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Abstract

Temporal logic specifications for hybrid dynamical systems

by

Hyejin Han

This dissertation focuses on developing tools for certifying temporal logic

properties in hybrid dynamical systems that combine continuous and discrete

dynamics. In particular, operators, semantics, characterizations, and solution-

independent conditions to guarantee temporal logic specifications for hybrid dy-

namical systems are presented. Hybrid dynamical systems are given in terms

of differential inclusions – capturing the continuous dynamics – and difference

inclusions – capturing the discrete dynamics or events – with constraints. State

trajectories (or solutions) to such systems are parameterized by a hybrid notion of

time. Characterizations of temporal logic formulas in terms of dynamical proper-

ties of hybrid systems are presented – in particular, forward invariance, conditional

invariance, and finite time attractivity. These characterizations are exploited to

formulate sufficient conditions assuring the satisfaction of temporal logic formulas

— when possible, these conditions do not involve solution information. Notions

for specifying dynamical properties of systems with robustness to perturbations

are proposed. Characterizations of basic signal temporal logic formulas are pre-

sented. Combining the results for formulas with a single operator, ways to certify

more complex formulas are pointed out, in particular, via a decomposition using

a finite state automaton. An object grasping application and academic examples

are given to illustrate the results.
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Chapter 1

Introduction

1.1 Background

High-level languages are useful in formulating specifications for dynamical sys-

tems that go beyond classical asymptotic stability, where convergence to the de-

sired point or set is typically certified to occur in the limit, that is, over an infinitely

long time horizon; see, e.g., [1–3]. Temporal logic employs operators and logic to

define formulas that the solutions (or executions) to the systems should satisfy

after some finite time, or during a particular amount of bounded time. In partic-

ular, temporal logic can be efficiently employed to determine safety and liveness

type properties. Safety-type properties typically guarantee that the state remains

in a particular set, while liveness-type properties guarantee that the state of sys-

tem reaches a specific set in finite time. Such specifications are given in terms of

a language that employs logical and temporal connectives (or operators) applied

to propositions and their combinations. For certain classes of dynamical systems,

verification of these properties can be performed using model checking tools. For

instance, the question of whether a safety-type specification is satisfied can be

answered by finding an execution that violates the specification in finite time.
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Linear temporal logic (LTL), as introduced in [4], permits to formulate spec-

ifications that involve temporal properties of computer programs; see also [5].

Numerous contributions pertaining to modeling, analysis, design, and verification

of LTL specifications for dynamical systems have appeared in the literature in

recent years. Without attempting to present a thorough review of the very many

articles in such topic, it should be noted that in [6], the authors employ tempo-

ral logic to solve a problem involving multiple mobile robots. In their setting,

the robots are modeled by continuous-time systems with second-order dynam-

ics and the proposed temporal logic specifications model reachability, invariance,

sequencing, and obstacle avoidance. Similar approaches but for dynamical sys-

tems given in discrete time, which are more amenable to computational tools,

such as model checking, have also been pursued in the literature. In [7], the

authors propose mixed integer linear programming and quadratic programming

tools for the design of algorithms required to satisfy LTL specifications for dy-

namical systems with both continuous-valued and discrete-valued states, which

are called mixed logic dynamical systems. This broad class of systems are expres-

sive enough to be able to model discontinuous and (hybrid, in the sense of having

states that take on continuous, and on discrete values) piecewise discrete-time

linear systems. In [8], for discrete-time nonlinear systems with continuous-valued

and discrete-valued states, the authors formulate optimization problems related

to trajectory generation with linear temporal logic specifications for which mixed

integer linear programming tools are applied. In [9], the design of controllers to

satisfy alternating-time temporal logic (ATL*), which is an expressive branching-

time logic that allows for quantification over control strategies, is pursued using

barrier and Lyapunov functions for a class of continuous-time systems. More re-

cently, using similar programming tools, in [10], tools to design reactive controllers
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for mixed logical dynamical systems so as to satisfy high-level specifications given

in the language of metric temporal logic are proposed. Promising extensions of

these techniques to the case of specifications that need to hold over pre-specified

bounded horizons, called Signal Temporal Logic (STL), have been recently pur-

sued in several articles; see, e.g., [11], to just list a few.

Metric temporal logic (MTL) [12] and signal temporal logic (STL) [13] are

extensions of LTL that provide a “measure” of how robustly the specifications

are satisfied. In [14], MTL is used to analyze the robustness of continuous-time

signals. The proposed approach provides a robustness degree in terms of the bound

on the perturbation that a signal can tolerate for the given specifications to still

be satisfied. In [15], STL is employed for the verification of hybrid dynamical

systems. The authors propose robustness measures that indicate how far a given

trajectory stands, in space and time, from satisfying a given STL formula.

1.2 Motivation

Tools for the systematic study of temporal logic properties in dynamical sys-

tems that have solutions (or executions) changing continuously over intervals of

ordinary continuous time and, at certain time instances, having jumps in their

continuous-value and discrete-valued states, such as the frameworks proposed

in [16–20], are much less developed. A hybrid system H = (C, F,D,G) exhibiting

such behavior can be described as follows [20]:

ẋ ∈ F (x) x ∈ C

x+ ∈ G(x) x ∈ D
(1.1)
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where x ∈ R
n is the state. The map F : X ⇒ R

n is a set-valued map and

denotes the flow map capturing the continuous dynamics on the flow set C, and

G : R
n ⇒ R

n is a set-valued map and defines the jump map capturing the

discrete dynamics on the jump set D. Throughout the dissertation, we assume

C ⊂ dom F , and D ⊂ dom G.

A canonical academic example of a hybrid system is the well-known bouncing

ball system, which has infinitely many events over a bounded ordinary time hori-

zon (i.e., Zeno) at time instances that are not pre-specified and actually depend

on the initial condition of the system; see, e.g., [21]. Another canonical example is

the dynamical system resulting from controlling the temperature of a room with

a logic controller, in which the jumps of the logic variables in the controller occur

when the temperature hits certain thresholds. In such hybrid dynamical systems,

the study of temporal logic using discretization-based approaches may not be fit-

ting as, in principle, the time at which a jump occurs is not known a priori and

these times are likely to occur aperiodically. Though results enabling the reason-

ing of continuously changing systems and signals using discrete-time methods are

available in the literature (see, e.g., [14]), the sampling effect may prevent one

from being able to guarantee that the properties certified for the discretization

extend to the actual continuous time process.

Consider the temperature control model described as

ż = −z + z0 + qz△. (1.2)

The variable q denotes the state of the heater, i.e., q = 1 when the heater is on

and q = 0 when the heater is off. The state z is the room temperature. The

constants z0 and z△ denote the room temperature when the heater is off and the

capacity of the heater to raise the temperature, respectively. We observe that the
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system constantly measures and controls the room temperature z to maintain it

within [zmin, zmax], where zmin and zmax are the minimum and the maximum of

the room temperature, respectively. This system requirement can be expressed in

terms of an LTL formula f involving the always operator 2 as follows:

f := 2p

where p is true when the temperature is in the desired range and is false otherwise.

Since robustness is a widely studied property of dynamical systems, we are

also interested in certifying LTL properties for hybrid systems with robustness to

perturbations.

For example, consider the temperature control system in (1.2). While the

system controls the temperature in the given range [zmin, zmax], we need to carefully

verify such requirements under the presence of unknown perturbations. Indeed,

in the presence of perturbations, one would want to relax the specification to

z ∈ [zmin − ε, zmax + ε], where ε > 0 quantifies the approximation error in the

satisfaction of the original specification.

To specify and verify such property with robustness to perturbations, we pro-

pose a notion allowing for approximate satisfaction of LTL formulas. For the

temperature control problem, the proposed notions allow the temperature to start

from the given range [zmin, zmax] but to remain in the larger range [zmin−ε, zmax+ε].

We refer to this notion as ε-approximate satisfaction of 2p, and we characterize

it in terms of conditional invariance.

Slight modifications in temporal logic specifications to achieve the satisfaction

of the given specifications has been presented in [14, 15] while using the quanti-

tative measure of the satisfaction of the specifications. The difference in our ap-

proach is that our notions do not use the quantitative measure of the satisfaction
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of the specifications reflecting the robustness of the satisfaction with multi-valued

and quantitative temporal logics. Our approach focuses on how to certify LTL

properties of systems under the presence of perturbations.

The proposed notion for approximate satisfaction of LTL formulas is extended

to the case when perturbations are explicitly considered in the model. For the

temperature control problem, we can include the disturbance w in the system in

(1.2). The system with disturbance w is given by

ż = −z + z0 + qz△ + w. (1.3)

Since the perturbation is modeled, the specification to satisfy is z ∈ [zmin−ε, zmax+

ε], where ε > 0, rather than z ∈ [zmin, zmax]. To specify and verify such property,

we propose a notion for robust approximate satisfaction of LTL formulas. The

proposed notion allows the temperature starting from the given range [zmin, zmax]

to remain in the larger range [zmin − ε, zmax + ε] under the presence of disturbance

w. We refer to this notion as robust ε-approximate satisfaction of 2p, and we

characterize it in terms of robust conditional invariance.

In this dissertation, ε-approximate and robust ε-approximate satisfaction of

LTL specifications are introduced to specify dynamical properties of hybrid dy-

namical systems with robustness to perturbations. Such notions allow to analyze

dynamical properties of hybrid dynamical systems with robustness to perturba-

tions such as unmodeled dynamics, measurement noise, and exogenous distur-

bances. We propose an approach of specifying robustness properties using LTL

and certifying such properties without requiring the computation of the systems’

solutions, but rather, guaranteeing the existence of barrier function candidates or

Lyapunov-like functions, along with properties of the data defining the system.

Furthermore, as an extension of LTL, we consider signal temporal logic(STL)
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for specifying and certifying properties of hybrid systems. The difference between

LTL and STL is that STL provides a framework for reasoning about temporal

properties over time with numerical predicates. Consider the continuous-time

dynamics of the thermostat model in (1.2). For example, we consider a simple

requirement as follows: during the first 60 seconds, the temperature always stay

within [zmin, zmax]. Then, this requirement can be expressed in terms of a STL

formula with the same proposition p above

2[0,60]p.

In this dissertation, inspired by the ideas in [11,22,23] for STL in continuous-

time and discrete-time systems, we introduce STL for hybrid systems. We propose

sufficient conditions that guarantee STL properties of hybrid systems employing

results on LTL for hybrid systems.

1.3 Contributions

In this dissertation, tools that permit guaranteeing high-level specifications for

solutions to hybrid dynamical systems without requiring the computation of the

solutions themselves or discretization of the dynamics, but rather, guaranteeing

properties of the data defining the system and the existence of Lyapunov-like

functions are presented.

We consider a broad class of hybrid dynamical systems, in which the state

vector may include physical and continuous-valued variables, logic and discrete-

valued variables, timers, memory states, and others; solutions may not be unique

and may not necessarily exist for arbitrary long hybrid time (namely, solutions

may not be complete); and solutions may exhibit Zeno behavior. In particular,
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as in [20], a hybrid dynamical system is defined by a flow map, which is given by

a set-valued map governing the continuous change of the state variables, a flow

set, which is a subset of the state space on which solutions are allowed to evolve

continuously, a jump map, which is also given by a set-valued map governing the

discrete change of the variables, and a jump set, which defines the set of points

where jumps can occur. Along with the state space, these four objects define the

data of a hybrid dynamical system.

For this broad class of hybrid dynamical systems, characterizations of formulas

involving one temporal operator and atomic propositions are presented in terms of

dynamical properties of hybrid systems, in particular, forward pre-invariance and

finite time attractivity. These notions are used to formulate sufficient conditions

for the satisfaction of basic temporal logic formulas. More precisely, we show that

the specifications using the always operator can be guaranteed to hold under mild

conditions on the data of the hybrid system when a forward invariance property

of an appropriately defined set holds. To arrive to such conditions, we present suf-

ficient conditions for forward (pre-)invariance of closed sets in hybrid dynamical

systems that extend those in [24]. To derive conditions that certify that formu-

las using the eventually operator hold, we generate results to certify finite time

attractivity of sets in hybrid dynamical systems, for which we exploit and extend

the ideas used to certify finite time stability of hybrid dynamical systems in [25].

Furthermore, our (mostly solution-independent) approach allows us to provide an

estimate of the (hybrid) time it takes for a temporal specification to be satisfied,

with the estimate only depending on a Lyapunov function and the initial condition

of the solution being considered. Moreover, we introduce sufficient conditions for

certain formulas that combine more than one temporal operator, which combine

our conditions for the individual temporal operators.
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While many of our results do not require computing solutions to the hybrid

dynamical system, which is a key advantage when compared to methods for

continuous-time, discrete-time, and mixed logic dynamical systems cited above

and the method for hybrid traces in [26], the price to pay when using the results

in this paper is finding a certificate for finite time attractivity, which is in terms

of a Lyapunov function. It should be noted that though our conditions are weaker

than those in [9], finding such functions might be challenging at times. However,

the same complexity is present in Lyapunov methods for certifying asymptotic

stability of a point or a set [27], or for employing continuously differentiable bar-

rier certificates and Lyapunov functions to certify temporal logic constraints for

continuous-time systems. On the other hand, it should be noted that the frame-

work for hybrid dynamical systems considered here is such that, under mild con-

ditions, in addition to enabling a converse theorem for asymptotic stability, has

robustness properties to small perturbations, which may permit extending the

results in this paper to the case under perturbations; see [20, Chapters 6 and 7].

Furthermore, we propose notions to specify and verify temporal logic specifi-

cations under the presence of perturbations. To this end, following [28], we first

build the set K := {x ∈ R
n : p(x) = True} with a given proposition p. Then, by

relaxing the set K, we collect additional points that are ε-close to the set K. The

relaxed set is denoted by Kε, i.e., Kε := K + εB where B is the closed unit ball.

Using the set Kε, we introduce notions encoding ε-approximate satisfaction and

robust ε-approximate satisfaction of temporal logic specifications. As a first step,

we focus on basic temporal logic formulas involving the always and the eventually

operators to define the notions allowing for ε-approximate satisfaction and robust

ε-approximate satisfaction. For example, consider the satisfaction of the formula

2p from the set set K.

9



a) ε-approximate satisfaction of the formula 2p from the set K implies that

each solution, starting from the set K, stays in the set Kε.

b) Robust ε-approximate satisfaction of the formula 2p from the set K implies

that each solution, starting from the set K, stays in the set Kε under the

presence of perturbations.

Moreover, equivalence relationships are established between the ε-approximate

satisfaction notions, conditional invariance, and FTA with robustness to pertur-

bations. For this purpose, we introduce robust conditional invariance and robust

FTA for hybrid systems that extend conditional invariance and FTA, respectively,

to the case with perturbations. Moreover, due to the equivalence relationships,

sufficient conditions that guarantee ε-approximate and robust ε-approximate sat-

isfaction of the given formulas are formulated. In particular, we propose sufficient

conditions using barrier functions and Lyapunov-like functions tailored to robust

conditional invariance and robust FTA for hybrid systems, by extending the re-

sults in [25, 28, 29].

We also propose characterizations of the satisfaction of the STL formulas in-

volving the always (2I) operator and the eventually (3I) operator. To charac-

terize the behavior of solutions to hybrid systems H during the given time I, we

formulate the considered STL formulas as an LTL formula involving the strong

until operators (Us) using the auxiliary system, denoted Hτ . Finally, we present

sufficient conditions that guarantee the satisfaction of the STL formulas with the

always (2I) operator and the eventually (3I) operator.

In addition, sufficient conditions for temporal logic formulas that have more

than one operator are presented in more detail than in [30]. In particular, we

show how to derive conditions for formulas that have more than one operator

by combining the conditions for formulas that have one operator. Additionally,
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a discussion on the decomposition of temporal logic formulas using finite state

automata is included.

1.4 Organization

The contents of this dissertation are organized into following chapters.

Chapter 2: Preliminaries

In this chapter, the hybrid systems framework, basic properties used throughout

this dissertation are presented.

Chapter 3: Linear temporal logic for hybrid systems

In this chapter, linear temporal logic (LTL) for hybrid dynamical systems is in-

troduced. We define operators and specify properties of hybrid systems with

LTL formulas. For hybrid systems, nominal satisfaction of atomic propositions

and LTL formulas are presented. Furthermore, we introduce notions capturing

approximate satisfaction and robust approximate satisfaction of LTL formulas,

which extend the nominal satisfaction of LTL formulas to certify satisfaction of

LTL formulas robustly.

Chapter 4: Characterizations of temporal operators using dynamical

properties

In this chapter, we present equivalence characterizations for the satisfaction of

LTL formulas involving one temporal operator. The satisfaction of the formula is

assured by guaranteeing particular properties of sets such as invariance and finite

time attractivity notions for hybrid systems.
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Chapter 5: Sufficient conditions guaranteeing the satisfaction of tem-

poral formulas for hybrid systems

In this chapter, sufficient conditions guaranteeing the nominal satisfaction of tem-

poral formulas are proposed. Sufficient conditions for each temporal operator use

either a certificate for finite-time convergence in terms of a Lyapunov function,

or the data of the hybrid system and the set of points where the proposition is

true to satisfy conditions for invariance using Lyapunov-like functions or barrier

functions.

Chapter 6: Sufficient conditions guaranteeing the satisfaction of tem-

poral formulas for hybrid systems under perturbations

In this chapter, sufficient conditions guaranteeing the satisfaction of temporal for-

mulas for hybrid systems under perturbations are proposed. Notions such that

ε-approximate and robust ε-approximate satisfaction of LTL formulas in Chap-

ter 3 allow to analyze dynamical properties of hybrid systems with robustness

to perturbations. Then, using Lyapunov-like functions or barrier functions, we

derive sufficient conditions that guarantee the satisfaction of temporal formulas

for hybrid systems under perturbations.

Chapter 7: Sufficient conditions for LTL formulas combining opera-

tors

In this chapter, sufficient conditions for LTL formulas that combine more than one

operator. Using the sufficient conditions for LTL formulas that involve a single

temporal operator in Chapter 5, conditions for LTL formulas that combine more

than one operator are given by compositions of the conditions for LTL having a

single temporal operator.
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Chapter 8: Signal temporal logic for hybrid dynamical systems

In this chapter, signal temporal logic (STL) for hybrid dynamical systems is intro-

duced to specify and verify dynamical properties of hybrid systems. Equivalence

relationships between the satisfaction of STL formulas and the satisfaction of LTL

formulas involving the strong until operators are proposed. Using the equivalence

relationship, sufficient conditions that guarantee the satisfaction of STL formulas

are proposed.

Chapter 9: Object grasping using multiple agents

In this chapter, a networked hybrid system which is described by a multi-agent

system that consists of multiple subsystems is proposed to solve object grasping

problems. Each subsystem, a hybrid closed-loop system corresponding to each

agent, is commanded by an individual feedback controller which are coordinated

by a supervisory controller.

Chapter 10: Conclusion and future directions

In this chapter, the results in this dissertation are summarized and potential future

directions are discussed.
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Chapter 2

Preliminaries

2.1 Models of hybrid dynamical systems

In this dissertation, hybrid systems H modeled as in (1.1) are mainly con-

sidered. A solution φ to H is parameterized by (t, j) ∈ R≥0 × N, where t is

the ordinary time variable, j is the discrete jump variable, R≥0 := [0,∞), and

N := {0, 1, 2, . . .}. The domain dom φ ⊂ R≥0 × N of φ is a hybrid time domain

if for every (T, J) ∈ dom φ, the set dom φ ∩ ([0, T ] × {0, 1, . . . , J}) can be writ-

ten as the union of sets
⋃J

j=0(Ij × {j}), where Ij := [tj, tj+1] for a time sequence

0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tJ+1. The tj’s with j > 0 define the time instants

when the state of the hybrid system jumps and j counts the number of jumps.

A solution is given by a hybrid arc. A function φ : E → R
n is a hybrid arc if E

is a hybrid time domain and if for each j ∈ N, the function t 7→ φ(t, j) is locally

absolutely continuous on the interval Ij = {t : (t, j) ∈ E}.

Definition 2.1 (Concept of solution to H). A hybrid arc φ : dom φ → R
n is a

solution to H if

(S0) φ(0, 0) ∈ C ∪D;
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(S1) for all j ∈ N such that Ij := {t : (t, j) ∈ dom φ} has nonempty interior,

t 7→ φ(t, j) is locally absolutely continuous and

φ(t, j) ∈ C for all t ∈ int(Ij),

φ̇(t, j) ∈ F (φ(t, j)) for almost all t ∈ Ij;

(S2) for all (t, j) ∈ dom φ such that (t, j + 1) ∈ dom φ,

φ(t, j) ∈ D, φ(t, j + 1) ∈ G(φ(t, j)).

A solution φ to H is said to be maximal if there is no solution φ′ to H such

that φ(t, j) = φ′(t, j) for all (t, j) ∈ dom φ with dom φ a proper subset of dom φ′.

It is said to be nontrivial if dom φ contains at least two elements. A solution φ

is said to be complete if its domain is unbounded. It is Zeno if it is complete

and supt dom φ < ∞. It is eventually discrete if T = supt dom φ < ∞ and

dom φ ∩ ({T} × N) contains at least two elements. It is genuinely Zeno if it is

Zeno, but not eventually discrete. See [20] for more details about hybrid dynamical

systems.

For convenience, we define the range of a solution φ to H as rge φ = {φ(t, j) :

(t, j) ∈ dom φ}. We use SH(x) to denote the set of maximal solutions to H
starting from x ∈ C∪D. Given a set A ⊂ R

n, R(A) denotes the (infinite-horizon)

reachable set from A; i.e., R(A) := {φ(t, j) : φ ∈ SH(A), (t, j) ∈ dom φ}.

Definition 2.2 (Hybrid basic conditions). A hybrid system H = (C, F,D,G) is

said to satisfy the hybrid basic conditions if the following hold:

• C and D are closed;

• The flow map F is outer semicontinuous and locally bounded relative to C,

C ⊂ dom F , and F (x) is convex for each x ∈ C;
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• The jump map G is outer semicontinuous and locally bounded relative to D,

and D ⊂ dom G.

When H satisfies these mild regularity properties, then H is said to be well-

posed [20, Theorem 6.30]. Throughout the paper, we assume that H satisfies the

hybrid basic conditions.

Perturbations affecting hybrid systems can be considered to model the con-

tinuous and discrete dynamics of hybrid systems. The general form of a hybrid

system H with a state perturbation w is denoted by Hw = (Cw, Fw, Dw, Gw), is

written as

ẋ ∈ Fw(x, w) (x, w) ∈ Cw

x+ ∈ Gw(x, w) (x, w) ∈ Dw.
(2.1)

The solution concept for H in (1.1) can be extended to a solution pair (φ, w) for

Hw.

A pair (φ, w), consisting of a hybrid arc φ and a state perturbation w ∈
W with dom φ = dom w(= dom (φ, w)), is a solution pair to Hw in (2.1) if

(φ(0, 0), w(0, 0)) ∈ Cw ∪Dw, and

(S1) For all j ∈ N such that Ij := {t : (t, j) ∈ dom φ} has nonempty interior,

(φ(t, j), w(t, j)) ∈ Cw for all t ∈ int Ij

dφ
dt

(t, j) ∈ Fw(φ(t, j), w(t, j)) for almost all t ∈ Ij

(S2) For all (t, j) ∈ dom φ such that (t, j + 1) ∈ dom φ,

(φ(t, j), w(t, j)) ∈ Dw, φ(t, j + 1) ∈ Gw(φ(t, j), w(t, j)).

In addition, a solution pair (φ, w) to Hw is said to be nontrivial if dom (φ, w)

contains at least two points; complete if dom (φ, w) is unbounded; maximal if
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there does not exist another (φ, w)′ such that (φ, w) is a truncation of (φ, w)′ to

some proper subset of dom (φ, w)′.

Given a set K ⊂ R
n, we also define the set of all maximal solution pairs (φ, w)

to Hw with φ(0, 0) ∈ K as SHw
(K). The state perturbation w is a function on

a hybrid time domain that, for each j ∈ N, t 7→ w(t, j) is Lebesgue measurable

and locally essentially bounded on the interval {t : (t, j) ∈ dom w}. Additionally,

when w(t, j) = 0 for every (t, j) ∈ dom w, this means that Hw reduces to the

nominal hybrid system H as in (1.1).

For convenience, we denote Π(Cw) := {x ∈ R
n : ∃w ∈ W s.t. (x, w) ∈ Cw}

and Π(Dw) := {x ∈ R
n : ∃w ∈ W s.t. (x, w) ∈ Dw}. Throughout the paper, we

assume that Cw ⊂ dom Fw and Dw ⊂ dom Gw.

Furthermore, given a function ρ : Rn → R≥0, we define a perturbed hybrid

system Hρ on R
n capturing the effect of perturbations w with worst case size

given by ρ as in [20, Definition 6.27]. This model of Hρ is given as follows:

ẋ ∈ Fρ(x) x ∈ Cρ

x+ ∈ Gρ(x) x ∈ Dρ,
(2.2)

where Cρ := {x ∈ R
n : (x + ρ(x)B) ∩ Π(Cw) 6= ∅}, Fρ(x) := conF ((x+ ρ(x)B) ∩

Π(Cw)) + ρ(x)B for all x ∈ R
n; Dρ := {x ∈ R

n : (x + ρ(x)B) ∩ Π(Dw) 6= ∅},

Gρ := {ν ∈ R
n : ν ∈ g + ρ(g)B, g ∈ G((x + ρ(x)B) ∩ Π(Dw)} for all x ∈ R

n.

This perturbed system is used to analyze robustness of a hybrid system having

perturbations w of size ρ.
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2.2 Invariance and attractivity notions

In the following, we introduce the invariance and attractivity notions that are

used in this dissertation.

Definition 2.3 (Forward (pre-)invariance). A set K ⊂ R
n is said to be forward

pre-invariant for H if, for each solution φ ∈ SH(K), rge φ ⊂ K. The set K is

said to be forward invariant for H if it is forward pre-invariant for H and, for

every x ∈ K, every solution φ ∈ SH(x) is complete.

Definition 2.4 (Conditional invariance). Given sets K ⊂ R
n and Xo ⊂ K, the

set K is said to be conditionally invariant with respect to the set Xo for H if, for

each solution φ ∈ SH(Xo), rge φ ⊂ K.

Remark 2.5. Note that when Xo = K, conditional invariance of K with respect

to Xo is equivalent to forward pre-invariance of K.

Definition 2.6 (Safety). A hybrid system H is said to be safe with respect to

(Xo,Xu), where Xu ⊂ R
n denotes the unsafe set and Xo ⊂ R

n \ Xu denotes the

initial set, if each solution φ to H from Xo satisfies rge φ ⊂ R
n \ Xu.

Remark 2.7. Following the notion of safety in [31], conditional invariance of K

with respect to Xo is equivalent to safety with respect to (Xo,Xu), with Xu := R
n\K

defining the region of the state space that the solutions to H must avoid when

starting from the set of initial conditions Xo.

In the following, inspired by the ideas in [32] for continuous-time systems, we

introduce eventual conditional invariance for hybrid systems H = (C, F,D,G).

Definition 2.8 (Eventual conditional invariance). Given sets O ⊂ C ∪ D and

A ⊂ R
n, the set A is said to be eventually conditionally invariant with respect to
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O for H if, for each solution φ ∈ SH(O), there exists a hybrid time (t⋆, j⋆) ∈ dom φ

such that φ(t, j) ∈ A for all (t, j) ∈ dom φ such that t+ j ≥ t⋆ + j⋆.

Since H can have maximal solutions that are not complete, we introduce the

following notion which, compared to Definition 2.8, requires that only the complete

solutions to H must reach the set A in finite hybrid time.

Definition 2.9 (Pre-eventual conditional invariance). Given sets O ⊂ C ∪D and

A ⊂ R
n, the set A is said to be pre-eventually conditionally invariant with respect

to O for H if, for each complete solution φ ∈ SH(O), there exists a hybrid time

(t⋆, j⋆) ∈ dom φ such that φ(t, j) ∈ A for all (t, j) ∈ dom φ such that t+j ≥ t⋆+j⋆.

Definition 2.10 (Finite-time attractivity). Given sets O ⊂ C ∪ D and A ⊂ R
n

such that A is closed, the set A is said to be finite-time attractive (FTA) with

respect to O for H if, for each solution φ ∈ SH(O), TA(φ) < ∞.

2.3 Nonsmooth Lyapunov functions

For a hybrid system H = (C, F,D,G), let V : R
n → R be continuous on

R
n and locally Lipschitz on a neighborhood of C. The generalized gradient of

V at x ∈ C, denoted by ∂V (x), is a closed, convex and nonempty set equal to

the convex hull of all limits of the sequence ∇V (xi), where xi is any sequence

converging to x while x avoids an arbitrary set of measure zero containing all the

points at which V is not differentiable. As V is locally Lipschitz, ∇V exists almost

everywhere. The generalized directional derivative of V at x in the direction of v

can be presented as follows [33]:

V ◦(x, v) = max
ζ∈∂V (x)

〈ζ, v〉. (2.3)
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In addition, for any solution t 7→ φ(t, 0) to ẋ ∈ F (x),

d
dt
V (φ(t, 0)) ≤ V ◦(φ(t, 0), φ̇(t, 0)) (2.4)

for almost all t in the domain of definition of φ, where d
dt
V (φ(t, 0)) is understood

in the standard sense since V is locally Lipschitz.

To bound the increase of the function V along solutions to a hybrid system

H, we define the function uC : Rn → [−∞,+∞) as follows [34]:

uC(x) :=





max
v∈F (x)

max
ζ∈∂V (x)

〈ζ, v〉 x ∈ C

−∞ otherwise.
(2.5)

In particular, for any solution φ to H and any t where d
dt
V (φ(t, j)) exists, we have

d
dt
V (φ(t, j)) ≤ uC(φ(t, j)). (2.6)

Furthermore, in order to bound the change in V after jumps, we define the

following quantity:

uD(x) :=





max
ζ∈G(x)

V (ζ) − V (x) x ∈ D

−∞ otherwise.
(2.7)

Then, for any solution φ to H and for any (tj+1, j), (tj+1, j+1) ∈ dom φ, it follows

that

V (φ(tj+1, j + 1)) − V (φ(tj+1, j)) ≤ uD(φ(tj+1, j)). (2.8)

Note that when F is a single-valued map, uC(x) = V ◦(x, F (x)) for each x ∈ C.

When G is a single-valued map, uD(x) = V (G(x)) − V (x) for each x ∈ D.
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Chapter 3

Linear temporal logic for hybrid

dynamical systems

Linear Temporal Logic (LTL) provides a framework to specify desired proper-

ties such as safety, i.e., “something bad never happens”, and liveness, i.e., “some-

thing good eventually happens”. In this section, for a given hybrid system H,

we define operators and specify properties of H with LTL formulas [35]. We first

introduce atomic propositions.

Definition 3.1 (Atomic Proposition). An atomic proposition p is a statement on

the system state x that, for each x, p is either True (1 or ⊤) or False (0 or ⊥).

A proposition p will be treated as a single-valued function of x, that is, it

will be a function x 7→ p(x). The set of all possible atomic propositions will be

denoted by P.

Logical and temporal operators are defined as follows.

Definition 3.2 (Logic Operators).

• ¬ is the negation operator
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• ∨ is the disjunction operator

• ∧ is the conjunction operator

• ⇒ is the implication operator

• ⇔ is the equivalence operator

Definition 3.3 (Temporal Operators).

• # is the next operator

• 3 is the eventually operator

• 2 is the always operator

• Us is the strong until operator

• Uw is the weak until operator

For example, consider the object grasping problem in the previous chapter.

Consider the situation where a vehicle reaches a target point on the object. Such

a behavior can be expressed in terms of an LTL formula involving the eventually

(3) operator; namely,

3p

where the atomic proposition p is defined as true when the vehicle reaches the

target.

As an additional example, in the autonomous navigation problem, consider

a vehicle navigates its environment without colliding with obstacles while ap-

proaching a target and it eventually reaches the target. Similarly, define the

atomic proposition p to be true when the vehicle reaches the target; and define

the atomic proposition q to be true when the vehicle stays in the safe area. Then,
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the given requirement can be expressed in terms of an LTL formula involving the

strong until (Us) operator; namely,

q Usp.

Given a hybrid system H, the semantics of LTL are defined as follows. For

simplicity, we consider the case of no inputs and state-dependent atomic propo-

sitions. When a proposition p is True at (t, j) ∈ domφ, i.e., p(φ(t, j)) = 1, it is

denoted by

φ(t, j) 
 p, (3.1)

whereas if p is False at (t, j) ∈ domφ, it is written as

φ(t, j) 1 p. (3.2)

An LTL formula is a sentence that consists of atomic propositions and operators

of LTL. An LTL formula f being satisfied by a solution (t, j) 7→ φ (t, j) at some

time (t, j) is denoted by

(φ, (t, j)) � f, (3.3)

while f not satisfied by a solution (t, j) 7→ φ(t, j) at some time (t, j) is denoted

by1

(φ, (t, j)) 2 f. (3.4)

Let p, q ∈ P be atomic propositions. The semantics of LTL are defined as

follows: given a solution φ to H and (t, j) ∈ dom φ

(φ, (t, j)) � p ⇔ φ(t, j) 
 p (3.5a)

1Note that to be compatible with the literature, instead of 
, we use � for a formula.
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(φ, (t, j)) � ¬p ⇔ (φ, (t, j)) 2 p (3.5b)

(φ, (t, j)) � p ∨ q ⇔ (φ, (t, j)) � p or (φ, (t, j)) � q (3.5c)

(φ, (t, j)) � #p ⇔ (t, j + 1) ∈ dom φ and (φ, (t, j + 1)) � p (3.5d)

(φ, (t, j)) � pUsq ⇔ ∃(t′, j′) ∈ dom φ, t′ + j′ ≥ t+ j s.t. (φ, (t′, j′)) � q, (3.5e)

and ∀ (t′′, j′′) ∈ dom φ s.t. t+ j ≤ t′′ + j′′ < t′ + j′, (φ, (t′′, j′′)) � p

(φ, (t, j)) � pUwq ⇔ (φ, (t′, j′)) � p ∀ (t′, j′) ∈ dom φ s.t. t′ + j′ ≥ t+ j (3.5f)

or (φ, (t, j)) � pUsq

(φ, (t, j)) � p ∧ q ⇔ (φ, (t, j)) � p and (φ, (t, j)) � q (3.5g)

(φ, (t, j)) � 2p ⇔ (φ, (t′, j′)) � p ∀ t′ + j′ ≥ t+ j, (t′, j′) ∈ dom φ (3.5h)

(φ, (t, j)) � 3p ⇔ ∃(t′, j′) ∈ dom φ, t′ + j′ ≥ t+ j s.t. (φ, (t′, j′)) � p. (3.5i)

The same semantics of LTL are used for formulas. For example, with a given

formula f , #f is satisfied by φ at (t, j) ∈ dom φ when (t, j + 1) ∈ dom φ and

(φ, (t, j + 1)) satisfies f .

Given an atomic proposition p, we introduce the following set where p is sat-

isfied:

K := {x ∈ R
n : p(x) = 1}. (3.6)

The satisfaction of a given LTL formula is assured by guaranteeing particular

properties of the solutions to H relative to the set K.

Definition 3.4 (Nominal Satisfaction of Propositions). Given an atomic propo-

sition p, let the set K be given as in (3.6). The atomic proposition p is satisfied

by a solution φ to H at (t, j) ∈ dom φ if p(φ(t, j)) = 1; i.e.,

(φ, (t, j)) � p ⇔ φ(t, j) ∈ K.
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Definition 3.5 (Nominal Satisfaction of Formulas). Given an LTL formula f ,

the formula f is satisfied by a solution φ to H at (t, j) ∈ dom φ if (φ, (t, j)) � f .

Moreover, the formula f is satisfied by H at (t, j) = (0, 0) if each solution φ to H
satisfies (φ, (0, 0)) � f .

In the following, we introduce a notion of approximate satisfaction of proposi-

tions which is used to define notions of approximate satisfaction of LTL formulas.

First, given an atomic proposition p and ε > 0, we define the set Kε given by

Kε := K + εB, (3.7)

where K is given as in (3.6). The set Kε is exploited to capture approximate

satisfaction of the proposition p since it collects points in R
n that are ε-close to

the set K.

Definition 3.6. (Approximate Satisfaction of Propositions). Given an atomic

proposition p, let the set K be as in (3.6). The proposition p is ε-approximately

satisfied by a solution φ to H at (t, j)∈dom φ with ε>0 if

φ(t, j) ∈ Kε.

Remark 3.7. Given an atomic proposition p, one can also define a proposition

pε from the set Kε in (3.7) that is satisfied (exactly) by a solution φ to H at

(t, j) ∈ dom φ when φ(t, j) ∈ Kε. Specifically, once we build the set Kε with

ε>0 as in (3.7), pε can be defined as pε(x) = 1 for every x ∈ Kε, and pε(x) = 0

otherwise.

Next, given an atomic proposition p, we present notions capturing approximate
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satisfaction of the formulas 2p and 3p using the set Kε in (3.7).

Definition 3.8. (Approximate Satisfaction of 2p). Given an atomic proposition

p, let ε>0 and the set Kε be as in (3.7). The formula f = 2p is ε-approximately

satisfied by H at (t, j) = (0, 0) if each solution φ to H satisfies φ(t, j) ∈ Kε for

each (t, j) ∈ dom φ.

We are also interested in 2p being satisfied only for solutions starting from K.

The following notion requires that each solution φ to H starting fromK⊂Kε stays

in Kε. As we show later in this section, this notion corresponds to conditional

invariance.

Definition 3.9. (Approximate Satisfaction of 2p from K). Given an atomic

proposition p, let ε>0 and the sets K and Kε be as in (3.6) and (3.7), respectively.

The formula f = 2p is ε-approximately satisfied by H from the set K at (t, j) =

(0, 0) if each solution φ to H with φ(0, 0) ∈ K satisfies φ(t, j) ∈ Kε for each

(t, j)∈dom φ.

The following academic example illustrates the case when the formula 2p is

not satisfied by a solution φ to H at (t, j) = (0, 0), but 2p is ε-approximately

satisfied by a solution φ to H.

Example 3.10. Consider a hybrid system H=(C, F,D,G) on R given by

F (x) :=





−1

0

if x ≥ 1

if x ≤ 0

for all x ∈ C := {x ∈ R : x ≤ 0} ∪ {x ∈ R : x ≥ 1} and

G(x) :=





−2

δ

1/2 + δ

if x ∈ [0, 1/2)

if x ∈ [1/2, 1)

if x = 1
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for all x ∈ D := {x ∈ R : 0 ≤ x ≤ 1}, where 0 < δ < 1/2. Let an atomic

proposition p given by

p(x) =





1 if x ∈ (−2, 2)

0 otherwise.
(3.8)

Pick a solution φ satisfying φ(0, 0) = 1.5, which implies that φ(0, 0) satisfies p.

The solution φ from φ(0, 0) flows initially and it is such that φ(t, 0) satisfies p for

all t ≤ t1 when φ(t1, 0) = 1. Since φ(t1, 0) = 1 is in the jump set, the solution

φ jumps to 1/2 + δ. And, the solution φ satisfies p after the first jump; i.e.,

(φ, (t1, 1)) � p. Since the solution φ is still in the jump set after the first jump,

the solution φ jumps to δ and φ(t1, 2) satisfies p; i.e., (φ, (t1, 2)) � p. Since φ(t1, 2)

is in the jump set, the solution φ jumps to φ(t1, 3) = −2. Thus, the solution φ

does not satisfy p after the third jump. This example shows that the formula 2p

is not satisfied by the solution φ at (t, j) = (0, 0).

On the other hand, with the atomic proposition p in (3.8), consider ε > 0

and the sets K and Kε as in (3.6) and (3.7), respectively. Then, we have that

Kε = (−2 − ε, 2 + ε). Note that p is ε-approximately satisfied by a solution φ

to H at (t, j) ∈ dom φ when φ(t, j) ∈ Kε. Now, pick a solution φ satisfying

φ(0, 0)=1.5, which implies φ(0, 0)∈K. The solution φ from φ(0, 0) flows initially

so that φ(t, 0) ∈ Kε for all t ≤ t1 when φ(t1, 0) = 1. Since φ(t1, 0) = 1 is in

the jump set, the solution φ jumps to 1/2 + δ. The solution φ is in Kε after the

first jump; i.e., φ(t1, 1) ∈Kε. Since the solution φ is still in the jump set after

the first jump, the solution φ jumps to δ. The solution φ stays in Kε after the

second jump; i.e., φ(t1, 2) ∈ Kε. Since φ(t1, 2) is in the jump set, the solution φ

jumps to −2. Here, φ(t1, 3) stays in Kε and the solution φ flows after the third

jump. Then, the solution φ stays in Kε by the flow map. Therefore, the solution
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φ satisfying φ(0, 0) ∈ K stays in Kε for all future time; namely, the formula 2p

is ε-approximately satisfied by the solution φ from K at (t, j) = (0, 0). △

Next, we introduce a notion capturing approximate satisfaction of the formula

3p.

Definition 3.11. (Approximate Satisfaction of 3p). Given an atomic proposition

p, let ε>0 and the set Kε be as in (3.7). The formula f=3p is ε-approximately

satisfied by H at (t, j) = (0, 0) if for each solution φ to H, there exists (t, j) ∈
dom φ such that φ(t, j) ∈ Kε.

In the following, given an atomic proposition p, we present notions capturing

ε-approximate satisfaction of the formulas 2p and 3p with robustness to pertur-

bations w using the set Kε in (3.7). First, we introduce a notion capturing robust

ε-approximate satisfaction of the formula 2p.

Definition 3.12. (Robust Approximate Satisfaction of 2p). Given an atomic

proposition p, let ε > 0 and the set Kε be as in (3.7). The formula f = 2p is

robustly ε-approximately satisfied by H at (t, j) = (0, 0) if each solution pair (φ, w)

to Hw satisfies φ(t, j) ∈ Kε for every (t, j) ∈ dom φ.

The following notion is a refinement of the notion capturing approximate sat-

isfaction of 2p from the set K in Definition 3.9.

Definition 3.13. (Robust Approximate Satisfaction of 2p from K). Given an

atomic proposition p, let ε > 0, and the sets K and Kε be as in (3.6) and (3.7),

respectively. The formula f = 2p is robustly ε-approximately satisfied by H from

K at (t, j) = (0, 0) if each solution pair (φ, w) to Hw with φ(0, 0) ∈ K satisfies

φ(t, j) ∈ Kε for every (t, j) ∈ dom φ.

Next, we introduce a notion capturing robust ε-approximate satisfaction of the

formula 3p.
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Definition 3.14. (Robust Approximate Satisfaction of 3p). Given an atomic

proposition p, let ε > 0 and the set Kε be as in (3.7). The formula f = 3p is

robustly ε-approximately satisfied by H at (t, j) = (0, 0) if for each solution pair

(φ, w) to Hw, there exists (t, j) ∈ dom (φ, w) such that φ(t, j) ∈ Kε.
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Chapter 4

Characterizations of temporal

operators using dynamical

properties

In this chapter, we present basic necessary and sufficient conditions for the

satisfaction of LTL formulas involving one temporal operator such as always (2),

eventually (3), next (#), and until (Us,Uw). Given an atomic proposition p, we

build the set K as in (3.6) on which p is satisfied. Then, the satisfaction of the

formula is assured by guaranteeing particular properties of the solutions to the

hybrid system relative to the set K.

4.1 Characterization of 2 via forward invariance

According to the definition of the 2 operator, given an atomic proposition p, a

solution (t, j) 7→ φ(t, j) to a hybrid system H = (C, F,D,G) satisfies the formula

f = 2p (4.1)
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at (t, j) when we have that φ(t′, j′) satisfies p for all t′ + j′ ≥ t + j such that

(t′, j′) ∈ dom φ.

Using the set K in (3.6), to characterize that every solution φ to H satisfies f

in (4.1) at each (t, j) ∈ dom φ, each solution starting in K needs to stay in K for

all time. For this purpose, we recall the definition of forward pre-invariance and

then present necessary and sufficient conditions guaranteeing f in (4.1).

Definition 4.1 (Forward pre-invariance). Consider a hybrid system H. A set

K ⊂ R
n is said to be forward pre-invariant for H if every solution φ ∈ SH(K)

satisfies rge φ ⊂ K.

Furthermore, we are also interested in f in (4.1) being satisfied at some (t, j) ∈
dom φ (not necessarily at (t, j) = (0, 0)). For this purpose, we define the following

notion.

Definition 4.2 (Eventually forward pre-invariance). Consider a hybrid system

H. A set K ⊂ R
n is said to be eventually forward pre-invariant for H if1 for

every solution φ ∈ SH(K), there exists (t, j) ∈ dom φ such that φ(t′, j′) ∈ K for

all (t′, j′) ∈ dom φ such that t′ + j′ ≥ t+ j.

Theorem 4.3 (2p via Forward pre-invariance). Given an atomic proposition p,

the formula f = 2p is satisfied for every maximal solution φ to a hybrid system

H at (t, j) = (0, 0) with φ(0, 0) 
 p if and only if the set K in (3.6) is forward

pre-invariant for H.

Proof. (⇒) Since 2p is satisfied for all solutions φ at (t, j) = (0, 0) and φ(0, 0)

satisfies p, we have that every solution φ to H satisfies that φ(t, j) ∈ K = {x ∈
R

n : p(x) = 1} for all (t, j) ∈ dom φ. This implies that K is forward pre-invariant

1A notion that does not insist on the solutions starting from K can also be formulated, but
it would be a departure from a forward invariance notion since such a notion would hold for
solutions that do not start from K.
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via the definition of forward pre-invariance of the set K in Definition 4.1; namely,

rge φ ⊂ K.

(⇐) Since the set K is forward pre-invariant, each solution φ that starts in K

stays in K. That is, φ(0, 0) satisfies p and each solution φ at (t, j) in the domain

of each solution satisfies p. This implies that f = 2p is satisfied for every solution

φ to H at (t, j) = (0, 0) with φ(0, 0) 
 p.

Theorem 4.4 (2p via Eventual forward pre-invariance). Given an atomic propo-

sition p, the formula f = 2p is satisfied for every maximal solution φ to a hybrid

system H at some (t, j) ∈ dom φ with φ(0, 0) 
 p if and only if the set K in (3.6)

is eventually forward pre-invariant for H.

Proof. (⇒) By the definition of 2 and the definition of solutions to H, since every

solution φ to H starting from K satisfies 2p at some (t, j) ∈ dom φ, φ(t′, j′)

satisfies p for all (t′, j′) ∈ dom φ such that t′ + j′ ≥ t+ j; and thus, φ(t′, j′) ∈ K

for all (t′, j′) such that t′ + j′ ≥ t + j. This implies that K is forward pre-

invariant after (t, j) ∈ dom φ. Then, we conclude that K is eventually forward

pre-invariant for H via the definition of eventually forward pre-invariance of the

set K in Definition 4.2.

(⇐) Since the set K is eventually forward pre-invariant, for each solution φ

that starts from K, there exists (t, j) ∈ dom φ such that φ(t′, j′) ∈ K for all

(t′, j′) ∈ dom φ such that t′ + j′ ≥ t + j. This implies that φ(0, 0) satisfies p

and such solution φ satisfies p at each (t′, j′) ∈ dom φ such that t′ + j′ ≥ t + j.

Therefore, we conclude that f = 2p is satisfied for every solution φ to H at

(t, j) ∈ dom φ with φ(0, 0) 
 p.

Note that when K in (3.6) is not forward pre-invariant for H, 2p is not satisfied

for all solutions φ to H at every (t, j) ∈ dom φ with φ(0, 0) 
 p. The following
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example shows the case when 2p is not satisfied for a solution φ to H at every

(t, j) ∈ dom φ with φ(0, 0) 
 p.

Example 4.5. Let an atomic proposition p given by

p(x) = 1 if x ∈ [0, 1]

p(x) = 0 otherwise.
(4.2)

Consider a hybrid system H = (C, F,D,G) with the state x ∈ R given by

F (x) := 0 ∀x ∈ C :=
[
0, 1

2

]

G(x) :=





2 if x = 1

0 if x = 2
∀x ∈ D := {1} ∪ {2}.

(4.3)

Now, pick φ(0, 0) = 1 so that φ(0, 0) satisfies p. A solution φ from φ(0, 0) does

not satisfy p after the first jump; i.e., φ(0, 1) 1 p; however, φ(0, 1) is still in

the jump set D so that it jumps to 0, and it satisfies p after the second jump;

i.e., φ(0, 2) 
 p. Furthermore, the solution φ flows after the second jump so that

φ(t, 2) satisfies p for every t ≥ 0. On the other hand, there exists another solution

that starts from 1 and stays flowing there for all furture time; hence, it satisfies

f . This example shows that 2p is not satisfied for all solutions φ to H at every

(t, j) ∈ dom φ when K = {x ∈ R
n : p(x) = 1} is not forward pre-invariant.

4.2 Characterization of 3 via finite time attrac-

tivity

A solution (t, j) 7→ φ(t, j) to a hybrid system H satisfies the formula

f = 3p (4.4)
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at (t, j) ∈ dom φ when there exists (t′, j′) ∈ dom φ such that t′ + j′ ≥ t+ j, and

φ(t′, j′) satisfies p. The same set K in (3.6) is used in this section.

To guarantee that every solution φ to H satisfies f in (4.4) at each (t, j) ∈
dom φ, the distance of each solution to K should become zero at some finite

(t, j) ∈ dom φ so that φ reaches K. Related to this property, we recall the

definition of finite time attractivity (FTA) for hybrid systems and then present

necessary and sufficient conditions guaranteeing the formula f in (4.4). In this

definition, the amount of hybrid time required for a solution φ to converge to the

set K is captured by a settling-time function TK whose argument is the solution φ

and its output is a positive number determining the time to converge to K. More

precisely, given φ, TK(φ) := inf{t+j : φ(t, j) ∈ K} is the time to reach K. Below,

given x ∈ R
n and a nonempty set K ⊂ R

n, |x|K := infy∈K |x − y|. We use ր to

denote the limit from below.

Definition 4.6 (Finite-time attractivity). A closed set K is said to be finite time

attractive (FTA) for H with respect to O ⊂ C∪D if for every solution φ ∈ SH(O),

sup(t,j)∈dom φ t+ j ≥ TK(φ), and

lim
(t,j)∈dom φ : t+jրTK(φ)

|φ(t, j)|K = 0. (4.5)

Furthermore, the set K is said to be finite time attractive (FTA) for H if so it is

with respect to C ∪D.

Theorem 4.7 (3p via FTA). Given an atomic proposition p, the formula f = 3p

is satisfied for every solution φ to a hybrid system H at (t, j) = (0, 0) if and only

if the closed set K in (3.6) is FTA for H.

Proof. (⇒) Since 3p is satisfied for every solution φ to a hybrid system H at

(t, j) = (0, 0), there exists (t′, j′) ∈ dom φ such that t′ + j′ ≥ 0 and φ(t′, j′) ∈
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K = {x ∈ R
n : p(x) = 1}. In fact, φ(t′, j′) ∈ K implies |φ(t′, j′)|K = 0 and

t′ + j′ = TK(φ); that is,

lim
(t,j)∈dom φ : t+jրT (φ)

|φ(t, j)|K = 0

with TK(φ) = t′ + j′. This implies that K is FTA via the definition of FTA of the

set K in Definition 4.6.

(⇐) Since the closed set K is FTA for H, each solution φ to H satisfies

lim
(t,j)∈dom φ : t+jրTK(φ)

|φ(t, j)|K = 0

and sup(t,j)∈dom φ t + j ≥ TK(φ), where TK(φ) = t′ + j′ for some (t′, j′) ∈ dom φ.

Indeed, by the definition of the set K, its closedness, and the (local) absolute

continuity of φ (along with the continuity of the distance function to the set K),

there exists (t′, j′) ∈ dom φ such that φ(t′, j′) satisfies p. This implies that f = 3p

is satisfied for every solution φ to a hybrid system H at (t, j) = (0, 0).

4.3 Characterization of # via properties of the

data of H

A solution (t, j) 7→ φ(t, j) to a hybrid system H = (C, F,D,G) satisfies the

formula

f = #p (4.6)

when we have that φ(t, j + 1) satisfies p for each (t, j) ∈ dom φ. Here, the same

set K in (3.6) is used. To guarantee that every solution φ to H satisfies f in

(4.6) at each (t, j) ∈ dom φ, each solution needs to jump to the set K at the next
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hybrid time; i.e., φ(t, j + 1) ∈ K.

Theorem 4.8 (#p via the data of H). Given an atomic proposition p, let the

set K be as in (3.6). The formula f = #p is satisfied for all maximal solutions

φ to H at each (t, j) ∈ dom φ if and only if all of the following properties hold

simultaneously:

a) each nontrivial solution φ to H is such that φ(0, 0) ∈ D; and

b) no flows of H are possible from any x ∈ C; and

c) G(D) ⊂ K ∩D; and

d) C ⊂ D.

Proof. (⇒) Suppose that #p is satisfied for all solutions to H. We need to show

that a), b), c), and d) hold. By definition of # and definition of solutions to H,

since every solution φ to H satisfies #p, φ(0, 0) ∈ D and φ(0, 1) ∈ K for every

φ(0, 0) ∈ C ∪D. In fact, if C \D were not to be empty, then there would exist a

(trivial) solution φ with φ(0, 0) /∈ D, so #p would not hold since (0, 1) /∈ dom φ.

Hence, C ⊂ D and φ(0, 0) ∈ D hold; and thus, items a) and d) hold. Next, we

show that item b) holds. Proceeding by contradiction, if flow is possible from

a point x ∈ C, then there exists a solution φ to H with φ(0, 0) = x and there

exists ε > 0 such that [0, ε) × {0} ⊂ dom φ. Since x ∈ D due to C ⊂ D,

φ(0, 0) ∈ D. However, (0, 1) /∈ dom φ since [0, ε) × {0} ⊂ dom φ. This is a

contradiction, and thus, item b) holds. Finally, we show that item c) holds. By

definition of #, since every solution φ to H satisfies #p, then (t, j + 1) ∈ dom φ

and φ(t, j + 1) ∈ K for each (t, j) ∈ dom φ. By definition of solutions, it implies

that for each (t, j) ∈ dom φ, φ(t, j) = ξ ∈ D and G(ξ) ⊂ K. Hence, item c) holds.
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(⇐) Note that φ(0, 0) ∈ D and (0, 1) ∈ dom φ by items a) and b). Then, by

item c), G(φ(0, 0)) ⊂ K since φ(0, 0) ∈ D. Furthermore, for each (t, j) ∈ dom φ

such that φ(t, j) ∈ C ∪ D, no flows are possible from φ(t, j) by items b) and d).

Thus, (t, j + 1) ∈ dom φ and φ(t, j + 1) ∈ K by item c). Therefore, f = #p is

satisfied for every solution φ to H.

4.4 Characterization of U via invariance and at-

tractivity notions

The until operator has strong and weak versions, named as strong until (Us)

and weak until (Uw); see, e.g., [36]. Given two propositions p and q, the satisfaction

of the formula pUsq implies that p is true until q happens to be true, and q must

become true eventually. For the weak version, the satisfaction of the formula

pUwq implies that p is true until q happens to be true; however, q is not required

to become true if p is true forever. In other words, according to the definition of

the Us operator, a solution (t, j) 7→ φ(t, j) to a hybrid system H = (C, F,D,G)

satisfies the formula

f = p Us q (4.7)

at (t, j) ∈ dom φ when there exists (t′, j′) ∈ dom φ such that t′ + j′ ≥ t + j

and φ(t′, j′) satisfies q; and φ(t′′, j′′) satisfies p for all (t′′, j′′) ∈ dom φ such that

t+ j ≤ t′′ + j′′ < t′ + j′.

According to the definition of the Uw operator, a solution (t, j) 7→ φ(t, j) to a

hybrid system H = (C, F,D,G) satisfies the formula

f = p Uw q (4.8)
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at (t, j) ∈ dom φ when f = pUsq is satisfied at (t, j) ∈ dom φ; or φ(t′, j′) satisfies

p for all (t′, j′) ∈ dom φ such that t′ + j′ ≥ t+ j.

The set of points in R
n satisfying an atomic proposition p or an atomic propo-

sition q are respectively given by

P = {x ∈ R
n : p(x) = 1} and Q = {x ∈ R

n : q(x) = 1}, (4.9)

and we assume that the sets P and Q are closed and P ⊂ C ∪D.

With the sets P and Q as in (4.9), when a solution φ to H satisfies pUwq at

(t, j) = (0, 0) with (φ, (0, 0)) � p ∨ q, we have the following cases:

1) the solution φ starts and remains in the set P for all hybrid time; or

2) the solution φ starts and remains in the set P up to when it reaches Q.

3) the solution φ starts from the set Q.

Remarkably, these properties can be assured using the conditional invariance no-

tion in Definition 2.4. In fact, notice that based on items 1) - 3), the solution needs

to either remain in P or remain in P ∪ Q for some time. Such a property coin-

cides with conditional invariance of P ∪Q with respect to P \Q for the following

auxiliary system Hw: given a closed set Q and a hybrid system H = (C, F,D,G),

we consider the system Hw = (Cw, Fw, Dw, Gw) given by

Fw(x) := F (x) ∀x ∈ Cw := C \Q

Gw(x) :=





x if x ∈ Q

G(x) otherwise
∀x ∈ Dw := D ∪Q.

(4.10)

The intuition behind the construction of the system Hw is as follows: the system

Hw is used to characterize the behavior of the system H outside the set Q. Indeed,
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the solutions to H are the solutions to Hw (and vice versa) up to when they reach

(if they do) the set Q. By Definition of the weak until, when pUwq is satisfied for

H, it follows that, the solutions to Hw starting from the set P\Q stay in P ∪ Q.

Hence, by guaranteeing conditional invariance of P ∪ Q with respect to P\Q for

Hw, we establish that every solution to H starting from P ∪Q satisfies pUwq for

H. Alternatively, the satisfaction of pUwq for H can be guaranteed by conditional

invariance of P ∪Q with respect to P ∪Q (namely, forward invariance of P ∪Q)

for H.

Example 4.9 (Timer). Consider a hybrid system H = (C, F,D,G) modeling a

constantly evolving timer with the state x ∈ R and

F (x) := 1 ∀x ∈ C := [0, 1],

G(x) := 0 ∀x ∈ D := [1,+∞).

Define the atomic propositions p and q as

p(x) :=

{
1 if x ∈

[
1
2
, 1
]

0 otherwise

q(x) :=





1 if x ∈ [1,+∞)

0 otherwise

for each x∈R
n. The sets P and Q in (4.9) and the system Hw in (4.10) are given

by Q = D, P = [ 1
2
, 1], and

Fw(x) := 1 ∀x ∈ Cw := [0, 1),

Gw(x) := x ∀x ∈ Dw := D = Q.

We notice that each solution to Hw starting from P\Q = [ 1
2
, 1) flows in P and
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reaches x = 1 ∈ Q. Once a solution reaches x = 1, it jumps according to the jump

map Gw(x) = x and stays at {1} ∈ Q by jumping since it cannot flow back to

P\Q. Hence, the solutions to Hw starting from P\Q never leave the set P ∪ Q,

which implies that the set P ∪ Q is conditionally invariant with respect to P\Q
for Hw. Note that conditional invariance of P ∪ Q with respect to P\Q does not

hold for H since once a solution to H reaches Q, it jumps outside P ∪ Q. As a

consequence, the formula f = pUwq is satisfied for H since the solutions to H
starting from P\Q remain in P until reaching the jump set D = Q. △

Theorem 4.10 (pUwq via Conditional Invariance). Consider a hybrid system

H = (C, F,D,G). Given two atomic propositions p and q, let the sets P and Q be

given as in (4.9) and let the system Hw be as in (4.10). The formula f = pUwq is

satisfied for every maximal solution φ to H at (t, j) = (0, 0) with (φ, (0, 0)) � p∨ q
if P ∪Q is conditionally invariant with respect to P \Q for Hw.

Proof. Suppose that P ∪Q is conditionally invariant with respect to P\Q for Hw.

We show that, for each solution φ to H such that φ(0, 0) ∈ P\Q, φ stays in P ∪Q
for all (t, j) ∈ dom φ such that t+j ≤ TQ(φ). Indeed, let ψ be a maximal solution

to Hw such that ψ(t, j) = φ(t, j) for all (t, j) ∈ dom φ such that t + j ≤ TQ(φ);

such a solution ψ to Hw always exists since the systems H and Hw share the same

data outside the set Q. Furthermore, since P ∪Q is conditionally invariant with

respect to P\Q for Hw, we conclude that ψ(t, j) ∈ P ∪ Q for all (t, j) ∈ dom ψ.

Therefore, φ(t, j) ∈ P ∪ Q for all (t, j) ∈ dom φ such that t + j ≤ TQ(φ), which

completes the proof.

The bouncing ball example in [20, Example 1.1] illustrates Theorem 4.10.

Example 4.11 (Bouncing Ball). Consider a hybrid system H = (C, F,D,G)

modeling a ball bouncing vertically on the ground, with the state x = (x1, x2) ∈ R
2
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and the data

F (x) :=



x2

−γ


 ∀x ∈ C := {x ∈ R

2 : x1 ≥ 0}

G(x) :=




0

−λx2


 ∀x ∈ D := {x ∈ R

2 : x1 = 0, x2 ≤ 0},

where x1 denotes the height above the surface and x2 is the vertical velocity. The

parameter γ > 0 is the gravity coefficient and λ ∈ (0, 1) is the restitution coeffi-

cient. Let ε > 0 and define atomic propositions p and q such that

p(x) :=





1 if x1 ∈ [0, ε] and x2 ≤ 0

0 otherwise,

and

q(x) :=





1 if x1 ≥ 0 and x2 ≥ 0

0 otherwise.

The sets P and Q in (4.9) and the data of Hw in (4.10) are given by P = [0, ε] ×
R≤0, Q = R≥0 × R≥0, and

Fw(x) = F (x) ∀x ∈ Cw

Gw(x) =





x if x ∈ R≥0 × R≥0

G(x) if x ∈ {0} × R≤0

∀x ∈ Dw,

where Dw = ({0} × R<0) ∪ (R≥0 × R≥0) and Cw = R≥0 × R<0. Note that each

solution to Hw from P\Q either flows in P and reaches Q after jumping from

{0} × R<0 ⊂ Dw or directly jumps from {0} × R<0 towards Q. Once a solution

reaches a point x ∈ Q after a jump, it jumps according to the jump map Gw(x) =

x. Note that each solution to Hw from (0,∞) × {0} ⊂ Q can only flow. Hence,
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every solution to Hw starting from P\Q never leaves the set P ∪Q, implying that

the set P ∪Q is conditionally invariant with respect to P\Q for Hw. Then, using

Theorem 4.10, we conclude that the formula pUwq is satisfied for H. △

Next, we consider the definition of the strong until operator. With the same

sets P and Q in (4.9), to assure that a solution φ to H satisfies pUsq at (t, j) =

(0, 0) with (φ, (0, 0)) � p ∨ q,

1) the solution φ starts and remains in the set P until reaching the set Q in

finite hybrid time; or

2) the solution φ starts from the set Q.

Therefore, the satisfaction of pUsq for H requires, additionally, that every solution

φ reaches Q in finite hybrid time. When the set P ∪Q is conditionally invariant

with respect to P\Q for Hw, this property is guaranteed by Q being eventually

conditionally invariant with respect to P ∪ Q for the auxiliary hybrid system

Hs = (Cs, Fs, Ds, Gs) given by

Fs(x) := F (x) x ∈ Cs := (C\Q) ∩ P

Gs(x) :=





x if x ∈ Q

G(x) otherwise
x ∈ Ds := (D ∩ P ) ∪Q.

(4.11)

The hybrid system Hs is just the restriction of Hw in (4.10) to P ∪Q. It is easy

to see that Cs := Cw ∩ (P ∪ Q) and Ds := Dw ∩ (P ∪ Q). As a result, when,

additionally, Q is eventually conditionally invariant with respect to P ∪Q for Hs,

each solution to Hs starting from P\Q reaches Q in finite hybrid time. Since the

solutions to Hs are the solutions to Hw (and vice versa) up to when they reach

Q, and the solutions to Hw are the solutions to H (and vice versa) up to when

they reach Q, each solution to H starting from P\Q reaches Q in finite time and
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remains in P until it reaches Q, which implies the satisfaction of pUsq for H.

Alternatively, the satisfaction of pUsq for Hw can be guaranteed by using FTA of

Q with respect to P ∪ Q for Hs instead of eventual conditional invariance of Q

with respect to P ∪Q for Hs.

Theorem 4.12 (pUsq via pUwq + Eventual Conditional Invariance). Consider a

hybrid system H = (C, F,D,G). Given two atomic propositions p and q, let the

sets P and Q be given as in (4.9) and let the system Hs be given as in (4.11).

The formula f = pUsq is satisfied for every solution φ to H at (t, j) = (0, 0) with

(φ, (0, 0)) � p ∨ q if

1) the formula pUwq is satisfied for every solution φ to H at (t, j) = (0, 0) with

(φ, (0, 0)) � p ∨ q (see Theorem 4.10); and

2) the set Q is eventually conditionally invariant with respect to P ∪Q for Hs.

Proof. By definition of Hs, if the formula pUwq is satisfied for H by item 1), each

solution to Hs starting from P\Q remains in the set P ∪Q. Furthermore, when

additionally Q is ECI with respect to P ∪ Q for Hs, each maximal solution to

Hs starting from P\Q remains in the set P ∪ Q and reaches the set Q in finite

hybrid time. The proof is completed if we show that each maximal solution φ to

H starting from P\Q stays in P ∪Q for all (t, j) ∈ dom φ such that t+j ≤ TQ(φ),

and TQ(φ) < ∞. To this end, let φ be a maximal solution to H starting from P\Q.

By item 1), φ remains in P\Q up to when it reaches Q (if that ever happens).

Next, since both H and Hs share the same data on P\Q, there always exists a

solution ψ to Hs such that ψ(t, j) = φ(t, j) for all (t, j) ∈ dom φ provided that

t+ j ≤ TQ(φ) = TQ(ψ). Furthermore, by item 2), we know that TQ(ψ) = TQ(φ) <

∞. Then, since we already know that ψ(t, j) ∈ P ∪ Q for all (t, j) ∈ dom ψ by

item 1), we conclude that φ(t, j) = ψ(t, j) ∈ P ∪Q for all (t, j) ∈ dom φ provided

that t+ j ≤ TQ(φ) = TQ(ψ); and thus, the proof is completed.
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The following example illustrates Theorem 4.12.

Example 4.13 (Thermostat). Consider a hybrid system H = (C, F,D,G) model-

ing a controlled thermostat system. The variable h denotes the state of the heater,

i.e., h = 1 implies the heater is on and h = 0 implies the heater is off. The vari-

able z is the room temperature, z0 denotes the room temperature when the heater

is off, and z△ denotes the capacity of the heater to raise the temperature such that

z0 < zmin < zmax < z0 + z△. The system H with the state x := (h, z) ∈ {0, 1}×R

is given by

F (x) :=
[
0 − z + z0 + z△h

]⊤ ∀x ∈ C := C0 ∪ C1

G(x) :=
[
1 − h z

]⊤ ∀x ∈ D := D0 ∪D1,

where C0 := {x ∈ R
2 : h = 0, z ≥ zmin}, C1 := {x ∈ R

2 : h = 1, z ≤ zmax},

D0 := {x ∈ R
2 : h = 0, z ≤ zmin}, and D1 := {x ∈ R

2 : h = 1, z ≥ zmax}. Define

the atomic propositions p and q as

p(x) :=





1 if x ∈ {1} × (−∞, zmax]

0 otherwise,

q(x) :=





1 if x ∈ {0} × [zmin,+∞)

0 otherwise,

for each x∈R
n. The sets P and Q in (4.9) are given by P = {1} × (−∞, zmax],

Q = {0} × [zmin,+∞). The system Hw is given as in (4.10), where Cw = {1} ×
(−∞, zmax](= P ) and Dw = ({0} ×R) ∪ ({1} × [zmax,+∞)). Then, the system Hs

is given as in (4.11) with Cs = Cw(=P ) and Ds = ({0}×[zmin,+∞))∪{(1, zmax)}.

Note that each solution to Hs from P\Q(= P ) flows in P and reaches Q after

jumping from {(1, zmax)} ∈ Ds. Once a solution reaches a point x ∈ Q, it jumps

according to the jump map Gs(x) = x and stays in Q by jumping, which implies Q
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is eventually conditionally invariant with respect to P ∪ Q for Hs. Furthermore,

each solution to Hw starting from P\Q(= P ) flows in P and reaches Q for the

first time by jumping from {(1, zmax)} to {(0, zmax)}. Once a solution to Hw lands

on {(0, zmax)}, it jumps according to the jump map Gw(x) = x and stays in Q by

jumping. Hence, each solution to Hw starting from P\Q does not leave the set

P ∪Q, which implies that the set P ∪Q is conditionally invariant with respect to

P\Q for Hw; and thus, using Theorem 4.10, we conclude that the formula pUwq

is satisfied for H. As a result, using Theorem 4.12, we conclude that the formula

pUsq is satisfied for H. △

The following result characterizes the satisfaction of pUsq using FTA for hybrid

systems in addition to the satisfaction of pUwq.

Theorem 4.14 (pUsq via pUwq + FTA). Consider a hybrid system H = (C, F,D,G).

Given atomic propositions p and q, let the sets P and Q be as in (4.9) such that

the set Q is closed and let the data of Hs be given in (4.11). The formula pUsq is

satisfied for H if and only if

1) the formula pUwq is satisfied for H; and

2) the set Q is FTA with respect to P ∪Q for Hs.

Proof. Suppose that pUsq is satisfied for H. By definition of pUsq, we conclude

that pUwq is satisfied for H. Next, we show that the set Q is FTA with respect

to P ∪Q for Hs. To do so, we consider a maximal solution φ to Hs starting from

P ∪ Q. In particular, each maximal solution to Hs starting from Q, the solution

stays in Q by construction of Hs. Hence, we consider a maximal solution φ to Hs

starting from P \ Q. Since pUwq is satisfied for H, the solution φ either reaches

the set Q in finite time or remains in P\Q. To exclude the latter case, we show
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that when φ remains in P\Q, then φ is a maximal solution to H. Indeed, assume

the existence of a solution ψ to H that is a nontrivial extension of φ; namely,

there exists I ⊂ R≥0 × N such that I 6= ∅ and dom ψ = dom φ ∪ I. Note that

ψ(dom φ) = φ(dom φ) ⊂ P\Q. Also, since ψ must remain in P\Q up to when

it reaches Q, we can choose I such that ψ(dom φ ∪ I) ⊂ P\Q. Hence, ψ is a

solution to Hs, which contradicts the fact that φ is a maximal solution to Hs.

Furthermore, since pUsq is satisfied for H, we conclude that φ, being a maximal

solution to H, must reach Q in finite hybrid time.

Now, suppose that the formula pUwq is satisfied for H. This implies that

each maximal solution φ to H remains in P\Q for all hybrid time; otherwise, φ

remains in P\Q up to when it reaches Q in finite hybrid time. To exclude the first

scenario, we note that when φ remains in P\Q for all hybrid time, it follows that

φ is also a maximal solution to Hs. However, by item 2), the maximal solutions

to Hs must reach Q.
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Chapter 5

Sufficient conditions guaranteeing

the satisfaction of temporal

formulas for hybrid systems

5.1 Sufficient Conditions for 2p

In the following, we present sufficient conditions guaranteeing f = 2p. Due to

the equivalence we provide in Section 4.1, any sufficient condition that guarantees

the needed invariance property of the set guarantees the satisfaction of the formula

2p. For example, in [24,37], such invariance property for hybrid systems is studied

as follows:

• Forward pre-invariance of a set in [24, Theorem 4.3];

• Forward pre-invariance of a subset of the sublevel sets of a Lyapunov function

in [24, Theorem 5.1];

• Forward pre-invariance of a set defined by a barrier function in [37, Theorem

1].
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By exploiting the results and the ideas in [37], the conditions given below provide

sufficient conditions to verify that H is such that every solution φ to H with

φ(0, 0) 
 p satisfies f = 2p. Below, the concept of tangent cone of a set is used;

see [20, Definition 5.12]. The tangent cone at a point x ∈ R
n of a set K ⊂ R

n,

denoted TK(x), is the set of all vectors w ∈ R
n for which there exists xi ∈ K, τi > 0

with xi → x and τi ց 0 such that w = xi−x
τi

. For a set K ⊂ R
n, U(K) denotes any

open neighborhood of K and ∂K denotes its boundary. Furthermore, the notion

of barrier function candidate with respect to K for H is given as follows [37]:

Definition 5.1 (Barrier Function Candidate). Consider a hybrid system H =

(C, F,D,G). A function B : Rn → R is said to be a barrier function candidate

with respect to K for H if





B(x) ≤ 0 ∀x ∈ K

B(x) > 0 ∀x ∈ (C ∪D ∪G(D)) \K.
(5.1)

Assumption 5.2. The flow map F is outer semicontinuous, nonempty, and lo-

cally bounded with convex values on C. Furthermore, the jump map G is nonempty

on D.

Theorem 5.3. Consider a hybrid system H = (C, F,D,G) satisfying Assump-

tion 5.2. Given an atomic proposition p, suppose the set K in (3.6) is closed and

K ⊂ C ∪D. Then, the formula f = 2p is satisfied for all solutions φ to H (and

for all (t, j) ∈ dom φ) with φ(0, 0) 
 p if there exists a barrier function candidate

B with respect to K for H as in (5.1) that is continuously differentiable and the

following properties hold:

1) 〈∇B(x), η〉 ≤ 0 for all x ∈ C ∩ (U(∂K) \K) and all η ∈ F (x) ∩ TC(x).

2) B(η) ≤ 0 for all x ∈ D ∩K and all η ∈ G(x).
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3) G(D ∩K) ⊂ C ∪D.

Proof. Under conditions 1)–3), we conclude that the set K in (3.6) is forward pre-

invariant for H using [37, Theorem 1]. Then, by Theorem 4.3, the formula f = 2p

is satisfied for each solution φ to H at (t, j) = (0, 0) with φ(0, 0) 
 p since the set

K is forward pre-invariant for H. Moreover, this property at (t, j) = (0, 0) implies

φ(t, j) 
 p at each (t, j) ∈ dom φ; and thus, the formula f = 2p is satisfied for

each solution φ to H and at each (t, j) ∈ dom φ with φ(0, 0) 
 p.

Remark 5.4. Note that 2p is satisfied for all solutions φ to H if φ(0, 0) 
 p

and φ(t, j) 
 p for all future hybrid time (t, j) ∈ dom φ. Under the conditions in

Theorem 5.3, solutions with φ(0, 0) 2 p may satisfy p after some time if φ reaches

the set K in (3.6) in finite time. Convergence to such set in finite hybrid time is

presented in the next section.

Next, the bouncing ball example in [20, Example 1.1] illustrates Theorem 5.3.

Example 5.5. Consider a hybrid system H = (C, F,D,G) modeling a ball bounc-

ing vertically on the ground, with state x = (x1, x2) ∈ R
2 and the data given by

F (x) :=



x2

−γ


 ∀x ∈ C := {x ∈ R

n : x1 ≥ 0},

G(x) :=




0

−λx2


 ∀x ∈ D := {x ∈ R

n : x1 = 0, x2 ≤ 0},

(5.2)

where x1 denotes the height above the surface and x2 is the vertical velocity. The

parameter γ > 0 is the gravity coefficient and λ ∈ [0, 1] is the restitution co-

efficient. Every maximal solution to this system is Zeno. Define an atomic

proposition p as follows: for every x ∈ R
n, p(x) = 1 when x ∈ C ∪ D and
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2γx1 +(x2 −1)(x2 +1) ≤ 0; p(x) = 0 otherwise. Let K be given as in (3.6). Then,

we observe that the closed set K is the sublevel set where the total energy of the

ball is less than or equal to 1/2. The function B(x) := 2γx1 + (x2 − 1)(x2 + 1) is

a barrier function candidate since B(x) ≤ 0 for all x ∈ K and B(x) > 0 other-

wise. Then, we have 〈∇B(x), F (x)〉 = 0 for each x ∈ C; and thus, condition 1)

in Theorem 5.3 is satisfied. Moreover, we have B(G(x)) = 2γx1 + λ2x2
2 − 1 ≤ 0

for every x ∈ D ∩ K since λ ∈ [0, 1]; and thus, condition 2) in Theorem 5.3 is

satisfied. Finally, since G(D) = {0} ×R≥0 ⊂ C ∪D, condition 3) in Theorem 5.3

is satisfied. Therefore, via Theroem 5.3, the formula f = 2p is satisfied for each

solution φ to H from K and at each (t, j) ∈ dom φ. △

Example 5.6. Consider a hybrid system H = (C, F,D,G) modeling a constantly

evolving timer system with the state x = (τ, h) ∈ X := [0,∞) × {0, 1} given by

F (x) :=



1

0


 ∀x ∈ C := {x ∈ X : 0 ≤ τ ≤ T},

G(x) :=




0

1 − h


 ∀x ∈ D := {x ∈ X : τ ≥ T},

(5.3)

where τ denotes a timer variable, h is a logic variable, and T is the period of the

timer. Moreover, for each x ∈ X such that 0 ≤ τ ≤ T , p(x) = 1; otherwise,

p(x) = 0. Let K be given as in (3.6). Consider the barrier function candidate

B(x) := τ − T . We notice that C ∩ (U(∂K) \ K) = ∅; and thus, condition 1)

in Theorem 5.3 is trivially satisfied. Moreover, we have B(G(x)) = −T ≤ 0 for

every x ∈ D; and thus, condition 2) in Theorem 5.3 is satisfied. Furthermore,

since G(D) = {0} × {0, 1} ⊂ C ∪ D, condition 3) in Theorem 5.3 is satisfied.

Therefore, via Theorem 5.3, the formula f = 2p is satisfied for each solution φ

to H and at each (t, j) ∈ dom φ. △
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5.2 Sufficient Conditions for 3p

In the following, we present sufficient conditions guaranteeing the formula

f = 3p. Due to the equivalence we provide in Section 4.2, any sufficient condition

that guarantees the FTA property of the set K in (3.6) guarantees the satisfaction

of the formula 3p. In that sense, we observe that the results on finite-time stability

(FTS) for a set for hybrid systems in [25] and the results on recurrence for a set for

hybrid systems in [38] can be applied to derive sufficient conditions guaranteeing

the desired FTA property. In the following, by exploiting the results and the

ideas in [25], sufficient conditions are proposed to verify that H is such that every

solution φ to H satisfies f = 3p; see Appendix B for more details about sufficient

conditions for FTA.

As stated above, the satisfaction of the formula f = 3p is assured by conditions

that guarantee that the set K in (3.6) is FTA for H, where

p(x) =





1 if x ∈ K

0 otherwise.
(5.4)

In the following, we propose sufficient conditions to satisfy the formula f = 3p.

Below, the function V : Rn → R is continuous on R
n and locally Lipschitz on a

neighborhood of C. Using Clarke generalized derivative, we define the functions

uC and uD as follows: uC(x) := maxv∈F (x) maxζ∈∂V (x)〈ζ, v〉 for each x ∈ C,

and −∞ otherwise; uD(x) := maxζ∈G(x) V (ζ) − V (x) for each x ∈ D, and −∞
otherwise, where ∂V is the generalized gradient of V in the sense of Clarke; see

Section 2.3 for more details. Moreover, a function α : R≥0 7→ R≥0 is a class-K
function, denoted by α ∈ K, if it is zero at zero, continuous, and strictly increasing

and α is a class-K∞ function, denoted by α ∈ K∞, if α ∈ K and is unbounded.

Given a real number s ∈ R, ceil(s) denotes the smallest integer upper bound for
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s.

Theorem 5.7. Consider a hybrid system H = (C, F,D,G). Given an atomic

proposition p, let the set K in (3.6) is closed. Suppose there exists an open set1

N that defines an open neighborhood of K such that G(N ) ⊂ N ⊂ R
n. Then, if

1) there exists a continuous function V : N → R≥0, locally Lipschitz on an

open neighborhood of C ∩ N , and c1 > 0, c2 ∈ [0, 1) such that

1.1) for every x ∈ N ∩ (C ∪D) such that p(x) = 0, each φ ∈ SH(x) satisfies

V 1−c2 (x)
c1(1−c2)

≤ sup
(t,j)∈dom φ

t; (5.5)

1.2) the function V is positive definite with respect to K and

1.2a) for each x ∈ C ∩ N and p(x) = 0, uC(x) + c1V
c2(x) ≤ 0;

1.2b) for each x ∈ D ∩ N and p(x) = 0, uD(x) ≤ 0.

or

2) there exists a continuous function V : N → R≥0, locally Lipschitz on an

open neighborhood of C ∩ N , and c > 0 such that

2.1) for every x ∈ N ∩ (C ∪D) such that p(x) = 0, each φ ∈ SH(x) satisfies

ceil
(

V (x)
c

)
≤ sup

(t,j)∈dom φ
j; (5.6)

2.2) the function V is positive definite with respect to K and

2.2a) for each x ∈ C ∩ N and p(x) = 0, uC(x) ≤ 0;

2.2b) for each x ∈ D ∩ N and p(x) = 0, uD(x) ≤ − min{c, V (x)}.

1A set N can be chosen as N = R
n for the global version of FTA.
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hold, then, the formula f = 3p is satisfied for every solution φ to H from LV (r)∩
(C ∪ D) at (t, j) = (0, 0) where LV (r) = {x ∈ R

n : V (x) ≤ r}, r ∈ [0,∞], is a

compact sublevel set of V contained in N . Moreover, for each φ ∈ SH(LV (r) ∩
(C ∪D)), defining ξ = φ(0, 0), the first time (t′, j′) ∈ dom φ such that φ(t′, j′) 
 p

satisfies

t′ + j′ = T (φ), (5.7)

and an upper bound on that hybrid time is given as follows:

a) if 1) holds, then T is upper bounded by T ⋆(ξ)+J ⋆(φ), where T ⋆(ξ) = V 1−c2 (ξ)
c1(1−c2)

and J ⋆(φ) is such that (T ⋆(ξ),J ⋆(φ)) ∈ dom φ.

b) if 2) holds, then T is upper bounded by T ⋆(φ) + J ⋆(ξ), where J ⋆(ξ) =

ceil
(

V (ξ)
c

)
and T ⋆(φ) is such that (T ⋆(φ),J ⋆(ξ)) ∈ dom φ and (T ⋆(φ),J ⋆(ξ)−

1) ∈ dom φ.

Proof. Note that the set K is closed and collects the set of points such that p is

satisfied. Now we show that the conditions in Proposition B.1 or Proposition B.3

hold for K.

• Item 1) implies that for every x ∈ N ∩ (C ∪ D) \ K, each φ ∈ SH(x)

satisfies (5.5); and the function V is positive definite with respect to K; and

uC(x) + c1V
c2(x) ≤ 0 for every x ∈ (C ∩ N ) \ K and uD(x) ≤ 0 for all

x ∈ (D ∩ N ) \K. Thus, Proposition B.1 applies.

• Item 2) implies that for every x ∈ N ∩ (C ∪ D) \ K, each φ ∈ SH(x)

satisfies (5.6); and the function V is positive definite with respect to K; and

uC(x) ≤ 0 for every x ∈ (C ∩ N ) \K and uD(x) ≤ − min{c, V (x)} for every

x ∈ (D ∩ N ) \K. Thus, Proposition B.3 applies.
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Therefore, K is FTA for H if item 1) or 2) holds. Then, by Theorem 4.7, the

formula f = 3p is satisfied for all solutions to H at (t, j) = (0, 0).

Note that the conditions about the supremum over the hybrid time of a solution

in (5.5) and (5.6) are due to not insisting on completeness of maximal solutions.

When every maximal solution is complete, these conditions hold automatically.

See Remark 5.9 for more details.

Remark 5.8. Under condition 1.2) or 2.2) in Theorem 5.7, given a solution φ to

H, there exists some time (t′, j′) ∈ dom φ such that φ satisfies p. Furthermore, we

have this satisfaction in finite time (t′, j′), obtained by the settling-time function

T , for which an upper bound depends on the Lyapunov function and the solution

only. Note that a settling-time function T does not need to be computed. However,

we provide an estimate of when convergence happens using an upper bound that

depends on V and the constants involved in items 1) and 2) only.

Remark 5.9. Note that conditions (5.5) and (5.6) hold for free for complete

solutions unbounded in t or/and j in their domain. Moreover, maximal solutions

are complete when the conditions in [20, Proposition 2.10 or Proposition 6.10]

hold. Specifically, if maximal solutions φ are complete with dom φ unbounded in

its t component, then (5.5) holds automatically; and, if the solutions are complete

with dom φ unbounded in its j component, then (5.6) holds automatically.

Remark 5.10. Item 1) in Theorem 5.7 characterizes the situation when the for-

mula f = 3p is being satisfied for all solutions φ to H due to the strict decrease

of a Lyapunov function during flows. Item 2) in Theorem 5.7 provides conditions

for f to be satisfied for all solutions φ to H due to a Lyapunov function strictly

decreasing at jumps. Finally, we can combine the properties in item 1) and item

2) to arrive to strict Lyapunov conditions for verifying that H is such that every

φ satisfies f at (t, j) = (0, 0); see Proposition B.4.
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Remark 5.11. Based on the definition of recurrence for sets in [38, Definition 1],

the recurrence property could be used for certifying the formula 3p. When the set

K that collects the set of points such that p is satisfied is globally recurrent for a

given hybrid system H = (C, F,D,G), for each complete solution φ ∈ SH(C ∪D),

there exists (t, j) ∈ dom φ such that φ(t, j) ∈ K; namely, it implies that φ satisfies

p at (t, j) ∈ dom φ. In [38], robustness of recurrence and equivalence between the

uniform and non-uniform notions are established for open and bounded sets. We

observe that the recurrence property is studied with respect to open sets. Therefore,

once we have an open, bounded set that collects the set of points satisfying p, we

can employ the recurrence property to verify that 3p is satisfied. Furthermore,

we can use the results on robustness of recurrence presented in [38] to derive the

satisfaction of the formula 3p with robustness.

In the following examples, the item 1) in Theorem 5.7 is exercised.

Example 5.12. Inspired from [25, Example 3.3], consider a hybrid system H =

(C, F,D,G) with state x = (z, τ) ∈ R × [0, 1] given by2

F (x) :=



−k|z|αsgn(z)

1


 ∀x ∈ C := R × [0, 1],

G(x) :=



−z
0


 ∀x ∈ D := R × {1},

(5.8)

where α ∈ (0, 1) and k > 0. Consider the function V : R × [0, 1] → R≥0 given

by V (x) = 1
2
z2 for each x ∈ C. Moreover, each x ∈ C satisfies p only when

x ∈ {0} × [0, 1]. Now we consider the set K = {x ∈ C : p(x) = 1}. We have that,

2The function sgn : R → {−1, 1} is defined as sgn(x) = 1 if x ≥ 0, and sgn(x) = −1 otherwise.
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for each x ∈ C \K,

〈∇V (x), F (x)〉 = −k|z|1+α = −2
1+α

2 kV (x)
1+α

2 .

Furthermore, for all x ∈ D\K, V (G(x))−V (x) = 0. Therefore, condition 1.2) in

Theorem 5.7 is satisfied with N = R×[0, 1], c1 = 2
1+α

2 k > 0 and c2 = 1+α
2

∈ (0, 1).

By applying [20, Proposition 6.10], condition 1.1) in Theorem 5.7 holds since every

maximal solution to H is complete with its domain of definition unbounded in the

t direction. Thus, the formula f = 3p is satisfied for all solutions φ to H at

(t, j) = (0, 0). △

Next, the bouncing ball example in Example 5.5 illustrates Lyapunov condi-

tions for verifying that 3p is satisfied for all solutions to H at (t, j) = (0, 0).

Example 5.13. Consider H = (C, F,D,G) in Example 5.5. Define an atomic

proposition p as follows: for each x ∈ R
n, p(x) = 1 when x2 ≤ 0, and p(x) = 0

otherwise. With K in (3.6) and N = R
n, let V (x) = |x2| for all x ∈ R

n. This

function is continuously differentiable on the open set R
n \ (R × {0}) and it is

Lipschitz on R
n. It follows that

〈∇V (x), F (x)〉 = −γ ∀x ∈ (C ∩ N ) \K,

and uC(x)+c1V
c2(x) ≤ 0 holds with c1 = γ and c2 = 0. For each x ∈ (D∩N )\K,

V (G(x)) = −λx2 = | − λx2| = λ|x2| = λV (x),

and uD(x) = V (G(x)) − V (x) = λV (x) − V (x) = −(1 − λ)V (x). Thus, condition

1.2) in Theorem 5.7 is satisfied since (D ∩ N )\K = ∅. Note that by apply-

ing [20, Proposition 6.10], every maximal solution is complete and condition 1.1)
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in Theorem 5.7 holds with the chosen constants c1 and c2 due to the properties of

the hybrid time domain of each maximal solution. Therefore, the formula f = 3p

is satisfied for all maximal solutions to H at (t, j) = (0, 0). Since every solution

from K, after some time, jumps from K and then converges to K again in finite

time, we have that f = 3p holds for every (t, j) in the domain of each solution.

△

Note that Theorem 5.7 guarantees that 3p is satisfied for all solutions φ to

H at (t, j) = (0, 0). These conditions can be extended to guarantee that 3p is

satisfied for all (t, j) in the domain of any solution if the set K is forward pre-

invariant or when only jumps are allowed from points in K and the jump map

maps points in K into N .

Theorem 5.14. Consider a hybrid system H = (C, F,D,G). Given an atomic

proposition p, let the set K in (3.6) is closed. Assume that there exists an open

set N that defines an open neighborhood of K such that G(N ) ⊂ N ⊂ R
n.

Then, if there exists a continuous function V : N → R≥0, locally Lipschitz on

an open neighborhood of C ∩ N , and c, c1 > 0, c2 ∈ [0, 1), such that each φ ∈
SH(LV (r) ∩ (C ∪D)) is complete, G(D ∩K) ⊂ LV (r) ∩ (C ∪D), and at least one

among items 1.2) and 2.2) in Theorem 5.7 holds, then, the formula f = 3p is

satisfied for every solution φ to H from LV (r) ∩ (C ∪ D) and for all (t, j) in the

domain of each solution, where LV (r) = {x ∈ R
n : V (x) ≤ r}, r ∈ [0,∞] is a

compact sublevel set of V contained in N .

Proof. The set K is closed and collects the points such that p is satisfied. We

first show the case when item 1.2) in Theorem 5.7 holds. Since each solution

φ ∈ SH(LV (r)∩(C∪D)) is complete, this implies that there exists (t1, j1) ∈ dom φ

such that

lim
t+jրt1+j1

|φ(t, j)|K = 0.
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If there exists (t2, j2) ∈ dom φ such that φ(t2, j2) /∈ K, then φ left K by jumping

since condition 1.2a) in Theorem 5.7 does not allow flowing out of K. How-

ever, if that is the case, then φ(t2, j2) ∈ LV (r) ∩ (C ∪ D) since G(D ∩ K) ⊂
LV (r) ∩ (C ∪ D); and then, due to completeness of φ, there exists (t3, j3) such

that limt+jրt3+j3 |φ(t, j)|K = 0. Thus, proceeding in this way for all hybrid time

instant that the solution leaves K, condition 1) in Theorem 5.7 holds and for

every (t, j) in the domain of each solution φ. Therefore, the formula f = 3p is

satisfied for all solutions to H from LV (r) ∩ (C ∪D) for every (t, j) in the domain

of each solution. The proof for the cases when item 2.2) in Theorem 5.7 holds

follows similarly.

The following example about the firefly model in [39, Example 25] illustrates

Theorem 5.14.

Example 5.15. Consider the hybrid system H = (C, F,D,G) modeling two im-

pulsive oscillators capturing the dynamics of two fireflies. This system has the

state x = (x1, x2) ∈ R
2 and the data given by

F (x) :=



γ

γ


 ∀x ∈ C := [0, 1] × [0, 1],

G(x) :=



g((1 + ε̃)x1)

g((1 + ε̃)x2)


 ∀x ∈ D := {x ∈ C : max {x1, x2} = 1},

(5.9)

where γ > 0 and the parameter ε̃ > 0 denotes the effect on the timer of a firefly

when the timer of the other firefly expires, and the set-valued map g is given by

g(z) = z when z < 1; g(z) = 0 when z > 1; g(z) = {0, 1} when z = 1. Define

p as follows: for each x ∈ R
2, p(x) = 1 when x ∈ C and x1 = x2, and p(x) = 0

otherwise. Then, the set K is {x ∈ C : p(x) = 1}. Let k = ε̃
2+ε̃

and note that
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1+ε̃
2+ε̃

= 1+k
2

. Define

V (x) := min {|x1 − x2|, 1 + k − |x1 − x2|}

for all x ∈ X := {x ∈ R
2 : V (x) < 1+k

2
} = {x ∈ R

2 : |x1 − x2| 6= 1+k
2

}. This

function is continuously differentiable on the open set X \ K and it is Lipschitz

on X . Let m⋆ = 1+k
2

and m ∈ (0, m⋆). Consider Cm = C ∩M and Dm = D ∩M ,

where M := {z ∈ C ∪D : V (x) ≤ m}. By the definition of V , it follows that

〈∇V (x), F (x)〉 = 0 ∀x ∈ Cm \K.

We now consider x ∈ Dm \ K. Since V is symmetric, without loss of generality,

consider x = (1, x2) ∈ Dm \K where x2 ∈ [0, 1] \ { 1
2+ε̃

}.3 Then, we obtain

V (x) = min{1 − x2, k + x2},

V (G(x)) = min{g((1 + ε̃)x2), 1 + k − g((1 + ε̃)x2)}.

When g((1+ε̃)x2) = 0, it follows that V (G(x)) = 0. When g((1+ε̃)x2) = (1+ε̃)x2,

there are two cases:

a) x2 <
1

2+ε̃
, V (x) = k + x2 > (1 + ε̃)x2 ≥ V (G(x));

b) x2 >
1

2+ε̃
, V (x) = 1 − x2 ≥ V (G(x)).

Thus, V (G(x))−V (x) ≤ 0 for all x ∈ Dm \K. By applying [39, Proposition 6.10],

every maximal solution to the hybrid system Hm = (Cm, F,Dm, G) is complete.

Moreover, given ε̃ > 0, for ε = ε̃
1+ε̃

and m such that (K + εB) ∩ C ⊂ Cm, we

have that for all x ∈ Dm ∩ (K + εB), G(x) = 0 ∈ K. Therefore, it follows from

3Since
(

1, 1

2+ε̃

)
∈
{

x ∈ R
n : V (x) = 1+k

2

}
.
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Theorem 5.14 that the formula f = 3p is satisfied for every solution φ to H from

N := {x ∈ C ∪D : V (x) < m} for all (t, j) in the domain of each solution. △

5.3 Sufficient Conditions for #p

Theorem 5.16. Given an atomic proposition p, let the set K be as in (3.6). The

formula f = #p is satisfied for all solutions φ to H at each (t, j) ∈ dom φ if the

properties a), b), and c) in Theorem 4.8 hold simultaneously.

Remark 5.17. By the definition of next operator, one could consider that the

flow set C is empty to specify #p for all solutions φ to H. Under this assumption,

H reduces to a discrete-time system.

The following example illustrates the sufficient conditions in Theorem 5.16 to

guarantee the satisfaction of #p.

Example 5.18. Let a hybrid system H = (C, F,D,G) with the state x ∈ R and

data given by

D := R, G(x) := sgn(x), (5.10)

C is empty, and the flow map F is arbitrary. The function sgn(x) is defined in

Example 5.12, and p(x) = 1 if |x| = 1. Let K := {−1, 1}. By using the map G,

for every x ∈ D ∩K, G(x) ∈ K; for every x ∈ D \ K, G(x) ∈ K. Therefore, the

formula f = #p is satisfied for all solutions to H.

5.4 Sufficient Conditions for pUq

In this section, sufficient conditions that guarantee the satisfaction of the for-

mulas pUwq and pUsq are presented by employing sufficient conditions that guar-

antee the needed invariance and attractivity properties of the sets.

60



First, we present sufficient conditions that guarantee the satisfaction of the for-

mula pUwq by using the sufficient conditions for conditional invariance in Propo-

sition C.2.

Theorem 5.19 (pUwq). Consider a hybrid system H = (C, F,D,G). Given

atomic propositions p and q, let the sets P and Q be as in (4.9) such that P and

Q are closed and P ⊂ C ∪ D. Then, the formula f = pUwq is satisfied for all

solutions φ to H at (t, j) = (0, 0) with (φ, (0, 0)) � p∨ q if there exists a C1 barrier

function candidate B with respect to the sets (P \ Q,Rn \ (P ∪ Q)) for H as in

(C.3) such that K := {x ∈ C ∪ D ∪ Q : B(x) ≤ 0} is closed and the following

hold:

1) 〈∇B(x), η〉 ≤ 0 for all x ∈ (C\Q)∩(U(∂K)\K) and all η ∈ F (x)∩TC\Q(x).

2) B(η) ≤ 0 for all x ∈ K ∩ (D\Q) and all η ∈ G(x).

3) G(x) ⊂ C ∪D ∪Q for all x ∈ K ∩ (D\Q).

Proof. Let the system Hw = (Cw, Fw, Dw, Gw) be as in (4.10). Since K = {x ∈
C∪D∪Q : B(x) ≤ 0} and the barrier function candidate B satisfies B(x) ≤ 0 for

all x ∈ P\Q and B(x) > 0 for all x ∈ (C ∪D)\(P ∪Q) = (C ∪D ∪Q)\(P ∪Q),

we conclude that B is a barrier candidate with respect to (P\Q,Rn\(P ∪ Q))

for Hw in (4.10). Furthermore, item 1) implies that 〈∇B(x), η〉 ≤ 0 for all x ∈
(U(∂K)\K)∩Cw and all η ∈ F (x)∩TCw

(x). Item 2) implies that B(η) ≤ 0 for all

x ∈ K∩(D\Q) and all η ∈ Gw(x). Furthermore, when x ∈ K∩Q, Gw(x) = x and

B(x) ≤ 0. Hence, B(η) ≤ 0 for all x ∈ K ∩Dw and all η ∈ Gw(x). Item 3) implies

that Gw(K ∩ (D\Q)) ⊂ Cw ∪Dw. Furthermore, Gw(K ∩Q) ⊂ K ∩Q ⊂ Cw ∪Dw.

Hence, Gw(K ∩ Dw) ⊂ Cw ∪ Dw. Thus, using item 1) in Proposition C.2 with

O and Xu therein replace by P\Q and R
n\(P ∪ Q), respectively, we conclude
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that P ∪Q is conditionally inavariant with respect to P\Q for Hw. Hence, using

Theorem 4.10, we conclude that pUwq is satisfied for H.

The following example illustrates Theorem 5.19.

Example 5.20 (Bouncing Ball). Consider the bouncing ball example in Example

5.5 to confirm the conclusions therein using Theorem 5.19. Consider the barrier

function candidate B(x) := x1 − ε with ε > 0. Indeed, B is a barrier function

candidate with respect to (P\Q,Rn\(P ∪ Q)) for H since B(x) ≤ 0 for all x ∈
P\Q = [0, ε] × R<0 and B(x) > 0 for all x ∈ (C ∪ D)\(P ∪ Q) = (ε,∞) × R<0.

Furthermore, for all x ∈ C\Q = R≥0 × R≤0, we have 〈∇B(x), F (x)〉 = x2 ≤ 0;

hence, item 1) holds. Furthermore, for all x ∈ K ∩D = D, B(G(x)) = B(x) ≤ 0;

hence, item 2) holds. Finally, for all x ∈ D, G(x) ∈ {0} × R≥0 ⊂ C; hence, item

3) holds. As a consequence, using Theorem 5.19, we conclude that the formula

f = pUwq is satisfied for all solutions φ to H at (t, j) = (0, 0) with (φ, (0, 0)) �

p ∨ q.

In the following, we present sufficient conditions that guarantee the satisfaction

of the formula pUsq by using sufficient conditions for ECI for hybrid systems.

Theorem 5.21 (pUsq using Eventual Conditional Invariance). Consider a hybrid

system H = (C, F,D,G). Let the system Hs = (Cs, Fs, Ds, Gs) be as in (4.11).

Given atomic propositions p and q, let the sets P and Q be as in (4.9) such that

P and Q are closed and P ⊂ C ∪D. Then, the formula f = pUsq is satisfied for

each solution φ to H at (t, j) = (0, 0) with (φ, (0, 0)) � p ∨ q if the following hold:

1) The formula pUwq is satisfied for each solution φ to H at (t, j) = (0, 0) with

(φ, (0, 0)) � p ∨ q.

2) There exist a C1 function v : Rn → R, a locally Lipschitz function fc : R →
R, and a constant r1 > 0 such that the following hold:
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2.1) 〈∇v(x), η〉 ≤ fc(v(x)) for all η ∈ F (x) ∩ TCs
(x) and for all x ∈ Cs;

2.2) v(η) ≤ v(x) for all η ∈ G(x) and for all x ∈ D ∩ P ;

2.3) The solutions to

ẏ = fc(y) (5.11)

starting from v(P \Q) converge to (−∞, r1) in finite time.

3) There exist a C1 function w : Rn → R, fd : R → R which is nondecreasing,

and a constant r2 > 0 such that the following hold:

3.1) 〈∇w(x), η〉 ≤ 0 for all η ∈ F (x) ∩ TCs
(x) and all x ∈ Cs;

3.2) w(η) ≤ fd(w(x)) for all η ∈ G(x) and all x ∈ D ∩ P ;

3.3) The solutions to

z+ = fd(z) (5.12)

starting from w(P \Q) converge to (−∞, r2) in finite time.

4) One of the following conditions holds:

4a) Each complete solution to H starting from P \Q is eventually contin-

uous and, with r1 coming from item 2),

S1 := {x ∈ C ∩ (P ∪Q) : v(x) < r1} ⊂ Q. (5.13)

4b) Each complete solution to H starting from P \Q is eventually discrete

and, with r2 coming from item 3),

S2 := {x ∈ D ∩ (P ∪Q) : w(x) < r2} ⊂ Q. (5.14)

4c) Each complete solution to H starting from P \Q is eventually continu-
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ous, eventually discrete, or has a hybrid time domain that is unbounded

in both the t and the j direction and, with r1 and r2 coming from item

2) and item 3) respectively, (5.13) and (5.14) hold.

4d) With r1 and r2 coming from item 2) and item 3) respectively, (5.13)

and (5.14) hold, and G(S2) ∩ Cs ⊂ S1.

5) No maximal solution starting from P has a finite time escape within (P\Q)∩
C

6) Every maximal solution from (P ∩ ∂C) \ (D ∪Q) is nontrivial.

Proof. By item 1), every maximal solution to H from P ∪ Q satisfies pUwq. It

remains to show that every maximal solution to H starting from P\Q also satisfies

pUsq, as solutions from Q already satisfy it. To this end, note that each maximal

solution φ to H from P\Q satisfy one of the following conditions:

a) φ reaches Q in finite hybrid time;

b) φ is not complete and does not reach Q in finite hybrid time; or

c) φ is complete and does not reach Q in finite hybrid time.

In the rest of the proof, we show that φ can only satisfy case a). First, we

show that case b) is not possible due to items 5) and 6) using contradiction. That

is, suppose φ is not complete and never reach Q; in particular, dom φ is bounded.

Let (T, J) = sup dom φ. Due to the fact that φ never reach Q and since φ satisfies

pUwq, we conclude that φ remains in P\Q. Moreover, under item 5), the maximal

solution φ does not have a finite escape time inside (P\Q)∩C, which implies that

(T, J) ∈ dom φ. Now, by the definition of solutions to H, φ(T, J) ∈ C ∪ D.

First, let φ(T, J) ∈ D. In this case, φ can be extended via a jump. Next, let

φ(T, J) ∈ C\D. In this case, when φ(T, J) ∈ int(C)\D, we use (SA) to conclude
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that φ can be extended via flow; and for the case when φ(T, J) ∈ ∂C\D, we use

item 6) to conclude that φ can be extended via flow. Therefore, if (T, J) ∈ dom φ,

then φ can be extended via flow or a jump. This contradicts maximality of φ; and

thus, case b) is not possible.

Next, we show that case c) is not possible due to items 2)-4) using contra-

diction. Suppose that items 2), 3), and 4a) hold. Suppose that there exists a

complete solution φ to H that does not reach Q in finite hybrid time. By con-

struction of Hs and since H satisfies pUwq, we claim that φ is also a maximal

solution to Hs. However, using the arguments in a) in the proof of Theorem C.5,

there must exist (t⋆, j⋆) ∈ dom φ such that φ(t, j) ∈ S1 ⊂ Q for all (t, j) ∈ dom φ

and t+j ≥ t⋆ +j⋆. This implies that φ must reach Q in finite hybrid time via flow.

Next, suppose that items 2), 3), and 4b) hold. Proceeding as when 4a) holds, we

claim that φ is also a maximal solution to Hs. Using the arguments in b) in the

proof of Theorem C.5, there exists (t⋆, j⋆) ∈ dom φ such that φ(t, j) ∈ S2 ⊂ Q

for all (t, j) ∈ dom φ and t + j ≥ t⋆ + j⋆. This implies that φ must reach Q in

finite hybrid time by jumps. Similarly, suppose that items 2) and 3) hold and

either item 4c) or item 4d) holds. Using the claim that φ is a maximal solution

to Hs and the arguments in the proof of Theorem C.5, we conclude that there

exists (t⋆, j⋆) ∈ dom φ such that φ(t, j) ∈ S1 ∪ S2 ⊂ Q for all (t, j) ∈ dom φ and

t+ j ≥ t⋆ + j⋆. This implies that φ must reach Q in finite hybrid time via flow or

jumps. Therefore, we conclude that case c) is not possible.

Theorem 5.22 (Strong Until using Eventual Conditional Invariance via Flows).

Consider a hybrid system H = (C, F,D,G). Given atomic propositions p and q, let

the sets P and Q be as in (4.9) such that P ⊂ C∪D. Then, the formula f = pUsq

is satisfied for each solution φ to H at (t, j) = (0, 0) with (φ, (0, 0)) � p ∨ q if the

following hold:
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1) The formula pUwq is satisfied for each solution φ to H at (t, j) = (0, 0) with

(φ, (0, 0)) � p ∨ q.

2) There exist a C1 function v : Rn → R, a locally Lipschitz function fc : R →
R, and a constant r1 > 0 such that the following hold:

2.1) 〈∇v(x), η〉 ≤ fc(v(x)) for all η ∈ F (x) ∩ TC(x) and for all x ∈ (C ∩
P ) \Q;

2.2) v(η) ≤ v(x) for all η ∈ G(x) and all x ∈ D ∩ P ;

2.3) S1 := {x ∈ C ∩ (P ∪Q) : v(x) < r1} ⊂ Q and the solutions y to (5.11)

starting from v(P \Q) converge to (−∞, r1) in finite time.

3) For each solution φ ∈ SH(P \Q), there exists a solution y to (5.11) starting

from v(φ(0, 0)) such that there exists t⋆ ∈ R≥0 satisfying:

t⋆ ≤ sup{t : (t, j) ∈ dom φ}, y(t) ∈ (−∞, r1] ∀t ≥ t⋆. (5.15)

Proof. Consider system Hs introduced in (4.11). Using item 1), we conclude that

a maximal solution ψ to H starting from P\Q either remains in P\Q for all

time, otherwise, ψ remains in P\Q up to when it reaches the set Q. Hence, each

maximal solution φ to Hs starting from P\Q remains in P ∪ Q. In particular,

either φ reaches Q in finite time, or φ remains in P\Q. To exclude the latter

case, we show that, when φ remains in P\Q, φ must be a maximal solution to H.

Indeed, assume the existence of a solution ψ to H which is a nontrivial extension

of φ; namely, there exists I ⊂R≥0 ×N such that I 6= ∅ and dom φ ∪ I = dom ψ.

Note that ψ(dom φ) = φ(dom φ) ⊂ P\Q. Also, since ψ must remain in P\Q up

to when it reaches Q, we can choose I such that ψ(dom φ ∪ I) ⊂ P\Q. Hence,

ψ is a solution to Hs, which contradicts the fact that φ is a maximal solution to
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H′

m. Next, using item 3), we conclude the existence of a solution y to ẏ = fc(y)

starting from v(φ(0, 0)) such that, for some t⋆ ≥ 0, (5.15) holds. Combining the

latter fact to item 2) and using Theorem C.15 for Hs, we conclude that φ must

reach Q in finite time. Hence, Q is eventual conditional invariant with respect to

P\Q for Hs. Finally, the proof is completed using Theorem 4.12.

Theorem 5.23 (pUsq using Eventual Conditional Invariance via Jumps). Con-

sider a hybrid system

H = (C, F,D,G). Given atomic propositions p and q, let the sets P and Q be as

in (4.9) such that P ⊂ C ∪ D. Then, the formula f = pUsq is satisfied for each

solution φ to H at (t, j) = (0, 0) with (φ, (0, 0)) � p ∨ q if the following hold:

1) The formula pUwq is satisfied for each solution φ to H at (t, j) = (0, 0) with

(φ, (0, 0)) � p ∨ q.

2) There exist a C1 function w : Rn → R, fd : R → R which is nondecreasing,

and a constant r2 > 0 such that the following hold:

2.1) 〈∇w(x), η〉 ≤ 0 for all η ∈ F (x) ∩ TC(x) and all x ∈ (C ∩ P ) \Q;

2.2) w(η) ≤ fd(w(x)) for all η ∈ G(x) and all x ∈ D ∩ P ;

2.3) S2 := {x ∈ D ∩ (P ∪ Q) : w(x) < r2} ⊂ Q and the solutions to (5.12)

starting from w(P \Q) converge to (−∞, r2) in finite time.

3) For each solution φ ∈ SH(P \Q), there exists a solution z to (5.12) starting

from v(φ(0, 0)) such that there exists j⋆ ∈ N satisfying:

j⋆ ≤ sup{j : (t, j) ∈ dom φ}, z(j) ∈ (−∞, r2] ∀j ≥ j⋆.

Proof. The proof follows the exact same steps used to prove Theorem 5.22 while

using Theorem C.16 instead of Theorem C.15.
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Next, we employ the conditions for pre-ECI in Theorem C.13 for hybrid sys-

tems when we know the lengths of the flow interval between each successive jumps

approximately.

Theorem 5.24 (pUsq using Eventual Conditional Invariance under Approximate

Flow Lengths). Consider a hybrid system H = (C, F,D,G). Given atomic propo-

sitions p and q, let the sets P and Q be as in (4.9) such that P ⊂ C ∪ D. Let

a set I ⊂ R≥0 be a closed set of approximate flow lengths of the solutions to H
starting from P \Q as in (C.9), and let τM := sup I. Then, the formula f = pUsq

is satisfied for each solution φ to H at (t, j) = (0, 0) with (φ, (0, 0)) � p ∨ q if the

following hold:

1) The formula pUwq is satisfied for each solution φ to H at (t, j) = (0, 0) with

(φ, (0, 0)) � p ∨ q.

2) There exist a C1 function v : Rn → R, a locally Lipschitz function fc : R →
R, and a function fd : R → R which is nondecreasing such that

〈∇v(x), η〉 ≤ fc(v(x)) ∀η ∈ F (x) ∩ TC(x), ∀x ∈ (C ∩ P ) \Q,

v(η) ≤ fd(v(x)) ∀η ∈ G(x), ∀x ∈ D ∩ P .

3) There exists a constant r > 0 such that

S := {x ∈ (C ∪D) ∩ (P ∪Q) : v(x) < r} ⊂ Q.

4) The solutions to the reduced hybrid system Hr starting from v(P \Q) × {0}
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converge to (−∞, r] × R≥0 in finite time, where

Hr :





[ ẏ

τ̇

]
=
[ fc(y)

1

]
(y, τ) ∈ R × ([0, τM ] ∩ R≥0),

[ y+

τ+

]
=
[ fd(x)

0

]
(y, τ) ∈ R × I.

5) No maximal solution starting from P has a finite time escape within P ∩
(C \Q) and every maximal solution from (P ∩ ∂C) \ (D ∪Q) is nontrivial.

Proof. Consider the system Hs introduced in (4.11). Using Theorem C.13 for Hs

under items 2), 3), and 4), we conclude that Q is pre-ECI with respect to P\Q
for Hs. The rest of the proof follows using the same steps in the proof of Theorem

5.21.
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Chapter 6

Sufficient conditions guaranteeing

the satisfaction of temporal

formulas for hybrid systems

under perturbations

6.1 Approximate satisfaction of LTL formulas

First, we provide equivalent characterizations of approximate satisfaction of

2p. For this purpose, we recall a notion of conditional invariance for hybrid

systems in Definition 2.4.

Proposition 6.1. (Approximate Satisfaction of 2p from K). Given an atomic

proposition p, let ε>0 and the sets K and Kε be as in (3.6) and (3.7), respectively.

The formula f = 2p is ε-approximately satisfied by H from K at (t, j) = (0, 0) if

and only if the set Kε is conditionally invariant with respect to the set K for H.

Next, we present an equivalent characterization of approximate satisfaction of
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3p, in terms of finite time attractivity, defined as follows. Below, the amount of

hybrid time required for a solution φ to converge to the set M is captured by a

settling-time function TM whose argument is the solution φ and its output is a

positive number determining the amount of (hybrid) time needed to converge to

M ; i.e., given φ, TM(φ) := inf{t + j : φ(t, j) ∈ M}. Below, the arrow ր is used

to denote the limit from below.

Definition 6.2. (Finite Time Attractivity). A closed set M ⊂ R
n is said to be

finite time attractive (FTA) for a hybrid system H with respect to O⊂C∪D if for

every solution φ to H with φ(0, 0)∈O, sup(t,j)∈dom φ t+j ≥ TM(φ), and

lim
(t,j)∈dom φ:t+jրTM(φ)

|φ(t, j)|M = 0. (6.1)

Furthermore, the set M is said to be FTA for H if so it is with respect to C ∪D.

The following result is immediate.

Proposition 6.3. (Approximate Satisfaction of 3p). Given an atomic proposi-

tion p, let ε > 0 and the set K and Kε be as in (3.6) and (3.7), respectively. The

formula f = 3p is ε-approximately satisfied by H at (t, j) = (0, 0) if and only if

the set Kε is FTA for H.

Due to the equivalence presented in Proposition 6.1, sufficient conditions that

guarantee the approximate satisfaction of the formula f =2p from the set K are

proposed by employing sufficient conditions to guarantee conditional invariance of

the set Kε with respect to the set K as in [29, Theorem 3.2]. Below, the concept

of the tangent cone1 to a set is used; see [20, Definition 5.12]. The tangent cone

1This tangent cone is also known as the contingent cone, or the Bouligand tangent cone.

71



at a point x ∈ R
n of a set K ⊂ R

n is given by

TK(x) :=
{
v ∈ R

n : lim
h→0+

inf |x+hv|K
h

= 0
}

.

Given sets Xo,Xu ⊂ R
n with Xo ∩ Xu = ∅, we introduce the notion of a barrier

function candidate with respect to (Xo,Xu) for H.

Definition 6.4. (Barrier Function Candidate for H). Consider H=(C, F,D,G).

Given sets Xo,Xu ⊂ R
n with Xo ∩ Xu = ∅, a function B : Rn →R is said to be a

barrier function candidate with respect to (Xo,Xu) for H if





B(x) ≤ 0 ∀x ∈ Xo

B(x) > 0 ∀x ∈ (C ∪D) ∩ Xu.
(6.2)

Theorem 6.5. (Approximate Satisfaction of 2p from K). Consider a hybrid

system H = (C, F,D,G). Given an atomic proposition p, let ε > 0 and the sets

K and Kε be as in (3.6) and (3.7), respectively. Then, the formula f = 2p is ε-

approximately satisfied by H from K if there exists a C1 barrier function candidate

B with respect to (K,Rn \ Kε) for H as in (6.2) such that L := {x ∈ C ∪ D :

B(x) ≤ 0} is closed and the following hold:

1) 〈∇B(x), η〉 ≤ 0 for all x ∈ (U(∂L) \ L) ∩ C and for all η ∈ F (x) ∩ TC(x);

2) B(η) ≤ 0 for all x ∈ L ∩D and for all η ∈ G(x);

3) G(x) ⊂ C ∪D for all x ∈ L ∩D.

Due to the equivalence in Proposition 6.3, sufficient conditions to guarantee

the approximate satisfaction of the formula f=3p is proposed by using sufficient

72



conditions to guarantee FTA property of sets similar to those in [28, Theorem 5.7]

with the set K replaced by the set Kε as in (3.7).

Theorem 6.6. (Approximate Satisfaction of 3p). Consider a hybrid system H =

(C, F,D,G). Given an atomic proposition p, let ε>0 and the set Kε be as in (3.7).

Suppose there exists an open set N that defines an open neighborhood of Kε such

that N ⊂ R
n. Suppose that there exists a continuous function V : N →R≥0 such

that O ⊂ LV (r) ∩ (C ∪ D) where LV (r) = {x ∈ R
n : V (x) ≤ r}, r ∈ [0,∞], is a

sublevel set of V contained in N . Suppose that for all x ∈ D such that x ∈ N ,

G(x) ∈ N . Then, the formula f = 3p is ε-approximately satisfied by H with

φ(0, 0) ∈ O at (t, j) = (0, 0) if

1) there exists a continuous function V : N →R≥0, locally Lipschitz on an open

neighborhood of C ∩ N , and constants c1 > 0, c2 ∈ [0, 1) such that

1.1) for every x∈(N ∩ (C ∪D))\Kε, each solution φ to H with φ(0, 0)=x

satisfies V 1−c2 (x)
c1(1−c2)

≤ sup(t,j)∈dom φ t;

1.2) the function V is positive definite with respect to Kε and

1.2a) for each x ∈ (C ∩ N ) \Kε, uC(x) + c1V
c2(x) ≤ 0 ;

1.2b) for each x ∈ (D ∩ N ) \Kε, uD(x) ≤ 0; or

2) there exists a continuous function V : N →R≥0, locally Lipschitz on an open

neighborhood of C ∩ N , and a constant c > 0 such that

2.1) for every x∈(N ∩ (C ∪D))\Kε, each solution φ to H with φ(0, 0)=x

satisfies ceil
(

V (x)
c

)
≤ sup(t,j)∈dom φ j;

2.2) the function V is positive definite with respect to Kε and

2.2a) for each for each x ∈ (C ∩ N ) \Kε, uC(x) ≤ 0;

2.2b) for each for each x ∈ (D ∩ N ) \Kε, uD(x) ≤ − min{c, V (x)}.
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Moreover, for each solution φ to H with φ(0, 0) ∈ O, defining ξ = φ(0, 0), the first

time (t′, j′) ∈ dom φ such that φ(t′, j′) ∈ Kε satisfies

t′ + j′ = TKε(φ),

and an upper bound on that hybrid time is given as follows:

a) if 1) holds, then TKε is upper bounded by T ⋆(ξ) + J ⋆(φ), where T ⋆(ξ) =

V 1−c2 (ξ)
c1(1−c2)

and J ⋆(φ) is such that (T ⋆(ξ),J ⋆(φ)) ∈ dom φ.

b) if 2) holds, then TKε is upper bounded by T ⋆(φ) + J ⋆(ξ), where J ⋆(ξ) =

ceil(V (ξ)
c

) and T ⋆(φ) is such that (T ⋆(φ),J ⋆(ξ))∈dom φ and (T ⋆(φ),J ⋆(ξ)−
1)∈dom φ.

6.2 Robust approximate satisfaction of LTL for-

mulas

First, we provide equivalent characterizations of robust ε-approximate satisfac-

tion of 2p, in terms of robust conditional invariance properties for hybrid systems.

For this purpose, we introduce robust conditional invariance.

Definition 6.7. (Robust Conditional Invariance). Given two sets Kε, K ⊂ R
n

such that K ⊂Kε, the set Kε is said to be robustly conditionally invariant with

respect to the set K ⊂ Kε for Hw if, for each solution pair (φ, w) to Hw with

φ(0, 0)∈K, φ(t, j) ∈ Kε for every (t, j) ∈ dom φ.

The following result is immediate.

Proposition 6.8. (Robust Approximate Satisfaction of 2p from K). Given an

atomic proposition p, let ε > 0 and the sets K and Kε be as in (3.6) and (3.7),
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respectively. The formula f = 2p is robustly ε-approximately satisfied by H from

K at (t, j) = (0, 0) if and only if the set Kε is robustly conditionally invariant

with respect to the set K for Hw.

The following example illustrates a situation when robust approximate satis-

faction of 2p is needed.

Example 6.9. (Bouncing Ball with Perturbations). Consider a hybrid system

H=(C, F,D,G) modeling a ball bouncing vertically on the ground, with the state

x = (x1, x2) ∈ R
2 and the data

F (x) :=



x2

−γ


 ∀x ∈ C := {x ∈ R

2 : x1 ≥ 0},

G(x) :=
[ 0

−λx2

]
∀x ∈ D := {x ∈ R

2 : x1 = 0, x2 ≤ 0},

where x1 is the height above the surface and x2 denotes the vertical velocity. The

parameter γ>0 is the gravity coefficient and λ∈ [0, 1] is the restitution coefficient.

Here, we include uncertainties at impacts with the ground and in the velocity

of the ball. The hybrid system Hw = (Cw, Fw, Dw, Gw) with a state perturbation

w = (w1, w2)∈R
2 is given by

Hw





ẋ = Fw(x, w1) (x, w1) ∈ Cw

x+ = Gw(x, w2) (x, w2) ∈ Dw,
(6.3)

where the flow and jump maps are

Fw(x, w1) :=



x2 − w1

−γ


 , Gw(x, w2) :=




0

−w2x2



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and the flow and jump sets are

Cw := {(x, w1) ∈ R
2 × R : x1 ≥ 0, w1 ∈ [0, wmax)},

Dw := {(x, w2) ∈ R
2 × R : x1 = 0, x2 ≤ 0, w2 ∈ (0, 1)}.

The disturbances w1 and w2 satisfy w1 ∈ [0, wmax) with wmax > 0 and w2 ∈ (0, 1).

Define an atomic proposition p as follows: for each x ∈ R
2, p(x) = 1 if x ∈

Π(Cw) ∪ Π(Dw) and 2γx1 + (x2 − 1)(x2 + 1) ≤ 0; p(x) = 0 otherwise. Let K

be given as in (3.6), which collects the set of points such that p is satisfied. The

set K is the sublevel set where the total energy of the ball is less than or equal

to 1/2. By constructing Kε as in (3.7) with ε = wmax, we have that for each

x ∈ Kε, 2γx1 + (x2 − 1)(x2 + 1) ≤ ε. We observe that , without disturbances, all

solutions starting from the set K remain in the set K; thus, the set K is forward

invariant with w ≡ 0. However, in the presence of the disturbance w1 ∈ (0, wmax),

solutions starting from the set K may leave the set K due to the effect of w1. In

the meanwhile, by the construction of the set Kε, we observe that all solutions

starting from the set K remain in the set Kε even if such solutions leave the set

K. Hence, to specify and verify such dynamical property for Hw, we need a notion

of robust approximate satisfaction of the formula 2p. △

Due to the equivalence presented in Proposition 6.8, any sufficient condition

that guarantees robust conditional invariance of Kε with respect to the set K

guarantee robust approximate satisfaction of the formula 2p. Inspired by the

results for nominal conditional invariance in [29], we propose sufficient conditions

for robust conditional invariance using barrier functions. First, the notion of

barrier function candidate B for Hw is formulated. This notion extends the one

in [29] to the case with disturbances w.

Definition 6.10. (Barrier Function Candidate for Hw). Consider Hw = (Cw, Fw, Dw, Gw).
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Given sets Xo,Xu ⊂ R
n with Xo ∩ Xu = ∅, a function B : Rn →R is said to be a

barrier function candidate with respect to (Xo,Xu) for Hw if





B(x) ≤ 0 ∀x ∈ Xo

B(x) > 0 ∀x ∈ (Π(Cw) ∪ Π(Dw)) ∩ Xu.
(6.4)

A barrier function candidate B is defined as a scalar function of the state

variables x which is nonpositive on the set of initial conditions Xo and strictly

positive on the unsafe set Xu. This barrier function candidate B is exploited to

verify invariance properties for hybrid systems with a perturbation w. Similar to

the results on conditional invariance in [29], the following is assumed:

(A1) The flow map Fw is outer semicontinuous2, nonempty, and locally bounded

with convex images on Cw. Furthermore, the jump map Gw is nonempty on

Dw.

First, we introduce sufficient conditions for robust conditional invariance using

barrier functions.

Proposition 6.11. (Robust Conditional Invariance). Consider a hybrid system

Hw = (Cw, Fw, Dw, Gw) satisfying (A1). Let the sets Xo and Xu be such that

Xo,R
n\Xu ⊂Π(Cw) ∪ Π(Dw). The set Rn \ Xu is robustly conditionally invariant

with respect to Xo for Hw if there exists a C1 barrier function candidate B with

respect to (Xo,Xu) for Hw as in (6.4) such that L := {x ∈ Π(Cw) ∪ Π(Dw) :

B(x) ≤ 0} is closed and the following hold:

1) 〈∇B(x), η〉 ≤ 0 for all (x, w) ∈ ((U(∂L) \ L) × W) ∩ Cw and for all η ∈
Fw(x, w) ∩ TΠ(Cw)(x); and

2A set-valued map M : R
n ⇒ R

m is outer semicontinuous at x ∈ R
n if for each sequence

{xi}∞
i=1 converging to a point x ∈R

n and each sequence yi ∈ M(xi) converging to a point y, it
holds that y ∈M(x); see [20, Definition 5.9].
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2) B(η) ≤ 0 for all (x, w) ∈ (L× W) ∩Dw and for all η ∈ Gw(x, w); and

3) Gw(x, w) ⊂ Π(Cw) ∪ Π(Dw) for all (x, w) ∈ (L× W) ∩Dw.

We have the following result.

Theorem 6.12. (Robust Approximate Satisfaction of 2p from K). Consider

H = (C, F,D,G) and Hw = (Cw, Fw, Dw, Gw) satisfying (A1). Given an atomic

proposition p, let ε > 0 and the sets K and Kε be as in (3.6) and (3.7), respectively.

Then, the formula f = 2p is robustly ε-approximately satisfied by H from K if

there exists a C1 barrier function candidate B with respect to (K,Rn \Kε) for Hw

as in (6.4) such that L := {x ∈ Π(Cw) ∪ Π(Dw) : B(x) ≤ 0} is closed and the

following hold:

1) 〈∇B(x), η〉 ≤ 0 for all (x, w) ∈ ((U(∂L) \ L) × W) ∩ Cw and for all η ∈
Fw(x, w) ∩ TΠ(Cw)(x); and

2) B(η) ≤ 0 for all (x, w) ∈ (L× W) ∩Dw and for all η ∈ Gw(x, w); and

3) Gw(x, w) ⊂ Π(Cw) ∪ Π(Dw) for all (x, w) ∈ (L× W) ∩Dw.

In the following, we characterize robust ε-approximate satisfaction of the for-

mula 3p via a new robust FTA property for hybrid systems. Below, the amount

of hybrid time required for a solution pair (φ, w) for the convergence of φ to the

set M is captured by a settling-time function TM , whose argument is the solution

pair (φ, w) and its output is a positive number determining the time to converge

to M ; i.e., given φ, TM(φ, w) := inf{t+ j : φ(t, j) ∈ M} is the time to reach K.

Definition 6.13. (Robust Finite Time Attractivity) A closed set M⊂R
n is said to

be robustly finite-time attractive (FTA) for Hw with respect to O ⊂ Π(Cw)∪Π(Dw)

78



if for every solution pair (φ, w) to Hw with φ(0, 0) ∈ O, sup(t,j)∈dom φ t + j ≥
TM(φ, w), and

lim
(t,j)∈dom φ:t+jրTM(φ,w)

|φ(t, j)|M = 0. (6.5)

Furthermore, the set M is said to be robustly FTA for Hw if so it is with respect

to Π(Cw) ∪ Π(Dw).

The following result is immediate.

Proposition 6.14. (Robust Approximate Satisfaction of 3p). Given an atomic

proposition p, let ε>0 and the set K and Kε be as in (3.6) and (3.7), respectively.

The formula f = 3p is robustly ε-approximately satisfied by H at (t, j) = (0, 0) if

and only if the set Kε is robustly FTA for Hw.

Due to the equivalence presented in Proposition 6.14, any sufficient condition

that guarantees robust finite time attractivity ofKε guarantee robust approximate

satisfaction of the formula 3p. Similar to Theorem 6.6, using sufficient conditions

for nominal finite time attractivity, we extends the one in Theorem 6.6 to the case

with a perturbation w for sufficient conditions that guarantee robust approximate

satisfaction of 3p.

Theorem 6.15. (Robust Approximate Satisfaction of 3p). Consider a hybrid

system H = (C, F,D,G). Given an atomic proposition p, let ε > 0 and the

set Kε be as in (3.7). Suppose there exists an open set N that defines an open

neighborhood of Kε such that N ⊂ R
n. Suppose that there exists a continuous

function V : N →R≥0 such that O ⊂ LV (r) ∩ C ∪ D where LV (r) = {x ∈ R
n :

V (x) ≤ r}, r ∈ [0,∞], is a sublevel set of V contained in N . Suppose that for

all x ∈ D such that x ∈ N , G(x) ∈ N . Then, the formula f = 3p is robustly

ε-approximately satisfied by H with φ(0, 0)∈O if
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1) there exists a continuous function V : N →R≥0, locally Lipschitz on an open

neighborhood of Π(Cw) ∩ N , and constants c1 > 0, c2 ∈ [0, 1) such that

1.1) for every x∈(N ∩ (Π(Cw) ∪ Π(Dw)))\Kε, each solution pair (φ, w) to

Hw with φ(0, 0)=x satisfies V 1−c2 (x)
c1(1−c2)

≤ sup(t,j)∈dom φ t;

1.2) the function V is positive definite with respect to Kε and

1.2a) for each x ∈ (Π(Cw) ∩ N )\Kε, uC(x) + c1V
c2(x) ≤ 0 ;

1.2b) for each x ∈ (Π(Dw) ∩ N )\Kε, uD(x)≤0;

or

2) there exists a continuous function V : N →R≥0, locally Lipschitz on an open

neighborhood of Π(Cw) ∩ N , and c > 0 such that

2.1) for every x∈(N ∩ (Π(Cw) ∪ Π(Dw)))\Kε, each solution pair (φ, w) to

Hw with φ(0, 0)=x satisfies ceil
(

V (x)
c

)
≤ sup(t,j)∈dom φ j;

2.2) the function V is positive definite with respect to Kε and

2.2a) for each for each x ∈ (Π(Cw) ∩ N ) \Kε, uC(x) ≤ 0;

2.2b) for each for each x ∈ (Π(Dw) ∩ N ) \Kε, uD(x) ≤ − min{c, V (x)}.

Moreover, for each solution pair (φ, w) to Hw with φ(0, 0) ∈ O, defining ξ =

φ(0, 0), the first time (t′, j′) ∈ dom (φ, w) such that φ(t′, j′) ∈ Kε satisfies

t′ + j′ = TKε(φ, w),

and an upper bound on that hybrid time is given as follows:

a) if 1) holds, then TKε is upper bounded by T ⋆(ξ) + J ⋆(φ), where T ⋆(ξ) =

V 1−c2 (ξ)
c1(1−c2)

and J ⋆(φ) is such that (T ⋆(ξ),J ⋆(φ)) ∈ dom (φ, w).
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b) if 2) holds, then TKε is upper bounded by T ⋆(φ) + J ⋆(ξ), where J ⋆(ξ) =

ceil(V (ξ)
c

) and T ⋆(φ) is such that (T ⋆(φ),J ⋆(ξ))∈dom (φ, w) and (T ⋆(φ),J ⋆(ξ)−
1)∈dom (φ, w).
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Chapter 7

Sufficient conditions for LTL

formulas combining operators

In the previous chapters, we provide sufficient conditions for formulas that

involve a single temporal operator. Table 7.1 summarizes the conditions for each

temporal operator. As indicated therein, all that is needed is either a certificate for

finite-time convergence in terms of a Lyapunov function, or the data of the hybrid

system and the set of points where the proposition is true to satisfy conditions for

invariance. The latter can be actually certified using Lyapunov-like functions or

barrier functions as in [24], which for space reasons is not pursued here.

Moreover, the case of logic operators can be treated similarly by using inter-

sections, unions, and complements of the sets where the propositions hold. For

instance, sufficient conditions for 2(p ∧ q) can immediately be derived from the

sufficient conditions already given in Chapter 4 with {x ∈ R
n : p(x) = 1} ∩ {x ∈

R
n : q(x) = 1} in place of {x ∈ R

n : p(x) = 1}.

The following sections present sufficient conditions for formulas that combine

more than one operator. The conditions therein are given by compositions of the

conditions in Table 7.1.
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Sufficient Conditions
2p a) Barrier function for forward pre-invariance
3p b) Lyapunov function for FTA
pUq c) Combination of a) and b)
#p d) G(D) ⊂ D ∩ {x ∈ R

n : p(x) = 1}

Table 7.1: Sufficient conditions for 2, 3, U , #

7.1 Conditions for 32

Corollary 7.1. Consider a hybrid system H = (C, F,D,G) and an atomic propo-

sition p. Suppose C is closed relative to R
n, and

• Given the atomic proposition p, the set {x ∈ R
n : p(x) = 1} is closed;

• The map F : Rn ⇒ R
n is outer semicontinuous, locally bounded relative to

{x ∈ C : p(x) = 1}, and F (x) is convex for every x ∈ {x ∈ C : p(x) = 1}.

The map F is locally Lipschitz on {x ∈ C : p(x) = 1}; and

• There exists an open set N that defines an open neighborhood of {x ∈ R
n :

p(x) = 1} such that G(N ) ⊂ N ⊂ R
n.

Then, the formula f = 32p is satisfied for all solutions φ to H for all (t, j) ∈
dom φ if the following properties hold:

1) Conditions 1), 2), and 3) in Theorem 5.3 hold; and

2) Condition 1) or condition 2) in Theorem 5.7 holds.

Alternatively, sufficient conditions to guarantee the formula 32p can be ob-

tained by strengthening the Lyapunov conditions in Theorem 5.7.

Corollary 7.2. Consider a hybrid system H = (C, F,D,G) and an atomic propo-

sition p. Suppose
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• Given the atomic proposition p, the set {x ∈ R
n : p(x) = 1} is closed; and

• There exists an open set N that defines an open neighborhood of {x ∈ R
n :

p(x) = 1} such that G(N ) ⊂ N ⊂ R
n.

Then, the formula f = 32p is satisfied for all solutions φ to H that remain in a

compact subset of N for all (t, j) ∈ dom φ if the following properties hold:

1) there exists a continuous function V : N → R≥0, locally Lipschitz on an

open neighborhood of C ∩ N , and c, c1 > 0, c2 ∈ [0, 1) such that

1.1) for every x ∈ N ∩ (C ∪D) such that p(x) = 0, each φ ∈ SH(x) satisfies

V 1−c2 (x)
c1(1−c2)

≤ sup(t,j)∈dom φ t and ceil
(

V (x)
c

)
≤ sup(t,j)∈dom φ j;

1.2) the function V is positive definite with respect to K and

1.2a) for each x ∈ C ∩ N , uC(x) + c1V
c2(x) ≤ 0;

1.2b) for each x ∈ D ∩ N , uD(x) ≤ − min{c, V (x)}.

Corollary 7.2 imposes bounds on 1.2a) and 1.2b) for each point where flow

and jump is possible, respectively, rather than only when p is not true. Such

conditions further guarantee invariance of {x ∈ R
n : p(x) = 1}.

A similar estimate for the time to converge as in Theorem 5.7 holds. Condition

1) in Corollary 7.1 can be alternatively guaranteed with a Lyapunov-like/barrier

function as in [24].

Corollary 7.2 requires strict Lyapunov functions, but nonstrict versions as in

Theorem 5.7 can be similarly stated.

7.2 Conditions for 23

Sufficient conditions to guarantee the formula f = 23p are given by those in

Theorem 5.14.
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7.3 Conditions for 2(pUsq)

Sufficient conditions to guarantee the formula f = 2(pUsq) are already given

by those in Theorems 5.21, 5.22, 5.23, and 5.24.

7.4 Conditions for pUs2q

The formula f = pUs2q can be certified by applying one of Theorems 5.21–

5.24 and Corollary 7.2 with p therein replaced by q.

Corollary 7.3. Consider a hybrid system H = (C, F,D,G). Suppose C is closed

in R
n and

• There exists an open set N defining an open neighborhood of {x ∈ R
n :

q(x) = 1} such that G(N ) ⊂ N ⊂ R
n;

• The map F : Rn ⇒ R
n is outer semicontinuous, locally bounded relative to

{x ∈ C : p(x) = 1}, and F (x) is convex for every {x ∈ C : p(x) = 1}.

Additionally, the map F is locally Lipschitz on {x ∈ C : p(x) = 1}.

Then, the formula f = pUs2q is satisfied for every solution φ to H if

1) one of Theorems 5.21–5.24 holds; and

2) condition 1.2) in Corollary 7.2 with p therein replaced by q holds.

7.5 Decomposition of general formulas using fi-

nite state automata

In certain cases, formulas that combine more than one operator can be de-

composed into simpler formulas for which our results for formulas with a single
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operator can be applied. To decompose a general formula combining into several

formulas with a single operator, one can employ the finite state automaton (FSA)

representation of an LTL formula [40–42]. Following [42, Chapter 2], a particular

fragment of LTL, called syntactically co-safe LTL (scLTL), is considered so that

each formula f over a set of observations can always be translated into an FSA.

An LTL formula belongs to the scLTL fragment if it contains only temporal oper-

ators 3, #, U , and it is written in positive normal form: the negation operator ¬
occurs only in front of atomic propositions. Next, given an LTL formula f in the

scLTL fragment, we outline the process of constructing an FSA, which we denote

Af , and specify properties of a hybrid system H with Af . We first introduce the

FSA representation of LTL formulas that belongs to the scLTL fragment.

Definition 7.4 (Finite State Automaton). Given an scLTL formula f , a finite

state automaton (FSA) is given by the tuple Af = (S, s0, O, δ, SF ), where

• S is a finite set of states,

• s0 ∈ S is the initial state,

• O is a finite set of observations,

• δ : S × O → S is a transition function,1

• SF ⊆ S is the set of accepting (final) states.

The semantics of an FSA are defined over finite words of observations (or

inputs). A run of Af over a word of observations wO = wO(1)wO(2) . . . wO(n) with

wO(k) ∈ O for all k = 1, . . . , n is a sequence wS = wS(1)wS(2) . . . wS(n + 1) ∈ S

where wS(1) = s0 and wS(k+1) = δ(wS(k), wO(k)) for all k = 1, . . . , n. The word

1When δ is set valued, namely, δ : S × O ⇒ S maps points in S × O to subsets of S, then Af

is said to be non-deterministic.
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s0 s2

s1

p1 p1|p2|¬p1|¬p2|¬p3

p2

p1|p2|p3|¬p1|¬p2|¬p3

p3

Figure 7.1: An example of an FSA representing the formula f = 3p3 ∧ (p1 Usp2).
The state s0 is the initial state and s1 is the final state. When several transitions
are present between two states, one transition labeled by the set of all observations
using the symbol | as shown.

wO is accepted by Af if the corresponding run ends in an accepting automaton

state; i.e., wS(n+ 1) ∈ SF .

With an FSA associated to a general formula f in the scLTL fragment, the tools

presented in this paper for the satisfaction of basic formulas having one operator

can be applied to certify f . For instance, the formula f = 3p3 ∧ (p1 Usp2) has the

following associated FSA: Af = (S, s0, O, δ, SF ), where

S = {s0, s1, s2}, SF = {s1}, O = {p1, p2, p3,¬p1,¬p2,¬p3},

δ(s, o) =





s0 if s = s0, o = p1,

s2 if s = s0, o = p2,

s2 if s = s2, o 6= p3,

s1 if s = s2, o = p3,

s1 if s = s1.

∀(s, o) ∈ S ×O
(7.1)

This FSA is shown in Figure 7.1. As shown therein, the FSA state s is initially

at s0 and when s reaches the final state s1, it implies that the given formula f is

satisfied. As s starts at s0, we must have that the initial observation o is either

o = p1 or o = p2. If it is o = p1, s remains at s0, but if o = p2, we have a transition
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from s = s0 to s = s2. Then, once s is at s2, we have a transition of s from s2

to s1 if o = p3. If o 6= p3, s remains at s2. In other words, the FSA captures the

given formula as follows:

1) When s is at s0, p2 has to be eventually satisfied and p1 has to be satisfied

until p2 is satisfied; i.e., p1Usp2 is satisfied. Once p2 is satisfied, s jumps to

s2.

2) When s is at s2, p3 needs to be eventually satisfied for f to be satisfied;

i.e., 3p3 is satisfied. Additionally, once p3 is satisfied, s jumps to s1.

To apply our tools, by extending the ideas in [43], we build an augmented

version of H, denoted by HA, with state (x, s) ∈ R
n × S and input o ∈ O in

which s transitions according to the FSA associated with the formula. Its input

o, namely, the observation o, is determined by the propositions that are satisfied

(or not). For example, when x is such that p1(x) = 1 then o = p1, while when

p1(x) = 0 then o = ¬p1. Then, according to our tools, the satisfaction of the

formula f is assured by the following conditions:

• Conditions in one of Theorems 5.21–5.24, with q therein replaced by p2 and

with P = {(x, s) ∈ R
n × S : p1(x) = 1, s = s0} and Q = {(x, s) ∈ R

n × S :

p2(x) = 1, s = s2}, are satisfied; and

• K = {(x, s) ∈ R
n ×S : p3(x) = 1, s = s1} is FTA for HA; namely, conditions

in Theorem 5.7, with p therein replaced by p3 and with set K just defined,

are satisfied.

The methodology outlined above can be automated, and is part of current re-

search.
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Chapter 8

Signal temporal logic for hybrid

dynamical systems

Signal temporal logic (STL) is a simple extension of Metric temporal logic

(MTL) where real-valued variables are mapped to Boolean values via predicates.

In this section, inspired by the ideas in [11,22,23] for continuous-time and discrete-

time systems, we introduce STL for hybrid systems. For a given hybrid system

H, we define operators and specify properties of H with STL formulas.

In the following, the syntax of STL formula ϕ is defined recursively as follows:

ϕ ::= p | ¬ϕ |ϕ ∨ ψ |ϕU[a,b], (8.1)

where p is an atomic proposition R
n → {0, 1} and ϕ, ψ are STL formulas. The

operators ¬,∨,U are the negation, disjunction, until operator, respectively. One

can also define operators other than the ones that are used for constructing the

grammar. Given the operators negation and disjunction, the operators conjunc-

tion (∧), implication (⇒), equivalency (⇔) are defined as ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ),

ϕ ⇒ ψ = ¬ϕ ∨ ψ, ϕ ⇔ ψ = (ϕ ⇒ ψ) ∧ (ψ ⇒ ϕ) respectively. Furthermore, the
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operators eventually (3) and always (2) are defined as 3[a,b]ϕ = ⊤ U[a,b]ϕ and

2[a,b]ϕ = ¬(3[a,b]¬ϕ), respectively.

A STL formula ϕ being satisfied by a solution (t, j) 7→ x(t, j) at some time

(t, j) is denoted by

(x, (t, j)) � ϕ. (8.2)

Let p and q be atomic propositions. Given a solution x to H, (t, j) ∈ dom x, and

I ⊂ R≥0 × N, the semantics of STL are defined as

(φ, (t, j)) � ¬p ⇔ ¬((φ, (t, j)) � p) (8.3a)

(φ, (t, j)) � p ∨ q ⇔ (φ, (t, j)) � p ∨ (φ, (t, j)) � q (8.3b)

(φ, (t, j)) � p ∧ q ⇔ (φ, (t, j)) � p ∧ (φ, (t, j)) � q (8.3c)

(φ, (t, j)) � 3Ip ⇔ ∃(t′, j′) ∈ dom φ : (φ, (t′, j′))�p, (t′, j′)∈{(t, j)} + I (8.3d)

(φ, (t, j)) � 2Ip ⇔ ∀(t′, j′) ∈ dom φ : (φ, (t′, j′))�p, (t′, j′)∈{(t, j)} + I (8.3e)

(φ, (t, j)) � pUs,Iq ⇔ ∃(t′, j′)∈dom φ : (t′, j′)∈{(t, j)} + I, (φ, (t′, j′))�q (8.3f)

and ∀(t′′, j′′)∈dom φ ∩ ([t, t′] × {j, j + 1, . . . j′}) : (φ, (t′′, j′′)) � p

(φ, (t, j)) � pUw,Iq ⇔ ∀(t′, j′)∈dom φ : (t′, j′)∈{(t, j)}+I, (φ, (t′, j′))�p (8.3g)

or (φ, (t, j)) � pUs,Iq.

The same semantics of STL are used for formulas. For example, given a STL

formula f , when a solution x satisfies 3If at (t, j) ∈ dom x if the formula f holds

at some time (t′, j′) ∈ dom x such that (t′, j′) ∈ {(t, j)} + I.

Note that the STL syntax reduces to that of LTL when it is untimed; i.e.,

I = R≥0 × N.
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8.1 Characterizations of STL Formulas using Dy-

namical Properties

In the following, we first consider the continuous-time dynamics of H to il-

lustrate our approach. Consider the continuous-time dynamics of H given by

Hf = (C, F ) as follows:

ẋ = F (x) x ∈ C ⊂ R
n. (8.4)

A solution x : dom x → R
n to (8.4) is given by a function t 7→ x(t) satisfying (8.4)

for all t ∈ dom x, where dom x ⊂ R≥0 denotes the domain of definition of the

solution x. Given an atomic proposition p, we define a set of points that satisfy p

given by

P := {x ∈ R
n : p(x) = 1}. (8.5)

Consider a set I ⊂ R≥0 such that

I := [Tmin, Tmax], (8.6)

where Tmin ≥ 0 and Tmax ≥ Tmin.

8.1.1 Characterization of 2I

With the set P in (8.5) and the set I in (8.6), given the system in (8.4) and

an atomic proposition p, when the formula

f = 2Ip
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is satisfied for every solution φ to (8.4) at t = 0, φ(t) ∈ P for all t ∈ I. Here,

we consider the following system with the state (x, τ) ∈ R
n × R≥0 given by, with

τ(0) = 0,

Hf,τ :





ẋ = F (x)

τ̇ = 1
(x, τ) ∈ C × R≥0. (8.7)

Note that for each solution pair (ϕ, τ) to Hf,τ with τ(0) = 0, a solution component

ϕ is a solution to (8.4). The intuition behind the construction of the system Hf,τ

in (8.7) is as follows. The system Hf,τ is used to characterize the behavior of

solutions φ to (8.4) while t ∈ I. Indeed, with the evolving timer state τ from

τ(0) = 0, when τ ∈ I, this implies that t ∈ I. We notice that to satisfy 2Ip for

each solution φ to (8.4) at t = 0, each solution ψ to Hf,τ starting from R
n × {0}

satisfies the following properties:

• the solution ψ stays in R
n × [0, Tmin) until reaching P × [Tmin, Tmax]; and

• once the solution ψ reaches P × [Tmin, Tmax], ψ stays in P × [Tmin, Tmax] until

reaching R
n × (Tmax,∞).

The fact that each solution to Hf,τ starting from R
n ×{0} stays in P × [Tmin, Tmax]

implies that the solution stays in P × [Tmin, Tmax] for each t ∈ [Tmin, Tmax]; and

thus, we conclude that each solution to (8.4) stays in P for each t ∈ [Tmin, Tmax].

Hence, the satisfaction of 2Ip for each solution to (8.4) at t = 0 is assured

by guaranteeing particular properties of the solutions to Hf,τ from R
n × {0} as

stated above. For this purpose, given an atomic proposition p and the state
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(x, τ) ∈ R
n × R≥0, we define atomic propositions pa, pb, and pc as follows:

pa(τ) :=





1 if τ ∈ [0, Tmin)

0 otherwise,

pb(x, τ) :=





1 if p(x) = 1, τ ∈ [Tmin, Tmax]

0 otherwise,

pc(τ) :=





1 if τ ∈ (Tmax,+∞)

0 otherwise.

(8.8)

Theorem 8.1 (2Ip). Consider a system in (8.4). Given an atomic proposition

p, let P be given as in (8.5). Given a set I ⊂ R≥0, let Tmin and Tmax be as in

(8.6). Let the system Hf,τ be as in (8.7) and atomic propositions pa, pb, pc be as in

(8.8). Then, the formula f = 2Ip is satisfied for every solution to (8.4) at t = 0

if and only if the formula f̃ = pa Us(pb Uspc) is satisfied for every solution to Hf,τ

from R
n × {0} at t = 0.

Proof. (⇒) Suppose that f = 2Ip is satisfied at t = 0 for every solution φ to (8.4).

We consider a solution pair (ψ, τ) to (8.7) such that ψ(0) = φ(0) and τ(0) = 0

and ψ(t) = φ(t) for all t ∈ dom ψ. In fact, such a solution pair (ψ, τ) always

exists since both the systems (8.4) and (8.7) have the same flow set and flow map.

Moreover, we note that τ(t) = t for all t ∈ dom ψ since τ(0) = 0. By definition

of 2I operator, when f = 2Ip is satisfied at t = 0 for every solution φ to (8.4),

φ(t) ∈ P for all t ∈ I = [Tmin, Tmax], which implies (ψ, τ) satisfies

1) for every t ∈ dom φ such that t < Tmin, τ(t) ∈ [0, Tmin);

2) for every t ∈ dom φ such that t ∈ I = [Tmin, Tmax], ψ(t) ∈ P when τ(t) ∈ I;

3) for every t ∈ dom φ such that t > Tmax, τ(t) ∈ (Tmax,+∞).
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That is, items 1) and 2) implies that (ψ, τ) satisfies pa until satisfying pb; and items

2) and 3) implies that (ψ, τ) satisfies pb until satisfying pc. Thus, we conclude that

f̃ = pa Us(pb Uspc) is satisfied for every solution to (8.7) at t = 0 with τ(0) = 0.

(⇐) Suppose that f̃ = pa Us(pb Uspc) is satisfied for every solution to (8.7) at

t = 0 with τ(0) = 0. We show that, for each solution φ to (8.4), φ stays in P for

all t ∈ I = [Tmin, Tmax]. Let (ψ, τ) be a solution pair to (8.7) such that τ(0) = 0

and ψ(t) = φ(t) for all t ∈ dom φ. The solution component ψ is a solution φ to

(8.4) since the systems (8.4) and (8.7) share the same flow set and flow map; and

we note that τ(t) = t for all t ∈ dom φ. Since f̃ = pa Us(pb Uspc) is satisfied for

each solution (ψ, τ) to (8.7) at t = 0 with τ(0) = 0, by definition of Us operator,

• when (ψ, τ) does not satisfy pb Uspc, (ψ, τ) satisfy pa, which implies that

τ ∈ [0, Tmin);

• when (ψ, τ) satisfies pb Uspc, (ψ, τ) satisfies pb until satisfying pc; namely,

(ψ, τ) ∈ P × I until τ ∈ (Tmax,∞).

Hence, we conclude that each solution φ to (8.4) such that φ(t) = ψ(t) satisfies

p for all t ∈ I, which implies that f = 2Ip is satisfied for every solution φ to (8.4)

at t = 0.

In the following, we propose characterization of the satisfaction of 2Ip using

conditions that guarantee the satisfaction of the strong until (Us) in Section 5.4.

Consider the system Hf,τ in (8.7) and atomic propositions pa, pb, pc in (8.8),

let the sets Pa, Pb, and Pc be as in (8.5) while replacing p therein by the atomic

propositions pa, pb, and pc, respectively. Following (4.10), let the system Sm be

given by

Sm :





ẋ = F (x)

τ̇ = 1
(x, τ) ∈ (C × R≥0) \ (Pb ∪ Pc). (8.9)
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The system Sm is what we refer to as the modified version of (8.4), which is used

to characterize the behavior of (8.4) outside the set Pb ∪ Pb. Here, the solutions

to (8.4) are the solutions to Sm (and vice versa) up to when they reach (if they

do) the set Pb ∪ Pc. Moreover, we consider the system S ′

m by following (4.11), as

the restricted system of Sm, given by

S ′

m :





ẋ = F (x)

τ̇ = 1
(x, τ) ∈ ((C × R≥0) ∩ Pa) \ (Pb ∪ Pc). (8.10)

Using conditions in Section 5.4, the satisfaction of the formula pa Us(pb Uspc)

is verified.

Theorem 8.2. Consider a system in (8.4). Given an atomic proposition p and

a set I ⊂ R≥0, let Tmin and Tmax be as in (8.6) and let the system Hf,τ be as in

(8.7) and atomic proposition pa, pb, and pc be as in (8.8). Let the sets Pa, Pb, and

Pc be as in (8.5) while replacing p therein by pa, pb, and pc, respectively. Then,

the formula f̃ = pa Us(pb Uspc) is satisfied for every solution to Hf,τ starting from

R
n × {0} at t = 0 if

1.a) (Pa ∪ Pb ∪ Pc) is conditionally invariant with respect to Pa for Sm; and

1.b) (Pb ∪ Pc) is eventually conditionally invariant with respect to Pa for S ′

m or

(Pb ∪ Pc) is finite-time attractive with respect to Pa for S ′

m.

and

2.a) (Pb ∪ Pc) is conditionally invariant with respect to Pb for Sm; and

2.b) Pc is eventually conditionally invariant with respect to Pb for S ′

m or Pc is

finite-time attractive with respect to Pb for S ′

m.
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Remark 8.3. Given sets Pa, Pb and Pc which are defined by atomic proposi-

tion pa, pb, and pc in (8.8), when conditions in Theorem 8.2 hold, the formula

pa Us(pb Uspc) is satisfied for every solution to Hf,τ starting from R
n × {0} at

t = 0, which implies that f = 2Ip is satisfied for every solution to (8.4) at t = 0.

Furthermore, the satisfaction of the formula f = 2Ip for each solution to (8.4)

at each t ≥ 0 implies that the set P in (8.5) is forward pre-invariant for (8.4) after

t′ = t+ Tmin.

Corollary 8.4. Consider the system Hf in (8.4). Given an atomic proposition

p, let P be given as in (8.5). Given a set I ⊂ R≥0, let Tmin and Tmax be as in

(8.6). Let the system Hf,τ be as in (8.7). Then, the formula f = 2Ip is satisfied

for every solution to (8.4) at each t ≥ 0 if P × [Tmin,∞) is eventually forward

pre-invariant for Hf,τ .

Proof. Suppose that P × [Tmin,∞) is eventually forward pre-invariant for Hf,τ .

We show that, at every t ≥ 0, for each solution φ to Hf , φ stays in P for all

t′ ∈ [t+ Tmin, t+ Tmax]. Let (ψ, τ) be a solution to Hf,τ such that ψ(t) = φ(t) for

all t ≥ 0 with τ(0) = 0; such a solution satisfies τ(t) = t since τ(0) = 0. Hence,

since P × [Tmin,∞) is eventually forward pre-invariant for Hf,τ , we conclude that

ψ(t) ∈ P for all t ∈ [Tmin,∞) while τ(t) ∈ [Tmin,∞). Therefore, at every t ≥ 0,

φ(t′) ∈ P for all t′ ∈ [t+ Tmin, t+ Tmax], which completes the proof.

8.1.2 Characterization of 3I

With the set P in (8.5), given the system in (8.4), an atomic proposition p

and a set I ⊂ R≥0, when the formula

f = 3Ip
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is satisfied for every solution φ to (8.4) at t = 0, there exists t ∈ I such that

φ(t) ∈ P . The system Hf,τ in (8.7) is used to characterize the behavior of solutions

φ to (8.4) while t ∈ I. We notice that to satisfy 3Ip for each solution φ to (8.4)

at t = 0, each solution ψ to Hf,τ in (8.7) starting from R
n × {0} satisfies the

following properties, with Tmin = min I, Tmax = max I and the set P in (8.5):

• the solution ψ stays in R
n × [0, Tmin) until reaching R

n × [Tmin, Tmax]; and

• once the solution ψ reaches R
n × [Tmin, Tmax], ψ stays in R

n × [Tmin, Tmax]

until reaching P × [Tmin, Tmax].

Now, we redefine atomic propositions pb and pc in (8.8) as follows:

pb(τ) :=





1 if τ ∈ I
0 otherwise,

pc(x, τ) :=





1 if x ∈ P, τ ∈ I
0 otherwise.

(8.11)

Theorem 8.5 (3Ip). Consider a system in (8.4). Given an atomic proposition p,

let P be given as in (8.5). Let the system Hf,τ be as in (8.7). Given a set I ⊂ R≥0,

let Tmin be as in (8.6) and let an atomic proposition pa be as in (8.8) and atomic

propositions pb and pc be as in (8.11). Then, the formula f = 3Ip is satisfied for

every solution to (8.4) at t = 0 if and only if the formula f̃ = pa Us(pb Uspc) is

satisfied for every solution to Hf,τ from R
n × {0} at t = 0.

Proof. (⇒) Suppose that f = 3Ip is satisfied at t = 0 for every solution x to (8.4).

We consider a solution pair (ψ, τ) to (8.7) such that ψ(0) = x(0) and τ(0) = 0

and ψ(t) = x(t) for all t ∈ dom ψ. In fact, such a solution pair (ψ, τ) always

exists since both the systems (8.4) and (8.7) have the same flow set and flow map.

Moreover, we note that τ(t) = t for all t ∈ dom ψ since τ(0) = 0. By definition of
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3I operator, when f = 3Ip is satisfied at t = 0 for every solution x to (8.4), there

exists t ∈ I = [Tmin, Tmax] such that x(t) ∈ P . This implies that (ψ, τ) satisfies

1) for every t ∈ dom x such that t < Tmin, τ(t) ∈ [0, Tmin);

2) for every t ∈ dom x such that t ∈ I, τ(t) ∈ I; and there exists t′ ∈ I such

that x(t′) ∈ P and τ(t′) ∈ I.

This implies that (ψ, τ) satisfies pa until satisfying pb, and (ψ, τ) satisfies pb until

satisfying pc. Thus, we conclude that f̃ = pa Us(pb Uspc) is satisfied for every

solution to (8.7) at t = 0 with τ(0) = 0.

(⇐) Suppose that f̃ = pa Us(pb Uspc) is satisfied for every solution to (8.7) at

t = 0 with τ(0) = 0. We show that, for each solution x to (8.4), there exists t ∈ I
such that x(t) ∈ P . Let (ψ, τ) be a solution pair to (8.7) such that τ(0) = 0 and

ψ(t) = x(t) for all t ∈ dom x. The solution component ψ is a solution x to (8.4)

since the systems (8.4) and (8.7) share the same flow set and flow map; and we

note that τ(t) = t for all t ∈ dom x. Since f̃ = pa Us(pb Uspc) is satisfied for each

solution (ψ, τ) to (8.7) at t = 0 with τ(0) = 0, by definition of Us operator,

• when (ψ, τ) does not satisfy pb Uspc, (ψ, τ) satisfy pa, which implies that

τ ∈ [0, Tmin);

• when (ψ, τ) satisfies pb Uspc, (ψ, τ) satisfies pb until satisfying pc; namely,

(ψ, τ) ∈ R
n × I until (x, τ) ∈ P × I.

Hence, we conclude that each solution x to (8.4) such that x(t) = ψ(t) satisfies

p for all t ∈ I, which implies that f = 3Ip is satisfied at t = 0 for every solution

x to (8.4).

Remark 8.6. Given sets Pa, Pb and Pc which are defined by an atomic proposi-

tion pa in (8.8) and atomic propositions pb and pc in (8.11), when conditions in
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Theorem 8.2 hold, the formula pa Us(pb Uspc) is satisfied for every solution to Hf,τ

starting from R
n × {0} at t = 0, which implies that f = 3Ip is satisfied for every

solution to (8.4) at t = 0.

8.1.3 In hybrid systems

In the following, we consider a hybrid system H = (C, F,D,G) as in (1.1).

Here, we consider the hybrid system Hτ = (Cτ , Fτ , Dτ , Gτ) with the state (x, τ, k) ∈
R

n × R≥0 × N given by

Fτ (x, τ, k) :=




F (x)

1

0




∀x ∈ Cτ := C × R≥0 × N

Gτ (x, τ, k) :=




G(x)

τ

k + 1




∀x ∈ Dτ := D × R≥0 × N.

(8.12)

Note that for each solution pair (ϕ, τ, k) to Hτ with τ(0, 0) = 0 and k(0, 0) = 0,

the solution ϕ is a solution to H. Consider a set I ⊂ R≥0 × N such that

I := [Tmin, Tmax] × {Jmin, Jmin + 1, . . . , Jmax}, (8.13)

where Tmin, Jmin ≥ 0, Tmax ≥ Tmin, and Jmax ≥ Jmin. The satisfaction of 2Ip

for each solution to H at (t, j) = (0, 0) is assured by guaranteeing particular

properties of the solutions to Hτ from R
n × {0} × {0} as follows:

• the solution ψ to Hτ stays in R
n×[0, Tmin)×{0, 1, . . . , Jmin−1} until reaching

P × [Tmin, Tmax] × {Jmin, Jmin + 1, . . . , Jmax}; and

• once ψ reaches P × [Tmin, Tmax] × {Jmin, Jmin + 1, . . . , Jmax}, ψ stays in
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P × [Tmin, Tmax] × {Jmin, Jmin + 1, . . . , Jmax} until reaching R
n × [Tmax,∞) ×

{Jmax, Jmax + 1, . . . ,∞}.

Now, we redefine atomic propositions pa, pb, and pc in (8.8) as follows:

pa(τ, k) :=





1 if τ ∈ [0, Tmin), k ∈ {0, 1, . . . , Jmin − 1}
0 otherwise,

pb(x, τ, k) :=





1 if x ∈ P, τ ∈ [Tmin, Tmax],

k ∈ {Jmin, Jmin + 1, . . . , Jmax}
0 otherwise,

(8.14)

pc(τ, k) :=





1 if τ > Tmax, k > Jmax

0 otherwise.

Theorem 8.7 (2Ip). Consider a hybrid system H = (C, F,D,G). Given an

atomic proposition p, let P be given as in (8.5). Given a set I ⊂ R
n × N, let

Tmin, Tmax, Jmin, and Jmax be as in (8.13). Let the system Hτ be as in (8.12) and

atomic propositions pa, pb, and pc be as in (8.14). Then, the formula f = 2Ip is

satisfied for every solution to H at (t, j) = (0, 0) if and only if

• the formula f̃ = pa Us(pb Uspc) is satisfied for each solution to Hτ from

R
n × {0} × {0} at (t, j) = (0, 0).

The following example illustrates Theorem 8.7.

Example 8.8 (Thermostat). Consider the hybrid system H = (C, F,D,G) with

the state x := (h, z) ∈ {0, 1} × R in Example 4.13. Following the formulation

therein, a specification of interest is that the room temperature maintains within

[zmin, zmax] during the first 60 seconds while avoiding a lot of switching off and on

the heater (i.e., less than three times), which is related to the satisfaction of 2Ip
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for H with the atomic proposition p as

p(x) :=





1 if x ∈ {0, 1} × [zmin, zmax]

0 otherwise,

for each x ∈ R
n where I = [0, 60] × {0, 1, 2}; namely, Tmin, Tmax, Jmin, and Jmax

in (8.13) are 0, 60, 0, and 2, respectively. Then, the set P in (8.5) is given by

P = {0, 1} × [zmin, zmax]; and the system Hτ is given as in (8.12). Since Tmin = 0,

the propositions pb and pc in (8.14) are defined as

pb(x, τ, k) :=





1 if x ∈ P, τ ∈ [0, 60], k ∈ {0, 1, 2}
0 otherwise,

pc(τ, k) :=





1 if τ > 60, k > 2

0 otherwise.

Finally, the satisfaction of 2Ip for H at (t, j) = (0, 0) is translated into the

satisfaction of the formula pb Uspc for H from ({0, 1} ×R) × {0} × {0} at (t, j) =

(0, 0). △

We redefine atomic proposition pb and pc in (8.14) as follows: atomic proposi-

tions pa, pb, pc are given by

pb(τ, k) :=





1 if τ ∈ [Tmin, Tmax],

k ∈ {Jmin, Jmin + 1, . . . , Jmax}
0 otherwise,

pc(x, τ, k) :=





1 if x ∈ P, τ ∈ [Tmin, Tmax],

k ∈ {Jmin, Jmin + 1, . . . , Jmax}
0 otherwise.

(8.15)
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Theorem 8.9 (3Ip). Consider a hybrid system H = (C, F,D,G). Given an

atomic proposition p, let P be given as in (8.5). Given a set I ⊂ R
n ×N, let Tmin,

Tmax, Jmin, and Jmax be as in (8.13). Let the system Hτ be as in (8.12). Let an

atomic proposition pa be as in (8.14) and atomic propositions pb, pc be as (8.15).

Then, the formula f = 3Ip is satisfied for every solution to H at (t, j) = (0, 0) if

and only if

• the formula f̃ = pa Us(pb Uspc) is satisfied for each solution to Hτ from

R
n × {0} × {0} at (t, j) = (0, 0).

Corollary 8.10. Using Theorem 8.2, the formula f̃ = pa Us(pb Uspc) is satisfied

for every solution to Hτ starting from R
n × {0} × {0} at (t, j) = (0, 0) if

1.a) (Pa ∪Pb ∪Pc) is conditionally invariant with respect to Pa for Hw in (4.10);

and

1.b) (Pb ∪ Pc) is eventually conditionally invariant with respect to Pa for Hs in

(4.11) or (Pb∪Pc) is finite-time attractive with respect to Pa for Hs in (4.11).

and

2.a) (Pb ∪ Pc) is conditionally invariant with respect to Pb for Hw in (4.10); and

2.b) Pc is eventually conditionally invariant with respect to Pb for Hs in (4.11)

or Pc is finite-time attractive with respect to Pb for Hs in (4.11).
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Chapter 9

Object grasping with multiple

contact points

Figure 9.1: Grasping an object with multiple agents, in this case, given by ground
vehicles. Each vehicle establishes contact at the desired locations to grasp the
object, and after that, may steer the object to a different location. A hybrid
control controller guarantees that the vehicles establish contact simultaneously
without rebounding.

In this chapter, a grasping task involving multiple contacts is considered as an

application of hybrid systems. Building from the control strategy in [44], a hybrid

control approach is presented for grasping objects by multiple agents without

rebounding. When multiple agents grasp an object cooperatively, the motion of
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the agents is constrained due to the geometrical and frictional conditions at the

contact points. Each agent acting on an object of interest is controlled by a hybrid

controller which includes a position controller, a force controller, and some logic

to coordinate grasping. The proposed approach provides a method to steer the

agents to the desired grasping positions on an object along the desired direction

and to asymptotically exert the desired forces at each contact point.

In particular, we study the networked hybrid system which is described by

a multi-agent system that consists of multiple subsystems. Each subsystem, a

hybrid closed-loop system corresponding to each agent, is commanded by an in-

dividual feedback controller which are coordinated by a supervisory controller.

Grasp
Generator

fd
c,i

xd
c,i

yd
c,i

zd
c,i

i ∈ I
Supervisory
Controller

Hybrid Controller

Position/
Force

Controller 1

...
...

...

Robot 1
and

Sensors

fc,1F1

χ1

mfc,1

m1

Position/
Force

Controller 2

Robot 2
and

Sensors

fc,2F2

χ2

mfc,2

m2

Position/
Force

Controller N

Robot N
and

Sensors

fc,NFN

χN

mfc,N

mN

Σ
Σ

Σ
Σ

Σ
Σ

...

Figure 9.2: Example of networked hybrid systems. Hybrid control architecture
with N individual position/force controllers, the supervisor, and the grasp gener-
ator. For each i, the signals mfc,i

and mi are noises affecting the measurements
of fc,i and zi, respectively.
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9.1 Object Grasping Problem

We consider the problem of grasping an object at N contact points using the

same number of end effectors or agents evolving in space, as shown in Figure 9.1

for N = 3 agents evolving on the (x, y)-plane. Each contact point and associated

force to exert, denoted (xd
c,i, y

d
c,i, z

d
c,i) and fd

c,i for each i ∈ I := {1, 2, . . . , N},

respectively, will serve as the reference to each of the agents. The problem to

solve is as follows:

Problem: Given an object to grasp, N agents to achieve contact with the object,

and, for each i ∈ I, contact positions (xd
c,i, y

d
c,i, z

d
c,i) and desired contact forces fd

c,i,

design an algorithm to guarantee that the N agents establish simultaneous contact

at points nearby (xd
c,i, y

d
c,i, z

d
c,i) without rebounding and, after that, asymptotically

exert force fd
c,i for each i ∈ I. �

The proposed approach to provide a solution to object grasping problem is to

treat the grasping task involving multiple contact points as a multi-agent system

in which each agent is commanded by an individual feedback controller, which,

in turn, are coordinated by a (hybrid) supervisory algorithm. More precisely, a

hybrid closed-loop system corresponding to agent i has state ξi and dynamics of

the form

Hi





ξ̇i = Fi(ξi) ξi ∈ Ci

ξ+
i = Gi(ξi) ξi ∈ Di

i ∈ I, (9.1)

and the resulting system consists of N hybrid systems coordinated to perform the

desired grasping task.

Figure 9.2 depicts the proposed control architecture. To solve the stated prob-
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lem, we develop a hybrid controller supervising individual controllers in each

agent, namely, position controllers and force controllers. Using the information

provided by a grasp generator, the main task of each such controller is to first

regulate position, so as to steer the agent to nearby the contact point simultane-

ously, and then regulate both position and force, so as to keep the vehicle nearby

the contact point and exert the force needed to establish a stable grasp without

rebounding. The supervisor employs the output of an algorithm providing the

contact points and force needed to establish a stable grasp, which in Figure 9.2

corresponds to the grasp generator. Furthermore, when small perturbations are

present in the system, which may trigger events of the supervisor at different time

instances, contact with the object occur at times and at points that are nearby

to those in the nominal conditions, and the resulting forces remain close to those

determined by the grasp generator. The proposed logic does not incorporate

avoidance strategies between the agents and the objects but that is part of future

work.

9.1.1 Agents model

We consider agents with dynamics in joint space given by

M(q)q̈ + C(q, q̇)q̇ + N (q, q̇) = T − J ⊤(q)fc (9.2)

where M is the manipulator inertia matrix, C is the Coriolis matrix, N includes

gravity terms and other forces that act at the joints, T is the vector of the actuators

torques, J is the Jacobian matrix relating the joint space velocity to the workspace

velocity, and fc is the vector of the contact forces due to the interaction between

the manipulator and the environment. As the interest is in the interaction of

N agents with an object, for each i ∈ I, (9.2) is rewritten in the workspace
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coordinates χi = (xi, yi, zi), after a coordinate transformation from q to χi, which

results in [45]

M̃iχ̈i + C̃iχ̇i + Ñi = Fi − fc,i (9.3)

where M̃i, C̃i, and Ñi (for simplicity their arguments are not included) are ob-

tained from the matrices in joint space (namely, Mi, Ci, and Ni; cf. (9.2)), and

Fi is the vector of forces/torques applied at the end-effector of the i-th agent.

9.1.2 Object model

The surface of the object to grasp is assumed to be soft and so that both the

tangent plane and the normal can be defined at the contact points – these points

are obtained from an algorithm that calculates a stable grasp; see Section 9.1.4.

The object is defined by the set of points given by

W = {χ : s(χ) ≤ 0}

where s is a function that is smooth enough and χ are the workspace coordinates.

9.1.3 Contact force model

To characterize the relationship between the bodies’ penetration and the reac-

tion force involved in the end effector-object interaction, we employ the so-called

Kelvin-Voigt linear contact model. In such a model the viscoelastic material of

the environment is described by the dynamics of a linear spring with stiffness kc

and damper coefficient bc. The contact force fc,i is then given as follows [46]:

fc,i(χi, χ̇i) = kcχℓ,i + bcχ̇ℓ,i (9.4)
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when contact between the end-effector and the object occurs, and zero otherwise.

The states χℓ,i and χ̇ℓ,i are the compression distance and the compression velocity

along the direction of contact, respectively – we use subindex ℓ to denote such

local coordinates. Figure 9.3(a) depicts such local coordinates on the (x, y)-plane:

red and green lines on the desired contact point refer to xℓ,i-direction and yℓ,i-

direction, respectively.

Agent 1

Agent 2

Agent 3

(xd
c,1

, yd
c,1

)

(xd
c,2

, yd
c,2

)

(xd
c,3

, yd
c,3

)

l1

l2

l3

(a)

Agent 1

Agent 2

Agent 3

(b)

Figure 9.3: Example of grasping task with three agents (i.e., N = 3) on the
(x, y)-plane. (a) For each agent i, the desired contact point (xd

c,i, y
d
c,i) is given by

the grasp generator. Red and green lines on the desired contact point refer to
xℓ,i-direction and yℓ,i-direction, respectively. (b) Position trajectory of each agent
until the contact force is stabilized.

9.1.4 Stable grasp generator

Given the object to grasp as defined in Section 9.1.2, we choose the contact

points and forces in the workspace

(xd
c,i, y

d
c,i, z

d
c,i) ∈ R

3, fd
c,i ∈ R

3 ∀i ∈ I (9.5)

that guarantee a stable grasp.
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force

control

qi = −1

position

control

qi = 0, 1

waiting

qi = 2, 3

see c)

see d)see b)

see a)

see e)

Figure 9.4: Modes of operation of the supervisory controller for agent i, i ∈ I.
The logic includes two different phases in position control mode and in waiting
mode – see a)-e) list in Section 9.2.

The force balance equations for a grasped object subject to the contact force

fc,i with a set of N contact points can be described as follows:

w = Wf (9.6)

where w is the resulting wrench, W = [W1 · · · WN ] such that

Wi =




ni si 0

(xd
c,i, y

d
c,i, z

d
c,i) × ni (xd

c,i, y
d
c,i, z

d
c,i) × si ni


 , (9.7)

for each i ∈ I; f = (fd
c,1, . . . , f

d
c,N), and ni and si are the normal and tangent to

the object at i-th contact point, respectively. A solution (9.5) to (9.6) with w = 0

defines a stable grasp, where G is determined by the contact force and object

models.

There exist various approaches to optimize the placement of grasp points.

In this paper, we use the method of maximizing grasp quality in [47]. Using

the Ferrari-Canny metric, the most commonly used metric as a grasp quality
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evaluation, an optimal grasp minimizing the magnitudes has been chosen among

multiple different grasps satisfying (9.5) with w = 0. We refer the reader to [48]

for more details of the choice of the contact points and forces.

9.2 Hybrid Controller for Synchronized Grasp-

ing

The proposed controller is hybrid due to the combination of state variables that

change continuously and, at times, jump [20,39]. To coordinate each of the agents,

the hybrid controller implements a supervisory logic that employs a controllable

decreasing timer variable τi ∈ R≥0 and a logic variable qi ∈ Q := {−1, 0, 1, 2, 3}
for each i ∈ I agent. The timer state is used to schedule the steering of the agents

so as to make contact with the object simultaneously. The five possible values of

the logic variable represent the different modes of operation and phases therein –

these are defined in the enumerated list below; see also Figure 9.4.

Also for each agent, the hybrid controller includes a position controller and a

force controller for the purposes of controlling the position of the agents and the

force exerted to the object. The position controller steers the agent to contact.

The force controller employs measurements of the contact force in the direction

of motion.

To design these control algorithms, we follow the approaches in [49–51]. First,

we design the following inner feedback loop that compensates for the internal and

external forces of the manipulator, but certainly does not overcome the contact

force:

Fi = ui + C̃iχ̇i + Ñi (9.8)

where ui is a new virtual control input. Then, as in [50], without loss of gen-
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erality, we focus on the case in which the interaction between the agent and its

environment occurs along a normal direction to the object, namely, the interac-

tion between the agent and the object happens at a point on the line with that

normal direction. We refer to this line as the interaction line. In this way, we

further assume that the mass is unitary. Then, the dynamics of the agent along

the interaction line is given as follows:

χ̈i = ui − fc,i(χi, χ̇i). (9.9)

Using the contact force model in Section 9.1.3, once an agent reaches the

surface of the object, the contact force is calculated based on the compression

distance and velocity, respectively, for which, when focusing on the interaction

between the agents and the object along the interaction line, results in fc,i in

(9.4) being a scalar quantity given in local coordinates xℓ,i and ẋℓ,i; namely, when

contact occurs,

fc,i(χi, χ̇i) = kcxℓ,i + bcẋℓ,i (9.10)

Note that the xℓ,i-direction spans the interaction line as it is defined as the direc-

tion of the contact force; see Figure 9.3(a).

Given the contact points and forces in (9.5) from the grasp generator, and

assuming that the agents start far enough away from the object, the proposed

supervisory logic is as follows:

1) The position controller initially steers the agents to (nearby) the interaction

line. During this phase the agent is in position control mode, for which

qi = 0.

2) When the agent position is close enough (characterized by the parameter

ε > 0) to the interaction line, the agent enters into waiting mode, for which
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qi = 2. In this mode the agent holds its position.

3) When all agents are in waiting mode, all logic variables are set to value 3 and

the travel time of each agent to make contact with the object is computed

by solving the closed-loop system dynamics; see Section 9.3. Then, the

appropriate waiting duration for each agent is calculated by resetting τi to a

nonnegative value chosen to guarantee that all agents establish contact with

the object simultaneously. The decreasing timer counts down as long as it

is nonnegative. The logic variable qi of the agents in this phase remains at

3.

4) When τi reaches zero, the logic variable is reset to qi = 1, and the agent

enters another position control mode phase, but now the agent is directly

steered towards the object along the intersection line.

5) When the contact force fc,i is larger or equal than a certain threshold (de-

noted γi
2), we set qi = −1 to put the agent in force control mode. The

force controller is activated and the contact force is regulated to the magni-

tude of fd
c,i. A switch back to the position controller is only possible when

the contact force has decreased enough (characterized by a parameter γi
1,

which is positive and strictly smaller than γi
2) – this hysteresis mechanism

assures that rebounding does not occur and provides robustness to small

perturbations; see [44] for more details.

As a result, all agents make contact with the object simultaneously and maintain

contact at nearby the desired location without rebounds.

The logic outlined above can be modeled as a hybrid control algorithm given

in terms of differential and difference equations with constraints. With such a

model, the tools for stability analysis in [20, 39] are applied. The state of the
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control algorithm is given by

η = (q1, τ1, q2, τ2, . . . , qN , τN )

and its input is

uc = (χ1, fc,1, χ2, fc,2, . . . , χN , fc,N)

plus the measurement noise signal

m = (m1, mfc,1, m2, mfc,2, . . . , mN , mfc,N
)

as show in Figure 9.2. Next, we provide the differential and difference equations,

along with the constraints, for each agent i ∈ I. Below, li denotes the i-th

interaction line.

Flows: The continuous change of the logic variable qi is given by the trivial dif-

ferential equation

q̇i = 0 (9.11)

which always keeps the logic variables constant in the continuous-time regime.

The timer variable τi continuously decrements itself according to the differential

equation

τ̇i = −1 (9.12)

when qi = 3 and τi ≥ 0 and, for any other values of qi and τi, τi changes trivially

according to

τ̇i = 0 (9.13)

Jumps: The jumps of the hybrid controller update the variables qi and τi so as to

implement the logic above. These updates are instantaneous and governed by the
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following difference equations with constraints:

a) From position control mode to waiting mode:

q+
i = 2, τ+

i = τi (9.14)

when qi = 0 and dist(li, χi) ≤ ε

b) From waiting mode to position control mode:

b1) to steering toward the object (first phase):

q+
i = 1, τ+

i = τi (9.15)

when qi = 3, dist(li, χi) ≤ ε and τi ≤ 0,

b2) to steering back to nearby the line (second phase):

q+
i = 0, τ+

i = τi (9.16)

when qi ∈ {2, 3} and dist(li, χi) ≥ ε

c) From position control mode to force control mode:

q+
i = −1, τ+

i = τi (9.17)

when qi = 1 and fc,i ≥ γi
2

d) From force control mode to position control mode:

q+
i = 1, τ+

i = τi (9.18)

when qi = −1 and fc,i ≤ γi
1
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e) From waiting mode (first phase) to waiting mode (second phase) when all

agents are nearby their respective interaction line:

q+
i = 3

τ+
i = Ti(χi)

(9.19a)

when

qk = 2 for all k ∈ I (9.19b)

where Ti is the waiting time.

The output of the hybrid controller assigns the virtual input ui (see (9.8)) of the

agents as follows:

ui =





κP (χi) if qi ∈ {0, 1}
κF (χi, fc,i) if qi = −1

(0, 0) if qi ∈ {2, 3}

(9.20)

where κP is the position controller and κF is the force controller. Note that when

the agent is in waiting mode, its input is identically zero so as to wait at the

current location. The time to reach the surface of the object, namely, Ti, can be

analytically computed once the position controller is designed. More details on

how to design such feedback laws using Lyapunov theory are provided in Section

9.4.
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9.3 Hybrid Closed-loop System for Synchronized

Grasping

In the following, the state of each individual agent is denoted ηi ∈ R
3 and

represents position and velocity in the local frame.1 For agent i ∈ I, the states

ηi,1 and ηi,2 are the position and velocity in the xℓ,i-direction, and ηi,3 is the

position in the yℓ,i-direction. As stated in Section 9.2, the i-th hybrid controller

employs τi and qi to implement a supervisory logic. The logic therein leads to an

i-th hybrid closed-loop system Hi = (Ci, Fi, Di, Gi) as in (9.1) with state

ξi := (ηi, τi, qi) ∈ Z := R
3 × R≥0 ×Q

and dynamics given by

η̇i,1 = ηi,2

η̇i,2 = ux,i

η̇i,3 = uy,i

τ̇i = 0

q̇i = 0





if ξi ∈ C0
i ∪ C1

i ∪ C2
i ∪ C3

i (9.21a)

η̇i,1 = ηi,2

η̇i,2 = 0

η̇i,3 = 0

τ̇i = −(qi − 2)

q̇i = 0





if ξi ∈ C4
i ∪ C5

i (9.21b)

1For simplicity, we write it in local coordinates. The global coordinates case requires replacing
ηi by Φ(ηi); see Appendix D.3 for more details.
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and

η+
i = ηi, τ+

i = 0, q+
i = −1 if ξi ∈ D0

i

η+
i = ηi, τ+

i = 0, q+
i = 1 if ξi ∈ D1

i ∪D5
i

η+
i = ηi, τ+

i = 0, q+
i = 0 if ξi ∈ D2

i

η+
i = ηi, τ+

i = 0, q+
i = 2 if ξi ∈ D3

i

η+
i = ηi, τ+

i = Ti(ηi), q+
i = 3 if ξi ∈ D4

i ,

(9.22)

where ui := (ux,i, uy,i) is given by

ux,i =





0, if yℓ,i position is controlled

ki
p(x

d
ℓ,i − ηi,1) − ki

dηi,2, if xℓ,i position is controlled

ki
f(|fd

c,i| − fc,i) + fc,i, if force control is applied,

uy,i =





ki
p,y(yd

ℓ,i − ηi,3), if yℓ,i position is controlled

0 otherwise.

The virtual control inputs ux,i and uy,i, which result from applying (9.8) and

decoupling horizontal and vertical motion, are assigned to position and force feed-

back controllers. Mass is assumed to be unitary for simplicity. The parameters

ki
p, k

i
d are the proportional and derivative feedback gains of the xi position con-

troller, respectively, and ki
p,y is the proportional feedback gain of the yi position

controller. The parameters xd
ℓ,i and yd

ℓ,i are the desired position in the xℓ,i-direction

and yℓ,i-direction, repsectively. The parameter fd
c is the desired contact force.

The flow set is Ci := {(ξi, {ηj,3, qj}j∈I\{i}) ∈ Z ×R
N−1 ×QN−1 : ξi ∈ Ck

i ∀k ∈
K, (ξi, {ηj,3, qj}j∈I\{i}) ∈ C4

i } where K := {0, 1, 2, 3, 5},

C0
i := {ξi ∈ Z : qi = 1, τi = 0, fc(ηi,1, ηi,2) ≤ γi

2}

C1
i := {ξi ∈ Z : qi = −1, τi = 0, fc(ηi,1, ηi,2) ≥ γi

1}
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C2
i := {ξi ∈ Z : qi = 0, τi = 0, ηi,1 ≤ x∗

ℓ,i, |ηi,3 − yd
ℓ,i| ≥ ε}

C3
i := {ξi ∈ Z : qi = 1, |ηi,3 − yd

ℓ,i| ≤ ε, ∀j ∈ I}

C4
i := {(ξi, {ηj,3, qj}j∈I\{i}) ∈ Z × R

N−1 ×QN−1 : qi = 2,

|ηi,3 − yd
ℓ,i| ≤ ε, (qj 6= 2 ∧ |ηj,3 − yd

ℓ,j| ≥ ε), ∃j ∈ I \ {i}}

C5
i := {ξi ∈ Z : qi = 3, τi ≥ 0, |ηi,3 − yd

ℓ,i| ≤ ε}, (9.23)

where γi
1, γ

i
2 and ε are the thresholds. The controller parameter x∗

ℓ,i denotes the

minimum position along the xℓ,i-direction.2 The jump set isDi := {(ξi, {ηj,3, qj}j∈I\{i}) ∈
Z × R

N−1 ×QN−1 : ξi ∈ Dk
i ∀k ∈ K, (ξi, {ηj,3, qj}j∈I\{i}) ∈ D4

i },

D0
i := {ξi ∈ Z : qi = 1, τi = 0, fc(ηi,1, ηi,2) ≥ γi

2}

D1
i := {ξi ∈ Z : qi = −1, τi = 0, fc(ηi,1, ηi,2) ≤ γi

1}

D2
i := {ξi ∈ Z : qi 6= 0, τi = 0, ηi,1 ≤ x∗

ℓ,i, |ηi,3 − yd
ℓ,i| ≥ ε}

D3
i := {ξi ∈ Z : qi = 0, τi = 0, |ηi,3 − yd

ℓ,i| ≤ ε}

D4
i := {(ξi, {ηj,3, qj}j∈I\{i}) ∈ Z × R

N−1 ×QN−1 : qj = 2,

|ηj,3 − yd
ℓ,j| ≤ ε, ∀j ∈ I}

D5
i := {ξi ∈ Z : qi = 3, τi = 0, |ηi,3 − yd

ℓ,i| ≤ ε}. (9.24)

With these definitions, the flow map is defined for every ξi ∈ Ci, which is given

by

Fi(ξi) =





F 0
i (ξi) if ξi ∈ C0

i ∪ C1
i ∪ C2

i ∪ C3
i

F 1
i (ξi) if ξi ∈ C4

i ∪ C5
i

(9.25a)

2See Appendix D.1 for more details.

118



where

F 0
i (ξi) = [ηi,2 ux,i uy,i 0 0]⊤,

F 1
i (ξi) = [ηi,2 0 0 − (qi − 2) 0]⊤

(9.25b)

and the jump map is given by

Gi(ξi) =





G0
i (ξi) if ξi ∈ D0

i

G1
i (ξi) if ξi ∈ D1

i ∪D5
i

G2
i (ξi) if ξi ∈ D2

i

G3
i (ξi) if ξi ∈ D3

i

G4
i (ξi) if ξi ∈ D4

i

∀ξi ∈ Di (9.26a)

where

G0
i (ξi) =




ηi

0

−1




, G1
i (ξi) =




ηi

0

1




, G2
i (ξi) =




ηi

0

0




,

G3
i (ξi) =




ηi

0

2




, G4
i (ξi) =




ηi

Ti(ηi)

3




.

(9.26b)

9.4 Design

The state of each individual agent is denoted ηi ∈ R
3 and represents position

and velocity in the local frame.3 For agent i ∈ I, the states ηi,1 and ηi,2 are

the position and velocity in the xℓ,i-direction, and ηi,3 is the position in the yℓ,i-

3For simplicity, we write it in local coordinates. The global coordinates case requires replacing
ηi by Φ(ηi) where Φ(ηi) is a transformation involving both rotation and translation of the
coordinates.
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direction. As stated in Section 9.2, the i-th hybrid controller employs τi and

qi to implement a supervisory logic. The logic therein leads to an i-th hybrid

closed-loop system Hi = (Ci, Fi, Di, Gi) as in (9.1) with state ξi := (ηi, τi, qi) ∈
Z := R

3 × R≥0 × Q. The controller parameters ki
p, k

i
d are the proportional and

derivative feedback gains of the xℓ,i position controller, respectively, and ki
p,y is

the proportional feedback gain of the yℓ,i position controller. The parameter ki
f is

the proportional feedback gain of the force controller.

For each i ∈ I, we define Ai := (xF
ℓ,i, 0, y

d
ℓ,i) where xF

ℓ,i = fd
c,i/kc. Then, given

parameters kc, bc ∈ (0,+∞) of the work environment and desired contact force

0 < fd
c,i < f̂c,i where f̂c,i is the maximum allowed force, one can always find

1. compact sets K0,i, K1,i, K2,i ⊂ R
3,

2. parameters ki
p, k

i
d, k

i
p,y, k

i
f , γ

i
1, γ

i
2, x

d
ℓ,i of the hybrid controller

such that the set Ai × {0} × {−1} is locally asymptotically stable with basin of

attraction containing ((K0,i ×{0}×{1})∪(K1,i ×{0}×{0})∪(K2,i ×{0}×{−1}))

for Hi.

In fact, a particular choice of these sets is

• K0,i = (LV1(r1) ∩ {ηi ∈ R
3 : ηi,1 ≤ 0}) ∪ (LV2(r2) ∩ {ηi ∈ R

3 : ηi,1 ≥ 0})

where xd
ℓ,i, k

i
p, k

i
d > 0, V1(ηi,1, ηi,2) = 1

2
a1(ηi,1 − xd

ℓ,i)
2 + 1

2
b1η

2
i,2 with a1, b1

satisfying a1

b1
= ki

p, and V2(ηi,1, ηi,2) = 1
2
a2(ηi,1 − xP

ℓ,i)
2 + 1

2
b2η

2
i,2 with a2, b2

satisfying a2

b2
= ki

p + kc where xP
ℓ,i :=

ki
p

ki
p+kc

xd
ℓ,i; r1 and r2 are the maximum

value of the level set of V1 and V2, respectively, and the following conditions

are satisfied: the r1-level set of V1 intersects the point ηi,1 = 0, ηi,2 = η∗
i,2 − δ

and r2 = min{ra
2 , r

b
2}, where the ra

2-level set of V2 is such that it crosses the

intersection of the rF -level set and the min γi
2 line, and the rb

2-level set of

V2 is such that it intersects the point ηi,1 = 0, ηi,2 = η∗
i,2 − δ, where η∗

i,2 is a

bounded maximum value of the velocity with δ > 0;
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Figure 9.5: Example of sublevel sets of Lyapunov functions. η0
i := (η0

i,1, η
0
i,2) is

the initial point. η∗
i,2 is the maximum impact velocity. The lines lγ1 and lγ2 are

lγ1 := {(ηi,1, ηi,2) : ηi,2 = −kc

bc
ηi,1 + γ1

bc
} and lγ1 := {(ηi,1, ηi,2) : ηi,2 = −kc

bc
ηi,1 + γ1

bc
}.

• K1,i = LV3(r3) where V3(ηi,3) = 1
2
a3(ηi,3 − yd

ℓ,i)
2, a3 > 0, ki

p,y > 0, and r3 is

the maximum value of the level set of V3 when V3 is at ηi,3 = |yd
ℓ,i| + d∗

i − δ′

where d∗
i is a maximum allowed distance dist(li, ξi) with δ′ > 0;

• K2,i = LVF
(rF ) where VF (ηi,1, ηi,2) := a(ηi,1 −xF

ℓ,i)
2 + bη2

i,2 + 2c(ηi,1 −xF
ℓ,i)ηi,2,

and PF :=
[ a c

c d

]
= R

[ p1 0

0 p2

]
R⊤, p1, p2 > 0, R :=

[ − sin β − cosβ

cosβ − sin β

]
,

and β := arctan(−kc/bc), ki
f ∈

(
0, −2c2kc+abkc+acbc

(bkc−cbc)2

)
; rF is the maximum value

of the level set of VF when VF is at ηi,1 = 0, ηi,2 = c
b
xF

ℓ,i where xF
ℓ,i := fd

c,i/kc;

and

the parameters in 2) can be chosen as follows: γi
1,min = 0, γi

1,max = xF
ℓ,i

(
kc −

√
k2

c b−2ckcbc+ab2
c

b

)
, γi

2,min = bc
c
b
xF

ℓ,i, γ
i
2,max = kc min{ kp

kp+kc
xd

ℓ,i, x
F
ℓ,i}, xd

ℓ,i ∈ [xd
ℓ,imin

,+∞]

where xd
ℓ,imin

= xF
ℓ,ibc

c
b

kp+kc

kpkc
. Since the hybrid closed-loop system satisfies the hy-

brid basic conditions (see [20]), we can find β ∈ KL such that for each ǫ >

0 and each compact set Ki,0, Ki,1, Ki,2 ⊂ R
3 such that ((K0,i × {0} × {1}) ∪
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(K1,i × {0} × {0}) ∪ (K2,i × {0} × {−1})) is a subset of the basin of attraction

of Hi, there exists δ∗ > 0 such that for each position and force measurement

noise m : R≥0 → δ∗
B, solutions ξi to Hi with noise m for initial conditions

z0
i ∈ ((K0,i × {0} × {1}) ∪ (K1,i × {0} × {0}) ∪ (K2,i × {0} × {−1})) are such

that the ηi component of the solutions satisfy |ηi(t, j)|A ≤ β(|η0
i |A, t + j) + ǫ for

each (t, j) ∈ dom ξi. Figure 9.5 shows an example of sublevel sets of Lyapunov

functions above.

Theorem 9.1. Hi satisfies the hybrid basic conditions, which are as follows:

A1) Ci and Di are closed sets in Z.

A2) Fi: Z → Z is continuous on Ci.

A3) Gi: Z → Z is an outer semicontinuous and locally bounded relative to Di,

and Di ⊂ domGi.

Proof. Condition (A1) is satisfied since Ci and Di are closed. The flow map Fi

in (D.7) is continuous on Ci, satisfying (A2). The jump map Gi in (D.8) is single

valued on Di and therefore it satisfies (A3).

9.5 LTL specifications

In the following, we present how express system specifications as LTL formu-

las. For example, consider a horizontal position controller that is designed for

controlling the horizontal position of the agent as follows:

η̇1 = η2, η̇2 = −kpη1 − kdη2 + kpx
d
ℓ

where kp, kd > 0 are controller parameters. A specification of interest is that the

position of the agent eventually reaches the equilibrium point (xd
ℓ , 0) in finite time.
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This can be expressed as

f = 3p

with the proposition p such that p is true when (η1, η2) = (xd
ℓ , 0).

9.6 Nominal case

Now, we illustrate the design conditions above. We consider the task of grasp-

ing an object with multiple contact points. The proposed hybrid system is sim-

ulated with MATLAB using the Hybrid Equation (HyEQ) Toolbox [52]. The

simulation results show how the proposed controller stabilizes the horizontal and

vertical positions and ensures contact force regulation in the multi-agent sys-

tems. In the following simulation, we apply the proposed hybrid controller in

Section 9.2 for N = 3 to grasp an object defined on the (x, y)-plane as a poly-

gon with vertices (in clockwise order) given by {(−1.89,−4.95), (−4.99,−4.22),

(−3.70, 3.26), (−0.31, 4.96), (2.94, 4.62), (4.34,−3.48)}; see Figure 9.3. The pa-

rameters kc and bc are set to 10 and 0.3, respectively. For each i ∈ I := {1, 2, 3},

the gains ki
f , ki

p and ki
p,y are set to 16.0, 2.0 and 4.0, respectively; the set of

gains (k1
d, k

2
d, k

3
d) is set to (1, 0.5, 0.5). The desired contact forces fd

c,i obtained

from the stable grasp generator are 4.39, 4.2 and 2.97, respectively, at each con-

tact point. The thresholds γi
1 and γi

2 are chosen as 0.76 and 1.33, respectively.

The thresholds ε and ε′ are set to 0.01 and 0.05, respectively. The initial con-

dition of each agent is (η0
1,1, η

0
1,2, η

0
1,3) = (−0.5, 0, 0), (η0

2,1, η
0
2,2, η

0
2,3) = (−0.5, 0, 1),

(η0
3,1, η

0
3,2, η

0
3,3) = (1, 0, 0), respectively.

Figure 9.6 illustrates the closed-loop trajectory of the three agents obtained

from the simulation. The vertical position controller is initially applied (i.e.,

qi = 0). Approximately 1.5 seconds later, when dist(li, ξi) = |ηi,3 − yd
ℓ,i| ≤ ε, the
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horizontal position controller is applied (i.e., qi = 1). When the contact force

fc,i ≥ γi
2, the force controller is activated (i.e., qi = −1). The contact force is

regulated to fd
c,i by using the force controller. As the plots of the contact forces

in Figure 9.6 indicate, the proposed hybrid controller guarantees that the agents

do not bounce off the surface of the object after contact.

As shown in Figure 9.7, at approximately 2.5 seconds, all three agents make

contact with the object (i.e., {xi,1}3
i=1 = 0) simultaneously. A movie of this

simulation is available at https://youtu.be/6B8m584u-g4.
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Figure 9.6: Grasping task with three agents: Plots of state variables of agent 2 in
its local frame.

Figure 9.8 shows the trajectories with respect to the local coordinates for

different environments. After each agent makes contact with the object (i.e.,

xℓ,i = 0), it maintains its contact with the object while the position of each

agent is stabilized. Note that the different environment material stiffness kc, the

equilibrium point xF
ℓ,i is changed according to xF

ℓ,i = |fd
c,i|/kc so as to exert the

desired contact force magnitudes of fd
c,i.
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Figure 9.7: Plots of xℓ position corresponding to each agent.
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Figure 9.8: Position vs. velocity plots for agent 1 corresponding to different envi-
ronment material stiffness kc. The parameter kc is set to 2, 5 and 10, respectively.
Agent 1 does not bounce off the surface of the object after contact (i.e., xℓ,1 = 0).

9.7 Extension to agents having Dubins-like dy-

namics

Figure 9.9 shows the trajectories of the position xℓ,i corresponding to each

agent with different values of noise. In this section, motivated by the wide ap-

plicability of Dubins-type models, we apply our hybrid controller to the car-type

model given by

ẋℓ,i = vℓ,i cos θℓ,i, ẏℓ,i = vℓ,i sin θℓ,i,

v̇ℓ,i = uv,i − fc,i, θ̇ℓ,i = uθ,i

(9.27)
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Figure 9.9: Plots of local position xℓ,i for each agent. Each case has a Gaussian
noise with zero mean and variance of σ = 0.01, 0.03, 0.05, 0.1, 0.2, 0.25, respec-
tively, as fc,i and mi for each i ∈ I.

where, for each i ∈ I agent, (xℓ,i, yℓ,i) ∈ R
2 denotes planar position, θℓ,i ∈ R

denotes orientation and vℓ,i ∈ R denotes the forward velocity, respectively; see,

e.g., [53]. The inputs uθ,i and uv,i are the angular velocity input and the accelera-

tion input, respectively. The norm of the angular velocity input is upper bounded

by the constant uθ,i, which implies that the vehicle turns have a (nonzero) mini-

mum turning radius. In other words, given an input signal (uθ,i, uv,i), the resulting

paths in the (x, y)-plane have bounded curvature.

In the following simulation, the initial condition of each agent i ∈ I := {1, 2, 3}
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is (x0
ℓ,1, y

0
ℓ,1, v

0
ℓ,1, θ

0
ℓ,1) = (−2.5,−3, 1, π

2
), (x0

ℓ,2, y
0
ℓ,2, v

0
ℓ,2, θ

0
ℓ,2) = (−2, 3, 1,−π

2
) and

(x0
ℓ,3, y

0
ℓ,3, v

0
ℓ,3, θ

0
ℓ,3) = (−2.5, 2, 1,−π

2
), respectively. A Gaussian noise with zero

mean and variance of σ = 0.01, 0.03, 0.05, 0.1, 0.2, 0.25, respectively, define the

noise signals fc,i and mi for each i ∈ I. The contact time tic is changed under

different noises, but mismatch of contact time is approximately 0.08 seconds in

the worst case (Table 9.1).

y

x

Figure 9.10: Plots of global position (x, y) for three agents both without noise
and with different values of noise corresponding each case in Figure 9.9, such as
σ = 0.01(green), 0.03(yellow), 0.05(magenta), 0.1(cyan), 0.2(blue), respectively.
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Figure 9.11: Position vs. velocity plots for agent 2 with distur-
bances: each case has a Gaussian noise with zero mean and variation
of σ = 0.01(green), 0.03(yellow), 0.05(magenta), 0.1(cyan), 0.2(blue), 0.25(black),
respectively.

Compared to the nominal case, mismatch of the equilibrium points is approxi-
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σ |t1
c − t2

c | |t1
c − t3

c | |t2
c − t3

c |
0 0 0 0

0.01 0.05 0.05 0
0.03 0.05 0.08 0.05
0.05 0.05 0.05 0
0.1 0 0.08 0.08
0.2 0.05 0.025 0.025
0.25 0.01 0.05 0.05

Table 9.1: Contact time of three agents.

mately 0.1 (in norm) in the worst case. Please go to https://youtu.be/7VPnZj6a7Bo

to watch a movie of this simulation.
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Chapter 10

Conclusion

In this dissertation, a hybrid controller for grasping tasks in a multi-agent

system is introduced as an application of hybrid dynamical systems. The proposed

hybrid controller supervises the position and force controllers for each agent, in

order to steer the agent to the object while the contact force is regulated to avoid

rebounding. Moreover, using timers and logic variables, multiple agents working

on the object are synchronized so that they achieve a stable grasp.

On the other hand, temporal logic for hybrid systems is introduced to formu-

late specification for hybrid systems in high-level languages. For hybrid systems,

notions encoding ε-approximate satisfaction and robust ε-approximate satisfaction

of temporal logic specifications are proposed to specify and verify temporal logic

specifications under the presence of perturbations. Our approach is proposed to

establish relationship between the satisfaction of formulas having temporal logic

operators and some of the invariance notions and finite-time attractivity (FTA)

notions studied in control literature. In particular, (robust) forward invariance,

(robust) conditional invariance, eventual conditional invariance, and (robust) fi-

nite time attractivity notions are revisited in the context of hybrid systems. More-

over, sufficient conditions certifying such dynamical properties are presented. As a
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consequence, sufficient conditions (not involving the computation of the systems’

solutions) guaranteeing the satisfaction of temporal logic specifications (with ro-

bustness to perturbations) are proposed.

Furthermore, a relationship between signal temporal logic (STL) specifications

linear temporal logic (LTL) formulas involving the strong until operators is estab-

lished so that sufficient conditions that guarantee the satisfaction of basic STL

specifications are derived.

There are many directions for future research towards developing tools for the

formal verification and design of hybrid systems using LTL. By using LTL, we can

guide the design of dynamical systems with constraints. A promising area is the

use of learning techniques with formal specification expressed in temporal logic

formulas.
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Appendix A

Comparison Lemmas

The following result is a version of the well-known comparison Lemma that

can be found in [27, Lemma 3.4].

Lemma A.1. Consider the scalar system

u̇ = f(t, u), u(t0) = u0, (A.1)

where for all t ≥ 0 and all u ∈ S ⊂ R, f(t, u) is continuous in t and locally

Lipschitz in u. Furthermore, let [t0, T ) be the maximal interval, T can be infinity,

of existence of the solution u(t). Moreover, suppose that u(t) ∈ S for all t ∈ [t0, T ).

On the other hand, let v(t) be a continuous function such that v(t0) ≤ u0,

v(t) ∈ S for all t ∈ [t0, T ), and its upper right-hand derivative D+v(t) satisfies

the following differential inequality, for almost all t ∈ [t0, T ),

D+v(t) := lim sup
s→0+

v(t+s)−v(t)
s

≤ f(t, v(t)). (A.2)

Then, v(t) ≤ u(t) for all t ∈ [t0, T ).
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Lemma A.2. Assume that the function t 7→ v(t) in Lemma A.1 satisfies v(t) =

v(x(t)) for all t ∈ [t0, T ) with t 7→ x(t) a solution to the system ẋ ∈ F (x) x ∈

C ⊂ R
n, and v ∈ C1, it follows that, for almost all t ∈ [t0, T ), D+v(t) = v̇(t) =

〈∇v(x(t)), ẋ(t)〉.

Proof. Since the solution x is absolutely continuous, it follows that ẋ(t) exists for

almost all t ∈ [t0, T ). Furthermore, since v ∈ C1. Hence, v̇(t) exists for almost all

t ∈ [t0, T ). Let t ∈ [t0, T ) such that v̇(t) exists, then, by definition of the time

derivative, we conclude that

v̇(t)=lim
s→0

v(t+s)−v(t)
s

= lim sup
s→0+

v(t+s)−v(t)
s

= D+v(t).

Furthermore, using the classical chain rule for composition of differentiable func-

tions, we conclude that v̇(t) = 〈∇v(x(t)), ẋ(t)〉.

Lemma A.3. Let x : [t0, T ) → R
n be a solution to the following constrained

differential inclusion ẋ ∈ F (x) x ∈ C ⊂ R
n. Then, for almost all t ∈ [t0, T ),

ẋ(t) ∈ TC(x(t)).

Proof. Let t ∈ [t0, T ) such that ẋ(t) exists; thus, ẋ(t) ∈ F (x(t, j)). Furthermore,

let a sequence {tn}n∈N
⊂ (t0, T−t) such that tn → 0. That is, for vn(t) := (x(tn)−

x(t))/tn, we have limn vn(t) = ẋ(t) and at the same time x(t)+tnvn(t) = x(tn) ∈ C.

Hence, using (C.2), we conclude that ẋ(t) ∈ TC(x(t)).
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Appendix B

Results on Finite Time

Attractivity

In the following, we present sufficient conditions that guarantee FTA of a closed

set K for a hybrid system H; see [25]. First, Proposition B.1 characterizes the

scenario where the distance of each solution φ ∈ SH(N ) to K strictly decreases

during flows, but is only non-increasing at jumps, and N is an open neighborhood

of K.

Proposition B.1. Let a hybrid system H = (C, F,D,G) on X and a closed set

K ⊂ N ⊂ X with an open set N such that G(N ) ⊂ N . The set K is FTA for H

if there exists a continuous function V : N → R≥0, locally Lipschitz on an open

neighborhood of C ∩ N , and c1 > 0, c2 ∈ [0, 1) such that

1) for every x ∈ N ∩ (C ∪D) \K, each φ ∈ SH(x) satisfies

V 1−c2 (x)
c1(1−c2)

≤ sup
(t,j)∈dom φ

t,

2) there exist functions α1, α2 ∈ K∞ such that α1(|x|K) ≤ V (x) ≤ α2(|x|K) for
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all x ∈ (C ∪D ∪G(D)) ∩ N and

uC(x) + c1V
c2(x) ≤ 0 ∀x ∈ (C ∩ N ) \K (B.1a)

uD(x) ≤ 0 ∀x ∈ (D ∩ N ) \K, (B.1b)

where the functions uC and uD are defined in (2.5) and (2.7), respectively.

Furthermore, for each φ ∈ SH(N ∩ (C ∪D)) with ξ = φ(0, 0),

a) the settling-time function T satisfies T (φ) ≤ T ⋆(ξ) + J ⋆(ξ) where T ⋆(ξ) =

V 1−c2 (ξ)
c1(1−c2)

and J ⋆(ξ) is such that (T ⋆(ξ),J ⋆(ξ)) ∈ domφ; and

b) |φ(t, j)|K = 0 for some (t, j) ∈ domφ such that t ≥ T ⋆(ξ).

Proof. Let φ ∈ SH with φ(0, 0) = ξ ∈ N ∩ (C ∪ D) and rge φ ⊂ N . Pick any

(t, j) ∈ dom φ and let 0 = t0 ≤ t1 ≤ · · · ≤ tj+1 = t satisfy

dom φ ∩ ([0, t] × {0, 1, . . . , j}) =
j⋃

i=0

([ti, ti+1] × {i}). (B.2)

For each i ∈ {0, 1, . . . , j} and almost all s ∈ [ti, ti+1], φ(s, i) ∈ (C ∩ N ) \K. Using

(2.6), the condition in (B.1a) implies that, for each i ∈ {0, 1, . . . , j} and for almost

all s ∈ [ti, ti+1],

d
ds
V (φ(s, i)) ≤ uC(φ(s, j)) ≤ −c1V

c2(φ(s, i)), (B.3)

which implies that

V −c2(φ(s, i)) dV (φ(s, i)) ≤ −c1ds. (B.4)
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Integrating over [ti, ti+1] both sides of this inequality yields

1
1−c2

(
V 1−c2(φ(ti+1, i)) − V 1−c2(φ(ti, i))

)
≤ −c1(ti+1 − ti). (B.5)

Similarly, for each i ∈ {1, . . . , j}, φ(ti, i− 1) ∈ (D ∩ N ) \K and

V (φ(ti, i)) − V (φ(ti, i− 1)) ≤ 0. (B.6)

The two inequalities in (B.5) and (B.6) imply that, for each (t, j) ∈ dom φ,

1
1−c2

(
V 1−c2(φ(t, j)) − V 1−c2(ξ)

)
≤ −c1t. (B.7)

Using G(N ) ⊂ N , the lower bound on the function V , and the fact that c2 ∈ (0, 1),

we get

α1−c2
1 (|φ(t, j)|K) ≤ V 1−c2(φ(t, j)) ≤ V 1−c2(ξ) − c1(1 − c2)t. (B.8)

Then, it follows that

|φ(t, j)|K ≤ α−1

(
(V 1−c2(ξ) − c1(1 − c2)t)

1
1−c2

)
. (B.9)

Furthermore, an upper bound for the settling-time function can be computed as

T (φ) ≤ T ⋆(ξ) + J ⋆(ξ), (B.10)

where T ⋆(ξ) = V 1−c2 (ξ)
c1(1−c2)

, and J ⋆(ξ) is chosen such (T ⋆(ξ),J ⋆(ξ)) ∈ dom φ. Note

that T ⋆(ξ) < sup(t,j)∈dom φ t given by 1), the existence of (T ⋆(ξ),J ⋆(ξ)) ∈ dom φ

is guaranteed.
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Remark B.2. Condition 1) in Proposition B.1 guarantees that the domain of def-

inition of the solutions to H are long enough to allow for the solution to converge

to K. Condition (B.1a) guarantees finite time convergence of limt+j→T (φ) |φ(t, j)|K
to zero over a finite amount of ordinary time t (potentially with jumps within it).

Finally, the upper bound on the settling-time function T depending on the Lya-

punov function and the initial condition will be effectively exploited to estimate

the amount of hybrid time it takes for a temporal specification to be satisfied.

A dual version of Proposition B.1 is given next, namely, it pertains to the case,

when the distance of a solution φ ∈ SH to a closed set K strictly decreases at

jumps.

Proposition B.3. Let a hybrid system H = (C, F,D,G) on X and a closed set

K ⊂ N ⊂ X with an open set N such that G(N ) ⊂ N . The set K is FTA for H

if there exists a continuous function V : N → R≥0, locally Lipschitz on an open

neighborhood of C ∩ N , and c > 0 such that

1) for every x ∈ N ∩ (C ∪D) \K, each φ ∈ SH(x) satisfies

ceil
(

V (x)
c

)
≤ sup

(t,j)∈dom φ
j;

2) there exist functions α1, α2 ∈ K∞ with α1(|x|K) ≤ V (x) ≤ α2(|x|K) for each

x ∈ (C ∪D ∪G(D)) ∩ N such that

uC(x) ≤ 0 ∀x∈(C ∩ N ) \K (B.11a)

uD(x) ≤ − min{c, V (x)} ∀x∈(D ∩ N ) \K, (B.11b)

where uC and uD are defined in (2.5) and (2.7), respectively.
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Moreover, for each φ ∈ SH(N ∩ (C ∪D)) with ξ = φ(0, 0),

a) the settling-time function T satisfies T (φ) ≤ T ⋆(ξ) + J ⋆(ξ) where J ⋆(ξ) =

ceil
(

V (ξ)
c

)
and T ⋆(ξ) is such that (T ⋆(ξ),J ⋆(ξ)) ∈ domφ and (T ⋆(ξ),J ⋆(ξ)−

1) ∈ domφ;

b) |φ(t, j)|K = 0 for some (t, j) ∈ domφ such that j ≥ J ⋆(ξ).

Proof. Let φ ∈ SH(ξ) with ξ ∈ N . Pick any (t, j) ∈ dom φ and let 0 = t0 ≤ t1 ≤

· · · ≤ tj+1 = t satisfy

dom φ ∩ ([0, t] × {0, 1, . . . , j}) =
j⋃

i=0

([ti, ti+1] × {i}). (B.12)

For each i ∈ {0, 1, . . . , j} and almost all s ∈ [ti, ti+1], φ(s, i) ∈ C. Using (2.6),

the condition in (B.11b) implies that, for each i ∈ {0, 1, . . . , j} and for almost all

s ∈ [ti, ti+1],
dV (φ(s,i))

ds
≤ 0. Integrating over [ti, ti+1] both sides of this inequality

yields

V (φ(ti+1, i)) − V (φ(ti, i)) ≤ 0. (B.13)

Similarly, by using (2.8) and (B.11b), for each i ∈ {1, . . . , j}, φ(ti, i− 1) ∈ D and

V (φ(ti, i)) − V (φ(ti, i− 1)) ≤ −
j∑

i=1

min{c, V (φ(ti, i− 1))}.

Using the lower bound on the function V and the fact that c > 0, we get

α1(|φ(t, j)|K) ≤ V (φ(t, j)) ≤ V (ξ) −
j∑

i=1

min{c, V (φ(ti, i− 1))}.
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Then, it follows that

|φ(t, j)|K ≤ α−1
1


V (ξ) −

j∑

i=1

min{c, V (φ(ti, i− 1))}

 .

Furthermore, an upper bound for the settling-time function can be computed as

T (φ) ≤ T ⋆(ξ) + J ⋆(ξ), (B.14)

where J ⋆(ξ) = ceil
(

V (ξ)
c

)
and T ⋆(ξ) is such that (T ⋆(ξ),J ⋆(ξ)), (T ⋆(ξ),J ⋆(ξ) −

1) ∈ dom φ. Note that J ⋆(ξ) < sup(t,j)∈dom φ j given by 1), the existence of

(T ⋆(ξ),J ⋆(ξ)) ∈ dom φ is guaranteed.

The following result combines the conditions in Proposition B.1 and in Propo-

sition B.3. Its proof can be formulated by combining the arguments in the proofs

of Proposition B.1 and Proposition B.3.

Proposition B.4. Let a hybrid system H = (C, F,D,G) on X and a closed

set K ⊂ N ⊂ X with an open set N such that G(N ) ⊂ N . The set K is FTA

for H if there exists a continuous function V : N → R≥0, locally Lipschitz on

an open neighborhood of C ∩ N , and c1, c3 > 0, c2 ∈ [0, 1) such that item 1)

in Proposition B.1 and item 1) in Proposition B.3 are satisfied, and there exist

functions α1, α2 ∈ K∞ such that

α1(|x|K) ≤ V (x) ≤ α2(|x|K)

for all x ∈ (C ∪D ∪G(D)) ∩ N and

uC(x) + c1V
c2(x) ≤ 0 ∀x ∈ (C ∩ N ) \K (B.15a)
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uD(x) ≤ − min{c3, V (x)} ∀x ∈ (D ∩ N ) \K, (B.15b)

where uC and uD are defined in (2.5) and (2.7), respectively. Furthermore, for

each φ ∈ SH(N ∩ (C ∪D)) with ξ = φ(0, 0),

a) the settling-time function T satisfies T (φ) ≤ mini∈{1,2} {T ⋆
i (ξ) + J ⋆

i (ξ)}

where T ⋆
1 (ξ) = V 1−c2 (ξ)

c1(1−c2)
, J ⋆

1 (ξ) is such that (T ⋆
1 (ξ),J ⋆

1 (ξ)) ∈ domφ, J ⋆
2 (ξ) =

ceil
(

V (ξ)
c3

)
, and T ⋆

2 (ξ) is such that (T ⋆
2 (ξ),J ⋆

2 (ξ)) ∈ dom φ and (T ⋆
2 (ξ),J ⋆

2 (ξ)−

1) ∈ domφ;

b) |φ(t, j)|K = 0 for some (t, j) ∈ domφ such that t ≥ T ⋆
1 (ξ) or j ≥ J ⋆

2 (ξ).
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Appendix C

Results on Conditional Invariance

and Eventual Conditional

Invariance

The following results are valid for the general class of hybrid systems H satis-

fying the following mild assumption:

(SA) The system H is such that the set C is closed, F is outer semicontinuous

and locally bounded with nonempty and convex values on C, and G has

nonempty values on D.

The properties of F in (SA) are used in the literature of differential inclusions

as mild requirements for existence of solutions from intC plus adequate structural

properties for the flows, see [54–56]. When F is single valued, the properties of F

in (SA) reduce to simply continuity.
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C.1 Sufficient Conditions for Conditional Invari-

ance

First, we recall the sufficient conditions for invariance notions using a barrier

function in [29, 37] for hybrid systems. Below, the concept of the tangent cone1

to a set is used; see [20, Definition 5.12]. The tangent cone at a point x ∈ R
n of

a set C ⊂ R
n given by

TC(x) :=

{
v ∈ R

n : lim inf
h→0+

|x+ hv|C
h

= 0

}
. (C.1)

We also recall the equivalence [57, Page 122]

v ∈ TC(x) ⇔ ∃ {hi}i∈N
→ 0+

and {vi}i∈N
→ v : x+ hivi ∈ C ∀i ∈ N.

(C.2)

Furthermore, for the given two sets O,Xu ⊂ R
n with O ∩ Xu = ∅, we recall

from [29] the notion of a barrier function candidate with respect to (O,Xu) for H.

Definition C.1 (Barrier function candidate). Consider H = (C, F,D,G). Given

two sets O,Xu ⊂ R
n with O ∩ Xu = ∅, a function B : Rn → R is said to be a

barrier function candidate with respect to (O,Xu) for H if





B(x) ≤ 0 ∀x ∈ O

B(x) > 0 ∀x ∈ (C ∪D) ∩ Xu.
(C.3)

In the following, we recall a result on safety for hybrid systems [29, Theorem

3.2] to derive sufficient conditions for conditional invariance for hybrid systems.

1This tangent cone is also known as the contingent cone, or the Bouligand tangent cone.
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Given two sets O and Xu, the conditions given below provide sufficient conditions

to verify that R
n\Xu is conditionally invariant with respect to O for H.

Proposition C.2 (CI using barrier functions). Consider a hybrid system H =

(C, F,D,G). Let two sets O and Xu such that O, Rn\Xu ⊂ C∪D. The set Rn\Xu

is CI with respect to O for H if there exists a C1 barrier function candidate B

with respect to (O,Xu) for H as in (C.3) such that K := {x ∈ C ∪D : B(x) ≤ 0}

is closed and the following hold:

〈∇B(x), η〉 ≤ 0 ∀x ∈ (U(∂K)\K) ∩ C, ∀η ∈ F (x) ∩ TC(x),

B(η) ≤ 0 ∀x ∈ D ∩K, ∀η ∈ G(x),

G(D ∩K) ⊂ C ∪D.

According to Remark 2.5, when O = R
n\Xu, CI of Rn\Xu with respect to O

reduces to forward pre-invariance of the set K := O. In the next statement, we

recall from [37, Theorem 1 and Proposition 2] sufficient conditions for forward

invariance using barrier functions.

Proposition C.3 (Forward invariance using barrier functions). Consider a hybrid

system H = (C, F,D,G). Let K be a closed set such that K ⊂ C ∪ D. The set

K is forward pre-invariant for H if there exists a C1 barrier function candidate B

with respect to (K,Rn\K) for H as in (C.3) such that the following hold:

〈∇B(x), η〉 ≤ 0 ∀x ∈ (U(∂K)\K) ∩ C, ∀η ∈ F (x) ∩ TC(x),

B(η) ≤ 0 ∀x ∈ D ∩K, ∀η ∈ G(x),

G(D ∩K) ⊂ C ∪D.

Furthermore, the set K is forward invariant for H if the following additional

conditions hold:
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• No maximal solution to H starting from K has a finite time escape within

C ∩K.

• Every maximal solution from (∂C ∩K)\D is nontrivial.

Remark C.4. One can guarantee that the solutions to H do not have a finite

escape time 2 inside the set K ∩ C when, for example, the set K ∩ C is compact

or when the flow map F has a global linear growth on K ∩ C. Furthermore,

according to [37, Proposition 3], the existence of a nontrivial solution starting from

each point in (K ∩ ∂C)\D can be proved by verifying the following infinitesimal

condition. F (x) ∩ TK∩C(x) 6= ∅ for all x ∈ U(xo) ∩ (K ∩ ∂C) and for all xo ∈

(K ∩ ∂C)\D.

C.2 Sufficient Conditions for pre-Eventual Con-

ditional Invariance

In the following, inspired by [32, Theorem 3.4], we propose sufficient conditions

for pre-eventual conditional invariance for hybrid systems.

Theorem C.5 (Pre-eventual Conditional Invariance). Consider a hybrid system

H = (C, F,D,G) and sets O ⊂ C ∪ D and A ⊂ R
n. The set A is pre-ECI with

respect to the set O for H if the following properties hold:

1) There exist a C1 function v : R
n → R and a locally Lipschitz function

fc : R → R such that

1a) 〈∇v(x), η〉 ≤ fc(v(x)) ∀x ∈ C, ∀η ∈ F (x) ∩ TC(x),

v(η) ≤ v(x) ∀x ∈ D, ∀η ∈ G(x);

2A solution has finite escape time inside a given set if the solution diverges while remaining
inside the set within a bounded (hybrid) time domain; see [27, Chapter 3].
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1b) there exists a constant r1 > 0 such that the solutions to ẏ = fc(y),

starting from v(O), converge to (−∞, r1) in finite time.3

2) There exist a C1 function w : Rn → R and a nondecreasing function4 fd :

R → R such that

2a) 〈∇w(x), η〉 ≤ 0 ∀x ∈ C, ∀η ∈ F (x) ∩ TC(x),

w(η) ≤ fd(w(x)) ∀x ∈ D, ∀η ∈ G(x);

2b) there exists a constant r2 > 0 such that the solutions to z+ = fd(z),

starting from w(O), converge to (−∞, r2) in finite time.

3) One of the following conditions holds:

3a) Each complete solution to H starting from O is eventually continuous

and, with r1 coming from item 1b),

S1 := {x ∈ C : v(x) < r1} ⊂ A. (C.4)

3b) Each complete solution to H starting from O is eventually discrete and,

with r2 coming from item 2b),

S2 := {x ∈ D : w(x) < r2} ⊂ A. (C.5)

3c) Each complete solution to H starting from O has a hybrid time domain

that is unbounded in both the t and the j direction and with r1 and r2

coming from item 1b) and item 2b) respectively, (C.4) and (C.5) hold.

3The solutions to ẏ = fc(y) from v(O) exist at least until they reach the set (−∞, r1).
4A scalar-valued function fd is said to be nondecreasing if for each x ≤ y, fd(x) ≤ fd(y).
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3d) With r1 and r2 coming from item 1b) and item 2b) respectively, (C.4)

and (C.5) hold, and G(S2) ∩ C ⊂ S1.

Proof. According to the definition of pre-ECI, we need to show that for each

complete solution φ to H starting from O, there exists (t⋆, j⋆) ∈ dom φ such that

φ(t, j) ∈ A for all (t, j) ∈ dom φ such that t + j ≥ t⋆ + j⋆. Consider a complete

solution φ to H starting from φ(0, 0) ∈ O. Let y be the maximal solution to

ẏ = fc(y) starting from y(0) = v(φ(0, 0)) ∈ v(O) and let z be the complete

solution to the system z+ = fd(z) starting from z(0) = w(φ(0, 0)) ∈ w(O).

First, if the solution φ initially flows, we use item 1a) to conclude, via the

comparison lemma in Lemma A.1, Lemma A.2, and Lemma A.3 that v(φ(t, 0)) ≤

y(t) for all t ∈ I0, where I0 := {t ∈ R≥0 : (t, 0) ∈ dom φ}. To show this, we

used the fact that5 I0 ⊂ dom y. Furthermore, if the solution φ jumps initially, we

conclude using item 1a) that v(φ(0, 1)) ≤ y(0). By extending this reasoning over

the domain of φ, we conclude that v(φ(t, j)) ≤ y(t) for all (t, j) ∈ dom φ.

On the other hand, using item 2a), we conclude that if φ initially jumps, then

w(φ(0, 1)) ≤ fd(w(φ(0, 0))) = fd(z(0)) = z(1). Otherwise, when the solution φ

initially flows, we conclude that w(φ(t, 0)) ≤ w(φ(0, 0)) = z(0) for all t ∈ I0.

Moreover, by extending this reasoning over the domain of φ and using the fact

that fd is nondecreasing, we conclude that w(φ(t, j)) ≤ z(j) for all (t, j) ∈ dom φ.

Indeed, it is easy to see that w(φ(t, j)) ≤ w(φ(t′, j)) for all (t, j) ∈ dom φ such

that t ≥ t′ and (t′, j) ∈ dom φ; namely, the bound of the function w does not

increase over the interval of flow of φ.

Since fd is nondecreasing, the existence of jz ∈ N such that z(jz) ∈ (−∞, r2)

5When y has a finite-escape time ty > 0, using item 1b), it follows that limtրty
y(t) = −∞.

Furthermore, since v(φ(t, 0)) ≤ y(t) for all t ∈ dom y ∩ I0, then there must exist tφ ∈ I0 with
tφ ≤ ty such that limtրtφ

v(φ(t, 0)) = −∞. Hence, φ should escape to −∞ no later than y.
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(coming from item 2b)) implies that z(j) ∈ (−∞, r2) for all j ≥ jz. Similarly,

from the existence of ty ∈ R≥0 such that y(ty) ∈ (−∞, r1) (in item 1b)), it follows

that y(t) ∈ (−∞, r1) for all t ≥ ty. Moreover, since the solution φ is complete,

({ty} × N) ∩ dom φ 6= ∅ or (R≥0 × {jz}) ∩ dom φ 6= ∅. Therefore, we conclude

that v(φ(t, j)) < r1 for all (t, j) ∈ dom φ such that t ≥ ty or w(φ(t, j)) < r2 for

all (t, j) ∈ dom φ such that j ≥ jz.

To complete the proof, we show that there exists (t⋆, j⋆) ∈ dom φ such that

φ(t, j) ∈ A for all (t, j) ∈ dom φ such that t+ j ≥ t⋆ + j⋆. To this end, we present

the following cases depending on items 3a)-3d).

a) When the solution φ is complete and eventually continuous, it follows that, for

some t̃ ∈ R≥0, φ(t, j) ∈ C for all (t, j) ∈ dom φ such that t ≥ t̃. Hence, we

have v(φ(t, j)) < r1 and φ(t, j) ∈ C for all (t, j) such that t ≥ t⋆ := max{ty, t̃};

and thus, S1 is nonempty. Then, if S1 is a subset of A, with j⋆ such that

(t⋆, j⋆) ∈ dom φ, we have φ(t, j) ∈ S1 ⊂ A for all (t, j) ∈ dom φ such that

t+ j ≥ t⋆ + j⋆.

b) When the solution φ is complete and eventually discrete, it follows that, for

some j̃ ∈ N, φ(t, j) ∈ D for all (t, j) ∈ dom φ such that j ≥ j̃. Hence, we have

w(φ(t, j)) < r2 and φ(t, j) ∈ D for all (t, j) such that j ≥ j⋆ := max{jz, j̃};

and thus, S2 is nonempty. Then, if S2 is a subset of A, with t⋆ such that

(t⋆, j⋆) ∈ dom φ, we have φ(t, j) ∈ S2 ⊂ A for all (t, j) ∈ dom φ such that

t+ j ≥ t⋆ + j⋆.

c) When the hybrid time domain of the solution φ achieves both an unbounded

amount of flows and an unbounded number of jumps, we conclude that ({ty} ×

N) ∩ dom φ 6= ∅; hence, v(φ(t, j)) < r1 for all t ≥ ty such that (t, j) ∈ dom φ.

Also, (R≥0 × {jz}) ∩ dom φ 6= ∅; hence, w(φ(t, j)) < r2 for all j ≥ jz such that
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(t, j) ∈ dom φ. As a result, S1 and S2 are nonempty. Then, if S1 and S2 are

subsets of A, with (t⋆, j⋆) ∈ dom φ such that t⋆ ≥ ty and j⋆ ≥ jz, we conclude

that φ(t, j) ∈ S1 ∪ S2 ⊂ A for all (t, j) ∈ dom φ such that t+ j ≥ t⋆ + j⋆.

Then, when one among items 3a)-3c) holds, according to the arguments in a)-

c), we have that every complete solution φ starting from O satisfies that there

exists (t⋆, j⋆) ∈ dom φ such that φ(t, j) ∈ A for all (t, j) ∈ dom φ such that

t+ j ≥ t⋆ + j⋆.

Next, suppose that item 3d) holds and the solution φ is genuinely Zeno, which

implies that φ does not satisfy items 3a)-3c). In this case, the solution φ jumps

infinitely many times on a bounded interval of ordinary time and it always flows

after a finite number of jumps. Hence, due to the fact φ is genuinely Zeno, there

exists (t̃, j̃) ∈ dom φ such that j̃ ≥ jz satisfying w(φ(t̃, j̃)) < r2 and φ(t̃, j̃) ∈ D,

which, in turn, implies φ(t̃, j̃) ∈ S2 ⊂ A. Note that w(φ(t, j)) < r2 for all (t, j) ∈

dom φ such that j ≥ j̃ ≥ jz. Moreover, using the fact that φ is genuinely Zeno,

φ jumps to a point in C; namely, there exists (t̃, j̃), (t̃, j̃ + 1) ∈ dom φ such that

φ(t̃, j̃+1) ∈ C. Now, according to item 3b), when φ(t̃, j̃+1) ∈ C, φ(t̃, j̃+1) ∈ S1.

Namely, the solution φ jumps to the set S1 ⊂ A at (t̃, j̃), which implies that

v(φ(t̃, j̃+ 1)) < r1. Now, we show that the solution φ, which jumps to S1 at (t̃, j̃),

satisfies v(φ(t, j̃ + 1)) < r1 for all t such that (t, j̃ + 1) ∈ dom φ. Proceeding

by contradiction, assume the existence of t′ > t̃ such that (t′, j̃ + 1) ∈ dom φ

(i.e., t′ is in the interval of flow) and v(φ(t′, j̃ + 1)) ≥ r1. Let y be a solution

to ẏ = fc(y) starting from v(φ(t̃, j̃ + 1)) < r1. Under item 1b), with a locally

Lipschitz function fc, the unique solution y has to remain in (−∞, r1) once it

reaches (−∞, r1); otherwise, it contradicts uniqueness of solutions. Moreover,

using the comparison lemma in Lemma A.1, Lemma A.2, and Lemma A.3, we
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have v(φ(t, j̃ + 1)) ≤ y(t) for all (t, j̃ + 1) ∈ dom φ. Hence, we conclude that

v(φ(t, j̃+ 1)) < r1 for all t > t̃ such that (t, j̃+ 1) ∈ dom φ, which contradicts the

existence of t′ > t̃ such that (t′, j̃+1) ∈ dom φ and v(φ(t′, j̃+1)) ≥ r1. Therefore,

we conclude that v(φ(t, j̃+ 1)) < r1 for all t such that (t, j̃ + 1) ∈ dom φ; namely,

v(φ(t, j̃ + 1)) < r1 for all t in the interval of flow. As a result, we conclude that

w(φ(t, j)) < r2 for all (t, j) ∈ dom φ such that j ≥ j̃ and v(φ(t, j)) < r1 for all

(t, j) ∈ dom φ such that t ≥ t̃; and thus, with (t⋆, j⋆) ∈ dom φ such that j⋆ ≥ j̃

and t⋆ ≥ t̃, we conclude that φ(t, j) ∈ S1 ∪S2 ⊂ A for all (t, j) ∈ dom φ such that

t+ j ≥ t⋆ + j⋆.

The following example illustrates Theorem C.5.

Example C.6. Consider a hybrid system H = (C, F,D,G) with the state x =

(x1, x2) ∈ R
2 and the data

F (x) :=




−x1 − x2

x1 − x2


 ∀x ∈ C := {x ∈ R

2 : x1 ≥ 0, x1 ≥ x2}

G(x) :=




−x2/
√

2

−x2/
√

2


 ∀x ∈ D := {x ∈ R

2 : x1 = 0, x2 ≤ 0}.

Consider the sets O and A given by O = [0, 1] × (−∞,−1] and A = R≥0 ×

[−1/2,+∞). Next, to conclude that the set A is pre-eventually conditionally

invariant with respect to the set O for H, we show that the conditions in The-

orem C.5 are satisfied. Consider the functions v(x) = |x|2 and fc(y) := −2y.

For all x ∈ C, 〈∇v(x), F (x)〉 = −2(x2
1 + x2

2) = fc(v(x)); and for all x ∈ D,

v(G(x)) = x2
2 = v(x). Thus, item 1a) holds. Furthermore, we notice that

v(O) = [1,+∞) and that, for r1 = 1/2, (C.4) holds. Finally, for the system

ẏ = fc(y) = −2y, it is easy to see that the solutions starting from v(O) = [1,+∞)
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reach the set (−∞, 1/2) in finite time; hence, item 1b) is satisfied. On the other

hand, consider the functions w(x) = −x2 and fd(z) := z/2 if z ∈ w(D) and

fd(z) = z otherwise. For all x ∈ C, 〈∇w(x), x1 − x2〉 = x2 − x1 ≤ 0; and for all

x ∈ D, w(G(x)) = x2/
√

2 ≤ fd(−x2) = −x2/2 since x2 ≤ 0. Hence, we conclude

that item 2a) holds. Moreover, item 2b) holds for r2 = 1/2 and the solutions

to z+ = fd(z) starting from w(O) = [1,+∞) reach (−∞, 1/2). Finally, for all

x ∈ G(S2) ∩ C = {x ∈ C : x1 <
1

2
√

2
}, v(x) < 1/2. Hence, G(S2) ∩C ⊂ S1, which

implies that item 3d) holds. △

Remark C.7. As illustrated in Example C.6, once we propose the candidate func-

tions v and w, we find the functions fc, fd and the constants r1, r2 such that the

conditions in Theorem C.5 hold. That is, for a particular expression of the data

of the hybrid system and the sets O and A, we can automate the process of gen-

erating the functions and parameters satisfying the conditions in Theorem C.5 as

in [58,59].

Note that, it is possible to conclude pre-eventual conditional invariance of A

with respect to O using only condition 1) (or only condition 2, respectively) in

Theorem C.5 provided that we have the knowledge that the solutions from O

can reach the set A only via flowing (or only jumping, respectively), as shown

in the following result. Indeed, in many applications of hybrid systems, the state

variable is composed of both continuous and discrete variables, see the thermostat

hybrid model in Example 4.13. Furthermore, when the sets O and A are defined

only in terms of the continuous state variables (respectively, only in terms of the

discrete state variables), it is possible to conclude that the solutions from O reach

the set A only by flowing (respectively, only by jumping).

Proposition C.8 (Pre-eventual Conditional Invariance via Flows). Consider a
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hybrid system H = (C, F,D,G) and sets O ⊂ C ∪D and A ⊂ R
n. Then, the set

A is pre-eventually conditionally invariant with respect to the set O for H if

1) there exist a C1 function v : Rn → R, a locally Lipschitz function fc : R → R,

and a constant r1 > 0 such that condition 1) in Theorem C.5 holds and, the

set S1 := {x ∈ C : v(x) < r1} ⊂ A; and

2) for each complete solution φ ∈ SH(O), the solution y to ẏ = fc(y) starting

from v(φ(0, 0)) satisfies y(t) ∈ (−∞, r1) for all t ≥ t⋆, for some nonnegative

t⋆ ≤ sup{t : (t, j) ∈ dom φ}; and

3) G(A) ∩D ⊂ A, or each solution from O is eventually continuous.

Proof. According to the definition of pre-eventual conditional invariance, we need

to show that, for each complete solution φ to H starting from O, there exists

(t⋆, j⋆) ∈ dom φ such that φ(t, j) ∈ A for all (t, j) ∈ dom φ such that t+j ≥ t⋆+j⋆.

Consider a complete solution φ to H starting from φ(0, 0) ∈ O. Let y be a maximal

solution to ẏ = fc(y) starting from y(0) = v(φ(0, 0)) ∈ v(O). First, if the solution

φ flows initially, using the comparison lemma in Lemma A.1, Lemma A.2, and

Lemma A.3 under item 1a) in Proposition C.5, we conclude that v(φ(t, 0)) ≤ y(t)

for all t ∈ I0, where I0 := {t ∈ R≥0 : (t, 0) ∈ dom φ}. Furthermore, if the

solution φ jumps initially, we conclude using item 1a) in Proposition C.5 that

v(φ(0, 1)) ≤ y(0). By extending the latter reasoning along the domain of φ,

we conclude that v(φ(t, j)) ≤ y(t) for all (t, j) ∈ dom φ. On the other hand,

by item 2), there exists t⋆ ∈ R≥0 such that t⋆ ≤ sup{t : (t, j) ∈ dom φ} and

y(t) ∈ (−∞, r1) for all t ≥ t⋆. This fact implies that ({t⋆} × N) ∩ dom φ 6= ∅;

hence, v(φ(t, j)) < r1 for all t ≥ t⋆ such that (t, j) ∈ dom φ and S1 is nonempty.

As a consequence, using the fact that S1 is a subset of A, we conclude that, for
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all (t, j) ∈ dom φ such that t ≥ t⋆, we have φ(t, j) ∈ A provided that φ(t, j) ∈ C

and that φ reaches A as it flows after t⋆. Next, under item 3), if φ is eventually

continuous, then φ remains in A by flowing; however, once φ reaches a point

x ∈ D ∩ A, it jumps. However, according to item 3), it remains in the set A after

the jump, which completes the proof.

Proposition C.9 (Pre-eventual Conditional Invariance via Jumps). Consider a

hybrid system H = (C, F,D,G) and sets O ⊂ C ∪D and A ⊂ R
n. Then, the set

A is pre-eventually conditionally invariant with respect to the set O for H if

1) there exist a C1 function w : Rn → R, a nondecreasing function fd : R → R,

and a constant r2 > 0 such that condition 2) in Theorem C.5 holds and, the

set S̃2 := {x ∈ C ∪D : w(x) < r2} ⊂ A; and

2) for each complete solution φ ∈ SH(O), the solution z to z+ = fd(z) starting

from w(φ(0, 0)) satisfies z(j)∈(−∞, r2) for all j ≥ j⋆, for some nonnegative

j⋆ ≤ sup{j : (t, j) ∈ dom φ}.

Proof. According to the definition of pre-eventual conditional invariance, we need

to show that, for each complete solution φ to H starting from O, there exists

(t⋆, j⋆) ∈ dom φ such that φ(t, j) ∈ A for all (t, j) ∈ dom φ such that t+j ≥ t⋆+j⋆.

Consider such a complete solution φ starting from φ(0, 0) ∈ O. Let z be a maximal

solution to z+ = fd(z) starting from z(0) = w(φ(0, 0)) ∈ w(O). First, if the

solution φ jumps initially, then we conclude that w(φ(0, 1)) ≤ z(1). Furthermore,

if the solution φ initially flows, we conclude using item 2a) in Proposition C.5

that w(φ(t, 0)) ≤ z(0) for all t ∈ I0, where I0 := {t ∈ R≥0 : (t, 0) ∈ dom φ}. By

extending the latter reasoning along the domain of φ and using the fact that fd is

nondecreasing, we conclude that w(φ(t, j)) ≤ z(j) for all (t, j) ∈ dom φ. On the
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other hand, by item 2), there exists j⋆ ∈ N such that j⋆ ≤ sup{j : (t, j) ∈ dom φ}

and z(j) ∈ (−∞, r2) for all j ≥ j⋆. This fact implies the existence of (t⋆, j⋆) ∈

(R≥0 × {j⋆}) ∩ dom φ 6= ∅ such that w(φ(t⋆, j⋆)) < r2. Hence, φ(t⋆, j⋆) ∈ S̃2

and w(φ(t, j)) < r2 for all (t, j) ∈ dom φ with j ≥ j⋆ and S̃2 is nonempty. As

a consequence, using the fact that S̃2 is a subset of A, we conclude that, for all

(t, j) ∈ dom φ such that j ≥ j⋆, it follows that φ(t, j) ∈ A, which completes the

proof.

Remark C.10. Note that condition 2) in Proposition C.8 holds for free for com-

plete solutions starting from O for which the domain is unbounded in t. Similarly,

condition 2) in Proposition C.9 holds for free for complete solutions starting from

O for which the domain is unbounded in j. Moreover, maximal solutions are

complete when the conditions in [20, Proposition 2.10 or Proposition 6.10] hold.

Remark C.11. In Theorem C.5, one could think of unifying conditions 1) and

2) as follows:

〈∇v(x), η〉 ≤ fc(v(x)) ∀η ∈ F (x) ∩ TC(x), ∀x ∈ C,

v(η) ≤ fd(v(x)) ∀η ∈ G(x), ∀x ∈ D,
(C.6)

where the functions fc and fd are defined in Theorem C.5. Furthermore, one could

think of concluding pre-eventual conditional invariance of A with respect to O by

showing that the set (−∞, r1] is pre-eventually conditionally invariant with respect

to v(O) for the reduced system given by

ẏ = fc(y) y ∈ v(C)

y+ = fd(y) y ∈ v(D).
(C.7)

Such a comparison-based reasoning is very useful to analyze purely continuous-
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time or purely discrete-time systems. In general, a key step for such a reasoning

to hold consists in showing that (C.6) and (C.7) imply that

v(φ(t, j)) ≤ y(t, j) ∀(t, j) ∈ dom φ. (C.8)

However, (C.8) does not necessarily hold under (C.6) and (C.7) due to the possible

mismatch in the instant of jumps between the solutions φ to H and y to (C.7).

It holds, however, if we replace the inequalities in (C.6) by equalities (the latter

is in general very restrictive). As a consequence, the comparison arguments, in

general, do not extend directly to the context of hybrid systems. Hence, it would

be interesting to investigate a general version of the comparison lemma for hybrid

systems as it would simplify considerably the conditions in Theorem C.5.

C.3 Sufficient Conditions for Pre-eventual Con-

ditional Invariance using Approximate Flow

Lengths

In this section, along the ideas discussed in Remark C.11 and inspired by the

work in [60] for hybrid observers, we propose a new set of sufficient conditions for

pre-eventual conditional invariance. Indeed, given two sets O, A ⊂ R
n, we assume

the existence of a set K ⊂ A that is forward pre-invariant for H. Furthermore, we

assume that we know approximately the length of the flow interval, between each

successive jumps, for all the solutions starting from O until they reach the set K.

Below, we use dom t φ (respectively, dom j φ) to denote the projection of dom φ

on the first (respectively, second) dimension, and we denote T (φ) = sup dom t φ

158



and J(φ) = sup dom j φ. By tj(φ), we denote the time stamp associated to the

jump j uniquely characterized by (tj(φ), j − 1) ∈ dom φ and (tj(φ), j) ∈ dom φ.

Definition C.12 (Approximate flow lengths). A closed set IO,K ⊂ R≥0 is said

to be the set of approximate flow lengths for the solutions to H starting from the

set O and remaining in R
n\K if, for each such a solution, we have

0 ≤ t− tj(φ) ≤ sup IO,K ∀(t, j) ∈ dom φ, (C.9a)

tj+1(φ) − tj(φ) ∈ IO,K ∀j ∈ N>0 if J(φ) = +∞, (C.9b)

or ∀j ∈ {1, . . . , J(φ) − 1} if J(φ) < +∞.

The set IO,K ⊂ R≥0 contains the possible lengths of the flow intervals between

successive jumps for the solutions starting from O and remaining in R
n\K. The

role of (C.9a) is to bound the length of the intervals of flow which are not covered

by (C.9b), namely possibly the first [0, t1(φ)] and the last dom t φ∩ [tJ(φ)(φ),+∞]

(when they are defined). The existence of a set IO,K ⊂ R≥0 is not a problem,

even when K = ∅, since it can always be given by IO,K = R≥0. However, it has

advantage when IO,K ⊂ R≥0 is selected as tight as possible, namely to have as

much information about the duration of flow between successive jumps as possible

so that we reduce the number of possible solutions.

Theorem C.13 (Pre-eventual Conditional Invariance under Approximate Flow

Lengths). Consider a hybrid system H = (C, F,D,G) and three sets O ⊂ C ∪D,

A ⊂ R
n, and K ⊂ A such that K is forward pre-invariant for H. Let the set

IO,K be as in Definition (C.12) and let τM := sup IO,K. Then, the set A is

pre-eventually conditionally invariant with respect to the set O for H if

1) there exist a C1 function v : Rn → R, a locally Lipschitz function fc : R → R,
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and a function fd : R → R which is nondecreasing such that

〈∇v(x), η〉 ≤ fc(v(x)) ∀x ∈ C\K, ∀η ∈ F (x) ∩ TC(x), (C.10a)

v(η) ≤ fd(v(x)) ∀x ∈ D\K, ∀η ∈ G(x); (C.10b)

2) there exists a constant r > 0 such that

S := {x ∈ C ∪D : v(x) < r} ⊂ A; (C.11)

3) Every solution to the reduced hybrid system Hr starting from v(O) × {0} con-

verge to (−∞, r] × R≥0 in finite time, where

Hr :







ẏ

τ̇


 =



fc(y)

1


 (y, τ) ∈ R × ([0, τM ] ∩ R≥0),



y+

τ+


 =



fd(y)

0


 (y, τ) ∈ R × IO,K.

(C.12)

Proof. According to the definition of pre-eventual conditional invariance, we need

to show that for each complete solution φ to H starting from O, there exists a

hybrid time (t⋆, j⋆) ∈ dom φ such that φ(t, j) ∈ A for all (t, j) ∈ dom φ such that

t + j ≥ t⋆ + j⋆. Without loss of generality, consider a complete solution φ to H

starting from φ(0, 0) ∈ O and remaining in the complement of K. Let (y, τ) be a

maximal solution pair to the system in (C.12) such that y(0, 0) = v(φ(0, 0)) ∈ R

and τ(0, 0) = 0. By definition of the set IO,K , we conclude the existence of a

solution (y, τ) to Hr such that dom (y, τ) = dom y = dom φ.

Now, we pick any j ∈ dom j φ and we let Ij := {t ∈ R≥0 : (t, j) ∈ dom φ}.
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Using Lemmas A.1, A.2, and A.3 under (C.10a), we conclude that v(φ(t, j)) ≤

y(t, j) for all t ∈ Ij.

Furthermore, for any j ∈ dom j φ such that (t, j − 1), (t, j) ∈ dom φ, using

(C.10b), we conclude that v(φ(t, j)) ≤ y(t, j) for all (t, j) ∈ dom φ. Since the

solution y starting from v(φ(0, 0)) converges to (−∞, r] in finite time, we conclude

that, there exists (t⋆, j⋆) ∈ dom φ, such that v(φ(t, j)) ∈ (−∞, r] for all (t, j) ∈

dom φ : t+j ≥ t⋆+j⋆. This implies, by item 2) and completeness of φ, the existence

of (t⋆, j⋆) ∈ dom φ such that φ(t, j) ∈ A for all (t, j) ∈ dom φ : t + j ≥ t⋆ + j⋆,

which completes the proof.

The following example illustrates Theorem C.13.

Example C.14 (Bouncing ball). Consider the hybrid system H = (C, F,D,G) in

Example 5.5 with γ = 1 and λ = 0.5. Let the sets O := {0}×[2, 3] and A := [0, 1]×

[−1, 1]. Furthermore, consider the set K := {x ∈ C ∪ D : 2x1 + x2
2 ≤ 1/2} ⊂ A.

Using Proposition C.2 with the barrier function candidate B(x) := 2x1 +x2
2 −1/2,

we conclude that the set K is forward pre-invariant for the considered hybrid

system. Next, for v(x) := 2x1 +x2
2, we conclude that for fc(y) = 0, (C.10a) holds.

Furthermore, for fd(y) = y/4, (C.10b) holds. Now, for r = 1/2, it is easy to see

that (C.11) holds. Finally, to conclude pre-eventual conditional invariance of A

with respect to O using Theorem C.13, it is enough to show that the set IO,K is

bounded. Indeed, using Proposition C.2 with the barrier function candidate given

by B1(x) := 2x1 + x2
2 − 9, we conclude that the zero sublevel set of B1, which

contains O, is forward pre-invariant. Hence, R(O) is bounded. Furthermore,

from every initial condition in R(O), the unique maximal solution reaches the set

D in finite time. Hence, the interval of flow of the solutions starting from O is

uniformly bounded. △
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C.4 Sufficient Conditions for Eventual Condi-

tional Invariance

Theorem C.15 (Eventual Conditional Invariance via Flows). Consider a hybrid

system H = (C, F,D,G) and two sets O ⊂ C ∪ D and A ⊂ R
n. Suppose that

there exist a C1 function v : Rn → R, a locally Lipschitz function fc : R → R,

and a constant r1 > 0 such that the conditions in Proposition C.8 hold. Then, the

set A is eventually conditionally invariant with respect to the set O for H if the

following additional condition holds:

• for each solution φ ∈ SH(O), there exists a solution y to ẏ = fc(y) starting from

v(φ(0, 0)) satisfying y(t) ∈ (−∞, r1) for all t ≥ t⋆ and for some nonnegative

t⋆ ≤ sup{t : (t, j) ∈ dom φ}.

Theorem C.16 (Eventual Conditional Invariance via Jumps). Consider a hybrid

system H = (C, F,D,G) and two sets O ⊂ C ∪ D and A ⊂ R
n. Suppose that

there exist a C1 function w : Rn → R, a nondecreasing function fd : R → R, and

a constant r2 > 0 such that the conditions in Proposition C.9 hold. Then, the

set A is eventually conditionally invariant with respect to the set O for H if the

following additional condition holds:

• for each solution φ ∈ SH(O), there exists a solution z to z+ = fd(z) starting

from w(φ(0, 0)) satisfying z(j)∈ (−∞, r2) for all j ≥ j⋆ and for some nonneg-

ative j⋆ ≤ sup{j : (t, j)∈dom φ}.

Proof. The proof is the same as in Proposition C.9.

Theorem C.17 (From pre to non-pre Eventual Conditional Invariance). Consider

a hybrid system H = (C, F,D,G). Consider two sets O ⊂ C ∪ D and A ⊂ R
n
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such that A is pre-eventually conditionally invariant with respect to O. Then, the

set A is eventually conditionally invariant with respect to the set O for H if the

following property holds:

(⋆) There exists a set S ⊂ C ∪ D ∪ A such that O ∪ A ⊂ S and S is forward

invariant for Hs = (Cs, Fs, Ds, Gs) in (4.10) with Q therein replaced by A.

Proof. When (⋆) holds, since the set A is pre-eventually conditionally invariant

with respect to the set O for H, to complete the proof, it remains only to show

that the solutions to H starting from O\A always reach the set A. Proceeding by

contradiction, assume the existence of a maximal solution φ to H starting from

O\A that never reaches the set A. We notice that each solution to H starting from

O\A is a solution to Hs provided that it does not reach the set A. Hence, since

the set S is forward invariant for Hs, we conclude that the solution φ is complete.

The aforementioned fact contradicts the fact that A is pre-eventually conditionally

invariant with respect to the set O for H, which completes the proof.

Example C.18. We reconsider the hybrid system in Example C.6. It is easy to

see that the set S := O ∪ A is forward invariant for Hw. Indeed, all the solutions

to Hw starting from the set O flow in the set O until they reach the set A. Since

from A, every solution is discrete, complete, and remains in A, S is forward

invariant. △
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Appendix D

Hybrid Controller for Grasping

D.1 Hybrid Controller in Local Coordinates

For easiness of the exposition, we first introduce the hybrid controller supervis-

ing the position and force control in specific coordinates, then change coordinates

to allow for arbitrary contact locations and force directions, and finally introduce

the complete hybrid controller along with its main properties.

In this section, we introduce a (logic-based) hybrid controller using measure-

ments of the contact force. With a specific coordinate system, the proposed

approach enables transitions between the position and force controllers. For sim-

plicity, we consider only one agent in local coordinates (as in [44]) but including

vertical motion. The state of an individual agent η := (η1, η2, η3) ∈ R
3 is repre-

sented with respect to the local frame where the constraints are imposed by the

object. The states η1, η2 and η3 are the current horizontal position, the current

horizontal velocity, and the current vertical position, respectively.
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D.1.1 Position Controller

A position controller κP is designed for controlling the horizontal and vertical

position of the agent. The horizontal position controller, denoted κh
P (η, xd

ℓ), is

composed of proportional/derivative control, and the vertical position controller,

denoted κv
P (η, yd

ℓ ), is given by proportional control. The position controllers κh
P

and κv
P stabilize the horizontal position and vertical position, respectively, and

are given by

κh
P (η, xd

ℓ) = kp(x
d
ℓ − η1) − kdη2 (D.1a)

κv
P (η, yd

ℓ ) = kp,y(yd
ℓ − η3). (D.1b)

The parameters xd
ℓ , y

d
ℓ ∈ R are the desired horizontal and vertical position when

using the position controllers. The parameters kp, kd ∈ R are the proportional

and derivative feedback gains of the horizontal position controller, and kp,y ∈ R

is the proportional feedback gain of the vertical position controller.

D.1.2 Force Controller

A force controller κF relies on the contact force. We assume that the mass

is unitary. Proportional/feedforward control is used for the force controller as

follows:

κF (η, fd
c ) = fc(η1, η2) + kf(fd

c − fc(η1, η2)) (D.2)

where

fc(η1, η2) =





kcη1 + bcη2 if η1 ≥ 0

0 if η1 < 0
. (D.3)
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The parameter fd
c is the desired set-point for the contact force fc(η1, η2). The

desired contact force fd
c satisfies 0 < fd

c < f̂c where f̂c is the maximum allowed

force. The parameter kf ∈ R is the proportional gain, and kc, bc ∈ (0,+∞) are

the elastic and the viscous parameters of the contact, respectively. We consider

the contact force due to the interaction between the robot and its environment

occurs along a normal direction. The work environment can be defined along the

horizontal direction, such as W = {η ∈ R
3 : η1 ≥ 0} with the surface S = {η ∈

R
3 : η1 = 0}.

D.1.3 Hybrid Controller Supervising κP and κF

Desired
Position

(xd
ℓ
, yd

ℓ
)

η1

η3
x∗

ℓ

η1 ≤ x∗
ℓ

η1 = 0

(a) Example of position control.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-6

-4

-2

0

2

4

6

Threshold Region

fc ≥ γ2fc ≤ γ1

η2

η1

lγ1
lγ2

Initial Position

Contact

(b) Example of switching between posi-
tion/force control.

Figure D.1: (a) When the vertical position η3 is controlled, the horizontal position
η1 is far enough from the surface of the work environment, η1 ≤ x∗

ℓ . (b) When
fc(η1, η2) ≥ γ2, the position controller is switched to the force controller. Two
boundary lines lγ1 , lγ2 correspond to threshold parameters γ1, γ2, respectively.

The main idea of the proposed approach is to stabilize the horizontal and ver-

tical position, and to regulate the contact force by switching between the position

and force control. The proposed control approach is implemented in a hybrid

controller Hc. At this point, the logic variable q ∈ Q := {−1, 0, 1} are added to

the state variable.
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The logic variable q is used to switch between the position and force controllers,

and the logic variable q makes the transitions between the horizontal and vertical

controllers. Specifically, the position controller is activated and the force controller

is deactivated when q is set to 0 or 1, whereas the position controller is deactivated

and the force controller is activated when q is set to −1. Additionally, q is set to

0 when the vertical position controller is applied, whereas q is set to 1 when the

horizontal position controller is applied.

Figure D.1 shows the basic concept of the proposed approach. As shown in

Figure D.1(a), when the agent is controlled vertically, the horizontal position η1

is far enough from the surface of the environment. In this way, when q= 0, the

horizontal position η1 is restricted as η1 ≤x∗
ℓ where x∗

ℓ ∈R<0 denotes the minimum

horizontal distance from the surface of the environment S = {η ∈ R
3 : η1 = 0}.

Note that xd
ℓ > x∗

ℓ . Moreover, we define the region of vertical position control

with the thresholds ε∈R>0. The vertical position controller can be applied (i.e.,

q= 0) when |η3 −yd
ℓ | ≥ ε and η1 ≤ x∗

ℓ , whereas horizontal position control can be

performed (i.e., q=1) when |η3−yd
ℓ |≤ε.

Furthermore, when the agent establishes a contact with the work environment,

the position controller is switched to the force controller according to the value

of the contact force fc relative to the hysteresis levels defined by the thresholds

γ1 and γ2: The conditions fc(η1, η2)≤γ1 and fc(η1, η2)≥γ2 are used to determine

which controller (κh
P or κF ) is activated. As shown in Figure D.1(b), the threshold

parameters γ1 and γ2 are used in the definition of the lines lγ1 and lγ2 as follows:

lγ1 := {(η1, η2) : η2 = −kc

bc
η1 + γ1

bc
} and lγ2 := {(η1, η2) : η2 = −kc

bc
η1 + γ2

bc
}.

While the horizontal position controller is applied (i.e., q= 1), the supervisor

switches the force controller on (i.e., q+ =−1) if fc(η1, η2)≥γ2. On the other hand,

if fc(η1, η2) ≤γ1 while the force controller is applied (i.e., q= −1), the supervisor
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η1

η2

lγ1
lγ2

C0

D0

(a) ∀η3 ∈ R,q = 1

η1

η2

lγ1
lγ2

D1
C1

(b) ∀η3 ∈ R, q = −1

η1

η2

x∗
ℓ

C2 for
|η3 − yd

ℓ
| ≥ ε

D2 for
|η3 − yd

ℓ
| ≤ ε

(c) q = 0, η1 ≤ x∗
ℓ

η1

η2

yd
ℓ

+ ε

yd
ℓ

− ε

C3

D3

(d) q = 1

Figure D.2: Flow and jump sets of the hybrid controller.

selects the horizontal position controller (i.e., q+ =1).

The dynamics of the hybrid controller Hc has the update law for the logic

variables q as follows.

Jumps:

• From horizontal position control to force control (i.e., q+ = −1): when q = 1

and fc(η1, η2) ≥ γ2, the logic variable q is mapped to −1.

• From force control to horizontal position control (i.e., q+ = 1): when q = −1

and fc(η1, η2) ≤ γ1, the logic variable q is mapped to 1.

• From vertical position control to horizontal position control (i.e., q+ = 1):

when q = 0 and |η3 − yd
ℓ | ≤ ε, the logic variable q is mapped to 1.

• From horizontal position control to vertical position control (i.e., q+ = 0):

when q = 1 and |η3 − yd
ℓ | ≥ ε, the logic variable q is mapped to 0.

Flows:

• q̇ = 0: when q = 1 and fc(η1, η2) ≤ γ2; or when q = −1 and fc(η1, η2) ≥ γ1;

or when q = 0 and |η3 − yd
ℓ | ≥ ε; or when q = 1 and |η3 − yd

ℓ | ≤ ε, the logic

variables remain constant.
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The output of the hybrid controller is given by

u := (ux, uy) (D.4a)

where

ux =





κh
P (η, xd

ℓ) if q = 1

κF (η, fd
c ) if q = −1

0 otherwise,

uy =





κv
P (η, yd

ℓ ) if q = 0

0 otherwise.

(D.4b)

The flow and jump sets, C and D with state

z := (η, q) ∈ X := R
3 ×Q

are described in Figure D.2. The hybrid controller Hc in the closed-loop system,

denoted by Hcl has continuous dynamics given by

η̇1 = η2

η̇2 = ux

η̇3 = uy

q̇ = 0





z ∈ C (D.5a)

where ux and uy are given in (D.4) and C := C0 ∪ C1 ∪ C2 ∪ C3 ⊂ X defines the
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flow set,

C0 := {z ∈ X : q = 1, fc(η1, η2) ≤ γ2}

C1 := {z ∈ X : q = −1, fc(η1, η2) ≥ γ1}

C2 := {z ∈ X : q = 0, η1 ≤ x∗
ℓ , |η3 − yd

ℓ | ≥ ε}

C3 := {z ∈ X : q = 1, |η3 − yd
ℓ | ≤ ε}.

(D.5b)

The closed-loop system Hcl has jump dynamics given by

ξ+
ℓ = ξℓ, q+ = −1 z ∈ D0

ξ+
ℓ = ξℓ, q+ = 1 z ∈ D1

ξ+
ℓ = ξℓ, q+ = 1 z ∈ D2

ξ+
ℓ = ξℓ, q+ = 0 z ∈ D3

(D.6a)

and the jump set is D := D0 ∪D1 ∪D2 ∪D3 ⊂ X,

D0 := {z ∈ X : q = 1, fc(η1, η2) ≥ γ2}

D1 := {z ∈ X : q = −1, fc(η1, η2) ≤ γ1}

D2 := {z ∈ X : q = 0, |η3 − yd
ℓ | ≤ ε}

D3 := {z ∈ X : q = 1, |η3 − yd
ℓ | ≥ ε}.

(D.6b)

With these definitions, the flow map and the jump map are defined as follows:

F (z) = [η̇ℓ ux uy 0]⊤ ∀z ∈ C (D.7)
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where ux and uy are given in (D.4); and the jump map is given by

G(z) =





G0(z) if z ∈ D0

G1(z) if z ∈ D1 ∪D2

G2(z) if z ∈ D3

∀z ∈ D (D.8a)

where

G0(z) = (η,−1) , G1(z) = (η, 1) , G2(z) = (η, 0) . (D.8b)

The resulting hybrid closed-loop system is given by

Hcl





ż = F (z) z ∈ C

z+ = G(z) z ∈ D.
(D.9)

Lemma D.1. Hcl satisfies the hybrid basic conditions, which are as follows:

A1) C and D are closed sets in X.

A2) F: X → X is continuous on C.

A3) G: X → X is an outer semicontinuous and locally bounded relative to D,

and D ⊂ domG.

Proof. Condition (A1) is satisfied since C and D are closed. The flow map F in

(D.7) is continuous on C, satisfying (A2). The jump map G in (D.8) is single

valued on D and therefore it satisfies (A3).

D.2 Stability of Hybrid Closed-loop System

In the following, the stability properties of the hybrid controller in the closed-

loop system Hcl are revealed by using Lyapunov functions. The position con-
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troller κP and the force controller κF are designed for given parameters kc, bc

of the work environment, desired contact force fd
c , and controller parameters

kh
p , k

h
d , k

v
p , kf , x

d
ℓ , γ1, γ2. Before the stability result for Hcl, we present a few tech-

nical lemmas.

Lemma D.2. (Horizontal Position Controller) The closed-loop system with the

horizontal position controller κh
P given by

η̇1 = η2, η̇2 = −kp η1 − kd η2 + kp x
d
ℓ (D.10)

has the equilibrium point (xd
ℓ , 0) globally asymptotically stable where xd

ℓ > 0 and

kp, kd > 0. Furthermore, a Lyapunov function certifying such property for system

(D.10) is given by

V1(η1, η2) = 1
2
a1 (η1 − xd

ℓ )2 + 1
2
b1 η

2
2 (D.11)

with a1, b1 satisfying a1

b1
= kp. Moreover, every solution to (D.10) starting from

(η0
1, η

0
2) ∈ R

2 reaches the set S1 := {(η1, η2) ∈ R
2 : η1 ≥ 0} in finite time. In

particular, for every initial condition (η0
1, η

0
2) ∈ Sc

1 := (R2 \ S1) ∩ {(η1, η2) ∈ R
2 :

η2 ≥ 0}, every solution t 7→ (η1(t), η2(t)) is such that η2(T ) > 0, where T > 0, is

the time to reach S1.

Proof. Note that the desired horizontal position xd
ℓ is the steady state of the

horizontal position. Let e :=



e1

e2


 =



η1 − xd

ℓ

η2


. A Lyapunov function V1 :
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R
2 → R≥0 be given by

V1(e) = e⊤ P1 e = 1
2
e⊤



a1 0

0 b1


 e

= 1
2
a1 e

2
1 + 1

2
b1 e

2
2

(D.12)

where a1, b1 > 0, and

f(e) :=




e2

−kp e1 − kd e2


 . (D.13)

Therefore, it follows that, if kp, kd > 0 and kp = a1

b1
,

〈∇V1(e), f(e)〉 = (a1 − b1 kp) e1 e2 − b1 kd e
2
2

= −e⊤




0 −a1 + b1 kp

0 b1 kd


 e

(D.14)

[44]. The equilibrium point (xd
ℓ , 0) is said to be stable for the closed-loop system

in (D.10). By Krasovskii-LaSalle’s invariance principle, trajectories that stay in

{(η1, η2) ∈ R
2 : η1 ≥ 0} converges to the equilibrium point. Furthermore, to show

that every solution starting from (η0
1, η

0
2) ∈ R

2 reaches the set S1 := {(η1, η2) ∈

R
2 : η1 ≥ 0} in finite time.

Lemma D.3. (Horizontal Position Controller) The closed-loop system with the

horizontal position controller κh
P given by

η̇1 = η2, η̇2 = −(kp + kc) η1 + (−kd − bc) η2 + kp x
d
ℓ (D.15)

has the equilibrium point (xP
ℓ , 0), xP

ℓ := kp

kp+kc
xd

ℓ globally asymptotically stable

where xd
ℓ > 0 and kp, kd > 0. Moreover, a Lyapunov function certifying such
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property for system (D.15) is given by

V2(η1, η2) = 1
2
a2 (η1 − xP

ℓ )2 + 1
2
b2 η

2
2 (D.16)

with a2, b2 satisfying a2

b2
= kp + kc. Moreover, every solution to (D.15) starting

from (η0
1, η

0
2) ∈ R

2 reaches the set S2 := {(η1, η2) ∈ R
2 : kcη1 + bcη2 ≥ γ2, η1 ≥ 0}

in finite time. In particular, for every initial condition (η0
1, η

0
2) ∈ Sc

2 := (R2 \S2)∩

{(η1, η2) ∈ R
2 : η2 ≥ 0}, every solution t 7→ (η1(t), η2(t)) is such that η2(T ) > 0,

where T > 0, is the time to reach S2.

Proof. Note that the steady state of the horizontal position is given by xP
ℓ :=

kp

kp+kc
xd

ℓ . Let ē :=



ē1

ē2


 =



η1 − xP

ℓ

η2


. A Lyapunov function V2 : R2 → R≥0 be

given by

V2(ē) = ē⊤ P2 ē =
1

2
ē⊤



a2 0

0 b2


 ē

= 1
2
a2 ē

2
1 + 1

2
b2 ē

2
2

(D.17)

where a2, b2 > 0, and

f(ē) :=




ē2

−(kp + kc) ē1 − (kd + bc) ē2


 . (D.18)
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It follows that, if kp, kd > 0 and a2

b2
= kp + kc,

〈∇V2(ē), f(ē)〉 = (a2 − b2 (kp + kc)) ē1 ē2 − b2 (kd + bc) ē
2
2

= −ē⊤




0 −a2 + b2 (kp + kc)

0 b2 (kd + bc)


 ē

(D.19)

[44]. The equilibrium point (xP
ℓ , 0) is said to be stable for the closed-loop system

in (D.15). By Krasovskii-LaSalle’s invariance principle, trajectories that stay in

{(η1, η2) ∈ R
2 : η1 ≥ 0} converges to the equilibrium point. Furthermore, to show

that every solution starting from (η0
1, η

0
2) ∈ R

2 reaches the set S2 := {(η1, η2) ∈

R
2 : kcη1 + bcη2 ≥ γ2, η1 ≥ 0} in finite time.

Lemma D.4. (Vertical Position Controller) The closed-loop system with the ver-

tical position controller κv
P given by

η̇3 = −kp,yη3 + kp,yy
d
ℓ (D.20)

has the equilibrium point yd
ℓ globally asymptotically stable where kp,y > 0. Fur-

thermore, a Lyapunov function certifying such property for system (D.20) is given

by

V3(η3) =
1

2
a3 (η3 − yd

ℓ )2 (D.21)

and a3 > 0.

Proof. Note that the desired vertical position yd
ℓ is the steady state of the vertical

position. Denote e3 := yℓ − yd
ℓ , and V3 : R → R≥0 be given by

V3(e3) =
1

2
a3 e

2
3 (D.22)
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where a3 > 0. The continuous dynamic of e3 is given by

ė3 = −kp,y e3 (D.23)

It follows that, if kp,y > 0,

〈∇V3(e3), ė3〉 = −kp,y a3 e
2
3. (D.24)

Therefore, the equilibrium point yd
ℓ is said to be asymptotically stable for the

closed-loop system in (D.20).

Lemma D.5. (Force Controller) The closed-loop system with the force controller

κF given by

η̇1 = η2, η̇2 = −kfkcη1 − kfbcη2 + kff
d
c (D.25)

has the equilibrium point (xF
ℓ , 0), xF

ℓ := fd
c

kc
globally asymptotically stable where

kc, bc > 0, kf ∈
(
0, −2c2kc+abkc+acbc

(bkc−cbc)2

)
. A Lyapunov function for certifying such

property for system (D.25) in coordinates eF :=



η1 − xF

ℓ

η2


 is given by

VF (eF ) = e⊤
FPFeF (D.26a)

where

PF :=



a c

c b


 = R



p1 0

0 p2


R

⊤, (D.26b)
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and p1, p2 > 0,

R :=




− sin β − cosβ

cosβ − sin β


 , β := arctan

(
−kc

bc

)
. (D.26c)

Proof. Note that the steady state of the horizontal position is given by xF
ℓ := fd

c

kc
.

Denote eF :=



eF 1

eF 2


 =



η1 − xF

ℓ

η2


 and p1, p2 > 0. The diagonal matrix PF

corresponds to the matrix Po rotated clockwise by β = arctan
(
−kc

bc

)
is given by

PF :=



a c

c b


 =




− sin β − cosβ

cosβ − sin β






p1 0

0 p2







− sin β cosβ

− cosβ − sin β


 ,

(D.27a)

where

a := p1 sin2 β + p2 cos2 β,

b := p1 cos2 β + p2 sin2 β,

c := (p2 − p1) sin β cosβ, p2 < p1.

(D.27b)

Note that β ∈ (−π
2
, 0). It follows that

ab− c2 > 0, b
c
> bc

kc
, a

c
> kc

bc
, (D.28)

and PF = P⊤
F > 0. Let VF : R2 → R≥0 be given by

VF (eF ) = e⊤
FPFeF = 1

2
e⊤

F



a c

c b


 eF

= 1
2
a e2

F 1 + 1
2
b e2

F 2 + c eF 1 eF 2

(D.29)
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and

f(eF ) :=




e2

−kf kc e1 − kf bc e2


 (D.30a)

where

kc, bc > 0, kf ∈
(
0, −2c2kc+abkc+acbc

(bkc−cbc)2

)
. (D.30b)

It follows that

〈∇VF (eF ), f(eF )〉 = −1
2
e⊤

FQF eF ,

QF =




2ckckf (bkc + cbc)kf − a

(bkc + cbc)kf − a 2(bbckf − c)


 .

(D.31)

We now check that QF is positive definite matrix. First, 2ckckf is positive since

c, kc, kf > 0. Then, note that the determinant of QF is given by

− (bkc − cbc)
2k2

f + (−4c2kc + 2abkc + 2acbc)kf − a2 (D.32)

and the condition for the roots of this quadratic expressions to be real is

(−4c2kc + 2bkca+ 2cbca)2 − 4a2(bkc − cbc)
2 ≥ 0 (D.33)

which holds true by a
c
> kc

bc
, then its two roots kf1, kf2 are real and distinct.

Furthermore, if b
c
> bc

kc
then the largest rule, say kf2 ∈ (0, kf), is positive where

kf = −2c2kc+abkc+acbc

(bkc−cbc)2 . Therefore, the equilibrium point (xF
ℓ , 0) is asymptotically

stable for the closed-loop system in (D.25) where QF > 0 such that kc, bc > 0, kf ∈
(
0, −2c2kc+abkc+acbc

(bkc−cbc)2

)
.

The following result characterizes the compact set of initial conditions from

178



where contact detection and contact force regulation are guaranteed, which are

“subsets” of the basin of attraction of the closed-loop system.

Theorem D.6. Denote A := {(xF
ℓ , 0, y

d
ℓ )}. Given parameters kc, bc ∈ (0,+∞) of

the work environment and desired contact force 0 < fd
c < f̂c, there exist

1) Compact sets K0, K1, K2 ⊂ R
3,

2) Parameters kp, kd, kf , γ1, γ2, x
d
ℓ of the hybrid controller such that A × {−1}

is locally asymptotically stable with basin of attraction containing ((K0 ×

{1}) ∪ (K1 × {0}) ∪ (K2 × {−1})) ∩ (C ∪D).

Remark D.7. The set of initial conditions K0 is such that, for every initial

condition η0 ∈ K0 and for given parameters of the horizontal position controller,

an agent can reach the surface of the work environment with a bounded value of the

horizontal velocity. The set of initial conditions K1 is such that, for every initial

condition η0 ∈ K1 and for given parameters of the vertical position controller, the

agent can approach the desired vertical position yd
ℓ ±ε. The set of initial conditions

K2 can be estimated with the maximum level set of LVF
(rmax) for η1 ≥ 0.

Proof. We construct the compact set of initial conditions K from the Lyapunov

functions in Lemmas D.2, D.3, D.4 and D.5. For every initial condition η0 ∈ K0 ∪

K1 and q0 ∈ Q, by Lemmas D.2, D.3, D.4 and D.5, and the controller logic, every

solution z to Hcl reaches the jump set D0 in finite time. Moreover, when a solution

reaches D0 at the hybrid time (t, j), a solution η(t, j) ∈ LVF
(rF ) which is the

maximum level set of the Lyapunov function VF . Since LVF
(rF )×{−1} ⊂ C1, the

flow set C1 is forward invariant from the jumps at D0. For every initial condition

η0 ∈ K2 and q0 ∈ Q, by definition of K2 and the control logic, η(t, j) ∈ LVF
(rF ).
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In addition, as every solution starting from K reaches the jump set D0 in

finite time and the flow set C1 is forward invariant from the jumps at D0, the

solution stays in C1 and converges to the equilibrium point. We can define the

Lyapunov function VF to show that the closed-loop system with the force controller

guarantees Lyapunov stability of A × {−1}. The force controller which is defined

as the system in (D.25) affects the states of horizontal position and velocity.

Therefore, the states η3 and q do not flow while the force controller is applied,

and (η3, q) is remained as it is initially. By Lemma D.5, the equilibrium point

(xF
ℓ , 0) is asymptotically stable for the closed-loop system in (D.25) provided that

QF > 0.

Lemma D.8. From every point in C ∪D, there exists a solution and every max-

imal solution to Hcl is complete and bounded.

Proof. The result follows from Proposition 6.10 in [39] using the following prop-

erties.

• For each point such that z ∈ D, the jump map satisfies G(z) ⊂ C ∪ D.

Therefore, (c) in Proposition 6.10 does not occur.

• Since z does not blow up in finite time, (b) in Proposition 6.10 does not

occur.

• It is impossible for solutions with initial conditions z(0, 0) ∈ C∪D to escape

C ∪D, all maximal solutions are complete and bounded.
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D.3 Hybrid Controller in Global Coordinates

As explained in Section D.1, in the local coordinate system, the position of

contact is defined as the origin and the direction of contact force is the horizontal

direction according to the horizontal axis. In this section, we present matrix

transformations to change the coordinates of the controller in Section D.1 so that

contact is allowed in arbitrary locations, which we refer to is global coordinates.

A general transformation involves both rotation and translation of the coor-

dinates; that is, the general transformation performs a rotation to make the axes

of the two coordinates parallel, and then translates them. This relationship is

described as

vL =R(∠vL) vG+vL/G (D.34)

where

vL/G =R(∠vL) (pG − pL) (D.35a)

R(∠vL)=




cos θ sin θ

− sin θ cos θ


 . (D.35b)

The subscripts L and G denote variables being in local coordinates and global

coordinates, respectively. The variables vL, vG ∈R
2 are unitary vectors, and θ is

the angle of vG to match vL direction. The vectors pL and pG denote the origin

positions in the local and global coordinate systems with a specific coordinates,

respectively.

The homogeneous transformation matrix combines both the rotation to global

coordinates and the translation of the origin of local coordinates with respect to

global coordinates. The vectors vG ∈R
2 and vL ∈R

2 are augmented by one and
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their dimensions of the relationship can be written in matrix form



vL

1


 = TL/G



vG

1


 (D.36a)

where

TL/G =



R(∠vL) vL/G

0 0 1


 =




cos θ sin θ vL/G,1

− sin θ cos θ vL/G,2

0 0 1




. (D.36b)

Now, we write the hybrid closed-loop system Hcl, which is in the local coor-

dinate system. For a single agent ξ ∈ R
3 in the global coordinates defined by

η ∈ R
3, which are related by

η = Φ(ξ) :=




cos θ ξ1 + sin θ ξ3 + vL/G,1

cos θ ξ2 + vL/G,1

− sin θ ξ1 + cos θ ξ3 + vL/G,2




. (D.37)

We consider N hybrid systems on the (x, y)-plane, where the agent i has state

ηi (in local coordinates) and ξi (in global coordinates). The output of the i-th

controller is given by

ui := (ux,i, uy,i) (D.38a)
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and

ux,i =





κh
P (Φ(ξi), x

d
ℓ,i) if qi = 1

κF (Φ(ξi), f
d
c,i) if qi = −1

0 otherwise,

uy,i =





κv
P (Φ(ξi), y

d
ℓ,i) if qi = 0

0 otherwise.

(D.38b)

The i-th hybrid controller leads to the closed-loop system Hi with state

zi :=(ξi, qi) ∈ X := R
3×Q

has continuous and discrete dynamics identical to the hybrid system defined in

(D.9), and leads to the hybrid closed-loop system in local coordinates described

as:

Hi
cl





żi = Fi(zi) zi ∈ Ci

z+
i = Gi(zi) zi ∈ Di

i ∈ {1, 2, . . ., N} (D.39)

where for each i, Fi and Gi are defined in (D.7) and (D.8), respectively; and Ci and

Di are given in (D.5b) and (D.6b), respectively. Moreover, the stability properties

as in Section D.2 hold for the i-th hybrid system Hi
cl. See [39] for more details.
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