
UCLA
UCLA Previously Published Works

Title
Nonlinear bounce resonances between magnetosonic waves and equatorially mirroring 
electrons

Permalink
https://escholarship.org/uc/item/8ff2454j

Journal
Journal of Geophysical Research Space Physics, 120(8)

ISSN
2169-9380

Authors
Chen, Lunjin
Maldonado, Armando
Bortnik, Jacob
et al.

Publication Date
2015-08-01

DOI
10.1002/2015ja021174
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8ff2454j
https://escholarship.org/uc/item/8ff2454j#author
https://escholarship.org
http://www.cdlib.org/


Journal of Geophysical Research: Space Physics

Nonlinear bounce resonances between magnetosonic
waves and equatorially mirroring electrons

Lunjin Chen1, Armando Maldonado1, Jacob Bortnik2, Richard M. Thorne3, Jinxing Li3,
Lei Dai4, and Xiaoya Zhan5

1Department of Physics, University of Texas at Dallas, Richardson, Texas, USA, 2Department of Atmospheric and Oceanic
Sciences, University of California, Los Angeles, California, USA, 3Institute of Space Physics and Applied Technology, Peking
University, Beijing, China, 4State Key Laboratory of Space Weather, Center for Space Science and Applied Research,
Chinese Academy of Sciences, Beijing, China, 5Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences,
Shenzhen, China

Abstract Equatorially mirroring energetic electrons pose an interesting scientific problem, since they
generally cannot resonate with any known plasma waves and hence cannot be scattered down to lower
pitch angles. Observationally it is well known that the flux of these equatorial particles does not simply
continue to build up indefinitely, and so a mechanism must necessarily exist that transports these particles
from an equatorial pitch angle of 90∘ down to lower values. However, this mechanism has not been uniquely
identified yet. Here we investigate the mechanism of bounce resonance with equatorial noise (or fast
magnetosonic waves). A test particle simulation is used to examine the effects of monochromatic
magnetosonic waves on the equatorially mirroring energetic electrons, with a special interest in
characterizing the effectiveness of bounce resonances. Our analysis shows that bounce resonances can
occur at the first three harmonics of the bounce frequency (n!b, n = 1 , 2, and 3) and can effectively reduce
the equatorial pitch angle to values where resonant scattering by whistler mode waves becomes possible.
We demonstrate that the nature of bounce resonance is nonlinear, and we propose a nonlinear oscillation
model for characterizing bounce resonances using two key parameters, effective wave amplitude Ã and
normalized wave number k̃z . The threshold for higher harmonic resonance is more strict, favoring higher
Ã and k̃z , and the change in equatorial pitch angle is strongly controlled by k̃z . We also investigate the
dependence of bounce resonance effects on various physical parameters, including wave amplitude,
frequency, wave normal angle and initial phase, plasma density, and electron energy. It is found that the
effect of bounce resonance is sensitive to the wave normal angle. We suggest that the bounce resonant
interaction might lead to an observed pitch angle distribution with a minimum at 90∘.

1. Introduction

Energetic electrons in the radiation belts undergo three periodic motions: gyration, bounce, and drift. The
three periodic motions have well-separated periods and each of them can be associated with an adiabatic
invariant, referred to as the first, second, and third invariants [Schulz and Lanzerotti, 1974]. The presence of
plasma waves can violate the invariants through wave-particle resonant interactions, leading to irreversible
changes in electron phase space density [Thorne, 2010]. The process of wave-particle interaction plays an
important role in the variability of the radiation belt electrons. Much more attention has been paid to gyrores-
onance and drift resonance interaction than bounce resonance, which can be responsible for the violation of
the second invariant. Violation of the third invariant through drift interaction with ULF waves [e.g., Dai et al.,
2013] can lead to radial diffusion while violation of the first invariant through gyroresonance interaction can
lead to pitch angle and energy scattering. It was suggested about five decades ago [Parker, 1961; Roberts and
Schulz, 1968] that electrons can be subject to scattering by means of bounce resonance with hydrodynamic
waves, when the wave frequency is equal to multiples of the bounce frequency. Recently, the idea of bounce
resonance was brought up again [Shprits, 2009] to provide a potential mechanism for the observed global
coherent variability of the radiation belt electron flux [Kanekal et al., 2001; Shprits et al., 2007]. Specifically, dur-
ing geomagnetic storms, the radiation belt electron fluxes may vanish rapidly at all L shells, indicating that
electrons at all equatorial pitch angles are effectively scattered by waves. This is also true for equatorially mir-
roring electrons with equatorial pitch angles #eq = 90∘. However, those electrons are generally immune to the
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gyroresonance interaction, which requires a finite electron velocity component along the field line to satisfy
the gyroresonance condition unless the relativistic mass correction is sufficient to reduce the electron gyrofre-
quency to match the wave frequency. However, when the relativistic correction factor is relatively small, it
appears the electrons with #eq = 90∘cannot be resonantly scattered by the waves.

Equatorial noise [Russell et al., 1969], also known as fast magnetosonic waves or ion Bernstein mode waves
[Gary et al., 2010], are electromagnetic emissions confined within a few degrees of the equator [e.g., Santolík
et al., 2004; Hrbáčková et al., 2015], occurring above the proton gyrofrequency fcp and below the lower hybrid
resonance frequency fLHR. The dominant component of the wave’s magnetic field component is along the
background magnetic field, with average amplitudes of ∼50 pT [Ma et al., 2013]. Much more intense magne-
tosonic waves have also been reported with amplitudes up to ∼1 nT [Tsurutani et al., 2014]. These waves can
be excited with nearly perpendicular wave normal angles (and hence near-perpendicular propagation) at
multiples of the ion gyrofrequency, by ring velocity distributions of ring current energetic protons [e.g.,
Perraut et al., 1982; Meredith et al., 2008; Chen et al., 2010, 2011]. It has been shown that these waves undergo
Landau resonance interaction responsible for electron acceleration [Horne et al., 2007] and additional transit
time scattering [Bortnik and Thorne, 2010; Li et al., 2014]. Their frequencies typically range from a few hertz
to 100 Hz, and the low-frequency portion of the wave band is close to the bounce frequency of energetic
electrons above hundreds of keV [Shprits, 2009]. In this paper, we investigate the characteristics of bounce
resonances of equatorially mirroring energetic electrons with equatorial noise. We will address this problem
using a test particle approach, described in section 2, and present simulation results in section 3. In section 4,
a nonlinear oscillation model is proposed to explain the nature of bounce resonance. The dependence of
bounce resonance on various parameters is examined in section 5, followed by conclusions and a discussion
in section 6.

2. Test Particle Model

The effects of electron bounce resonance due to magnetohydrodynamics (MHD) waves was previously inves-
tigated using the guiding center approach [Roberts and Schulz, 1968]. This is appropriate since the Larmor
radius of electrons of interest is very small compared with the wavelength of MHD waves. For the fast mag-
netosonic waves above the proton gyro frequency fcp, the wavelength can be comparable or even less than
Larmor radius of relativistic electrons investigated in this study. For this reason, we adopt a set of relativis-
tic test particle equations following Bortnik and Thorne [2010], where the particle motion is averaged over
gyrophase but the finite Larmor radius effect remains. Taking advantage of the fact that equatorially mirroring
electrons of interest are far from the conditions of gyroresonance and harmonic gyroresonances, the adopted
equations for the electron bounce motion in the presence of a monochromatic magnetosonic wave can be
reduced to

dpz

dt
= −

p2
⟂

2meB0$
%B0(z)
%z

+ sin&
(

J1(')
eBw

x p⟂

$me
− J0(')eEw

z

)
g(() (1)

dp⟂
dt

=
p⟂pz

2meB0$
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− sin&J1(')(eBw
x vz + eEw

y )g(() (2)

d&
dt

= ! − kzvz (3)

dz
dt

= vz, (4)

where t is time, z is the distance along the field line measured from the equator with the Northern (Southern)
Hemisphere taken as positive (negative), pz and p⟂ are components of the electron’s momentum paral-
lel and perpendicular to the background magnetic field, vz is the parallel component of electron velocity,
e is the elementary charge, me is the electron rest mass, and $ is the electron Lorentz factor. The first
terms of equations (1) and (2) on the right hand sides represent the adiabatic effect of the background
dipole magnetic field, where B0(z) = Bdiph(()∕L3 is the magnetic field strength along a dipole field line
having an L shell of L, Bdip = 0.31 × 10−4 T is the surface magnetic field at the Earth’s equator, and
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h(() =
√

1 + 3 sin2 (∕ cos6 ( representing latitudinal variation. For the dipole magnetic field, latitude ( is
related to z through dz∕d( = LRE cos (

√
1 + 3 sin2 ( (the Earth radius RE = 6.37 × 106 m). The effect of

the monochromatic wave (of angular frequency !) is represented by the second terms of equations (1)
and (2) on the right hand sides, where Ew

i and Bw
i are ith component of wave electric and magnetic field

at the equator, respectively, and g(() denotes the latitudinal variation of the wave amplitude. Without loss
of generality, we assume wave vector k is contained in the x-z plane so that k’s perpendicular component
k⟂ = kx > 0 and kz > 0, and also assume the wave amplitude for the parallel component of wave magnetic
field Bw

z is positive so the x component amplitude of wave magnetic field Bw
x = −k⟂∕kzBw

z . The components
of k and the amplitude of the wave electric field components Ew

x , Ew
y , and Ew

z can be determined by the cold

plasma dispersion relation for magnetosonic waves. ' = k⟂p⟂
eB0

is the argument of Bessel functions J0 and J1,
representing the ratio of the Larmor radius to the wavelength of the magnetosonic wave and therefore the
effect of finite Larmor radius. & in equations (1)–(3) represents the wave phase along the field line (or expe-
rienced by the center of the electron’s gyromotion). It should be noted that although equatorially mirroring
electrons are out of gyroresonances with the magnetosonic wave, Landau resonance is still possible when
perturbed, i.e., where vz becomes finite and matches !∕kz (equation (3)). Since we are interested in the equa-
torially mirroring electrons, the initial conditions are set to be z|t=0 = 0, pz|t=0 = 0, and &|t=0 = &0 (denoting
initial wave phase at the equator) and p⟂|t=0 is determined by electron kinetic energy (KE).

To set up the nearly perpendicularly propagating magnetosonic wave fields, we specify a wave normal angle
) near 90∘and a wave frequency above the proton gyrofrequency !cp and below the lower hybrid reso-
nance frequency !LHR. Given !, ), and wave magnetic amplitude Bw , the cold plasma dispersion relation
in a magnetized electron and ion plasma for magnetosonic waves, which are the low-frequency extension
of right-handed polarization whistler mode waves, is used to obtain the wave vector k and wave ampli-
tude of electric and magnetic field components. For nearly perpendicular propagation, wave magnetic field
fluctuation (Bw

z ) is dominant in the parallel component and therefore possesses linear polarization. Since
magnetosonic waves are fairly confined near the equator, we adopt a Gaussian latitudinal distribution of
wave amplitude,

g(() = exp(−(2∕(*(w)2) (5)

with half width *(w = 3∘ centered at ( = 0∘. The calculation of the dispersion relation requires a plasma
density distribution (Ne), which is reasonably assumed to be constant along the field line because of wave
equatorial confinement.

For the case of electrons moving in the purely dipolar magnetic field, i.e., there is no wave field (the second
right-hand side terms of equations (1) and (2) vanish), the electron’s motion in z is analogous to the 1-D motion
in a potential well with effective potential Φeff(z)=+B0(z)∕$2, where the magnetic moment + is an adiabatic
invariant and $ is conserved. Figure 1a shows an example of such potential along the magnetic field line of
L = 6.6 and + value corresponding to electrons of kinetic energy KE=300 keV with the equatorial pitch angle
#eq = 90∘. The minimum value of Φeff at z = 0 results in a periodic bounce motion about the equator along
the field line. This is also true for equatorially trapped electrons with #eq = 90∘ (i.e., locating at the potential
minimum) when subject to infinitesimal perturbation, and the motion along z is a harmonic oscillation with
bounce frequency !b given by

!2
b = +

$2me

d2B0(z)
dz2

|||||z=0

= +
$2me

9B0(z = 0)
(LRE)2

. (6)

Figures 1b and 1c show harmonic oscillations of latitude ( and local pitch angle #, respectively, for an elec-
tron with energy KE = 300 keV and equatorial pitch angle #eq = 89.9∘over the first five bounce periods
(Tb = 2,∕!b = 0.53 s, corresponding to a bounce frequency of !b = 11.3 rad/s). In the regime of small per-
turbation (|z∕(LRE)| << 1) of equatorially mirroring electrons, the amplitude of the latitude change Δ( and
the amplitude in pitch angle change Δ# are related simply through |Δ(∕Δ#| =

√
2∕3.

3. Simulation Results

For the test particle simulation, equations (1)–(4) are solved numerically. For the nominal case, we launch
electrons at the equator at L = 6.6 with an initial equatorial pitch angle #eq = 90∘and KE = 300 keV
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Figure 1. (a) Effective potential Φeff associated with electron motion along the field line as a function of z normalized by
LRE . (b) Latitude ( and (c) local pitch angle # for the bounce motion of electron with kinetic energy 300 keV and
equatorial pitch angle 89.9∘, as a function of time t normalized by the bounce period Tb.

(with a corresponding bounce period Tb = 0.53 s and bounce frequency !b = 11.3 rad/s), in a wave field with
Bw =50 pT, )=88∘, &0 =180∘ and varying wave frequency !. The equatorial proton gyrofrequency at L=6.6,
!cp =10.1 rad/s, slightly below the electron bounce frequency!b. We vary the magnetosonic wave frequency
! in the range from just above !cp to 6.5 !b. Each test particle run is carried out over 200 Tb (∼100 s). Figure 2
shows the response of the local pitch angle # for different wave frequencies (represented by different rows).
Clearly, much larger amplitude oscillations in # (away from 90∘) are obtained when the frequency ! matches
1!b (Figure 2a), 2!b (Figure 2c), and 3!b (Figure 2e) than when ! is away from multiples of bounce frequency
(Figures 2b, 2d, and 2f). The former cases illustrate the resonance between wave periodic forces and electron
periodic bounce motions that occurs when the bounce resonance condition ! = n!b is satisfied, where n is
an integer. The value of the equatorial pitch angle #eq can be seen by the lower envelope of the line plot of #.
Principal bounce resonance with ! = !b leads to #eq change of ∼10∘and harmonic bounce resonances with
! = 2!b and ! = 3!b result in #eq change of ∼5∘. Those bounce resonant responses also exhibit modulation
in oscillation amplitudes. When out of bounce resonance for !∕!b = 3∕2 (Figure 2b), 5∕2 (Figure 2d), and 7∕2
(Figure 2f ), the change is only <∼ 1∘. It is interesting to note that for this nominal case there is no resonant
response at ! = 4!b (Figure 2g) and higher harmonic frequencies (not shown).

To understand the nature of the bounce resonance, the time interval 10–40 Tb of the third harmonic resonance
(Figure 2e) is selected for detailed examination. Figure 3 shows (a) local pitch angle #, (b) magnetic moment
+ (blue line) and relativistic factor $ (green line), (c) Landau resonance parameter ! − kzvz , (d) wave phase &,
and (e) the ratio of wave frequency to instantaneous bounce frequency !∕!b. When the Landau resonance
parameter !− kzvz approaches 0, Landau resonance occurs, where wave phase & varies slowly (equation (3)),
and results in a net change in the electron parallel momentum pz (equation (1)). Over 10–20 Tb, # variation
shows two frequency components at !b and ! (=3!b); the amplitude at !b grows and the amplitude at 3!b

decays (Figure 3a). The variation becomes large and quasi-periodic with a single period Tb over 25–30 Tb, and
then later decays to smaller amplitude. The development of bounce motion away from the equatorial plane
has the following two consequences. First, the electron is able to mirror off the equator, and experience the
fine spatial variation of wave amplitude along the field line. The spatial confinement of the magnetosonic
waves results in a small net change (< 0.2%) of magnetic moment + (Figure 3b). This effect is also known as
transit time scattering [Bortnik and Thorne, 2010]), which can cause additional diffusion in energy and pitch
angles. Second, the large amplitude of # variation away from 90∘allows a finite vz , which, when sufficient,
enables the Landau resonance (! − kzvz = 0) as shown in Figure 3c. Occurrence of Landau resonance can
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Figure 2. Local pitch angle as a function of time normalized by bounce period Tb, for electrons launched at the equator
at L = 6.6 with initial pitch angle 90∘and energy 300 keV, driven by a monotonic magnetosonic wave with varying wave
frequency f = (a) 1.0 fb, (b) 1.5 fb, (c) 2.0 fb, (d) 2.5 fb, (e) 3.0 fb , (f ) 3.5 fb, and (g) 4.0 fb.

also be seen in the wave phase & plot (Figure 3d). The change in & reverses during Landau resonance (e.g.,
the highlighted red lines in Figure 3d near 23, 26, and 33 Tb,), while away from Landau resonance, & complete
three cycles (6,) within one bounce period (e.g., the highlighted red line near 13–16 Tb with 18, variation in
& over three bounce periods).

The effects of the magnetosonic waves on the electron include bounce resonance, transient scattering, and
Landau resonance. Bounce resonance with equatorial mirroring electrons enables the latter two effects.
Although Landau resonance also can produce a net change in pz , the growth of pz amplitude (and thus #
amplitude and $) is predominately due to the bounce resonance, because Landau resonance, if any, can only
be effective over a small fraction of the bounce period. Landau resonance and transient scattering occur
simultaneously when bounce oscillation is large, but it is transient scattering instead of Landau resonance
that is mainly responsible for the small net change of + in Figure 3b.
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Figure 3. Detail analysis of the third harmonic bounce resonance example shown in Figure 2e. (a) Local pitch angle,
(b) magnetic moment normalized by initial value +∕+0, (c) ! − kzvz , (d) wave phase &, and the ratio of wave frequency
to electron bounce frequency. The horizontal dash line in Figure 3c denotes the line of Landau resonance. The black
asterisks denote times when the electron crosses the equator from south to north. For viewing purpose, four segments
of time intervals are highlighted as red lines.

It is important to note that the bounce frequency !b is not a constant value when large-amplitude bounce
motion develops. The black asterisks of Figure 3e denote the ratio!∕!b. Instantaneous!b is evaluated numer-
ically by calculating the time difference of every two successive equatorial crossings, when the electron is
traveling toward the north. There exists a nonlinear tuning of !b so that !∕!b can slightly deviate from the
initial value of 3. We will explain the source of this nonlinear tuning in the next section. This nonlinear turn-
ing of the bounce frequency is important for growth, decay and saturation of the bounce motion amplitude.
The wave phases &eq at equatorial crossing from south to north are marked by black asterisk symbols in
Figure 3d. &eq also represents phase difference at these equatorial crossing between wave phase and bounce
phase&b of z in the bounce oscillation, where&b is defined as 0 at the equator moving toward to the north,,∕2
at the north mirror point, and , at the equator moving toward the south, and 3,∕2 at the south mirror point.
The oscillation amplitude grows when &eq near 3,/2, saturates (neither grows nor decays) when &eq near 0 or
2,, and decays when &eq near ,∕2. When the oscillation amplitude is small (10Tb < t < 20Tb), there is no tun-
ing of bounce frequency, so that &eq remains constant (3,∕2) after each bounce motion (because !∕!b is an
integer) and oscillation amplitude grows. When the oscillation amplitude is large (20Tb < t < 30Tb), nonlinear
tuning leads to an increase of !∕!b (not an integer) so &eq increments after each bounce period and the
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amplification due to bounce resonance reduces. Continuing tuning near 30Tb results in the shifting of
&eq toward ,∕2, and oscillation amplitude decays until nonlinear tuning vanishes. This nonlinear tuning
mechanism explains oscillation amplitude modulation shown in Figure 2.

4. Simplified Nonlinear Oscillation Model

Equations (1)–(4) described in the previous section contains various physical components: relativistic motion,
adiabatic effect due to the background magnetic field, the finite Larmor radius effects, transient scattering
associated with latitudinal distribution g((), bounce resonance and Landau resonance (the !−kzvz term). For
understanding bounce resonance, a simplified nonlinear oscillation model in z is proposed here. We assume
that magnetic moment + and electron energy $ are conserved to the first order of pz . The two assumptions
are reasonable because both vary only by <∼0.2% (Figure 3b) and the relative change of $ due to the change
of pz is a second-order term for equatorially mirroring electrons. Therefore, the governing equation for the
bounce motion reduce to

dpz

dt
= −+

$
%B0(z)
%z

+ sin(!t − kzz + &0)
(
−J0(')eEw

z −
2J1(')
'

Bw
z kz+
$

)
g(() (7)

The reduced equation is equivalent to equations (10) and (11) of Roberts and Schulz [1968] in the limit of ' = 0
(J0(') = 1 and 2J1(')

'
= 1) when the finite Larmor radius effect disappears .

Rewriting in nondimensional quantities using z̃ = z∕(LRE), t̃ = !bt, k̃z = kzLRE , and !̃ = !∕!b yields a
nonlinear oscillation model of a second-order differential equation for z̃:

d2z̃∕dt̃2 + z̃ + 39
18

z̃3 = −Ã sin(!̃t̃ − k̃z z̃ + &0)g(() (8)

z̃|t̃=0 = dz̃∕dt̃|t̃=0 = 0 (9)

where the linear term and the nonlinear cubic term on the left-hand side arise from the adiabatic change, the
first two terms on the left-hand side are responsible for harmonic bounce oscillations, and the nonlinear sine
term on the right-hand side is driven by the wave with initial wave phase at the equator &0 and normalized
wave amplitude at the equator,

Ã =
Bw

z kzLRE

9B0

2J1(')
'

+
Ew

z J0(')eLRE$
9+B0

. (10)

The normalized Ã contains the contribution from Bw
z and Ew

z and the effect of finite Larmor radius. For the
parameters investigated in this paper, the term due to Bw

z is generally about 2 orders of magnitude greater
than the term due to Ew

z , meaning that oscillating magnetic mirror force of the magnetosonic wave dominates
over the wave parallel electric force.

When |k̃z z̃| ≪ 1, linearization of equation (8) yields

d2z̃∕dt̃2 + z̃(1 − Ãk̃z cos(!̃t̃ + &0)) = −Ã sin(!̃t̃ + &0) (11)

where only linear terms of z̃ were kept. This linear equation is a driven Mathieu equation, which permits unsta-
ble solutions (i.e., bounce resonance solution) when !̃ is 2∕q, where q is an integer. When resonance occurs,
the z̃ amplitude increases and then nonlinear terms cannot be ignored and the linear equation is not appli-
cable. One consequence of nonlinear effect is fine tuning of bounce frequency, resulting in the change of
relative phase between wave and bounce motion and the net effect of bounce resonance, because the change
(growth, decay, and saturation) of oscillation amplitude depends on the phase difference (as illustrated in
Figure 3). There are a few sources of nonlinear tuning, when z̃ amplitude is large. First, the change of magnetic
moment + and electron energy $ can lead to the change of !b (equation (6)). But the change of both appear
to be small. Second, the cubic term might lead to an increase of !b by O(z̃2). Third, the nonlinear sine term
can cause an increase or decrease of !b, depending on the wave phase at the equator &eq. The third term
associated with the sine term is a major factor for tuning bounce frequency, which is to be proven below.
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Figure 4. The dependence of (a) bounce frequency !̃b and (b) temporal change of the amplitude of z̃ oscillation on the
initial equatorial wave phase &eq0.

Using the nominal parameter set in previous section, we obtain Ã = 4.4 × 10−3 and k̃z = 1.55 × 102. We solve
for time period T̃b to complete a bounce using equation (8) without the cubic term,

d2z̃∕dt̃2 + z̃ = −Ã sin(!̃t̃ − k̃z z̃ + &eq0)g(() (12)

where &eq0 represents the initial wave phase at the equator and is assumed to be variable. Initial conditions
are set to be z̃|t̃=0 = 0 and dz̃∕dt̃|t̃=0 = 0.04, where the value of 0.04 corresponds to the oscillation amplitude
over 25–30 Tb in Figure 2. Figure 4 shows the calculated bounce frequency !̃b(= 2,∕T̃b) and temporal change
of oscillation amplitude $b as a function of&eq0. $b is defined asΔz̃peak∕T̃b, whereΔz̃peak is the difference of the
two z̃ peaks over two successive bounce periods. For &eq0 near ,, !̃b > 1 so that &eq increases when returning
to the equator after one bounce period, and $b ∼ 0 meaning that oscillation amplitude does not change. For
&eq0 near ,∕2, !̃b ∼ 1, and $b > 0, corresponding to the case of steady growth in amplitude, while for &eq0

near 3,∕2, !̃b ∼ 1, and $b < 0, corresponding to the case of steady decay in amplitude. By using this nonlinear
oscillation model (equation (12)), the obtained instantaneous !b are shown by red circles in Figure 3e, which
matches well with !b obtained previously (black asterisks), that is, nonlinear tuning of bounce frequency is
reproduced using the nonlinear sine term. We conclude that nonlinear tuning is mainly caused by the wave
term, and amplitude modulation shown in Figure 3 is explained by the&eq0 dependence of bounce frequency
and of amplitude growth rate $b.

5. Frequency Response and Dependence on Wave and Particle Parameters

To measure the response of the equatorially mirroring electrons to the magnetosonic wave, we introduce
the following three quantities: (1) the largest change in the equatorial pitch angle |Δ#eq|max, defined by the
difference between the initial #eq (=90∘) and the minimum #eq, |Δ#eq|max = 90∘ − min(#eq); (2) the largest
latitude reached, (max; and (3) the largest change in electron energy, |Δ$|max = max($)− $0. Note that $0 is the
initial $ when #eq = 90∘and ( = 0∘ and is also the minimum value of $ . In other words, any perturbation of
#eq will yield an increase in |pz| and thus an increase in electron kinetic energy, because + and thus p⟂ at the
equator are quasi-invariant.

Using these definitions, we examine the dependence of the electron response on the initial wave phase &0.
We use the same parameters as the nominal case except now we not only vary wave frequency!with spacing
of 0.1!b and but also vary &0 from 0∘to 360∘with spacing of 15∘(total 24 values of &0). Figure 5a shows the
response of |Δ#eq|max as a function of ! and &0. It is clearly shown that there are effective bounce resonances
up to the third harmonic and no resonance is found beyond 3!b. While the bounce resonances at !b and 2!b
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Figure 5. (a) Electron equatorial pitch angle change |Δ#eq|max as a function of wave frequency f normalized by the
electron bounce frequency fb and initial wave phase &0. (b) the frequency response of |Δ#eq|max for 24 different values
of &0 (black lines) and its average over &0 (red line). (c and d) Similar to Figure 5b except for the frequency responses of
|Δ$|max and (max respectively.

show little dependence of &0, the responses at third harmonic bounce resonance depend on &0, where little
|Δ#eq|max is produced near &0 ∼ ,∕2 or 3,∕2. One may interpret the sensitivity to the change of &0 as being
an indication of a chaotic system. Slight changes in&0 while keeping the same initial conditions (z|t=0 = 0 and
pz|t=0 = 0) are equivalent to slight changes in the initial conditions while keeping &0 constant, with proper
time-shifting. Any significant change of |Δ#eq|max due to slight change of &0 (e.g., the third harmonic) means
that the responses are dramatically different when the initial condition is perturbed, indicating the chaotic
nature of the nonlinear system.

For the chosen wave parameters, the wave phase speed along the field line direction vphz = !∕kz = 2.4 ×
105 m/s, and thus electrons initially with KE = 300 keV and #eq = 90∘will require at least |Δ#eq|max of 2.4∘in
order to satisfy the Landau resonance condition, !− vzkz = 0. This condition can be realized by the nonlinear
oscillation driven by the same magnetosonic waves at frequencies near ∼n!b (n = 1,2, and 3) that are in

CHEN ET AL. BOUNCE RESONANCE 6522



Journal of Geophysical Research: Space Physics 10.1002/2015JA021174

bounce resonance with electrons. Similarly, the change in #eq is also sufficient for resonance with
higher-frequency chorus waves, which requires a few degree deviation of #eq from 90∘ [Shprits, 2009].

Figure 5b shows line plots of the frequency responses of |Δ#eq|max for 24 different values of&0 (the black lines)
and the frequency responses of |Δ#eq|max averaged over &0 (the red dashed line). The effect of bounce reso-
nance is also seen in the frequency responses of |Δ$|max and (max, shown in Figures 5c and 5d, respectively. As
|Δ#eq|max increases, so do |Δ$|max (corresponding to KE change of |Δ$|max ×511 keV) and (max. As mentioned
above, the developed large-amplitude oscillation is a quasi-harmonic oscillation at !b, and thus, the relation

among |Δ$|max, (max, and |Δ#eq|max can be established: (max =
√

2
3
|Δ#eq|max and |Δ$|max = $2

0−1

2$0
|Δ#eq|2

max

under the assumption of + conservation. The former is linearly proportional to |Δ#eq|max, while the latter is
proportional to |Δ#eq|2

max, indicating the relative change of electron energy is 1 order of magnitude less than
the change of #eq for those equatorially mirroring electrons in bounce resonance. These relations can be read-
ily verified by the black lines of Figures 5c and 5d. For example, for the bounce resonance at!b, |Δ#eq|max =11∘
(from Figure 5b), and therefore, based on analytical relations above, (max = 5.2∘and |Δ$|max =0.0176. The ana-
lytic (max value is identical to corresponding numerical result shown in Figure 5d while the analytical |Δ$|max

is about twice the corresponding numerical |Δ$|max value (= 0.0073 in Figure 5c), which is due to small but
finite change of + mainly associated with transit time scattering.

To investigate the dependence of the electrons’ responses on the wave and particle parameters, we will com-
pare the frequency responses of the average |Δ#eq|max over the initial wave phase (as shown by the red dashed
line in Figure 5b). |Δ#eq|max is used because responses of energy change |Δ$|max and responses of latitude
change (max are related to |Δ#eq|max. The average of |Δ#eq|max is done over the initial wave phase &0, because
&0 is a random parameter independent of electrons and because |Δ#eq|max might depend on&0. The response
of the average |Δ#eq|max shown by the red line in Figure 5b is selected as nominal case with electron initial
kinetic energy KE = 300 keV, plasma density Ne = 50 cm−3, wave normal angle ) = 88∘, wave peak ampli-
tude Bw = 50 pT and L = 6.6. Compared with the nominal parameters, we calculate the frequency response
of the average |Δ#eq|max by increasing and decreasing one of the five parameters at a time while keeping the
remaining four the same as the nominal case. In total, 11 sets of the five parameters are considered. Figure 6
shows the dependence of the frequency response of the average |Δ#eq|max on these five parameters (KE, Ne,
), Bw , and L shell), with the nominal response shown by black dashed lines in each panel. There are a few
common features among the cases.

1. Bounce resonance occurs preferentially at the first three harmonics, and no resonance occurs above 4 !b.
2. Bounce resonance occurs over a narrow range of ! near n!b (n = 1, 2, 3), i.e., not necessarily at exact n!b.
3. Bounce resonance at!b occurs for all the cases except for the case of KE = 0.1 MeV (the red line of Figure 6a)

and the case of L = 5 (the blue line of Figure 6e). Both exceptions have smaller !b, which is below !cp, and
therefore, resonance at ! = !b is not considered because of the constraint of !>!cp.

4. Bounce resonance at the second and third harmonics does not always occur. Examples include the case of
KE = 1 MeV in Figure 6a, the case of Ne = 10 cm−3 in Figure 6b, and the case of Bw = 20 pT in Figure 6c, and
the case of L = 5 in Figure 6e.

5. The response tends to be weaker for high harmonics and diminishes at fourth harmonic and above.

The dependence of the bounce resonance effect on these parameters can be understood through the
nonlinear oscillation model introduced in equations (8) and (9) in section 4. Clearly, the solution of oscilla-
tion in z̃ is determined by two key parameters Ã and k̃z . For examining how the effect of principal bounce
resonance depends on Ã and k̃z , we set !̃ = 1 and &0 = , and solve equations (8) and (9) to obtain the
maximum z̃max over t̃ < 400, at different combinations of Ã and k̃z . Ã varies from 10−4 to 10−2 and k̃z

ranges from 1 to 103, to be representative of magnetospheric conditions. z̃max can be readily translated
to |Δ#eq|max through the relation in the bounce motion. The result of |Δ#eq|max as a function of Ã and k̃z

is shown in Figure 7a. Similarly, |Δ#eq|max for !̃ = 2, 3, and 4 are obtained and shown in Figures 7b–7d,
respectively. For the principal bounce resonance !̃ = 1, large |Δ#eq|max (> 2∘) occur in most of Ã and k̃z

regime. For harmonic bounce resonance !̃ = 2, 3, and 4, there is a sharp boundary in Ã and k̃z separating
weak and strong response. The condition for strong response at higher harmonic resonance are more strict
(favoring higher Ã and k̃z). The threshold for resonances at !̃ = 2, 3, and 4 can be roughly approximated by
the black dash lines, Ãk̃0.82

z = 9.04 × 10−3, Ãk̃0.88
z = 0.13, and Ãk̃z = 3.5 in Figures 7b–7d, respectively.
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Figure 6. Dependence of the frequency response of the average |Δ#eq|max on (a) electron kinetic energy KE, (b) plasma
density Ne, (c) wave normal angle ), (d) wave amplitude Bw at the equator, and (e) L shell value. The nominal case is
shown by the black dashed lines with KE = 300 keV, Ne = 50 cm−3, ) = 88∘ , Bw(( = 0) = 50 pT, and L = 6.6.

It is also worthwhile noting that |Δ#eq|max of resonant response tends to have little dependence of wave
amplitude and that although the threshold for effective resonances favors higher k̃z , |Δ#eq|max tends to
decrease for higher k̃z .

To compare with results from equations (1) and (2) for the 11 cases above, we calculate corresponding Ã and
k̃z and mark the cases having |Δ#eq|max ≥ 2∘with &0 = , and !∕!b = 1 in the Ã – k̃z map in Figure 7a as
black pluses and the other cases as open circles. Similar procedures are done with !∕!b = 2 in Figure 7b,
with !∕!b = 3 in Figure 7c, and with !∕!b = 4 in Figure 7d, respectively. Clearly, the nonlinear oscillation
model predicts the effectiveness of resonant response at different harmonic frequencies, and the depen-
dence on KE, Ne, ), Bw , and L shell can be narrowed down to the dependence on the two key parameters Ã
and k̃z . Increasing kinetic energy tends to have larger Larmor radius (and thus ') and effectively reduce Ã,
which explains diminishing response at 2!b and 3!b for the case of KE = 1 MeV (the red line of Figure 6a).
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Figure 7. The response of |Δ#eq|max for !̃ = (a) 1, (b) 2, (c) 3, and (d) 4, as a function of Ã and k̃z of Equation (8). The
black dashed lines in Figures 7b–7d, representing Ãk̃0.82

z = 9.04 × 10−3, Ãk̃0.88
z = 0.13, and Ãk̃z = 3.5, approximate the

boundary of |Δ#eq|max = 2∘in the response for !̃ = 2, 3, and 4, respectively. Black pulses denote the cases among
the 11 cases in Figure 6 having |Δ#eq|max ≥ 2∘, while white circles denote those cases having |Δ#eq|max < 2∘ .

Increasing Ne tends to increase k⟂ and kz , and thus increase Ã and k̃z . This accounts for diminishing responses
at 3!b for the case having the lowest Ne = 10 cm−3 (the blue line of Figure 6b). Increasing wave normal angle
) results in the decrease of k̃z and therefore the disappearance of resonances at 3!b for the case of )=89∘(the
red line of Figure 6c). Since k̃z is sensitive to ), a change of 1∘in ) can lead to significantly different frequency
response. This suggests that an accurate information for wave normal angle is needed for quantifying the
effect of bounce resonance. Increasing wave amplitude Bw leads to the increase of Ã. The case of the lowest
amplitude Bw = 20 pT is not sufficient for producing effective resonance at 3!b (the blue line in Figure 6d).

Figure 8. Dependence of |Δ#eq|max response on the half latitudinal
width of wave amplitude *(w .

Finally, decreasing L leads to the increase
of background magnetic field B0 and
thus the reduction of Ã. This explains no
response at 3!b for the case of L = 5 (the
blue line in Figure 6e). For all the 11
cases considered, none of them lie in the
regime (above the black dashed line of
Ãk̃z =3.5 in Figure 7d) where resonance at
4!b becomes effective.

We also check the dependence on the half
latitudinal width *(w of the wave ampli-
tude. Figure 8 shows |Δ$|max as a function
of wave frequency using the nominal set

CHEN ET AL. BOUNCE RESONANCE 6525



Journal of Geophysical Research: Space Physics 10.1002/2015JA021174

of parameters for *(w = 2∘, 3∘, and 4∘. The responses are almost identical except for a slight difference at
!= 3!b. All the three cases produce effective bounce resonance for the first three harmonics and no resonant
effect at higher harmonics. So we conclude that although |Δ$|max might vary slightly with *(w , it is combined
Ã and k̃z , instead of *(w , that is crucial when determining whether a harmonic bounce resonance is effective.

6. Conclusions and Discussion

We have investigated the characteristics and dynamics of the interactions of equatorially mirroring energetic
electrons with monochromatic magnetosonic waves using a test particle simulation and demonstrated that
large-amplitude oscillations in the equatorial pitch angle can be produced due to bounce resonances. We also
explored the dependence of the bounce resonance effects on various parameters, including electron kinetic
energy, plasma density, wave normal angle, frequency, amplitude and initial phase, and L shell. Our principal
conclusions are summarized as follows:

1. Bounce resonances with magnetosonic waves introduce nonlinear oscillations of equatorially mirroring
electrons, which can enable the removal of those electrons out of the equatorial plane and also enable
Landau resonance with the same waves and other wave emissions.

2. A nonlinear oscillation model is proposed to characterize the effects of magnetosonic waves on the
equatorially mirroring electrons, with two key parameters Ã and k̃z .

3. Bounce resonances occur when ! ∼ n!b and are effective for the first few harmonic frequencies.
Threshold for higher harmonic resonances requires higher Ã and k̃z .

4. The bounce oscillation amplitude caused by bounce resonance is sensitive to wave normal angle and k̃z of
magnetosonic waves.

Bounce resonant interactions with the magnetosonic waves can reduce #eq by a few degrees for initially equa-
torially mirroring electrons. This can effectively kick those electrons out of the equatorial plane over a few
bounce periods. As a result, these electrons can obtain a sufficient vz , which enables Landau resonance with
magnetosonic waves and likely resonance with chorus waves too [e.g., Tao et al., 2012]. Bounce resonance
produces an oscillation but cannot by itself remove these electrons directly into the loss cone. Subsequent
Landau resonance can lead to pitch angle and energy scattering and thus eventually the loss.

Bounce resonance might also lead to a reduction of the electron phase space density at#eq=90∘, thus creating
a minimum near 90∘in the equatorial pitch angle distribution. Zhao et al. [2014] recently reported a peculiar
pitch angle distribution of relativistic electrons (several hundreds of keV) from Van Allen Probes observation
in the inner radiation belt and the slot region, showing minima at 90∘near the magnetic equator. We specu-
late that this might be the consequence of bounce resonance with equatorial noise during inward transport,
through which electrons encounter the equatorial noise that provides bounce resonances. We will examine
carefully simultaneous wave and particle measurement from Van Allen Probes for evidence of such bounce
resonant effect.

Another consequence is scattering associated with bounce resonance. When nonlinear oscillation depends
on wave phases (e.g., Figure 5a), bounce scattering can occurs, leading to electron scattering over a finite
range of equatorial pitch angles#eq near 90∘. The range of#eq is limited by |Δ#eq|max. As illustrated in Figure 5a,
the sensitive dependence on wave initial phase during the third harmonic bounce resonance indicates the
chaotic nature of the bounce resonances while little dependence on wave initial phase for the first two har-
monic resonances indicates the regular motion of the bounce resonances. The criteria to separate the regular
and chaotic motion is beyond the scope of the current study and will be explored in the future studies. We
have simplified the wave forces by considering a monochromatic wave. These will be also improved in the
future by implementing multiple wave model.
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