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1.
INTRODUCTION

At the present time, a large number of computer programs exist which evaluate the
displacements and member forces within complex three-dimensional structures. After the
computer model and input data is prepared, the analysis process is completely automated.
Therefore, it is now possible for students, professional engineers, and professors to perform
structural analysis and design using computer programs without a complete knowledge of
the approximations which have been incorporated in the computer program. In addition,
many individuals do not assume the responsibility or have the ability to independently verify
the results produced by a structural analysis program.

The major reasons for the misuse of computer programs for structural analysis and design
is the lack of understanding of the engineering fundamental of equilibrium, force-
deformation requirements, and displacement compatibility equations. Another reason, which
contributes to the inappropriate use of computer programs, is that the traditional hand
calculation methods of structural analysis are not used within modern computer programs.
Therefore, many engineers use structural analysis programs as "black boxes" in which the
approximations used within the program are not appreciated. This is particularly true if a
program is used for three-dimensional dynamic response analysis.

One possible educational solution to this problem is to require students to write their own
programs for structural analysis which are based on the direct stiffness method and on
modern three-dimensional numerical methods of dynamic analysis. This would result in an
improvement in the students’ programming ability; however, this may be accomplished at the
expense of a basic understanding of structural behavior.

Since programming knowledge is not essential to the responsible use of a structural analysis
program, an alternative approach is to use a special language which was designed to
subdivide structural analysis into a sequence of logical steps. The use of such an approach
requires that the student understand basic structural theory and behavior without the need
to perform a large number of time-consuming hand calculations. This philosophy was the
motivation for the development of the CAL series of programs.

1.1
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1.1 PURPOSE OF PROGRAM

The basic purpose of the CAL language is to bridge the gap between traditional methods
of teaching structural analysis and the use of automated structural analysis programs. As
a result of using CAL it is hoped that engineers will understand the theory and
approximations which are used in modern structural analysis programs.

Since the FORTRAN program can be easily modified and new CAL commands added, the
program can be used as an effective research tool. New numerical algorithms for the static
or dynamic analysis of structures can be programmed and tested within a few hours.

CAL has been used to verify other programs for structural analysis. Simple static and
dynamic problems can easily be solved with CAL and their results compared with programs
which are being used for the first time.

It should be remembered, however, that the basic purpose of CAL is educational. No
attempt has been made to extend the capacity of the program by using sparse matrix
methods or to effectively use disk storage. Since CAL is designed for the solution of small
educational and research problems, under 100 degrees of freedom, it has limited values for
the solution of large practical structures. One of the many large capacity programs, with
graphics and design post processors, should be used for this class of problems.

1.2 DEVELOPMENT OF PROGRAM

The last release of the program was CAL-86. The present version of the program has
several additional commands and more examples. Also, the theoretical background of
several commands has been expanded. It is hoped that the ease of use of the program has
been improved.

The FORTRAN files of all programs are given in order for the user to verify the exact
numerical methods which are used within the program. The program is based on the use
of the CALSAP development system. It is hoped that students will study these listings and
learn to appreciate both the good and poor programming methods. However, the program
is protected by copyright laws; therefore, it cannot be resold, in whole or in part, and it
cannot be used for commercial purposes without the written permission of the author.

1.2



CAL-91 INTRODUCTION

The specific version of the FORTRAN source statements, which is given on the CAL
program disk, is for MS-DOS microcomputer systems and can be directly compiled with the
Microsoft FORTRAN Compiler Version 3.31. However, since the program is written in
standard FORTRAN 77 it can be easily modified for other compilers and made to operate
on other small micro or large mainframe computer systems.

1.3 REQUIRED USER BACKGROUND

Since the CAL program performs basic matrix operations it can be used in lower division
courses which use matrix methods. At the University of California at Berkeley it is used in
approximately five different courses on the static and dynamic analysis of structures at both
the graduate and undergraduate level. Therefore, it is a program which requires additional
theoretical information in order to solve structural problems. Chapter 6 contains a reprint
of a survey paper, written in 1977, which presents additional information on the Dynamic
Analysis Commands.

The CAL program, as presented in this manual, is to be used on personal computers which
use the DOS operating system. Appendix A contains a summary of the DOS operating
system. Students which require a summary of the most common DOS operations should
read this material.

A working knowledge of a standard text editor is required. The ShareWare editor EDED
is included on the CAL disk for individuals who do not have experience with their own
editor.

1.4 PROGRAM INSTALLATION

The CAL.EXE executable program is the only file which is required in order to execute all
CAL commands. It can be executed directly from the diskette or it can be copied to a
directory on the hard disk which is defined in the PATH command.

The DOS computer must have a minimum of 512 k of storage. A hard disk is not required.
The CAL program will run on computers without a floating point processor. However, it
will operate approximately five times faster, for large problems, if a floating point processor
exists. For both hardware configurations, all floating point calculations are carried out in
double-precision 64 bit accuracy.

1.3
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1.5 THE CAL COMMAND LANGUAGE

Data on a "command line" must be separated by commas, or, one or more blanks. A
typical CAL command line has the following form:

COMMAND M; M, -- A=aja,- B=? :(Comment)

Where "COMMAND" is a one to six character name of the CAL command
"M;" is a one to four character array name
"a;" is optional data for some commands

The notation "M +" indicates that a new array will be created by the operation. If the array
name for new data has previously been used the old array will be eliminated before the
operation is executed. The notation "M-" indicates that the array will be modified by the
CAL operation.

Typical data, "a;", to be used by the operation can be in either integer or floating point form.
In the case of a floating point number, it can have the form of arithmetic statements. For
example, 2.5+4*2-6/2 will be interpreted as ((2.5+4)*2-6)/2.

A "C" in column one of a command or data line indicates that the line will be a comment
line which is used to make the CAL input file more readable.

1.6 DATA PREPARATION

CAL is a computer program which is designed to interpret a sequence of commands which
are supplied by the user. The commands can be given directly in an "interactive mode" or
the program can read the commands from a "batch data file". Commands for matrix
analysis, direct stiffness structural analysis and dynamic response analysis are possible.

CAL commands and data can be entered interactively or supplied within a data input file
which is prepared by any file editor which produces a generic character file without "hidden"
characters. The ShareWare editor, EDED, can be used and is distributed with the CAL

program. The name of the CAL input data file must not have an extension.
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1.7 EXECUTION OF THE CAL PROGRAM

After the CAL-91 program is executed, the program asks the user for the "name" of the
input data file which contains the CAL batch command. The program will give the CAL-91>
prompt which indicates that any CAL command can be entered interactively. CAL
commands which are contained within the file are executed by the RUN command which is
entered interactively. The results of every CAL run are saved on the output file name
"name.OUT". If no file name is specified a default name of "I" is used and all interactive
commands are saved on the file .LOUT.

If a CAL run is terminated by an EXECUTION ERROR or the STOP command all arrays
which are within the computer storage are saved on the file "name.COR". The CAL
program can then be restarted, with the same problem "name", with the RESUME
command. The CAL LIST and PRINT commands can then be used interactively to examine
the data arrays contained within the computer storage.

After the CAL program is terminated the output file, name.OUT, can be printed with the
DOS PRINT command. Also, it can be displayed on the computer console with the DOS
TYPE command. In addition, it can be modified, dissected and selectively printed with the
same editor which was used to create the input data file.

1.5






2.
BASIC CAL COMMANDS

The group of CAL commands presented in this section controls the flow of execution of the
CAL commands. Also, it allows for input, output, duplication or generation of arrays within
the computer’s memory, RAM, or the transfer of arrays between RAM and low speed disk
storage. Note that the "+" sign after an array name indicates that the array is created by
the CAL command and the "-" sign after an array name indicates that the CAL command
modifies or deletes the data within the array.

RUN

The RUN command will terminate the interactive mode and the subsequent CAL command
will be read directly from the input batch file. This command can only be given in the
interactive mode.

RETURN

The RETURN command will terminate the execution of the batch input mode and return
the CAL program to the interactive mode. This command can only be given in the batch
input file mode.

HELP or H

If the HELP command is executed in the interactive mode a list of all possible CAL
commands will be displayed.

SAVE or STOP or S

The SAVE command will terminate the execution of the program and return control to the
computer’s Disk Operating System. All arrays which are contained in the computer’s
storage will be saved in the file "name.COR" where "name" is the problem (input file) name
which has been specified by the user.

2.1
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RESUME

The RESUME command reads all arrays from the file "name.COR" and allows the user to
continue to enter CAL interactive commands from the point the previous CAL execution
was terminated.

QUITor Q "
The CAL command QUIT causes the execution of CAL to be terminated. The incore data
base is not saved.

LIST or L
If the interactive LIST command is executed a list of the name and size of all arrays which
are contained in the computer storage is displayed.

LOAD M;+ R=? C=?

The LOAD command will create a matrix named "M;" with "R" rows and "C"columns. The
data must immediately follow the LOAD command. The data must be supplied one row per
line. The data is separated by commas, or, one or more blanks. A line of data may be
continued on the next line by the use of a "\" at the end of the line. If the data for a row
is greater than 160 characters the matrix must be loaded by the use of submatrix operations.
All input data should be checked with a PRINT command.

ZERO M;+ R=? C=? T=? D=?
The ZERO command will create a R x C matrix named M. If "T=?"is specified all terms
of the matrix will be set to "T". If the matrix is square the diagonal terms will be set to "D".

PRINTor P M,
The PRINT command will cause the matrix "M;" to be displayed on the terminal and written
to the "???2.0UT" print file, which can be printed by the DOS PRINT command.

DELETE or D M;-
The array named M; will be deleted and the storage within the computer will be compacted.

2.2
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MODIFY M;-
The MODIFY command can be used interactively to modify individual terms
in the matrix named M;.

DUP M; M,+
The DUP command forms a new matrix named M, in which all terms are equal to the terms
in matrix M;. '

WRITE M; and READ M,

The WRITE command can be used to save the array named M, as a binary disk file called
"name.M;. Therefore, M; must not have over a three character name. The read command
reads the array on the binary file named "name.M;" into RAM. Since files can be renamed
by the DOS command REN, data generated in one CAL problem can be used as input to
another CAL problem with a different "name".

LOOP endloop N=?

The LOOP command will cause the group of CAL commands in the input file before the
line which contains the one to six character name endloop to be executed "N" times. The
LOOP will be executed "N" times unless terminated by an IF operation. LOOP commands
cannot be nested. If more than one LOOP command is is in a data file each endloop
name must be different.

IFM; M,
If the absolute value of M;(1,1) is less than M,(1,1) the LOOP executed will be terminated.
This command should be placed immediately before the endloop line.

endloop
The user-selected name endloop must start in column one and is used to designate the last
command in the execution of a group of CAL commands by the LOOP command. The one

to six character endloop name cannot be the same name as one of the existing CAL
commands.

23






3.
STANDARD MATRIX OPERATION

COMMANDS

This group of CAL commands is intended to perform standard matrix operations. Note that
the TMULT command eliminates, for most problems, the need to perform a matrix
transpose. Also, it is always more efficient to solve a set of equations directly without using
matrix inversion and multiplication.

This operation replaces the matrix M; with M; + M,

SUB M;- M,
The SUB operation replaces the matrix M; with M; - M,

MULT M; M, M;+

The MULT command creates the matrix M; which is the product of the matrices M; and
M,. ( The number of numerical operations required for matrix multiplication is NxMxL;
where, M, isa N by M matrix and M, is a M by L matrix.)

TMULT M; M, M;
Same as the MULT command except that M, is stored in transposed form.

TRAN M; M,+
The TRAN command forms the matrix M, which is the transpose of the matrix M;.

SCALE M,;+ M,
The SCALE command multiplies each term in matrix M; by M,(1,1).

31
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SOLVE A- B- S=? EQ=?

The SOLVE command operates on the matrix equation AX = B where A is a symmetric
matrix and B is specified. The results X are stored in the same location as the B matrix.
The following options are possible:

S=0 The matrix A is triangularized and B is replaced by the solution matrix X.
S=1 The matrix A is triangularized only.

S=2 The matrix B is reduced only - A must have been previously triangularized.
S=3 The matrix B is replaced by the solution matrix X by backsubstitution only.

EQ= The number of equations to be reduced - to be used in substructure analysis.

Any nonsingular set of equations can be made symmetric if both sides of the equation are
multiplied by the transpose of A.

(The number of numerical operations required to triangularize the N x N matrix
Ais N36. The number of operations required for forward reduction is N2L/2 and for
backsubstitution is N2L/2 ; where, L is the number of columns in the matrix B.)

INVERT A-
The symmetric matrix A is replaced by its inverse.
(The number of numerical operations required to invert a symmetric matrix is N3/2)

DUPSM M; M,+ R=? C=? L=RL,CL
The command DUPSM creates a new matrix M, with "R" rows and "C" columns. The term
M,(1,1) is identical to the term M;(RL,CL).

STOSM M;- M, L=RL,CL
The command STOSM stores the submatrix M, in matrix M;. The term M,(1,1) is located
at row RL and column CL in matrix M;.

DUPDG M; M,+
The command DUPDG creates a row matrix M, from the diagonal terms of matrix M.

STODG M;- M,
The command STODG stores the row matrix M, on the diagonal of the matrix M;.

3.2
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EXAMPLE OF CAL COMMANDS

The set of equations shown below must be solved. Since the SOLVE command only solves
symmetrical systems we must use additional operations to make the system symmetrical.

0 3.4 -2.0||X1 3.0
4.0 -1.0 0.0 ||X2 = |-1.0
0.0 6.0 4.0 j[X3 4.0

An input file of the following form must be prepared:

C SOLUTION OF NONSYMMETRIC SET OF EQUATIONS

c

LOAD A R=3 =3

0] 3.4 2.0

4 -1.0 0

0 6 4

PRINT A

IOAD B R=3 C=1

3

-1

4

PRINT B

TMULT A A ATA

TMULT A B X

SOLVE ATA X

PRINT X : Print Results

MULT A X ERR

SUB ERR B

PRINT ERR : Each value should be very close to zero
STOP : Return to the DOS operating system

If the above data file is called "CALEX" it can be executed by giving the DOS command
CAL91. The CAL program will then ask the user for the "name" of the input file and the
user will respond by entering CALEX and a carriage return. The above data is then
executed by the user entering the CAL RUN command. The results will be on the output
file "CALEX.OUT" which can be transferred to the printer by the DOS PRINT operation.

The CAL program disk contains the file CALEX; therefore, the user can check the program
by executing the above data file.
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4.
DIRECT STIFFNESS COMMANDS

The direct stiffness operations allow for the automatic formulation of element stiffness
matrices, the direct addition of element stiffnesses to form the global stiffness matrix and the
calculation of member forces in a local member coordinate system. The first step in the
use of these commands is for the user to identify all displacement degrees of freedom at the
joints of the structural system. These displacements should be numbered U, U,, - - - -Uy.
The corresponding external joint loads will be Ry, R, - - - - Ry.  One equilibrium equation
must be written in the direction of each unknown displacement. The structural members
should also be numbered from 1 to M.

1.1 MATRIX FORMULATION OF THE
SLOPE-DEFLECTION METHOD

The classical slope-deflection method, for horizontal beams and vertical columns, is a well-
known approach for structural analysis. However, it is identical to the direct stiffness
method in which axial deformations are assumed to be zero. Therefore, it will be used to
illustrate the basic steps involved in the direct stiffness method.

R Vs
/
F v, ' 3 Vs 'F"V4
r-;.v4/F"v’ évz
G

Figure 4.1 POSITIVE DEFINITION OF FORCES AND DISPLACEMENTS
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For the sign convention shown in Figure 4.1 the classical slope-deflection equations can be

written as
6 (vy-v,
F, = —%{[4V1'+2V2+ (3L 4)]
EI 6 (vy-v,)
F, = —L-[2V1+4V2+ T ]
(F, + F,)
F, = -F, = o2

L

The relative displacement between the ends of the member, v - v4, has been written in
terms of the absolute global displacements. Now, these equations can be written, for a
typical member "M", as the following symmetric matrix equation:

F, ] 2 5 _E- [ v, ]

1 4 7 T 1

F, 2 4 &£ & |y
_ 4EI L L i1
|6 & 12 _12 '

Fy L L 12 12 V3

-6 _6 _12 12
| Fa |y L L 12 12|, "%l

Or symbolically, F, = K, v, ; where, K, is the 4 x 4 element stiffness matrix.

In order to illustrate the direct stiffness method we will consider the rigid frame example
structure shown in Figure 4.2. The first step required, in the analysis of a structure by the
slope defection method, is to select the independent displacement degrees of freedom.
Since axial deformations are set to zero all lateral displacements at a story level are the
same. Therefore, there are only two lateral displacements, u; and u,, and one vertical
displacement of the center column, u3. Since the base of the right column is pinned and can
rotate there are six rotational degrees of freedom, u, to ug. It is apparent that we can only
apply loads, R; to Ry, in the same directions as the displacements, u; to ug. For example,
load R, is the total lateral load on the three joints at the first story level of the structure.

4.2
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‘-13 BEAMS | =2000
u, 5 U,  COLUMNSI=800
/l/ 7 —  E =30,000 KSI
§-U4 1 Us 2
7‘4 u 6 U2 7 u2>
- Uu; |3 Us Us Us | 4
180" ! 180" A—
Us

Figure 4.2 DISPLACEMENT DEGREES OF FREEDOM FOR RIGID FRAME

The next step, after the degrees of freedom are identified, is to write one equilibrium
equation for each degree of freedom. For this structure, the nine equilibrium equations can
be written in the following matrix form:

R, F,1 [F 0.1 [O.] [O.1 [oO.] B

R, F, Fy Fy Fy 0. 0. -

R, 0. o| |o. 0. F, F, F,

R, F, 0. 0. 0. F, 0. 0.

Re|=| O_|+|F | +|O_|+|O0O_[+]|F, [+ O_ |+ O_ (4.2)
R, o.| |o. 0. F, 0. 0. 0.

R, F, (V8 F, 0._ 0_ F, 0.

R, 0. F, 0. 0. 0. F, F

Ry | o f [o ] [o.], [m) [o-) o) |®]
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From matrix Equation (4.2), we can also create a table indicating what member forces
contribute to each of the nine global equilibrium equations.

Table 4.1 Member FORCE Contributions to GLOBAL EQUILIBRIUM EQUATIONS

Member 1 2 3 4 5 6 7
F, 4 5 7 9 4 7 8
F, 7 8 6 5 8 9
Fj3 1 1 2 2 3
F, 2 2 3 3

Equation (4.2) is nothing more than a simple statement, in matrix form, that the external
applied loads equals the sum of the forces acting at the ends of the seven elements. It
clearly represents the summary of nine different free body diagrams. It is suggested that the
student draw each of these diagrams in order to understand this simple, but extremely
important, force equilibrium statement. For example, R, = F, .+ F,+Fy,+F;, .

These nine equilibrium equations can be directly expressed in terms of joint displacements
by the substitution of Equation (4.1) for all seven members. Therefore, the force-
displacement relationship for each member is satisfied.

The final step involves the use of the joint displacement compatibility condition. The
displacements at the ends of all members connected to a joint must have the same global
displacements. For this example, Table 4.2 defines the relationship between the four
member displacements for each member and the nine global joint displacement numbers.

Table 4.2 Member DISPLACEMENTS Compatible with GLOBAL DISPLACEMENTS

Member 1 2 3 4 S 6 7

vi 4 5 7 9 4 7 8
vy 7 8 6 5 8 9
\2) 1 1 2 2 3
\/ 2 2 3 3
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It is apparent that the integer arrays, given in Tables 4.1 and 4.2, are identical. The blank
positions are reaction points and have zero displacements. The equilibrium equations can
be written in the following form:

R UK+ +--mmsKilu = ¥ Ky u = Kyu “3)

Each element stiffness can be expanded to a 9 x 9 matrix, K , and the total stiffness
matrix, K, , can be formed by direct matrix addition. Or, the total stiffness matrix can be
formed directly. This would involve the addition of each term in the 4 x 4 element stiffness
matrix, K, , into the correct location in the 9 x 9 total stiffness matrix, K, . The
procedure is time-consuming, repetitive, and prone to error if done by hand calculations.
For this reason special commands have been added to the CAL program to perform these
direct additions of stiffness operations. The ADDK command adds the rows in the element
stiffness to the correct rows in the equilibrium equations, Table 4.1, and to the appropriate
columns, Table 4.2.

4.2 SUMMARY OF THE DIRECT STIFFNESS COMMANDS

SLOPE KM E=? I=? L=?

The slope command forms the 4 x 4 member stiffness matrix named KM for a beam or a
column. Where "E" equals the modulus of elasticity, "I" equals the moment of inertia and
"L" equals the length of the member.

LOADI M; R=? C=?
The LOADI command allows an integer array named M1 to be loaded which has "R" rows
and "C" columns. The integer array given in Table 4.1 or 4.2 can be loaded with this CAL

command. The array loaded by the LOADI command can be checked by the CAL PRINT
command.

ADDK K KM ID N=?

The element stiffness matrix named "KM" is added to the total stiffness matrix named "K".
The row and column numbers where the terms are to be added are obtained from the "N"
column of the integer array loaded by the LOADI command. The ADDK command is used
for each member to add the element stiffness matrices to the total (global) stiffness matrix.

4.5
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After the joint loads are defined, the joint equilibrium equations are solved for joint
displacements by the SOLVE command. The use of the MEMFRC command for each
member allows member forces to be calculated.

MEMFRC T U ID F+ N=?

The member forces are evaluated by the multiplication of the matrix named "T" by the joint
displacement matrix named "U" and the results are stored in a matrix named "F". The joint
displacements which are to be used in multiplication are obtained from the "N" column of
the integer array named "ID". If "T" is the element stiffness matrix the member forces are
given according to the global sign convention. If "T" is a special member force-displacement
transformation matrix the member forces will be given in a local member coordinate system.

4.3 EXAMPLE OF SLOPE-DEFLECTION ANALYSIS

A complete analysis of the structure shown in Figure 4.1 will now be given. In order to
illustrate that the properties of the stiffness matrix are not a function of the loading on the
structure let us use the following two different lateral load conditions in the same analysis:

{0 20 0 0 0 O O 0 O

RT =
20 -10 0 0 O O O o0 O

The CAL input data file is shown in Table 4.3 and is on the CAL program disk under the
name SLOPEX. It is suggested that the student run this example problem and PRINT the
output file named "SLOPEX.OUT". Shear and bending moment diagrams should be plotted
and the overall static of both load conditions should be checked.

Since this problem could have been solved by the traditional slope-deflection method it is
extremely important that each step of the direct stiffness method, using matrix notation and

the CAL program, be completely understood before other types of elements are used.

Some important points to remember when using the direct stiffness method are:

1. The positive direction of forces and displacements for both members and joints must
be the same.
2. The basic equations which are written and solved are simple equilibrium equations

in which the external loads are set equal to the sum of the forces acting ot the ends

4.6
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of the elements.

3. The integer "ID" array represents a summary of the equilibrium equations as well as
a summary of joint compatibility conditions.

4. Matrix notation and the CAL ADDK and MEMFRC commands ares simple
operations which minimize bookkeeping functions.

Table 4.3 CAL INPUT DATA FILE FOR SLOPE-DEFLECTION EXAMPLE

C SLOPE-DEFLECTION ANALYSIS EXAMPLE

[

SLOPE KCU L=100 1=800 E=30000 : FORM STIFFNESS FOR MEMBERS 1 AND 2
SLOPE KCL L=120 1=80 E=30000 : FORM STIFFNESS FOR MEMBERS 3 AND &
SLOPE KB L=180 1=2000 E=30000 : FORM STIFFNESS FOR MEMBER 5, 6 AND 7

LOADI ID R=4 C=7 : LOAD INTEGER (EQILIBRIUM) ARRAY
4 5 7 9 4& 7 8

7 8 0 6 5 8 9

1 1 2 2 0 0 3

2 2 0 0 3 3 o

PRINT ID CHECK INPUT DATA

Z2ERO KT R=9 C=9
ADDK KT KCU ID
ADDK KT KCU 1D
ADDK KT KCL 1D
ADDK KT KCL ID
ADDK KT KB 1D
ADDK KT KB ID
ADDK KT KB ID
LOAD R R=9 C=2

START WITH ZERO TOTAL STIFFNESS MATRIX
ADD MEMBER 1 STIFFNESS TO TOTAL STIFFNESS
ADD MEMBER 2 STIFFNESS TO TOTAL STIFFNESS
ADD MEMBER 3 STIFFNESS TO TOTAL STIFFNESS
ADD MEMBER 4 STIFFNESS TO TOTAL STIFFNESS
ADD MEMBER 5 STIFFNESS TO TOTAL STIFFNESS
ADD MEMBER 6 STIFFNESS TO TOTAL STIFFNESS
ADD MEMBER 7 STIFFNESS TO TOTAL STIFFNESS
LOAD TWO LOAD CONDITIONS

ZZZZZTXTXZT
wonownonnn
NOWUVMESHWN -

se o0 se es us se e se ee e

10 10

20 -10

0 o

0 o

0 o

0 o

0 o

0 o

0o o

PR : CHECK LOAD DATA

SOLVE KT R : SOLVE FOR GLOBAL DISPLACEMENTS

PR : PRINT DISPLACEMENTS

MEMFRC KCU R ID F N=1 : CALCULATE AND PRINT MEMBER 1 FORCES
PF

MEMFRC KCU R ID F N=2 : CALCULATE AND PRINT MEMBER 2 FORCES
PF

MEMFRC KCL R ID F N=3 : CALCULATE AND PRINT MEMBER 3 FORCES
PF

MEMFRC KCL R ID F N=4 : CALCULATE AND PRINT MEMBER &4 FORCES
PF

MEMFRC KB R ID F N=5 : CALCULATE AND PRINT MEMBER 5 FORCES
PF

MEMFRC KB R ID F N=6 : CALCULATE AND PRINT MEMBER 6 FORCES
PF

MEMFRC KB R ID F N=7 : CALCULATE AND PRINT MEMBER 7 FORCES
PF

STOP : RETURN TO DOS OPERATING SYSTEM

4.7
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44 TWO-DIMENSIONAL FRAME ANALYSIS
WITH AXTAL DEFORMATIONS

FRAME KM TM [K;] I=? A=? E=? X=Xi,Xj Y=Yi,Yj [P=?]

The FRAME command forms the 6 x 6 element stiffness matrix named "KM" and a 4
x 6 force-displacement matrix named "TM" for a general two-dimensional bending
member with axial deformations included in the formulation. The properties of the
member are given as:

I = the Moment of Inertia of the member,
A = the Axial Area of the member, and
E = the Modulus of Elasticity of the member.

The coordinates of the "i" and "j" ends of the member are defined by X, Y; and Xj,Yj
respectively. Note that the user is responsible for the definition of the "i" and "j" ends of the
member. If P is specified the 6 x 6 geometric stiffness matrix K¢ is formed.

The element stiffness matrix, "KM", is formed with respect to the positive definition of
global forces and displacements as shown below.

Figure 4.3 POSITIVE DEFINITION OF FORCES AND DISPLACEMENTS

4.8
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The member forces, with respect to the member’s local coordinate system, can be evaluated
by the use of the MEMFRC operation which multiplies the matrix "TM" by the joint
displacements. The positive definition of the member forces in the local coordinate system
is shown below. The MEMFRC command will evaluate the local member forces in the
order P, - - P,. |

Y
}

Figure 4.4 POSITIVE DEFINITION OF OUTPUT FORCES

It should be noted that the shear force P, is not an independent force. From statics it is
Py=(P +P)L

It is calculated and printed by the program to eliminate this simple hand calculation.

4.9
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4.5 THREE-DIMENSIONAL MEMBERS

The three-dimensional CAL commands TRUSS and FRAMES illustrate how structural
analysis can be further automated. Both of these reference a node coordinate array, Nx3
in size, named "XYZ" which contain the node point coordinates; therefore, only the node
point numbers need be used.

TRUSS KM T A=? E=? N=IJ

The TRUSS command forms the 6 x 6 element stiffness matrix named "KM" and a 1 x
6 force-displacement matrix named "TM" for a general three-dimensional member with
axial deformations only included in the formulation. The Axial Area of the member is "A".
The Modulus of Elasticity of the member is "E".

Node numbers I and J refer to the row numbers in the "XYZ" array. The element stiffness
matrix, "KM", is formed with respect to the positive definition of global forces and
displacements as shown below.

Z

4

o'l

/
/

X

Figure 4.5 POSITIVE DEFINITION OF TRUSS FORCES AND DISPLACEMENTS

The member axial force can be evaluated by the use of the MEMFRC operation which

multiplies the matrix "TM" by the joint displacements. A positive axial force indicates
tension.

4.10
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FRAME3 KM TM II=I3l,, A=? JJ=? E=? G=? N=LJ P=P,P,

The FRAMES3 command forms the 12 x 12 element stiffness matrix named "KM" and an
8 x 12 force-displacement matrix named "TM" for a general three-dimensional

member with axial, bending and torsional deformations included in the formulation. The
properties of the member are given as

I33 = the Moment of Inertia about the 3-axis

I,, = the Moment of Inertia about the 2-axis

JJ = the Torsional Moment of Inertia about the 1-axis
A = the Axial Area of the member

G = the Shear Modulus, and

E = the Modulus of Elasticity of the member.

The coordinates of joint number 1, J, P; and P, must have been previously loaded in an
array named "XYZ".

VIEW DIRECTION
(1-3 PLANE)

// USER DEFINED
X

Figure 4.6 TYPICAL THREE DIMENSIONAL FRAME ELEMENT
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The element stiffness matrix, "KM", is formed with respect to the positive definition of
global forces and displacements as shown below.

Figure 4.6 POSITIVE DEFINITION OF FORCES AND DISPLACEMENTS

The member forces, with respect to the member’s local coordinate system, can be evaluated
by the use of the MEMFRC operation which multiplies the matrix "TM" by the joint
displacements. The positive definition of the member forces in the local coordinate system
is shown below. The MEMFRC command will evaluate the local member forces in the
order P; - - Pg.

/F

R

Figure 4.8 POSITIVE FORCES IN LOCAL 1-2-3 SYSTEM
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The section properties I,, and I35 of a three-dimensional frame member must be specified
with respect to a 1-2-3 local member coordinate system. In addition, member forces,
which are produced by the computer programs, are defined in reference to this local right-
hand coordinate system. Therefore, it is the user’s responsibility to define the member 1-2-3
system in reference to the global x-y-z system.

The positive 1-axis, V; vector, is defined by a line along the axis of the member from node
point "I'" to node point "J".

The 2 and 3-axes can be specified, with the P=P;,P, option, by any one of the following
three methods:

METHOD 1 - GLOBAL PLANES ONLY - P=2.0

xy plane P=1,0 3-axisis the Z-axis and V, = V;xV,
zx plane P=2,0 3-axisis the Y-axis and V, = V3xV,
yz plane P=3,0  3-axisis the X-axis and V, = V3xV;

METHOD 2 - SPECIFICATION OF "V, VECTOR - P=P;.P,

The coordinates of node numbers P; and P, are specified by the user in the joint
coordinate information. The vector Vp is normal to the 2-axis and is defined by the line
from node point P; to node point P,. The 2 and 3-axes are then calculated as follows:

V2=Vval and V3=VIXV2

Node points P! and P, may be "dummy nodes" which are not connected to members.

METHOD 3 - SPECIFICATION OF "K" NODE - P=0K

The Vi vector is defined by the line from node "I" to node "K". The 3 and 2-axes are then
calculated as follows:

V3 =V1XVK and V2= V3XV1

4.13
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4.6 TWO DIMENSIONAL FRAME EXAMPLE

The direct stiffness method is very simple, compared to the slope-deflection method of
analysis, if axial deformations in two dimensional frame members are included. Three
displacement degrees of freedom (one rotation, one horizontal displacements and one
vertical displacement) exist at all rigid joints. Also, all members have six global forces and
six global displacements has shown in Figure 4.3 and there is no difference between beams
and columns. For example, let use consider the frame shown below.

MEMBER PROPERTIES

300"

5k e
Members 1 to 4 —
I = 1000 in® i 5 ,
A = 20 in2 § 1
E = 30,000 ksi 10k

— 1

6
Members 5 and 6 3 3 4
I = 2000 in* T
A = 30 in? T
E = 30,000 ksi 400" |
o

Figure 4.9 Two Dimensional Frame Example

The pin at the right end of the top beam indicates that the ends of both members 2 and 5
can rotate independent; therefore, two rotations must exist at this point. There are 15
degrees of freedom for this structure which are shown in Figure 4.10. The user is
responsible for numbering these displacements. The numerical ordering of the
displacements is completely arbitrary.

The summary of the member force contributions to the equilibrium equations, for the
numbering system shown, is given in Table 4.4. Note that the user must designate what end
of member is joint "I" and what end is joint "J"; since, the first three forces of the element
stiffness matrix are associated with joint "I" (see Figure 4.3). The student should solve this
problem with different numbering systems in order to illustrate that the equilibrium
equations can be written in any order.
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10
8
1 L 1-J 24| 12
V 5 -/,
HL -
-— 7 s 9
13 4 1-J 5 J4
- 6
2|3 \4
6 15
ZTTT77777

Figure 4.10 User Define Displacement Degrees of Freedom

The CAL input data file for this example, as shown in Table 4.5, is named FRAMEX and
is on the CAL program. The student should insert additional print statements into the file
to verify and understand the direct stiffness commands. Also, the order of some of the CAL
commands and the names of the arrays are arbitrary. It is the responsibility of the student
to completely understand the procedure and not blindly copy the same approach which is
given in the example.

Table 4.4 Contribution of Member Forces to Equilibrium Equations

MEMBER NUMBER

Member

FORCE 1 2 3 4 5 6
F, 13 14 0 15 11 13
F, 7 9 0 0 8 7
F3 4 5 0 6 1 4
F, 11 12 13 14 12 14
Fg 8 10 7 9 10 9
Fg 1 3 4 S 2 5
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Figure 4.5 CAL INPUT DATA FILE - 2D EXAMPLE FRAME

C EXAMPLE OF TWO-D FRAME ELEMENT

C ENTER LOCATION ARRAY
LOADI ID R=6 C=6
13 14 0 15 11 13
7 9 0 o0 8 7
4 5 0 6 1 4
11 12 13 14 12 14
8 10 7 9 10 9
1 3 4 5 2 5
C FORM STIFFNESS MATRIX

ZERO K R=15 C=15

FRAME K1 T1 X=0,0 ¥=150,300 1=1000 A=20 E=30000
FRAME K2 T2 X=350,300 Y=150,300
FRAME K3 T3 X=0,0 Y=0,150
FRAME K4 T4 X=400,350 Y=0,150
FRAME K5 T5 X=0,300 Y=300,300
FRAME K6 T6 Xx=0,350 Y=150,150
ADDK K K1 ID N=1

ADDK K K2 ID N=2

ADDK K K3 ID N=3

ADDK K K& ID N=4

ADDK K K5 ID N=5

ADDK K K6 ID N=6

C ENTER JOINT LOADS

LOAD RT R=1 C=15
0000000000501000
PRINT RT

TRAN RT R

C SOLVE FOR DISPLACEMENTS

DUP R U

SOLVE K U

PU

C EVALUATE ME
MEMFRC T1 U I
MEMFRC T2 U 1
MEMFRC T3 U I
MEMFRC T4 U I
MEMFRC T5 U I
MEMFRC T6 U I
P F1

P F2

P F3

P F4

P F5

P F6
RETURN

MBER FORCES
D F1 N=1
D F2 N=2
D F3 N=3
D F&4 N=4
D F5 N=5
D F6 N=6
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S.
COMMANDS FOR DYNAMIC ANALYSIS

In this section several commands are presented which allow CAL to perform linear dynamic
analysis of small structural systems. With the aid of other CAL commands it is possible to
solve the following types of dynamic problems:

A Evaluation of free-vibration mode shapes and frequencies.

B. Automatic generation of Ritz vectors to be used in a mode superposition analysis or
response spectra analysis.

C. Mode superposition analysis due to arbitrary loading.
D. Step-by-step analysis of structural systems with arbitrary viscous damping.
E. Dynamic analysis in the frequency domain.

All commands assume that the mass and stiffness matrices have been calculated by other
CAL commands. The PLOT command can be used to produce printer plots of results.
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5.1 EVALUATION OF MODE SHAPES AND FREQUENCIES
EIGEN K- V+ M-

This command solves the following eigenvalue problem for the mode shapes and
frequencies:

KV = MVe
Where "K" is the name of the N x N stiffness matrix K. The command is restricted to a
diagonal mass matrix; therefore, the array named "M" must be given as a row or column
array of the diagonal terms of the N x N mass matrix M.

The NxN matrix V, which contains all the eigenvectors (mode shapes) stored columnwise,
is named "V" and is normalized in order that VIM V = L.

The N x N matrix e is a diagonal matrix of eigenvalues w? (frequencies w; are in radians
per sec.z). The EIGEN command stores the eigenvalues e; in place of the mass terms M;
in the array named "M".

The program uses the standard Jacobi method; therefore, both K and M must be symmetric
and positive definite matrices.

JACOBI K- V+ M- E+

This command solves the following eigenvalue problem for the mode shapes and
frequencies:

KV = MVe
Where "K" is the name of the N x N stiffness matrix K and "M" is the name of the N x
N mass matrix. The N x N matrix V, which contains all eigenvectors (mode shapes) stored
columnwise, is named "V" and is normalized in order that VMV = L

The N x N matrix e is a diagonal matrix of eigenvalues wiz (frequencies w; are in radians
per sec.z). The JACOBI command stores the eigenvalues €; as a N x 1 column matrix
named "E". The program uses a modified Jacobi method where both K and M must be
symmetric and positive definite matrices.
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SQREL M1

The SOREL command replaces each term in matrix M1 with the square root of the term.
INVEL M1

The INVEL command replaces each term in matrix M1 with the inverse of the term.
RITZ K- M F- V+ NV=? S§=?

Given a N x N stiffness matrix named "K", a N x 1 mass matrix named "M" anda N
x 1 force vector named "F", a N x NV matrix of orthogonal vectors, V, named "V" is
generated using a LOAD DEPENDENT algorithm. The matrix V is normalized in order
that VIMV =1

The generated vectors V are not orthogonal with respect to the stiffness matrix K. If "S"
is a nonzero number the static vector response is not included in the response.

NORM M1 M2+ T=?

A row matrix M2 is formed in which each column contains the sum of the corresponding
column of the matrix M1. If "T" is not equal to zero the square root of the sum of the
square is calculated.

PROD M1 D

This command forms a 1x 2 array named "D" which contains the product of all terms in
the array named "M1". The product is stored as two numbers of the form D(1) 10P2),
This command is used to evaluate the determinate of a matrix.
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5.2 DYNAMIC RESPONSE BY MODE SUPERPOSITION
DYNAM W C F G(t) X(t)+ DT=? N=?
This command evaluates a set of "I" uncoupled second order differential equations which are
generated in the mode superposition analysis of a structural system. The typical equation
is of the following form:
X; + 2w X + WX, = figt); i=1-I
Where
W is a row or column array of the frequencies w; in radians per second.
C is the name of a row or column array of the damping ratios c;.

F is the name of Ix 1 column array of the terms f;.

G is the name of a 2 x M array which can be used to define the time function g(t).
X(t) is the name of the Ix N array where the results are stored.

DT is the time increment for which the results are produced.

The array G defines a time function in terms of straight line segments where G(1,])
defined the time t and G(2,J) is the value g(tj). The time function must be defined in the
range T =0 to T,,,, where Tj,, = Nx DT. Therefore, the maximum value of G(1,M)
must be greater than Tmax.

The accuracy of the solution is not a function of the output time increment "DT" since the
command produces the exact solution for straight line segments.

MAX X(t) Xmax+

The MAX command locates the maximum absolute value in each row of the array named
X(t) and stores the results in a column matrix Xmax. The maximum value and its column
number is also printed or displayed.
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PLOT M1 N=? R=RLR2--RN S=S§1,S2 - - RN

The PLOT command will produce a printer plot of "N" rows of matrix M1. Where "Ri" is
the row number to be plotted and "Si" is the symbol used.

FUNCT G F()+ N=? DT=?

The FUNCTion command forms a 1 x N array named F(t). The terms are extracted at
"DT" intervals from the time function defined in the array named G. The array G defines
a time function in terms of straight line segments where G(1,J) defines the time tj and
G(2,J) is the value g(tj). The time function must be defined in the range T = 0 to
Tmax, where Tmax = Nx DT. Therefore, the maximum value of G(1,M) must be greater
than Tmax.
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5.3 DYNAMIC RESPONSE DY DIRECT
STEP-BY-STEP INTEGRATION

STEP K- M C UVA- U+ P F(t) DT=? L=Li,Lmax P=delta,alpha,theta

This command evaluates the displacements U, at equal time steps, of a structural system
where the dynamic equilibrium equations are specified in the following form:

Ma(t) + Cv(t) + Ku(t) = PF(t)
Where a(t), v(t) and u(t) are the time-dependent acceleration, velocity and displacement
vectors respectively. K, M and C are the names of the N x N stiffness matrix, {K}, mass
matrix, M, and damping matrix, C respectively.

The loads are specified as the product of a N x 1 matrix P and a 1 x J array {F(t)} named
F(t). The loads F(i) are given at equal time steps as specified by "DT".

UVA is the name of a N x 3 array of initial conditions in which

The first column is a vector of initial displacements U(0)

The second column is a vector of initial velocities V(0)

The third column is a vector of initial accelerations A(0)
After STEP is executed this array will contain the displacements, velocities and accelerations
at the last time step.

U is the name of the displacements which are stored as an N x Lmax array. The
step-by-step integration is conducted with a time increment "DT"; however, the
displacements are stored at Li time steps (or at "Li x DT" time intervals). Therefore, the
number of loads specified "J" must be greater than " Li x Lmax ".

The Newmark-Wilson step-by-step integration method is used where the parameters are
specified by delta,alpha and theta. The following table lists possible values:

delta alpha theta
Newmark’s Average Acceleration 12 1/4 1.00
Newmark’s Linear Acceleration 12 1/6 1.00
Theta Method - Low Damping 12 1/6 1.42
Theta Method - High Damping 12 1/6 2.00

If the P parameters are not specified the linear acceleration method is used.
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5.4 DYNAMIC ANALYSIS IN THE FREQUENCY DOMAIN

The CAL operations DFT, IDFT and FSOLVE are provided in order to solve linear
dynamic analysis problems in the frequency domain. This approach can be very effective
for problems in which the loading is periodic over a very large time span such as machine
vibrations or wind and wave loading on structures. It can be used for other types of loading,
(i.e. earthquake ground motions), if the period of the loading is selected to be sufficiently
long to assure that the response of the structure at the end of each loading period is
essentially zero. If the damping of the system is small a very large period may be required
if accurate results are to be obtained for loading which is not basically periodic. Following
is a summary of these basic CAL operations:

DFT F(m,t)- DT=?

The M x N array named F(m,t) contains M different time functions. Each row in the
array contains values of the function at equal time intervals DT. The time functions F(m,t)
represent a time span of -e to +e ; however, only the values within a typical period (N
DT) are specified as shown below:

F(m,t)
\

\Y \ \V4

NDT 7 NDT NDT >

Figure 5.1 TYPICAL TIME FUNCTION "m"
The term F(m,1) represents the value of the function "m" at the beginning and end of the

basic time period N x DT. The DFT operation expands the time functions in a series of
the following form:

F(t) = Fy + Y Fc,Cos(k dw) + Y Fs,Sin(k dw)
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where k=1,2,----- (N-1)/2 (for N odd), or, (N-2)/2 (for N even), and dw = 27/(N DT). The

calculated constants for time function "m" are stored in the m'h

row in the order Fj, Fc,,
Fs;, Fc; - - and replace the original terms in the F(m,t) array. For N even the N column

will be zero.

IDFT F(mw)- )
This operation transforms the frequency domain functions back to the time domain. The
M x N array named F(m,w), which is in the form generated by the DFT or FSOLVE
operations, is replaced by time function values at equal time intervals.

RADIUS F(mw) R(m,w)+
This command operates on the Mx N F(m,w) array and createsa M x L R(m,w) array,
where L = (N -1)/2. The terms are calculated from the following equations:

R(m,i) =+ F(m,21)%2 + F(m,21+1)?2

FSOLVE W C F P(w) Y(mw)+ DT=?

This operation evaluates the solution of a set of uncoupled second order differential
equations which are generated in the mode superposition analysis of a structural system for
which the loading has been transformed to the frequency domain. W, C, and F are M x
1 arrays and have the same definition as given by the DYNAM operation. The 1 x N array
named P(w) is in the same form as produced by the DFT operation and DT is the time step
which was used to transform the time domain to the frequency domain.

The m™ row in the M x N array named Y(m,w) contains the terms Y, Yc;, Ys;, ycp ===
which is the solution of the m™ mode written in the following form:

Y(@) = Y, + Y, Yc, Cos(kdw) + Y ¥s, Sin(kdw)

The frequency domain solution Y(m,w) can be transformed to the modal time domain by
the IDFT operation - IDFT Y(m,t) .



0.
NUMERICAL METHODS FOR
DYNAMIC ANALYSIS

Reprint: Numerical Methods For Dynamic Analysis, by E. L. Wilson, Proceedings,
International Conference on Numerical Methods for Offshore Structures, Swansea, 1977.

6.1 INTRODUCT]ION

The value of the results of a dynamic analysis depends on the approximations
involved in the establishment of mathematical models for the structure and
foundation and in the selection of the various dynamic load conditions. In
general the establishment of the models and the interpretation of the results are
the most critical phases of a dynamic analysis. This assumes that the particular
method of dynamic analysis used does not introduce additional errors in the
solution of the model for the specified loads. It is important that the computer
cost for any one analysis is not large in order that inexpensive re-analysis is
possible and the results of the analysis can be used by the engineer to influence
the basic design of the structure. Also an economical computer analysis will
allow some of the basic assumptions used in selecting the model and loads to be
varied and the sensitivity of the results evaluated.

The effectiveness of a numerical method for dynamic analysis depends
primarily on two factors—the minimization of computer storage and the
minimization of computer execution time. The purpose of this paper is to
present asummary of various numerical methods which are used in the dynamic
analysis of offshore structures and to comment with respect to their computer
implementation and efficiency.

It should be noted that all structures, regardless of their simplicity, have an
infinite number of degrees of freedom when subjected to dynamic loading. One
of the main objectives of selecting a mathematical model is to reduce the
infinite degree of freedom system to a model with a limited degree of freedom
which will capture the significant physical behaviour of the system. Therefore a
considerable insight into the expected dynamic behaviour of the system must
be present if a realistic mathematical model is to be established. The model
must be capable of representing both the significant wave propagation and
structural vibration, .

The force equilibrium of an offshore platform modelled as a system with a
finite number of degrees of freedom may be written as

Fi+Fs+F,=F 6.1)
6.1
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in which all forces are a function of time and defined as

F, =The inertia force

F4=The internal and external damping forces

F, = The forces carried by the structural members
F =The external applied forces

Equation (6.1) holds for both linear and non-linear systems. However the
appropriate numerical method for solution will depend on the degree of
non-linearity which is present and if linearization is possible.

6.2 LINEAR DYNAMIC ANALYSIS

For linear systems with viscous damping Equation (6.1) can be written in the
form

MU(@)+CU@)+KU(t)= F(1) (6.2)

in which M is the mass matrix (lumped or consistent), C is the damping matrix
(normally not given in the form) and X is the stiffness matrix for the system of
structural elements. The time dependent vectors U(r), U(¢) and U(r) are the
displacements, velocities and accelerations respectively.

The time dependent external forces F(1) may be due to wave or seismic
forces. Normally the calculation of wave forces is a complicated procedure
which depends on the shape of the structural elements. Other papers in these
proceedings are referred to for the evaluation of wave forces. In the case of
earthquake motion in three-dimensions the loading is of the form

F(y=-M.U,,-M,U,, - M.U,, (6.3)

where U, is the ground acceleration in direction i and M, is a column matrix
which represents the sum of all columns in the mass matrix M associated with
displacements in the i-direction.' This definition of the seismic loading is valid
only if the vector is defined as the displacement relative to the displacement at
the base of the structure. :

In many cases wave and seismic loads in each direction are specified in terms
of a spectrum of maximum response values. In the case of three-dimensional
behaviour, however, great care must be taken in the application of the tech-
nique, since the basic input in the various directions must be statistically
independent if the results are to be combined in a probabilistic manner.

Figure 6.1 indicates the possible solution techniques which can be employed
- for the dynamic analysis of linear systems. Four different solution approaches

- are possible. Two methods involve the evaluation of the undamped mode
shapes and frequencies as the first step in the analysis—the mode superposition
method and the spectrum analysis method. The frequency domain method
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Figure 6.1 Methods for linear dynamic analysis

involves the expansion of the load in a Fourier Integral which reduces the
dynamic analysis into a series of solutions of linear sets of complex equations.
Another method which can be very efficient for certain systems is the direct
step-by-step integration of the equations of motion.

Each phase of the possible solution methods suggested in Figure 6.1 involves
a numerical method which must be formulated in effective form for computer
implementation. Solution of linear equations, evaluation of eigenvalues and
eigenvectors. numerical evaluation of integrals, transformation to the fre-
quency domain, evaluation by the fast Fourier transform and the step-by-step
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numerical integration of the coupled equations of motion will be discussed in
detail in the following sections.

6.2.1 Solution of linear equations

The solution in the frequency domain, the evaluation of eigenvectors and step-
by-step solution methods can involve the solution of a set of linear equations;
therefore an efficient solution method for this phase can be very worthwhile.
The set of equations to be solved can be written symbolically as

AX=) (6.4)

where A is an Nx N symmetrical matrix and X is a vector of unknowns
corresponding with the specified vector b. One of the most important aspects in
the computer solution of a large set of equations is the method used to store the
terms in the A matrix. One method which has been found to be very effective is
the active column storage technique in which only the nonzero terms in the
reduced matrix are stored. If a basic elimination method is used the only
storage required will be from the first non-zero terms in each column down to
the diagonal term in that column. Therefore the matrix with terms initially
located as indicated in Figure 6.2(2) can be stored as a one-dimensional array as
shown in Figure 6.2(b) along with an integer pointer array indicating the
location of cach diagonal term. Figure 6.2(c) indicates how the storage tech-
nique is extended to approximately equal size blocks which can be stored on
low speed storage. The solution technique requires two blocks in high speed
core storage at any particular time. It has been demonstrated that most of the
popular methods for the solution of equations are very similar, with respect to
the number of numerical operations. and they can be considered to be
variations of the Gauss elimination method.?

The basic factorization algorithm for the solution of equation stored in active
column form may be summarized by the following three steps:

(@) Triangularization of A (j=2 to N)

A=LU or A=LDL" ‘ (6.5)
in which the jth column of upper triangular matrix U is evaluated from
=1
U.‘,’ = A,‘j -& zg L.‘gUk,' i =fj (Oj (66)

and the jth row of lower triangular matrix is given by .
Li=U,/D; i=fjtoj=1 (6.7)
where D is a diagonal matrix, fj is the first non-zero term in column j and fi is
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the first non-zero term in column i. The symbol km represents maximum of fj
and fi. ‘

The diagonal terms Uj; and D,, are identical since L;; is normalized as 1:0. It
is most convenient to evaluate U, withiu a computer program column-wise
with i =fj to j. After each column is complete L; is evaluated row-wise with
i=fj 10 j—1 and stored in transposed form as L} where Uj; was previously
located. The diagonal term Uj; or D, remain at the same location as A,,.

(b) Forward reduction
Equation (6.4) can be written as Lz = b, where z=DL T Therefore

i-1
zi=bi—- Y Ltz i=1toN (6.8)

k=fi

If yisdefinedasy=D"'ztheny=L"x; or

Yi= Z"/D,‘,‘ i=1toN (69)
(¢) Backsubstitution
Fromy=L"x
N
xi=yi— Y Liy. i=Ntwl (6.10)
k=i+]

Itis important to note that all zero operations are skipped by this technique and
that neither the number of operations or the the required storage is a function
of the band width. Also the triangularization operation on the A matrix is
independent of the forward or backsubstitution operations; therefore this
operation need be done only once: The forward and backsubstitution phases
for each load condition normally involve a small number of operations com-
pared to triangularization. Recognition of this can greatly minimize the numer-
ical effort required in some eigenvalue methods and in the direct step-by-step
integration of the equations of motion.

6.2.2 Step-by-step integration

The direct integration of the linear dynamic equations of motion is a simple
approach which can have considerable advantages for some problems. The
basic equation is satisfied at discrete points in time, 0, At, 2 At, 34¢,...¢,
t+Azt,... T. The solution starts from a point in time where the displacements,
velocities and accelerations are known. Based on an assumption on the
behaviour of the system during the next small increment of time the displace-
ments, velocities and accelerations at the next point in time can be evaluated.
Many different methods have been developed for this purpose.?-'? However
only two techniques will be summarized in this paper.
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(a) The central difference method

In the case of a diagonal mass and damping matrix and for systems where the
shortest period is not too small the central difference method has proven to be
most effective. At time 7 the equation to be satisfied is

MU, +CU,+KU,=F, (6.11)
The following standard finite difference relationships are used:
U= 5e(Ur-si =20+ Useas) (6.12)
Uy = ——(Ureni= Uicar) (6.13)
= 2 Af t+Aar —-ar AME R

Equations (6.12) and (6.13) can be substituted into Equation (6.11)to form a
set of linear equations of the form

WU(¢A(=P (6.14)
where
M*= L M+—-1—C (6.15
Al 2 At 15)
1 1
F"-l-‘.-KU,-i'z-’-;MQU,-U.-A.)"'-Z—ECU,-A, (6.16)

If M and C are diagonal one notes that the solution of Equation (6.14)is trivial;
also computer storage will be minimized. Another very important technique
which can be used to further minimize the number of numerical operations and
computer storage requirements is not to form the complete stiffness K. The
structural forces KU, can be evaluated clement by element, or

F,=KU =} K.U

in which K., is the stiffness matrix for element m. If elements have identical
stiffiness matrices a further reduction in computer storage can be realized.
The solution U,.4, is based on using the equilibrium at time ¢; therefore this
approach is called an ‘explicit integration method’. One of the most significant
disadvantages of the central difference method is that it is only conditionally
stable.? In order for the method to produce finite results the time step At must
be less than T,/# where T, is the shortest period in the discrete model. For

many structures this requires time steps so small that the method may be
impractical.

6.7
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(b) The Newmark-Wilson method

One of thc most flexible step-by-step integration methods has been presented
by Newmark." This method is based on the following expressions for the
velocity and displacement at the end of the time interval:

Uise=U,+A1t (1=-8)U,+A18U,.4, 6.17)
Upa,=U+A1U+A G-a)U,+ A1 aUsar (6.18)

where a and 8 are selected to produce the desired accuracy and stability. If
& =1 and a = the well known linear acceleration is produced, which is also a
conditionally stable mcthod. One of the most widely used methods is the
constant-average-acceleration method (6 = 4 and a =%) which is an uncondi-
tionally stable method without numerical damping.

This method is called an ‘implicit integration method’ since it satisfies the
equilibrium equations of motion at time ¢+ At, or

M0:+A1+CUI+A1+KL]MM =Fia (619)

This equation can be solved by iteration; however Equations (6.17), (6.18) and
(6.19) can be combined into a step-by-step algorithm which involves the
solution of a set of equations at each time step of the form

K*Ujsa=F* (6.20)

Since K* is not a function of time it can be triangularized once at the beginning
of the calculations. The computer solution time for this type of algorithm is
basically proportional to the number of time steps required.

The Wilson € method is a technique which can be used to modify the basic
Newmark method in order to increase the stability limits and to add numerical
damping.'® The § method was first applied to the linear acceleration method in
order to improve stability and has been used to damp, out high frequency
oscillations which often develop in linear and non-linear step-by-step integra-
tion. The technique involves using the Newmark method to find the solution at
1+60 At, then, based on linear acceleration, calculating the results at ¢ + At for
use as initial conditions for the next time step. The Newmark-Wilson algorithm
is summarized in Table 6.1. With 8 = 1 the approach is the standard Newmark
method. An unconditionally stable method with large damping in the higher
modes is produced with § =4, a =1 and 6 =1-4.2

6.2.3 Frequency domain approach

An alternative to the direct integration of the coupled linear equations of
motion is to use a formal mathematical transformation to eliminate the time
function from the equations before solution progresses.' The basic approach
involves the expansion of the time-dependent loads in terms of a series of
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Table 6.1 The Newmark-Wilson alporithm for linear step-by-step integration

A. INITIAL CALCULATIONS:

1. Form stiffness matrix K. mass matrix M and damping matrix C.
2. Iniualize U,. Uo and Us.
3. Specify algorithm parameters oo,  and 6

62050 az02505+8)°; 6=10

4. Calculate integration constants:

' |
r=60 A1 a,\=;——1 a,;=A1é
Py
5 2.9
ay=—3 a,=—-1 ax=Ar‘(;-a)
ar a
6 r 2
a,=— as==(6/a-2) ay=a At
ar 2
1
a;=— a.=Ar(1-6)
ar

S. Form efiective stifiness matnx K'=K+aM+a,C
6. Triangularize K*: K*=LDL’

B. FOR EACH TIME STEP:
1. Calculate effective load vector at time 1+ 7:

F*=F,.,+M(a,U +a.U,+a,U,)
+C(a,\U+aU+asU,)
2. Solve for displacements at time (+7:
LDL'U,.,=F"
3 Calculate accelerations, velocities and displacement at 1+ Ar:
U,eo=ao(Uiar = U)-a3U,-a\U,

0.051 = 0l+%(00"- vl)

Uear=U+a U+ arU,.,,

Uear=U, +Atul +ay O.*‘aoﬁ,..\.

harmonic functions. One can use the standard Fourier Series in which the loads
F(t) are expanded in a series of the form

F@)= Eo A, cos %—THEO B, sin %ﬂt (6.21)

in which d is the duration of the loading. The Fourier Coefficients can be
evaluated and exact solutions found for the harmonic functions A, cos (n7/d)
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and B, sin (nm/d)t. It is assumed that the loading can be approximated by a
finite number of terms. Therefore the total solution in time is a summation of
the exact solution for each harmonic function. For systems without damping
this straightforward Fourier Series approach is numerically very effective since
the response of an undamped structure to a harmonic sin or cos function
loading is also sin or cos displacement solution.

An alternate method of eliminating the time variable from the dynamic
equilibrium equations is to express the loads as an infinite integral, or

F(n)= j (A (w)cos wt+ B(w) sin wt) dw (6-.22)
0
The functions A (w) and B(w) in the Fourier integral are given by
d
A(‘”)=%J F(t)cos wt dr (6.23)
(4]
2 d
B(w)=— j F(t)sin w1 dt (6.24)
T
Also the Fourier integral can be written in complex form as
F(:)=j F(w)e* dw (6.25)
in which
F(w)=1|A(w)=iB(w)] (6.26)
F-w)=YA(w)+iB(w)] (6.27)
since

e“' +e™™ =2 cos wt
wt

e —e ™ =2/ sin wt

The general equilibrium equations can now be written as

[y

MU +CU+KU = j Flw)e™ dw (6.28)
The solution is assumed to be of the form
U@)= J Y(w)e™ dow (6.29)
therefore
U@) =,j iwY(w)e* dw (6.30)
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Un=| -o’Yw)e* (6.31)
Hence the following complex set of equations must be solved for various values
of w:

(K+iwC-w’M)Y(w)= F(w) (6.32)

If F(w)requires a large number of points to define the complete function it is
apparent that a large number of solutions of complex equations will be
necessary. This large numerical effort can be minimized by solving for the basic
eigenvalues of the system and transforming the equations fo a smaller system
expressed in model coordinants [Equation (6.67)]. The evaluation of the
complex loads F(w) is not a major computational problem as compared to the
multiple solution of a large system of complex equations. Furthermore the Fast
Fourier transform algorithm can minimize both the evaluation of the Fourier
transforms and the recovery of the displacements, Equation (6.29).

The major advantage of the Frequency Domain approach is in its application
to substructure analysis. Structure-foundation or structure-fluid systems are
considered by the development of the frequency-dependent matrices for the
separate systems. Ritz techniques can also be used to effectively reduce the size
of the system.

6.2.4 Numerical evalustion of mode shapes and frequencies

For large structural systems one of the most time consuming phases of a
dynamic analysis may be the evaluation of eigenvalues and eigenvectors of the
N x N matrix equation

MU+&*KU=0 (6.33)
The undamped free vibration of the structural model has a solution form of
~ -
U= T “¢.
a=]

Therefore the resulting eigenvalue problem must be solved
(K-6:M)pa=0 (6.34)

(a) Static condensation

One technique which is often used to reduce the size of the system before the
evaluation of eigenvalues is to eliminate the massless degrees of freedom from
the system. For this case Equation (6.34) is rewritten as

ke xalle)=lo mlle]

6.11
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The first submatrix equation is

Kaa¢a + ch¢b =0 (636)

Therefore the massless degrees of freedom are related to the degrees of
freedom at the mass points by

¢.=Tds (6.37)
where
T=-K..Ka (6:38)
The resulting eigenvalue problem is of the form
Kbds = a0’ My, (6.39)
in which
K=K+ KT (6.40)

Within a computer program however these submatrix operations are not
necessary since it is more efficient to perform the ‘static condensation’ directly
on the massless degrees of freedom, similar to the Gauss elimination proce-
dure,'* without requiring submatrix storage. One important disadvantage of the
static condensation approach is that the matrix K3, tends to fill as more
massless degrees of freedom are eliminated. Therefore the reduction in size of
the system may not be economical from a computational viewpoint. In addition
if the mass is physically lumped at the time of creating the mathematical model
additional errors may be introduced.

(b) Reduction of size of system by Ritz functions
A more general approach to the reduction of the size of the eigenvalue problem
[Equation (6.34)] is the application of the Ritz method. This technique is not
restricted to a particular mass distribution—a full mass matrix does not
increase the computational effort significantly. However for systems with a
limited number of masses the method can be identical to the static condensa-
tion method.'® '

The method can be very accurate if some physical insight into the behaviour
of the structure is known. Static load patterns are selected and corresponding
displacement vectors are calculated. Or

KR=P (6.41)

The true displacements of the system are approximated by a linear combina-

tion of the discrete Ritz vectors R. Or the true eigenvectors are approximated
by

é=RX=R  X;+R:X:+R3X3+ - R X, (6.42)
6.12
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where L is the number of load patterns and is smaller than the size of the system
N. The load patterns can be very simple; however they must be linearly
independent. In order to produce the lower frequencies the load pattern should
activate the large masses and areas of maximum flexibility. If a single unit load
is used as a load pattern the method mathematically lumps the consistent mass
of the system at that degree of freedom.

The reduced eigenvalue problem is produced by the substitution of Equation
(6.42) into Equation (6.34) and premultiplication by R”. Or,

K*X-MXQ=0 (6.43)
where
K*=R'KR=R"P (6.44)
M*=R"MR (6.45)
0 = diag () (6.46)

Both K* and M™* are full matrices because the Ritz vectors are not
orthogonal Since all the eigenvalues and eigenvectors are required and the
system is relatively small, less than 100, the Jacobn method is one of the most
effective for this type of eigenvalue problem.?

One advantage of the Ritz method for the reduction of the number of
degrees of freedom for a very large structure is that it involves only a solution of
a set of linear equations which may have a large number of zero terms in the
stifiness matrix, Equation (6.41). Therefore a large number of structural
elements can be used to model the.basic structural behaviour. The use of Ritz
functions can be considered as a formal mathematical method of evaluating an
approximate generalized mass matrix for the purpose of dynamic analysis.

Figure 6.3 illustrates the selection of static load patterns for a simple tower
type structure. This structure has 6 unconstrained joints or 36 degrees of
freedom. It is of interest to point out that for the lateral load pattern shown the
resulting displacement is complex and involves movements in all directions in
addition to torsional behaviour.

For a structure of this type one would expect the lateral behaviour to be
expressed by the first six mode shapes. Because of the geometric arrangement
of the members joints 1, 2 and 3 and joints 4, S and 6 will act as separate units
with very little relative movement between joints. Therefore the six possible
load patterns which will capture this fundamental behaviour are easily estab-
lished and are shown in Figure 6.3a. Of course the first six vibrational mode
shapes for this structure will be composed of a linear combination of the
resulting displacement patterns. Figure 6.3b illustrates six other Joad patterns
which could have been used to produce identical results.
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Figure 6.3 Example of selection of different load patterns for tower structure

The physical modes which have been neglected by this approach are the
breathing modes. between joints 1, 2 and 3 and joints 4, 5§ and 6. Also the
vertical vibrational modes have been omitted; but axial deformations are
included in the six lateral modes.

(c) Subspace iteration

The subspace iteration method for the determination of eigenvalues and
eigenvectors of very large structural systems is a significant extension of the
Ritz reduction approach.'®'”*® It is the only modern computer method for
very large systems (over 5000 degrees of freedom) which will converge to the
exact eigenvalues.

Table 6.2 summarizes the subspace iteration method. The computer
implementation of the method and a FORTRAN listing is given in Reference
2. From Table 6.2 one notes that the initial calculations are identical to the
Ritz method in which the first set of load patterns must be specified. After one
Ritz solution is found and the first approximation of the first L eigenvalues of
the system is calculated as

¢"=RiX | (6.47)
an improved set of load patterns can be calculated from
PZ = M¢")
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Table 6.2 Summary of the subspace iteration algorithm for solution of large eigenvalue problem
Ko, = wiMo,

A. INITIAL CALCULATION:
1. Form stifiness matrix K and mass matrix A/,
2. Triangularize K:

© K=LDLT (NxN)
i §pecify initial load pattérns:

P,= N xLmatrix where L« N

B. FOR EACH ITERATION, k=1,2.3,...
1. Solve for Ritz vectors R, :

LDL'R, =P, (NxL)
2. Calculate generalized stifiness in sul'space:
K®=R[KR,=R[P, (LxL)
. Calculate generalized mass in subspace:
M“'=RIMR, (LxL)
4. Solve eigenvalue problem in subspace:
K%, =MYx.0%  (LxL)
§. Calculate improved approximate eigenvectors:

¢“)‘ R. X,

W

6. Check for convergence:

N*'wdiag (wl) and ¢“'=d as k-=cc

stop if converged—perform Sturm sequence check
7. Calculate improved load patterns for next iteration:

Piay=Mo™ (NxL)
8. Return to Step B-1.

It is assumed that P, is an improved estimation of the inertia forces associated
with the basic mode shapes. From Table 6.2 it is clear that this iteration
technique can be carried out to any desired degree of accuracy, assuming the
method converges. The convergence of the method for various conditions is
given in Reference 2.

Some additional comments associated with the advantages of the subspace
iteration method with respect to numerical effort are:

(i) The total stifiness matrix for the system need be triangularized only
once. :
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(ii) Since K*’and M’ tend to become diagonal as the iteration progresses
the Jacobi method is very effective for this type of eigenvalue problem.

(iii) The size of the subspace L should be approximately 30 per cent more
vectors more than the number of accurate eigenvalues required.

(iv) In order to insure participation of all modes one additional random
vector should be added to the load pattern set before each iteration.

(v) Since the approach is basically a power method the lowest eigenvalues
converge faster and are more accurate.

(vi) For most structures a high degree of accuracy is not required for the
highest modes, because of their low participation in the dynamic response.
Therefore the subspace iteration produces practical results with respect to
required accuracy.

(d) Additional numerical 1techniques for eigenvalue problems

In a general computer program for the calculation of eigenvalues and eigenvec-
tors several different numerical techniques may be useful in the solution
strategy in order to improve the convergence and to minimize numerical effort.

(i) Inverse iteration
If only one load pattern is used in the iteration procedure given in Table 6.2
the subspace iteration approach is the standard inverse iteration method and
will converge to the lowest eigenvalue. For this case the eigenvalue problem
in the subspace is trivial. Or

M=oi=KY/MO . (6.49)

which is better known as the Rayleigh quotient.® After the first eigenpair A,
and ¢, are determined inverse iteration can be used to calculate accurately
additional eigenpairs if the techniques of shifting, determinant search,
deflation and Sturm sequence checking are introduced.

(ii) Determinant search

This numerical technique can be explained by considering the following
equation:

[K-AM]}X =0 ’ (6.50)
For any numerical value of A, the following triangularization is possible
| [K -AgM] = LngLz.

The determinant of this matrix for A, is
det (K=AM)=D,;D2:D33+ - Dan

where N is the order of the matrix.
If the numerical value of the determinant is evaluated for a Jarge number
of different values of A a function can be generated of the form shown in
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Figuré 6.4. This function p(A ), which in this case is evaluated numerically, is
a plot of the characteristic polynomial. A}, A2, A3, Ay, ... AN, are the eigen-
values of the system and correspond to zero values of the det (K —AM).

NN

p(r)=get (k-aMm):D, D,, Dy, .. D,

|

Figure 6.4 Characteristic polynomial [K =AM

(iii) Deflation
A numerical plot of a polynomial with the first root suppressed, or deflated,
can be computed and would have the approximate shape as shown in Figure
6.5. The only reason for numerically evaluating p;(u«) and p;(us+1) is to
obtain a better estimation for A, from the extrapolation equation

Hi = i+
M 6.53
PPN Al (6.53)

A, = g
It is this type of strategy which is used to obtain a value of A, which s close to
a desired root. For this case two triangularizations are required in order to
evaluate A,. Therefore this technique is effective for matrices with small band
widths which can be triangularized with a minimum of numerical effort.'®

p,(x) =p(AAN-A)

[ D)

Plu) L kel B
D‘(p" . D(u‘)

x‘g“z‘ P ("‘2)

- plk)

Figure 6.5 Deflated polynomial with A, suppressed

6.17



CAL-91 NUMERICAL METHODS FOR DYNAMIC ANALYSIS

(iv) Shifting
Inverse iteration converges to the numerically smallest eigenvalue. In order
for the method to be used for other eigenvalues the following change of
variable can be introduced

A=A, +p (6.54)
Therefore Equation (6.50) can be written as
[Ki—pM]X =0 (6.55)
where |
K.=K-AM ' (6.56)

If A, is closer to A, than to A, the inverse iteration method when applied to
Equation (6.55) will converge to A.. This follows from the standard power
method proof.'

(v) Sturm sequence check

One of the potentially serious problems which can develop in the numerical
evaluation of frequencies and mode shapes in a practical dynamic analysis is
if important frequencies are neglected. The Sturm Sequence Check is a
method which allows the engineer to verify the results of an eigenvalue
problem. One can prove the Sturm Sequence Theorem as presented here
from a direct examination of the complete family of deflated polynomials,
p(A), pi(A), p2(A), . ... One notes that they are all derived from the basic
sequence for a given value of A, or

det (K =A,M)=D;D3;,D33+ - - Dnn (6.57)

For a given value of A the basic properties of this sequence of numbers are
illustrated in Figure 6.6. It is apparent that the properties of this sequence of
numbers can be used as a powerful technique in the numerical strategy of
evaluating eigenvalues. If lowest eigenvalues are evaluated by any method
the Sturm sequence can be calculated for

A=1-001A, (6.58)

If all eigenvalues have been calculated the Sturm sequence should have n
negative terms.? This assumes a desired accuracy of 0-001.

Another important application of the Sturm Sequence Technique is to
evaluate the number of frequencies in a certain frequency range—say
between A, and Ay. Therefore LDL7 triangularizations of [K - A;M] and
{K - A M] will indicate the number of eigenvalues below each value. The
difference will be the number of values within the range. In order to calculate
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the eigenpairs in the range one can shift into the range and use inverse
iteration or subspace iteration to evaluate only the values of interest.
6.2.5 Transformation to uncoupled modal equations

The basic numerical properties of the undamped free vibration mode shapes
are -

M* =¢'Mp=1 (6.59)
K*=¢"K¢ =diag (&2 (6.60)

In which the mode shapes have been normalized so the generalized mass is one.
Or

Mo, =1 (6.61)

The following transformation, change of variable, is introduced into the basic
equilibrium equations.

U= 3 éX ()= X (1) 6.62)

Therefore the velocities and accelerations are

U(t)=¢X(1) (6.63)
U@t)=eX(1) (6.64)

If Equations (6.62), (6.63) and (6.64) are substituted into Equation (6.2) and
the resulting matrix equation premultiplied by ¢ we obtain -

MX(1)+C*X()+K*X(1)= P(1) (6.65)

The matrices M™ and K* are diagonal; however C* is not diagonal unless an
assumption is made on the basic form of viscous damping which exists in the
structure. Since damping is normally small and is difficult to physically model
and identify the following assumption is normally made:

C* =diag (2£:5) (6.66)

where ¢, is the ratio of damping in mode n to the critical damping for the mode.
With this assumption of uncoupled modal damping the typical modal equation
can be written as

X (1) + 2802 Xn (1) + 32X (1) = palt) = cnf (1) (6.67)

After the modal equations are evaluated the time dependent displacements are
calculated from Equation (6.62).
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The same technique can be used to uncouple Equation (6.32) in order to
avoid the solution of a large number of complex linear equations. For this case
the following transformation is introduced

Y(w)=¢Z(w) (6.68)

The substitution of Equation (6.68) into Equation (6.32) yields a typical modal
equation in the frequency domain.

[‘Bi"‘" Z:wa':nfn - w‘.']Z” (w) = ¢nﬁ(w) (669)

For structures which are formulated in the frequency domain and whose
behaviour can be represented by a limited number of natural frequencies this is
numerically the most efficient approach.

p(a)
ALL TERMS N D POSITIVE

2 NEGATIVE TERMS N D
Ay Aedg A

3

INEGD  3NEGD  SNEGD

Figure 6.6 Sturm sequence properties of polynomial

6.2.5 Solution of modal equations

The solution to the single-degree of freedom modal equation given by Equa-
tion (6.67) can be accomplished by one of several methods. For certain loading

which can bc expressed as an analync function exact mathematical solutions
are possible.’

(a) Direct step-by-step solution

The most direct approach to the solution of this second order ordinary
differential equation is to use a numerical finite difference method. The same
techniques are possible which were used for the coupled equation. The step-
by-step solution method given in Table 6.1 is numerically very efficient when
applied to Equation (6.67).

(b) Duhamel Integral
In the case of arbitrary loading it is very common to express the solution in the
form of the Duhamel Integral.'" The Duhamel Integral is then numerically

integrated. Since this numerical integration approach involves many numerical
evaluations of trigonometric and exponential functions, which require series
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expansibns within a digital computer, the method cannot be considered a good
numerical method. Also for high frequencies a very small integration interval is
required for accuracy.

(¢) Transformation to the frequency domain

The single degree of freedom modal equations can be transformed into the
frequency domain. The Fourier integrals and transforms can be numerically
evaluated by the Fast Fourier transform technique. This of course is identical to
the approach suggested by Equation (6.69). This method introduces the same
types of errors which are normally associated with the approximation of a
function by a Fourier series or integrals.

(d) Piecewise exact method

Many types of loading can be represented by a series of straight lines between
unequal time intervals. Most earthquake ground acceleration data is in this
form. An exact mathematical solution is possible for a straight line loading
subjected to displacement and velocity initial conditions. Therefore exact
numerical values at any convenient time interval can be calculated. Table 6.3
summarizes the necessary: equations for this approach for the numerical
evaluation of the modal equations. This may not be the most numerically
efficient method; but it is definitely the most accurate. For most structures the
numerical solution of the modal equation involves an insignificant amount of
computer time compared to the computer time required for the other phases of
the problem—formation of stifiness and mass matrices, solution of eigenvalue
problem, calculation of displacement and member stresses. For these reasons
the piecewise exact method should be used whenever possible.

(e) Response spectra analysis

For many structural problems the dynamic load is not given in terms of a time
dependent function; but the load is specified as a response spectra. By
definition a response spectra is a plot of maximum values of displacement

response v(max) obtained from the solution of the following equation for
various values of w.

5(1)+ 2wé (1) + w3 (1) = f(1) ' (6.70)

A typical plot of the maximum, v(max), for specified w and damping ratios § is
shown in Figure 6.1. '

The typical modal equation is of the form

Xo 42008 Xn + 02X = daF (1) = caf (1) (6.71)
Therefore the maximum modal response can be calculated from
X (max) = c.v.(max) (6.72)

where v,(max) is the value obtained from Figure 6.1 for values of w, and &».
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Table 6.3 Piecewise exact solution method

BASIC EQUATION:
Xe28wXefXz1(1) 20+t
SPECIFIED LOAD (1) f‘
0 — (1)

) - (10)
o=f(1) ;b= T

EXACT DISPLACEMENT SOLUTION:
X(t)zA A teA, e cos u*ten et sin Uit
where A =5 -2 i—%
a5
A, =X(1)-A,
Ay (X(1)eEwA-A)
EXACT SOLUTION FOR VELOCITY-
X(1)2A, +(u" A & A )% cos Wt

- (WA bw A ) in ot

After the maximum response in each modal equation is evaluated the

maximum displacement in each modeshape for the complete structure is given
by

U(max), = ¢.X,(max) (6.73)

For any particular degree of freedom a probabilistic value of displacement may
be calculated from

u=~/(u¥+u§+u§+---u3.) (6.74)

Other methods exist for adding maximum modal response; however the
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square root of the sum of the squares of the maximum modal values is one of
the most common.

In order to evaluate member stresses it is first necessary to evaluate the
member stresses due to each of the maximum modal responses. Or

o(max)= TU(max), (6.75)

where T is a stress-displacement transformation matrix for the member. The
probabilistic member stress is estimated by

o=V(ei+oi+oi+---ok) (6.76)

Note that the probabilistic member stress cannot be calculated from the
probabilistic displacements.

6.3 NON-LINEAR ANALYSIS

For offshore fixed structures several different types of non-linear behaviour for
both static and dynamic loads are possible. Non-linear behaviour implies that
the displacements and stresses produced by the different load conditions
cannot be directly added; or the basic principle of superposition does not hold.
Because there are so many different types of non-linearities there is not one
general method which can be applied to all problems.

Large structures for which their weight is significant may have a dead load
stress distribution which is highly dependent on the method of construction and
installation sequence. The correct theoretical method of evaluating these
stresses is to perform a complete analysis at each stage of construction with the
internal stresses from the analysis of the previous stage used as initial condi-
tions for the new analysis. This analysis technique can be used for the
evaluation of installation stresses also. For subsequent analysis of the structure
in which additional non-linear stresses are developed due to static or dynamic
loads it may be extremely important to start the analysis with an accurate
estimation of the initial stress conditions. .

Perhaps the most common type of non-linear behaviour is due to non-linear
materials. Most structural design requires that the structural materials remain
in the elastic range during the design loads. However foundation stresses in soil
may be non-linear under low stress levels. Under dynamic loads soil non-
linearities are often approximated by an effective damping factor to be usedina
linear dynamic analysis. Also during earthquake or large sea conditions some
non-linear material behaviour can be tolerated without the collapse of the
structure.

One of the most unlikely types of non-linear behaviour to be expected in a
practical structure is the existence of large strains which require an alternate
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definition of stress. This type of non-linearity exists in only rubber-like
materials.

For tall structures or structures supported by cables large displacements may
exist under design loading. For this case it is extremely important that the static
or dynamic equilibrium equations are satisfied in the deformed geometry.

For fixed offshore structures where the velocities of the structure are
comparable to the water particle velocities the wave forces are non-linear and
may be expressed as

F(O)=FU®),U@) (6.77)

This type of non-linear behaviour can be considered by the linear step-by-step
methods. Based on the previous increment the velocity of the structure can be
predicted from

U,¢Ag = l.jg +At 0[ (6.78)

and a good estimate of the non-linear drag forces can be estimated. Since the
properties of the structures do not change the effective stiffiness matrix need not
be modified or triangularized at each time increment. Therefore the method
given in Table 6.1 can be used for this form of non-linearity.

A general formulation for the non-linear analysis of a structural system can
be developed if Equation (6.1) is rewritten at time

(Fi+ AF)+(Fi+AF)+(Fi+AF))=F,.a (6.79)
in which the force changes are given by
AF,=M,AU, AF/=C AU, AFi=KU, (6.80)

where M,, C, and K are the approximate mass, damping and stifiness matrices
at time ¢. Therefore Equation (6.79) can be rewritten as

M AU+C AU,+K,AU,=F* (6.81)
where

F*=F, o~-F-Fi-F} . (6.82)

A direct step-by-step method, as presented for linear systems, can be used for
the evaluation of AU, AU, and AU, Because the matrices M, C, and K| can
only bc approximated over the time interval, it is recommended that the forces
Fi F¢ and F! be recomputed at the end of the time increment. For example the
structural forces F;, which are consistent with U, should be evaluated as
follows:

(a) From the displacement U, calculate in member m the strain ¢,
(b) From the specified non-linear stress strain behaviour calculate the stress
Tm-
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(c) Using virtual work calculate the structural forces acting on element
Fn= I Alr.dV,

where A,, is the strain-displacement transformation matrix for member m.
(d) Calculate the total structural forces at time ¢ from

Fi=YF.

For structures with slight non-linearities this type of analysis may be accurate.
However for very non-linear behaviour it may be necessary to iterate within a
time step in order to minimize the accumulation of errors. For a more complete
discussion of dynamic non-linear analysis methods the reader is referred to
References 12, 20, 21, 22, 23, 24.

6.4 FINAL REMARKS

Several different numerical methods for the dynamic analysis of linear struc-
tural systems have been presented. Many of these methods have been incorpo-
rated into general purpose programs and have been successfully used in the
solution of offshore structural systems.2*?*2® General purpose programs for
non-linear analysis have been developed based on the techniques pre-
sented.?*?* However for non-linear analysis of complex offshore structures the
development of special purpose computer programs is justifiable because of
the unique nature of the structures and their loading.
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1. SUMMARY

The major purpose of this "small document" is to provide the essential information for a new
user/engineer to become productive on a DOS microcomputer with a minimum investment
of time. It is assumed that the engineers’ objectives are to use existing programs and to
prepare data input files and technical documentation. In order to simplify the presentation
only computers with large capacity fixed disks and a minimum of one removable floppy disk
will be considered.

Only a small number of the most important DOS commands will be presented. Examples
will be given on file duplication. In addition, the preparation of DOS BATCH COMMAND
files will be illustrated by several examples.

2. FILE Preparation

The program which is used most often by an engineer at a microcomputer workstation is the
"editor". This is normally a highly interactive program which allows the user to prepare
input data files and to examine or modify any existing printable file. Therefore, the
capability of this program is very important if the user/engineer is to be productive.

The editor "EDLIN", which is supplied with the DOS system, is a very difficult program to
use. An engineer with a minimum of computer experience requires approximately two
weeks to learn to effectively use this line oriented editor. In addition, the possibility of data
input errors is greatly increased if EDLIN is used.

There is a large number of commercial editors available for DOS systems which can be
purchased for $20 to $500. In most cases they have a large number of useful options;
however, a significant amount of time is required to learn to use them productively. In
addition, many of these editors create files with embedded "non-print" characters which are
incompatible with standard DOS text, ASCI], input and output files.

Most of the well-known word proccessing programs can be used to prepare and edit
standard DOS text files. For example, WORDSTAR can be used if the files are read and
saved in the "nondocument mode". Also, WORDPERFECT can be used if files are read
and saved in the "DOS text mode".
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3. INTRODUCTION TO DOS

MS-DOS (Microsoft Disk Operating System) is the operating system for many computers
with Intel 8088 to Intel 80486 series of Central Processing Units. The DOS monitor allows
all computer programs rapid access to the DOS file management system. Since certain files
are independent of the programming language it is possible to transfer information between

programs which have been written in different programming languages such as FORTRAN,
BASIC or C.

Files are stored on large capacity fixed disks or removable floppy disks. Each disk has a root
"directory" and "subdirectories" which indicate the name, size and location of all files on the
disk. System disks have the basic DOS operating system on a reserved section of the disk.
When the computer is started or "booted" the DOS system and the COMMAND.COM are
read into the computer, control is transferred to the DOS monitor program, and the "C>"
(or "A>") prompt is displayed on the console indicating that "C" is the currently logged-in
drive and that the DOS system is awaiting a command. The user can then enter any legal
DOS operation followed by a carriage return (CR).

A DOS command is either one of the INTERNAL commands, contained in the
COMMAND.COM file, or it is a request to execute a program which is stored on any disk
drive ( and directory) which is connected to the computer system. Also, the user can switch
to another "logged disk" by typing the new drive name (A,B,C or D) followed by a colon (:)
and terminated by a CR. Also, the user can transfer control to another directory with the
change directory, CD, command.

FILE NAMES

A file name consists of two parts: the primary name (1 to 8 characters) and an extension
name (1 to 3 characters) separated by a period. For example, the FORTRAN source
program for the computer program CAL would be named CAL.FOR; its binary relocatable
file would be named CAL.OBJ and its executable (command) file would be named
CAL.EXE. The general form of a file name is

"drive":\path\"name"."extension"

A3



APPENDIX A SUMMARY OF DOS COMMANDS

If the "drive" is not specified it is taken as the currently logged drive. If the path is not
specified it is taken as the current directory. The following symbols are not allowed as
characters within a file name:

<>.,;:=*[1]/\
An ambiguous file name is used to refer to one or more files on a disk. For example:
SOLID.* References all files on the disk with the first name SOLID

*EXE References all files on the disk with the second name EXE

CA*FOR References all .FOR files which have CA as the first two letters of its name

SPECIAL DOS CONTROL CHARACTERS

During the execution of DOS programs the following control characters can be entered at
the keyboard:

control C  Causes termination of the execution of the program

control P All subsequent screen output is also directed to the printer until the next
control P is typed

control S Screen output is stopped temporarily in order to view a segment of output.
Screen output will continue when any other character is typed.

Prt Sc Causes the current screen display to be printed
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4. INTERNAL DOS COMMANDS

The following commands are built into DOS and are available when the COMMAND.COM
program is loaded:

DIRECTORY COMMAND

DIR Causes the names of all files on the currently logged
disk to be listed on the console.

DIR A:*FOR Causes the names of all FORTRAN files on the disk mounted on drive
A to be listed on the console.

The D program, given on page 4, can be used in place of DIR.

DELETE COMMAND

DEL XX.EE The file named XX.EE is removed from the current directory and its disk
space is no longer reserved.

DEL A:*.BAK All files in the current directory on the disk mounted
on drive A with the second name BAK are removed.

DEL *.* All files are removed from the currently logged disk.
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RENAME COMMAND
The name of a file on a disk may be changed by the REN command. For example:

REN ZQY.AA XX Causes the file ZQY.AA to be renamed to XX.

TYPE COMMAND
The TYPE B:XX.YY command causes the contents of the file named XX.YY on drive B

to be displayed on the console. Control S will cause the display to be halted temporarily.
The TYPE XX.YY|MORE will cause the display to be halted every 24 lines.

COPY COMMAND

The COPY program is one of the most important programs which operates under the DOS
system. It allows files to be duplicated and copied to other directories, disks or output
devices. As examples:

COPY CALFOR CAL.BAK

The above command will create a new file CAL.BAK, within the current directory, which
is identical to the file CAL.FOR.

COPY ** A:NZZ\

The above command will copy all files from the current directory to directory ZZ on drive
A. The new files on A will have the same names.

COPY *FOR A:

The above command will copy all files with extensions .FOR from the current directory to
drive A. The files copied to drive A will replace files which previously existed with the same
name.
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DIRECTORY OPERATIONS

It is possible to use a DOS computer system without defining subdirectories. For such a
system all programs and data files would exist in the "root directory" and when the DIR
command is given a list of all files would be displayed. In addition, a potential

problem with conflicting file names exists if several individuals use such a system. Also,
systems without subdirectories are cumbersome to use and to maintain. It is very convenient
to create separate directories for special functions. For other problems it is useful to create
temporary work areas containing files which may be easily deleted after the problem is
completed.

For most systems only one level of subdirectories is required. This approach greatly
simplifies the use of "path names" and the general use and maintenance of a system.
However, a good approach is to retain a minimum number of files in the root directory and
to allow access to the important programs by creating a PATH to all directories which
contain these programs with the use of the SET PATH command.

The DOS command MD new will create a new subdirectory, or work area, on the current
disk named new which will be able to store data and DOS programs.

After a directory is made it is possible for the user to transfer control to that subdirectory
by executing the command CD \new. To return to the root directory the command CD \ is
executed.

If all files are deleted from a subdirectory and control is in the root directory the execution
of RD pew will delete the directory new.

4. ADDITIONAL DOS PROGRAMS

All computer programs which can be executed on a DOS system are stored as files of the
form NAME.COM or NAME.EXE and are executed by typing the command NAME. If
the program is on a drive other than the logged drive it is executed by the specification of
the drive name. For example: A:xxxx will cause the program xxxx to be loaded from drive

A and executed. The following is a partial list of some of the most useful programs (DOS
commands).
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FORMAT PROGRAM

This program must be used to initialize the density and record size for every new diskette.
The standard international interchange format is the 360k double sided double density 5 1/4
inch disk. However, for maximum efficiency and speed, disks which are to be used locally
on one computer system should be initialized at maximum capacity. The FORMAT
operation defines the density of a disk which may be different than what the maker of the
disk writes on the label.

DISKCOPY and DISKCOMP PROGRAM
The DISKCOPY is used to copy all files on one disk to another disk and FORMATS the
new disk during the process. The DISKCOMP program is used to compare the contents of

two disks.

PRINT PROGRAM

The PRINT program can be executed at the same time as other DOS commands or
programs are being executed. Therefore, files can be printed in a "background mode" and
the user can perform other tasks without delay. In addition, the printing of several files can
be initiated at the same time as indicated in the following:

PRINT filel file2 file3 - - -

The command PRINT/T can be used to terminate printing after the completion of the
current file.
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5. DOS BATCH CAPABILITY

This basic DOS function allows a series of DOS operations and user programs to be
executed in sequence without the requirement that the user type the series of DOS
commands. In order to utilize this option the series of commands must be stored in a
"submit file" which is prepared by an editor. The second name of the batch file must be
"BAT". To illustrate this option let us assume that the series of programs SAP, FRAME,
SOLVE and FRAMEF are to be executed in sequence. First: prepare a "batch file" with
the name "SERIES.BAT" which contains the following information:

SAP
FRAME
SOLVE
FRAMEF

Next: type the DOS command SERIES and the above list of programs will be executed in
sequence without the computer stopping after each program.

Execution of the batch operation can be terminated by typing a CONTROL C. The batch
operation is extremely useful in "linking together" typically used DOS operations.

The more general form of the batch operation program is one which has several parameters
(arguments) which are specified as variables within the .BAT file as indicated below:

"batch file name" P1 P2 - - - Pn

The variables %1 %?2 - - within the batch file are replaced by names P1 P2 - -

during the execution of the BATCH operation. An example of the use of this form of the
batch operation is to erase a series of files which are generated by the program SAP without
deleting the input data file which has the same first name and no extension. First, the
following file named ER.BAT is prepared:

DEL TEMP
REN %1 TEMP
DEL %1.*

REN TEMP %1
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If the input data file is named FRMEX, then all files with the first name FRMEX must be
removed except the data file itself. Therefore, the command

ER FRMEX

will perform this function and eliminate the need to type four DOS commands. The
practicality of the batch operation is only limited by the creativity of the user.

6. CONFIG.SYS, COMMAND.COM and AUTOEXEC.BAT

When a DOS computer system is booted (started), or manually rebooted, DOS looks for the
file CONFIG.SYS in the root directory. If the file is found, DOS interprets the information
within the file in order to configure the DOS system parameters or to select a different
COMMAND processor (SHELL). If the CONFIG.SYS file is not found the default values,
shown below within [ ], are used.

If a different COMMAND processor is not defined the file COMMAND.COM is loaded
from the root directory. Then, DOS automatically searches the root directory for the file
AUTOEXEC.BAT and, if found, executes the DOS commands contained within the file.
The files CONFIG.SYS and AUTOEXEC.BAT are optional files; however, their existence
is very important if the computer system is to be configured and initialized for professional
use. Both files can be prepared or modified by the editor EDED.
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A typical CONFIG.SYS file, which is shown below, contains the five different options which
are possible:

BREAK=0ON [OFF] (allows CTRL/BREAK to terminate DOS
operations)

BUFFERS=40 [10] (RAM buffers reserved for I/O operations)

FILES=15 [12] (files which can be opened concurrently)

DEVICE=ANSLSYS (defines extended screen and keyboard functions)

SHELL=COMMAND.COM (defines standard COMMAND processor)
A typical AUTOEXEC.BAT file is shown below:

VERIFY ON (all COPY operations will be verified)
SET PATH=C:\;C:\DOS;C:\SAP;C:\CAL; (sets path)

SET PROMPT=$36$P$363G (DOS prompt will display directory name)
GRAPHICS (allows screen print of graphics)

VER (displays version of DOS)

The PATH command is one of the most useful commands in the DOS system. If a DOS
program is executed, when operating within a directory on any disk, and the program is not
stored within the directory disk space DOS will automatically search for the program in
other directories in the order defined by the SET PATH operation. Therefore, there is no
reason why duplicate copies of programs should exist in different directories.

All
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