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Low-density lipoprotein receptorerelated protein-1 (LRP1) is an endocytic receptor for numerous proteins
that are both structurally and functionally diverse. In some cell types, LRP1-mediated endocytosis is
coupled to activation of cell signaling. LRP1 also regulates the composition of the plasma membrane and
may, thereby, indirectly regulate the activity of other cell-signaling receptors. Given the scope of LRP1
ligands and its multifunctional nature, it is not surprising that numerous biological activities have been
attributed to this receptor. LRP1 gene deletion is embryonic-lethal in mice. However, elegant studies using
Cre-LoxP recombination have helped elucidate the function of LRP1 in mature normal and pathological
tissues. Onemajor theme that has emerged is the role of LRP1 as a regulator of inflammation. In this review,
wewill describe evidence for LRP1 as a regulator of inflammation in atherosclerosis, cancer, and injury to the
nervous system. (Am J Pathol 2014, 184: 18e27; http://dx.doi.org/10.1016/j.ajpath.2013.08.029)
Supported by NIH grants R01 HL060551 and R01 NS054671 (S.L.G.)
and R01 NS057456 (W.M.C.).
Disclosure: S.L.G. is a consultant for Angiochem.
Low-density lipoprotein (LDL) receptorerelated protein-1
(LRP1/CD91) is a type 1 transmembrane protein, which is
processed by furin-like endoproteases in the trans-Golgi
compartment to generate the mature two-chain structure.1,2

The 515-kDa a-chain is entirely extracellular and coupled
to the cell surface through strong noncovalent interactions
with the transmembrane 85-kDa b-chain. Although LRP1
may localize transiently in lipid rafts, the receptor migrates
in the plasma membrane to clathrin-coated pits, where it
undergoes constitutive endocytosis and recycling with
extremely high efficiency.3e5 In most cells, including ma-
crophages, hepatocytes, and neurons, LRP1-associated li-
gands dissociate in acidified endosomes and are transferred
to lysosomes.3,4,6 In endothelial cells, LRP1 ligands may
undergo transcytosis.7,8

LRP1 is a member of the LDL receptor gene family,
which includes receptors such as megalin/LRP2, apolipo-
protein E receptor 2/LRP8, and the VLDL receptor. These
receptors demonstrate similarities in domain organization
and, in some cases, partially overlapping function.9 As
shown in Figure 1A, the LRP1 a-chain includes four
stigative Pathology.

.

clusters of complement-like repeats (CCRs), numbered from
the N-terminus.9,10 CCR2 and CCR4 contain 8 and 11
complement-like repeats, respectively, and are responsible
for most of the ligand-binding activity of LRP1.10 The
LRP1 b-chain includes YxxL and dileucine motifs that
serve as principal endocytosis signals11 and two NPxY
motifs that function as secondary endocytosis signals and as
binding sites for signaling adapter proteins.11e13

The first identified LRP1 ligand was apolipoprotein Ee
containing b-VLDL.14 Subsequently, LRP1 was identified
as the receptor for activated a2-macroglobulin (a2M),15

bringing forward a considerable body of literature in
which LRP1 was referred to as the activated a2M receptor.
Figure 1B shows a model in which the 18-kDa LRP1-
binding domain of a2M (called the receptor-binding
domain or RBD) is engaging tandem complement-like re-
peats from CCR2 of LRP1. As is typical for LRP1-ligand
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Figure 1 Molecular models showing the organization of structural
domains in LRP1 and the docking of a representative ligand to
complement-like repeats in LRP1. A: The depicted domains in LRP1 are
common to the LDL receptor family. Stars are present in the intracellular
region of LRP1 to represent motifs that function as endocytosis signals
and/or as docking sites for cell-signaling proteins including NPXY, YxxL,
and dileucine. B: A representative LRP1 ligand, the 18-kDa receptor-
binding domain of a2-macroglobulin, which is a free-standing domain in
the activated state of the protein, is shown in pink. Two lysine residues in a
single a-helix, highlighted in blue, are essential for binding to LRP1. These
lysine residues interact with acidic amino acids in the LRP1 complement-
like repeats. The fourth and fifth complement-like repeats in CCR2 are
shown in orange, and the acidic amino acids in these domains are high-
lighted in black. The approximate positions of calcium are shown. EGF,
epidermal growth factor.
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interactions, Lys residues in the structure of the RBD, posi-
tioned in parallel orientation within the same a-helix, interact
with negatively charged amino acids in the complement-like
repeats.16,17 Hydrophobic residues exposed on the surface of
the RBD also may be involved.16 The integral association of
calcium with the complement-like repeats is necessary for
structural integrity and function.1,17

Currently identified LRP1 ligands include proteases,
protease inhibitor complexes, extracellular matrix proteins,
growth factors, toxins, and viral proteins.9 LRP1 ligands are
present in myelin, including myelin basic protein and
myelin-associated glycoprotein (MAG),18,19 explaining why
in the injured central nervous system, LRP1 may participate
in the phagocytosis of myelin debris.18 By binding cal-
reticulin, LRP1 associates with members of the collectin
family, including C1q and mannose-binding lectin, and
participates in the phagocytosis of apoptotic cells.20,21 LRP1
also serves as an endocytic receptor for many intracellular
proteins released by necrotic cells.22 These LRP1 activities
The American Journal of Pathology - ajp.amjpathol.org
are important because failure to efficiently clear intracellular
proteins, apoptotic cells, and cell debris may be associated
with the onset of autoimmune disease.23

Trafficking of Membrane Proteins and Foreign
Antigens

LRP1 associates with and regulates the abundance of other
proteins in the plasma membrane.24,25 Some plasma mem-
brane proteins, such as Plxdc1/TEM-7, which has been
implicated in angiogenesis, may be co-immunoprecipitated
with LRP1, suggesting a possible direct interaction.25 How-
ever, more frequently, plasmamembrane proteins are bridged
to LRP1 by bifunctional ligands or intracellular adaptor pro-
teins, such as Fe65 and postsynaptic density protein 95 (PSD-
95).26e28 Fe65 bridges LRP1 to b-amyloid precursor protein
(APP), promoting APP endocytosis and regulating APP
processing to formb-amyloid peptide (Ab).26,27 PSD-95 links
LRP1 to the N-methyl-D-aspartate receptor and may regulate
bidirectional cross talk between these two receptors.28

Bridging of LRP1 to the urokinase receptor (uPAR) by the
bivalent ligand, urokinase-type plasminogen activator
(uPA)eplasminogen activator inhibitor-1 complex, promotes
uPAR internalization and regulates uPAR-initiated cell
signaling.29 A similar mechanism is involved in the pathway
by which LRP1 clears tissue factor from cell surfaces.30

A hallmark of the pathway in which LRP1 regulates the
abundance of other proteins in the plasma membrane by
facilitating their endocytosis is the ability to inhibit this
process with the LRP1 ligand-binding antagonist, receptor-
associated protein (RAP).31 When RAP is added to cultured
cells over 3 to 5 days, the abundance of the LRP1-regulated
protein in the plasma membrane gradually increases until a
new equilibrium is achieved. Receptors that are increased in
abundance at the cell surface in RAP-treated cells include
uPAR,29 APP,26 and semaphorin4D.25

LRP1 has been implicated in antigen presentation and in
stimulation of CD8þ T cells. Diverse heat shock proteins
(HSPs), which function as chaperones for antigenic pep-
tides, bind to LRP1 when these HSPs are released from the
cell.32 HSP-peptide complexes that are internalized by
LRP1 traffic to major histocompatibility complex I for
representation by antigen-presenting cells.33 Extracellular
peptides also may be presented to T cells when bound to
a2M and internalized by LRP1.34 These pathways, partic-
ularly those involving HSPs, may be extremely important in
pathological conditions associated with extensive cell death,
which promotes release of HSPs from intracellular pools.

LRP1 Couples Endocytosis to Cell Signaling

The broad continuum of ligands that bind LRP1 empowers
this receptor to serve as a sensor of the cellular microen-
vironment. By multiple mechanisms, LRP1 regulates cell
signaling and, ultimately, cell physiology and gene expression
19
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in response to numerous extracellular proteins. A simple
mechanism by which LRP1 regulates cell signaling involves
competitive binding of proteins that activate other signaling
receptors so that the concentration of the protein in the cellular
microenvironment is decreased. Together with glypican-3,
LRP1 mediates the internalization of hedgehog, decreasing
the concentration of hedgehog available to bind to its
main signaling receptor, patched.35 LRP1 also regulates cell
signaling by trafficking preformed receptor-ligand com-
plexes into endosomes, as has been observed with bone-
morphogenic protein-4 in association with Bmper and its
cellular receptors.36 The association of LRP1 with platelet-
derived growth factor (PDGF) receptor in endosomes regu-
lates the phosphorylation events observed when cells are
treated with PDGF.37e39

As previously described, LRP1 may regulate the activity
of other signaling receptors simply by controlling the abun-
dance of these receptors in the plasma membrane.24 In some
cells, including neurons, neurite-generating cell lines,
Schwann cells, and interstitial fibroblasts, direct binding of
ligands to LRP1 activates cell signaling.19,40e47 Activation
of cell signaling in response to ligand binding is not ubiq-
uitous in all cells and tissues in which LRP1 is expressed.
Instead, coupling of cell signaling to ligand binding may
depend on whether a specific cell type expresses necessary
LRP1 co-receptors. In neurons and neurite-generating cell
lines, N-methyl-D-aspartate receptor functions as an LRP1 co-
receptor, physically linked to LRP1 by PSD-95, activating
signaling factors such as extracellular signaleregulated ki-
nase 1/2 (ERK1/2).28,37,44,46 Trk receptors also have been
described as LRP1 co-receptors, essential for activation of
Src, ERK1/2, and Akt in response to activated a2M and
tissue-type plasminogen activator.47 p75 neurotrophin re-
ceptor is recruited into a complex with LRP1 byMAG.19 This
event is followed by activation of downstream cell-signaling
factors such as RhoA, which are distinct from those activated
by other LRP1 ligands.19 The LRP1-dependent cellular re-
sponse to MAG raises the hypothesis that the cell-signaling
activity of LRP1 may be ligand specific.

It is reasonable to speculate that novel LRP1 co-receptors
remain to be identified. Such receptors may function indi-
vidually with LRP1 or, more likely, as part of a multiprotein
receptor system, with conserved and variable members in any
given cell type. In a complex cellular microenvironment,
LRP1 may be engaged as a primary signaling receptor by
extracellular ligands and simultaneously function by the other
mechanisms previously described. LRP1 also may regulate
cell signaling by undergoing regulated intramembrane pro-
teolysis (RIP).48 Both the shed form of LRP1, which is
released in thefirst step ofRIP, and the cytoplasmic tail, which
is released intracellularly in the second step of RIP, have been
implicated in cell signaling.48e51

LRP1 gene deletion is embryonic-lethal in mice.52

Nevertheless, the diverse scope of LRP1 ligands and the
multifunctional nature of this receptor in cell signaling ne-
cessitates a broadening of the classic definition of specificity
20
used by the receptor biology field. LRP1 did not evolve
to respond to a single or even a small family of ligands.
Instead, numerous interactions and a diverse spectrum of
physiologically significant cellular responses are observed.
The complexity of LRP1 is appreciated by applying pro-
grams such as Interactive Pathway Analysis (IPA) by In-
genuity (Redwood City, CA). Figure 2 shows an IPA map
for LRP1. Various forms of interaction, reported by IPA,
include, but are not limited to, direct binding events, in-
teractions within the plasma membrane, effects on protein
phosphorylation, and effects on cellular localization. The
data were restricted so that the displayed interactions
include only those that have been associated with neuro-
inflammation. Without applying functions to limit the data
set, the LRP1 IPA map is too dense to read. The results
shown in Figure 2 are stratified according to the location of
the LRP1-interacting gene products, including those outside
the cell, in the plasma membrane, or in the cell interior.
Because of the complexity of LRP1 and its diverse in-

teractions, understanding the function of LRP1 in a specific
context or disease process cannot be assumed from analysis
of specific molecular interactions. Instead, it has been
informative to analyze in vitro studies together with ex-
periments in mouse model systems. Conditional gene
deletion studies have identified LRP1 as a major regulator of
inflammation. In the remainder of this review, the function
of LRP1 in inflammation is considered in the context of
atherosclerosis, cancer, and injury to the nervous system.
Although these are different forms of pathology, common
activities emerge for LRP1, which may be explained based
on our understanding of this receptor at the molecular level.
LRP1 in Atherosclerosis

Atherosclerosis is a complex chronic disorder, which pro-
gresses at a rate that is regulated by inflammatory cells that
enter the arterial wall and vascular smooth muscle cells
(VSMCs) that migrate from the arterial media into the neo-
intima.53e55 Despite early studies suggesting that, in cell
culture, direct binding of ligands to LRP1 may promote
VSMC proliferation,56 conditional deletion of LRP1 in
VSMCs in mice has shown that the dominant activity of
LRP1 in VSMCs in vivo is antiatherogenic, by limiting acti-
vation of PDGF receptor-b signaling.37 In macrophages,
LRP1 also inhibits atherogenesis and several related mecha-
nisms have been described, including its effects on express-
ion of inflammatory mediators, regulation of local matrix
metalloprotease-9 (MMP9) activity, effects on transforming
growth factor b activity, and regulation of extracellular matrix
deposition.57e60

The activity of LRP1 in macrophage cell signaling pro-
vides an explanation for its activity in atherosclerosis. When
LRP1 undergoes RIP, the cytoplasmic fragment may re-
locate to the nucleus, where it binds to interferon regulatory
factor-3, promoting export of interferon regulatory factor-3
ajp.amjpathol.org - The American Journal of Pathology
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Figure 2 LRP1 interaction map generated using
the Ingenuity IPA System. The map was limited to
interactions involving the nervous system in in-
flammatory disease and in the inflammatory
response. Interactions are stratified in relation to
the location of the LRP1-interacting gene product
relative to the cell. Interacting gene products
include cytokines (closed square), growth factors
(broken square), proteases (horizontally elon-
gated diamond), other enzymes (vertically elon-
gated diamond), proteins involved in transport
(trapezoid), transmembrane receptors (vertically
elongated oval), ion channel subunits (broken
vertically elongated rectangle), kinases (inverted
triangle), transcription regulators (horizontally
elongated oval), and phosphatases (triangle).
Other categories of gene products are shown as
circles. Direct interactions are shown with a solid
line and indirect interactions with a broken line. A
solid line without an arrow implies a binding
interaction. An arrowhead at the end of a broken
line implies that one gene product acts on the
other. A perpendicular bar implies an inhibitory
interaction.

LRP1 in Inflammation
from the nucleus and suppressing expression of pro-
inflammatory lipopolysaccharide target genes.49 Because
lipopolysaccharide and other inflammatory mediators pro-
mote LRP1 shedding,51 which is the first step of RIP, the
activity of the LRP1 cytoplasmic fragment may constitute an
important feedback inhibition pathway, limiting amplifica-
tion of inflammation in already inflamed tissues. Increased
levels of shed LRP1 are observed in the plasma of patients
with rheumatoid arthritis and systemic lupus erythematosis.51

A second pathway by which macrophage LRP1 may limit
inflammation has been described. In some cells, including
macrophages, LRP1 decreases the cell-surface abundance
of tumor necrosis factor receptor-1 and attenuates activation of
IkB kinaseeNF-kB signaling.61 NF-kB activation results in
increased expression of complement proteases, plasminogen
activators, and inflammatory mediators, such as inducible ni-
tric oxide synthase and IL-6. In LDL receptoredeficient mice
with LRP1-deficient monocytes and macrophages, athero-
sclerotic lesions demonstrate increased levels of monocyte
chemoattractant protein-1/chemokine ligand (CCL) 2.58 The
increase in CCL2 is associated with an increase in macro-
phage density in the plaques. We showed that expression of
CCL2 by LRP1-deficient bone marrowederived macro-
phages is increased because of activation of NF-kB
signaling.61 Thus, it is reasonable to hypothesize that the
ability of LRP1 to suppress NF-kB signaling may limit
monocyte recruitment into atherosclerotic plaques and the
The American Journal of Pathology - ajp.amjpathol.org
adverse effects of macrophage-generated mediators in the
arterial wall. LRP1 signaling toAkt inmacrophages alsomay
be antiatherogenic by preventing macrophage apoptosis
within plaques.62

The studies showing that macrophage LRP1 limits
atherosclerosis in mice used a variety of model systems,
including Cre-mediated LRP1 knockout in myeloid cells in
an LDL receptoredeficient or apolipoprotein E/LDL re-
ceptor double-deficient background and transplantation of
bone marrow from mice with LRP1-deficient macro-
phages into LDL receptoredeficient mice.57e60 LRP1
emerged as antiatherogenic in all these studies. The rele-
vance of studies in which the LRP1 gene is deleted in mac-
rophages may be found in a body of literature demonstrating
that, in monocytes and macrophages, LRP1 expression is
highly regulated.51,63e67 Inflammatory mediators present in
atherosclerotic plaquesmay combine to substantially decrease
LRP1 expression. The same inflammatory mediators also
promote LRP1 shedding.51 The effects of these events on
expression of important mediators, such as CCL2, may be
additive. Loss of cell-surface LRP1 in monocytes and macro-
phages may increase expression of CCL2 by activation of NF-
kB signaling, whereas shed LRP1 further induces CCL2
expression by its direct effects on cells.51,58,61 Therapeutic
agents that antagonize inflammation may sustain LRP1
expression at the macrophage cell surface and inhibit LRP1
shedding, thereby counteracting progressionof atherosclerosis.
21
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Although we have focused mainly on mechanisms by
which LRP1 in VSMCs and macrophages regulates athero-
genesis, the liver is a rich source of LRP1. Early work
demonstrated that inactivation of hepatic LRP1 increases
levels of circulating chylomicron remnants.68 More recently,
it has been reported that loss of hepatic LRP1 is associated
with increased atherosclerosis in rodent models because
of the accumulation of proatherogenic mediators in the
plasma.69
LRP1 in Cancer

Early studies, focused mainly on tumor cell lines, suggested
that malignant transformation may be associated with loss of
LRP1 expression.70e72 However, we now understand that
LRP1 expression is substantially increased by hypoxic
conditions that are common in malignancies in vivo.73 Thus,
tumor cells cultured in ambient oxygen may not accurately
report LRP1 expression and activity as they occur in cancer.
The effects of LRP1 expression in tumor cells on progres-
sion of malignancy remain unresolved. In prostate cancer,
LRP1 expression is observed mostly in high Gleason grade
tumors, which are the most aggressive tumors, whereas in
hepatocellular carcinoma, loss of LRP1 expression may
correlate with tumor progression.71,72,74,75

From the mechanistic standpoint, LRP1 demonstrates
numerous activities that may regulate cancer cell physiology
in vitro and in preclinical mouse model systems. Some of
the reported activities of LRP1 may actually yield opposing
effects on cancer progression. Thus, understanding the role
of LRP1 in cancer requires model systems that report
diverse LRP1 activities in an integrated manner. In fibro-
sarcoma cells and astrocytic tumor cells, LRP1 affects cell
migration and invasion by regulating the proinvasive uPA-
uPAR system.29,76,77 The interaction of LRP1 with uPA
and uPAR is complex and has been recently reviewed.29

LRP1 attenuates the activity of uPA as an activator of
extracellular proteases that facilitate cellular penetration
of tissue boundaries. At the same time, LRP1 regulates
uPAR signaling to factors such as ERK1/2, which promote
tumor cell survival, proliferation, migration, and invasion.
Whether LRP1 inhibits or promotes uPAR signaling prob-
ably depends on whether plasminogen activator inhibitor-1
is available and on the abundance of uPAR in the plasma
membrane.

Direct binding of ligands to LRP1, including protease nexin-
1, Hsp90, and midkine, may directly activate cell signaling in
cancer cells, as has beenobserved in non-transformed cells such
as neurons and interstitial fibroblasts.78e80 When ERK1/2 is
activated downstream of LRP1, MMP9 and MMP2 are
expressed at increased levels.41,78,81 Because these MMPs are
implicated in cancer cell invasion and metastasis, ERK1/2
activation downstream of LRP1 may promote cancer progres-
sion. Another LRP1 ligand, apolipoprotein E, inhibits tumor
cell invasion and metastasis by a pathway that also requires
22
LRP1.82 We have observed that LRP1 gene silencing in CL16
cancer cells has no effect on xenograft formation, growth of
tumors in mice, or the ability of these tumor cells to metastasize
to the lungs; however, when LRP1 is silenced, pulmonary
metastases formed by CL16 cells fail to grow.73 How LRP1
may selectively facilitate growth or survival of tumor cells in
metastases without having the equivalent effect on cells in the
primary tumor is a topic for future investigation.
A clearer picture has emerged regarding the role of

macrophage LRP1 in cancer progression. It is well accepted
that monocytes and macrophages that infiltrate tumors may
promote cancer progression and metastasis by expressing
growth factors and proteases that are exploited by the ma-
lignant cells.83 Macrophages also have been linked to tumor
angiogenesis. We found that monocytes in which LRP1 is
deleted by Cre-LoxP recombination migrate in increased
numbers into orthotopic and s.c. isografts of PanO2 pancre-
atic cancer cells in mice.84 The increase in tumor infiltration
by LRP1-deficient macrophages provides an interesting par-
allel to atherosclerotic plaques, which also are infiltratedmore
aggressively by LRP1-deficient macrophages.58 In addition
to CCL2, we identified novel chemokines involved in re-
cruitment of inflammatory cells that are expressed at in-
creased levels by LRP1-deficient macrophages.84 Most
significantly, increased expression of macrophage inflam-
matory protein-1a/CCL3 and macrophage inflammatory
protein-1b/CCL4 was observed. These chemokines are
known to amplify inflammation. The increase in tumor infil-
tration by LRP1-deficient macrophages was accompanied by
an increase in tumor angiogenesis,84 most likely reflecting
vascular endothelial growth factor and other proangiogenic
proteins released by the macrophages.83
LRP1 in Injury to the Nervous System

In the healthy central nervous system and in the uninjured
peripheral nervous system (PNS), multiple groups of neu-
rons express LRP1.85,86 Figure 3A shows an immuno-
histochemical (IHC) analysis identifying intense LRP1
immunoreactivity in the cell bodies of pyramidal neurons
from the mouse cerebral cortex. Although astrocytes in the
healthy brain demonstrate limited LRP1 expression, reactive
astrocytes, responding to injury or disease, are robustly
LRP1 immunopositive.87 Similarly, Schwann cells, which
provide myelination and trophic support to axons in the
uninjured PNS, demonstrate substantially increased LRP1
expression in response to nerve injury.86 Figure 3B is an
IHC analysis showing robust LRP1 immunoreactivity in
activated Schwann cells in crush-injured rat sciatic nerve, 3
days after injury. At this time point, macrophages have
begun to infiltrate the injured nerve. These cells also are
LRP1 immunopositive.
Earlier in this review, we discussed the possible rela-

tionship of abnormal phagocytosis of cellular debris to the
development of autoimmune disease. In multiple sclerosis
ajp.amjpathol.org - The American Journal of Pathology
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Figure 3 IHC analysis to detect LRP1 in the nervous system. A: LRP1
immunostaining of mouse cerebral cortex. LRP1 was detected with a pri-
mary polyclonal antibody that detects the b-chain (Sigma-Aldrich, St.
Louis, MO). Staining was conducted using a Ventana System (Tucson, AZ).
B: A section of rat sciatic nerve distal to a crush injury site, which was
recovered 3 days after nerve injury. LRP1 was detected using polyclonal
antibody R2629. The section is counterstained with methylene green.
Representative LRP1-immunopositive Schwann cells are marked with arrows.
The asterisk marks a macrophage. Scale bars: 35 mm (A); 12 mm (B).

LRP1 in Inflammation
(MS), failure to clear products of degenerated myelin may be
important in initiating the immune response.88 Thus, the
function of LRP1 as a phagocytic receptor for apoptotic cells,
cellular debris, and degenerated myelin may be important in
the pathophysiological characteristics of MS.18e22 Consistent
with this model, LRP1 expression is up-regulated in the rims
of chronic active MS lesions in humans.89

LRP1 and other members of the gene family, including
apolipoprotein E receptor 2 and the VLDL receptor, have
been implicated in Alzheimer disease.90 Animal models and
in vitro experiments have revealed numerous mechanisms
by which LRP1 may regulate Alzheimer disease onset and
progression. Among these are the role of LRP1 as an
endocytic and signaling receptor for apolipoprotein E and its
function as a receptor for Ab peptide. Neuroinflammation
may contribute to the pathogenesis and progression of
Alzheimer disease.91 It is, thus, interesting that the ε4 allele
of apolipoprotein E, which is associated with increased risk
for Alzheimer disease, is more proinflammatory than the ε3
allele.91 Both forms of apolipoprotein E are ligands for
LRP1.90

The PNS is distinguished from the central nervous system
by a substantially greater capacity for regeneration after
The American Journal of Pathology - ajp.amjpathol.org
injury,92 and recent studies suggest a major role for LRP1 in
this process. Schwann cells function as the first responders
to acute PNS injury. Activated Schwann cells dedifferen-
tiate, proliferate, migrate, participate in the phagocytosis
of myelin and cellular debris, and establish scaffolds that
allow for eventual axonal regeneration.93 Successful nerve
regeneration requires the recruitment of monocytes from the
blood. These cells further facilitate the clearing of debris;
however, as in other forms of injury, the extent of macro-
phage infiltration and inflammation must be highly regu-
lated in the injured nerve, both temporally and in amplitude.

LRP1 is rapidly up-regulated in Schwann cells in vivo in
the injured peripheral nerve and functions as a robust cell-
signaling receptor in this cell type, activating pathways
that support Schwann cell survival under stressful condi-
tions.86,94,95 LRP1-initiated cell signaling also regulates
Schwann cell migration by its effects on activation of ERK
and the activity of Rho GTPases.45,96 Thus, LRP1 has
emerged as an orchestrator of key events occurring in
Schwann cell physiological characteristics in PNS injury.
As a first approach to study the effects of LRP1 on Schwann
cell expression of inflammatory mediators in PNS injury, we
treated Schwann cells in culture with activated a2M. This
LRP1 ligand is present at low levels in the uninjured pe-
ripheral nerve but greatly increased in concentration in the
injured nerve.97 By using an expression array approach
followed by validation experiments, we showed that
Schwann cells express increased levels of CCL2 when these
cells are treated with activated a2M. This LRP1-mediated
response differentiated Schwann cells from macrophages
and suggested that Schwann cell LRP1 may be involved in
generating early signals for macrophage recruitment after
nerve injury. Interestingly, in this in vitro study, tumor ne-
crosis factor a and CCL3 were both decreased in expression
in response to activated a2M, suggesting that the activity of
Schwann cell LRP1 may be more accurately characterized
as regulating inflammation in the injured nerve, as opposed
to simply promoting it.

The potent activity of Schwann cell LRP1 as a regulator
of inflammation, tissue damage, and repair in the injured
peripheral nerve emerged when LRP1 was deleted in
Schwann cells by activating Cre under the control of the
myelin P0 promoter in mice in which the LRP1 gene is
flanked by LoxP sites.95 P0 is expressed by myelinating and
nonmyelinating Schwann cells. Quickly after nerve injury,
mice with LRP1-deficient Schwann cells demonstrated
greatly increased nerve deterioration, with extensive edema,
loss of myelin, and increased inflammatory cell infiltrates.
Histological evidence of exacerbated nerve injury was
accompanied by functional evidence. Mice with LRP1-
deficient Schwann cells demonstrated sustained loss of
motor and sensory function. Tactile allodynia was increased
in magnitude and persistent after this test of pain sensation
normalized in control mice. Compromise to the processes
that occur in the early stages after nerve injury was asso-
ciated with permanent sequelae. Nerve regeneration 20 days
23
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after nerve injury was substantially attenuated in the mice
with LRP1-deficient Schwann cells.95

LRP1 gene deletion in Schwann cells highlighted the
important role these cells play in preventing the develop-
ment and maintenance of chronic neuropathic pain. The
mechanisms that lead to total collapse of regulated injury
repair in nerves in which LRP1 is deleted in Schwann cells
remain incompletely understood. We know that LRP1-
deficient Schwann cells survive in decreasing numbers
under stressful conditions86,94,95; however, other processes
are also most likely operational. In wild-type nerves, injury
may increase expression of the LRP1 ligand, MMP9, by as
much as 100-fold, which is important because MMP9 serves
as a chemoattractant for macrophages in PNS injury.98 It is
reasonable to hypothesize that LRP1 functions to clear
MMP9 from the peripheral nerve, thereby serving to atten-
uate inflammation. The LRP1 ligand, tissue-type plasmin-
ogen activator, plays a protective role in sciatic nerve
injury.99 Finally, although it is not clear at this time to what
extent LRP1 shedding occurs in the injured peripheral
nerve, when shed LRP1 interacts with Schwann cells, it
counteracts the effects of tumor necrosis factor a and IL-1b
locally and in the spinal dorsal horn, providing a potentially
potent mechanism for regulation of neuroinflammation and
chronic neuropathic pain after nerve injury.50

Neuropathic pain is a difficult and chronic disorder,
affecting millions of patients worldwide with limited thera-
peutic options.100 The activities of Schwann cell LRP1 that
we have described support a model in which interventions
that regulate Schwann cell physiology in PNS injury may
prevent or treat chronic pain. The extent to which LRP1
signaling is activated in PNS injury remains unclear. An
opportunity exists to supplement the injured nerve with tar-
geted LRP1 ligands that activate cell signaling.43,45 Whether
such agents promote regeneration, facilitate favorable
cycling of neuroinflammation, and prevent chronic neuro-
pathic pain is under investigation.
Conclusions

The ability of LRP1 to couple endocytosis and phagocytosis
with cell signaling provides the cell with a unique means to
respond to its microenvironment. Specificity in the function
of LRP1, regarding cell type, coreceptor expression, the
cellular microenvironment, and even the assortment of li-
gands that are present, appears to be the rule. In diverse
forms of pathology, LRP1 has emerged as a regulator of the
response to injury and inflammation. Multiple mechanisms
appear to be conserved in different tissues and in different
forms of pathology. These include the ability of LRP1 to
facilitate removal of potentially autoantigenic injury products
and to regulate signaling pathways that control expression of
cytokines, chemokines, and other inflammatory mediators. In
atherosclerosis, cancer, and injury to the nervous system,
LRP1 regulates inflammatory cell recruitment and, likely,
24
their survival and persistence. Considerable opportunity ex-
ists to exploit LRP1 activity for therapeutics development.
However, numerous challenges remain to understand the
function of this receptor and other receptors in this exciting
gene family, at themolecular level and in the pathophysiology
of disease.
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