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Abstract 

Fourteen statistics novices were asked to solve three statistics 
word problems under standard (SGS) or reduced (RGS) goal 
specificity.  Later, they were asked to solve both structurally 
identical and structurally different transfer problems, and their 
structural knowledge of the domain was assessed.  Results 
indicate that participants in the RGS condition performed 
better on the structurally different transfer problems and had 
acquired structural knowledge more similar to that of a 
domain expert.  These results extend previous work in 
showing that the schematic knowledge acquired under 
reduced goal specificity training is more general than 
previously realized.  The goal specificity effect is discussed in 
terms of the attentional focus required to solve RGS and SGS 
problems. 

Introduction 
Most theorists agree that schemas form the basis for 
problem solving expertise.  Schemas are typically described 
as knowledge structures that represent generalized concepts, 
and are comprised of facts and procedures as well as the 
interrelationships among those facts and procedures.  With 
respect to problem solving, it is generally accepted that 
schemas allow: (1) problems to be classified according to 
the general principles required for their solution (Chi, 
Feltovich, & Glaser, 1981), (2) solution planning (Priest, & 
Lindsay, 1992), and  (3) use of forward-chained solutions 
(Koedinger, & Anderson, 1990), all of which are hallmarks 
of expertise.   Thus, an important issue for cognitive 
scientists and educators alike is to understand how schemas 
are learned. 

Cognitive Load Theory (CLT) has been advanced to 
describe the relationship between problem solving and 
learning (Sweller, & Levine, 1982; Sweller, 1988).  CLT 
posits that acquisition of schematic knowledge during 
problem solving is not automatic; rather, it requires a certain 
amount of cognitive resources.  Therefore, if a problem 
solving task or strategy demands a great deal of cognitive 
resources then learning will be impaired relative to a task or 
strategy that carries a low cognitive load. 

CLT has been used to explain the finding that reducing 
the specificity of goals enhances problem solving 
performance, otherwise know as the goal specificity effect.  
The goal specificity effect has been shown in maze learning 
(Sweller, & Levine, 1982), kinematics (Sweller, Mawer, & 
Ward, 1983), geometry (Ayres, 1993; Sweller, Mawer, & 

Ward, 1983), trigonometry (Owen, & Sweller, 1985; 
Sweller, 1988), and several more complex, dynamic tasks 
(Miller, Lehman, & Koedinger, 1999; Vollmeyer, Burns, & 
Holyoak, 1996).  According to CLT, problems with 
standard goal specificity (SGS), in which problem solvers 
are given values for several variables and asked to solve for 
the value of a specific unknown variable, encourages use of 
a means-ends strategy.  Under a means-ends strategy, 
problem solvers' attention is focused on reducing the 
difference between the current problem state and the goal.  
Moves are guided by the goal state, which requires solvers 
to keep in memory the goal, any subgoals, and the current 
problem state.  Because this task is cognitively demanding, 
it detracts from the learning of relations that are relevant for 
schema acquisition.  Reduced goal specificity (RGS) 
problems, in which problem solvers are asked to solve for 
the value of as many unknown variables as possible rather 
than the value of a specific unknown variable, eliminate the 
possibility of a means-ends strategy.  Instead, they require a 
forward-working strategy where moves are generated solely 
by the current problem state.  Because this strategy is less 
cognitively demanding (see Sweller, 1988), resources are 
available for learning the relations relevant to schema 
acquisition, namely, relations between the appropriate 
operators and problem states. 

According to CLT, training with RGS problems is more 
likely to lead to schema acquisition than training with SGS 
problems, where schemas are defined as knowledge of 
problem states and their associated operators.  However, this 
definition of a schema is limited in that it is only applicable 
to problems with similar structure as those encountered 
during training (i.e., problems that share, at least some of, 
the same problem states as the training problems).  We will 
call this the limited schema view.  Actually, it is difficult to 
distinguish this view from one that simply postulates the 
storage of exemplar solutions.  If one remembers previous 
problem solutions, they then have knowledge of problem 
states and their associated moves/operatorsÖthe same 
information contained in limited schemas.  Under this 
exemplar view, the goal specificity effect can be explained 
by the notion that RGS solutions are easier to remember 
than SGS solutions (since they require less cognitive load to 
perform, more resources are available to store them), and 
they are forward-working.  A third alternative is that 
schemas are acquired under RGS training and that they are 



more general than previously believed.  We will refer to this 
possibility as the general schema view. 

Most of the previous studies investigating the goal 
specificity effect cannot distinguish among these views, 
because they have predominantly looked at transfer 
performance on problems that were structural identical to 
training problems.  For example, Sweller, et al. (1983) 
showed that novices who practiced with RGS kinematics 
and geometry problems were more likely to work forward 
on structurally identical test problems than those who 
practiced with SGS problems.  Although consistent with the 
idea that RGS participants had acquired schemas (either 
limited or more general), this result is also compatible with 
the exemplar view.  Since novices tend to use means-ends 
analysis on standard problems, the solutions to SGS practice 
problems will be backward-chained, whereas since RGS 
problems eliminate the possibility of using a means-ends 
strategy, the solutions to RGS practice problems will be 
forward-chained.  Applying these stored exemplar solutions 
to test problems would result in forward solutions for RGS 
participants and backward solutions for SGS participants.  
Schematic knowledge is not required to account for this 
finding. 

If we assume that the greater cognitive load associated 
with SGS problems interferes with storage of exemplar 
solutions, then an exemplar view can also account for the 
findings that SGS training leads to more errors on 
isomorphic transfer test problems (Owen, & Sweller, 1985), 
fewer practice problems accurately recalled (Sweller, 1988), 
and other related findings. 

Furthermore, none of the results mentioned above can 
distinguish between the limited and general schema views, 
because both limited and general schemas would apply 
equally well to problems that are structurally the same as the 
problems from which the schemas were generated.  
Structurally different transfer problems, though, would help 
make the distinction.  Limited schemas, comprised of 
relations between previously encountered problem states 
and associated operators, would not apply to structurally 
different problems that have different problem states and 
different solutions.  Exemplar solutions of training problems 
would not apply either.  General schemas that are based on 
abstract principles, though, would apply to structurally 
different problems, so long as they could be solved with the 
same general principle.  One finding that may favor the 
general schema view comes from Owen and Sweller (1985).  
They trained participants to solve trigonometry problems 
under either SGS or RGS conditions.  Training problems 
gave values for one side and one angle in a right triangle, 
and participants were asked to solve for either a specific 
side of an adjacent triangle, or to solve for the values of as 
many sides as possible, using the trigonometric ratios sine, 
cosine, and tangent.  Later, performance was tested on 
structurally identical transfer problems, for which RGS 
participants showed an advantage.  They also tested 
performance on a diagram construction task in which 
participants were given values for two sides of a right 

triangle and were asked to draw the triangle, labeling the 
values for all three sides.  Due to the fact that RGS 
participants fared better on this diagram construction task as 
well, the authors concluded that mathematical schema 
acquisition involves learning mathematical principles, 
where mathematical principles seem more akin to general 
than limited schemas.  Unfortunately, Owen and Sweller 
(1985) did not control for the number of sides solved for 
during training.  Because the RGS condition tended to solve 
significantly more sides during training, any differences 
upon testing could be attributed to amount of practice rather 
than goal specificity per se.  In the present study, we will 
use transfer problems that are structurally different from 
training problems, while also controlling for amount of 
practice. 

Another issue with CLT that remains largely untested is 
the description of the processes used to account for the 
effect of goal specificity on schema acquisition.  Although 
Sweller (1988) constructed computational models of SGS 
and RGS problem solving to show that solving SGS 
problems do indeed require more cognitive resources, it is 
nonetheless possible that the functional difference between 
SGS and RSG problems is solely where attention is focused 
when solving such problems, and does not depend on the 
amount of resources available to encode problem 
information during that time.  That is, SGS training might 
produce just as much learning as RGS training, but if 
attention is focused in the wrong places, then SGS training 
will result in erroneous learning.  In order to examine this 
idea, we will employ a structural knowledge measure that is 
measured independent of problem solving performance, and 
that allows relatively specific questions about the process of 
schema acquisition to be tested.   

Structural knowledge refers to knowledge of the 
interrelationships among domain concepts, and is well 
correlated with domain expertise (for a review, see 
Goldsmith, Johnson, & Acton, 1991).  As such, it is likely to 
be at least a subset of the knowledge contained in schemas.  
Trumpower (2000) has shown how network representations 
of structural knowledge can be used to assess schema 
acquisition.  Briefly, the process involves comparing 
participantsí knowledge networks with those of domain 
experts.  Figure 1 displays a knowledge network of the 
statistics concepts used in the present study, derived from 
two statistics experts. 

 
 
 
 
 
 
 
 

Figure 1:  Expert knowledge network 
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variables that are known at a given time) and appropriate 
operators (i.e., the equation that can be used at that same 
time to solve for an unknown).  Thus, we might predict that 
RGS training will result in learning of the relations among 
concepts contained in the equations used to solve RGS 
problems, since the equations are the operators and contain 
the currently known variables.  By inspecting the three 
equations needed to solve training problems in the current 
study (listed below in the Problem Domain & Materials 
section), we see that relations among concepts in those 
equations correspond almost perfectly with the pattern of 
links in the expert network shown above.  Therefore, we 
predict that participants undergoing RGS training will 
acquire knowledge structures that look very similar to the 
expert network shown above. 

For SGS training, an attentional focus explanation says 
that attention is directed toward the goal and reducing 
differences between current states and the goal, at the 
expense of noticing the local relationships described above.  
Therefore, we predict that SGS training will result in 
making associations between all problem states or known 
variables and the goal (e.g., links between a-SSB, dfB-SSB, 
MSB-SSB, MSW-SSB, F-SSB), but a failure to notice the 
relevant relations between non-goal concepts (e.g., links 
between a-dfB, dfB -MSB, F- MSB, F- MSW). 

To summarize, the current study addresses three 
questions: (1) Does goal specificity have its effects 
primarily on storage of exemplar solutions or schema 
acquisition?, (2) If the effects are on schema acquisition, 
then how general are the acquired schemas?, and (3) Can the 
observed effects be better accounted for by the processes 
proposed in CLT or an attentional focus explanation?  In 
order to examine these questions, we assessed problem 
solving performance on transfer problems that were 
structurally different than training problems, and used a 
measure of schematic knowledge that is independent of 
problem solving performance. 

Method 

Participants 
Fourteen undergraduate students enrolled in an Introductory 
Psychology course at the University of New Mexico 
participated in this study for partial course credit.  None of 
them had previously completed a college-level statistics 
course. Half of the participants were randomly assigned to 
receive training with standard goal specificity problems 
(SGS), while the other half received training with reduced 
goal specificity problems (RGS). 

Problem Solving Domain & Materials 
The problem solving domain used in the present study was 
one-way analysis of variance (ANOVA).  All problems used 
were relatively simple word problems that could be solved 
with the following three equations: dfB=a-1, MSB=SSB/dfB, 
and F=MSB/MSW, where a = number of groups, dfB = 
between groups degrees of freedom, MSB = between groups 

mean square, SSB = between groups sum of squares, F = F-
ratio, and MSW = within groups mean square.   

All training problems gave values for a, MSW, and F.  
Those used in the SGS condition asked to solve for SSB, 
while those used in the RGS condition asked to solve for as 
many unknown values as possible.  Notice that in both 
conditions successful solutions required participants to first 
solve for dfB and MSB (in either order), and then solve for 
SSB. 

Structurally identical transfer problems for both 
conditions were identical in structure to the training 
problems received in the SGS condition during training in 
that they gave values for a, MSW, and F, and asked to solve 
for SSB.  Structurally different transfer problems were 
different in structure from the training problems in that they 
gave values for different variables, and asked to solve for a 
different variable.  Thus, structurally different transfer 
problems still required use of the same three equations to 
solve, but they required that the equations be used in a 
different order and that the equations be manipulated in a 
different way than was done during training. 

A relatedness rating task was also used in which 
participants were asked to rate the relatedness of all pairwise 
combinations of the six statistics terms contained in the 
equations listed above on a 5-point scale (1=îNot at all 
relatedî, 5=îVery relatedî). 

Procedure 
All participants were tested individually in the presence of 
an experimenter.  Participants were first asked to solve three 
training problems.  During this training period, they were 
given a Rolodex containing separate note cards containing 
each of the three equations necessary for solution of the 
problems, as well as a calculator to perform computations.  
Participants were allowed five minutes to solve each 
problem.  Within this time, the experimenter would 
immediately notify the participant if they made a mistake, 
but would not tell them the nature of the mistake.  If the 
problem was not solved within five minutes, the 
experimenter would guide them to the solution.  After 
solving a problem, participants went on to the next problem 
and could not refer back to previous problems. 

Upon completion of the third training problem, 
participants were asked to complete the relatedness rating 
task, which took approximately five minutes.  The equations 
were not made available to participants during completion 
of this task. 

Next, participants were asked to solve four transfer 
problems (2 structurally identical, 2 structurally different).  
Approximately half of the participants in each condition 
were given the two structurally identical transfer problems 
first, while the other half were given the two structurally 
different transfer problems first.  Participants were again 
given the necessary equations, and problem solving 
proceeded as during training. 



Results 
Separate one-way ANOVAs were used to compare the SGS 
and RGS conditions on time to solve each of the training 
problems, and on time to solve structurally identical and 
structurally different transfer problems.  Additionally, 
separate one-way ANOVAs were used to compare the 
number of various kinds of links found in the structural 
knowledge representations of participants in the SGS and 
RGS conditions.  A .05 significance level was used for all 
tests. 

Training 
Participants in the RGS condition solved the first two 
training problems significantly faster than those in the SGS 
condition, F(1,12)=5.03, p=.045 and F(1,12)=6.89, p=.022, 
respectively for the first and second training problem.  This 
is consistent with the idea that SGS problems require greater 
cognitive load, and should therefore require more time to 
solve.  There was no significant difference between the SGS 
and RGS conditions on time to solve the final training 
problem, F(1,12)=1.52, p>.10, suggesting that participants 
in both conditions had acquired similarly efficient solution 
procedures by the end of training  (see Table 1).  

 
Table 1: Time (in seconds) to solve training, structurally 
identical  transfer (S-I), and structurally different transfer 

(S-D) problems as a function of training condition. 
 

Problem SGS RGS 
 Mean (SD) Mean (SD) 
First training 300.00 (0.00) 238.14* (72.94) 
Second training 219.00 (58.25) 145.00* (46.59) 
Third training 139.00 (50.39) 106.29 (48.85) 
S-I transfer 108.29 (31.30) 99.64 (55.44) 
S-D transfer 254.93 (45.27) 164.93 (78.52)* 

  *p<.05 
 

Structurally Identical Transfer 
There was no difference between the SGS and RGS 
conditions on average time to solve structurally identical 
transfer problems, F<1 (see Table 1).  Apparently, both 
conditions learned to solve problems of the structure that 
they were trained on equally well.  Although CLT (both the 
limited schema and general schema views) had predicted 
better performance from the RGS condition, it is possible 
that the task was too easy to disrupt learning in the SGS 
condition.  If so, then we would expect no difference on the 
structurally different transfer problems. 

Structurally Different Transfer 
Participants in the RGS condition solved the structurally 
different transfer problems significantly faster than those in 
the SGS condition, F(1,12)=6.90, p=.022 (see Table 1).  
This suggests that although both conditions learned to solve 
problems structured like the training problems equally well, 
those in the RGS condition gained qualitatively different 

knowledge that allowed superior transfer to structurally 
different problems.  This is in contrast to both the limited 
schema and exemplar views.  Schemas comprised of 
knowledge of problem states encountered during training 
and associated operators would not apply to the structurally 
different transfer problems, since these problems involved 
different problem states.  Neither would exemplar solutions 
acquired during training apply, since the structurally 
different transfer problems required different solutions.  
Based on these results, it appears that the schematic 
knowledge acquired during RGS training is more general 
than previously thought. 

Structural Knowledge 
Participantís relatedness ratings were submitted to the 
Pathfinder scaling algorithm to generate a knowledge 
network for each (for a review of Pathfinder, see 
Schvaneveldt, 1990).  These networks were then analyzed 
for the number of: (1) critical links with the training goal, 
(2) irrelevant links with the training goal, and (3) critical 
links with non-goal concepts (see Table 2). 

There are two critical links with the training goal (SSB) 
found in the expert network, one with each of the subgoals, 
(dfB and MSB).  There was no difference in the mean number 
of these links possessed by participants in the SGS and RGS 
conditions, F<1, as predicted by an attentional focus 
explanation. 

Four other irrelevant links (i.e., those not found in the 
expert network) with the training goal are possible.  As 
predicted by the attentional focus explanation, participants 
in the SGS condition possessed significantly more of these 
irrelevant links than participants in the RGS condition, 
F(1,12)=7.59, p=.017. 

Four other critical links, not involving the training goal, 
are present in the expert network.  Of these links, 
participants in the SGS condition possessed significantly 
fewer than participants in the RGS condition, F(1,12)=7.36, 
p=.019, again consistent with predictions made by the 
attentional focus explanation. 

Taken together, these structural knowledge results are 
consistent with an attentional focus explanation.  Under 
SGS training, attention is focused on the goal, resulting in 
both relevant and irrelevant associations being made with 
the goal, at the expense of other critical schematic 
associations.  RGS training, on the other hand, focuses 
attention precisely where it is needed for schema 
acquisition, on the local relations described by the 
equations. 

 
Table 2: Number of links as a function of training condition. 

 
Link type SGS RGS 
 Mean (SD) Mean (SD) 
Critical, with goal 1.14 (.69) 1.43 (.53) 
Irrelevant, with goal 1.57 (.98) .29 (.98)* 
Critical, with non-goals 1.71 (.76) 3.00 (1.00)* 

  *p<.05 
 



Discussion 
The results of the current study support and extend previous 
studies of the goal specificity effect.  Reducing the 
specificity of training goals led to problem solving 
advantages.  However, the advantage was found on transfer 
problems that were structurally different than training 
problems.  Thus, it is argued that the schematic knowledge 
that is more readily acquired under RGS than SGS training 
is more general than previously considered. 

These results are consistent with Owen and Swellerís 
(1985) contention that schema acquisition involves learning 
abstract principles.  It appears that these principles are not 
tied to problems of a specific form.  With respect to the 
structural knowledge measure employed in the current 
study, results suggest that the acquired relational 
information is not unidirectional.  Such findings are 
important for theories of expertise, since we expect expert-
like schemas to be applicable to a wide range of novel 
problems, not just those encountered in the past.  If schemas 
were limited, then experts would gain no advantage at 
solving novel problems.  The very basis for schema theory 
is that experts possess not only more knowledge through 
experience, but also better structured knowledge. 

The finding that RGS training leads to the acquisition of 
general knowledge that can be transferred to structurally 
different problems than encountered during training is 
pedagogically important as well.  Despite being one of the 
foremost goals of educators, the difficulty in obtaining 
transfer to non-isomorphic problems has been well 
documented (e.g., Gick, & Holyoak, 1983). 

The structural knowledge results obtained in the current 
study are consistent with an attentional focus explanation 
for the goal specificity effect.  It should be pointed out that 
although the attentional processes invoked by this 
explanation are described in CLT, they are not dependent 
upon greater cognitive load being present in the SGS 
condition.  Instead, the present results can be explained by 
SGS training focusing attention on pedagogically irrelevant 
relations, and RGS focusing attention towards 
pedagogically relevant ones.  This explanation is similar to 
one advanced by Miller, et al. (1999).  They had participants 
learn about electrical fields by interacting with a microworld 
called Electronic Field Hockey (EFH).  Participants who 
practiced moving a puck around the EFH workspace in a 
no-goal condition performed better on a subsequent test of 
declarative and procedural knowledge of electrical fields 
than those who practiced by directing the puck around 
obstacles and into a specific goal.  However, participants 
who practiced by trying to make the puck follow a well-
specifed path denoted by a line leading around obstacles and 
into a goal, performed almost as well as those in the no-goal 
condition.  Miller, et al. (1999) posit that eliminating the 
goal worked by requiring interaction with the pedagogically 
relevant aspects of EFH, just like the specific-path 
condition.  In other words, the specific-path condition 
directs attention away from the ultimate goal toward a series 
of more immediate subgoals.  By directing attention from 

more distant goals, it can be focused on local relations 
involved in solving current subgoals.  Similarly, eliminating 
distant goals altogether allows attention to be focused on 
immediate local relations, which turn out to be the 
pedagogically relevant ones. 

The results of Miller, et al. (1999) may also be explained 
by a cognitive load interpretation.  If following a specific 
path shifts attention completely away from the ultimate 
goal, then the task becomes one of meeting a continuous 
series of smaller goals.  If attention is directed at solving 
each of the immediate goals (i.e., staying on the path), and if 
each of these small goals can be solved without use of a 
means-ends strategy, then the specific-path condition would 
require no more cognitive resources than the no-goal 
condition.  It may be argued that problem solvers solving 
no-goal problems do adopt a strategy of setting a series of 
small goals for themselves that can be solved in a forward-
chained manner. 

Thus, although neither the present results nor the results 
of Miller, et al. (1999) require an explanation based on 
cognitive load, they do not rule it out as a possibility.  One 
way to resolve the issue concerning whether RGS training 
works due to reduced cognitive load or to a pedagogically 
relevant focus of attention would be through a dual task 
paradigm.  Problem solvers could be asked to solve RGS 
problems either while concurrently performing another 
resource demanding task or not.  If the concurrent task 
interferes with learning in a manner consistent with SGS 
training, then the cognitive load explanation would be 
justified. 

Overall, this study indicates that eliminating specific 
goals during training can benefit schema acquisition, and 
that this advantage is more general than previously 
considered.  Training on problems with non-specific goals 
allowed better transfer to structurally different problems.  It 
is concluded that non-specific goals allow learning 
pedagogically relevant, local relations, as opposed to 
standard problems which interfere with such learning.  It is 
suggested that problems with non-specific goals provide this 
advantage by focusing attention on relations necessary for 
schema acquisition. 
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