Case 3: H ∩ ξ is a hyperplane of ξ containing PQ. Recall that

|H ∩ P ′| =
∑
S∈PQ

|(H ∩ (S⊥ \ ξ)) ∩ P ′|+ |(H ∩ ξ) ∩ P ′|.

We claim that for each R ∈ PQ, |(H ∩ (R⊥ \ ξ)) ∩ P ′| = |(H ∩ (R⊥ \ ξ)) ∩ P|. We have
that R⊥ meets both P and P ′ in a cone with vertex R and base a polar space CR and C ′

R of
the same type as P . These bases, CR and C ′

R are contained in a hyperplane σ of R⊥ which
meets ξ in a hyperplane µ of σ, not through R. Let T = PQ ∩ µ. By our assumption that
RC ′

R ∩ ξ = R⊥ ∩ P ∩ ξ, we have that µ ∩ CR = µ ∩ C ′
R. Moreover, since µ is contained in

ξ = P⊥ ∩Q⊥, µ ⊂ T⊥, and hence, µ∩ CR is a cone with vertex T and base a polar space of the
same type as P .

The hyperplaneH meets µ in an (m−4)-space ν of µ through the vertex T . SinceH contains
the vertexR of the coneRCR, showing our claim that |(H∩(R⊥\ξ))∩P ′| = |(H∩(R⊥\ξ))∩P| is
equivalent to showing that the hyperplaneH∩σ of σ, which meets ξ in the (m−4)-space ν, meets
CR and C ′

R in the same number of points. Recall that ξ∩P = ξ∩P ′, and hence, ν∩P = ν∩P ′.
The (m−4)-space ν lies on one singular (m−3)-space in σ, namely µ, all other (m−3)-spaces
through ν in σ are of the same type for both P and P ′ by Lemma 4.1. This proves our claim and
we conclude that |H ∩ P| = |H ∩ P ′|.
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Remark 5.3. Not all quasi-quadrics can be obtained by applying repeated switching to a quadric.
For example, it follows from Lemma 4.4 that switching Q−(3, q) is not possible (since a singular
hyperplane ofQ−(3, q) consists of a cone with vertex P and base the empty set). This shows that
Suzuki–Tits ovoids cannot be obtained from an elliptic quadric Q−(3, q) by repeated switching.

6. Parabolic quasi-quadrics in even characteristic

6.1. Definition of De Clerck–Hamilton–O’Keefe–Penttila

Recall that we have defined a parabolic quasi-quadric in PG(2n, q) as a set S of points such that
hyperplanes intersect S in |Q+(2n−1, q), |Q−(2n−1, q)| or |PQ(2n−2, q)| points. Parabolic
quasi-quadrics have three different intersection numbers with respect to hyperplanes, and as
such, behave differently from the other quasi-polar spaces. In particular, the size of a parabolic
quasi-quadric does not follow from the definition (unlike in the other cases, see Lemma 2.1
and Remark 6.13). Parabolic quadrics in PG(2n, q), q even, always have a nucleus. This is
a point N , not contained in the quadric, such that all lines through N intersect the parabolic
quadric in exactly one point (see [HT16, Corollary 1.8 (i)]).

In [DHOP00], when introducing parabolic quasi-quadrics for q even, the authors explicitely
ask for the size to be that of a parabolic quadric and for the existence of a point that acts as a
nucleus.

More precisely, they define a parabolic quasi-quadric with nucleus N in PG(2n, q), q even,
to be a set S of points such that

(a) |S| = q2n−1
q−1

;

(b) Every hyperplane not through N intersects S in |Q−(2n−1, q)| or |Q+(2n−1, q)| points;

(c) Every line through N contains exactly one point of S.

We see that N /∈ S. Note that (a) follows immediately from (c).
Consider a parabolic quasi-quadric as defined by us: this is a set of points S in PG(2n, q)

such that

(b’) every hyperplane intersects S in |Q−(2n − 1, q)|, |Q+(2n − 1, q)| or |PQ(2n − 2, q)|
points.

It is easy to see that a parabolic quasi-quadric with nucleus N as defined in [DHOP00]
satisfies our definition of a parabolic quasi-quadric:

Lemma 6.1. A set S with nucleus N satisfying (b)-(c) satisfies (b’).

Proof. It follows from (c) that the number of points ofS in a hyperplane throughN is the number
of lines through a point in PG(2n− 1, q), which is precisely |PQ(2n− 2, q)|.
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6.2. Properties of the nucleus

The singular hyperplanes of a parabolic quadric are precisely those hyperplanes through the
nucleus (see e.g. [HT16, Lemma 1.13(ii)]). Note that some authors use this as the definition for
a parabolic quadric: they define the nucleus as the intersection point of all singular hyperplanes.

In order to investigate the situation for quasi-quadrics, we will consider the following prop-
erties, where it is clear that (d’) implies (d).

(d) Hyperplanes meeting S in |PQ(2n− 2, q)| points contain a common point N ;

(d’) Hyperplanes meeting S in |PQ(2n − 2, q)| points contain a common point N and all
hyperplanes through N meet S in |PQ(2n− 2, q)| points.

Lemma 6.2. (i) Suppose that S and N satisfy (a) and (b’), then the number of singular hy-
perplanes is q2n−1

q−1
.

(ii) Suppose that S and N satisfy (a) and (b’) and (d), then S satisfies (a)-(b)-(c) where N is
the nucleus.

(iii) Suppose that S and N satisfy (a) and (b’) and (c), then S satisfies (a)-(b)-(d’).

Proof. (i) Let α1 be the number of hyperplanes meeting S in u1 = |Q−(2n − 1, q)| points,
α2 be the number of hyperplanes meeting S in u2 = |Q+(2n − 1, q)| points and α3 be
the number of hyperplanes meeting S in u3 = |PQ(2n− 2, q)| points (i.e. the number of
singular hyperplanes). Standard counting yields that

α1 + α2 + α3 =
q2n+1 − 1

q − 1
(6.1)

α1u1 + α2u2 + α3u3 =
q2n − 1

q − 1

q2n − 1

q − 1
(6.2)

α1u1(u1 − 1) + α2u2(u2 − 1) + α3u3(u3 − 1) =
q2n − 1

q − 1
(
q2n − 1

q − 1
− 1)

q2n−1 − 1

q − 1
(6.3)

Solving this system of equations, we find that α3, the number of singular hyperplanes
is q2n−1

q−1
.

(ii) Assume now that, on top of (a)-(b’) also (d) holds, that is, that all singular hyperplanes
contain a common point N . Since q2n−1

q−1
, the number of singular hyperplanes found in

(i) is precisely the number of hyperplanes though N , (b’) implies that all hyperplanes not
through N meet S in |Q−(2n− 1, q)| or |Q+(2n− 1, q)| points. Hence (b) follows.
In order to show (c) we will show by induction that a codimension j-space through N

contains q2n−j−1
q−1

points of S. For j = 1, this follows from the fact thatN is the intersection
point of all singular hyperplanes, and singular hyperplanes contain q2n−1−1

q−1
points of S.

Suppose the statement holds for all codimension j0-spaces such that 1 ⩽ j0 ⩽ 2n − 2
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and consider a codimension (j0 + 1)-space π. There are qj0+1−1
q−1

codimension j0-spaces
through π, each containing q2n−j0−1

q−1
− x points of S where x is the number of points of S

in π. Since
(
q2n−j0 − 1

q − 1
− x)(

qj0+1 − 1

q − 1
) + x = |S| = q2n − 1

q − 1

we obtain that x = q2n−(j0+1)−1
q−1

. The statement follows by induction, and taking
j0 = 2n− 1.

(iii) Now assume that (a),(b’),(c) are satisfied. By (c), all hyperplanes through N are singular,
and (i) shows that the number of singular hyperplanes is precisely the number of hyper-
planes through N , so (b) follows. It also shows that the singular hyperplanes are precisely
those hyperplanes going through N , so (d’) follows.

From Lemma 6.2(iii) we immediately obtain:

Corollary 6.3. For a parabolic quasi-quadric in PG(2n, q) of size Q(2n, q), q even, the notions
of nucleus as point only lying on tangent lines and as point lying on only singular hyperplanes
coincide.

Consider now a set S satisfying (a) and (b’) for n = 1. This is a set of q+1 points in PG(2, q)
such that every line meets it in 0, 1 or 2 points, i.e. an oval. It is well-known (and an easy exercise)
that for q even, there is a unique point N such that all tangent lines to the oval go through a
common point N , the nucleus. In other words, when n = 1 and q is even, the properties (a) and
(b’) imply the existence of a point N such that (c) holds.

Proposition 6.4 below shows that the case n = 1 is exceptional: parabolic quasi-quadrics
in PG(2n, q), n > 1, do not necessarily have a nucleus.

6.3. Pivoting for parabolic quasi-quadrics

In the following proposition, we show that we can pivot in a parabolic quadric and obtain a
quasi-quadric without nucleus.

Proposition 6.4. A parabolic quasi-quadric in PG(2n, q), q even, n > 1, with |Q(2n, q)| points,
does not necessarily have a nucleus.

Proof. Consider the parabolic quadric Q = Q(2n, q) in PG(2n, q), q even, n ⩾ 2. Then Q has
a nucleus N . Let π be a singular hyperplane of Q, then π contains N and π meets Q in the
points of a cone PC where C = Q(2n− 2, q). Without loss of generality we can take the base C
in an (2n − 2)-space µ through N . We then see that the nucleus N of Q is also the nucleus
of C. Now consider a parabolic quadric C ′ in µ with nucleus N ′ ̸= N . We claim that the set
Q′ = (Q \ PC) ∪ PC ′ obtained by pivoting in Q is a parabolic quasi-quadric without nucleus.
The hyperplane π is a singular hyperplane of Q′ so it follows from Corollary 6.3 that if Q′ has
a nucleus N ′, then N ′ is contained in π.

We will show that every point of π, not in P ′, lies on at least one line which is not a tangent
line to P ′. First note that the point N lies on a 2-secant to C ′ by our construction, so N does
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not only lie on tangent lines to P ′. Furthermore, a point of π in Q which does not lie in P ′ is
necessarily different from P , and hence, lies on lines of Q which are not contained in π. Since
P and Q coincide outside π, these lines meet P ′ in q ⩾ 2 points, and hence, are not tangent
lines.

It remains to show that a point of π, not in Q, and different from N , lies on at least one 2-
secant to P ′. We will count the number of 2-secants to Q and subtract the number of 2-secants to
Q in π. Since this is a positive integer and the points of Q not in π are points of P ′, the statement
then follows.

The stabiliser of Q in PG(2n, q) has three different point orbits: the first orbit consists of
the points of Q, the second of the nucleus, and the third of all other points (see e.g. [HT16,
Theorem 1.49]). Thus the number X of 2-secants through a fixed point ̸= N , of PG(2n, q), not
in Q, is a constant.

The number of 2-secants toQ is |Q|(|Q|−|PQ(2n−2,q)|)
2

since P is collinear with |PQ(2n−2, q)|
points in Q.

Now count couples (R,L), where R is a point, not on Q and different from N , and L is a
2-secant to Q through R.

(|PG(2n, q)| − 1− |Q|)X =
|Q|(|Q| − |PQ(2n− 2, q)|)

2
.(q − 1).

It follows that X = q2n−1

2
.

To find the number of 2-secants through a pointR different fromN , not inQ, of π to the cone
PQ(2n−2, q) in π, consider a hyperplane ν of π throughR but not throughP . The hyperplane ν
meets PQ(2n− 2, q) in a non-singular parabolic quadric Q̃ in µ which implies by the previous
count that R lies on qn−3

2
2-secants to Q̃. Now every 2-secant M through R in π gives rise to a

unique 2-secant L through R in ν, namely ⟨P,M⟩∩µ. We see that every 2-secant through R in ν
is determined q times, namely, by every of the q lines through R in the plane ⟨L, P ⟩, different
from RP . It follows that the number of 2-secants through R in π is q q2n−3

2
= q2n−2

2
. This means

that there are q2n−1−q2n−2

2
> 0 2-secants to points of Q\π through a point of π, different from N

and not in Q.

Remark 6.5. In the definition of pivoting for parabolic quadrics with a nucleus given
in [DHOP00], the authors replace a cone over a parabolic quadric with nucleus N by a cone
with the same vertex and base a different parabolic quadric with the same nucleus N . In this
way they ensure that pivoting a parabolic quadric for q even always gives rise to a parabolic quasi-
quadric with nucleus N . In [BHJS20, Lemma 1.6] it is proved that a parabolic quasi-quadric in
PG(4, 2) with nucleus is always a Q(4, 2), however, when we do not enforce the existence of a
nucleus, we have seen that pivoting in Q(4, 2) can result in a parabolic quasi-quadric in PG(4, 2)
which is not a quadric.

We have seen in Corollary 4.6 and Example 4.7, that we can replace the pointset of a singular
hyperplane of Q(2n, q), q even, by a set of points which is not a cone over a quasi-quadric and
obtain a parabolic quasi-quadric. But Remark 6.5 leads to the question: can we still do that if we
want our obtained quasi-quadric to have a nucleus? The following corollary shows that this is not
the case: when we want our quasi-quadric to have a nucleus, switching in singular hyperplanes
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is essentially pivoting, just like we have shown for all other polar spaces in Proposition 4.4. The
only difference is that in this case, we have two choices for the vertex of the cone to pivot with.

Corollary 6.6. Let P = Q(2n, q), n > 1, q even and let N be its nucleus. Suppose that P ′ is a
parabolic quasi-polar space with nucleus N ′ obtained by switching in a singular hyperplane π
of P with vertex P . Then either

• N = N ′ and P ′ ∩ π is the point set of a cone with vertex P . If µ is a hyperplane of π
containing N but not P then the base of the cone is a parabolic quasi-quadric in µ with
nucleus N .

• N = P and P ′ ∩ π is the point set of a cone with vertex N . If µ is a hyperplane of π
containing P but not N then the base of the cone is a parabolic quasi-quadric in µ with
nucleus P .

Proof. Since π is a singular hyperplane, π contains the nucleus, say N , of P . Since P ′ is a
parabolic quasi-quadric with nucleus, say N ′, we know that |P ′| = |P|, and hence, that π is a
singular hyperplane for P ′ too, and hence, N ′ is contained in π. A point Q of P∩π, except for P
lies on a line contained in P which is not contained in π. Since a nucleus only lies on 1-secants
to P ′, and P and P ′ coincide outside of π, Q is not the nucleus of P ′. From Proposition 6.4, we
know that every pointR of π, not inP and notN , lies on a 2-secant toP , not in π, soR cannot be
the nucleus of P ′. We conclude that N = N ′. Since all hyperplanes of π through N ′ meet P in
|Q(2n−2, q)| points, we have that all hyperplanes of π not through P meet P ′ in |Q(2n−2, q)|
points, and hence, by Lemma 4.2, P ′ is a cone with vertex P . Since all hyperplanes of π through
P meet P ′ in |PQ−(2n−3, q)|, |Q(2n−2, q)| or |PQ+(2n−3, q)| points by Proposition 4.5, we
see that P ′ has as base a parabolic quasi-quadric, say contained in a hyperplane µ. The nucleus
of this quasi-quadric is then the point µ ∩ PN .

Finally, if N ′ = P , then reversing the roles of P and N in the above reasoning yields that P ′

is the point set of a cone with vertex N and base a parabolic quasi-quadric with nucleus on the
line PN .

6.4. A sufficient condition for the existence of a nucleus

Keeping Proposition 6.4 in mind, we see that in order to have the existence of a nucleus follow
from our hypotheses on a quasi-quadric, we need to add an extra condition. Henceforth, we
assume that n ⩾ 2 and we will modify condition (c) into the following weaker one:

(c’) Every codimension 2-space is contained in at least one singular hyperplane.

We will show in Proposition 6.11 that the sets satisfying (a)-(b)-(c), that is, the parabolic quasi-
quadrics with nucleus as defined in [DHOP00], are exactly those satisfying (a)-(b’)-(c’).

Lemma 6.7. A parabolic quasi-quadric with nucleus N (that is, a set of points satisfying
(a)-(b)-(c)) satisfies (a)-(b’)-(c’).
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Proof. Let S be a set of points satisfying (a)-(b)-(c). From (b) we know that a hyperplane
not through N meets in |Q+(2n − 1, q)| or |Q−(2n − 1, q)| points, whereas (c) implies that
the hyperplanes through N meet in |PQ(2n − 2, q)| points, hence S satisfies (b’). Now every
codimension 2 space Σ either goes through N and hence lies on only singular hyperplanes, or
lies on exactly one singular hyperplane, namely ⟨Σ, N⟩.

We will now show that the weaker condition (c’) is strong enough to imply the existence of
a nucleus.

Lemma 6.8. Suppose that S is a point set such that (a)-(b’)-(c’) hold, then (d’) holds.

Proof. We first show that every point is contained in q2n−1−1
q−1

or q2n−1
q−1

singular hyperplanes.
We count, in two ways, pairs (P,Π) where P is a point in a singular hyperplane Π and then
triples (P,Π,Π′) where Π′ is a hyperplane and P is a point contained in the hyperplane inter-
section Π ∩ Π′. Let I index the points of PG(2n, q); then |I| = (q2n+1−1)

q−1
. Let xi be the number

of singular hyperplanes through the i-th point. We find:

∑
i

xi =

(
q2n − 1

q − 1

)2

∑
i

xi(xi − 1) =
q2n − 1

q − 1

(
q2n − 1

q − 1
− 1

)
q2n−1 − 1

q − 1
.

Since |I| = q2n+1−1
q−1

we obtain∑
i

(
xi −

q2n−1 − 1

q − 1

)(
xi −

q2n − 1

q − 1

)
= 0. (6.4)

We need to show that xi ⩾
q2n−1−1

q−1
. This follows from an induction argument: each codi-

mension j-space, where j ⩾ 1 lies on at least qj−1
q−1

singular hyperplanes.
The case j = 1 is precisely (c’). Now let Σ be a codimension (j + 1)-space. Then Σ is

contained in q2n−j−1
q−1

codimension j-spaces, each of which are contained in at least qj−1
q−1

singular
hyperplanes. The number of codimension j-spaces containing a codimension (j + 1)-space in
a hyperplane is equal to q2n−j−1−1

q−1
. Thus we obtain that Σ is contained in at least

(q2n−j − 1)(qj − 1)

(q2n−j−1 − 1)(q − 1)
> q

qj − 1

q − 1

singular hyperplanes, which completes the inductive proof.
Using Equation (6.4), it follows that, for all i, xi =

q2n−1−1
q−1

or xi =
q2n−1
q−1

. Let a1 be the
number of points lying on q2n−1−1

q−1
singular hyperplanes and a2 be the number of points lying on

q2n−1
q−1

singular hyperplanes. Standard counting yields

a1 + a2 =
q2n+1 − 1

q − 1
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a1
q2n−1 − 1

q − 1
+ a2

q2n − 1

q − 1
= (

q2n − 1

q − 1
)2

It follows that a2 = 1, so there exists a unique point, say N lying on all q2n−1
q−1

singular
hyperplanes.

We now show that we can deduce the size of a parabolic quasi-quadric if we impose condi-
tion (d’).

Lemma 6.9. If (b’) and (d’) hold, then (a) holds.

Proof. As in Lemma 6.2, letα1 be the number of hyperplanes meeting S in u1 = |Q−(2n−1, q)|
points, α2 be the number of hyperplanes meeting S in u2 = |Q+(2n− 1, q)| points. By (d’) we
know that the number of hyperplanes meeting S in u3 = |PQ(2n− 2, q)| is q2n−1

q−1
and we find:

α1 + α2 =
q2n+1 − 1

q − 1
− q2n − 1

q − 1
(6.5)

α1u1 + α2u2 = |S| − q2n − 1

q − 1
u3 (6.6)

α1u1(u1 − 1) + α2u2(u2 − 1) = |S|(|S| − 1)
q2n−1 − 1

q − 1
− q2n − 1

q − 1
u3(u3 − 1) (6.7)

Using the first two equations to write α1 and α2 in function of |S|, we see that the third
yields a quadratic equation in |S| whose sum of roots is given by (q2n−1)(u1+u2−1)

q2n−1−1
+ 1. Since

|S| = |Q(2n, q)| = q2n−1
q−1

is a solution, the other solution is an integer if and only if

(q2n − 1)(u1 + u2 − 1)

q2n−1 − 1

is an integer.
This expression equals

q2n − 1

q2n−1 − 1
(2
q2n−1 − 1

q − 1
− 1) = 2

q2n − 1

q − 1
− q2n − 1

q2n−1 − 1

and we see that the latter term in not an integer for n ⩾ 2.

Finally, we show that when a parabolic quasi-quadric has a nucleus, then q is necessarily
even.

Lemma 6.10. If (b’) and (d’) hold for a point set in PG(2n, q), n ⩾ 2, then q is even.

Proof. Suppose that (b’) and (d’) hold, then Lemma 6.9 implies that |S| = |Q(2n, q)|. The sin-
gular hyperplanes are precisely the hyperplanes containing N . Note that if q is odd,
|S| = |Q(2n, q)| is even, |Q±(2n − 1, q)| is even and |PQ(2n − 2, q)| is odd. Hence, when
we consider the set S ′ = S ∪ {N} we see that every hyperplane meets S ′ in an even number of
points. Note that |S ′| = 1 (mod 2). We claim that a codimension j space has j + 1 (mod 2)



26 Jeroen Schillewaert , Geertrui Van de Voorde

points of S ′ and will proceed to show this by induction. We have just established the base case
j = 1 so suppose our claim holds for some 1 ⩽ j0 ⩽ 2n− 2 and consider a codimension j0 + 1

space π. There are qj0−1
q−1

codimension j0-spaces through π which is a number congruent to
j0 (mod 2). Suppose to the contrary that π contains j0 (mod 2) points, then, by our induction
hypothesis, each codimension j0 space through π contains 1 (mod 2) points of S outside π, and
we find that |S ′| − x = j0 (mod 2). Since x = j0 (mod 2), we find that |S ′| = 0 mod 2, a
contradiction. By induction, our claim holds. In particular, we see that every line, which is a
codimension 2n−1 space, contains an even number of points of S ′. Now consider a hyperplane
µ meeting S in |Q−(2n − 1, q)| points and let P be a point of S. Since every line through S
needs to contain at least one extra point of S ∪{N}, we find that there are at least q2n−1−1

q−1
points

of S in µ, a contradiction since q2n−1−1
q−1

> |Q−(2n− 1, q)|.

Combining the above lemmas, we see that the parabolic quasi-quadrics as defined by the
properties (a)-(b)-(c) are precisely the parabolic quasi-quadrics satisfying the weaker hypotheses
(a)-(b’)-(c’).

Proposition 6.11. The parabolic quasi-quadrics with nucleus as defined in [DHOP00] are pre-
cisely those point sets S in PG(2n, q), satisfying (a)-(b’)-(c’).

Proof. If n = 1, it is well known that an oval in PG(2, q), q even has a nucleus. It is clear that the
point sets satisfying (a)-(b)-(c), as well as those satisfying (a)-(b’)-(c’) are precisely the ovals.
If n > 1, then we have seen in Lemma 6.7 that every parabolic quasi-quadric with nucleus as
defined in [DHOP00] satisfies (a)-(b’)-(c’). On the other hand, if S is a set of points satisfying
(a)-(b’)-(c’), we have shown in Lemma 6.8 that (d’) (and hence (d)) holds. Lemma 6.2 then
shows that S indeed satisfies (a)-(b)-(c). Finally, Lemma 6.10 shows that q is indeed even.

Corollary 6.12. The parabolic quasi-quadrics that have the property that the singular hyper-
planes are precisely those through a common point (i.e. they satisfy (d’)) are precisely the
parabolic quasi-quadrics with nucleus as defined in [DHOP00].

Proof. For n = 1, this follows from the fact that a parabolic-quadric that satisfies property (d’)
necessarily has size q + 1, and hence, is an oval. For n ⩾ 2, we have seen in Lemma 6.9 that
every parabolic quasi-quadric satisfying (d’) has size |Q(2n, q)|, so (a) holds. Lemma 6.2(ii)
then shows that S indeed satisfies (a)-(b)-(c) and Lemma 6.10 shows that q is indeed even.

Remark 6.13. We have shown in this paper that a point set satisfying (b’) and (c’) has
size |Q(2n, q)|. It is an interesting open question to see whether (b’) implies (a). It is clear
that for n = 1, any arc will satisfy (b’), and hence, (a) does not follow from (b’) when n = 1.
However, we were unable to construct an example of a parabolic quasi-quadric in PG(2n, q),
n > 1 that does not satisfy (a).

Using similar standard counting arguments as in Lemma 6.2, one can show that the size of a
parabolic quasi-quadric in PG(4, q) is congruent to 1 mod q and lies in the interval
[q3 + q2 − q

√
q + 1, q3 + q2 + q

√
q + 1]. There are several values in this interval for which the

corresponding solutions to the system of Lemma 6.2 are positive integers, which explains our in-
ability to deduce that the size would necessarily be q3+q2+q+1. Furthermore, showing that the
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size of a quasi-quadric is |Q(2n, q)| under the additional hypothesis of knowing the intersection
sizes with co-dimension 2-spaces, is already fairly complicated (see [DS10, Lemma 2.21]).
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Finite Incidence Geometry. FinInG – a GAP package, version 1.4.1, 2019.

[BHJS20] S. Barwick, A. Hui, W-A. Jackson, and J. Schillewaert. Characterising hyperbolic
solids of Q(4, q), q even. Des. Codes Cryptogr. 88 (1): 33–39 2020. doi:10.1016/j.

jcta.2021.105476.
[BB66] R.C. Bose and R.C. Burton. A characterization of flat spaces in a finite geometry and

the uniqueness of the Hamming and the MacDonald codes. J. Combin. Theory 1: 96–104
1966.

[DD11] F. De Clerck and N. Durante. Constructions and Characterizations of Classical Sets in
PG(n, q) In Current research topics on Galois geometry, pages 61–84. Nova Academic
Publishers, 2011.

[DHOP00] F. De Clerck, N. Hamilton, C. O’Keefe and T. Penttila. Quasi-quadrics and related
structures. Aust. J. Combin 22: 151–166 2000.

[DS10] S. De Winter and J. Schillewaert. Characterizations of finite classical polar spaces by
intersection numbers with hyperplanes and spaces of codimension 2. Combinatorica 30:
25–45 2010. doi:10.1007/s00493-010-2441-2.

[HT16] J.W.P. Hirschfeld, J.A. Thas, General Galois Geometries. 2nd edition. Springer-Verlag,
London, 2016.

7. Appendix

Proposition 7.1. Let P be an oval in PG(2, 3) and let P ′ be an oval obtained by switching P
in the line L. Then P = P ′ or L is a secant line to P and P ′ is obtained by removing one of
the two intersection points of P with L and adding the unique external point to the oval on the
line L.

Proof. Since bothP andP ′ are ovals, andP ′ is obtained by switchingP , we know that |P∩L| =
|P ′ ∩ L|. If L is a tangent line to P in the point P , then we see that every point of L, different
from P lies on a secant line and a passant to P . It follows that for a point P on L, P /∈ P ′

implies P /∈ P ′. Since |P ∩ L| = |P ′ ∩ L| and P and P ′ coincide outside L, we have that
P = P ′. Now let L be a secant line to P , let P1, P2 be the intersection points of L with P and
let P3, P4 be the points of P , not on L. The point Q = P3P4 ∩ L does not lie in P , lies on a
2-secant and a passant to P . It follows that Q /∈ P ′. The point R on L, different from P1, P2

and Q is the unique external point to P on L and lies on two tangent lines and one passant. It
follows that if P ̸= P ′, then the point R was added and one of P1, P2 was removed; note that
the set {P3, P4, Pi, R}, i = 1, 2 is indeed a set of 4 points, no three of which lie on a line, i.e. an
oval.
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We conclude by discussing switching Q(2n, 2) and Q(2n, 3).

Proposition 7.2. There exists a quasi-quadric, which is not a quadric, obtained by switching in
non-singular hyperplane of the parabolic quadric Q(2n, 2), n ⩾ 2.

Proof. Let P = Q(2n, 2), let N be its nucleus and let π be a non-singular hyperplane meeting
Q(2n, 2) in Q±(2n− 1, 2). Since π is non-singular, N /∈ π. Let P ′ be the set P \ (P ∩ π)∪Q′

where Q′ is a quasi-quadric in π = PG(2n− 1, 2) of the same type as Q±(2n− 1, 2). We will
show that P ′ is a parabolic quasi-quadric. Consider a hyperplane H of PG(2n, 2). If H = π
then |H ∩ P| = |H ∩ P ′| = |Q±(2n − 1, 2)| and we are done. If H ̸= π then H meets π in
a hyperplane µ of π. Then µ lies on exactly one singular hyperplane (the hyperplane through µ
and N ). This shows that the other, non-singular, hyperplane must be of the same type as P ∩ π
if µ ∩ P = PQ±(2n− 3, 2) and of the opposite type of µ ∩ P = Q(2n− 2, 2).

If µ∩P = Q(2n− 2, 2), then the singular hyperplane contains |PQ(2n− 2, 2)| − |Q(2n−
2, 2)| = 22n−2 points of P outside π and the non-singular hyperplane contains the other |P −
(P ∩ π)| − 22n−2 = |Q(2n, 2)| − |Q±(2n − 1, 2)| − 22n−2 = 22n−2 ∓ 2n−1 points outside
π. If |µ ∩ π| = |PQ±(2n − 3, 2)|, then the singular hyperplane contains |PQ(2n − 2, 2)| −
|PQ±(2n−3, 2)| = 22n−2∓2n−1 points outside π and the non-singular hyperplane contains the
other |P − (P ∩π)|− (22n−2∓2n−1) = |Q(2n, 2)|− |Q±(2n−1, 2)|∓ (22n−2−2n−1) = 22n−2

points. Hence, all hyperplanes, different from π have 22n−2 ∓ 2n−1 or 22n−2 points of P outside
π. Since Q′ is a quasi-quadric, every hyperplane of π meets P ′ ∩ π = Q′ in |Q(2n − 2, 2)|
or |PQ±(2n − 3, 2)| points. Note that 22n−2 ∓ 2n−1 + |Q(2n − 2, 2)| = |Q∓(2n − 1, 2)|,
22n−2+ |Q(2n−2, 2)| = |PQ(2n−2, 2)|, 22n−2∓2n−1+ |PQ±(2n−3, 2)| = |PQ(2n−2, 2)|
and 22n−2 + |PQ±(2n− 3, 2)| = |Q±(2n− 1, 2)|. It follows that every hyperplane meets P ′ in
|Q−(2n − 1, 2)|, |PQ(2n − 2, 2)| or Q+(2n − 1, 2)| points. Finally, we need to show that it is
possible to pick Q′ such that P ′ is not a parabolic quadric. For n ⩾ 2, let Q′ be a quasi-quadric
in π, which is not a quadric (see Remark 3.6), then P ′ is not a quadric since a parabolic quadric
cannot contain a subspace π with |Q±(2n− 1, 2)| points that do not form a Q±(2n− 1, 2). For
Q(4, 2), we claim that there is always a quadricQ′ such thatP ′ does not have a nucleus. This can
be readily checked by the use of a computer, e.g. using the package FinInG [BBCDLN19]: of the
280 choices for a hyperbolic quadric Q+(3, 2), 270 give rise to a quasi-quadric without nucleus,
of the 168 choices for an elliptic quadric, 162 give rise to a quasi-quadric without nucleus.

Proposition 7.3. There exists a quasi-quadric, which is not a quadric, obtained by switching in
a non-singular hyperplane of the parabolic quadric Q(2n, 3), n ⩾ 2.

Proof. Let ξ be a hyperplane intersectingP = Q(2n, 3) in a non-singular quadricQ±(2n−1, 3)
and let π be a singular hyperplane of ξ to Q±(2n − 1, 3). Then π ∩ P is a cone P Q̃ with
vertex a point P and base a non-singular quadric Q±(2n − 3, 3). Let P ′ be the set of points of
(P \ (P ∩ ξ)) ∪ S , where S is the set of internal points to P in ξ, not contained in π, together
with the points of P Q̃. In other words, P ′ is obtained by taking the points of P and replacing
the points of P in ξ \ π by the internal points to P contained in ξ \ π.

The number of internal points toP in PG(2n, q), q odd, is the number of elliptic hyperplanes,
which is 1

2
qn(qn− 1), and the number of internal points in ξ is the number of hyperplanes of the

type of ξ through an internal point, which is 1
2
qn−1(qn ∓ 1) (see e.g. [HT16, Sections 1.5–1.7]).
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We also see that the number of internal points in a hyperbolic hyperplane is the number of
elliptic hyperplanes through an external point, which is 1

2
qn−1(qn − 1).

We now determine the number of internal points in codimension 2-spaces.

• A codimension 2-space µ for which µ⊥ is a passant lies on 2 elliptic and 2 hyperbolic
hyperplanes, from which it follows that µ has 1

2
3n−1(3n + 1)− 32n−2 internal points.

• A codimension 2-space µ for which µ⊥ is a 2-secant lies on 1 elliptic, 1 hyperbolic and
2 singular hyperplanes, from which is follows that µ has 1

2
3n−1(3n − 1) − 32n−2 internal

points.

• Finally, a codimension 2-space µ for which µ⊥ is a tangent line either meets P in a cone
over an elliptic quadric, in which case µ lies on one cone and 3 elliptic hyperplanes, which
implies that µ has 1

2
3n−1(3n + 1) − 32n−2 internal points, or meets P in a cone over a

hyperbolic quadric, in which case µ lies on one cone and 3 hyperbolic hyperplanes, which
implies that µ has 1

2
3n−1(3n − 1)− 32n−2 internal points.

In particular, it follows that there are 1
2
3n−1(3n ∓ 1) − (1

2
3n−1(3n ∓ 1) − 32n−2) = 32n−2

internal points in ξ, not in π.
This shows that |S| = |PQ±(2n− 3, 3)|+ 32n−2 = |P ∩ ξ| = |Q±(2n− 1, 3)|.
Every hyperplane of PG(2n, 3), different from ξ, intersects ξ in a hyperplane of ξ, which

either meets P in |PQ±(2n− 3, 3)| or |Q(2n− 2, 3)| points.
A hyperplane µ of ξ with |PQ±(2n − 3, 3)| points of P is such that µ⊥ is a tangent line to

P . Then µ lies only in hyperplanes meeting P in |PQ(2n − 2, 3)| or |Q±(2n − 1, 3)| points,
and as such, we need to show that µ has either |PQ±(2n− 3, 3)| or |PQ±(2n− 3, 3)| ∓ 3n−1 =
|Q(2n−2, 3)| points ofP ′ in order for these hyperplanes to have |Q−(2n−1, 3)|, |PQ(2n−2, 3)|
or |Q+(2n− 1, 3)| points of P ′.

A hyperplane µ of ξ with |Q(2n−2, 3)| points of P for which µ⊥ is a 2-secant to P lies on ξ,
on 2 hyperplanes meeting P in |PQ(2n− 2, 3)| and one hyperplane meeting in |Q∓(2n− 1, 3)|
points. Hence, we need to show that µ has either |Q(2n − 2, 3)| or |Q(2n − 2, 3)| ± 3n−1 =
|PQ±(2n−3, 3)| points of P ′ in order for these hyperplanes to have |Q−(2n−1, 3)|, |PQ(2n−
2, 3)| or |Q+(2n− 1, 3)| points.

Finally, a hyperplane µ of ξ with |Q(2n−2, 3)| points ofP for which µ⊥ is a passant toP lies
on ξ, on 2 hyperplanes meetingP in |Q∓(2n−1, 3)| points and on one hyperplane, different from
ξ meeting P in |Q±(2n−1, 3)| points. Hence, we need to show that µ has exacty |Q(2n−2, 3)|
points of P ′ in order for these hyperplanes to have |Q−(2n − 1, 3)| of |Q+(2n − 1, 3)| points
of P ′.

Now let ν be a hyperplane. If ν = π then we have argued above that |ν ∩P| = |ν ∩P ′| and
we are done. So let ν ̸= π and let L be the intersection of ν with π, which is a hyperplane of ξ.

There are 3 possibilities for L ∩ P if ξ is an elliptic hyperplane.

• L ∩ P is an elliptic quadric Q−(2n− 3, 3). There are 4 hyperplanes of ξ through L, one
of which is π. Now L⊥ ∩ P is a conic, π⊥ a tangent line to P , contained in L⊥, and ξ⊥ is
an internal point in L⊥ on π⊥. Hence, through ξ⊥, there are two tangent lines to L⊥ ∩ P
in L⊥, one secant line, and one external line. It follows that there are 3 hyperplanes of ξ
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through L with 1
2
3n−1(3n+1)− 32n−2 internal points and one hyperplane (corresponding

to the unique 2-secant to P through ξ⊥ in L⊥) with 1
2
3n−1(3n − 1) − 32n−2 points. It

follows that L contains 1
2
3n−2(3n−1 + 1) internal points.

Hence, if ν⊥ is a tangent or external line to P , we find |ν⊥ ∩ P ′| = 1
2
3n−1(3n + 1) −

32n−2 − 1
2
3n−2(3n−1 + 1) + |Q−(2n − 3, 3)| = |Q(2n − 2, 3)| points as needed. And if

ν⊥ is a 2-secant line to P , we find |ν⊥ ∩ P ′| = 1
2
3n−1(3n − 1) − 32n−2 − 1

2
3n−2(3n−1 +

1) + |Q−(2n− 3, 3)| = |PQ−(2n− 3, 3)| as needed.

• L∩P is a cone MQ−(2n−5, 3), where M is a line through P . There are 4 hyperplanes of
ξ through L, one of which is µ. Now L⊥ ∩P is a line in the plane L⊥, and ξ⊥ is a point in
L⊥, not in P . Hence, through ξ⊥, there are four tangent lines to L⊥∩P . It follows that all
4 hyperplanes of ξ throughL have 1

2
3n−1(3n+1)−32n−2 internal points and it then follows

that L contains 1
2
3n−1(3n + 1) − 32n−2 − 32n−3 internal points. Hence, any hyperplane

ν of ξ through L has ν⊥ a tangent line to P , and we find |ν⊥ ∩ P ′| = 1
2
3n−1(3n + 1) −

32n−2 − (1
2
3n−1(3n + 1) − 32n−2 − 32n−3) + |MQ−(2n − 5, 3)| = |PQ−(2n − 3, 3)| as

needed.

• L ∩ P is a cone PQ(2n− 4, 3). There are 4 hyperplanes of ξ through L, one of which is
µ. Now L⊥ ∩P are two lines, and ξ⊥ is an internal point in L⊥. Through ξ⊥, there is one
tangent line toL⊥∩P , and 3 2-secants. It follows that the 3 hyperplanes of ξ, different from
µ, through L have 1

2
3n−1(3n−1)−32n−2 internal points and µ has 1

2
3n−1(3n+1)−32n−2

points. It follows that L contains 1
2
3n−1(3n−1− 1)− 32n−3 internal points. Hence, for any

hyperplane ν ̸= π in ξ through L, ν⊥ is a 2-secant line to P . Hence, we find |ν⊥ ∩ P ′| =
1
2
3n−1(3n − 1)− 32n−2 − 1

2
3n−1(3n−1 − 1)− 32n−3 + |PQ(2n− 4, 3)| = |Q(2n− 2, 3)|

as needed.

There are 3 possibilities for L ∩ P if ξ is a hyperbolic hyperplane:

• L ∩ P is a hyperbolic quadric |Q+(2n − 3, 3)|. There are 4 hyperplanes of ξ through L,
one of which is π. Now L⊥ ∩ P is a conic, π⊥ a tangent line to P , contained in L⊥, and
ξ⊥ is an external point in L⊥ on π⊥. Hence, through ξ⊥, there are two tangent lines to
L⊥ ∩ P in L⊥, one secant line, and one external line.
It follows that there are 3 hyperplanes of ξ through L with 1

2
3n−1(3n− 1)− 32n−2 internal

points and one hyperplane (corresponding to the unique passant to P through ξ⊥ in L⊥)
with 1

2
3n−1(3n + 1)− 32n−2. It follows that L contains 1

2
3n−2(3n−1 − 1) internal points.

Hence, if ν⊥ is a tangent or secant line to P , we find |ν⊥∩P ′| = 1
2
3n−1(3n−1)−32n−2−

1
2
3n−2(3n−1 − 1) + |Q+(2n− 3, 3)| = |Q(2n− 2, 3)| points as needed.

And if ν⊥ is a passant to P , we find |ν⊥ ∩P ′| = 1
2
3n−1(3n + 1)− 32n−2 − 1

2
3n−2(3n−1 −

1) + |Q+(2n− 3, 3)| = |PQ+(2n− 3, 3)| as needed.

• L∩P is a cone MQ+(2n−5, 3) where M is a line through P . There are 4 hyperplanes of
ξ through L, one of which is µ. Now L⊥ ∩P is a line in the plane L⊥, and ξ⊥ is a point in
L⊥, not in P . Hence, through ξ⊥, there are four tangent lines to L⊥ ∩ P in L⊥. It follows
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that all 4 hyperplanes of ξ through L have 1
2
3n−1(3n − 1) − 32n−2 internal points and it

then follows that L contains 1
2
3n−1(3n−2 − 1) internal points.

Hence, any hyperplane ν of ξ throughL has ν⊥ a tangent line toP , and we find |ν⊥∩P ′| =
1
2
3n−1(3n − 1)− 32n−2 − 1

2
3n−1(3n−2 − 1) + |MQ+(2n− 5, 3)| = |PQ+(2n− 3, 3)| as

needed.

• L ∩ P is a cone PQ(2n− 4, 3). There are 4 hyperplanes of ξ through L, one of which is
π. Now L⊥ ∩P are two lines, and ξ⊥ is a point in L⊥, not in P . Through ξ⊥, there is one
tangent line to L⊥∩P , corresponding to π and 3 2-secants. It follows that all hyperplanes
of ξ through L have 1

2
3n−1(3n − 1) − 32n−2 internal points, from which it follows that L

contains 1
2
3n−1(3n−2 − 1) internal points.

Hence, for any hyperplane ν ̸= π in ξ throughL, ν⊥ is a 2-secant line toP . Hence, we find
|ν⊥∩P ′| = 1

2
3n−1(3n−1)−32n−2− 1

2
3n−1(3n−2−1)+ |PQ(2n−4, 3)| = |Q(2n−2, 3)|

as needed.
It remains to show that P ′ is not a quadric. Consider a line M which is a 2-secant to P
and intersects ξ in a point of P ′ \P . Then M contains 3 points of P ′. Since lines intersect
quadrics in 0, 1, 2 or 4 points we conclude that P ′ is not a quadric.

Proof of Theorem 4.8. There are three intersection numbers of hyperplanes with respect to P .
Let 2n = m, Am−1 = |Q−(m − 1, q)|, Bm−1 = |PQ(m − 2, q)|, Cm−1 := |Q+(2n − 1, q).
Now let H be a hyperplane of PG(m, q). We need to show that H∩P ′ ∈ {Am−1, Bm−1, Cm−1}.
Recall that P ∩ (H \ π) = P ′ ∩ (H \ π).

If H does not contain P , then H ∩ π has the same number of points of both P and P ′, so
|H ∩ P ′| = |H ∩ P| ∈ {Am−1, Bm−1, Cm−1}. So suppose that H contains P , then, since every
hyperplane of µ meets the base P̃ in either Am−3, Bm−3 or Cm−3 points, H ∩ π meets in P
in qAm−3 + 1, qBm−3 + 1, or qCm−3 + 1 points. Likewise, H ∩ π meets P ′ in qAm−3 + 1,
qBm−3 + 1, or qCm−3 + 1 points. If |H ∩ π ∩ P| = qAm−3 + 1, then an easy count shows that
all hyperplanes through ν, different from π, have Am−1 points of P . We find that |H ∩ P ′| is
either Am−1, Am−1 − (qAm−3 + 1) + (qBm−3 + 1), or Am−1 − (qAm−3 + 1) + (qCm−3 + 1).
Since qBm−3− qAm−3 = Bm−1−Am−1 and qCm−3− qAm−3 = Cm−1−Am−1 we indeed have
that |H ∩ P ′| ∈ {Am−1, Bm−1, Cm−1}. Similarly, if |H ∩ π ∩ P| = qCm−3 + 1, then an easy
count shows that all hyperplanes through ν, different from π, haveCm−1 points ofP . We find that
|H∩P ′| is eitherCm−1,Cm−1−(qCm−3+1)+(qBm−3+1), orCm−1−(qCm−3+1)+(qAm−3+1).
Since qBm−3− qCm−3 = Bm−1−Cm−1 and qAm−3− qCm−3 = Am−1−Cm−1 we indeed have
that |H ∩ P ′| ∈ {Am−1, Bm−1, Cm−1}.

Finally, suppose that |H ∩ π ∩P| = qBm−3 +1. Note that, unlike in the case of Q(2n, q), it
does not immediately follow that all hyperplanes through H ∩ π have Bm−1 points. But we will
show that this property still holds.

From the above reasoning we deduce that every singular hyperplane (i.e. meeting P in Bm−1

points), different from π, needs to intersect π ∩ P in exactly qBm−3 + 1 points. Furthermore,
since we assume that |P ∩ π| = q|Q(2n − 2, q| + 1 and that every hyperplane of π meets the
cone P∩π in qAm−3+1, qBm−3+1 = |Q(2n−2, q)|, or qCm−1+1 points of P . It follows that
the number of hyperplanes of each of these three types meeting P ∩π is a constant, independent
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of the choice of P . Hence, the number of hyperplanes of each type is the same as the number
of hyperplanes intersecting a cone with base a Q(2n − 2, q). By Lemma 4.1, we know that in
that case, all hyperplanes through a hyperplane of π with qBm−3 + 1 points are singular, while
those different from π through a hyperplane with qAm−3+1 haveAm−1 points and those through
a hyperplane with qCm−3 + 1 have Cm−1 points. Since we have that all hyperplanes through a
hyperplane of π with qAm−3+1 ofP haveAm−1 points ofP and those through a hyperplane with
qCm−3 +1 of P have Cm−1 points of P , and all hyperplanes with Bm−1 meet π in a hyperplane
of π with qBm−3 + 1 points, we conclude that all hyperplanes through a hyperplane of π with
qBm−3 + 1 points of P have Bm−1 points. It then follows, as in the other cases, that |H ∩P ′| is
either Bm−1, Bm−1 − (qBm−3 + 1) + (qAm−3 + 1), or Bm−1 − (qBm−3 + 1) + (qCm−3 + 1).
Since qAm−3− qBm−3 = Am−1−Bm−1 and qCm−3− qBm−3 = Cm−1−Bm−1 we indeed have
that |H ∩ P ′| ∈ {Am−1, Bm−1, Cm−1}.


	Introduction
	Cardinality of quasi-polar spaces
	Switching quasi-polar spaces
	Switching is type-preserving
	Switching in non-singular hyperplanes is impossible

	Switching singular hyperplanes
	Switching is pivoting
	Switching quasi-quadrics

	Repeated pivoting
	Parabolic quasi-quadrics in even characteristic
	Definition of De Clerck–Hamilton–O'Keefe–Penttila
	Properties of the nucleus
	Pivoting for parabolic quasi-quadrics
	A sufficient condition for the existence of a nucleus

	Appendix



