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Abstract

The human gut microbiome has been linked to numerous digestive disorders, but its metabolic 

products have been much less well characterized, in part due to the expense of untargeted 

metabolomics and lack of ability to process the data. In this review, we focused on the 
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rapidly expanding information about the bile acid repertoire produced by the gut microbiome, 

including the impacts of bile acids on a wide range of host physiological processes and diseases, 

and discussed the role of short-chain fatty acids and other important gut microbiome–derived 

metabolites. Of particular note is the action of gut microbiome–derived metabolites throughout the 

body, which impact processes ranging from obesity to aging to disorders traditionally thought of 

as diseases of the nervous system, but that are now recognized as being strongly influenced by 

the gut microbiome and the metabolites it produces. We also highlighted the emerging role for 

modifying the gut microbiome to improve health or to treat disease, including the “engineered 

native bacteria” approach that takes bacterial strains from a patient, modifies them to alter 

metabolism, and reintroduces them. Taken together, study of the metabolites derived from the 

gut microbiome provided insights into a wide range of physiological and pathophysiological 

processes, and has substantial potential for new approaches to diagnostics and therapeutics of 

disease of, or involving, the gastrointestinal tract.

Keywords

Microbiome; Metabolome; Bile Acid; Engineered Native Bacteria; Short-Chain Fatty Acid; 
Irritable Bowel Syndrome; Gut–Brain Axis

Reductions in data acquisition costs of DNA sequencing1 and mass spectrometry 

(MS), together with improved bioinformatics pipelines,2–4 have led to an expanded 

number of studies performing functional characterization of the gut microbiome. These 

functional characterization methods, going beyond the taxonomic inventories traditionally 

produced by microbiome studies, include shotgun metagenomics (characterizing total 

DNA), metatranscriptomics (RNA), metaproteomics (proteins), and metabolomics (small 

molecules). Although these new “omics” approaches have expanded our understanding 

of how the gut microbiome can potentially affect host physiology, they largely remain 

correlational and hypothesis generating.

Omics studies have shown that the gut microbiome contributes to the pathogenesis of 

numerous diseases.5,6 However, it is unclear whether most therapies that target microbiome 

composition detectably impact the gut microbiome or are robust to the interpersonal 

diversity and plasticity of the microbiome in human hosts.7,8 Furthermore, many different 

gut microbiota configurations can lead to the same functional result,6,9 suggesting that 

microbial functions may be more important than composition. To develop a better 

mechanistic understanding of the microbe–host relationship and more effective microbiome-

mediated therapies, a different approach stressing the functional modulation of the gut 

microbiome is necessary.10,11

In contrast to functional characterization methods that elucidate the functional potential 

of the gut microbiome (ie, shotgun metagenomics and metatranscriptomics), there are 

2 omics approaches that provide direct insight into the functional outputs and activity 

of the gut microbiome: metaproteomics and metabolomics. In this review, we focused 

on the latter. Research into the gut microbiome’s metabolome allowed us to understand 

mechanistically how the gut microbiome affects the etiology and pathogenesis of 

gastrointestinal (GI) disorders. Analyzing the response of the gut microbiome metabolome 
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to defined interventions and using them to build predictive models that apply to individual 

patients, including re-engineering their microbiomes through the introduction of modified 

native bacteria,12 holds enormous potential. Because the intersection of the microbiome and 

metabolome is a large topic and recent reviews covered many specific areas (referenced 

throughout), in this review, we focused primarily on the role of bile acids (BAs) (Figure 

1) and on diseases other than inflammatory bowel disease (IBD), which has been covered 

well in other recent reviews.13,14 Our goal was to provide an appreciation of recent works 

that link the microbiome and metabolome in the gut and relate these metabolites to disease 

processes throughout the body.

Key Microbially Mediated Metabolites

Two specific classes of bacterial metabolic functions appear repeatedly as important across 

many studies and physiological systems: BA biotransformations (Figure 1) and short-chain 

fatty acid (SCFA) production (Figure 2); the former is generating tremendous interest at 

present due to the unexpected discovery through untargeted MS of many new BAs over 

the past 2 years.15–20 Both BAs and SCFAs have highly disparate diurnal fluctuations, 

particularly BAs in the ileum,21 and are potential entrainment signals of intestinal and 

hepatic circadian rhythms.22–24 Thus, they can have an outsized role in a wide array of 

homeostatic and physiological processes, as well as conditions in which circadian rhythms 

have a pathophysiological role, including cancer, aging, inflammation, and metabolism.25–27 

However, these diurnal variations are poorly accounted for in the published studies and 

could contribute to often contradictory results in the role of BAs in disease processes, as 

well as affect the replication of studies. Nevertheless, the importance of BAs and SCFAs 

as environmental, nutritional, and microbiome-mediated signals cannot be overstated. We 

therefore focused mainly on new discoveries involving BAs, reviewed SFCAs due to their 

importance, then provided a brief overview of some of the other important metabolites and 

references to recent reviews that cover these topics in more detail.

Bile Acids

Unconjugated and secondary BAs form a key link between luminal bacteria and numerous 

host metabolic processes. BA signaling pathways, including the nuclear hormone receptor 

farnesoid X receptor (FXR)28 and the G protein-coupled BA receptor 1 (TGR5),29 are 

potent metabolic regulatory pathways that are highly conserved between mouse models 

and humans (Table 1). BAs also activate other nuclear hormone receptors, including 

pregnane X receptor, constitutive androstane receptor, vitamin D receptor, liver X receptor 

α and β (LXRα/β, NR1H3), RORγt, and G-protein-coupled receptors, including S1PR2,14 

broadening their functional reach. FXR is most highly expressed in the liver, ileum, and 

kidneys, and to a lesser extent in peripheral tissues, such as the heart, ovary, thymus, eye, 

spleen, immune cells, neural tissue, and testes.30 Although FXR has broad impacts on 

host metabolic processes, its most well-studied roles relate to its regulation of primary BA 

synthesis from cholesterol by the liver.28 Although FXR regulation of lipid and glucose 

regulation have been better described in the previous decade,30–33 its influence on other 

physiological systems, such as the blood–brain barrier,34,35 and reproduction36,37 have only 

recently been described. TGR5 is found in intestinal L cells, immune cells such as Kupffer 
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cells, and muscle and brown adipose tissue (BAT).30 In addition, TGR5 is highly expressed 

in the gallbladder, lungs, spleen, liver, bone marrow, and placenta.30 Broadly, BA-activated 

TGR5 in peripheral tissues is most well studied for its role in modulating host energy 

homeostasis.

The BA signaling cycle is initiated in the liver (Figure 1). Conjugated BAs, synthesized 

from cholesterol and released by the liver, are vital for micelle formation, lipid solubilization 

and absorption, and cholesterol homeostasis.38,39 BAs are produced in the liver by de 

novo conversion of cholesterol to cholic acid (CA) and chenodeoxycholic acid (CDCA) by 

CYP7A1. In rodents, CDCA is further metabolized to muricholic acids.30 Before excretion 

into bile, BAs are primarily conjugated with taurine or glycine in humans. Recently, many 

new conjugated BAs and microbes that conjugate or deconjugate them have been discovered 

through the combination of untargeted MS-based metabolomics, genome sequencing, and 

laboratory experiments on individual strains.15–20

Because of their detergent properties, BAs can damage bacterial cell walls and modify the 

microbiome by restricting growth or survival of specific bacterial taxa. Many gut bacterial 

species in the proximal small intestine are BA-resistant or have developed strategies to 

modify BAs to protect themselves.39,40 Bile salt hydrolase (BSH), an enzyme specific to 

bacteria, deconjugates BAs and thereby weakens their detergent properties.41 Although the 

host has a dedicated BA transporter for conjugated BAs, the apical sodium–BA transporter, 

deconjugated BAs do not have transporters and are reabsorbed with more difficulty through 

passive diffusion.30 Thus, bacterial deconjugation of primary conjugated BAs promotes 

the excretion or retention of deconjugated BAs in the lumen to the distal colon, where 

other bacteria can use them as substrates. Deconjugated BAs become available for further 

biotransformations by other bacteria, yielding secondary BAs, including deoxycholic acid 

(DCA), ursodeoxycholic acid (UDCA), and lithocholic acid.40,42 Although much of this 

hydrophobic pool of secondary BAs is excreted, enough is absorbed through passive 

diffusion to change the serum BA pool and act as signaling molecules.43 These BAs act 

as agonists (eg, DCA and lithocholic acid for TGR5 and CDCA for FXR) and antagonists 

(eg, tauro-β-muricholic acid [TβMCA] for FXR) to BA receptors (Figure 1). Deconjugated 

and secondary BAs are absent in germ-free mice,44–47 and heavily decreased in antibiotic-

treated, microbiome-depleted mice,48 proving that the microbiome produces them.

BAs have a profound impact on many aspects of mammalian physiology and disease, 

not limited to the GI tract. In metagenomic studies of human populations and 

mouse models, BSH is potentially protective against obesity, dysmetabolism, and many 

other physiological disturbances.49–51 Conjugated, deconjugated, and secondary BAs 

serve as important signaling molecules to affect many physiological processes,30,38 

including cholesterol,52,53 lipid,54 and glucose homeostasis54–61; blood–brain barrier 

permeability34; neuroinflammation62,63; circadian rhythms22,24,64; and neurodegeneration.65 

The distribution and variety of BA receptors (ie, FXR, TGR5, vitamin D receptor, PAR, 

constitutive androstane receptor, RORγt, and SP1R2) among mammalian cells suggests 

that BAs could have an even greater role in host physiology than initially imagined.30 BA 

signaling pathways are viable therapeutic targets that should be investigated for a variety of 
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diseases, including IBD, pancreatic insufficiency in cystic fibrosis, and nonalcoholic fatty 

liver disease (NAFLD) in humans.
15,18,19,66

Glucose homeostasis is a key physiological process affected by BAs. BAs can affect insulin 

resistance through FXR and TGR5.43 FXR modulates, either directly or through fibroblast 

growth factor (FGF-15 or FGF-19 in humans), scores of genes that are involved in metabolic 

homeostasis.67 For example, murine studies demonstrate that FXR modulates the release 

of glucagon-like peptide 1, an insulinotropic GI hormone/incretin that regulates insulin 

secretion68; gluconeogenesis in liver and muscle by reducing expression of phenol pyruvate 

carboxy kinase, glucose-6-phosphatase, and fructose-1,6-biphosphatase69; and browning of 

white adipose tissue (WAT).70 In addition, murine studies demonstrate that, compared with 

conventionally raised wild-type (WT) mice fed a high-fat diet (HFD), FXR knockout mice 

fed HFD do not experience diet-induced weight gain or hepatic steatosis, demonstrating 

the requirement of FXR signaling in mediating diet-induced dysmetabolism and glucose 

dysregulation.60 TGR5 is found in intestinal L cells, immune cells such as Kupffer cells, 

and muscle and BAT. Fat stored in BAT is used to generate heat. BAT is most abundant in 

humans during infancy and decreases with age. In L cells, TGR5 activation primarily affects 

glucose homeostasis through the secretion of glucagon-like peptide 1. In addition, TGR5 

affects overall metabolic homeostasis by increasing energy expenditure in BAT and muscle 

by converting thyroxine to triiodothyronine without changing circulating thyroid hormone 

levels.43 Nevertheless, the relationship of the gut microbiome and TGR5 signaling is not 

completely understood.

BA signaling is affected by diet. Although FXR has been investigated in different animal 

models of dysmetabolism, studies have generated conflicting results and the role of BAs 

in metabolism remains controversial.30 FXR-deficient mice on a normal chow diet develop 

hyperglycemia and hypercholesterolemia.61,71 However, as mentioned above, FXR-deficient 

mice on HFD are protected against obesity and exhibit improved glucose homeostasis.56,60 

Diet and the time of sample collection possibly contribute to the different phenotypes 

observed in these experiments.30 A more extensive review on the effects of diet on BA 

signaling in mice can be found in Li and Chiang.72

Sex is an important biological variable that affects BA signaling. Mouse and human studies 

have repeatedly demonstrated sexual dimorphism in fecal, serum, and gallbladder BA 

composition.73–77 In mice, females have a significantly larger total BA pool, as well as 

higher serum concentrations of total, primary, and secondary BAs.73,74 Given the structural 

similarity between BAs and sex steroids, physiologically significant cross-talk may occur 

between these 2 systems. Some androgens, such as androsterone, can activate FXR receptors 

and influence BA synthesis and composition.78 Conversely, BAs can influence plasma 

testosterone concentrations to even affect host fertility.79,80 It is unclear whether BAs affect 

female reproductive hormones and fertility. Nevertheless, these studies suggest that the gut 

microbiome can influence fertility and reproduction either directly through FXR and TGR5 

or through BA cross-reactivity with sex hormones.

There are active research areas investigating synthetic ligands for BA receptors such 

as FXR and TGR5. However, studies have arrived at differential results. For example, 
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2 murine studies published in the same year found opposite effects when investigating 

the effects of intestine-specific FXR agonism vs antagonism by synthetic ligands on 

obesity-related metabolic dysfunction; in 1 study, intestine-specific FXR agonism with 

fexaramine improved obesity-related metabolic dysfunction, such as weight gain and insulin 

resistance,70 whereas in the other study, intestine-specific FXR antagonism with glycine-β-

muricholic acid reportedly had the same therapeutic effects.81 Whether these differences are 

the result of different techniques (eg, mode of administration) or off-target effects is unclear 

and warrants additional investigation. A thorough review on natural and synthetic ligands 

that have been developed to target FXR can be found in Jiang et al82 and Carotti et al.83

Short-Chain Fatty Acids

SCFAs are produced when gut microbes ferment dietary fibers into butyrate, acetate, and 

propionate in the large intestine (Figure 2).84 SCFAs can also be derived from microbial 

fermentation of protein, although this process primarily gives rise to branched chain amino 

acids.85 Conversion of dietary fiber into SCFAs involves enzymatic reactions distributed 

broadly among gut bacterial taxa (see Koh et al85 for a thorough review). The pathways 

and precursors that gut microbiota use to derive SCFAs are adaptable to nutritional 

changes, enabling maintenance of essential SCFA levels despite nutritional variation. For 

example, butyrate can be synthesized by protein via the lysine pathway, although it is most 

commonly formed by acetyl coenzyme A precursors via the acetyl coenzyme A pathway.86 

Furthermore, an in vitro study demonstrated that fecal-derived microbiota communities 

from human donors adaptably produce SCFAs in response to incubation with different 

nondigestible carbohydrates. Specific bacteria were stimulated in response to particular 

carbohydrate substrates and, overall, SCFA production was reproducible in response to these 

substrates, despite interindividual differences in gut microbiota composition.87

SCFAs have a broad impact on numerous host processes, ranging from physiology to 

gene expression. There are 2 main signaling mechanisms through which SCFAs affect 

host physiology: histone deacetylase (HDAC) inhibition and G-protein coupled receptor 

signaling. SCFAs, particularly butyrate and propionate, function as HDAC inhibitors and 

have the potential to broadly impact gene expression in the host. HDAC inhibitors can affect 

host immune responses and have anti-inflammatory and immune-suppressive effects and 

are therefore believed to improve intestinal health. Thus, harnessing the HDAC inhibitory 

effects of SCFAs for cancer therapeutics is an area of active investigation.88–90 Butyrate is 

the main energy source for colonocytes and is present in high concentrations in the distal 

lumen, but also protects against inflammation and colorectal cancer (CRC), in part by acting 

as an HDAC inhibitor.91 However, butyrate at high concentrations can, counterintuitively, 

promote cancer rather than suppress it; cancerous colonocytes use glucose as their primary 

energy source and accumulate butyrate in order to inhibit HDACs that would otherwise 

impose normal regulation of gene expression. Accordingly, butyrate concentration was 

3-fold higher in nuclear extracts of cancerous cells compared with noncancerous cells.92 

Furthermore, dietary fat can influence the efficacy of butyrate in preventing tumorigenesis. 

For example, rats fed butyrate in combination with fish oil had increased apoptosis and 

decreased cell proliferation in colonocytes compared with rats fed butyrate in combination 

with corn oil.93 Thus, butyrate functions in a cell-type–specific and environment-specific 
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fashion that is highly dependent on concentration, time of exposure (ie, time in tumorigenic 

process), and interaction with dietary fat.

SCFAs also serve as ligands for numerous G-protein coupled receptors, thereby affecting 

a wide range of host metabolic processes. Acetate is present in high concentrations in 

peripheral circulation. Thus, it is capable of reaching peripheral tissues and generally results 

in beneficial metabolic effects in WAT, brain, and liver. WAT is the predominant form of fat 

in the body and primarily serves the role of energy storage. In WAT, increased acetate levels 

are associated with decreased lipolysis and decreased insulin-mediated fat accumulation. 

Two of acetate’s key receptors are GPR43 and GPR41, which can also detect other SCFAs 

(Figure 2). GPR43 has been better characterized and in vitro studies have demonstrated 

that its activity is associated with leptin secretion, adipogenesis, and antilipolytic activity in 

WAT.94–96 However, these experiments did not correctly reflect physiological conditions 

in vivo. GPR43 knockout mice on a normal chow diet become obese compared with 

WT mice on the same diet, and mice with adipose-specific overexpression of GPR43 are 

lean, even on an HFD.97 However, obesity-protective effects in the adipose-specific GPR43 

overexpression murine model are reversed when mice are given antibiotics, suggesting a role 

for the gut microbiome in mediating this effect. Stimulation of GPR43 in WAT, but not liver 

or muscle, suppresses insulin signaling and improves glucose and lipid metabolism.97 The 

effects of GPR41 in WAT are less well characterized, but GPR41 knockout mice are leaner 

than WT mice. However, this effect is absent in germ-free GPR41 mice,98 again suggesting 

a role for the microbiome in mediating its effect. Propionate and butyrate promote beneficial 

metabolic effects via intestinal gluconeogenesis, which signals through a gut–portal–brain 

neural circuit to increase satiety and improve glucose tolerance and insulin sensitivity.99 A 

more extensive review of SCFA–G-protein coupled receptor signaling can be found in Koh 

et al.85

SCFA levels can be influenced by diet. The food that an individual consumes affects the 

composition of their gut microbiome, and thus has an influence on their unique SCFA 

profile.100 Dietary fiber (in the form of arabinoxylan-oligosaccharides) increases SCFAs in 

general, and butyrate, in particular, restores beneficial microbes and lowers toxic microbial 

metabolites.101 A study completed on human samples collected postmortem demonstrates 

that the cecum and proximal colon have the highest concentration of SCFAs, with a 

decreasing gradient toward the distal colon.84 SCFAs are absorbed and drain into the portal 

vein. Of the three main SCFAs, acetate is the most abundant in peripheral circulation.84 

Butyrate and propionate are present at lower concentrations in peripheral circulation, as 

butyrate is used by colonocytes and propionate is metabolized in the liver.

Affected Diseases

Nonalcoholic Fatty Liver Disease

NAFLD presents as a spectrum of liver diseases that can generally be grouped into 

the following categories: nonprogressive simple steatosis and nonalcoholic steatohepatitis 

(NASH), a progressive form of NAFLD that is characterized by inflammation and 

hepatocyte injury.102 Although nonprogressive simple steatosis carries little risk of 

advancing to progressive stages, NASH greatly increases the risk of irreversible liver 
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damage and rise in hepatology-related mortality risk from cirrhosis and hepatocellular 

carcinoma.103 Human studies associate NAFLD with compositional changes in the gut 

microbiome, which have recently been reviewed extensively.104,105 Furthermore, a recent 

study in participants from a prospective twin and family cohort, including 98 probands 

along the entire NAFLD spectrum and 105 first-degree healthy relatives, demonstrated the 

efficacy of using gut microbiome–derived signatures to detect NAFLD cirrhosis.106 Previous 

research demonstrated that BA homeostasis is dysregulated during NAFLD.107,108 For 

example, compared with healthy controls, patients with NASH have higher levels of total 

fecal BAs, CA, CDCA, and BA synthesis, and an increased ratio of primary to secondary 

fecal BAs.107 In a study of individuals with biopsy-proven NAFLD, total unconjugated 

serum BAs were lower in individuals with NASH and fibrosis, and total serum BAs are 

elevated during fibrosis when compared with individuals with NAFLD.108 Dysregulation 

of BA homeostasis along the NAFLD spectrum can affect disease pathophysiology via 

dysregulation of host metabolic processes that are modulated by the BA receptors FXR 

and TGR5. Importantly, FXR modulates BA,28 glucose and lipid homeostasis,30–33 as 

well as immune responses and insulin signaling.30 TGR5 plays an important role in 

energy homeostasis, insulin signaling, and inflammation.30 As these metabolic processes 

are perturbed along the NAFLD spectrum, disruptions in BA homeostasis may perturb 

these metabolic processes via deregulation of their receptors. The synthetic BA derivative 

obeticholic acid, an FXR agonist, is being investigated in phase III clinical trials for the 

treatment of NAFLD and NASH fibrosis.109 FXR is a key regulator of BA homeostasis 

that also regulates inflammation and lipid homeostasis.30 The expression of Fxr is down-

regulated during NASH.110 Overall, these findings suggest that NASH may promote a 

luminal environment with a greater proportion of BAs that function as FXR antagonists, but 

are likely to also interact with other receptors. Thus, bacterial biotransformations that could 

remove these antagonists, such as BSH, could play a therapeutic role in treating NASH.

Functional Gastrointestinal Disorders and Irritable Bowel Syndrome

Despite recent advances in understanding the role of the gut microbiome in functional 

GI disorders, there have been few advances in the ailments that are responsible for 

the most common causes of GI ambulatory visits, including abdominal pain, chronic 

diarrhea, and chronic constipation. These functional GI disorders are likely heterogeneous, 

grouped together based on shared symptoms rather than endoscopic, radiologic, or blood 

biomarker diagnostic tests.111,112 The underlying pathophysiology of these disorders has 

been elusive, mainly because of the heterogeneity of the disease, few animal models, 

and poor physiological means to subclassify patients.113 Functional GI disorders involve 

changes in gut motility, visceral hypersensitivity, intestinal permeability, and intestinal 

secretions, all of which can affect, and be affected by, the gut microbiome.114 Recent gut 

microbiome studies suggest a role for intestinal microbial environments and alterations of 

luminal metabolite profiles.115–118 The potential mechanisms by which luminal products, 

some of them bacterial, could affect these physiological pathways are being vigorously 

investigated.119,120 A recent review of the role of microbiome in animal models of visceral 

pain provides an excellent summary.121
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Animal models show a clear relationship between the gut microbiome and host 

phenotype and potentially implicate BAs. Experiments demonstrate that the gut microbiome 

transplanted from patients with irritable bowel syndrome (IBS), a subset of patients with 

functional GI disorders, into gnotobiotic mice can modulate intestinal permeability in a 

manner that is dependent on proteolytic activity of the transplant.122 Gnotobiotic mice 

humanized with high proteolytic activity IBS microbiota from patients with post-infection 

or constipation-predominant IBS (IBS-C) had greater permeability than those colonized 

with low proteolytic activity IBS microbiota.122 In addition, gut microbiome transplanted 

from patients with IBS-C can modulate pain-sensation thresholds,123 and gut microbiome 

transplants from patients with IBS-C and diarrhea-predominant IBS (IBS-D) can modulate 

gut transit time.124,125 IBS-D is associated with increased colonic BA exposure, and a 

rodent study found that BA-induced exacerbation of visceral hypersensitivity is mediated by 

FXR.126

Human studies in IBS have been limited by their cross-sectional design and, at times, lack 

of subtype classification or assessment of symptoms at the time of sample collection.127,128 

Although there is no consensus among these studies, they point to several metabolomic 

changes in patients with IBS, particularly BAs. Changes in fecal BAs were profiled in a 

study designed to investigate how BA levels relate to symptoms, gut microbiome changes, 

and diet in women with IBS. Compared with healthy controls, 40% of women with IBS 

had significantly increased secondary conjugated fecal BAs, including glycodeoxycholic 

acid, taurodeoxycholic acid, and glycolithocholic acid.129 Further subset analysis separating 

patients into IBS-C, IBS-D, or IBS-mixed demonstrated high secondary conjugated fecal 

BAs in women with IBS-D and IBS-mixed. Other investigators suggest that a small subset 

of patients with IBS-D have BA malabsorption (determined by retention of radiolabeled 

selenium-75 homocholic acid taurine) and that fecal metabolomics could identify this 

subset.130 Primary BAs act as detergents and have antimicrobial properties that can 

potentially damage bacterial cells by breaking down their membrane bilayer, thus restricting 

the survival or growth of specific bacterial taxa.131 This could explain the reduced diversity 

observed in the microbiome of patients with IBS-D.132 Two studies of patients with 

IBS-D confirmed an increase in total fecal BAs and decrease in FGF-19 in a subset 

of approximately 25% of patients.133,134 Fecal levels of primary BA (not total fecal 

BAs) may better identify individuals with BA malabsorption.134 This change in BAs was 

correlated to an increase in Clostridium spp. The addition of IBS-D fecal microbiota or 

Clostridium scindens increased fecal BA excretion and decreased FGF-15 in mice, whereas 

treatment with vancomycin led to the discovery of opposite results.133 Thus, the presence 

of Clostridium spp may identify a subset of patients with IBS-D that respond to specific 

microbiome-mediated treatments.

The most comprehensive study on the role of the gut microbiome and its metabolites on 

functional GI disorders is a longitudinal study on subsets of patients with IBS and healthy 

controls.117 This study used a multi-omic analysis of stool samples (ie, metagenomics, 

3-method metabolomics), colon biopsies (ie, 16S ribosomal RNA, gas chromatography–

MS metabolomics, host transcriptomics, methylome), and serum samples (ie, liquid 

chromatography–MS metabolomics) combined with dietary and disease assessments, biopsy 

and serum cytokine analysis, and host physiological measurements from the biopsy samples. 
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Because certain BAs can affect intestinal fluid secretion in humans,135 the authors analyzed 

the fecal BA pool in their patient subsets. Patients with IBS-D had higher amounts and 

patients with IBS-C had lower amounts of unconjugated primary BAs, especially CA 

and CDCA, in the fecal BA pool, compared with healthy controls. Another case-control 

study found similar changes in patients with IBS-D.136,137 BA changes in the stool 

increased intestinal secretion, as assessed by ionic fluxes across the epithelium in an Ussing 

chamber, supporting a role for elevated BA levels in increasing fluid content in patients 

with IBS-D. Although BA malabsorption may play an important role in driving intestinal 

secretion in patients with IBS-D, this study suggests that lack of biotransformation of 

unconjugated primary BAs to secondary BAs may be an important contributing factor to the 

pathophysiology of this disease. The integration of the microbiome and metabolomic data 

with transcriptomic and epigenetic characterization of the same patients revealed potentially 

novel host–microbiome interactions that may be contributing to IBS. These correlational 

results require further investigation with more mechanistic studies in bedside-to-bench 

research programs.

BAs were not the only metabolites that were linked to disease pathogenesis. Physiological 

studies of colon samples from patients with IBS-C demonstrated a decrease in epithelial 

ion transport and water secretion, with a concomitant decrease in the SCFAs propionate, 

butyrate, and acetate.117 Other investigators have demonstrated this change in SCFAs in 

cross-sectional studies.132 SCFAs can modulate gut motility by affecting the GI serotonergic 

pathway, primarily by promoting transcription of Tph1 in enterochromaffin cells.138,139 

Conversely, in patients with IBS-D, investigators observed an increase in tryptophan and 

tryptamine, 2 bacterial metabolites that can activate gut serotonin receptors and increase 

fluid secretion140 are also increased in patients with IBS-D compared with healthy 

controls.117

Colorectal Cancer

BAs are intimately involved in CRC, the fourth most commonly diagnosed cancer and the 

fourth most common cause of cancer deaths in the United States.141 Diets rich in foods 

that have high quantities of animal protein and fat combined with low quantities of fiber 

are strongly associated with CRC risk.142,143 These diets resulted in elevated levels of fecal 

secondary BAs, particularly DCA.144,145 The role of BAs as tumor promoters has been 

tested using a variety of experimental settings.146 More than 85% of CRCs arise from a 

mutation in the adenomatous polyposis coli gene.147 Recent studies found a relationship 

between the BA receptor FXR and APC.146 Increased FXR activity is inversely correlated 

with CRC progression146,148,149; loss of FXR in the APCMin/+ mouse model of CRC 

leads to the development of intestinal tumors.148 Suppression of FXR with its antagonist 

TβMCA150 leads to CRC progression; reduction of TβMCA leads to FXR activation and 

CRC suppression.151 In mice, TβMCA can be reduced by increasing luminal BSH activity, 

a bacterial enzyme that deconjugates BAs,49 suggesting possible microbial function that can 

be involved in tumor progression, as well as playing a therapeutic role in CRC suppression 

in humans.
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Gut–Brain Axis

Dysbiosis has been associated with changes in social, communicative, stress-related, and 

cognitive behaviors in murine models.152,153 Human studies have linked perturbations in 

the gut microbiome and autism spectrum disorders,154 major depression,155 and Parkinson’s 

disease (PD).153 There is growing evidence that microbiome–neuroimmune interactions can 

mediate behavioral and physiological abnormalities observed in murine models, specifically 

through global changes in brain transcriptome, altered microglial maturation and function, 

and integrity of the blood–brain barrier.156,157 However, it is not clear what agents, and 

through what mechanisms, these effects are mediated.

BAs play a particular role in neuroinflammation. Both FXRα and TGR5 receptors are 

found in brain tissue, including microglia and neurons. UDCA, a secondary BA created 

by bacteria, and its hepatic taurine-conjugated (tauroursodeoxycholic acid [TUDCA]), 

are immunomodulatory agents that affect microglia. UDCA inhibits the production of 

the pro-inflammatory cytokine interleukin-1β and nitric oxide, and can counteract a 

neurotoxin’s effects on neuronal death and synaptic changes in vitro.158,159 In mouse 

models of neuropathologies, TUDCA reduced microglial activation, decreased inflammatory 

cytokines, and preserved neuronal integrity,65,160 Although most studies on BAs and 

neuroinflammation have used UDCA or its glycine or taurine conjugates, it is not clear 

whether other BAs, especially the recently discovered BAs, have similar effects. The UDCA 

immunomodulatory effects are mediated through the TGR5 receptor.63 In fact, a TGR5 

agonist also reduced microglia activation and proliferation and reduced proinflammatory 

cytokines.161 However, other receptors by which BAs can affect neuroinflammation have 

also been proposed.62 Moreover, because BAs and TGR5 activation play an important 

role in GI immune system and epithelial barrier function,162–165 their disruption of the 

gut barrier, with the ensuing inflammatory reaction, has significant consequences on brain 

health.163

Recent studies in autism spectrum disorders and PD demonstrate this relationship between 

epithelial integrity, BAs, and brain pathology. In a mouse model of autism spectrum 

disorders, the pathological behavioral phenotype was associated with impaired epithelial 

barrier function and deficient BA deconjugation.166 However, it is not clear whether the 

increasing luminal BSH activity could improve the autism spectrum disorders phenotype. 

This is currently being investigated with probiotics with BSH activity in mouse models and 

humans. For PD, alteration of secondary BAs is a key finding in patients with Parkinsonism 

compared with controls.167–169 In addition, TGR5 agonism alleviates the inflammatory 

neurodegeneration in a mouse model of PD170 and TUDCA, a TGR5 agonist, improves 

motor symptoms in a mouse model of PD.171 Better methods to more mechanistically 

study the relationship between bacterial BA modifications and neuroinflammation and 

neuropathological diseases are necessary to move this field forward.

Aging

Age-related disorders, including inflammation, neurodegeneration, frailty, and intestinal 

disorders, are accompanied by significant shifts in the composition of the gut 

microbiome.172–177 The aging microbiome is characterized by a decrease in saccharolytic 
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potential, a decrease in genes vital to SCFA production, and an increase in proteolytic 

functions.178 However, neither the underlying mechanisms causing these compositional 

shifts nor the metabolic consequences to host health are well understood. Either fecal 

transplantation or cohousing with younger mice restores normal gut immune function and 

improves healthspan.179 Thus, the gut microbiome is a promising therapeutic target for 

age-related dysfunction and prompts the hypothesis that changes in host health are driven 

by systemic changes in the microbial composition or function rather than a single bacterial 

family.

Aging-related dysmetabolism could be mediated by altered luminal BA signaling, itself 

mediated by functional changes in the gut microbiome. In humans, aging affects the 

serum BA pool,76,180 with higher levels of taurocholic acid associated with a shorter 

lifespan independent of any association with cardiovascular disease or cancer.181 The 

mechanisms driving these phenotypic changes and how they contribute to longevity are 

unknown, but these changes may be due to reduced reabsorption, increase in BA synthesis, 

modulation from the gut microbiome, or a combination of these. Gut microbes can further 

metabolize taurocholic acid into hydrogen sulfide and DCA, which are genotoxins and 

tumor promoters, respectively, and could intensify aging symptoms in the host.182 Although 

1 study found FXR down-regulation contributes to age-related dysmetabolism, global Fxr 
knockout mice showed decreased adiposity with age and improved insulin sensitivity.183,184 

Although these studies demonstrated that FXR signaling plays an important role in age-

related dysmetabolism, it is not yet clear whether bacterial modulation of BAs affects host 

metabolic health through these signaling mechanisms, or if modification of the microbiome 

could modulate aging. However, random forest analyses do show that the microbiome 

overall is strongly associated with aging, and that a readout of the microbiome can even 

predict the age of an individual.176,185 In addition, healthy aging is correlated with continual 

drift toward compositional uniqueness and an increase in microbially derived circulating 

amino acid derivatives, such as phenylacetylglutamine and p-Cresol sulfate. Moreover, 

aging results in a microbial pattern that favors the depletion of core species, such as 

Bacteroides.186 It is important to determine whether deviations from this overall trend are 

correlated with outcomes, such as whether people with microbiomes and/or metabolomes 

that resemble those of younger individuals for their chronological age are healthier, and 

whether these outcomes can be manipulated.

Future Outlook and Conclusions

Despite the investment of effort and money, microbiome-mediated therapies, such as 

fecal microbiome transplantation, probiotics, prebiotics, fecal capsules, and engineered 

live bacterial therapeutics, are still limited in their use and efficacy for human digestive 

diseases.187–190 Better functional understanding of not only microbiome compositional 

changes associated with a disease, but also the functional implications of these 

compositional changes, can potentially lead to interventions that bypass the microbiome 

itself and act on receptors that these secondary agents modulate. Current human studies 

have not been designed to elucidate whether the gut microbiome could account for sex 

and race differences in the prevalence of various diseases. This will require additional, 

well-designed studies once potential mechanisms from animal studies or larger clinical 
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trials are identified. Although major advances have been made in the utilization of multi-

omic approaches to functionally characterize the gut microbiome, substantial improvements 

are still needed in the field to improve data interpretation and application in the context 

of human health and disease. To understand the precise mechanisms by which the gut 

microbiome contributes to digestive diseases, significant challenges in tracing the specific 

bacterial origin of microbially produced metabolites will need to be overcome. Advanced 

analytical techniques are being developed that integrate multiple omic data sets to trace the 

source of microbially produced metabolites and identify key metabolites associated with 

disease states.

The discovery of more than 100 new conjugated BAs and microbes that conjugate or 

deconjugate them demonstrates the complex and ever-evolving nature of characterizing 

the impact of the gut microbial metabolome on human health and disease.15,191 Newly 

identified BAs include phenyl-alanocholic acid, tyrosocholic acid, and leucocholic acid, 

which were discovered by analysis of untargeted metabolomics of 29 organs of mice 

colonized by a normal microbial community in comparison with data from germ-free 

mice.15,191 These BAs were discovered through the application of molecular networking, 

which enabled the discovery of MS fragmentation spectra to annotated spectra. Molecular 

networking is a strategy in which similarities between MS/MS spectra are computed, 

then visualized as a network to find different but related molecules. In this case, the 

MS/MS spectra of the new conjugates were similar to glycocholic acid, but the glycine 

had been substituted with the different amino acids. Synthesis confirmed that the BAs were 

indeed conjugated to cholate and not the expected muricholate, the dominant BA in mice. 

These BAs were found at a higher frequency in samples from human subjects with IBD 

or cystic fibrosis than from control samples from the American Gut project.15 NAFLD 

is highlighted in Wang et al,19 when the phenylalanine conjugate of DCA matched the 

most significantly differing spectra between human subjects with NAFLD and controls. 

Furthermore, a recently developed reverse metabolomics strategy identified 62 novel BA 

metabolites, which were confirmed to be produced by gut bacteria, to be associated with 

IBD.18 Overall, the implications of these new discoveries are only in the early stages and 

will take decades to fully appreciate.

Many additional bacterial metabolites, such as niacin, trimethylamine N-oxide, branched 

chain amino acids, indolimines, and bacterially produced succinate, to name a few, affect 

host physiological processes. Although these compounds have not yet been as well studied 

as BAs and SCFAs, they serve as a reminder that bacterial-produced metabolites are 

powerful signaling molecules and we are still in the infancy of understanding how the 

host interprets luminal secondary metabolites as environmental and dietary signals. Niacin 

(vitamin B3) treatment protects against HFD-induced obesity and is accompanied by 

decreased de novo lipogenesis, increased WAT/BAT thermogenic activity, and decreased 

intestinal absorption of cholesterol, triglycerides, and free fatty acids in WT, but not the 

niacin receptor GPR109A knockout mice.192 Trimethylamine N-oxide, which is purported to 

promote chronic diseases, such as atherosclerosis, is a downstream product of bacterial 

conversion of carnitine and choline-containing compounds (often found in red meats) 

into trimethylamine.193 Although still mechanistically poorly understood, the association 

of trimethylamine N-oxide with the risks of cardiovascular disease has been the object 
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of rigorous investigation. Branched chain amino acids are important signaling molecules 

produced by mammalian hosts as well as luminal bacteria.194 The activating pathways 

play important roles, such as protein synthesis and insulin secretion, thus becoming a 

candidate for understanding how their modulation by bacteria affects obesity, diabetes, 

and cancer. Recent studies demonstrate that indolimines, which are produced by the CRC-

associated bacterial species Morganella morganii, are capable of eliciting DNA damage.195 

In gnotobiotic mice, M morganii increases intestinal permeability, transcriptional patterns 

associated with abnormal DNA replication, and intestinal epithelial cell proliferation.195 

In addition, in a mouse model of CRC, indolimine-producing M morganii increased 

colonic tumor burden.195 Bacterially derived succinate plays an important role in 

intestinal inflammatory homeostasis, although is still incompletely understood.196 Although 

recognized as an intermediary of the tricarboxylic acid and potential pro-inflammatory 

agent, it is also substrate for GPR91/SUNCN1,197 which potentially has anti-inflammatory 

role in neural stem cells198 and macrophages,199 which could play a role in reversing 

the immunometabolic effects of obesity. Given that some metabolites (eg, secondary BAs 

and SCFAs) are only produced by bacteria, whereas others (eg, succinate and branched 

chain amino acids) are produced by both the host and bacteria, this makes the latter group 

much more difficult to study in the context of host–microbiome relationship. To further 

complicate matters, up to 70% of observed molecules resulting from an untargeted microbial 

metabolomic result from murine models remain functionally uncharacterized.15 Active 

collaboration between multiple scientific fields, including but not limited to physiologists, 

bioinformaticians, chemists, ecologists, and microbiologists, will be necessary to understand 

the contribution of microbe–host interactions and human health.

Over the past 5 years, several exceptional reviews have described the role of microbiota-

derived metabolites in IBD.13,14,200–204 These studies have identified BAs, SCFAs, 

tryptophan metabolites, and sulfur-containing metabolites as being potentially implicated 

in the pathogenesis of IBD. The importance of FXR and TGR5 receptors in affecting 

the pro-inflammatory phenotype of IBD is also well-described. In addition, in humans, 

the newly discovered Asp-CA, CDCA; citrulline-CA, CDCA, DCA; Glu CA, CDCA; His-

CA,CDCA; Ile/Leu-CA; Met-CA, Phe-CA, Thr-CA, CDCA; Trp-CA, CDCA, DCA; and 

Tyr-CA, CDCA are increased in IBD,15,18,205 thus demonstrating that our understanding of 

the role of BAs in the pathogenesis of IBD is still incomplete. Although compositional 

approaches investigating whether altering micro-organisms in patients with IBD can 

yield therapeutic benefits are ongoing, understanding the functional implications of these 

microbiome changes may yield an understanding of the pathophysiology that can lead to 

therapeutics that work directly on the host receptors and hence have less variability in their 

effects.

Fecal microbiota transplantation for ailments other than recurrent Clostridium difficile 
infections after antibiotic treatment have been disappointing and plagued with inconsistent 

results.206–210 Probiotics have not done better with inconsistent results between studies, 

despite a strong publication bias.211,212 This is likely because live bacterial products have 

difficulty surviving in the luminal environment. Host-mediated effects, such as peristalsis 

and innate and adaptive immunity, as well as competition for niche availability with native 

micro-organisms, prevent survival of strains exogenous to the luminal environment. This 
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is particularly apparent with patients who have received fecal microbiota transplants when, 

with few exceptions, the patient’s native microflora and largely, if not completely, displace 

the transplanted microbiota.213 Understanding how to make more reliable change to the 

gut microbiome to affect host physiology remains a topic of active investigation. This 

can only occur with better understanding of microbial niches, the interrelationship of micro-

organisms within the luminal environment, and the factors that promote engraftment. In 

addition, microbiome research focused on compositional approaches to develop potential 

therapeutic targets are hampered by a lack of understanding of what constitutes a “normal” 

microbiome. Thus, it is unclear whether most therapies that target microbiome composition 

have a detectable impact on the gut microbiome, or are robust to the interpersonal 

diversity and plasticity of the microbiome in human hosts.7,8 Furthermore, many different 

configurations of the microbiota can lead to the same functional result,9 suggesting that 

microbial functions should be the main target of therapeutic interventions. This will require 

a better mechanistic understanding of specific microbe–host relationships and interventions 

that stress the functional modulation of the gut microbiome.

Another exciting approach that has gained momentum in the past few years has been 

the rise of synthetic biology approaches to develop live bacterial products. Although 

engineered live bacterial products have been mainly tested under noncolonizing conditions 

(ie, gnotobiotic/germ-free mice, immunosuppressed mice, and antibiotic-treated mice), they 

hold tremendous potential in that they can not only lead to therapeutic drugs, but could 

also, in the form of engrafting beneficial bacteria, lead to agents with curative effect.8 

Most engineered bacteria, however, have difficulty provoking functional change in hosts 

with an intact microbiome, including humans. This has severely limited their use as a 

potential therapeutic for GI diseases. To understand whether a bacterial function in the gut 

lumen can convey, or disrupt, a phenotype, new tools to functionally manipulate the gut 

microbiome will be needed. Because gut bacteria can sense and manipulate the gut luminal 

environment, they are attractive for engineered cell-based therapeutics. Current research 

paradigms for engineered cell-based therapies engineer bacteria from laboratory strains, 

but these strains cannot effectively colonize conventionally raised WT hosts, limiting their 

use in mechanistic and therapeutic studies.8 There is a need for the development of novel 

engineered bacterial therapeutics that overcome these obstacles.214 Developing and using 

engineered native bacteria to knock-in specific genes and pathways expands our ability to 

functionally manipulate the gut microbiome.12 This technique can help us assess the validity 

of the assumptions of functional microbiome studies, and to finally resolve many hypotheses 

that have been generated by the associative, compositional-based microbiome research 

done over the last 2 decades. Engineered native bacterial therapeutics would not require 

tremendous resources to modify and would allow for long-term treatment of diseases, such 

as the GI diseases described in this review.
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Figure 1. 
Bacterial BA biotransformations. Cholesterol is converted to primary BAs in the liver. 

Primary BAs are conjugated with primarily taurine in mice or glycine in humans before 

being transported to the gallbladder for storage in the form of bile. On ingestion of 

dietary fats, primary conjugated BAs (within bile) are released into the gut lumen to aid 

lipid absorption. Bacteria with BSH deconjugate BAs, thereby weakening their soap-like 

qualities. This allows other microbiome members to further modify them into secondary 

BAs. Some secondary BAs can be transported back to the liver, where they are then 

conjugated. The interaction between the gut microbiome and BAs leads to modulation 

of FXR and TGR5 agonists and antagonists, and thus, allows the gut microbiome 

to affect host metabolism. T, taurine; G, glycine. In humans: TCA, taurocholic acid; 

TCDCA, taurochenodeoxycholic acid. In mice: TαMCA, tauro-α-uricholic acid. Created 

with BioRender.com.
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Figure 2. 
Microbially produced SCFAs and their key effects on host metabolism and digestive disease 

processes. Butyrate, acetate, and propionate are the 3 main SCFAs produced when gut 

microbes ferment nondigestible dietary fiber in the large intestine. The cecum and proximal 

colon have the highest concentration of SCFAs, with a decreasing concentration toward the 

distal colon. The key roles that the 3 main SCFAs play in processes related to digestive 

diseases and host metabolism that are highlighted in the article are described. GPR43, G 

protein–coupled receptor 43/free fatty acid receptor 2; GPR41, G protein–coupled receptor 

41/free fatty acid receptor 3); IGN, intestinal gluconeogenesis. Created with BioRender.com.
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Table 1.

Physiological Processes Affected by Bile Acid Receptor Signaling

Physiological 
process Receptors Action

Glucose 
homeostasis

FXR Intestinal FXR activation induces FGF-15/FGF-19 secretion, which increases glycogenesis and inhibits 
GLP-1 production30 Intestinal FXR modulates glucose absorption and postprandial glucose utilization215

TGR5 TGR5 increases GLP-1 release in intestinal L cells30 and increases energy expenditure in BAT and 
muscle43

BA homeostasis FXR Activation of hepatic FXR inhibits de novo BA synthesis in the liver30

FXR activation in the GI tract inhibits de novo BA synthesis in the liver via FGF- 15/FGF-19 signaling30

Inhibition of de novo BA synthesis increases hepatic cholesterol

Lipid homeostasis FXR FXR activation increases WAT browning70

TGR5 TGR5 increases energy expenditure in BAT through the TGR5-cyclic adenosine monophosphate-type 2 
iodothyronine deiodinase signaling pathway43

Insulin signaling FXR Pancreatic FXR positively regulates insulin synthesis and glucose-induced insulin secretion28

TGR5 Pancreatic TGR5 positively regulates insulin synthesis and glucose-induced insulin secretion216

Intestinal TGR5 activation improves glycemic control by GLP-1 release in intestinal L cells, which 
increases postprandial insulin secretion from pancreatic β cells216

Inflammation FXR FXR activation inhibits inflammatory cytokine production in the GI tract and improves intestinal barrier 
integrity217

TGR5 TGR5 activation protects against lipopolysaccharide-induced inflammation218
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