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ABSTRACT OF THE DISSERTATION

Statistical Methods for Enriched and Adaptively Randomized Clinical Trials

By

Navneet Ram Hakhu

Doctor of Philosophy in Statistics

University of California, Irvine, 2024

Professor Daniel L. Gillen, Chair

Randomized controlled clinical trials (RCTs) serve as the gold standard to determine whether

a candidate treatment has a favorable benefit-to-risk ratio for a pre-specified target patient

population. Enrichment strategies are commonly employed in RCTs to identify the appro-

priate target population of patients who would likely benefit from a candidate treatment

(predictive) and/or have the outcome of interest during the course of the trial (prognostic),

including enriching based upon amyloid beta and tau protein levels in Alzheimer’s disease

(U.S. Food and Drug Administration, 2019b). Currently, there is a gap in the understanding

of RCTs using enrichment and adaptations to the randomized treatment assignment alloca-

tions (response-adaptive randomization), especially under model misspecification (violation

of assumptions) for fixed sample and adaptive RCTs with a repeated measures (e.g., changes

in activities of daily living scores) or a censored time-to-event (e.g., time to dementia) pri-

mary outcome.

In this dissertation, we focus on valid estimation of estimands (a contrast of summary mea-

sures between treatment arms for an appropriate target population) from enriched and adap-

tively randomized clinical trials. We consider the trial-specific RCT estimand (RCT-E) and

a real world estimand (RW-E) for a broader patient population for whom off-label use may

be a possibility. Aim 1 quantifies the impact of enrichment in fixed sample pre-post (only
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two assessments; one pre- and one post-randomization) RCTs. We show that the application

of standard statistical methods, such as the analysis of covariance (ANCOVA) model, yield

biased estimates for the RW-E. We propose a novel bias-adjusted estimator of the RCT-E

to estimate the RW-E based on an analytic derivation under model misspecification in the

multivariate normal data setting. Aim 2 focuses on reliably estimating the RCT-E in fixed

sample adaptively randomized time-to-event RCTs that allows for enhanced replicability in

the presence of time-varying treatment effects. We propose a novel adaptive randomization

censoring-robust estimator that reweights the partial likelihood score à la Boyd et al. (2012)

that accounts for differential censoring patterns resulting from adaptive randomization and

by incorporating the randomization scheme in the re-weighting, we gain efficiency. Impor-

tantly, our proposed estimator consistently estimates a standardized marginal hazard ratio

for the RCT-E. Finally, in Aim 3 we examine how to prospectively design and plan for the

monitoring of time-to-event group sequential designs that warrant using censoring-robust es-

timators when targeting a RCT-E. We show how the statistical information of our proposed

adaptive randomization censoring-robust estimator is non-linear and has non-independent

increments, thus requiring appropriate modifications to the planned timing of interim anal-

yses and the final boundary to maintain statistical operating characteristics and scientific

objectives of such trials. Overall, the statistical contributions of this research will aid in the

design, conduct, and analysis of enriched and adaptively randomized clinical trials to sup-

port efforts during drug development, regulatory review, and clinical decision-making post

approval.
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Chapter 1

Introduction

1.1 Overview

Medical interventions are designed to prevent, slow the progression of, or treat disease for

patients from a specific target population. Defining the target population often depends

on several considerations, including: (i) scientific and clinical rationale about the disease;

(ii) the mechanism of action of the investigational product under study; (iii) the potential

vulnerability of patients from particular populations that may indicate an a priori potential

safety concern, including having pre-existing conditions such as comorbidities (study ex-

clusion criteria); and (iv) characteristics that define the afflicted patient population (study

inclusion criteria, that may be used to enrich study samples).

Clinical trials are experiments conducted on human volunteers. At minimum, the primary

aim of a clinical trial is to determine whether a candidate intervention is (ideally, causally)

associated with a favorable benefit-to-risk ratio for a clinically meaningful outcome of inter-

est. Benefit corresponds to the efficacy and risk corresponds to the safety of a candidate

intervention under study. Typically human volunteers are assigned to one of at least two
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interventions to aid in the evaluation of benefit-risk : experimental arm and control arm (e.g.,

placebo or standard of care). Ideally to further clinical understanding and practice, we want

to establish a causal association (cause and effect) between an intervention and clinically

meaningful outcome.

Randomization, if ethical, is a mechanism used in clinical trials that ensures eligible human

volunteers (study participants) are randomly assigned to either the experimental or control

arm. Consequently, randomization on average balances intervention arms across all mea-

sured and unmeasured confounders—factors that are causally associated with the outcome

and also causally associated with the predictor of interest (intervention assignment). Such

experiments are called randomized controlled clinical trials (RCTs). A central tenet allowing

the possibility of randomization of individuals to a control arm (even if placebo) is that prior

to the start of the RCT there is inconclusive evidence suggesting benefit or harm for the

experimental arm versus control arm—termed clinical equipoise. However, if after the start

of the RCT, reliable evidence emerges from the monitoring of this RCT or from external

sources that invalidates the clinical equipoise assumption, it would no longer be ethical to

at least randomize newly enrolled patients to one of the two arms. In such a situation, a

Data Monitoring Committee (DMC) — a group of typically three to five experts with col-

lective expertise and experience in clinical trials, clinical practice, therapeutic areas, ethics,

and biostatistics, independent from the trial sponsor, tasked with monitoring study con-

duct and emerging safety and efficacy data as a trial is ongoing — would typically convene

and formulate a recommendation to the sponsor taking the newly emerged information into

consideration as it pertains to the trial participants they have been monitoring.

Furthermore, to protect against spurious results and data-driven analyses, pre-specification

of statistical analyses of the pre-specified primary and secondary outcomes (that correspond

to scientific questions of interest) must be documented and decided upon before looking

at the data. Ideally, the statistical analyses should be determined before the start of a
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study. Accordingly, both the within-group measure of treatment effect and the between-

group comparison of treatment effect need to be determined to evaluate the potential for

benefit.

Overall, evaluation of the benefit-risk ratio requires valid estimation of treatment efficacy

coupled with a careful assessment of the safety profile (e.g., treatment-emergent adverse

events). In this dissertation, we focus on valid estimation of treatment efficacy. Two phe-

nomena that can complicate obtaining valid estimation of treatment efficacy in RCTs are:

(1) effect modification (i.e., treatment heterogeneity across subpopulations); and (2) time-

varying treatment effects. In the presence of effect modification, the selection of the full

analysis set population and/or recruitment strategies (or lack thereof) of certain subpop-

ulations of patients may alter the estimated treatment efficacy in a trial. In the presence

of time-varying treatment effects, the length of follow-up of enrolled (and randomized) trial

participants may alter the estimated treatment efficacy in a trial. These phenomena can

arise in the fixed sample RCT setting. Furthermore, altering the estimation of treatment

efficacy can be compounded for RCTs designed with a sequential testing plan, referred to as

adaptive design RCTs. Sequential testing can lead to early stopping of a trial for efficacy,

safety/harm, or futility, reducing the length of follow-up among trial participants and up- or

down-weighting early signals in favor of or against the experimental treatment. For these rea-

sons, it is therefore of importance that the design of every RCT should include collaborative

discussions among trial leadership about the potential for and relevance of effect modification

and time-varying effects as it pertains to the trial’s pre-specified primary question of inter-

est. To facilitate this process, examination of the potential impact of both phenomena in the

estimation of treatment efficacy for a given RCT design (both fixed sample and adaptive)

is necessary for trial sponsors and scientific review boards to make well-informed decisions

prior to starting trial recruitment.

Ultimately, an important two-fold objective for any RCT is to infer results from the trial
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that are replicable and that generalize to the appropriate target population. Replicability

of results can impact the regulatory evaluation of candidate drugs and biologics. Generaliz-

ability can impact clinical practice by way of the label of approved drugs and biologics for

commercial use by regulatory agencies (e.g., U.S. Food and Drug Administration, FDA). An

important sequela of regulatory approval of a drug or biologic is the potential for off-label

use — when an intervention is approved for a specific target population that is indicated

on the drug label, but ends up being used more broadly among individuals not meeting the

criteria of the patient population on the packet insert label.

In this dissertation, as is ubiquitously done for clinical trials in practice, we consider both

the target of inference (contrast of summary measures between treatment arms) and the

appropriate target population of interest, together known as the estimand. Estimands are

used throughout statistical inference to answer scientific questions, whether explicitly men-

tioned or not. Simply put, an estimand is defined as the quantity of interest to be estimated,

known as the target of inference — often times in RCTs this is a between-group compari-

son of within-group summary measures (e.g., difference in means; ratio of hazards) — for

a particular target population of interest. One target population of interest corresponds to

the population that comprises the enrolled RCT sample. We know, however, that often we

are not simply interested in results pertaining to only those individuals who participate in

trials. There are a variety of reasons for this, including the lack of representation of clin-

ical trial samples for the intended target population of interest. Representativeness of the

sample is vital not only in RCTs but in all studies (e.g., observational studies and sample

surveys). This is a concept emphasized repeatedly in introductory statistics courses at the

undergraduate level, yet in research settings and practice, we sometimes lose sight of this

basic, albeit extremely critical concept.

To this end, estimands form the basis of our investigations in this dissertation to: (i) quantify

the impact of enrichment strategies and adaptive randomization in RCTs; and (ii) develop
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new statistical methods to reduce bias and improve generalizability of results to the appro-

priate target populations. We focus on two types of estimands: the RCT estimand (RCT-E)

and a real world estimand (RW-E) corresponding to the trial-specific population and broader

patient population (that may include off-label use), respectively.

1.2 Enrichment

The choice of target population relates to the scientific objectives and questions set to answer.

Because of possible heterogeneity of treatment effects across subpopulations of patients (e.g.,

due to health disparities), medical interventions are not a panacea for the entire patient

population. Enrichment strategies using baseline patient characteristics (e.g., biomarker

status or surrogate outcomes) are used to decide which patients to randomize — those likely

to benefit from treatment (prognostic) or have the outcome during the trial (predictive; to

permit shorter, smaller trials).

The FDA guidance document on enrichment strategies (2019b) summarizes the relevance and

commonality of enrichment strategies in an array of disease areas. Predictive enrichment

examples include: systolic or diastolic dysfunction in congestive heart failure; high renin

hypertension for assignment to beta-blockers or ACE inhibitors; responders based on protein

or genetic markers for breast cancer (HER2), lung cancer (epidermal growth factor receptor),

and cystic fibrosis (transmembrane conductance regulator mutation). Prognostic enrichment

is divided into event- vs. progression-based to identify high-risk patients. Examples include:

ACE inhibitors in heart failure (enalapril trials); history of heart disease and high cholesterol

(statin trials); high-risk for breast cancer women using the Gail model (adjuvant therapy

trials of tamoxifen); history of exacerbation in chronic pulmonary obstructive disease; MRI

findings for multiple sclerosis; and amyloid beta and tau proteins in AD.
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Figure 1.1: An example of a fixed enrichment RCT.

Enrichment criteria either remain the same for the duration of recruitment (fixed enrichment;

see Figure 1.1) or are modified (adaptive enrichment). In either case, the generalizability of

trial results may be complicated in settings where only the “enriched” patients are random-

ized, but in clinical practice “non-enriched” patients are likely to receive treatment off-label.

Since the signing of the Prescription Drug User Fee Act (PDUFA) VI (U.S. Food and Drug

Administration, 2016; Dabrowska and Thaul, 2018), the FDA’s pilot program on complex

innovative design clinical trials for new drug applications is a mechanism to examine and

better understand adaptive designs that play important roles in drug discovery to address

scientific questions in timely, feasible, and ethical ways.

Implementing enrichment strategies in RCTs aligns with the National Plan to Address

Alzheimer’s Disease Strategy 1.B (2020) to expand research to develop disease-modifying

treatments. Examples of enrichment strategies in early AD RCTs include: (i) fixed en-

richment: the UC Cures Nicotinamide as an Early AD Treatment (NEAT) trial (2021,
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ClinicalTrials.gov identifier NCT03061474), a phase 2 proof-of-concept pre-post (only two

assessments: one pre- and one post-randomization) RCT where patients are randomized to

nicotinamide or placebo if they meet biomarker criteria based on cerebral spinal fluid amy-

loid beta level or a ratio of total tau to amyloid beta; and (ii) response-adaptive enrichment

(response-adaptive randomization and enrichment): BAN2401-G000-201 (2024, ClinicalTri-

als.gov identifier NCT01767311), a Bayesian adaptive phase 2b proof-of-concept longitudinal

RCT where response adaptive randomization was used to assign patients to one of five doses

of lecanemab or placebo. Additionally, during the conduct of the BAN2401-G000-201 trial

changes were made to the studied patient population as requested by the European Medicines

Agency due to concerns of amyloid-related imaging abnormalities-edema (ARIA-E) among

apolipoprotein E ε4 carriers (AlzForum, nd). Such changes to the sample alters the pre-

specified target population and further complicates the estimation of treatment effect. While

enrichment strategies can expedite efforts to identify candidate treatments, understanding

the impact of enrichment on the statistical analysis of treatment efficacy in RCTs when sta-

tistical assumptions are violated is critical for obtaining reliable evidence used to evaluate

benefit-risk, with potential downstream consequences for providers and patients.

1.3 Adaptive randomization

In an effort to accelerate drug development and potentially enhance the ethical conduct of

trials, adaptations to traditional RCT designs may be considered. Adaptive designs consti-

tute a broad class of RCT designs in which adaptations have ideally been pre-specified. The

FDA guidance document (2019a) classifies adaptive designs into two types: well-understood

and less well-understood. In particular, when multiple adaptations are planned or considered

in a RCT, the typical statistical operating characteristics to evaluate such designs become

complicated and require simulation studies to assess. Hence, designs with multiple adapta-
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tions, such as adapting patient allocation and adapting enrichment, are currently classified

as less well-understood. This is particularly true with respect to the impact on estimated

treatment effects and the degree to which estimates may be biased for such designs. Prior

research examining adaptive enrichment (Simon and Simon, 2013) has focused primarily on

controlling the type I error rate as opposed to possible bias due to violation of assumptions.

Another type of adaptation to a trial is changing the treatment assignment allocation (ran-

domization ratios). In particular, altering the randomization ratios based on accumulating

outcome (response) data is called response-adaptive randomization has garnered attention in

recent years based on the work by Wei and Durham (1978) on randomized Play-the-Winner.

Prior work on response-adaptive randomization has looked at frequentist methods (Simon

and Simon, 2013; Proschan and Evans, 2020, 2021) and Bayesian methods (Thall, 2021).

Proponents of response-adaptive randomization (Thall, 2021; Rosenberger et al., 2012) ar-

gue that patients in a clinical trial are more likely to receive the treatment that is beneficial

compared to a fixed randomization scheme. On the other hand, others argue that response-

adaptive randomization creates issues that are not present with fixed randomization, such as

inefficiency compared to fixed randomization (Korn and Freidlin, 2022) and biased estimates

of treatment effect in the presence of temporal trends (Proschan and Evans, 2020, 2021); for

the latter, it has been suggested to use a block randomization scheme and block-stratified

analysis when the outcome of interest is binary (Korn and Freidlin, 2011). While there are

mixed reviews of the merits of response-adaptive randomization in practice, there are limi-

tations in the understanding of the impact of response-adaptive randomization on statistical

operating characteristics, whether they be frequentist or Bayesian. Without understanding

the operating characteristics of candidate designs we run the risk of exposing increased num-

bers of trial participants to treatments that are ineffective or harmful because we may not

obtain accurate and precise treatment effect estimates for the target population to that we

wanted to generalize to.
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Furthermore, prior research (Proschan and Evans, 2020, 2021) suggests that bias is induced

for estimated treatment effects when using response-adaptive randomization and when there

are temporal trends — notably, the bias would be towards earlier occurring treatment effects.

That said, previous work has assumed a correctly specified model. There are, however,

several ways that a violation of assumptions may arise with time-to-event outcomes (Ye and

Shao, 2020). Examples of misspecification with time-to-event outcomes include dependent

censoring, non-proportional hazards, and time trends. Furthermore, while time-to-event

outcomes are commonly specified in RCTs, yet little attention has been paid to time-varying

effects with adaptive randomization.

1.4 Dissertation aims

In order to ensure reproducible and reliable RCT results, a priori specification of statistical

methods to estimate treatment effects is essential (and required). Violation of assumptions

for statistical methods may result in bias (tendency to systematically over- or under- estimate

treatment effects). Biased estimates can lead to approval of less effective therapies, in the

best case, and approval of potentially harmful or ineffective therapies or missing an effective

therapy, in the worst case, as a consequence of over- or under-estimating treatment effects.

Currently, there is a gap in the understanding of enriched pre-post RCTs and adaptively ran-

domized time-to-event trials because little attention has been paid to violation of statistical

assumptions with respect to the mean-variance relationship and time trends, respectively.

Because biased estimates alter the benefit-risk ratio, there is a critical unmet need to evaluate

the impact of enriched and adaptively randomized clinical trials for AD and other diseases.

To this end, the three aims of this dissertation are:

Aim 1. To develop methodology for bias-adjusted estimation of the real world estimand
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(RW-E) from a fixed sample pre-post RCT with a continuous primary outcome and a

fixed pre-randomization enrichment strategy.

Aim 2. To extend methods for censoring-robust estimation of the RCT estimand (RCT-

E) in fixed sample time-to-event trials with adaptive randomization in the presence of

time-varying treatment effects.

Aim 3. To evaluate and quantify non-linear statistical information growth of censoring-

robust estimators of the RCT-E in adaptively randomized time-to-event group sequen-

tial trials that will facilitate the design, monitoring, and timing of interim analyses.

The rationale for this dissertation is to identify scenarios in which enrichment and adaptive

randomization yield biased estimates, develop methods to correct for the bias induced by

such designs, and ensure valid inference can be obtained to better inform all stakeholders

(e.g., patients, sponsors, regulatory).

The remainder of this dissertation begins with Chapter 2, providing an overview of pre-post

designs, time-to-event analyses, and group sequential designs, serving as supplementary back-

ground material for Aims 1-3. Chapter 3 examines the use of enrichment in pre-post RCTs

for a RW-E (Aim 1). Chapter 4 transitions to the RCT-E and the role of adaptive randomiza-

tion in time-to-event RCTs in the fixed sample setting (Aim 2). The methodology developed

there will then be used in Chapter 5 that extends our investigation of censoring-robust esti-

mators of the RCT-E to the time-to-event group sequential setting and how to design and

implement a sequential monitoring plan using our adaptive randomization censoring-robust

estimator (Aim 3). Finally, Chapter 6 includes a summary and future directions.
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Chapter 2

Background

2.1 Pre-Post designed randomized trials

A pre-post designed RCTs typically consists of two outcome assessment times: one at pre-

randomization and one at post-randomization. Often in a pre-post design the corresponding

target of inference or estimand, denoted by θ, is the difference in mean change from baseline

(pre-randomization) comparing a subpopulation of patients randomly assigned to treatment

to a subpopulation of patients randomly assigned to control (e.g., placebo). The two-sample

t-test, analysis of covariance (ANCOVA), and paired change are three linear regression mod-

els commonly used to estimate θ. In the typical RCT setting, each of these three models

consistently estimate θ and have the same interpretation for θ. The ANCOVA model, how-

ever, is more efficient, and hence preferred, in settings when the correlation is at least 0.5

between pre and post assessments.

The RCT-E for a fixed pre-post design, denoted by θ, is the change from baseline comparing

two subpopulations of patients, those randomized to treatment versus those randomized to

control. In the RCT setting, three typical analytic approaches can be used to estimate θ in
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the RCT setting.

• Two-sample t-test: E[Post|Tx] = β∗
0 + β1Tx

• ANCOVA: E[Post|Tx, Pre] = β0 + β1Tx+ β2Pre

• Paired Change: E[(Post− Pre)|Tx] = β∗∗
0 + β1Tx

With no enrichment, RCT-E θ = β1 where β1 corresponds to the marginal population

parameter for patients from a broader patient population (RW-E).

ANCOVA model

Consider the outcome of interest is a continuous variable measured at the final (post-

randomization) time point, denoted by Y . Let the predictor of interest X be binary taking

values X = 1 and X = 0 for treatment and control, respectively, assigned randomly in a 1:1

fashion. The baseline (pre-randomization) measurement of the outcome assessed at the final

time point, denoted by W , is a precision variable in a RCT. In this setting, Z is associated

with the outcome of interest Y as it is a measurement of the outcome at baseline. However,

W is not associated with treatment assignment X, on average, because of randomization

implying that the correlation between W and X is zero (i.e., rWX = 0). Hence, W is a

precision variable. Accordingly, the ANCOVA model is

Yi = β0 + β1Xi + β2Wi + ϵi

where independent ϵi ∼ (0, σ2
Y |X,W (µi)) with σ2

Y |X,W (µi) a function of the mean-variance

relationship for patients i = 1, . . . , n. The ANCOVA model can also be written as

E[Y |X,W ] = β0 + β1X + β2W.
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In matrix notation, the ANCOVA model can be written as Y⃗ = Xβ⃗ + ϵ⃗ where X =

[⃗1 X⃗ W⃗ ]n×3 and β⃗ = [β0 β1 β2]
T . The (ordinary) least squares estimate of β⃗ is

̂⃗
β =

(XTX)−1XT Y⃗ with V ar[
̂⃗
β] = (XTX)−1XTV ar[Y⃗ |X⃗, W⃗ ]X(XTX)−1. The variance of the

treatment effect is constant if V ar[Y |X,W ] is constant. When non-constant (i.e., in the

presence of a mean-variance relationship) the variance cannot be written in closed form

unless the distribution of W is known. Since the distribution of X is fixed by design, we

could compute an expectation with respect to X, however, the closed form expression of the

variance of treatment effect will change depending on distribution of W .

The estimated treatment effect based on the randomized sample is

β̂1 = rXY · SY

SX

where the sample correlation between X and Y is rXY , the marginal sample variance of

Y is S2
Y ≡ 1

n−1

∑n
i=1(Yi − Y )2 ≡ 1

n−1
SSY Y and, the marginal sample variance of X is

S2
X ≡ 1

n−1

∑n
i=1(Xi−X)2 ≡ 1

n−1
SSXX . Assuming homoscedasticity (constant V ar[Y |X,W ]),

the variance of the estimated treatment effect can be written in closed form as

V ar[β̂1] =
S2
Y (1− r2XY − r2WY )

SSXX

=
S2
Y (1− r2XY − r2WY )

n · ϕ
(ϕ+1)2

where ϕ : 1 is the randomization allocation. When ϕ = 1,

V ar[β̂1] =
S2
Y (1− r2XY − r2WY )

n/4
.

Under heteroscedasticity (non-constant V ar[Y |X,W ]), V ar[β̂1] does not have a simplified

closed form expression without specifying or assuming the distributions for X and W . In
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particular, the post-randomization assessment variance conditional on treatment arm is

V ar[Y |X] = EW{V ar[Y |X,W ]}+ V arW{E[Y |X,W ]}

= EW{V ar[Y |X,W ]}+ β2
2 · V ar[W ]

and and the marginal post-randomization assessment variance is

V ar[Y ] = EX{V ar[Y |X]}+ V arX{E[Y |X]}

= EX

(
EW{V ar[Y |X,W ]}+ β2

2 · V ar[W ]
)
+ β2

1 · V ar[X]

= EX (EW{V ar[Y |X,W ]}) + β2
2 · V ar[W ] + β2

1 · V ar[X]

=⇒ S2
Y = EX (EW{V ar[Y |X,W ]}) + r2WY · S2

Y + r2XY · S2
Y

The estimate of treatment effect, β̂1, can be impacted by choice of enrichment strategy

and mean-variance relationship. In a RCT, the baseline measurement W is not a potential

confounding variable; it is instead a precision variable: associated with the outcome (final

measurement) and not with the predictor of interest (randomly assigned treatment group).

Furthermore in a RCT, X and as a result SX are fixed according to the randomization

allocation ratio. Therefore, β̂1 is a function rXY and SY , both of which are functions of

the final measurement Y . In particular, since W is associated with Y and W is impacted

by enrichment, Y is expected to be impacted by enrichment. Furthermore, SY may also

be influenced by a mean-variance relationship. This relates to the note above, namely that

V ar[Y |X] may not be constant with respect toX and V ar[Y |X,W ] may not be constant with

respect to W . That is, V ar[Y ] depends on the mean-variance relationship for V ar[Y |X,W ].

Figure 2.1 graphically depicts pre-post trajectories for a design with no enrichment (left

column) and an enrichment criterion of pre-randomization assessment values among the

top 10% of those observed (right column), varying by mean-variance relationship (constant,

proportional, and inversely proportional from top to bottom, respectively).
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Figure 2.1: Spaghetti plots illustrating pre-post data for treatment (pink) and control (blue).
Left column assumes no enrichment and right column assumes enrichment based on the top
10% of pre-randomization scores. Rows correspond to a constant, proportional, and inversely
proportional mean-variance relationship, respectively. RW-E β1 = 10 for all scenarios.
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2.2 Right censored time-to-event outcomes

For RCTs with a time-to-event outcome where participants may be censored because they

did not have the event of interest during their time on study, often the instantaneous hazard

function is the within group measure of treatment effect and the marginal hazard ratio

(relative difference in hazards) is the between group comparison of treatment effect. For

example, in oncology trials common endpoints (primary, co-primary, or secondary) are overall

survival and progression-free survival. Overall survival is defined by all-cause mortality

(i.e., the time from randomization to death due to any cause as the event of interest).

Progression-free survival is defined by time to death or progression of disease (which may

involve additional efforts to determine such as using the Response Evaluation Criteria in

Solid Tumours, RECIST (Eisenhauer et al., 2009)), whichever occurs first, as the event of

interest.

Let Ti denote the actual time to the event of interest and Ci denote the actual time to

censoring for subject i. Then, define Xi = min{Ti, Ci} as the observed time from the origin

(in RCTs, this is time of randomization). Let δi = I(Ti ≤ Ci) denote the event indicator.

Furthermore, let fT (t) density function of T , FT (t) cumulative distribution function of T ,

and ST (t) = 1− FT (t) survival distribution function of T .

The conditional failure rate, also referred to as the hazard function, is defined by

λ(t) = lim
h↓0

Pr[t ≤ T < t+ h |T ≥ t]

h
.

The multiplicative hazards model with p× 1 covariate vector Z, baseline hazard λ0(t), and

g()̇ is a relative risk function such that λ(t) = λ0(t) g( β(t)Z(t) ). In the typical RCT setting
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without treatment crossover, the Cox proportional hazards model 1972 is

λ(t) = λ0(t) exp( βZ )

where g(·) = exp(·), Z(t) = Z {0, 1} and a constant treatment effect β(t) = β for all t.

Let (Xi, δi, Zi) be independent observations (i = 1, . . . , n). Then, the likelihood and score

functions are

L(β) =
n∏

i=1

fT (Xi|Zi)
δiST (Xi|Zi)

1−δi

U(β) =
n∑

i=1

(
δi
λ′(Xi)

λ(Xi)
−
∫ Xi

0

λ′(u)du

)

respectively. The partial likelihood by Cox (1972) yields the estimating equation for β as a

stochastic integral

U(β) =
n∑

i=1

∫ ∞

0

(
Zi −

S(1)(t, β)

S(0)(t, β)

)
dNi(t)

where S(r)(t, β) = n−1
∑n

j=1 Yj(t)Z
r
j exp(βZj) and Ni(t) is the number of events in (0, t) for

ith individual. Under proportional hazards, Tsiatis (1981) proved the asymptotic theory of

the Cox PH regression estimator. Consequently, the asymptotic distribution of the Cox PH

estimator is used to determine ‘sample size’ calculations for the number of events to observe

in a time-to-event trial. When assuming a fixed 1:1 randomization,

β̂
.∼ N (β, 4/D)

where D is the total number of events.
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Model misspecification: Non-proportional hazards

Proportional hazards is a key assumption for valid interpretation of the Cox model. On

the other hand, non-proportional hazards is a common phenomenon. In clinical trials, non-

proportional hazards can arise in a variety of ways. One such example of non-proportional

hazards is with a surgical intervention vs. non-surgical intervention. In such a setting

it may not be too surprising that patients who have a surgical procedure tend to have a

higher hazard of dying (or lower probability of survival) during and immediately following

the surgery due to possible complications compared to patients who received a non-surgical

intervention, but for those who survive past this time, the hazard may lower for those who

had the surgery compared to the hazard for those who did not and have a worse prognosis

at a later time.

In the presence of time-varying treatment effects (e.g. non-proportional hazards), additional

care must be taken regarding the scientific question of interest and what the target of infer-

ence and target population are for inference. This relates to the concept of an estimand that

has received explicit attention since 2017 with the initial development of the International

Conference on Harmonisation (ICH) E9 (R1) Addendum on estimands and sensitivity anal-

yses (U.S. Food and Drug Administration, 2021). As noted previously, to define an estimand

one needs to specify the target population of interest and the quantity of interest to estimate

(i.e., the between-group summary measure for a pre-specified analysis population).

Reliance upon the proportional hazards assumption to obtain a consistent estimate of the

hazard ratio (HR) and valid inference can be a problem in settings where it is known a

priori or a posteriori that the hazards are not proportional (i.e., non-proportional hazards).

The basis for such investigations stems from Struthers and Kalbfleisch (1986) where they

showed the solution to the partial likelihood score equation (solving for the parameter β

that represents the marginal hazard ratio) that yields the Cox PH estimator depends on
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the censoring distribution. This β corresponds to the solution of the following estimating

equation

∫ ∞

0

EZ

{
fT (t|Z)SC(t|Z)

[
Z −

EZ

{
ZST (t|Z)SC(t|Z)eβZ

}
EZ {ST (t|Z)SC(t|Z)eβZ}

]}
dt = 0

that depends upon censoring patterns, SC(t|Z).

Since the censoring patterns are not typically of scientific interest, and can be study design

induced, an estimand that depends on a trial’s censoring patterns can inhibit replicability and

comparisons across trials. While Xu and O’Quigley (2000) and van Houwelingen et al. (2005)

offer solutions under non-proportional hazards, their approaches that involve re-weighting the

hazard ratio estimate to a standard censoring distribution requires independent censoring.

Differential censoring patterns, however, come up in practice. Two such classifications in-

clude intentional design-based strategies and unintended treatment effects (Boyd et al.,

2012). Within intentional design-based strategies, differential censoring can be induced

through the use of historical data such as from historical controls, as the authors illus-

trate with an example from a trial on brain metastases. Other design-based strategies that

induce differential censoring include levels of stratification variables added during course of

trial, new sites or regions added (or starting up at different times) during trial, and outcome

adaptive randomization.

Boyd et al. (2012) focus on possible differences in the censoring distributions based on a

single binary predictor of interest, randomized treatment assignment (treatment or control),

in a fixed sample size RCT. Considering ways in which the censoring patterns can differ by

treatment groups motivates the need to reassess a common assumption when using survival

analysis: independent censoring. They note that the requirement for independent censoring

(i.e., the time to censoring C is independent of time to event T ) if two criteria are met: (i) a

functional of the distribution of T does not require specifying C; and (ii) the distribution of
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the binary predictor of interest Z is independent of the distribution of C. Another commonly

assumed form of censoring is conditionally independent censoring (CIC) where C and T are

independent conditional on covariate Z.

Under independent censoring, SC(t|Z) = SC(t),

∫ ∞

0

E

{
fT (t|Z)SC(t)

[
Z −

E
{
ZST (t|Z)eβZ

}
E {ST (t|Z)eβZ}

]}
dt = 0

β̂PH depends on SC(t) as a weighted average. This, however, cannot be simplified under

CIC. Hence, under model misspecification (i.e., non-proportional hazards) β̂PH depends on

the censoring distribution. Similarly, the log-rank test and weighted log-rank statistics also

depend on the censoring distribution (Gillen, 2003; Gillen and Emerson, 2005). To remove

the dependence on the censoring distribution for the estimate and interpretation of the

marginal hazard ratio, Boyd et al. (2012) defined the weight function for subject j at time t

Wj(t) = {SC(t|Zj)}−1 .

Then, the re-weighted estimating equation is

U(β) =
n∑

i=1

∫ ∞

0

Wi(t)

(
Zi −

S
(1)
W (t, β)

S
(0)
W (t, β)

)
dNi(t) = 0

where

S
(r)
W (t, β) = n−1

n∑
j=1

Wj(t)Yj(t)Z
r
j exp(βZj),

Wj(t) =
{
ŜKM
C (t|Zj)

}−1

,

and ŜKM
C (t|Zj) is the left-continuous version of Kaplan and Meier (1958) estimate of cen-

soring distribution. The solution to the re-weighted estimating equation yields β̂CIC that is
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consistent for βCIC defined as the solution to

∫ ∞

0

E

{
fT (t|Z)

[
Z −

E
{
ZST (t|Z)eβZ

}
E {ST (t|Z)eβZ}

]}
dt = 0

which also works under IC and is the same as β̂IC (Xu and O’Quigley, 2000) where the weight

function from the combined censoring distribution (common weight) is W (t) = {SC(t)}−1.

To this end, the estimand framework is useful to critically think about the quantity to

estimate and the methodology that will yield the desired estimates. This approach re-

lates to the time-to-event setting, specifically in the presence of non-proportional hazards.

As already mentioned, pre-specification of the analytic plan is required for clinical trials.

Censoring-dependent estimation procedures can make comparisons of results across even sim-

ilarly designed trials difficult. Hence, to protect against the issues arising from time-varying

treatment effects, targeting a marginal hazard ratio standardized to a common censoring

distribution, referred to as censoring-robust estimation, seems an appropriate step to obtain

a reliable estimate of the RCT-E and enhance replicability across trials.

2.3 Group sequential designs

A fixed sample design RCT consists of a single pre-specified primary outcome used in the pre-

specified primary analysis to answer the pre-specified primary question of scientific interest.

Limiting the number of ineffective interventions approved is consistent with the goals in

medicine and public health. Pre-specification (ideally, before the trial begins or at least before

looking at the data) of the primary scientific question (aim) of interest and correspondingly

the primary endpoint and primary analysis helps to control the false positive rate (type I error

rate). Typical outcomes in fixed RCTs, measured at a single time point or longitudinally,

include: binary (e.g., relapsed with first 5 years after completion of cancer treatment); count
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(e.g., number of metastatic lesions); continuous (e.g., change from baseline in a quality of life

assessment score); or (censored) time-to-event (e.g., overall survival, an objective measure

of time to death due to any cause).

Duration of a fixed sample design RCT varies depending on the disease, intervention, pur-

pose of the trial, including the target population and availability (or lack thereof) of existing

interventions for treatment or prevention. Accordingly, in certain settings ethical and feasi-

bility reasons may warrant formal interim analyses of the primary endpoint before observing

the primary endpoint for all pre-planned study participants. A formal interim analysis based

on partial information prior to a pre-planned primary analysis on full information requires

use of sequential testing due to multiple comparisons (multiple looks of the efficacy data).

Not accounting for sequential testing will inflate the type I error rate if at least two analyses

are conducted (e.g., interim analysis and final (full) analysis).

A group sequential design (GSD) (Jennison and Turnbull, 1999) allows for modification of the

RCT design by incorporating pre-specified interim analyses at pre-determined time points

(e.g., proportion of information observed). Consequently, the sampling distribution of a cho-

sen test statistic (based on the estimand of scientific interest pertaining to the pre-specified

primary aim for the trial) changes for a GSD compared to a fixed design RCT. Emerson

et al. (2007) discuss how the sampling distribution of test statistics are not simply a location

shift between null and alternative hypotheses because of the possibility of stopping the trial

“early” due to (overwhelmingly) adequate and reliable evidence of a clinically meaningful

favorable benefit-to-risk ratio.

Typically in a fixed sample RCT or GSD enrollment is staggered. That is, not all patients

are enrolled and randomized at the start of the trial so patients have the same time zero

but different calendar start times. Consequently, it is possible and sometimes desirable for

ethical reasons to have at least one interim analysis before the trial completes enrollment.

If an (early) potential safety signal appears or a conduct issue arises, the DMC may recom-

22



mend (in a blinded manner) to the sponsor to temporarily suspend enrollment or make other

modifications to protect the interests of the human volunteers and trial integrity. Emerson

et al. (2007) define the group sequential test statistic with respect to a chosen stopping rule

(also called a monitoring guideline or group sequential boundary) as a pair of two quan-

tities: the first (interim) analysis time when the estimated partial sum statistic “crosses”

the boundary value at a given time (denoted by M) and the corresponding partial sum

statistic at M (denoted by S). Then, the sampling density of (M,S), assuming independent

increments of information between times j− 1 and j, is defined recursively (Armitage et al.,

1969). They also note that the sampling density is dependent on the choice of group sequen-

tial boundaries; two common boundaries include O’Brien and Fleming (1979) and Pocock

(1977).

Partial sum statistic

Let X1, . . . , XNJ
∼iid N (µ, σ2) with σ2 known and µ unknown. Consider analyses conducted

when N1, . . . , NJ participants have the outcome of interest recorded. Note that N1 < . . . <

NJ . Furthermore, define n1 = N1 and nj = Nj − Nj−1 for j = 2, . . . , J . Then the partial

sum statistic is

Sj =

Nj∑
i=1

Xi ∼ N (Njµ,Njσ
2)

where Cov(Sj, Sj+1) = Njσ
2 and Cov(Sj, Sj+1 − Sj) = Cov(Sj, Sj+1) − V ar(Sj) = Njσ

2 −

Njσ
2 = 0 (independent increments structure).
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Figure 2.2: Sample path of the estimated difference in binomial proportions (blue line) with
the fixed sample RCT (black vertical boundary) and a symmetric two-sided O’Brien-Fleming
GSD with up to four total analyses (red vertical boundaries) overlaid.

Continuation set

Define CSj
= (aSj

, bSj
] ∪ [cSj

, dSj
) such that the trial continues to the next analysis time if

Sj ∈ CSj
, and stops after the analysis time j for which Sj /∈ CSj

. Figure 2.2 illustrates an

example observed sample path of a statistic in a fixed sample design and a GSD.
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Group sequential test statistic (M,S)

In a group sequential design (Jennison and Turnbull, 1999), the test statistic is bivariate,

consisting of M = min
{
1 ≤ j ≤ J : Sj /∈ CSj

}
, the analysis at which the study stopped,

and S = SM is the statistic at the Mth analysis. Note that Chang (1989) showed that

(M = m,S = s) is sufficient statistic for unknown normal mean µ.

Sequential sampling density

Armitage et al. (1969), under independent increments, recursively defined the sequential

sampling density for (M = m,S = sm) by

p(m, s;µ) =


f(m, s;µ) if s /∈ CSm

0 otherwise

where

f(1, s;µ) =
1

√
n1σ

ϕ

(
s− n1µ√
n1σ

)

f(j, s;µ) =

∫
CSj−1

1
√
njσ

ϕ

(
s− u− njµ√

njσ

)
f(j − 1, u;µ)du

where nj = Nj − Nj−1 for j = 2, . . . ,m and ϕ(·) is the standard normal density function.

Emerson and Fleming (1990) noted the following identity

f(j, s;µ) = f(j, s; 0) exp

(
sµ

σ2
− µ2

2σ2
Nj

)

allows one to easily compute the sampling density under different values of µ after computing

for µ = 0, thus computing confidence intervals without much computational effort. Figure

25



Figure 2.3: Sequential sampling density under a null for the estimated treatment effect (top
left), normalized Z statistic (bottom left), and fixed sample P value (bottom right), and
under an alternative (top right).

2.3 illustrates how the sequential sampling density is not normally distributed under the null

(neither on the estimated treatment effect scale nor the normalized Z statistic scale) nor

under the alternative. Furthermore, in the sequential testing setting, the distribution of the

fixed sample P values under the null is no longer uniformly distributed on (0, 1) as they are

in the fixed sample size testing setting.

Repeated significance tests alters the sampling distributions of statistics, including those

that in a fixed sample setting would be approximately normally distributed. Such sequential

densities have a form that can be expressed via recursion (Armitage, McPherson, and Rowe,

1969). Specialized software is needed to compute the sequential sampling density p(m, sm; θ).
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Then, integrating over the sequential sampling density allows computation of confidence

intervals and p-values, and statistical operating characteristics to evaluate group sequential

designs.

Group sequential boundaries and timing of analyses

For a group sequential design, the timing of interim analyses (j = 1, ..., J − 1) and the

planned final analysis J as well as the boundaries are based on the proportion of maximal

information at the j-th analysis, Πj = Ij/IJ . Kittelson and Emerson (1999) constructed

the unified family of group sequential designs that encompasses many commonly known and

used designs, as well as an infinite number of designs that may warrant consideration for a

specific scientific and clinical context. In their specification, let ∗ represent one of the a, b,

c, or d boundaries described previously. Then, the boundary function is

f∗(θ∗, g(Πj;A∗, P∗, R∗, G∗))

with boundary shape function

g(Πj;A∗, P∗, R∗, G∗) =
{
A∗ +Π−P∗

j (1− Πj)
R∗
}
G∗

where A, P , and R are user-specified and G is calculated to attain certain operating char-

acteristics. This parameterization of group sequential designs includes

• Pocock (1977): A = 0, R = 0, P = 0.5 (constant on the Z scale)

• O’Brien-Fleming (1979): A = 0, R = 0, P = 1 (constant on the partial sum scale)

• Whitehead-Stratton triangular (1983): A = 1, R = 0, P = 1

• Wang-Tsiatis (1987): A = 0, R = 0, any P
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Furthermore, Emerson et al. (2007) noted that group sequential boundaries can be expressed

on different scales as there is a 1-to-1 mapping between the partial sum statistics, crude

estimate of treatment effect, normalized Z statistic, fixed sample P -value statistic, error

spending statistic, Bayesian posterior probabilities, conditional power statistics, and predic-

tive power statistics scales. Inspite of this relationship across the scales, the ease by which

these scales map to a clinically meaningful interpretation varies. Using the treatment effect

scale (e.g., hazard ratio with a time-to-event endpoint) can aid in scrutinizing candidate

group sequential designs and boundaries, including the timing of the analyses.

For time-to-event group sequential trials, when proportional hazards holds, the proportion

of maximal information is equivalent to the proportion of maximal events. Recall that un-

der proportional hazards, the Cox PH estimator β̂PH
.∼ N (β, 4/D) where D is the total

number of events. This implies that the statistical information of the corresponding score

statistic (i.e., the logrank test) is proportional to the number of events (i.e., linear informa-

tion growth). Hence, many times in practice, monitoring of time-to-event group sequential

trials are based on the number of events observed (or when they are projected to occur).

However, under non-proportional hazards, Gillen and Emerson (2005) showed that under

non-proportional hazards, the information growth of weighted logrank statistics is non-linear

with their dependence on the censoring distribution as the primary contributor. This will

prove an important intuition for characterizing the information growth of censoring-robust

estimators (which we noted previously are weighted statistics) in Chapter 5. For statistics

with a non-linear information growth, regardless of whether proportional hazards holds or

not, we cannot base the timing of interim analyses naively assuming Πj ∝ Dj/D where

Dj is the number of events observed by analysis j and D is the maximal number of events

to observe during the trial. Furthermore, suppose the study planning stage begins with a

GSD requiring D maximal events under proportional hazards. If, through collaborative dis-

cussions, a time-varying treatment effect is possible, a censoring-robust estimation may be

warranted for the pre-specified primary analysis. In a scenario where proportional hazards
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approximately holds a censoring-robust estimator will be less efficient. In this case, at the

study planning stage, consideration for observing a D∗ > D may be necessary to maintain

trial operating characteristics (e.g., statistical power to detect the design alternative) and

thus valid statistical inference.
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Chapter 3

On the Use of Enrichment in Fixed

Sample Pre-Post Randomized Trials

SUMMARY: Enrichment in a pre-post randomized clinical trial (RCT) often consists of

an inclusion criterion on a pre-randomization assessment (e.g., biomarker or surrogate out-

come). The target of inference is commonly the difference in mean change from baseline

comparing treatment to control for the RCT target population: the RCT estimand (RCT-

E). In clinical practice, however, health care providers may prescribe an approved drug on-

or off-label to patients who belong to a broader real-world (RW) target population, requiring

the RW estimand (RW-E). Here, we quantify the impact of enrichment in pre-post RCTs

when estimating the RW-E from the RCT sample. Specifically, we show that regression

to the mean can induce a biased estimator for the RW-E. We analytically derive this bias

term under normality and a heteroscedastic mean-variance relationship. We propose a bias-

adjusted estimator for the RW-E and establish its operating characteristics via Monte Carlo

simulation.
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3.1 Introduction

A pre-post randomized clinical trial (RCT) typically consists of two correlated continuous

outcome assessments: one pre-randomization and one post-randomization. Often, the within

group summary measure is the mean change from baseline (post – pre) that we denote by

∆k = µ2k − µ1k

where µjk is the mean outcome at time j (1 for pre, 2 for post) and treatment arm k (1

for treatment, 0 for control). Then, the target of inference is the difference in mean change

from baseline for a subpopulation of individuals randomly assigned to the treatment arm

and mean change from baseline for a subpopulation of individuals randomly assigned to the

control arm. We denote this target of inference by

θ = ∆1 −∆0 = µ21 − µ20. (3.1)

The latter equality in (3.1) holds because µ11 = µ10, on average, from randomizing treatment

assignment.

The RCT target population corresponds to individuals who would meet the specific trial’s

eligibility criteria. Together, a target of inference and a corresponding target population

are key attributes of an estimand. Formally, ICH E9 R1 Addendum (U.S. Food and Drug

Administration, 2021) requires specifying the following attributes to define an estimand:

(i) the treatment conditions;

(ii) the target patient population of interest;

(iii) the endpoint (or variable); and
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(iv) handling of intercurrent events.

In this chapter, θ is a trial-specific estimand for a population-level comparison, assuming no

intercurrent events, that we refer to as the RCT estimand (RCT-E) for a pre-post design.

There are a number of analysis methods to estimate the RCT-E θ in the pre-post setting

(Liang and Zeger, 2000; Yang and Tsiatis, 2001; Senn, 2006; O’Connell et al., 2017; Wan,

2021). Three common approaches are the two-sample t-test, analysis of covariance (AN-

COVA), and paired change. In the pre-post RCT setting, assuming no missing data, these

three methods yield consistent and unbiased estimates of θ. The ANCOVA model, how-

ever, is often preferred when the correlation between pre and post assessments is at least

0.5 because it is more efficient (Feldt, 1958) (i.e., yields smaller standard error estimates

corresponding to smaller confidence interval widths and higher statistical power).

In an effort to accelerate the drug development process, enrichment strategies based on

demographic information, biomarkers, or a surrogate outcome are employed to identify indi-

viduals likely to benefit from the candidate treatment (prognostic) or to identify individuals

likely to have the outcome of interest during the trial (predictive) (U.S. Food and Drug

Administration, 2019b) that may result in smaller and shorter trials. The U.S. Food and

Drug Administration guidance document on enrichment strategies (2019b) summarizes the

relevance and commonality of enrichment strategies in an array of disease areas.

An enrichment strategy considered in the pre-post RCT setting is an added trial inclu-

sion criterion in which otherwise eligible individuals must meet some threshold based on a

biomarker or (surrogate) outcome assessment. For example, in the University of California

Cures Nicotinamide as an Early Alzheimer’s disease Treatment (NEAT) phase 2 proof-of-

concept pre-post RCT (2021, ClinicalTrials.gov identifier NCT03061474), individuals were

randomized to nicotinamide or placebo if they met biomarker criteria based on cerebral

spinal fluid amyloid beta 1-42 not exceeding 600 pg/mL or a ratio of total tau to amyloid
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beta 1-42 of at least 0.39. Only individuals meeting this enrichment criterion and the rest of

the trial’s inclusion/exclusion criteria were randomized. The primary endpoint was change in

cerebrospinal fluid phosphorylated tau (p-tau231) 12 months post-randomization, the target

of inference was the difference in these pre-post changes between nicotinamide and placebo

arms, and the RCT-E target population most directly corresponded to individuals with mild

Alzheimer’s disease or mild cognitive impairment due to Alzheimer’s disease who met the

trial eligibility criteria, including the enrichment criterion.

Often, we use clinical trials to determine whether a candidate treatment is causally associ-

ated with a favorable benefit-to-risk ratio for a pre-specified target population of interest.

Generalizability of results beyond the enrolled RCT sample is important to have utility in

clinical practice. While an approved drug has a particular indication on the drug label that

corresponds most often to the RCT-E, there can be potential for off-label use from a broader

population once the drug is available on the market. Healthcare providers may elect to pre-

scribe a drug off-label in keeping to their Hippocratic Oath. In such instances, the inference

on the RCT-E may not provide adequate information for a provider to make an informed

decision. Instead, a real-world estimand (RW-E) may be of importance. While we contend

that there can be many types of RW-Es, in this chapter, we restrict our attention to a

RW-E β1 that corresponds to patients who may or may not have met the pre-randomization

enrichment cutoff, but who otherwise met the eligibility criteria of the trial.

Figure 3.1 illustrates a number of potential target populations among the population of

potential users of an intervention (e.g., drug or biologic) where ‘eligible’ refers to those

meeting all inclusion/exclusion criteria without regard for any enrichment criterion. In this

chapter, the RCT-E will correspond to the solid gold-colored ‘Screened / Eligible / Enrich’

population of potential users whereas the RW-E will correspond to both the solid gold-

colored and thick patterned blue-colored boxes, ‘Screened / Eligible’ (regardless of meeting

the enrichment criterion). These RCT-E and RW-E target populations would also correspond
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Figure 3.1: A breakdown of the population of potential users partitioned into 8 potential tar-
get populations where eligible means having met all trial inclusion/exclusion criteria without
regard for an enrichment criterion and enrich means met the enrichment criterion.

to the most direct target population for the UC Cures NEAT enriched pre-post RCT and a

potential broader population of population users, respectively.

Interested in inference for a broader target population, we conjectured that RCT-E θ and

RW-E β1 may differ. To our knowledge, there is a gap in understanding whether there are

differences in these estimands and when for enriched pre-post RCTs. Hence, in this chapter,

we quantified the impact of enrichment in pre-post RCTs on the estimation of the RW-E

(that we will denote by β1) when using an estimate of the RCT-E, denoted by θ̂, as a proxy

measure. In Section 3.2 we show, based on analytical derivation, that bias of the RCT-E

estimator with respect to the RW-E arises as a consequence of regression to the mean for

normally distributed pre-post data with a heteroscedastic mean-variance relationship. We

then propose a bias-adjusted estimator for the RW-E as a function of the RCT-E estimator

and quantities from the RW target population. In Section 3.3 we present Monte Carlo

simulation studies examining operating characteristics for our proposed estimator when all

components are known. We conclude with a discussion of our findings in the context of trial

design and generalizing beyond just the RCT sample in Section 3.4.
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3.2 Methods

3.2.1 Notation

Consider a pre-post RCT in which N individuals are screened, and of those there are n

participants randomized to one of two treatments (treatment or control). Randomized par-

ticipants will complete two assessments, either the same or that are (highly) correlated with

each other (pre at baseline and post at some a priori determined clinically meaningful time

point). Suppose there are n1 participants randomly assigned to treatment and n0 to placebo

(i.e., n = n1 + n0). Let Yijk denote an assessment for participant i (i = 1, ..., nk), at time j

(j = 1, 2 where 1=pre, 2=post) who was assigned to intervention k (k = 0, 1 where 0=con-

trol, 1=treatment). Let Xi denote an indicator for whether participant i was randomized to

treatment (Xi = 1) or placebo (Xi = 0). Let Y⃗2 denote a vector of the post-randomization

outcome assessments for all randomized participants. Let Y⃗1 denote a covariate vector for

the baseline (pre-randomization) assessments for all randomized participants. Let X⃗ denote

the treatment indicator vector for all randomized participants.

Let θ continue to denote the trial-specific estimand, RCT-E, and β1 to denote a broader

patient population estimand, RW-E, that may include individuals who receive drug off label.

Recall that the three common linear models used to estimate RCT-E θ from the enriched

pre-post RCT sample using the current notation for pre and post assessments are

• Two-sample t-test: E[ Y⃗2 | X⃗ ] = β
(t)
0 + θ X⃗

• Analysis of covariance (ANCOVA): E[ Y⃗2 | X⃗, Y⃗1 ] = β
(a)
0 + θ X⃗ + β

(a)
2 Y⃗1

• Paired change: E[ (Y⃗2 − Y⃗1) | X⃗ ] = β
(p)
0 + θ X⃗

To distinguish between the enriched RCT sample and a sample from a broader, real world

patient population, here we denote corresponding ‘real world’ quantities by a superscripted
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asterisk (except for the already defined RW-E β1). Then, the three linear models will be

expressed as

• Two-sample t-test: E[ Y⃗ ∗
2 | X⃗∗ ] = β

∗(t)
0 + β1X⃗

• Analysis of covariance (ANCOVA): E[ Y⃗ ∗
2 | X⃗∗, Y⃗ ∗

1 ] = β
(∗a)
0 + β1X⃗

∗ + β
(∗a)
2 Y⃗ ∗

1

• Paired change: E[ (Y⃗ ∗
2 − Y⃗ ∗

1 ) | X⃗∗ ] = β
(∗p)
0 + β1X⃗

∗

In practice, when employing an enriched pre-post RCT design, post-randomization infor-

mation is not collected for individuals who fail to meet the enrichment criterion. Here, we

assume all screened individuals have pre-randomization assessments (one or more depending

on the the study design) collected, and all among those meeting the enrichment criterion

have post-randomization assessments collected. To this end, in this chapter we consider

estimation of the RW-E β1 based upon the RCT-E estimator θ̂, and restrict attention to su-

periority trials with enrichment based on pre assessments. Here, we focus attention on testing

for efficacy. For our setup, this corresponds to testing the null hypothesis H0 : β1 = 0 versus

the one-sided (greater) alternative hypothesis HA : β1 > 0, and motivation for focusing on

estimation for β1 > 0.

3.2.2 Analytic form of the bias resulting from an enriched pre-

post RCT design

Consider a pre-post randomized controlled clinical trial (RCT) design. Define the RCT-E θ

to be the difference in mean change from baseline comparing those randomized in the trial

to treatment versus control. Suppose the real world estimand (RW-E) β1 corresponds to the

same contrast for a broader patient population. Let Y⃗ik denote a 2× 1 vector of pre (j = 1)

and post (j = 2) assessments for subject i (i = 1, ..., nk) assigned to treatment k (k = 0, 1)

36



and Yi1k
Yi2k

 ∼ N2

µ⃗k ≡

µ1k

µ2k

 , Σjk ≡

 v1k ρk
√
v1kv2k

ρk
√
v1kv2k v2k




where µ1k = β0 + γ for β, γ ∈ (−∞,∞), µ2k = β0 + β1 · 1[k=1], and vjk = f(µjk) = σ2 · |µjk|δ

with σ ∈ (0,∞) and where δ < 0 corresponds to an inversely proportional, δ = 0 to a

constant, and δ > 0 to a proportional mean-variance relationship. Proposition 3.1 describes

the form of the bias of θ̂ with respect to β1.

Proposition 3.1: For a pre-post designed RCT with enrichment, define β1 as the real world

estimand (RW-E) and θ as the RCT estimand (RCT-E). Then, the RW-E can be decomposed

in terms of the RCT-E and a bias term

β1 = θ +

(
ρ1
√
v21 ·

∫ c∗11
−∞ z · ϕ(z)dz
1− Φ (c∗11)

− ρ0
√
v20 ·

∫ c∗10
−∞ z · ϕ(z)dz
1− Φ (c∗10)

)

where c∗1k = (c−µ1k)/
√
v1k, the enrichment cutoff based on pre assessments c = Φ−1(penrich)

with penrich denoting the enrichment proportion, and ϕ(·) and Φ(·) are the standard normal

density function and distribution function, respectively. (See Appendix A.1 for a derivation.)

From Proposition 3.1, the bias term is zero when: (i) there is no enrichment (i.e., c = −∞

implying that ψ(−∞, ρ, µ1, v1) = 0) irrespective of the form of the mean-variance rela-

tionship; (ii) the pre-post assessments are uncorrelated within each treatment arm (i.e.,

ρ1 = ρ0 = 0); or (iii) there is enrichment based on the pre-randomization assessment and the

product of the pre-post correlation and post variance is equal for the two treatment arms

(i.e., ρ1
√
v21 = ρ0

√
v20).

With the derived analytic form of the bias in a pre-post RCT when assuming normally

distributed data, in Figure 3.2 we characterize the analytic bias as a function of the en-

richment cutoff criterion (i.e., value of the probability corresponding to the quantile for the
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pre-randomization assessment cutoff) in two ways. The plot on the left is meant to examine

how the correlation between pre and post assessments changes the bias given a particular

mean-variance relationship. From the analytic form of the bias in the Methods section,

we know that a constant mean-variance relationship and the same pre-post correlation for

both treatment arms will zero out the bias term, irrespective of the value of the correlation.

Notably, for a proportional mean-variance relationship based on δ = 0.5 (i.e., the variance

is a square root of the mean, up to a fixed scaling term, which we denoted earlier by σ).

The plot on the right illustrates how the magnitude of the bias in the proportional mean-

variance setting is markedly higher for larger values of δ. Highly (positively) correlated

pre-post assessments yield larger bias, as illustrated in the plot on the left.

3.2.3 Bias-adjusted estimator for the RW-E

We propose the following bias-adjusted estimator for the RW-E β1

β̂BiasAdj
1 = θ̂RCT-E + B̂ias[ θ̂RCT-E, β1 ]

with θ̂RCT-E estimated using any of the three analytic methods described earlier for esti-

mating the RCT-E θ (though ANCOVA may be preferred for possible efficiency gains after

bias correction) and empirical estimates for the population quantities in the expression of

Bias[ θ̂, β1 ]. We conjecture that this estimator will at least account for the bias induced

from enrichment on the basis of our analytic derivation when pre-post data for the broader

patient population follow a multivariate normal distribution.
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Figure 3.2: Analytic bias (derived under the multivariate normal pre-post data setting)
of the RCT-E estimator θ̂ with respect to the RW-E β1 (here assumed to be 10) as a
function of enrichment (value of the probability corresponding to the quantile for the pre-
randomization assessment cutoff, to randomize individuals with higher pre values), the mean-
variance relationship (σ2|µ|δ, with σ = 9 and pre-randomization µ = 40 for both treatment
and control arms), and the pre-post correlation (ρ, same for both treatment and control
arms). The top plot considers three mean-variance relationships (varying by line type),
each having the pre-post correlation vary by color. The bottom plot considers three pre-post
correlations (varying by line type), each having the mean-variance relationship vary by color.
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3.3 Simulation studies evaluating our proposed bias-

adjusted estimator for the RW-E

We considered a pre-post RCT design in which N screened individuals completed a pre-

randomization assessment after meeting all other trial eligibility criteria. We further sup-

posed that each subject’s pre-randomization assessment could be expressed as a linear model

with a systematic component (in this case, a linear combination of age as a continuous co-

variate centered around the sample mean of all ages and female sex as a binary covariate)

and a random component. For screened subject i, where i = 1, . . . , N , we expressed the

pre-randomization assessment as

PREi = α0 + α1(AGEi − AGE) + α2FEMALEi + ϵPRE,i

where

(AGEi − AGE) ∼ N (0, σ2
AGE)

FEMALEi ∼ Bernoulli(pFEMALE)

ϵPREi
∼ N (0, f(µPREi

))

with a mean-variance relationship defined as

Mean: µPREi
= PREi − ϵPRE,i

Variance: vPREi
≡ f(µPREi

) = σ2 |µPREi
|δ

for σ ∈ (0,∞) and δ ∈ (−∞,∞). Negative values of δ correspond to an inversely proportional

mean-variance relationship, positive values of δ correspond to a proportional mean-variance

relationship, and δ = 0 corresponds to a constant mean-variance relationship. We are
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interested in estimating the difference in mean change from baseline between all individuals

assigned to treatment versus placebo, denoted by β1 (the RW-E). We defined the true mean

and variance of post-randomization assessments for subject i as

µPOSTi
= β0i + β1TXi + β2PREi

vPOSTi
≡ f(µPOSTi

) = σ2 |µPOSTi
|δ

where β0i ≡ µPRE,i and PREi is a binary indicator of experimental treatment arm assignment

(value of 1) versus control or placebo (value of 0). Together, the joint distribution of pre-

and post-randomization assessments for subject i

 PREi

POSTi


∣∣∣∣∣∣∣TXi ∼ N2 (µ⃗i, Σi)

µ⃗i ≡

 µPREi

µPOSTi


Σi ≡

 vPREi
ρTXi

√
vPREi

vPOSTi

ρTXi

√
vPREi

vPOSTi
vPOSTi


follows a bivariate normal distribution with the above-specified mean-variance relationship

where ρTXi
≡ Corr[PREi,POSTi |TXi].

In our simulation studies, the enrichment criterion was a cutoff based on a probability cor-

responding to a quantile, penrich ∈ (0, 1), of all pre-randomization assessments from all N

screened, otherwise eligible individuals, denoted by c ≡ F̂−1
PRE(penrich) and F̂PRE is the em-

pirical distribution function of the observed pre-randomization assessments. We defined an

enrichment indicator by ENRICHi = 1 if PREi ≥ c, and zero otherwise. We assumed 1:1

randomization allocation of treatment versus control assignment. We generated samples of

individuals meeting and not meeting the enrichment criterion, referred to as “enriched” and
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“non-enriched” samples, respectively.

Our proposed bias-adjusted estimator requires marginal quantities for pre mean and post

variances for the broader patient population (i.e., including both patients who met and did

not meet the enrichment criterion). Here, we assume we can reliably estimate these quantities

to compute the estimated bias for the RW-E and adjust the estimate for the RW-E.

We conducted simulation studies for the estimation of the RW-E β1 using our proposed

estimator in pre-post RCTs with 1000 screened and 100 randomized participants (in a

1:1 fashion, treatment:control) under four scenarios: (i) enrichment based upon a single

pre-randomization (PRE) assessment for screened individuals (no bias correction); (ii) en-

richment based upon a single pre-randomization (PRE) assessment for screened individuals

(with our proposed bias correction); (iii) enrichment based upon the true mean PRE value

for screened individuals; and (iv) no enrichment criterion. For (i)-(iii), individuals were

randomized who met the enrichment criterion. We considered an enrichment criterion for

which individuals with the top 10%, top 25%, and top 50% of pre-randomization assessments

scores were randomized. Statistical operating characteristics include the average estimate of

θ̂ (Avg Est: E[θ̂]), estimated bias (and percent relative bias) of θ̂ with respect to β1, em-

pirical standard deviation (SD), average model-based (MB) or robust (Rob) standard error

(SE), and corresponding confidence interval coverage (CI cvrg) probability assuming β1 is

the truth. Additional simulation parameters included: pre-post correlation of 0.9 for each

treatment arm; a constant mean-variance relationship (MVR) of the form σ2|µ|δ where σ = 2

and δ = 1; the true functional form of pre assessments modeled with a binary covariate with

0.5 probability equal to one and a linear continuous covariate (with mean=0 and SD=5),

corresponding to a specified covariate parameter vector α⃗ = (40, 1, 1).

Table 3.1 summarizes results from simulations where the RW-E β1 = 3 and enrichment

varied (top 10%, 25% and 50% of pre-randomization assessment scores, respectively) while

assuming a proportional mean-variance relationship between pre and post assessment scores.
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Table 3.1: Estimating RW-E β1 = 3 assuming a proportional mean-variance.

(10,000 simulations) Target Avg Est Bias (%) Emp Avg SE CI Cvrg for β1

Randomized n = 100 Estimand Est wrt β1 SD MB Rob MB Rob
Enrich with top 10% pre-randomization assessment scores

Two-sample t-test
Enrich Single PRE θ 3.68 0.68 (22.5) 1.63 1.63 1.61 0.93 0.93
w/ Proposed Bias Adj β1 2.99 -0.01 (-0.3) 1.59 NA NA 0.96 0.95

Enrich True Mean PRE β1 3.01 0.01 ( 0.3) 2.87 2.87 2.84 0.95 0.95
No Enrichment β1 3.00 0.00 (-0.1) 2.75 2.77 2.74 0.95 0.95

ANCOVA (model SE)
Enrich Single PRE θ 3.66 0.66 (22.0) 1.19 1.18 1.16 0.91 0.91
w/ Proposed Bias Adj β1 2.97 -0.03 (-0.9) 1.20 NA NA 0.95 0.94

Enrich True Mean PRE β1 3.03 0.03 ( 0.9) 1.24 1.25 1.23 0.95 0.95
No Enrichment β1 3.02 0.02 ( 0.6) 1.14 1.13 1.12 0.95 0.95

Paired Change (model SE)
Enrich Single PRE θ 3.66 0.66 (22.0) 1.19 1.18 1.17 0.92 0.91
w/ Proposed Bias Adj β1 2.97 -0.03 (-0.8) 1.20 NA NA 0.94 0.94

Enrich True Mean PRE β1 3.03 0.03 ( 0.9) 1.26 1.26 1.25 0.95 0.95
No Enrichment β1 3.02 0.02 ( 0.6) 1.15 1.15 1.13 0.95 0.95

Enrich with top 25% pre-randomization assessment scores
Two-sample t-test

Enrich Single PRE θ 3.45 0.45 (14.9) 1.76 1.76 1.74 0.94 0.94
w/ Proposed Bias Adj β1 2.96 -0.04 (-1.4) 1.77 NA NA 0.95 0.95

Enrich True Mean PRE β1 3.00 0.00 ( 0.0) 2.84 2.82 2.79 0.95 0.95
No Enrichment β1 2.95 -0.05 (-1.8) 2.76 2.77 2.74 0.95 0.95

ANCOVA
Enrich Single PRE θ 3.46 0.46 (15.2) 1.17 1.17 1.15 0.93 0.93
w/ Proposed Bias Adj β1 2.97 -0.03 (-1.1) 1.35 NA NA 0.91 0.91

Enrich True Mean PRE β1 3.00 0.00 (-0.1) 1.21 1.22 1.20 0.95 0.95
No Enrichment β1 2.98 -0.02 (-0.5) 1.14 1.14 1.12 0.95 0.95

Paired Change
Enrich Single PRE θ 3.46 0.46 (15.4) 1.17 1.17 1.15 0.93 0.93
w/ Proposed Bias Adj β1 2.97 -0.03 (-1.0) 1.36 NA NA 0.91 0.90

Enrich True Mean PRE β1 3.00 0.00 (-0.1) 1.23 1.23 1.22 0.95 0.95
No Enrichment β1 2.99 -0.01 (-0.4) 1.16 1.15 1.14 0.95 0.95

Enrich with top 50% pre-randomization assessment scores
Two-sample t-test

Enrich Single PRE θ 3.34 0.34 (11.3) 1.99 1.97 1.95 0.94 0.94
w/ Proposed Bias Adj β1 3.03 0.03 ( 1.1) 2.02 NA NA 0.94 0.94

Enrich True Mean PRE β1 2.96 -0.04 (-1.2) 2.76 2.77 2.74 0.95 0.95
No Enrichment β1 2.97 -0.03 (-1.1) 2.80 2.77 2.74 0.95 0.95

ANCOVA
Enrich Single PRE θ 3.31 0.31 (10.2) 1.16 1.15 1.14 0.94 0.94
w/ Proposed Bias Adj β1 3.00 0.00 ( 0.0) 1.52 NA NA 0.87 0.86

Enrich True Mean PRE β1 3.01 0.01 ( 0.2) 1.19 1.19 1.17 0.95 0.95
No Enrichment β1 3.00 0.00 ( 0.0) 1.15 1.14 1.12 0.95 0.94

Paired Change
Enrich Single PRE θ 3.31 0.31 (10.2) 1.16 1.16 1.14 0.94 0.94
w/ Proposed Bias Adj β1 3.00 0.00 ( 0.0) 1.54 NA NA 0.87 0.86

Enrich True Mean PRE β1 3.01 0.01 ( 0.3) 1.20 1.20 1.19 0.95 0.95
No Enrichment β1 3.00 0.00 ( 0.0) 1.16 1.15 1.14 0.95 0.94
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Table 3.2: Estimating RW-E β1 = 3 assuming an inversely proportional mean-variance.

(10,000 simulations) Target Avg Est Bias (%) Emp Avg SE CI Cvrg for β1

Randomized n = 100 Estimand Est wrt β1 SD MB Rob MB Rob
Enrich with top 10% pre-randomization assessment scores

Two-sample t-test
Enrich Single PRE θ 3.10 0.10 ( 3.5) 0.75 0.74 0.73 0.94 0.94
w/ Proposed Bias Adj β1 3.00 0.00 ( 0.1) 0.77 NA NA 0.94 0.94

Enrich True Mean PRE β1 3.00 0.00 ( 0.1) 1.14 1.14 1.13 0.95 0.95
No Enrichment β1 3.00 0.00 (-0.1) 1.41 1.42 1.41 0.95 0.95

ANCOVA
Enrich Single PRE θ 3.10 0.10 ( 3.4) 0.47 0.46 0.46 0.95 0.94
w/ Proposed Bias Adj β1 3.00 0.00 ( 0.0) 0.54 NA NA 0.91 0.90

Enrich True Mean PRE β1 3.01 0.01 ( 0.3) 0.46 0.47 0.46 0.95 0.95
No Enrichment β1 3.01 0.01 ( 0.2) 0.45 0.45 0.44 0.95 0.95

Paired Change β1

Enrich Single PRE θ 3.10 0.10 ( 3.4) 0.46 0.46 0.46 0.94 0.94
w/ Proposed Bias Adj β1 3.00 0.00 ( 0.0) 0.54 NA NA 0.91 0.90

Enrich True Mean PRE β1 3.01 0.01 ( 0.3) 0.47 0.47 0.47 0.95 0.95
No Enrichment β1 3.01 0.01 ( 0.2) 0.45 0.45 0.45 0.95 0.95

Enrich with top 25% pre-randomization assessment scores
Two-sample t-test

Enrich Single PRE θ 3.05 0.05 ( 1.6) 0.82 0.82 0.82 0.95 0.95
w/ Proposed Bias Adj β1 2.98 -0.02 (-0.8) 0.90 NA NA 0.93 0.93

Enrich True Mean PRE β1 3.00 0.00 ( 0.1) 1.17 1.16 1.15 0.95 0.95
No Enrichment β1 2.97 -0.03 (-0.9) 1.41 1.43 1.41 0.95 0.95

ANCOVA
Enrich Single PRE θ 3.07 0.07 ( 2.2) 0.46 0.46 0.45 0.95 0.94
w/ Proposed Bias Adj β1 2.99 -0.01 (-0.2) 0.67 NA NA 0.83 0.83

Enrich True Mean PRE β1 3.00 0.00 ( 0.0) 0.46 0.46 0.46 0.95 0.95
No Enrichment β1 2.99 -0.01 (-0.2) 0.45 0.45 0.44 0.95 0.95

Paired Change
Enrich Single PRE θ 3.07 0.07 ( 2.2) 0.46 0.46 0.45 0.95 0.95
w/ Proposed Bias Adj β1 3.00 0.00 (-0.2) 0.67 NA NA 0.83 0.83

Enrich True Mean PRE β1 3.00 0.00 ( 0.0) 0.47 0.47 0.46 0.95 0.95
No Enrichment β1 3.00 0.00 (-0.1) 0.46 0.45 0.45 0.95 0.95

Enrich with top 50% pre-randomization assessment scores
Two-sample t-test

Enrich Single PRE θ 3.05 0.05 ( 1.8) 0.94 0.95 0.94 0.95 0.95
w/ Proposed Bias Adj β1 3.00 0.00 ( 0.1) 1.03 NA NA 0.93 0.93

Enrich True Mean PRE β1 2.98 -0.02 (-0.5) 1.21 1.20 1.19 0.95 0.95
No Enrichment β1 2.99 -0.01 (-0.3) 1.43 1.43 1.41 0.95 0.95

ANCOVA
Enrich Single PRE θ 3.04 0.04 ( 1.5) 0.45 0.46 0.45 0.95 0.95
w/ Proposed Bias Adj β1 2.99 -0.01 (-0.2) 0.75 NA NA 0.77 0.77

Enrich True Mean PRE β1 3.00 0.00 ( 0.1) 0.46 0.46 0.45 0.95 0.95
No Enrichment β1 3.00 0.00 ( 0.0) 0.46 0.45 0.44 0.95 0.94

Paired Change
Enrich Single PRE θ 3.04 0.04 ( 1.5) 0.45 0.46 0.45 0.95 0.95
w/ Proposed Bias Adj β1 2.99 -0.01 (-0.2) 0.75 NA NA 0.77 0.76

Enrich True Mean PRE β1 3.00 0.00 ( 0.1) 0.46 0.46 0.46 0.95 0.95
No Enrichment β1 3.00 0.00 ( 0.0) 0.46 0.45 0.45 0.95 0.95
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Table 3.3: Estimating RW-E β1 = 3 assuming a constant mean-variance.

(10,000 simulations) Target Avg Est Bias (%) Emp Avg SE CI Cvrg for β1

Randomized n = 100 Estimand Est wrt β1 SD MB Rob MB Rob
Enrich with top 10% pre-randomization assessment scores

Two-sample t-test
Enrich Single PRE θ 3.00 0.00 ( 0.0) 0.48 0.47 0.47 0.95 0.95
w/ Proposed Bias Adj β1 3.00 0.00 ( 0.1) 0.54 NA NA 0.91 0.91

Enrich True Mean PRE β1 3.00 0.00 ( 0.1) 0.57 0.57 0.57 0.95 0.95
No Enrichment β1 3.00 0.00 (-0.1) 1.07 1.08 1.07 0.95 0.95

ANCOVA
Enrich Single PRE θ 3.01 0.01 ( 0.2) 0.18 0.18 0.18 0.95 0.94
w/ Proposed Bias Adj β1 3.01 0.01 ( 0.4) 0.35 NA NA 0.68 0.68

Enrich True Mean PRE β1 3.00 0.00 ( 0.1) 0.18 0.18 0.17 0.95 0.95
No Enrichment β1 3.00 0.00 ( 0.1) 0.18 0.18 0.18 0.95 0.95

Paired Change
Enrich Single PRE θ 3.01 0.01 ( 0.2) 0.18 0.18 0.18 0.95 0.94
w/ Proposed Bias Adj β1 3.01 0.01 ( 0.4) 0.35 NA NA 0.68 0.68

Enrich True Mean PRE β1 3.00 0.00 ( 0.1) 0.18 0.18 0.18 0.95 0.95
No Enrichment β1 3.00 0.00 ( 0.1) 0.18 0.18 0.18 0.95 0.95

Enrich with top 25% pre-randomization assessment scores
Two-sample t-test

Enrich Single PRE θ 3.00 0.00 ( 0.2) 0.55 0.55 0.55 0.95 0.95
w/ Proposed Bias Adj β1 3.00 0.00 ( 0.0) 0.67 NA NA 0.90 0.89

Enrich True Mean PRE β1 3.00 0.00 ( 0.1) 0.64 0.63 0.63 0.95 0.95
No Enrichment β1 2.99 -0.01 (-0.5) 1.06 1.08 1.07 0.95 0.95

ANCOVA
Enrich Single PRE θ 3.00 0.00 ( 0.0) 0.18 0.18 0.18 0.95 0.95
w/ Proposed Bias Adj β1 3.00 0.00 (-0.1) 0.48 NA NA 0.54 0.53

Enrich True Mean PRE β1 3.00 0.00 ( 0.0) 0.18 0.18 0.17 0.95 0.95
No Enrichment β1 3.00 0.00 (-0.1) 0.18 0.18 0.18 0.95 0.95

Paired Change
Enrich Single PRE θ 3.00 0.00 ( 0.0) 0.18 0.18 0.18 0.95 0.95
w/ Proposed Bias Adj β 3.00 0.00 (-0.1) 0.48 NA NA 0.54 0.53

Enrich True Mean PRE β1 3.00 0.00 ( 0.0) 0.18 0.18 0.18 0.95 0.95
No Enrichment β1 3.00 0.00 (-0.1) 0.18 0.18 0.18 0.95 0.95

Enrich with top 50% pre-randomization assessment scores
Two-sample t-test

Enrich Single PRE θ 3.00 0.00 ( 0.0) 0.67 0.67 0.66 0.95 0.95
w/ Proposed Bias Adj β 3.00 0.00 (-0.1) 0.78 NA NA 0.91 0.91

Enrich True Mean PRE β 2.99 -0.01 (-0.2) 0.74 0.72 0.72 0.95 0.95
No Enrichment β 3.00 0.00 ( 0.0) 1.08 1.08 1.07 0.95 0.95

ANCOVA
Enrich Single PRE θ 3.00 0.00 ( 0.0) 0.18 0.18 0.18 0.95 0.95
w/ Proposed Bias Adj β 3.00 0.00 (-0.1) 0.53 NA NA 0.49 0.48

Enrich True Mean PRE β 3.00 0.00 ( 0.0) 0.18 0.18 0.18 0.95 0.95
No Enrichment β 3.00 0.00 ( 0.0) 0.18 0.18 0.18 0.95 0.94

Paired Change
Enrich Single PRE θ 3.00 0.00 ( 0.0) 0.18 0.18 0.18 0.95 0.95
w/ Proposed Bias Adj β 3.00 0.00 (-0.1) 0.53 NA NA 0.48 0.48

Enrich True Mean PRE β 3.00 0.00 ( 0.0) 0.18 0.18 0.18 0.95 0.95
No Enrichment β 3.00 0.00 ( 0.0) 0.18 0.18 0.18 0.95 0.94
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For a pre-post design with enrichment based on the top 10% of single pre-randomization as-

sessment scores, we overestimated the RW-E β1 by approximately 22% using the two-sample

t-test, ANCOVA, or paired change models. After applying our proposed bias adjustment,

removing the impact of regression to the mean in order to target β1 instead of θ, we obtained

approximately unbiased estimates for β1. For enrichment of the top 10%, our proposed bias

adjustment applied to each of the t-test, ANCOVA, and paired change yielded coverage prob-

abilities at approximately the nominal 0.95 level. As the enrichment criterion becomes less

restrictive, however, we found that while the bias adjustment applied to the two-sample t-test

maintain approximately nominal coverage, those for ANCOVA and paired change became

anti-conservative (between 0.86 to 0.91). We found similar results, with further reductions in

coverage probabilities when considering inversely proportional and constant mean-variance

relationships (Table 3.2 and Table 3.3, respectively).

Furthermore, we considered two alternative pre-post designs: enrichment based on the true

mean pre-randomization value of each screened participant and no enrichment. For both of

these designs, we obtained approximately unbiased estimates for β1 and achieved nominal

coverage probabilities across enrichment cutoffs and mean-variance relationships. Not sur-

prisingly, as compared to top 10%, results for top 25% and 50% enrichment were qualitatively

similar where the amount of bias with θ̂ attenuated as the enrichment criterion became less

restrictive (i.e., regression to the mean became less of an issue).

3.4 Discussion

Enrichment in a pre-post RCT can result in biased estimates of treatment efficacy depending

upon the estimand of interest. We have demonstrated, analytically and via simulation stud-

ies, that a single assessment enrichment-based inclusion criterion using a pre-randomization

assessment can yield biased estimates of treatment efficacy for a broader patient population
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RW-E β1 when using the trial-specific RCT-E estimator θ̂ without any adjustment. Sim-

ply relying upon using a robust standard error estimate, such as White (1980), that only

applies a post-hoc fix to the variance of an estimate does not remove the bias when the vari-

ance of pre and post assessments is a function of the respective mean (i.e., a mean-variance

relationship). Furthermore, this suggests that simply increasing the planned sample size

for an enriched pre-post RCT will not aid in validly estimating the RW-E — analogous to

obtaining a more precise biased estimate by inflating the planned sample size of a clinical

trial in the attempts of trying to account for having (non-ignorable) missing data (Fleming,

2011). Hence, an alternative pre-specified approach, such as what we proposed, was needed

to correct for the bias that may arise from an enriched pre-post RCT when estimating the

RW-E.

We showed scenarios in which a proportional mean-variance relationship for pre and post

assessments can lead to overestimation bias for the RW-E from an enriched pre-post RCT.

Issues can thus arise with RCTs where the primary or co-primary endpoints are measured on

continuous scales with restricted ranges. For instance, in Alzheimer’s disease trials measures

of cognition (e.g., the Alzheimer’s Disease Assessment Scale-Cognitive Subscale, ADAS-

Cog (Rosen et al., 1984; Mohs et al., 1997)) and function (e.g., the Alzheimer’s Disease

Cooperative Study Activities of Daily Living for Mild Cognitive Impairment, ADCS-ADL-

MCI scores range from 0 to 53 with lower scores indicating greater functional impairment)

have restricted ranges. To this end, encountering non-constant mean-variance relationships

of assessments used in RCTs seem likely. Furthermore, the magnitude of the bias may

depend upon the form of the mean-variance relationship, the pre-post correlation (based on

the choice of biomarker or surrogate outcome measure selected), and the threshold used to

define meeting the enrichment criterion. The enrichment threshold is ideally selected for valid

scientific and ethical reasons. If, however, there is interest to learn about a subpopulation

of individuals who may not meet the enrichment criterion, careful consideration should be

taken at the trial design stage to decide whether to include or exclude such a subpopulation.
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We proposed a bias-adjusted estimator for the RW-E, β̂BiasAdj
1 , that uses the RCT-E estima-

tor θ̂ and empirical estimates to estimate the bias term we derived under the multivariate

normal pre-post data setting, and empirically demonstrated reduction in the bias compared

to the naive application of the RCT-E estimator θ̂ without any adjustment. From our inves-

tigation, we found that applying our bias adjustment to the two-sample t-test estimate of

the RCT-E yielded an estimate for the RW-E that was approximately unbiased and yielded

confidence intervals approximately achieving the nominal coverage probability level. On the

other hand, we found applying our bias adjustment to the ANCOVA and paired change

estimates of the RCT-E, while resulting in approximately unbiased estimates for the RW-E,

yielded marked drops in coverage probabilities, especially as the enrichment criterion was less

restrictive. This is a limitation of our proposed approach. One explanation for this may be

that the bias term we derived under the normality assumption can more directly correspond

to the formulation of the two-sample t-test estimation. Deriving possible specific ANCOVA-

based and paired-change-based bias adjustments may result in both unbiased estimation

and nominal coverage probabilities, while drawing upon ANCOVA’s typically more efficient

design. In the interim, however, we also found that enrichment based on the true mean

pre-randomization assessment for individuals alleviates issues with estimating RW-E from

the RCT sample. In practice, this would correspond to an enrichment period with multiple

pre assessments over time to remove the impact of regression to the mean when a single as-

sessment is taken that could be randomly higher or lower than one’s true pre-randomization

mean assessment value.

Another limitation of our proposed bias-adjusted estimator for the RW-E is that it was

derived under the assumption of multivariate normality of pre-post data and a known mean-

variance relationship. In practice, however, knowing the exact form of the mean-variance

relationship may be difficult. It is therefore incumbent to estimate the mean-variance rela-

tionship before collection of the post-randomization data. This can be done by leveraging

data from the available pre-randomization assessments for all screened individuals of the
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trial under study or using an auxiliary data source (e.g., from a pilot study or phase 2

trial) to estimate post variance and pre-post correlation for the control arm. Then, to ob-

tain corresponding marginal estimates for the treatment arm, select a prediction model for

the pre-randomization assessments based on pre-randomization covariates (e.g., one contin-

uous covariate, such as age, and one binary covariate, such as biological sex) by minimizing

Akaike’s Information Criterion (AIC; Akaike, 1974). To flexibly estimate the form of the

mean-variance relationship empirically, one approach is to fit a generalized additive model

(GAM; Hastie and Tibshirani, 1987) by regressing the squared residuals against the corre-

sponding fitted values from the selected prediction model. Then calculate the predicted value

from the GAM of the post-randomization marginal variance for the treatment arm by com-

puting the squared residual value corresponding to the sample mean of pre-randomization

assessments among all individuals (those meeting and not meeting the enrichment criterion)

plus the trial-specific estimated treatment effect among enriched individuals, θ̂. An addi-

tional proposed fix to the bias induced in this setting is to use the estimated form of the

mean-variance relationship and plug in the corresponding estimates of the squared residuals

from the above mentioned GAM and perform iteratively re-weighted least squares. When it

is of interest to allow for the possibility of a mean-variance relationship in enriched pre-post

trials, weighted least squares (WLS) seems reasonable à la generalized linear models (GLMs).

Obtaining a WLS estimator in this setting would allow relaxing the normality assumption

for pre-post data that our analytic fix relies upon. Based on the Gauss-Markov theorem,

this WLS estimator would be the best linear unbiased estimator.

Understanding which estimand is of interest (e.g., the RCT-E vs. the RW-E) is important

for clinical decision making, but also an important consideration by trialists at the design

stage prior to start of a new trial. This is important for settings where individuals not

meeting a trial’s enrichment criterion, and hence become ineligible to be randomized, are

not studied in RCTs. In clinical practice, this subpopulation may comprise individuals who

may not meet a similar criterion on an approved drug label’s indication, and may receive
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drug off-label, especially if there are no other alternatives. One concern with off-label use is

that the benefit-to-risk ratio may differ even if the safety profile is assumed to be similar for

subpopulations of patients meeting versus not meeting the enrichment criterion indicated on

a drug label. Trial design is therefore an important stage for sponsors in consultation with

review boards and regulators to carefully consider the pros and cons of the design, conduct,

and analysis choices prior to a trial’s initiation and enrollment. Our work is a step forward

to facilitate well-informed a priori decision making about what may be an issue in terms of

generalizability of trial results beyond the studied RCT sample.
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Chapter 4

Censoring-Robust Estimation in

Fixed Sample Time-to-Event Clinical

Trials with Adaptive Randomization

SUMMARY: Adaptive randomization is a clinical trial design feature used to modify treat-

ment allocation probabilities during accrual. In time-to-event trials, the impact of adaptive

randomization is less well-understood for estimating treatment efficacy in the presence of

time-varying effects (e.g., relative risk of progression to AIDS or death changes over time).

Here, we focus on time-to-event trials where the scientific estimand is a marginal hazard ratio

in the absence of intermittent censoring over the support of observed times. We analytically

show that adaptive randomization alters censoring patterns and illustrate via Monte Carlo

simulations that the Cox proportional hazards estimator can yield biased estimates. As a

remedy, we propose a censoring-robust estimator based on reweighting the partial likelihood

score by treatment-specific censoring distributions that account for adaptive randomization.

We derive the asymptotic properties of the proposed estimator and evaluate its finite sample

operating characteristics via simulation. Finally, we apply our proposed method using data
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from the Community Programs for Clinical Research on AIDS Trial 002.

4.1 Introduction

Reliably estimating treatment efficacy in randomized clinical trials is imperative to ade-

quately assess benefit-risk of a candidate intervention (U.S. Food and Drug Administration,

2019a, 2023). Reliable estimation requires pre-specifying an estimand, study design, and cor-

responding statistical analysis method. In randomized clinical trials with a right censored

time-to-event primary endpoint, the estimand is often parametrized by a hazard ratio. The

Cox proportional hazards model (1972) is ubiquitously pre-specified to estimate a hazard

ratio. When proportional hazards and independent censoring hold, a correctly specified Cox

model has a semiparametric efficient estimator consistent for an estimand that is a constant

hazard ratio over the observed support.

In the presence of time-varying treatment effects, however, prior work has shown that the

underlying estimand from a misspecified Cox model is a marginal hazard ratio that can

depend on the trial’s censoring patterns, marginally under independent censoring (Xu and

O’Quigley, 2000) or conditionally by treatment arms under covariate dependent censoring

(Struthers and Kalbfleisch, 1986; Boyd et al., 2012). Such a dependence on censoring is often

not of scientific interest and will restrict inference. To this end, censoring-robust estimators

have been proposed (Xu and O’Quigley, 2000; Boyd et al., 2012) because they target an

estimand that is a hazard ratio in the absence of intermittent censoring over the support

of observed times, denoted here by θ∗ ≡ exp(β∗). These approaches are an important

step towards reliably estimating treatment efficacy. Yet, the role of randomization scheme

(fixed versus adaptive) and impact on the underlying censoring distributions remain less

well-understood in time-to-event trials.
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Compared to fixed randomization, adaptive randomization allows for changing allocation

probabilities for newly enrolled trial participants that may accelerate information accrual on

the treatment arm. Types of adaptive randomization include restricted, covariate-adaptive,

response-adaptive, and covariate-adjusted response-adaptive randomization (Hu and Rosen-

berger, 2006; Rosenberger et al., 2012) that can be based on comparative data (U.S. Food

and Drug Administration, 2019a). For time-to-event clinical trials, Ye and Shao (2020) have

investigated covariate-adaptive randomization and Zhang and Rosenberger (2007) and Korn

and Freidlin (2011, 2017, 2022) have examined response-adaptive randomization. Covariate-

adjusted response-adaptive randomization may also have utility in time-to-event trials for

late-stage disease where the event can occur quickly and accrual for most of the trial’s du-

ration Rosenberger et al. (2012).

In this chapter, we show that adaptive randomization can alter follow-up times and thus

censoring patterns in a trial. We propose a censoring-robust estimator (CRE) that incorpo-

rates adaptive randomization into the weight used to reweight the partial likelihood score (à

la Boyd, Kittelson, and Gillen (BKG), 2012) in Section 4.2. We then examine frequentist

operating characteristics of our proposed adaptive randomization CRE, the BKG CRE, and

the Cox proportional hazards estimator (the latter serving as the referent estimator used

in practice) via simulation studies in Section 4.3. In Section 4.4 we apply our method af-

ter inducing an adaptive randomization scheme to data from the Community Programs in

Clinical Research on AIDS Trial 002 (Abrams et al., 1994), a time-to-event non-inferiority

trial with a fixed 1:1 randomization ratio that exhibited time-varying treatment effects. We

finish with a discussion and conclusions in Section 4.5.
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4.2 Methods

We consider a time-to-event clinical trial that enrolls n eligible participants from trial start

until the end of the accrual period, τAccrual. After introducing notation for fixed versus

adaptive randomization schemes and time-to-event outcomes, we review methods to esti-

mate a hazard ratio under proportional and non-proportional hazards, emphasizing how

the estimand can differ between these settings. Then, we analytically show how adaptive

randomization alters treatment-specific censoring patterns and propose a censoring-robust

estimator that incorporates the adaptive randomization rule.

4.2.1 Fixed versus adaptive randomization

For fixed randomization, these participants are randomly assigned to treatment Z = z with

probability πZ=z ≡ Pr(Z = z). For adaptive randomization, we define accrual subperiods

according to when treatment allocation probabilities change. Let K be the number of non-

overlapping accrual subperiods that form a finite partition of (0, τAccrual). Let A be the

index of an accrual subperiod k taking values {1, 2, ..., K}. For accrual subperiod k, let nk

be the number of enrolled participants and πA=k ≡ Pr(A = k) = nk/n denote the propor-

tion enrolled among all n participants. We then define treatment allocation probabilities

according to the accrual subperiod, πZ=z|A=k ≡ Pr(Z = z|A = k). While our notation can

be used for multi-arm clinical trials and those with different types of adaptive randomization

(e.g., covariate-adaptive or response-adaptive), in this article we focus on two-arm clinical

trials with either fixed randomization or adaptive randomization based on non-comparative

data. Figure 4.1 illustrates the four randomization schemes (one fixed and three adaptive)

we consider that were pre-determined according to accrual calendar time.
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Figure 4.1: Four randomization schemes of treatment allocation probabilities over trial ac-
crual.
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4.2.2 Hazard ratio estimands under non-proportional hazards

Let Ti and Ci denote the time to an event and censoring, respectively, for individual i

with observed time Xi = min{Ti, Ci} and event indicator ∆i = I(Ti ≤ Ci). Also, f(t), F (t),

S(t) = 1−F (t), and λ(t) = limh↓0 Pr[t ≤ T < t+h|T ≥ t]/h denote the density, distribution,

survivor, and hazard functions.

The Cox proportional hazards model (1972) parametrizes the hazard by

λ(t) = λ0(t) exp(βZ) (4.1)

with baseline hazard λ0(t), p-dimensional covariate vector Z, and p-dimensional parameter

vector β. As referenced above, in this article we assume p = 1 in the two-arm trial context.

The corresponding partial likelihood estimating equation for β is

UCoxPL(β) =
n∑

i=1

∫ ∞

0

(
Zi −

S(1)(t, β)

S(0)(t, β)

)
dNi(t) (4.2)

where S(r)(t) = n−1
∑n

j=1 Yj(t)Z
r
j exp(βZj), Yj(t) is an at-risk indicator at time t, and Ni(t)

is the number of events that occurred in (0, t) for individual i.

Under proportional hazards, the Cox proportional hazards estimator β̂CoxPH is consistent for

the value of β that solves UPL(β) = 0, denoted by βPH . When either independent censoring

(Ti |= Ci and Ci |= Zi) or conditionally independent censoring (Ti |= Ci|Zi) hold, the interpre-

tation of the exp(βPH) estimand is a constant hazard ratio in the absence of intermittent

censoring over the support of observed times.

In the presence of a time-varying effect (e.g., non-proportional hazards), fitting the Cox

proportional hazards model is an example of a misspecified model. Struthers and Kalbfleisch

(1986) show that, under a misspecified Cox model, β̂CoxPH is consistent for the value of β
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that solves

∫ ∞

0

EZ

{
fT (t|Z)SC(t|Z)

[
Z −

EZ

{
ZST (t|Z)SC(t|Z)eβZ

}
EZ {ST (t|Z)SC(t|Z)eβZ}

]}
dt = 0 (4.3)

denoted by βSC(·|Z) because of its notable dependence on the treatment-specific censoring

distributions.

Because censoring patterns are not often of scientific interest, but often instead a byproduct

of a trial’s design, we contend that the scientific estimand should not depend on a trial’s

intermittent censoring patterns. No intermittent censoring can only arise when all individuals

who do not experience an event are followed up to the same maximum follow-up time τ . In

such a setting, SC(t|Z) = 1 for all t and (4.3) reduces to

∫ ∞

0

EZ

{
fT (t|Z)

[
Z −

EZ

{
ZST (t|Z)eβZ

}
EZ {ST (t|Z)eβZ}

]}
dt = 0 (4.4)

with the corresponding solution denoted by β∗. In this article, we consider θ∗ ≡ exp(β∗)

as the scientific estimand, interpreted as a marginal hazard ratio comparing treatment to

control in the absence of intermittent censoring over the support of observed times.

While it is not always feasible to achieve no intermittent censoring in a trial, we contend

that θ∗ ≡ exp(β∗) remains the scientific estimand. Under independent censoring (IC) where

SC(t|Z) = SC(t), Xu and O’Quigley (2000) show that the solution to (4.3) still depends on

the marginal censoring distribution SC(t) and proposed reweighting the partial likelihood

score by point-wise Kaplan-Meier (1958) estimates of the marginal censoring distribution,

SC(t). Their estimator β̂XO is consistent for β∗ ≡ βIC .

In most clinical trials, however, independent censoring may be violated due to differential

adverse events profiles for treatment and control inducing covariate-dependent censoring.

Instead, conditionally independent censoring (CIC) may be a more appropriate assumption.
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Boyd et al. (2012) use the result from (4.3) in the context of a two-arm clinical trial and

propose reweighting the partial likelihood score by point-wise Kaplan-Meier estimates of the

treatment-specific censoring distributions, SC(t|Z). Their estimator, β̂BKG is consistent for

β∗ ≡ βCIC . We adopt the nomenclature of censoring-robust estimation (Boyd et al., 2012)

as a framework to examine the role of adaptive randomization on estimating the scientific

estimand θ∗ ≡ exp(β∗).

4.2.3 An adaptive randomization censoring-robust estimator

For any clinical trial using adaptive randomization, the adaptive randomization rule should

be pre-specified. But even if the adaptive randomization rule is not pre-specified, it should

be documented what the changes were to πZ=z|A=a and what was πA=a. In most practical

settings, these will be known. As such, it would behoove us to incorporate that information

into the weight used for re-weighting the estimating equation to remove the dependence on

intermittent censoring patterns for the maximal observed follow-up in a trial. To this end,

we extend the work by Boyd et al. (2012) for the censoring-robust estimation framework,

under conditionally independent censoring, by incorporating knowledge of the adaptive ran-

domization rule.

Consider an adaptive randomization rule AR = {πZ=z|A=k for all z and k = 1, ..., K} de-

noting the set of allocation probabilities for the K subperiods partitioning (0, τAccrual). We

derived that a treatment-specific censoring distribution can be expressed as a weighted av-

erage with respect to accrual subperiods

SC(t|Z = z) =
K∑
k=1

wAR
k (z)SC(t|Z = z, A = k) (4.5)
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with treatment-subperiod weight

wAR
k (z) ≡

πZ=z|A=kπA=k∑K
a=1 πZ=z|A=aπA=a

(see Appendix B.1 for derivation). Based on the decomposition in (4.5), we propose an

estimator for SC(t|Z) that incorporates the adaptive randomization rule and uses a left-

continuous Kaplan-Meier estimate of the treatment-subperiod-specific censoring distribution

at time t as a plug-in estimate for SC(t|Z = z, A = k). Using this result, we propose an

adaptive randomization censoring-robust estimator, denoted by β̂AR
CRE, that incorporates an

adaptive randomization rule in the weights ŴAR
i (t) = 1/ŜAR

C (t|Z = z) used to reweight the

partial likelihood score. Solving the following reweighted estimating equation for β

UAR
CRE(β) =

n∑
i=1

∫ ∞

0

WAR
i (t)

(
Zi −

S
(1)
AR(t, β)

S
(0)
AR(t, β)

)
dNi(t) ≡ 0 (4.6)

where S
(r)
AR(t) = n−1

∑n
j=1W

AR
j (t)Yj(t)Z

r
j exp(βZj) yields a consistent estimate for β∗ (see

Proposition 4.1).

Proposition 4.1: For a known adaptive randomization rule and under conditionally inde-

pendent censoring, the estimator that solves (4.6) has
√
n(β̂AR

CRE − β∗) →d N (0, V (β∗)) as

n→ ∞. (See Appendix B.2 for a proof.)

4.3 Simulations

In this section we present simulation studies evaluating frequentist operating characteristics

of the Cox proportional hazards (PH) estimator, Boyd-Kittelson-Gillen (BKG) censoring-

robust estimator (CRE), and our proposed adaptive randomization CRE in time-to-event

clinical trials with adaptive randomization. Because we showed in the previous section how
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adaptive randomization induces covariate-dependent censoring, we do not consider the Xu-

O’Quigley CRE as the independent censoring assumption is violated. This is often true

in clinical trials because adverse event profiles differ by arm leading to treatment-specific

censoring patterns.

4.3.1 Simulations scenarios

We considered three data generating models: constant relative benefit, delayed benefit,

and waning benefit; see the left panel of Figure 4.2. For each data generating model, the

corresponding estimand of interest is a marginal hazard ratio over the observed support in

the absence of intermittent censoring, denoted by θ∗ ≡ exp(β∗).

To obtain an approximate value for θ∗ for a given data generating model, we generated a

single dataset with a sample size of 100,000 participants per treatment arm. We assumed in-

stantaneous accrual and 1:1 randomization. Participants were only administratively censored

at 4 years if they had not already experienced the event.

For each data generating model, we considered four randomization schemes. The first was

a fixed 1:1 randomization over the entire accrual period (0, 4) years. The remaining three

were adaptive randomization schemes that all started with 1:1 randomization for the first six

months followed by increasing the probability of being assigned to treatment (Z = 1) from 0.5

to 0.8 over one year (Adapt 1 ), two years (Adapt 2 ), and three years (Adapt 3 ); see Figure

4.1. For example with Adapt 1, we partitioned the accrual period into four subperiods:

(0, 0.5), [0.5, 1), [1, 1.5), and [1.5, 4), with treatment (Z = 1) allocation probabilities of

0.5 (i.e., 1:1 randomization), 0.6, 0.7, and 0.8 (i.e., 4:1 randomization), respectively. The

scientific estimand for each data generating mechanism remained the same across accrual-

randomization scenarios considered.
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Figure 4.2: Data generating models for constant relative benefit (top left), delayed benefit
(middle left), and waning benefit (bottom left) along with corresponding forest plots (right)
of estimated hazard ratios and 95% confidence intervals from simulation studies.
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We considered two accrual settings. For the instantaneous accrual setting, we generated

true event times according to whether an individual was randomly assigned to treatment

or control in a 1:1 fashion using piece-wise exponential or exponential distributions. For

the remaining settings, we considered a four-year time-to-event clinical trial that accrued

participants for the entire four-year period. First, we generated entry times into the trial

for each participant, Ei ∼ Uniform(0, 4). We did not assume any other censoring occurred

except for administrative censoring. Here, we considered each of the randomization schemes

in Figure 4.1. For the adaptive randomization schemes, the censoring time (with respect to

time since randomization) depended on their entry into the study (with respect to calendar

time), denoted by Ci = 4− Ei.

We compared the Cox PH estimator, the BKG CRE, and our proposed adaptive random-

ization CRE against the marginal log hazard ratio in absence of intermittent censoring over

the maximal support β∗. In all scenarios, we used uniform accrual over the four-year study.

Each scenario consisted of 1000 Monte Carlo simulations. We calculated: bias (average of

the estimated log hazard ratios across simulations minus β∗); relative bias with respect to β∗;

average of the standard error estimates across simulations; empirical standard deviation of

the estimated log hazard ratios across simulations; confidence interval coverage probability.

4.3.2 Simulation results

The right panel of Figure 4.2 displays forest plots of estimated hazard ratios with 95% con-

fidence intervals (CI) for constant relative benefit (top row), delayed benefit (middle row),

and waning benefit (bottom row). For each forest plot, the horizontal axis displays the

hazard ratio scale and the vertical axis includes each accrual-randomization trial design:

Instantaneous accrual with fixed 1:1 randomization; and uniform accrual with fixed 1:1,

Adapt 1, Adapt 2, and Adapt 3 randomization. For each accrual-randomization design, we
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display the estimated hazard ratio (HR) and corresponding 95% CI for each estimator (Cox

PH, BKG CRE, and our proposed adaptive randomization (AR) CRE). The instantaneous

accrual scenarios had no intermittent censoring by design. In these instances, both censoring-

robust estimators are equivalent to the Cox PH estimator, thus yielding the same results

under proportional hazards and non-proportional hazards. Under uniform accrual and fixed

randomization, the Cox PH estimator yields biased estimates for θ∗ ≡ exp(β∗) while both

censoring-robust estimators yield approximately unbiased estimates. Similar estimates are

observed under uniform accrual and adaptive randomization; however, because our proposed

estimator accounts for the adaptive randomization rule, it had higher precision compared

to the BKG CRE. Table 4.1 summarizes additional operating characteristics for these data

generating mechanisms. Of note, the coverage probabilities for the Cox PH estimator are

anti-conservative under non-proportional hazards whereas both censoring robust estimators

achieve the nominal CI coverage probability level. Because the Cox PH estimator yielded

biased estimates under the non-proportional hazards scenarios investigated, the correspond-

ing coverage probabilities (which were anti-conservative) have less relevance when the goal

is to reliably estimating treatment efficacy.

4.4 Application to data from Community Programs for

Clinical Research on AIDS Trial 002

We consider the Community Programs for Clinical Research on AIDS (CPCRA) Trial 002

(Abrams et al., 1994) of individuals infected with human immunodeficiency virus who had

not received benefit from first-line treatment with zidovudine. CPCRA Trial 002 enrolled

467 participants from December 1990 to September 1991 and, using fixed 1:1 randomiza-

tion, assigned 237 participants to the experimental treatment, zalcitabine (ddC), and 230

to the standard of care, didanosine (ddI). This was a non-inferiority trial in which the ob-
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Figure 4.3: Estimated hazard ratio with 95% confidence interval at each interim analysis
illustrating a time-varying effect on progression-free survival for zalcitabine (ddC) versus
didanosine (ddI) in CPCRA Trial 002.

jective was to determine whether ddC did not exceed a 25% higher risk of progression to

acquired immunodeficiency syndrome (AIDS) or death (i.e., progression-free survival, PFS)

compared to ddI. A data monitoring committee monitored this trial for safety and efficacy

at pre-specified interim analyses. The estimated hazard ratio varied across interim analyses

indicating non-proportional hazards (see Figure 4.3).

To illustrate using censoring-robust methods compared to the Cox model in a time-to-event

trial with adaptive randomization that exhibits time-varying effects, we induced an adaptive

randomization scheme using the CPCRA Trial 002 data. We split the accrual period into

two subperiods at the time that the 58th PFS event occurred. The first 247 participants

were allocated to ddC versus ddI with 2:1 randomization (accrual subperiod 1) and the
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Figure 4.4: Analysis of CPCRA Trial 002 data after inducing an adaptive randomization
scheme. Kaplan-Meier estimates for the progression-free survival distributions by treatment
arm along with the estimated hazard ratio (HR) and corresponding 95% confidence interval
(CI) for the Cox proportional hazards (PH) estimator, the Boyd-Kittelson-Gillen (BKG)
censoring-robust (CR) estimator, and our proposed adaptive randomization (AR) CR esti-
mator. As in the original trial, here the non-inferiority margin is 1.25.

remaining 135 participants were allocated with 1:1 randomization (accrual subperiod 2).

In total, 382 participants were randomized (237 to ddC, 145 to ddI) and 251 had a PFS

event. Figure 4.4 displays the PFS curves by accrual period and treatment arm, indicating

non-proportional hazards. We estimated the hazard ratio comparing ddC versus ddI using

the Cox proportional hazards (PH) estimator to be 0.910, the Boyd-Kittelson-Gillen (BKG)

censoring-robust estimator (CRE) to be 0.995, and our proposed adaptive randomization

(AR) CRE to be 0.966. The upper bound of the 95% confidence interval for each CRE is

greater than the non-inferiority margin of 1.25. Hence, in this scenario, we cannot rule out

an excess of 25% risk of progression to AIDS or death for ddC compared to ddI.
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4.5 Discussion

We examined the impact of adaptive randomization on the underlying censoring distribu-

tions in time-to-event clinical trials where a scientific estimand for treatment efficacy is a

marginal hazard ratio in the absence of intermittent censoring over the support of observed

times, θ∗ ≡ exp(β∗). First, we showed that adaptive randomization can alter censoring pat-

terns and can lead to biased estimates for θ∗ in the presence of time-varying effects. Next,

we proposed a novel censoring-robust estimator that extends existing methods by account-

ing for an adaptive randomization rule and removes dependence on censoring patterns, thus

yielding a consistent estimate for θ∗. Finally, using data from the CPCRA Trial 002 where

we induced an adaptive randomization scheme, we illustrated how adaptive randomization

can yield different estimates of treatment efficacy on progression-free survival that depended

on the estimation procedure used. In the scenario considered, we found that the Cox pro-

portional hazards estimator overestimated efficacy compared to censoring-robust estimation

approaches.

Time-varying treatment effects can arise in superiority (as shown in our simulation studies)

and non-inferiority designs (as in the CPCRA Trial 002). Model misspecification, such as

fitting a Cox proportional hazards model in the presence of time-varying effects, leads to

hazard ratio estimates that depend on censoring patterns. This restricts the generalizability

of inference from a trial and can make comparisons of hazard ratio estimates across trials

challenging as censoring patterns are likely to differ across trials. By considering an esti-

mand that does not depend on a trial’s censoring patterns (e.g., θ∗), this can allow more

fair comparisons provided that the estimation procedure yields consistent estimates for the

scientific estimand.

We found that the extent of bias depended on the estimand and the data generating mech-

anism. In practice, we are unable to know the true data generating mechanism for time-to-

67



event endpoints. Instead, it behooves us to pre-specify statistical methods that can yield

reliable estimates of treatment efficacy with as few assumptions as possible. Censoring-

robust estimation supports this objective. Because we need to pre-specify the estimand,

study design, and statistical analysis methods, it would not be possible to know the di-

rection of bias we may have a priori. Furthermore, bias in either direction is not ideal.

Overestimating a treatment effect can lead to an approval of a non-efficacious intervention,

while underestimating can result in missing out on approving an intervention with truly

favorable benefit-risk.

One limitation of our investigation is that we did not explicitly consider adaptive randomiza-

tion as would be used in practice (e.g., restricted, covariate-adaptive, response-adaptive, or

covariate-adjusted response-adaptive randomization). Instead, we assumed that the adap-

tive randomization rule was pre-specified according to accrual time (or after a number of

events had been observed) that did not depend comparative data. This simplification of an

adaptive randomization scheme was done to isolate the impact of adaptive randomization

on estimating a treatment effect. We showed that even in this scenario, adaptive random-

ization affects censoring patterns and hence estimation of the scientific estimand θ∗. In

practice, incorporating comparative data in the adaptive randomization rule would only ex-

acerbate differential censoring patterns, further warranting consideration of censoring-robust

estimation. A limitation of our estimator is reliance on the treatment-subperiod censoring

distribution SC(t|Z = z, A = k). When adaptations occur more frequently the number of

events within each treatmeant subperiod may be small. In such cases, the nonparametric

Kaplan-Meier estimate may be highly variable. One alternative would be to use the BKG

estimator. Since the BKG estimator uses the Kaplan-Meier estimates of SC(t|Z = z) over

the entire support, the estimate of the weight would likely be more stable while still targeting

θ∗.

Censoring-robust estimation can facilitate reliably estimating treatment efficacy in fixed
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sample time-to-event trials for evaluating benefit-risk of candidate interventions. In practice,

as with the CPCRA Trial 002, a sequential monitoring plan may be pre-specified to allow

for the possibility of stopping a trial early for efficacy, futility, or harm. This can affect the

timing of analyses, estimation of treatment efficacy, and inference. Investigating the role of

censoring-robust estimators in this case is a focus of the next chapter.
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Chapter 5

Information Growth of

Censoring-Robust Estimators in

Group Sequential Time-to-Event

Clinical Trials with Adaptive

Randomization

SUMMARY: Adaptive randomization (AR) allows for changes to the treatment allocation

ratio during accrual of a clinical trial. In fixed sample time-to-event trials, AR alters treat-

ment arm censoring patterns that can lead to biased efficacy estimates under time-varying

treatment effects. Censoring-robust estimators (CREs) have been proposed to remove such

dependence by reweighting the Cox proportional hazards estimating equation. CREs are

consistent for an average hazard ratio over the support of observed times in the absence of

intermittent censoring. For maximal information group sequential designs (GSDs) that may

stop early for efficacy, futility, or harm, the estimand targeted by a CRE also depends on
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the length of follow-up at an interim analysis (IA), as determined by the fraction of planned

maximal information. Accurately estimating information growth is key to logistically plan

the timing of IAs. In this chapter we quantify information growth of CREs, illustrating non-

linear relationships with the observed number of events in GSDs with AR. We also show how

to account for non-independent increments in such GSDs that together with the information

growth allows for properly planning IAs while maintaining overall type I error rate.

5.1 Introduction

Group sequential designs (GSDs; Jennison and Turnbull, 1999) are frequently used to bal-

ance scientific, ethical, logistical, and statistical constraints to efficiently obtain statistically

persuasive and clinically relevant evidence for answering a clinical trial’s primary question.

GSDs tend to be classified as “well-understood” by the U.S. Food and Drug Administra-

tion (2019a). Yet, with efforts to accelerate drug development through complex innovative

designs (U.S. Food and Drug Administration, 2016; Dabrowska and Thaul, 2018) there is

an increasing need by sponsors, data monitoring committees, scientific review boards, and

regulators to understand the impact of such designs. As we saw in Chapter 4, a seemingly

innocuous design feature as changing the treatment allocation probabilities based on an

adaptive randomization scheme can change the target estimand unless appropriate methods

(e.g., censoring-robust estimation) are pre-specified and employed. This was investigated in

the previous chapter assuming a fixed sample time-to-event randomized clinical trial (RCT).

In this chapter, we examine how to design a time-to-event GSD, with or without an adaptive

randomization scheme, when the pre-specified analysis method calls for censoring-robust es-

timation to alleviate potential issues that arise in the presence of a time-varying treatment

effect (i.e., non-proportional hazards).

GSDs allow for the possibility of stopping a trial prior to the maximal planned sample size
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(events in a time-to-event trial) through repeated significance testing via analyses performed

at a select number of times over the duration of a trial. Hence, the sequential sampling

density requires modification compared to that for a fixed sample design. Consider a group

sequential trial with up to J analyses. Let J denote the final planned analysis occurring at

the maximal sample size and analyses j = 1, ..., J − 1 be interim analyses. Let Sj denote the

score statistic at analysis j where Sj
.∼ N (θIj, Ij) and Ij is the information at analysis j.

Define the continuation set at analysis j, here based on the scale of the score statistic, by

CSj
= (aSj

, bSj
] ∪ [cSj

, dSj
)

where a, b, c, and d are the group sequential boundaries determined based on a combination

scientific relevance and attaining trial design operating characteristics. In general, values

between b and c boundaries represent equivalence. In this chapter, we consider superiority

trials; hence no stopping for equivalence (i.e., b = c). Furthermore, we focus on testing a one-

sided lower hypothesis where a hazard ratio less than one is favorable for the experimental

treatment. That is, a boundaries correspond to efficacy and d boundaries to futility and

the continuation set at analysis j expressed as a single interval, CSj
= (aSj

, dSj
). Recall

from Chapter 2 that group sequential boundaries can be determined on a number of scales,

including treatment effect, partial sum, and normalized Z statistic. Emerson et al. (2007)

showed that there is a 1-to-1 mapping between these scales. An advantage of this relationship

means that translating from one scale to another is not only possible, but may help instruct

the scientific utility of proposed group sequential boundaries. For these reasons, it is often

of interest to also examine proposed group sequential boundaries on the treatment effect

estimate scale. This allows for a natural and direct way to interpret the clinical utility of such

boundaries. In this chapter we will consider two scales: (1) the treatment effect scale (hazard

ratio) to examine boundaries on the hazard ratio scale to assess clinical relevance; and (2)

the normalized Z statistic scale to facilitate computation of GSD operating characteristics
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across a range of scenarios without needing to calculate Ij directly in each scenario and

analysis j.

With the score statistic Sj and the corresponding continuation set, CSj
, the trial stops if Sj ∈

CSj
; otherwise, the trial continues to the j +1 analysis (unless j = J). This implies that the

trial stops at the first analysis when Sj /∈ CSj
, denoted byM = min

{
1 ≤ j ≤ J : Sj /∈ CSj

}
,

and the corresponding Sj is denoted S = SM is the statistic at the Mth analysis. Together,

M and S form the bivariate GSD test statistic (M = m,S = sm). Assuming an independent

increments structure holds (i.e., Sj+1 − Sj is independent of Sj), Armitage et al. (1969)

defined the sequential sampling density for (M = m,S = sm) recursively by

p(m, sm; θ) =


f(m, sm; θ) if sm /∈ CSm

0 otherwise

(5.1)

where

f(1, s1; θ) =
1√
I1

ϕ

(
s1 − θI1√

I1

)

f(j, sj; θ) =

∫
CSj−1

1
√
vj
ϕ

(
sj − u− θvj√

vj

)
f(j − 1, u; θ)du

for j = 2, . . . ,m where vj = Ij − Ij−1 and ϕ(·) is the standard normal density function.

Integrating over this sequential sampling density allows computation of confidence intervals

and p-values, and statistical operating characteristics to evaluate GSDs. Importantly, for-

mulation of the group sequential sampling density (5.1) depends upon the variance of the

score statistic (i.e., information, Ij) for j = 1, ...,m. This means that if the observed Ij dur-

ing the trial differs from what was assumed during the planning stage, the GSD operating

characteristics will change. Therefore, it is imperative to understand how the information of

a pre-specified statistic changes over the duration of the trial: the information growth.
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Additionally, the timing of analyses and group sequential boundaries are a function of pro-

portion of maximal information at time j, denoted by Πj = Ij/IJ . In this chapter, we

refer to information growth as how the set of {Πj}Jj=1 grow as data accumulates during

the course of a trial compared to the proportion of maximal events, Dj/DJ , as is typically

reported. Kittelson and Emerson (1999) coalesced many of the typical GSDs into a unified

family. The unified family of GSDs parametrization allows for an infinite number of group se-

quential boundaries, including many traditional and commonly used boundary shapes (e.g.,

Pocock, 1977; O’Brien and Fleming, 1979; Whitehead and Stratton, 1983; Wang and Tsiatis,

1987). In practice, the timing of these analyses should balance scientifically relevant tim-

ing (the amount of follow-up for enrolled participants) and the level of statistical evidence

desired to potentially stop a clinical trial before the maximal planned sample size. In time-

to-event trials, ‘sample size’ typically refers to the number of events because events drive the

information.

Because in practice, the timing of interim analyses may not occur at exactly the planned

times, either operationally or because a data monitoring committee may request additional

unplanned reviews of safety and possibly efficacy data, flexibility in modifying the group

sequential boundaries can help to maintain trial design operating characteristics and therein

the trial objectives. Approaches include those based on type I and/or type II error spending

(Lan and DeMets, 1983; Pampallona et al., 1995; Chang et al., 1998). Another approach

was proposed by Burington and Emerson (2003) called constrained boundaries. This lat-

ter approach allows for recalculating future group sequential boundaries while anchoring

boundaries from already completed analyses all while maintaining trial design operating

characteristics. This can lead to changes to the maximal sample size (or events), for exam-

ple, when the observed information growth during the monitoring of a trial differs from that

assumed at the design stage.

Often, the timing of analyses in a time-to-event GSD is based on the proportion of maximal
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events. For a time-invariant treatment effect (e.g., proportional hazards), it has been shown

that the statistical information of the partial likelihood score test (e.g., logrank test when

there are two treatment arms) grows linearly with respect to the proportion of maximal

events. Because group sequential boundaries are a function of the proportion of maximal

information, in such a setting, timing of interim analyses can be determined by projecting

the calendar time when the number of events will occur for each analysis. When there is a

time-varying treatment effect (i.e., non-proportional hazards), however, information growth

is no longer trivially proportional to the number of events observed (see, for example, Gillen

and Emerson (2005)).

Non-proportional hazards with time-to-event primary endpoints has led to work on weighted

statistics (in part to address what is of scientific importance: not all events have the same

weight), included weighted logrank statistics. Previous research has investigated the im-

pact of using weighted logrank statistics in the group sequential testing framework. Gillen

and Emerson (2005) showed that weighted logrank statistics have non-linear information

growth. Brummel and Gillen (2014) used a constrained boundaries approach by incorpo-

rating the non-linear information growth of weighted logrank statistics in the monitoring of

time-to-event GSDs. An important takeaway from previous research for time-to-event GSDs

is the role of the censoring distribution on (i) estimation under non-proportional hazards

and (ii) and then because of the weighting function employed, on information growth even

under proportional hazards. With this prior research as motivation, we extend the work

of censoring-robust estimation in the fixed sample setting to the group sequential setting

where targeting a marginal hazard ratio standardized to a common censoring distribution is

of interest to enhance replicability and generalizability of inference from a trial.

Recently, adaptive randomization has become more common as a trial design feature. We

showed in Chapter 4 how adaptive randomization can alter censoring patterns within a trial.

We then proposed a censoring-robust estimator that incorporates the randomization scheme
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via inverse probability of censoring weighting to standardize hazard ratio estimation to a

marginal estimand that has a common censoring distribution (e.g., in the absence of intermit-

tent censoring) yielding a more efficient estimator under adaptive randomization compared

to the existing Boyd et al. (2012) censoring-robust estimator. Under fixed randomization,

our adaptive randomization censoring-robust estimator reduces to that proposed by Boyd

et al. (2012) that weights by the inverse of Kaplan-Meier estimates for treatment-specific

censoring distributions.

In this chapter, we extend the work by Gillen and Emerson (2005) to censoring-robust es-

timators with adaptive randomization to characterize information growth and design GSDs

with desired operating characteristics at the planning stage. The results presented also apply

to cases of non-adaptive randomization. In Section 5.2 we show that the information growth

of our adaptive randomization censoring robust estimator is non-linear in many practical

settings owing to events occurring later receiving more weight when targeting a marginal

hazard ratio estimand over the observed support. This can affect timing of analyses. In

Section 5.2.3 we explore how to circumvent the censoring-robust estimator violating inde-

pendent increments used in practice by Murray and Tsiatis (1999) that we use as a remedy

in the adaptive randomization GSD setting. In Section 5.4 we illustrate how the frequen-

tist operating characteristics of a GSD are not maintained when analysis times correspond

to incorrect information fractions are performed (i.e., naively assuming information grows

proportional to events). Further, we illustrate our proposed procedures from Sections 5.2

and 5.2.3 to modify the timing of analyses and account for non-independent increments to

maintain the overall type I error rate for a GSD. Finally, we conclude this chapter with a

discussion in Section 5.5.
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5.2 Information growth of censoring-robust estimators

5.2.1 Censoring at interim analyses as a function of accrual

The time to an event in a clinical trial is right censored when the event does not occur by

the last observed calendar time before a trial’s database cutoff date for an analysis (whether

interim or final). As previously discussed, censoring is either assumed to be independent of

the true event times (i.e., independent censoring) or, more reasonably in practice, censoring

is assumed to be independent of the true event conditional on the randomized treatment

assignment (i.e., conditionally independent censoring). In these instances, censoring can then

be parameterized according to trial accrual (entry times distribution), study dropout, and

an administrative stopping of follow-up of participants (i.e., administrative censoring). Let

E denote a random variable for the entry time of a participant during an accrual period from

trial start until τA (with respect to calendar time since trial start). Let CD denote a random

variable for the dropout time of a participant (with respect to time since randomization).

Let τj represent the administrative censoring time (with respect to calendar time since the

start of the trial) for analysis j. Then, the administrative censoring time occurs at τj − E.

Since both accrual and dropout impact censoring, let C ≡ (τj −E)∧CD ≡ min(τj −E,CD).

Thus, the cumulative distribution function of censoring is

FC(t; τj) ≡ Pr[C ≤ t; τj] = Pr[min(τj − E,CD) ≤ t].

Most often, study dropout is defined as withdrawal of consent or lost to follow-up. While

it is possible to account for dropout through an assumed distribution, it is strongly advised

to prevent, or at least minimize, the amount of dropout as much as possible during a trial

(Council et al., 2010; Little et al., 2012; Fleming, 2011).

During study planning — when efforts to prevent study dropouts are being discussed —
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it is of interest to at least evaluate candidate designs on the basis that there are no study

dropouts. To this end, in this chapter we focus on scenarios in which there is no dropout

(i.e., CD = ∞) and censoring only occurs administratively at τj for analysis j. This implies

that censoring depends on the administrative censoring time for analysis j and the accrual

distribution of entry times, denoted by C = τj − E. Furthermore, in the group sequential

testing setting, analysis j may occur before trial accrual has completed (i.e., τj < τA).

We consider the weighting function used in our adaptive randomization censoring-robust

estimator and then that for the Boyd et al. (2012) estimator. When assuming only admin-

istrative censoring, the treatment-subperiod-specific censoring distribution does not depend

on the treatment arm and thus can be expressed as

SC(t; τj|Z = z, A = k) = SC(t; τj|A = k)

= Pr[C > t|A = k,E < τj]

=
FE({τj − t} ∧ ek+1)− FE(ek)

FE(τj ∧ ek+1)− FE(ek)
(5.2)

(see Appendix C.1 for derivation) where accrual in subperiod k corresponds to entry times

(with respect to calendar time) between ek and ek+1. Note that for a randomization scheme

in which the treatment arm allocation probability changes K times during accrual, define

a K-partition of the accrual period (0, τA) = (e0, e1) ∪ {∪K
k=2[ek, ek+1)} where e1 = 0 and

eK+1 = τA. The treatment-specific censoring distribution for our adaptive randomization

censoring-robust estimator then takes the form

SAR
C (t; τj|Z = z) =

K∑
k=1

wAR
k (z)SC(t|Z = z, A = k)

=
K∑
k=1

wAR
k (z)SC(t|A = k)

=
K∑
k=1

wAR
k (z)

[
FE({τj − t} ∧ ek+1)− FE(ek)

FE(τj ∧ ek+1)− FE(ek)

]
(5.3)
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with treatment-subperiod weight

wAR
k (z) ≡

πZ|A=k(z)πA(k)∑K
l=1 πZ|A=l(z)πA(l)

where πZ|A=k(z) ≡ Pr[Z = z|A = k] is the conditional probability of being assigned to

treatment arm z given study entry in accrual subperiod k and πA(k) = FE(ek+1) − FE(ek)

is the proportion of accrual period in subperiod k. The marginal censoring distribution for

our adaptive randomization censoring-robust estimator takes the form

SAR
C (t; τj) =

1∑
z=0

SAR
C (t; τj|Z = z)πZ(z)

=
1∑

z=0

K∑
k=1

wAR
k (z)

[
FE({τj − t} ∧ ek+1)− FE(ek)

FE(τj ∧ ek+1)− FE(ek)

]
πZ(z)

=
1∑

z=0

K∑
k=1

πZ|A=k(z)πA(k)

[
FE({τj − t} ∧ ek+1)− FE(ek)

FE(τj ∧ ek+1)− FE(ek)

]
(5.4)

where πZ(z) ≡ Pr[Z = z] =
∑K

k=1 πZ|A=k(z)πA(k) is the marginal probability of being

assigned to treatment arm z. Note that when there is a fixed randomization scheme (i.e.,

only one subperiod for the entire accrual period) and only administrative censoring at τj

the treatment-subperiod-specific censoring distribution is equal to the marginal censoring

distribution. Hence,

SC(t; τj) =
FE({τj − t} ∧ τA)

FE(τj ∧ τA)
=
FE(τj − t)

FE(τj)
(5.5)

with the latter equality since FE(·) is a valid cumulative distribution function over the accrual

period of (0, τA), where values greater than τA will return a value of one.

The inverse of SC(t; τj) in (5.4) and (5.5) represent the weighting function used to define

the statistical information at each analysis j of our adaptive randomization censoring-robust

estimator and the Boyd et al. (2012) estimator, respectively. We next examine the infor-
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mation growth. Then, in Section 5.3 we will address a consequence of the censoring-robust

estimator weighting function depending on the timing at each analysis j, τj.

5.2.2 Statistical information at interim analyses

Tsiatis (1982) showed that a class of weighted statistics, including weighted logrank statistics

and censoring-robust estimators, can be approximated by a sum of independent and iden-

tically distributed random variables. Furthermore, Tsiatis showed the form of the variance

of such weighted score statistics (i.e., the statistical information) under the strong null (i.e.,

equality of survival distributions for event times) is

σ2(τ) ∝
∫ τ

0

w2(t)FE(τ − t)[1− FCD
(t)] dST (t). (5.6)

where w(t) is the weight function, FE(·) is the cumulative distribution function of entry

times, FCD
(·) is the cumulative distribution function of dropout times, ST (·) is the marginal

survivor function of the true event times, and τ is the last observed event time for the

analysis.

Since our adaptive randomization censoring-robust estimator, and that proposed by Boyd

et al. (2012), are weighted statistics of the form in Tsiatis (1982), we can appeal to (5.6) to

obtain the statistical information for censoring-robust estimators. Further, when we assume

no dropout (i.e., FCD
(t) = 0 for all t < ∞), the form of the statistical information of our

adaptive randomization censoring-robust estimator when data is analyzed up to the last
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observed event time tj (with administrative censoring occurring at τj > tj) is

σ2
j (tj) ∝

∫ tj

0

w2(t)FE(τj − t) dST (t)

=

∫ tj

0

{
1

SAR
C (t; τj)

}2

FE(τj − t) dST (t)

=

∫ tj

0

FE(τj − t){∑1
z=0

∑K
k=1 πZ|A=k(z)πA(k)

[
FE({τj−t}∧ek+1)−FE(ek)

FE(τj∧ek+1)−FE(ek)

]}2 dST (t). (5.7)

Note that in this theoretical formulation (5.7), we make a distinction between the adminis-

trative censoring time τj and the last observed event time tj such that tj < τj. This ensures

that there are individuals still at risk by the last observed time (which is what would be

expected in practice), and obviates issues with a weight approaching infinity when FE(0) = 0

that would overly influence the statistical information. For a fixed randomization scheme,

(5.7) reduces to

σ2
j (tj) ∝

∫ tj

0

w2(t)FE(τj − t) dST (t)

=

∫ tj

0

{
1

SC(t; τj)

}2

FE(τj − t) dST (t)

=

∫ tj

0

 1
FE(τj−t)

FE(τj)


2

FE(τj − t) dST (t)

= {FE(τj)}2
∫ tj

0

1

FE(τj − t)
dST (t). (5.8)

5.2.3 Information growth of censoring-robust estimators

Information growth of an estimator is generally characterized as the proportion of maximal

information (or information fraction) at analysis j, denoted by Πj, as a function of the

proportion of maximal events, Dj/DJ . Using the notation in (5.7), the proportion of maximal
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information at analysis j is

Πj ≡
Ij

IJ

=

(
Mj0+Mj1

Mj0Mj1

)
σ2
j(

MJ0+MJ1

MJ0MJ1

)
σ2
J

(5.9)

where Mjz denotes the number initially at risk in treatment arm z for analysis j = 1, ..., J .

To characterize the information growth for censoring-robust estimators during the planning

stage, we need to specify the hypothesized accrual patterns and survival distributions. To

allow for a flexible range of accrual patterns, such as early, uniform, and late, we consider

a powered uniform distribution for entry times. Specifically, let E ∼ PwrUnif(r, τA) with

cumulative distribution function

FE(t) =

(
t

τA

)r

· I(0 ≤ t ≤ τA) (5.10)

for accrual over the interval (0, τA). Additionally, the marginal survival distribution for a

known randomization scheme (fixed or adaptive) can be expressed as

ST (t) =
1∑

z=0

ST |Z=z(t)πZ(z) =
1∑

z=0

ST |Z=z(t)

{
K∑
k=1

πZ|A=k(z)πA(k)

}
(5.11)

where πZ(z) ≡ Pr[Z = z] and πZ|A=k(z) ≡ Pr[Z = z|A = k] are the marginal probability of

being assigned to treatment arm z and conditional probability of being assigned to treatment

arm z given study entry in accrual subperiod k, respectively (similar to Chapter 4 notation).

Note that under the strong null, ST (t) = ST |Z=z(t) for z = 0, 1 and all t > 0. In this chapter,

we consider an adaptive randomization scheme over three years with three subperiods with

allocation probability for treatment (tx1) is 0.50 (1:1 randomization) during the first year,

0.65 (∼2:1 randomization) during the second year, and 0.80 (4:1 randomization) during the

final year of accrual; see Figure 5.1.

82



0 1 2 3

Accrual period in calendar time (years)

0.50

0.65

0.80

A
llo

ca
tio

n 
pr

ob
ab

ili
ty

Accrual subperiods

Adapt
Fixed 1:1 4:1 randomization

1:1 randomization

( 1 ]( 2 ]( 3 )

( 1 )Fixed 1:1

Adapt

Figure 5.1: Fixed 1:1 vs. an adaptive randomization scheme over a three-year accrual period.

Calculating empirical information growth for censoring-robust estimators

We outline steps to estimate the empirical information growth for our adaptive randomization

censoring-robust estimator as follows.

Step 1. Consider the maximal number of events to observe, Dmax. Generate a single clinical

trial data set (with simulation index by b), denoted here by DATASET b consisting of

N > Dmax participants to randomize according to a known randomization scheme

and have variables for a subject identifier, entry time E (calendar time), treatment

arm Z, true event time T (time since randomization), and true calendar event time

TCAL (calendar time). Specify an assumed accrual distribution of entry times, denoted

by FE(t) (e.g., powered uniform as in (5.10)). Based on E and the randomization

scheme, generate Z from a multinomial distribution with treatment arm allocation

probabilities according the the randomization scheme. For a two-arm trial, without loss

of generality, for each participant generate a Bernoulli random variable with probability
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of ‘success’ equal to the allocation probability for the experimental arm; Z is then an

indicator for the experimental arm. Also, specify assumed treatment-specific event

times distributions, ST (t|Z), in accordance with the marginal hazard ratio of interest.

Step 2. Order DATASET b according to TCAL in ascending order: ORD DATASET b.

Step 3. Consider the minimum number of events to analyze the data, denoted Dmin (e.g.,

35 events), and the maximum number of events, Dmax. Data will then be analyzed

from ORD DATASET b after each event is observed, starting with Dmin up to Dmax. Let

Dm be the mth ordered event in the set of events {Dmin, ..., Dmax}.

Step 4. Start with m = 1. Let the corresponding calendar time when Dm events have

occurred be denoted by τm. Next, subset ORD DATASET b to only those participants

entered the trial by τm (ORD DATASET b Dm) and calculate the corresponding observed

time X = min(τj − E, T ) and event indicator δ1 = I(X = T ). Fit the data using our

adaptive randomization censoring-robust estimator. Store the estimated information

by taking the inverse of the estimated variance, denoted here as ÎAR
mb where the b will

correspond to the simulation index (b = 1, ..., B).

Step 5. Repeat Step 4 for m = 2, ...,M . For a given simulated clinical trial dataset

DATASET b,
⃗̂
IAR
b is a vector of M estimated informations with the mth entry corre-

sponding to Dm events.

Step 6. Repeat Steps 1 – 5 (B−1) times (where B is the total number of simulated datasets,

e.g., 100) in order to obtain a matrix of estimated information at each of Dmin, ..., Dmax

events (M columns) with B replications along the rows, denoted by ÎAR
B×M .

Step 7. Fit a lowess smooth for estimated information (y-axis) against number of events

(x-axis). From the resulting fitted values, map information to proportion of maximal

information (y-axis) and events to proportion of maximal events (x-axis) to obtain the

resulting information growth curve.
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The above steps outline how to empirically calculate the information growth during the plan-

ning stage based upon assumptions for accrual pattern, the randomization scheme, survival

times. The above can be modified to include the possibility of dropout with changes to Step

1 (adding generating of a true dropout time) and Step 4 (incorporating dropout as possibility

in calculating the observed time and event indicator). After initiation of a GSD, the above

steps can be modified to re-estimate the information growth during the trial. This would

require an estimate of the accrual distribution, the known randomization scheme, and an

estimate of the pooled survival distribution for event times.

In what follows, we focus on characterizing the information growth of our adaptive random-

ization censoring-robust estimator at the planning stage. We consider several GSDs with

varying design features.

Characterizing information growth of censoring-robust estimators

Figure 5.2 shows the empirical information growth of our adaptive randomization censoring-

robust estimator under the strong null with Exponential(rate=0.30) true event times for

600 randomized participants accrued uniformly over three years. The information growth

curve is based on fitting a lowess smooth over the estimated information (inverse of the

variance estimates) from 100 simulated datasets. For each simulated dataset, we estimated

the variance of the adaptive randomization censoring-robust estimator, and then the infor-

mation, once 35 events occurred until the maximal number of events (DJ = 379) occurred.

In this setting, we found that the information growth is non-linear with the information

growing slower than the number of events. As mentioned earlier in the chapter, group se-

quential boundaries are a function of the proportion of maximal information, Πj. For a

group sequential design with four equally spaced analyses with respect to information time,

the analyses should occur once Πj ∈ {0.25, 0.50, 0.75, 1.00}. If using a logrank statistic un-

der proportional hazards, the timing of these analyses would correspond to proportion of
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maximal events Dj/DJ ∈ {0.25, 0.50, 0.75, 1.00}. When using our adaptive randomization

censoring-robust estimator, however, we see from Figure 5.2 that at 25% maximal events,

there is only 21% of the maximal information. Instead, the first interim analysis should oc-

cur after approximately 30% events have occurred to have 25% of the maximal information.

Similarly in this scenario, the second and third interim analyses would be projected to occur

after approximately 58% and 80% events have occurred.

Figure 5.3 again displays the information growth for 600 randomized participants, but with

early (left) or late (right) accrual over three years. For the early accrual scenario, as com-

pared to the uniform accrual in Figure 5.2, the information growth attenuates towards a

linear growth where there is less deviation from information growing proportional to the

number of events. On the other hand, the late accrual scenario yields a slower information

growth, suggesting that not all events equally contribute to the estimation of the hazard

ratio based on adaptive randomization censoring-robust estimator. For example, the first

interim analysis would occur after 37% of events occurred as compared to after 30% events

occurred assuming uniform accrual or 27% events occurred assuming early accrual. These

results illustrate the sensitivity of the information growth for our censoring-robust estimator

to the accrual pattern. Hence, during monitoring of a trial, re-estimation of the information

growth using available pooled data can facilitate more accurate projections of the timing of

subsequent analyses.

Figure 5.4 displays the information growth for 400 (left) and 2000 (right) randomized par-

ticipants uniformly accrued over three years, both with the same maximal number of events

DJ = 379. With 400 randomized participants, the time to observe the maximal number of

events will naturally take longer compared to with 2000 randomized participants. With the

larger sample size, events tend to occur in a narrower interval in time resulting in events

contributing nearly equally. With the smaller sample size, the information growth is slower

since the later occurring events will have a larger weight in the re-weighted estimating equa-
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Figure 5.2: Empirical information growth for our adaptive randomization censoring-robust
estimator (black curve) under the strong null with Exponential(rate=0.30) true event times
for uniform accrual of 600 participants over 3 years. Gray solid line indicates proportion
of maximal information equals proportion of maximal events, Dj/DJ . Dotted lines map
equally-spaced proportion of maximal events (0.25, 0.50, 0.75) to the respective proportion
of maximal information, Πj. Dashed lines map equally-spaced Πj to the respective Dj/DJ .
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Figure 5.3: Empirical information growth for our adaptive randomization censoring-robust
estimator (black curve) under the strong null with Exponential(rate=0.30) true event times
for early (r = 0.5) and late (r = 2.5) accrual of 600 participants over 3 years, respectively.
Gray solid line indicates proportion of maximal information equals proportion of maximal
events. Dotted lines map equally-spaced proportion of maximal events (0.25, 0.50, 0.75) to
the respective proportion of maximal information, Πj. Dashed lines map equally-spaced Πj

(0.25, 0.50, 0.75), to the respective proportion of maximal events.

tion for the adaptive randomization censoring-robust estimator. In the scenarios examined,

we found that randomizing a larger number of participants more quickly can yield a lin-

ear information growth for our censoring-robust estimator. The goal in characterizing the

information growth, however, was not to to identify when there may be linear information

growth. Instead, during the planning of a group sequential trial, characterizing the informa-

tion growth under plausible scenarios that may arise will allow for collaborative discussions

at the design stage, including but not limited to trial operations (e.g., activating sites) and

timing of interim analyses (e.g., planning reviews by a data monitoring committee).

In this section, we focused on information growth and mapping proportion of maximal

information to the respective proportion of maximal events so that timing of interim analyses

matches with those for the group sequential boundaries. In the next section we will focus

on the violation of independent increments that, unless accounted for, can affect the overall

type I error rate for a GSD.
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Figure 5.4: Empirical information growth for our adaptive randomization censoring-robust
estimator (black curve) under the strong null with Exponential(rate=0.30) true event times
for uniform accrual of 400 and 2000 participants, respectively, over 3 years. Gray solid line
indicates proportion of maximal information equals proportion of maximal events. Dotted
lines map equally-spaced proportion of maximal events (0.25, 0.50, 0.75) to the respective
proportion of maximal information, Πj. Dashed lines map equally-spaced Πj (0.25, 0.50,
0.75), to the respective proportion of maximal events.

5.3 Violating independent increments

5.3.1 Censoring-robust estimators induce non-independent incre-

ments

Independent increments allows for tractable computation of the sequential sampling density

via Armitage et al. (1969) used at the planning stage to calculate group sequential bound-

aries and design operating characteristics. However, not all statistics follow an independent

increments structure. In particular, it has previously been shown that there are weighted

statistics that violate the independent increments structure (e.g., the modified Wilcoxon

statistic (Slud and Wei, 1982)). Tsiatis (1982) noted that, for weighted score statistics,

when the weighting function converges to a quantity that depends on the analysis time,

asymptotic independent increments does not hold.
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Recall, the weighting function of our adaptive randomization censoring-robust estimator in

a group sequential trial takes the form

ŴAR(t; τj) =
1

ŜAR
C (t; τj|Z)

and Ŵ (t; τj) = 1/ŜKM
C (t; τj|Z) for the Boyd et al. (2012) censoring-robust estimator. For

both censoring-robust estimators, the estimator for the treatment-specific survivor function

of censoring converges in probability to SC(t; τj|Z) that depends on the timing of the analysis

at calendar time τj. This implies that the targeted weighting function differs from analyses

before and after accrual ends. In particular, (Boyd, 2009) noted that after accrual has ended

the weighting function of the Boyd et al. (2012) censoring-robust estimator at analysis time

τj dominates the corresponding weighting function at a later analysis time τj′. Since the

weighting function of our adaptive randomization censoring-robust estimator consistently

estimates the same W (t; τj) at analysis time τj, after accrual ends, ŴAR(t; τj) dominates

ŴAR(t; τj′). Hence, from Tsiatis (1982), asymptotic independent increments does not hold

for our adaptive randomization censoring-robust estimator.

Violating the independent increments structure implies that direct application of Armitage

et al. (1969) can yield an erroneous sequential sampling density and operating characteristics.

In practice, there are typically two approaches to remedy non-independent increments: (1)

computing the sequential sampling density via a multivariate integration (e.g., MULNOR

software (Schervish, 1984)); or (2) assume independent increments holds for the first J −

1 analyses and then find the final (efficacy) boundary that maintains the overall type I

error at the nominal level α (Murray and Tsiatis, 1999). We proceed with outlining an

algorithm based on the approach by Murray and Tsiatis (1999) to maintain overall type

I error rate for a group sequential time-to-event trial where the primary analysis uses our

adaptive randomization censoring-robust estimator.
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5.3.2 A remedy for non-independent increments

To account for the non-independent increments of our adaptive randomization censoring-

robust estimator, we propose the following algorithm to use in practice. Steps 1-3 describe

taking bootstrap samples from observed data at analysis J . Steps 4-8 apply the approach

of Murray and Tsiatis (1999) in our context to find the final efficacy boundary at analysis J

that maintains the overall type I error rate at the nominal level α.

To avoid needing to estimate the information at each analysis j, we compute the normalized

Z statistic at each analysis and use the corresponding sequential sampling density based on

the normalized Z statistic. We then use the sequential boundaries on the Z scale to calculate

stopping probabilities.

Step 1. At analysis J , take a single bootstrap sample of length N (the number randomized

by analysis J) with replacement from the observed O = {(xi, δi, zi, ei)}Ni=1 where xi

is the observed time, δi is the event indicator, zi is the treatment arm assignment,

and ei is the entry time for participant i. Denote this bootstrapped sample by B∗
b =

{(x∗i , δ∗i , z∗i , e∗i )}Ni=1 with sample index b.

Step 2. For each analysis j = 1, ..., J , compute the corresponding Z statistic for the adaptive

randomization censoring-robust estimator, Z∗AR
jb , when administratively censoring at

τj. For B∗
b , there will be J Z-statistics {Z∗AR

jb }Jj=1.

Step 3. Repeat Steps 1 and 2 B times to obtain B Z-statistics at each analysis j. Store as

a B × J matrix of Z∗AR-statistics, denoted by Z∗AR
B×J .

Step 4. Calculate the J × J variance-covariance matrix of Z∗AR
B×J , denoted by ΣZ∗AR .

Step 5. Generate 10,000 J × 1 random vectors from a J-dimensional multivariate normal

distribution with mean vector 0⃗ and variance-covariance matrix ΣZ∗AR . Store as a

10,000 × J matrix of Z∗AR
sim -statistics, denoted by Z∗AR

sim .
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Step 6. Use the original group sequential design’s first J − 1 boundaries to calculate the

stopping probabilities for efficacy and futility at analyses j = 1, ..., J − 1. Denote

stopping probabilities for efficacy at these analyses (j = 1, ..., J − 1) by {αj}J−1
j=1 . Note

that the stopping probability at analysis J is denoted similarly by αJ .

Step 7. For a one-sided level α hypothesis test for efficacy, calculate the value of the stopping

probability at analysis J such that the overall type I error rate is α. That is, α∗
J =

α−
∑J−1

j=1 αj.

Step 8. Obtain the new final Z statistic-based efficacy boundary (which will be the same

as the futility boundary in our group sequential setting) by calculating the empirical

lower α∗
J ×100-percentile of the vector of simulated Z∗AR

sim -statistics at analysis J (from

Step 5), denoted by aJ,Z∗ = F−1

Z⃗∗AR
J,sim

(α∗
J).

The above steps outline how to find the final efficacy boundary in practice. In the next

section, we illustrate this process based on a hypothetical setting via simulation. For the

hypothetical setting, Steps 1-3 are replaced by having simulated data for B group sequential

clinical trials in which we have all corresponding Z statistics at each analysis j = 1, ..., J

prior to apply the group sequential stopping rule. Therefore, we can start with Step 4 and

proceed to Step 8, as described above.

5.4 Timing of analyses and maintaining design operat-

ing characteristics

Consider a time-to-event randomized clinical trial (RCT) whose primary aim is to determine

whether the hazard of an event (e.g., death) in the experiment arm is 30% lower than that

for the control arm (i.e., hazard ratio, θ = 0.70). As a hypothesis test, we are interested in
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Figure 5.5: Group sequential design with symmetric O’Brien-Fleming boundaries assuming
equally spaced analyses in information time. Solid lines connecting filled squares correspond
to efficacy boundaries and dashed lines to futility boundaries.

a one-sided level α = 0.025 test of the null H0 : θ = 1 versus the alternative HA : θ < 1 in

which we have approximately 90% statistical power to reject the null when θ = 0.70. For a

fixed sample RCT, assuming a fixed 1:1 randomization scheme, 331 events would need to be

observed during the trial to have 90% power to test the above hypothesis.

Alternatively, consider a group sequential design (GSD) with up to 4 analyses equally spaced

in information time. That is, interim analysis 1 occurs when Π1 = 0.25, interim analysis 2

when Π2 = 0.50, interim analysis 3 when Π3 = 0.75, and the final planned analysis (J = 4)

when Π4 = 1). Furthermore, suppose for this hypothetical setting, it is of interest to use a

symmetric O’Brien-Fleming design for efficacy and futility. Then, this GSD (see Figure 5.5)

would have efficacy boundaries corresponding to a hazard ratio of 0.4218, 0.6494, 0.7499,

and 0.8059, at analysis 1, 2, 3, and 4, respectively. The corresponding futility boundaries

would be for a hazard ratio of 1.5398, 1.0000, 0.8660, and 0.8059, respectively.

If we assume proportional hazards and choose to analyze data using the Cox proportional

hazards model, information grows proportional to the the number of events. Suppose that

93



we are unsure if proportional hazards will hold during the course of the trial, and we want

to implement the adaptive randomization scheme. Hence, we consider a priori using our

adaptive randomization censoring-robust estimator.

While pre-specifying a censoring-robust estimator to guard against censoring-dependent es-

timation in the presence of non-proportional hazards, it may turn out once data has been

collected that proportional hazards reasonably holds. Even in such an instance, we would

not deviate from the pre-specified primary analysis plan to avoid data-driven decision mak-

ing, as would be the stance mandated by regulatory agencies. While acknowledging this,

we proceed with an investigation assuming proportional hazards (for the strong null, the

design alternative, and an intermediate alternative). This will ensure that our target esti-

mand remains the same at each interim analysis and also allow us to compare to the Cox

proportional hazards model.

For illustrative purposes in the remainder of this section, we assume proportional hazards

holds. This allows us to consider the group sequential boundaries from the original design

that assumed proportional hazards to be equivalent when using a censoring-robust estimator.

As a remark for use in practice, however, we would want to determine what boundaries

would make sense in the presence of time-varying treatment effects. Additionally, here we

are considering a GSD with symmetric O’Brien-Fleming boundaries for efficacy and futility.

This is not customarily chosen in practice. It may be preferred to select an O’Brien-Fleming

efficacy boundary and a Pocock futility boundary instead. One explanation for this is that

since the O’Brien-Fleming boundary is conservative early, crossing the boundary earlier with

respect to futility can result in establishing harm, which is much too late to stop. Efficacy,

on the other hand, may not be conservative enough in certain time-varying treatment effect

settings — part of what should determine the boundaries is discussion among stakeholders

about the clinical relevance of boundaries, often corresponding to the treatment effect scale.

In what follows, we first consider the strong null hypothesis where the true event times for
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Figure 5.6: Empirical information growth for our adaptive randomization censoring-robust
estimator (black curve) under the strong null with Exponential(rate=0.30) true event times
for uniform accrual of 600 participants over 2 years with an adaptive randomization scheme
(1:1 over first third, 0.65:0.35 over second third, and 4:1 for last third of accrual). Gray
solid line indicates proportion of maximal information equals proportion of maximal events,
Dj/DJ . Dotted lines map equally-spaced proportion of maximal events (0.25, 0.50, 0.75) to
the respective proportion of maximal information, Πj. Dashed lines map equally-spaced Πj

to the respective Dj/DJ .

experimental treatment and control arms both follow an Exponential(rate = 0.30) distribu-

tion. Further, we assume uniform accrual of 600 participants over two years and an adaptive

randomization scheme that starts with 1:1 randomization over the first year followed by ∼2:1

(0.65:0.35) over the second year. There is a planned maximal number of events DJ = 379.

Then, the information growth for our adaptive randomization censoring-robust estimator is

non-linear (see Figure 5.6). This implies the timing of interim analyses will not align with

the information fraction Πj for which the group sequential boundaries are based.

Table 5.1 summarizes the operating characteristics for variations of the original GSD de-

scribed above. First, the original GSD boundaries are displayed on the hazard ratio and

the standardized Z statistic scales. The corrected final boundary J is also included (to be

discussed below). The proportion of maximal events at each analysis are displayed based on

(i) naively assuming information is proportion to events and (ii) mapping from the adap-
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tive randomization censoring-robust estimator information growth. The remainder of the

table summaries the stopping probabilities at each analysis for futility and efficacy, along

with the corresponding power (cumulative stopping probability). The average number and

75th percentile of events observed by the time of stopping is summarized. These operating

characteristics are provided for the Cox PH estimator, AR-CRE (naive), AR-CRE only cor-

recting for AR-CRE information growth, and AR-CRE with correct information growth and

corrected final bound (based on the procedure outlined in Section 5.3.2).

In Table 5.1 we show that when naively using the incorrect mapping of information growth

to proportion of maximal events for our adaptive randomization censoring-robust estimator

results in a type I error rate of 0.016, below the nominal level. Even after using the correct

mapping from information growth to proportion of events, the type I error rate did not

achieve the nominal level (in fact, remained the same in this scenario) because as we discussed

in 5.3, censoring-robust estimators violate independent increments. To this end, we use the

correct information growth and corrected final bound (displayed on the hazard ratio and

Z scales in the table) to achieve the nominal level when using our adaptive randomization

censoring-robust estimator. These group sequential boundaries are also visually depicted in

the top plot of Figure 5.7. (For a scenario with a fixed randomization GSD, see Appendix

Figure C.1 and Appendix Table C.1.)

While it is important to have a GSD with the appropriate type I error rate according to

the level of the hypothesis test, examining the power under alternatives is important during

the planning stage. Recall that the original GSD was designed to detect a hazard ratio of

0.70 with 90% power under proportional hazards when using the Cox PH estimator. As

discussed in the fixed sample setting in Chapter 4, censoring-robust estimators will not be as

efficient as the Cox estimator under proportional hazards. As such, we would expect to have

lower power compared to the Cox PH estimator in this setting (which was ∼85.6%, though

not a substantial loss of power for this scenario) even after the corrections made to timing
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Table 5.1: Operating characteristics based on 2000 simulations for the group sequential de-
sign with symmetric O’Brien-Fleming boundaries with uniform accrual of 600 participants
over 2 years and an adaptive randomization scheme (1:1 over the first year and 0.65:0.35
over the second year of accrual). Boundaries are displayed on the hazard ratio (HR) and Z
statistic scales, along with the corrected final boundary. Proportion of maximal events at
each analysis is summarized according to naively assuming information growing proportional
to events and the empirical AR-CRE information growth from Figure 5.6. Operating char-
acteristics include stopping probabilities at each analysis and power (cumulative probability
of stopping) for futility and efficacy, along with the average and 75th percentile of events
and maximum follow-up (years) at stopping. Power for efficacy in this setting is the overall
type I error rate where nominal level is α = 0.025, with Monte Carlo error (0.018, 0.032).

Analysis j 1 2 3 4 = J

Boundaries at equally spaced Πj on the hazard ratio scale at j
(J corrected)

Futility 1.5398 1.0000 0.8660 0.8059 (0.8339)
Efficacy 0.4218 0.6494 0.7499 0.8059 (0.8339)

Boundaries at equally spaced Πj on Z scale at j
(J corrected)

Futility -4.006 -2.833 -2.313 -2.003 (-1.687)
Efficacy 2.003 0.000 -1.157 -2.003 (-1.687)

Proportion of maximal events Dj/DJ at j with DJ = 379

Naive: assume Πj ∝ Dj 0.250 0.500 0.750 1.000
Map from AR-CRE Πj 0.307 0.590 0.803 1.000

Events
Stopping Probability at j Power [Max F-U]

Cox PH
Futility 0.024 0.488 0.379 0.090 0.980 243 (284)
Efficacy 0.000 0.001 0.007 0.012 0.020 [2.8 (3.2)]

AR-CRE (naive)
Futility 0.025 0.492 0.392 0.074 0.984 240 (284)
Efficacy 0.000 0.002 0.006 0.008 0.016 [2.8 (3.2)]

AR-CRE (only correct Πj)
Futility 0.024 0.474 0.411 0.076 0.984 268 (304)
Efficacy 0.000 0.001 0.004 0.011 0.016 [3.1 (3.4)]

AR-CRE (correct Πj + corrected final bound)
Futility 0.024 0.474 0.411 0.068 0.975 268 (304)
Efficacy 0.000 0.001 0.004 0.019 0.024 [3.1 (3.4)]

Events and maximum follow-up (F-U, in years) summarized with mean (75th percentile);

AR-CRE = adaptive randomization censoring-robust estimator
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Figure 5.7: Group sequential design with symmetric O’Brien-Fleming boundaries assuming
equally spaced analyses in information time with D = 379 maximal events (top) and D∗

J =
417 maximal events (bottom). Solid lines connecting filled squares correspond to efficacy
boundaries and dashed lines to futility boundaries. Gray lines correspond original design for
the Cox PH estimator assuming proportional hazards.
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of analyses and overall type I error rate for the sample maximal number of events DJ =

379. Because the power is still below the desired level for the censoring-robust estimators,

simply using the AR-CRE information growth with the same DJ is not adequate for the

selected group sequential design using a censoring-robust estimator to maintain maximal

information (statistical power). As we saw in Chapter 4, the larger variance of a censoring-

robust estimator is a tradeoff when proportional hazards holds in order to a priori target the

desired estimand while allowing for the possibility of non-proportional hazards. Therefore,

in practice when designing a GSD, we would want to specify the D∗
J that maintains the

desired power for the design alternative.

In order to have a maximal information GSD in this setting, we need to increase the maximal

number of events to observe to D∗
J = 417 events in this setting to have 90% power to detect

a hazard ratio of 0.70 when using our adaptive randomization censoring-robust estimator

as the primary analysis method at each interim analysis. Table 5.2 summarizes the same

operating characteristics now for the D∗
J = 417 maximal information GSD that maintains

power for the design alternative. Further, note with the increase in the maximal number

of events, average number of events at stopping is higher and the maximum follow-up at

stopping is higher, compared to the DJ = 379 GSD. The corresponding group sequential

boundaries are visualized in the bottom plot of Figure 5.7.

In the scenarios examined, we assumed proportional hazards. During the planning of a

time-to-event GSD the potential for time-varying treatment effects may, however, need to

be considered. In such cases, censoring-robust estimation is warranted to target a marginal

estimand (standardized to a common censoring distribution) over the observed support.

Attention towards maximal follow-up at stopping is critical to consider what is the target

estimand and whether the GSD, including the sequential boundaries, adequately address the

scientific, ethical, and logistical constraints to answer the trial’s primary aim.
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Table 5.2: Maximal information (D∗
J = 417) group sequential design with symmetric

O’Brien-Fleming boundaries with uniform accrual of 600 participants over 2 years and an
adaptive randomization scheme (1:1 over the first year and 0.65:0.35 over the second year
of accrual). Boundaries are displayed on the hazard ratio and Z statistic scales, along with
the corrected final boundary. Proportion of maximal events at each analysis is summarized
according to naively assuming information growing proportional to events and the empirical
AR-CRE information growth from Figure 5.6. Operating characteristics include stopping
probabilities at each analysis and power (cumulative probability of stopping) for futility and
efficacy, along with the average and 75th percentile of events and maximum follow-up (years)
at stopping. Power for efficacy under null is the overall type I error rate where nominal level
is α = 0.025, with Monte Carlo error (0.018, 0.032).

Analysis j 1 2 3 4 = J

Boundaries at equally spaced Πj on the hazard ratio scale at j
(corrected)

Futility 1.5398 1.0000 0.8660 0.8339
Efficacy 0.4218 0.6494 0.7499 0.8339

Proportion of maximal events Dj/DJ at j with D∗
J = 417

Map from AR-CRE Πj 0.307 0.590 0.803 1.000
Events

Stopping Probability at j Power [Max F-U]
AR-CRE (correct Πj + corrected final bound)
HR = 1.00 (Strong null)

Futility 0.024 0.472 0.404 0.070 0.971 296 (335)
Efficacy 0.000 0.002 0.005 0.022 0.029 [3.4 (3.8)]

HR = 0.85 (Intermediate PH alternative)
Futility 0.002 0.154 0.342 0.157 0.656 347 (417)
Efficacy 0.001 0.030 0.122 0.192 0.345 [4.3 (5.3)]

HR = 0.70 (Design PH alternative)
Futility 0.000 0.014 0.059 0.028 0.100 325 (335)
Efficacy 0.009 0.280 0.417 0.194 0.900 [4.3 (4.6)]

Events and maximum follow-up (F-U, in years) summarized with mean (75th percentile);

AR-CRE = adaptive randomization censoring-robust estimator
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5.5 Discussion

In this chapter, we extended our work on censoring-robust estimation and adaptive ran-

domization in the fixed sample time-to-event trial setting in Chapter 4 to one with a group

sequential design (GSD). GSDs allow for early stopping of a trial for efficacy, futility, or harm.

Decisions of whether to stop for efficacy or futility are guided by stopping rules (or, mon-

itoring guidelines) based upon group sequential boundaries. Group sequential boundaries

are a function of the proportion of maximal information at the time of an interim analysis.

When information does not grow proportionally to the number of events (e.g., non-linear

information growth), the timing of interim analyses will not correspond to the chosen group

sequential boundaries for which the design is based too maintain operating characteristics.

Thus, group sequential boundaries require computing the sequential sampling density and

the information growth of the statistic.

To adequately evaluate group sequential designs for our adaptive randomization censoring-

robust estimator, we addressed two issues in this chapter: (1) characterizing the information

growth of our estimator; and (2) account for non-independent increments to maintain design

operating characteristics.

We demonstrated the non-linearity of our adaptive randomization censoring-robust estima-

tor’s information growth in a number of practical settings and how such non-linearity im-

pacts the timing of interim analyses. We illustrated a procedure to calculate the information

growth for a specified design, and how it can be done during the monitoring of a trial. We

also showed that simply mapping the correct information growth to timing of events does not

guarantee maintaining group sequential operating characteristics for a maximal information

design. Then, we discussed how censoring-robust estimators, including our AR-CRE, violate

the independent increments structure in a sequential testing setting. This implies directly

applying Armitage et al. (1969) to obtain the sequential sampling density is not appropriate
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without accounting for the non-independent increments. We outlined the approach by Mur-

ray and Tsiatis (1999) in the context of an AR-CRE to maintain overall type I error rate.

Furthermore, for maximal information trials (i.e., maintaining power), we illustrated finding

the maximal events D∗
J that attains the power to detect the design alternative.

Our investigation restricted to planning at the design stage where we assumed knowledge of

the true information growth assuming no dropout. In practice, however, the assumed infor-

mation growth — requiring assumptions of the accrual distribution, event times distribution,

dropout times distribution, and administrative censoring time — will likely differ from the

observed information growth, the degree to which they differ will be scenario dependent.

Invoking a constrained boundaries approach (Burington and Emerson, 2003) is one way to

flexibly account for revised estimates of information growth and timing of analyses during

the monitoring of a GSD.

A strength of our adaptive randomization censoring-robust estimator in the fixed sample

setting is that it consistently estimates a marginal hazard ratio randomized clinical trial

estimand (RCT-E), standardized to a common censoring distribution, and does so more

efficiently than existing censoring-robust estimators. A limitation under sequential sampling,

however, is that the duration of follow-up grows with each subsequent interim analysis. Under

non-proportional hazards, censoring-robust estimation at each interim analysis targets, at

best, a surrogate of the RCT-E based on support at the planned final analysis. Future work

to address this limitation includes reweighting the statistic based on the amount of follow-

up at an interim analysis relative to the duration desired for the target RCT-E, à la Gillen

(2003) for estimation at interim analyses under non-proportional hazards. Additionally, if

shorter duration of follow-up from an efficacy standpoint is not adequate from a scientific

perspective, the number of interim analyses for efficacy, if any, should be deliberated in

accordance to a range of hypothesized treatment effects that may be observed once the trial

starts.
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As efforts to accelerate drug development continue, the need for careful evaluation of complex

innovative designs is imperative. Our research from this chapter equips investigators and

trialists with necessary tools to make informed decisions about the design and monitoring of

time-to-event group sequential designs for which censoring-robust estimation is warranted.
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Chapter 6

Conclusion

6.1 Summary

Randomized clinical trials (RCT) represent the gold standard in determining a causal rela-

tionship between an intervention and an outcome; however, they are not infallible. As more

layers of complexity get added to trial designs, challenges arise in trying to obtain meaningful

interpretations of scientific relevance robust to a violation of certain statistical assumptions.

This dissertation aimed to elucidate the impact of these features in settings to see their

utility when certain statistical assumptions may be violated, and provide potential remedies

to obtain valid inference for the RCT estimand (RCT-E) or a real-world estimand (RW-E),

as a step towards supporting efforts for evaluating benefit-risk of candidate interventions.

To this end, we explored two types of clinical trial design features that have potential utility

to support efforts of expediting drug development and lead to the adoption of approved

indications to improve public health: enrichment and adaptive randomization.

First, we examined estimating a RW-E from fixed sample pre-post RCTs with a continuous

primary outcome and a fixed pre-randomization enrichment strategy. We quantified the bias
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induced by enrichment, by way of regression to the mean, and developed a bias-adjusted

estimator assuming normality. An alternative remedy we found, if feasible, would be to

have an enrichment period consisting of more than one pre-randomization assessment at a

single time point to remove the chances of random high or low bias from regression to the

mean. From our empirical studies, enrichment based on an individuals ‘true’ mean pre-

randomization assessment score would allow for estimation of a RW-E provided there is a

homogeneous pre-post intervention effect in the broader population. If there is belief of effect

modification between those who would meet the enrichment criterion and those who would

not, careful consideration is needed to decide whether only randomizing those meeting the

enrichment criterion should be randomized. One approach used in practice has been to define

the full analysis set population for the primary analysis on the enriched sample, but have

some proportion of randomized participants not meet the enrichment criterion for secondary

or exploratory objectives. This would allow estimation of both the RCT-E and RW-E.

We additionally examined estimating the RCT-E in fixed sample time-to-event RCTs with

adaptive randomization, with emphasis on settings in the presence of time-varying treatment

effects. We showed that adaptive randomization alters treatment arm specific censoring pat-

terns differentially, even when censoring is only administrative. We extended the censoring-

robust framework by accounting for a known adaptive randomization scheme in the inverse

probability of censoring weighting for the reweighted partial likelihood estimating equation.

This in turn allows us to target a standardized marginal hazard ratio (e.g., in the absence

of intermittent censoring). Furthermore, by incorporating the known randomization scheme

in our proposed adaptive randomization censoring-robust estimator, for time-to-event trials

with adaptive randomization we have a a more efficient estimator compared to that by Boyd

and colleagues (2012), and equivalent under fixed randomization. If proportional hazards

truly holds, then unsurprisingly censoring-robust estimators are less efficient compared to

the Cox proportional hazards estimator. Because data-driven modeling choices can invali-

date trial results, waiting until the time of analysis to to assess whether proportional hazards
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holds to decide which analysis method to use is not appropriate. Pre-specifying the analysis

plan is therefore critical to ensure reliability of trial results. As such, we recommend pre-

specifying a censoring-robust estimator when designing a time-to-event clinical trial to guard

against the potential for time-varying treatment effects while maintaining an interpretable

and replicable estimate of the RCT-E.

Lastly, we examined planning group sequential time-to-event RCTs with adaptive random-

ization when targeting the RCT-E via censoring-robust estimation. Because group sequential

boundaries are based on the information fraction (proportion of maximal information), the

timing of interim analyses (and the final analysis) should be based on information time. Un-

der non-proportional hazards, however, it has previously been shown that weighted statistics

exhibit non-linear information growth, suggesting that the proportion of maximal events is

not equal to the information fraction. We demonstrated this phenomenon by characteriz-

ing the non-linearity of our adaptive randomization censoring-robust estimator’s information

growth. We proposed a three-pronged approach to maintain group sequential design oper-

ating characteristics: (i) mapping the information fraction of our adaptive randomization

censoring-robust estimator to the proportion of maximal events; (ii) accounting for non-

independent increments of censoring-robust estimators by outlining a procedure to find the

final boundary (Murray and Tsiatis, 1999) that maintains the overall type I error rate; and

(iii) modifying the original (naively assumed proportional hazards) design maximal events D

to D∗ to maintain power to detect the design alternative of scientific interest. While our em-

pirical evaluation assumed proportional hazards, in practice, our proposed corrections can be

applied time-to-event group sequential designs under non-proportional hazards (including for

a weak null with a marginal hazard ratio of one and non-proportional hazards alternatives).

This allows for greater flexibility in the planning stage when targeting a RCT-E.

Overall, valid statistical inference is a key component in making a reliable benefit-risk assess-

ment for a candidate intervention in a RCT. This is essential to improve precision medicine
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for the effective treatment and prevention of diseases. It is furthermore imperative that we

obtain reliable answers to scientific questions in a timely manner while minimizing the num-

ber of patients randomly assigned to an intervention that may not be beneficial. To address

these critical aspects of the drug discovery and regulatory process, there are different designs

a sponsor study team can consider at the planning stage of a RCT. Understanding the im-

pact of design choices and the statistical operating characteristics before selecting a design

is essential to maintaining high standards for individual- and group-level ethics in clinical

research. Because enrichment strategies and adaptive randomization are increasingly used,

the potential impact of this dissertation research cannot be underestimated. Our research

provides a framework and tools for trialists to be well-informed when designing enriched and

adaptively randomized clinical trials for any disease.

6.2 Future Research Directions

6.2.1 Estimating the RCT-E and RW-E in time-to-event GSDs

when response-adaptive randomization breaks independent

increments

Response-adaptive randomization changes the randomization ratios for enrolling patients to

treatment or control in a time-to-event setting where the randomization ratio allocations are

modified according to interim estimates of the hazard ratio. We demonstrated how a known

adaptive randomization scheme changes the treatment-specific censoring distributions by

altering the number of subjects at risk within each treatment arm during the course of the

trial, impacting estimation of the underlying RCT-E marginal hazard ratio.

Estimating a RW-E marginal hazard ratio in the fixed sample setting requires mapping
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the RCT-E estimate back after accounting for the probability of sampling on the risk sets

that are more representative of a broader population of interest. Obtaining the asymptotic

sampling distribution of the RW-E estimator can be obtained appealing to the Rebolledo

martingale central limit theorem and an empirical sandwich variance estimator via a Taylor

series expansion around the weights.

In the sequential sampling setting, deviations from the independent increments structure

can arise because the sampling weights may depend upon survival. Additionally, indepen-

dent increments breaks down with response-adaptive randomization since those who are

randomized in a particular allocation ratio next are determined by comparative outcome

data from the current trial. In this dissertation, we assumed a known randomization scheme

that did not depend upon survival. Next steps include considering independent increments

structures where the weights depend upon: (i) only the history (current analysis time and

everything before); and (ii) future treatment effects. Simulation-based techniques may be

used to estimate sequential stopping boundaries. As was done in Chapter 3, an approach to

maintain the overall family-wise type I error rate is to assume independent increments holds

until the penultimate analysis time, at which time we adjust for non-independent increments

via bootstrapping off the data with the observed correlation structure (Murray and Tsiatis,

1999).

6.2.2 Estimating the RCT-E and RW-E in time-to-event clinical

trials with adaptive enrichment

In time-to-event clinical trials with adaptive randomization, we have shown that adaptive

randomization can induce covariate-dependent censoring across treatment arms. We ex-

tended the censoring-robust estimation framework of Boyd et al. (2012) to fixed sample and

group sequential time-to-event trials for a known adaptive randomization scheme. An exten-
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sion of this work is to also consider the role of adaptive enrichment on estimation for both

fixed sample and group sequential designs.

Adaptive enrichment creates sub-cohorts of subjects who are randomized and followed in a

RCT. These cohorts, coupled with the randomized treatment arm to which each are assigned,

can formulate mutually exclusive groups and then appeal to our and existing censoring-

robust estimation approaches. As an example, consider an Alzheimer’s disease RCT with

the primary outcome being time to dementia, an adaptive enrichment strategy may be

employed with apolipoprotein E (APOE) ε4 carriers and non-carriers. Suppose there are

two treatment arms. Analogous to our adaptive randomization censoring-robust estimator,

here four censoring distributions require estimation, for: (i) APOE ε4 carriers assigned to

treatment; (ii) APOE ε4 carriers assigned to control; (iii) APOE ε4 non-carriers assigned to

treatment; and (iv) APOE ε4 non-carriers assigned to control. An estimate of the RCT-E

exp(βRCT ) is then obtained by solving a corresponding reweighted estimating equation for

β and exponentiating the result, exp(β̂RCT ). Furthermore, accounting for the sampling bias

induced by the adaptive enrichment with the estimate of the RCT-E can map back the

RW-E, exp(βRW ).

6.2.3 Estimating the RCT-E and RW-E in enriched clinical trials

with a longitudinal continuous primary endpoint

Overall, in this dissertation research, we have demonstrated analytically and via simulation

studies that for a fixed enrichment pre-post RCT: (i) treatment effect estimates can be biased

despite using existing robust statistical methods (e.g., White, 1980); (ii) our novel method

can reduce the bias; and (iii) response-adaptive randomization induces bias of the marginal

hazard ratio even in the setting of no enrichment, which we conjecture will be exacerbated

when combined with enrichment. We thus conjecture that the bias induced in a pre-post
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RCT will also arise in RCTs with repeated measures of the outcome over time (longitudinal,

e.g., changes in activities of daily living scores).

Adaptive enrichment in RCTs with a longitudinal primary outcome complicates the estima-

tion of a standardized contrast of interest in the presence of effect modification. In such

a setting, two estimands may be of interest, the RCT-E marginal change in response tra-

jectories, θRCT , and the RW-E marginal change in response trajectories, θRW , in adaptive

RCTs with a longitudinal continuous primary outcome and response-adaptive enrichment.

Investigations can consider both the semiparametric (generalized estimating equation, GEE:

Liang and Zeger, 1986) and parametric (linear mixed-effects model, LME: Laird and Ware,

1982) frameworks. Our next step is to extend the misspecification in the pre-post design

setting to that of a slope model over time where the length of follow-up times vary.

Reweighting by the probability of sampling subpopulations based on the enrichment strategy

can guard against effect modification. Two potential approaches include: (i) reweighting

at the time of forming contrasts at each time point; and (ii) obtaining the estimate of θ

(averaged across all times) and then reweight. In such a setting, a target contrast θRCT that

we consistently test for at each interim analysis may serve as an appropriate RCT-E. In

the presence of model misspecification (e.g., effect modification or time-varying treatment

effects), one can appeal to Kittelson et al. (2005) by standardizing to a common θ to obtain

an estimate of the marginal change in response trajectories conditional upon the sequential

sampling scheme. This approach protects against non-linearities by only accounting for

observed follow-up times (i.e., the support is up to the maximum observed time) at the time

of the interim analysis. That is, each θ̂j (where j indexes an interim analysis time) has

to be consistent for (the standardized) θ. Now with enrichment, θ can also be different in

the presence of effect modification. Similar considerations for departures from independent

increments under sequential sampling should be examined in this longitudinal setting as

described in Section 6.2.1. Furthermore, using sampling weights is one approach to then
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map the RCT-E estimate to an estimate of the RW-E of interest.
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Appendix A

For Chapter 3

A.1 Derivation of the analytic form of the bias of the

RCT-E estimator with respect to the RW-E in en-

riched pre-post RCTs

Here, we derive the analytic form of the bias induced from enrichment when estimating the

RW-E β1 with the RCT-E estimator θ̂. First, we want to find the distribution function

of a post measurement Y2 given the pre measurement Y1 meeting some enrichment crite-

rion/threshold c. Without loss of generality, assume the enrichment criterion is Y1 > c. Fur-

ther, assume that the joint distribution function of (Y1, Y2) is denoted by FY⃗ ≡ F(Y1,Y2)(y1, y2).
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Then, the distribution function is

FY2|Y1>c(y2) = Pr[Y2 ≤ y2|Y1 > c]

=
Pr[Y2 ≤ y2, Y1 > c]

Pr[Y1 > c]

=

∫
(c,∞)×(−∞,y2]

dFY⃗ (u1, u2)

Pr[Y1 > c]

=

∫
(c,∞)

∫
(−∞,y2]

dFY2|Y1=u1(u2)dFY1(u1)

Pr[Y1 > c]

where the last equality follows after appealing to Fubini-Tonelli since FY⃗ is integrable on

R×R. Then, for an absolutely continuous random vector Y⃗ , the density function is

fY2|Y1>c(y2) =
d

dy2
FY2|Y1>c(y2)

=

d
dy2

∫
(c,∞)

∫
(−∞,y2]

dFY2|Y1=u1(u2)dFY1(u1)

Pr[Y1 > c]

=

∫
(c,∞)

d
dy2

∫
(−∞,y2]

dFY2|Y1=u1(u2)dFY1(u1)

Pr[Y1 > c]

=

∫
(c,∞)

fY2|Y1=u1(y2)dFY1(u1)

Pr[Y1 > c]

where the second to last equality follows after appealing to the dominated convergence

theorem with bounding function of 1. Then, using E[Y2|Y1 = u1] = µ2 + ρ
√
v2√
v1
(u1 − µ1), the
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post-randomization mean given the enrichment criterion is

E[Y2|Y1 > c] =

∫
(−∞,∞)

y2dFY2|Y1>c(y2)

=

∫
(−∞,∞)

y2fY2|Y1>c(y2)dy2

=

∫
(−∞,∞)

y2
∫
(c,∞)

fY2|Y1=u1(y2)dFY1(u1)dy2

Pr[Y1 > c]

=

∫
(−∞,∞)

∫
(c,∞)

y2fY2|Y1=u1(y2)dFY1(u1)dy2

Pr[Y1 > c]

=

∫
(c,∞)

∫
(−∞,∞)

y2fY2|Y1=u1(y2)dy2dFY1(u1)

Pr[Y1 > c]

=

∫
(c,∞)

∫
(−∞,∞)

y2dFY2|Y1=u1(y2)dFY1(u1)

Pr[Y1 > c]

=

∫
(c,∞)

E[Y2|Y1 = u1]dFY1(u1)

Pr[Y1 > c]

=

∫
(c,∞)

µ2 + ρ
√
v2√
v1
(u1 − µ1)dFY1(u1)

Pr[Y1 > c]

= µ2 + ρ
√
v2

∫
(c,∞)

(u1−µ1)√
v1

dFY1(u1)

Pr[Y1 > c]

= µ2 − ρ
√
v2

∫
(−∞,c)

(u1−µ1)√
v1

dFY1(u1)

Pr[Y1 > c]

= µ2 − ρ
√
v2

∫
(−∞,c∗)

z1 · dΦ(z1)
1− Φ(c∗)

where z1 ≡ (u1−µ1)√
v1

.
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Appendix B

For Chapter 4

B.1 Deriving a decomposition of a treatment-specific

censoring distribution

For an adaptive randomization rule denoted by AR = {πZ|A=k(z) for all z and k = 1, ..., K}

the treatment-specific censoring distribution

SC(t|Z = z) ≡ Pr(C > t|Z = z)

=
Pr(C > t, Z = z)

Pr(Z = z)

=

∑K
k=1 Pr(C > t, Z = z|A = k) Pr(A = k)

Pr(Z = z)

=

∑K
k=1 Pr(C > t|Z = z, A = k) Pr(Z = z|A = k) Pr(A = k)

Pr(Z = z)

=

∑K
k=1 Pr(C > t|Z = z, A = k) Pr(Z = z|A = k) Pr(A = k)∑K

k=1 Pr(Z = z|A = k) Pr(A = k)

≡
∑K

k=1 SC(t|Z = z, A = k)πZ|A=k(z)πA(k)∑K
l=1 πZ|A=l(z)πA(l)
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where the treatment-arm specific adaptive randomization accrual subperiod weight is

wAR
k (z) ≡

πZ|A=k(z)πA(k)∑K
l=1 πZ|A=l(z)πA(l)

.

B.2 Proof of Proposition 4.1

For trial participant i, let Ti denote the event time, Ci the censoring time, Xi = min{Ti, Ci}

the observed time, ∆i = I(Ti ≤ Ci) the event indicator, Ni(t) = I(Xi ≤ t,∆i = 1) the

indicator of an event at time t, Yi(t) = I(Xi ≥ t) the indicator of being at risk for an event

at time t, and Zi the covariate vector. Define two filtrations (history processes)

F−
it = σ{Ni(s),W

AR
i (s+), Yi(s

+),Zi ; s ∈ [0, t) }

F−
t = σ{Ni(s),W

AR
i (s+), Yi(s

+),Zi ; s ∈ [0, t) ; i = 1, ..., n }

where WAR
i (Xi) = 1/SC(Xi|Zi) for SC(Xi|Zi) as specified in (4.5). Earlier in Appendix B.1,

we showed that SC(t|Z = z) =
∑K

k=1w
AR
k (z)SC(t|Z = z, A = k). Since the right hand side

contains known weights wAR
k (z) and we estimate SC(t|Z = z, A = k) with the Kaplan-Meier

estimator (1958), our proposed WAR
i (t) is a left-continuous and adapted to Ft; hence, it is

an Ft-predictable process, as are the weights for the Boyd-Kittelson-Gillen censoring-robust

estimator (2012). Furthermore, define

S
(r)
AR(t;β) = n−1

n∑
i=1

WAR
i (t)Yi(t)Z

r
i exp(βZi)

s
(r)
AR(t;β) = E

[
S

(r)
AR(t;β)

]
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for r = 0, 1, 2 that correspond to a scalar, vector, and matrix, respectively,

VW (t;β) =
S

(2)
AR(t; β)

S
(0)
AR(t; β)

−ZW (t;β)Z
′
W (t;β)

vW (t;β) =
s
(2)
AR(t; β)

s
(0)
AR(t; β)

− zW (t;β)z′
W (t;β),

and intensity process

AW
i (t;β) =

∫ t

0

WAR
i (s)Yi(s)dΛi(s;β)

dAW
i (t;β) = WAR

i (s)Yi(s) exp(βZi)dΛ0(s)

where Λ0(s) is the baseline cumulative hazard.

The observed data consists n independent and identically distributed (Xi,∆i,Zi) for i =

1, ..., n. Here, we denote the treatment arm variable by Zi (while still allowing Zi to include

other covariates in addition to treatment arm). Assume conditionally independent censoring,

Ti |= Ci|Zi. Consider a reweighted partial likelihood of the form

PLW (β) =
n∏

i=1

{
exp(β′Zi)∑n

j=1W
AR
j (Xi)Yj(Xi) exp(β′Zj)

}WAR
i (Xi)∆i

.

Then, the log reweighted partial likelihood is

LW (β) ≡ logPLW (β)

=
n∑

i=1

WAR
i (Xi)∆i

[
β′Zi − log

{
n∑

j=1

WAR
j (Xi)Yj(Xi) exp(β

′Zj)

}]
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and the reweighted partial likelihood score, in counting process notation, is

UW (β, t) ≡ ∂

∂β
logPLW (β) (B.1)

=
n∑

i=1

∫ t

0

WAR
i (s)

{
Zi −

∑n
j=1 ZjW

AR
j (s)Yj(s) exp(β

′Zj)∑n
j=1W

AR
j (s)Yj(s) exp(β′Zj)

}
dNi(s) (B.2)

where

ZW (t;β) =

∑n
j=1 ZjW

AR
j (t)Yj(t) exp(β

′Zj)∑n
j=1W

AR
j (t)Yj(t) exp(β′Zj)

=
S

(1)
AR(t;β)

S
(0)
AR(t;β)

zW (t;β) =
s
(1)
AR(t;β)

s
(0)
AR(t;β)

.

We assume the following regularity conditions (Fleming and Harrington, 1991, p.289-290):

(RC.1) The time τ is such that
∫ τ

0
λ0(x)dx <∞

(RC.2) For S
(j)
AR, j = 0, 1, and 2, there exists a neighborhood B of β∗ and, respectively,

scalar, vector, and matrix functions s
(0)
AR, s

(1)
AR, and s

(2)
AR defined on B× [0, τ ] such

that j = 0, 1, 2,

sup
x∈[0,τ ],β∈B

||S(j)
AR(β, x)− s

(j)
AR(β, x)|| →p 0 as n→ ∞.

(RC.3) (modified since we only consider fixed covariates) There exists a δ > 0 such that

n−1/2 sup
1≤i≤n, 0≤x≤r

|Zi|Yi(x)I{β∗′Zi > δ|Zi|} →p 0 as n→ ∞.

(RC.4) Let B and s
(j)
AR, j = 0, 1, 2, be defined as in the previous condition, and let

vW (x;β) =
s
(2)
AR(x;β)

s
(0)
AR(x;β)

− zW (x;β)z′
W (x;β).
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Then, for all β ∈ B and 0 ≤ x ≤ τ , ∂
∂β
s
(0)
AR(x; β) = s

(1)
AR(x;β) and

∂2

∂ββ′ s
(0)
AR(x;β) =

s
(2)
AR(x;β).

(RC.5) The functions s
(j)
AR are bounded and s

(0)
AR is bounded away from 0 on B × [0, τ ];

for j = 0, 1, 2, the family of functions s
(j)
AR(x; ·), 0 ≤ x ≤ τ , is an equicontinuous

family at β∗.

(RC.6) The matrix Σ(β∗, τ) =
∫ τ

0
vW (x;β∗)s

(0)
AR(x;β

∗)λ0(x)dx is positive definite.

Consistency of of the proposed adaptive randomization censoring-robust estima-

tor β̂AR
CRE

To show that β̂AR
CRE →p β

∗, under regularity conditions, we first show that the log reweighted

partial likelihood converges to a function maximized by β = β∗. Then to get the desired

result, we appeal to a result of concave functions (Lemma 8.3.1 in Fleming and Harrington,

1991, p.297).

We start with the difference in log reweighted partial likelihoods over [0, t] for an arbitrary

β and true value β∗. Scaling this process by n−1 corresponds to

Xn(t;β) = n−1 {LW (t;β)− LW (t;β∗)}

= n−1

[
n∑

i=1

∫ t

0

(β − β∗)′ZidNi(x)

−
∫ t

0

log

{ ∑n
i=1W

AR
i (x)Yi(x) exp(β

′Zi)∑n
i=1W

AR
i (x)Yi(x) exp(β∗′Zi)

}
dN(x)

]
.
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If the compensator of Xn(t;β) is

An(t;β) = n−1

[
n∑

i=1

∫ t

0

(β − β∗)TZiW
AR
i (x)Yi(x) exp{β∗′Zi}λ0(x)dx

−
∫ t

0

log

{
S
(0)
AR(x;β)

S
(0)
AR(x;β

∗)

}
WAR

i (x)Yi(x) exp{β∗′Zi}λ0(x)dx

]
,

then

Xn(t;β)− An(t;β) = n−1

n∑
i=1

∫ t

0

{
(β − β∗)′Zi − log

S
(0)
AR(x;β)

S
(0)
AR(x;β

∗)

}
dMi(x).

is a martingale. In particular, since the integrand in the above equation is locally bounded

(because Zi are bounded with probability 1) and predictable, the process Xn(·;β)−An(·;β)

is a locally square integrable martingale. Furthermore, Xn(·;β)−An(·;β) has a predictable

variation process at t

⟨Xn(·;β)− An(·;β), Xn(·;β)− An(·;β)⟩(t)

= n−2

n∑
i=1

∫ t

0

{
(β − β∗)′Zi − log

S
(0)
AR(x;β)

S
(0)
AR(x;β

∗)

}2

Yi(x) exp(β
∗′Zi)λ0(x)dx

= n−1

∫ t

0

[
(β − β∗)′S

(2)
AR(x;β

∗)(β − β∗)− 2(β − β∗)′S
(1)
AR(x;β

∗) log

{
S
(0)
AR(x;β)

S
(0)
AR(t;β

∗)

}

+ 2 log

{
S
(0)
AR(x;β)

S
(0)
AR(t;β

∗)

}
S
(0)
AR(x;β

∗)

]
λ0(x)dx.

Regularity conditions (RC.1), (RC.2), and (RC.5) imply that the predictable variation

process at τ converges to a finite limit. Then, appealing to Lenglart’s inequality yields

Xn(τ ; β) − An(τ ; β) →p 0. It can be shown that the compensator An(τ ;β) converges in

probability to

AAR(τ ; β) =

∫ τ

0

[
(β − β∗)′s

(1)
AR(x;β

∗)− log

{
s
(0)
AR(x;β)

s
(0)
AR(x;β

∗)

}
s
(0)
AR(x;β)

]
λ0(x)dx,
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which is concave with a unique maximum at β∗ and then Xn(τ ;β) →p AAR(τ ; β) when

β ∈ B. It can also be shown that, with regularity conditions (RC.4) and (RC.5), Xn(τ ;β) is

concave with a unique maximum at β̂AR
CRE. Then, applying Lemma 8.3.1 (3) (Fleming and

Harrington, 1991, p.297) implies β̂AR
CRE →p β

∗.

Asymptotic normality of the reweighted partial likelihood score UW (β)

Since Zi is bounded with probability 1, {Zi − Z} is Ft predictable. Then, the reweighted

partial likelihood score (B.1) has counting process WAR
i (t)Ni(t) with compensator AW

i (t) =∫∞
0
WAR

i (x)Yi(x)λ0(x)dx. Then, MW
i (t;β) = WAR

i (t)Ni(t) − AW
i (t) is an Ft-martingale

with mean zero. Because the sum of stochastic intergrals with respect to the compensator

is zero, we can now express the reweighted partial likelihood score process as a martingale

transform

UW (β, t) =
n∑

i=1

∫ t

0

{
Zi −ZW (s;β)

}
dMW

i (s;β)

and n−1/2UW (β∗, t) is a martingale process with variation process

⟨n−1/2UW (β∗), n−1/2UW (β∗)⟩(t)

= n−1

n∑
i=1

∫ t

0

{
Zi −ZW (s;β)

}⊗ 2
WAR

i (s)Yi(s) exp(β
∗′)λ0(s)ds

=

∫ t

0

VW (s;β∗)S
(0)
AR(s;β

∗)λ0(s)ds

→p

∫ t

0

vW (s;β∗)s
(0)
AR(s;β

∗)λ0(s)ds ≡ ΣW (t).

126



appealing to regularity conditions (RC.1), (RC.2), and (RC.5). It can then be shown that

the Lindeberg condition is met by first defining, for ℓ = 1, ..., p,

n−1/2UW,ℓϵ(β
∗, t) = n−1/2

n∑
i=1

∫ t

0

{
Ziℓ −ZW,ℓ(s;β

∗)
}

· I
{
n−1/2|Ziℓ −ZW,ℓ(s;β

∗)| > ϵ
}
dMW

i (s;β∗)

and then showing that ⟨n−1/2UW,ℓϵ(β
∗, t), n−1/2UW,ℓϵ(β

∗, t)⟩(t)

= n−1

n∑
i=1

∫ t

0

{
Ziℓ −ZW,ℓ(s;β

∗)
}2

· I
{
n−1/2|Ziℓ −ZW,ℓ(s;β

∗)| > ϵ
}
WAR

i (s)Yi(s) exp(β
∗′)λ0(s)ds

≤
∫ t

0

n−1

n∑
i=1

WAR
i (s)Yi(s) exp(β

∗′)K2
W · I

{
n−1/2|Ziℓ −ZW,ℓ(s;β

∗)| > ϵ
}
λ0(s)ds

=

∫ t

0

Op(1) · op(1)λ0(s)ds

→p 0

where KW = supi,s |Ziℓ −ZW,ℓ(s;β
∗)| <∞ and using regularity conditions (RC.2), (RC.3),

and (RC.5). Then, by the Rebolledo central limit theorem, n−1/2UW (β∗, t) →d N (0,ΣW (t))

(where Σ ≡ Σ(τ )).

Asymptotic normality of the proposed adaptive randomization censoring-robust

estimator β̂AR
CRE

From the previous part, the reweighted score equation can be expressed as

UW (β̂AR
CRE) =

n∑
i=1

∫ ∞

0

{
Zi −

S
(1)
AR(s;β)

S
(0)
AR(s;β

∗)

}
dMW

i (s;β) = 0.
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Earlier in Appendix B.1, we showed that SC(t|Z = z) =
∑K

k=1w
AR
k (z)SC(t|Z = z, A = k)

and also stated that our proposed WAR
i (t) is an Ft-predictable process, as are the weights

for Boyd et al. (2012). Because of this, asymptotic normality of the reweighted partial

likelihood score then follows by arguments analogous to those by Boyd et al. (2012) where,

here, our weights WAR
i (t) = 1/SAR

C (t|Zi) incorporate the adaptive randomization rule AR.

We also extended the Boyd et al. (2012) robust variance estimator by incorporating our

weights WAR
i (t). This requires, as they did, using an asymptotically equivalent form of the

reweighted partial likelihood score process that has independent and identically distributed

mean zero terms. In our notation, let NW (t) =
∑n

i=1Wi(t)Ni(t). Then, the asymptotically

equivalent form of (4.6) is

U∗
W (β, t) =

n∑
i=1

U∗
W,i(β, t)

=
n∑

i=1

WAR
i (t)∆iZi −

∫ τ

0

s
(1)
AR(x;β)

s
(0)
AR(x;β)

dNW (t)

−
∫ τ

0

S
(1)
AR(x;β)

s
(0)
AR(x;β)

dÑW (t) +

∫ τ

0

S
(0)
AR(x;β)s

(1)
AR(x;β)

{s(0)AR(x;β)}2
dÑW (t)

Following the arguments of Boyd et al. (2012) that show the robust variance estimator for

the censoring-robust estimator, which we denoted by V̂W (β̂AR
CRE), is consistent for

V (β∗) = lim
n→∞

n−1A−1BA−1

where

A = − lim
n→∞

n−1

n∑
i=1

∂UW (β∗)/∂β |β=β∗

Σ ≡ B = lim
n→∞

n−1

n∑
i=1

U∗
W (β∗)U∗

W (β∗)′.
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Since β̂AR
CRE solves the reweighted estimating equation and taking a first-order Taylor expan-

sion around β∗

0 = n−1/2UW (β̂AR
CRE)

= n−1/2UW (β∗)− {V̂W (β̃)/n}
√
n(β̂AR

CRE − β∗)

for β̃ between β̂AR
CRE and β∗. Using earlier results of β̂AR

CRE →p β∗ (consistency of pro-

posed estimator), n−1/2UW (β∗) →d N (0,B(β∗)) (asymptotic normality of score process),

and provided V̂W (β̃ →p V (β∗) (consistency of robust variance estimator), it follows that

√
n(β̂AR

CRE − β∗) →d N (0,V (β∗)) as n→ ∞.
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Appendix C

For Chapter 5

C.1 Deriving the treatment-subperiod specific censor-

ing distribution assuming no dropout

Let E denote a random variable for the entry time of a participant during an accrual period

from trial start to τA (with respect to calendar time since trial start). Consider a random-

ization scheme in which the treatment arm allocation probability changes K during accrual.

Then, define a K-partition of the accrual period (0, τA) = (e0, e1) ∪ {∪K
k=2[ek, ek+1)} where

e1 = 0 and eK+1 = τA. Let τj represent the administrative censoring time (with respect to

calendar time since the start of the trial) at analysis j. Assuming no dropout, censoring is

captured fully by administrative censoring at τj such that C = τj −E. Then, the treatment-

subperiod-specific censoring distribution does not depend on the treatment arm and can be
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expressed as

SC(t; τj|Z = z, A = k) = SC(t; τj|A = k)

= Pr[C > t|A = k,E < τj]

= Pr[C > t|E ∈ [ek, ek+1), E < τj]

= Pr[τj − E > t|E ∈ [ek, ek+1), E < τj]

= Pr[E < τj − t|E ∈ [ek, ek+1), E < τj]

=
Pr[E < τj − t, E ∈ [ek, ek+1), E < τj]

Pr[E ∈ [ek, ek+1), E < τj]

=
Pr[ek ≤ E < {τj − t} ∧ ek+1]

Pr[ek ≤ E < ek+1]

=
FE({τj − t} ∧ ek+1)− FE(ek)

FE(τj ∧ ek+1)− FE(ek)

where accrual in subperiod k corresponds to entry times (with respect to calendar time)

between ek and ek+1.

C.2 Proposed correction for timing of analyses and fi-

nal bound to maintain overall type I error in a

GSD with fixed randomization
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Figure C.1: Empirical information growth for our adaptive randomization censoring-robust
estimator (black curve) under the strong null with Exponential(rate=0.30) true event times
for uniform accrual of 600 participants over 2 years with a fixed (0.65:0.35) randomization
scheme. Gray solid line indicates proportion of maximal information equals proportion of
maximal events, Dj/DJ . Dotted lines map equally-spaced proportion of maximal events
(0.25, 0.50, 0.75) to the respective proportion of maximal information, Πj. Dashed lines
map equally-spaced Πj to the respective Dj/DJ .
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Table C.1: Operating characteristics based on 2000 simulations for the group sequential
design with symmetric O’Brien-Fleming boundaries with uniform accrual of 600 participants
over 2 years and a fixed (0.65:0.35) randomization scheme. Boundaries are displayed on the
hazard ratio and Z statistic scales, along with the corrected final boundary. Proportion of
maximal events at each analysis is summarized according to naively assuming information
growing proportional to events and the empirical AR-CRE information growth from Figure
C.1. Operating characteristics include stopping probabilities at each analysis and power
(cumulative probability of stopping) for futility and efficacy, along with the average and
75th percentile of events and maximum follow-up (years) at stopping. Power for efficacy in
this setting is the overall type I error rate where nominal level is α = 0.025, with Monte
Carlo error (0.018, 0.032).

Analysis j 1 2 3 4 = J

Boundaries at equally spaced Πj on the hazard ratio scale at j
(J corrected)

Futility 1.5398 1.0000 0.8660 0.8059 (0.8288)
Efficacy 0.4218 0.6494 0.7499 0.8059 (0.8288)

Boundaries at equally spaced Πj on Z scale at j
(J corrected)

Futility -4.006 -2.833 -2.313 -2.003 (-1.744)
Efficacy 2.003 0.000 -1.157 -2.003 (-1.744)

Proportion of maximal events Dj/DJ at j with DJ = 379

Naive: assume Πj ∝ Dj 0.250 0.500 0.750 1.000
Map from AR-CRE Πj 0.313 0.592 0.806 1.000

Events
Stopping Probability at j Power [Max F-U]

Cox PH
Futility 0.020 0.489 0.371 0.096 0.976 245 (284)
Efficacy 0.000 0.002 0.007 0.015 0.024 []

AR-CRE (naive)
Futility 0.034 0.477 0.395 0.080 0.986 241 (284)
Efficacy 0.000 0.002 0.008 0.004 0.014 []

AR-CRE (only correct Πj)
Futility 0.032 0.490 0.384 0.079 0.985 266 (305)
Efficacy 0.000 0.002 0.006 0.007 0.015 []

AR-CRE (correct Πj + corrected final bound)
Futility 0.032 0.490 0.384 0.074 0.980 266 (305)
Efficacy 0.000 0.002 0.006 0.013 0.020 []

Events and maximum follow-up (F-U, in years) summarized with mean (75th percentile);

AR-CRE = adaptive randomization censoring-robust estimator

133


	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Overview
	Enrichment
	Adaptive randomization
	Dissertation aims

	Background
	Pre-Post designed randomized trials
	Right censored time-to-event outcomes
	Group sequential designs

	On the Use of Enrichment in Fixed Sample Pre-Post Randomized Trials
	Introduction
	Methods
	Notation
	Analytic form of the bias resulting from an enriched pre-post RCT design
	Bias-adjusted estimator for the RW-E

	Simulation studies evaluating our proposed bias-adjusted estimator for the RW-E
	Discussion

	Censoring-Robust Estimation in Fixed Sample Time-to-Event Clinical Trials with Adaptive Randomization
	Introduction
	Methods
	Fixed versus adaptive randomization
	Hazard ratio estimands under non-proportional hazards
	An adaptive randomization censoring-robust estimator

	Simulations
	Simulations scenarios
	Simulation results

	Application to data from Community Programs for Clinical Research on AIDS Trial 002
	Discussion

	Information Growth of Censoring-Robust Estimators in Group Sequential Time-to-Event Clinical Trials with Adaptive Randomization
	Introduction
	Information growth of censoring-robust estimators
	Censoring at interim analyses as a function of accrual
	Statistical information at interim analyses
	Information growth of censoring-robust estimators

	Violating independent increments
	Censoring-robust estimators induce non-independent increments
	A remedy for non-independent increments

	Timing of analyses and maintaining design operating characteristics
	Discussion

	Conclusion
	Summary
	Future Research Directions
	Estimating the RCT-E and RW-E in time-to-event GSDs when response-adaptive randomization breaks independent increments
	Estimating the RCT-E and RW-E in time-to-event clinical trials with adaptive enrichment
	Estimating the RCT-E and RW-E in enriched clinical trials with a longitudinal continuous primary endpoint


	Bibliography
	Appendix For Chapter 3
	Derivation of the analytic form of the bias of the RCT-E estimator with respect to the RW-E in enriched pre-post RCTs

	Appendix For Chapter 4
	Deriving a decomposition of a treatment-specific censoring distribution
	Proof of Proposition 4.1

	Appendix For Chapter 5
	Deriving the treatment-subperiod specific censoring distribution assuming no dropout
	Proposed correction for timing of analyses and final bound to maintain overall type I error in a GSD with fixed randomization




