
UC Irvine
UC Irvine Previously Published Works

Title
Harnessing landrace diversity empowers wheat breeding.

Permalink
https://escholarship.org/uc/item/8f35j14k

Journal
Nature, 632(8026)

Authors
Cheng, Shifeng
Feng, Cong
Wingen, Luzie
et al.

Publication Date
2024-08-01

DOI
10.1038/s41586-024-07682-9
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8f35j14k
https://escholarship.org/uc/item/8f35j14k#author
https://escholarship.org
http://www.cdlib.org/


Nature | Vol 632 | 22 August 2024 | 823

Article

Harnessing landrace diversity empowers 
wheat breeding

Shifeng Cheng1,32 ✉, Cong Feng1,32, Luzie U. Wingen2,32, Hong Cheng1, Andrew B. Riche3, 
Mei Jiang1, Michelle Leverington-Waite2, Zejian Huang1, Sarah Collier2, Simon Orford2, 
Xiaoming Wang2,4, Rajani Awal2, Gary Barker5, Tom O’Hara2, Clare Lister2, Ajay Siluveru2, 
Jesús Quiroz-Chávez2, Ricardo H. Ramírez-González2, Ruth Bryant6, Simon Berry7, 
Urmil Bansal8, Harbans S. Bariana8,9, Malcolm J. Bennett10, Breno Bicego11, Lorelei Bilham2, 
James K. M. Brown2, Amanda Burridge5, Chris Burt6, Milika Buurman12, March Castle3, 
Laetitia Chartrain2, Baizhi Chen1, Worku Denbel13, Ahmed F. Elkot14, Paul Fenwick15, 
David Feuerhelm16, John Foulkes10, Oorbessy Gaju10, Adam Gauley17,18, Kumar Gaurav2, 
Amber N. Hafeez2, Ruirui Han1,19, Richard Horler2, Junliang Hou1, Muhammad S. Iqbal1, 
Matthew Kerton20, Ankica Kondic-Spica21, Ania Kowalski2, Jacob Lage22, Xiaolong Li23, 
Hongbing Liu1, Shiyan Liu1, Alison Lovegrove3, Lingling Ma1, Cathy Mumford2, Saroj Parmar3, 
Charlie Philp2, Darryl Playford2, Alexandra M. Przewieslik-Allen5, Zareen Sarfraz1, 
David Schafer6, Peter R. Shewry3, Yan Shi1, Gustavo A. Slafer11,24, Baoxing Song25, Bo Song1, 
David Steele3, Burkhard Steuernagel2, Phillip Tailby7, Simon Tyrrell26, Abdul Waheed1, 
Mercy N. Wamalwa27, Xingwei Wang1, Yanping Wei1, Mark Winfield5, Shishi Wu1, 
Yubing Wu1,28, Brande B. H. Wulff2,29, Wenfei Xian1,30, Yawen Xu1,28, Yunfeng Xu1, Quan Yuan1, 
Xin Zhang1,28, Keith J. Edwards5, Laura Dixon17, Paul Nicholson2, Noam Chayut2, 
Malcolm J. Hawkesford3, Cristobal Uauy2, Dale Sanders2, Sanwen Huang1,31 & 
Simon Griffiths2 ✉

Harnessing genetic diversity in major staple crops through the development of new 
breeding capabilities is essential to ensure food security1. Here we examined the 
genetic and phenotypic diversity of the A. E. Watkins landrace collection2 of bread 
wheat (Triticum aestivum), a major global cereal, by whole-genome re-sequencing  
of 827 Watkins landraces and 208 modern cultivars and in-depth field evaluation 
spanning a decade. We found that modern cultivars are derived from two of the 
seven ancestral groups of wheat and maintain very long-range haplotype integrity. 
The remaining five groups represent untapped genetic sources, providing access  
to landrace-specific alleles and haplotypes for breeding. Linkage disequilibrium- 
based haplotypes and association genetics analyses link Watkins genomes to the 
thousands of identified high-resolution quantitative trait loci and significant 
marker–trait associations. Using these structured germplasm, genotyping and 
informatics resources, we revealed many Watkins-unique beneficial haplotypes  
that can confer superior traits in modern wheat. Furthermore, we assessed the 
phenotypic effects of 44,338 Watkins-unique haplotypes, introgressed from 143 
prioritized quantitative trait loci in the context of modern cultivars, bridging the  
gap between landrace diversity and current breeding. This study establishes a 
framework for systematically utilizing genetic diversity in crop improvement to 
achieve sustainable food security.

The world population is projected to increase by 2 billion people 
over the next 30 years, placing greater demands on wheat (which 
currently accounts for 20% of human caloric intake) as a vital source 
of calories, protein, minerals and fibre3. Our ability to meet demand 
is threatened by climate change and geopolitical instability, which 
have multiplying effects when they disrupt the narrow global wheat 
export base4. A few countries (Russia, USA, Canada, France, Ukraine, 
Australia and Argentina) dominate exports, and major population 

centres such as China require adequate imports to satisfy internal 
demand5. Compounding these challenges, yield gains in wheat have 
slowed, in part owing to the narrowing genetic diversity of modern  
cultivars.

Historically, farmers relied on locally adapted crop cultivars known 
as landraces, which could withstand environmental hardships, but 
compared with modern cultivars, were low yielding6. Compared with 
modern cultivars, landraces have been less exposed to historical and 
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geographical founder effects, making them a rich, albeit underutilized, 
source of diversity. There is great potential to enhance the traits of 
interest in modern cultivars by cross-pollinating with landraces, aim-
ing for superior progeny. However, such efforts are often restricted 
to major effect traits (for example, disease resistance genes) as the 
integration of diversity for complex, quantitative traits faces technical, 
scientific and economic challenges2. Among these challenges is the  
lack of genetic resources and appropriate phenotypic datasets under-
pinned by sequence information necessary for identifying alleles pre-
sent in the landraces but absent in modern cultivars. This results in 
the infrequent use of landrace diversity in modern breeding. Thus, 
despite the potential for developing more resilient and nutritious 
crops, the full extent of landrace value is limited by the availability of 
sufficient genomic, genetic and phenotypic resources for the discovery 
and deployment landrace diversity which constrains their utilization  
in breeding.

Here we present the collaborative work of an international con-
sortium that has overcome these obstacles and harnessed untapped 
landrace diversity (Extended Data Fig. 1). Our strategy capitalized 
on the rich genetic, geographic and phenotypic diversity within the  
A. E. Watkins landrace collection of bread wheat (hereafter ‘Watkins’), 
comprising 827 accessions collected from 32 countries in the 1920s 
and 1930s2 (Supplementary Note 1). We implemented a pre-breeding 
strategy1 to decode, discover, design and deliver progress in breeding. 
We combined Watkins gene discovery populations7 with a genomic 
variation matrix, haplotype map and field phenotyping for quanti-
tative traits. This approach generated an integrated set of tools that 
provides the research and breeding communities with access to new 
beneficial diversity.

Untapped diversity in Watkins landraces
To identify novel genetic variation in Watkins, we conducted 12.73× 
whole-genome re-sequencing of its 827 accessions (Supplementary 
Table 1). We aligned these sequences to the IWGSC RefSeq v1.0 bread 
wheat reference genome8 and used the SNPs identified to infer popula-
tion structures within Watkins, visualized by t-distributed stochastic 
neighbour embedding (t-SNE), and utilized the maximum likelihood 
method implemented in ADMIXTURE9 (Supplementary Tables 2 and 3 
and Supplementary Fig. 1). Watkins was categorized into seven ancestral 
groups designated AG1 to AG7 (Fig. 1a,b, Extended Data Fig. 2, Supple-
mentary Figs. 2 and 3 and Supplementary Table 4). The collection sites 
of the landrace accessions represent all the major wheat-growing areas 
of the world in the 1920s (Fig. 1a and Supplementary Table 1). To explore 
the relationship between modern wheat and the ancestral groups, we 
selected 208 independent wheat cultivars for whole-genome sequenc-
ing, as well as 15 previously described accessions10, which maximize 
diversity among 1,169 cultivars from 25 countries (Extended Data Fig. 3) 
that were genotyped using the Wheat Breeders’ Array11 (hereafter ‘mod-
ern wheat’) (Supplementary Table 1). Modern wheat comprises regis-
tered crop varieties within systematic wheat breeding programmes, 
in contrast to Watkins, which comprises landrace cultivars, which are 
not products of systematic breeding. Taking Watkins and modern 
wheat together, we identified around 262 million high-quality single 
nucleotide polymorphisms (SNPs) (Supplementary Tables 2 and 3). 
The SNP composition of modern wheat largely overlaps with that of 
AG2 and AG5 (AG2/5) (Fig. 1b), which have Western and Central Euro-
pean origins, respectively, suggesting that these ancestral groups 
supplied the founder lines of modern wheat. The AG2/5 hypothesis 
for the origins of contemporary wheat is supported by independent 
wheat genomics datasets12 (Extended Data Fig. 2c). Watkins contains 
variants that are absent in modern wheat. We identified 162 million 
SNPs (62%), 9.7 million insertions or deletions (57%) and 57,000 copy 
number variants (CNVs, 53%) unique to Watkins. These are predomi-
nantly carried by five ancestral groups (AG1, AG3, AG4, AG6 and AG7) 

(Fig. 1c, Supplementary Fig. 4 and Supplementary Tables 5 and 6), show-
ing almost no overlap with modern wheat. These data indicate that 
the five phylogenetically isolated ancestral groups are highly diverse 
and represent a reservoir of previously untapped diversity for wheat  
breeding.

To further explore the landrace origins of modern wheat, we used 
long-range haplotypes to visualize the mosaic of identity by state 
(IBS) regions across their genomes (Fig.  1d and Supplementary 
Table 7). These IBS segments are signatures of the relatives of Watkins  
that were the founder lines of modern wheat cultivars, which have 
retained high chromosome-level identity with AG2/5 landraces, 
often across multi-megabase tracts extending across the majority 
of a chromosome’s length (Supplementary Fig. 5). On average, IBS 
segments remained intact along a length of 159.78 Mb in centromeric 
regions13. They were shorter in distal regions. The IBS analysis pro-
vided insight into the very small effective population size of modern 
wheat. As few as 26 Watkins accessions could be modelled as virtual 
donors of IBS segments to reconstitute more than 50% of the modern  
wheat genomes.

To map variants that are absent from modern wheat, we used linkage 
disequilibrium (LD)-based haplotype analysis14. This identified 71,282 
haploblocks, of which 69.6% (49,626) only contain Watkins-unique 
haplotypes (median 5 and mean 11.85 haplotypes per haploblock; Fig. 1c 
and Supplementary Tables 8 and 9). We aligned these haploblocks 
to the IBS chromosome map of modern wheat, revealing the poten-
tial for new arrangements of chromosomal segments to enrich the 
current IBS structure of wheat germplasm with Watkins-unique hap-
lotypes (Fig. 1e). However, in addition to the unique variants identi-
fied in Watkins, 2.5% of the unique haplotype variants were found in 
modern wheat, several of which were associated with introgressions 
from wheat wild relatives made by breeders (for example, 1BL/1RS15, 
RHT116 and Pch117), after the AG2/5 landrace foundation of modern  
wheat (Fig. 1e).

To assess potential for Watkins-unique diversity to influence traits, 
we studied variations occurring in or around genes. Among the 
Watkins-unique SNPs, 325,915 affect gene function (Supplementary 
Table 3). Particularly noteworthy among these are the Watkins-unique 
SNPs (annotated by SnpEff18) found in 13,902 genes that are mono-
morphic in modern wheat, meaning that there is no variation present 
in elite wheat pedigrees to improve traits associated with these genes 
(Supplementary Fig. 6). According to ontology term analysis, these 
genes control diverse biological processes that could affect important 
agronomic traits such as yield, stress tolerance, nutritional quality 
and disease resistance. To leverage these genomics resources and to 
search for useful trait variations associated with these variants, we 
undertook a programme for high-throughput quantitative trait locus 
(QTL) discovery.

Phenotyping to valorize landrace haplotypes
Economically important traits for improvement of grain yield and 
quality, as well as those required for climate change adaptation and 
mitigation, are often controlled by multiple genetic loci in a quan-
titative manner19,20. Thus, structured populations combined with 
specialized association genomics analyses21 are required for their 
study. We used the 827 Watkins accessions as a genome-wide asso-
ciation panel for phenotypic datasets recorded in the UK and China 
(Supplementary Fig. 7 and Supplementary Tables 10 and 11). We also 
used 73 ‘Paragon’ × Watkins recombinant inbred line (RIL) popula-
tions7 (Fig. 2a, Extended Data Fig. 4 and Supplementary Table 12), 
resulting in 6,762 RILs for which large-scale field-based phenotyping 
and whole-genome imputation was performed. We recorded pheno-
typic data for 137 traits (Supplementary Tables 13 and 14), covering 
the major categories of grain yield, nutritional quality, adaptation, 
and abiotic and biotic stress tolerance (Fig. 2b). These extensive 
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field-based experiments were conducted over 10 years in 10 environ-
ments, resulting in over 717,000 observations and data points (Fig. 2c,d 
and Supplementary Table 15). The structured populations enabled 
us to capitalize on the complementary strengths of joint linkage and 
association studies for complex traits by nested association mapping 
(NAM) studies, as well as classical QTL analysis in bi-parental popula-
tions and gene discovery strategies such as genome-wide association 
studies (GWAS) (Supplementary Fig. 8 and Supplementary Tables 16–19  
and Methods).

Combining the mapping populations with sequence-based hap-
lotypes, NAM–GWAS capture both historical and RIL population 
recombinations as well as common alleles from the natural popula-
tion and rare useful alleles with amplified frequency in the segregating 
populations. Using this approach, we calculated robust QTL effects at 

haplotype resolution and determined the distribution of useful QTL 
alleles between Watkins landraces and modern wheat (Fig. 2e,f and 
Supplementary Tables 20–22). We defined useful QTL alleles as those 
that influence a phenotypic value for traits in a direction selected 
in breeding. For traits subject to directional selection, such as yield 
and disease resistance, the useful allele was always acting in the same 
phenotypic direction, but for traits such as heading date, which are 
subject to stabilizing or disruptive selection, both allelic directions 
were considered useful (Extended Data Fig. 5).

In total, we identified 8,253 genetic effects (3,280 QTL, 1,428 GWAS 
and 3,545 NAM–GWAS marker–trait associations (MTAs); Supplemen-
tary Tables 17–19). On the basis of the direction of the allelic effects, 
1,696 have the potential to improve modern cultivars such as Paragon, 
and 36% (613) of the most significantly associated SNPs are located 
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Fig. 1 | Genomic variants in Watkins landraces compared with modern 
wheat. a, Geographical distribution of all accessions, including the entire 
Watkins collection (n = 827) and modern wheat cultivars that are the outputs  
of breeding programmes (n = 224; comprising 208 cultivars sequenced in  
this study and 15 previously described wheat cultivars from the 10+ Wheat 
Genomes Project10 as well as Chinese Spring). The seven ancestral groups  
(AG1–AG7, derived from Watkins) and modern wheat are colour-coded. b, t-SNE 
plot based on the 10 million SNPs shared by different ancestral groups. The 
SNPs were stringently controlled by LD (see Methods), with AG1–7 and modern 
wheat colour-coded as in a. The distribution of the 15 lines from the 10+  
Wheat Genomes Project10 and Chinese Spring are shown. c, Percentage of 
Watkins-unique, shared and modern-unique variants for SNPs, short (<50 bp) 
insertion–deletion mutations (indels), gene copy number variations (CNV)  

and haplotypes (hap). d, k-mer based IBSpy long-range haplotype analysis of 
the selected 18 representative modern wheat cultivars (released from 1920 to 
2011). IBS regions shared between these 18 modern wheat lines and the Watkins 
landraces are shown as coloured blocks according to the source of the detected 
Watkins accessions from the different ancestral subgroups (top 100 Watkins 
accessions; Supplementary Table 7; see Methods and ref. 16). e, Genomic 
distribution and comparison of haplotypes between Watkins and modern 
wheat along the 21 chromosomes, including the proportion of haplotypes that 
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or unique to modern wheat. The haplotypes were identified based on LD by 
PLINK (Methods), with single-base-resolution based on the IWGSC RefSeq v1.0 
reference genome.
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within haplotypes that are absent in modern wheat (Fig. 2d and Supple-
mentary Table 16). Despite reduced genetic resolution compared with 
NAM and GWAS, the use of single bi-parental populations was essential 
for detecting QTLs from very rare Watkins haplotypes. For example, 
just 33 Watkins accessions exhibit resistance to the ‘Warrior’ race of 
Puccinia striiformis (the causal agent of yellow rust disease; Fig. 2e and 
Supplementary Table 23), a recently emerged, highly aggressive race 
with increased pathogenicity at elevated temperatures22. Iran is the 
dominant country of origin for these resistant accessions (14 out of 
33). GWAS did not identify significant MTAs for these resistance loci, 
but bi-parental QTL mapping identified 15 new loci conferring yellow 
rust resistance in the UK and Australia, including to the Warrior race 
(Supplementary Tables 24 and 25). Twelve of these resistance loci are 
carried by accessions outside of the modern wheat AG2/5 founder 
complex, with five originating from Iran. These results highlight the 

potential of using the large set of genetic effects identified here to help 
deliver new traits of agronomic value.

To elucidate the potential utility of these alleles for practical wheat 
improvement through breeding, we investigated the relationships 
between multiple key traits (Fig. 2g). This approach is highly relevant, 
as QTL for one agronomic trait can often be antagonistically coupled 
to other breeding targets23. Thus, uncoupling these relationships, 
often thought of as trade-offs, is crucial for accelerating the breeding 
process. We developed near isogenic lines (NILs) to test the extent to 
which these trait relationships (for example, grain weight versus grain 
number or grain yield versus grain protein content) were upheld for 
individual QTL effects (Fig. 2g and Supplementary Table 26). For each 
locus–trait combination, we found a range of penetrance for these 
mainly antagonistic relationships, with several positive-effect QTLs for 
one trait being either neutral or positive for the other trait, reversing 
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the general relationship and providing a route for selection without 
the trade-offs that the founding breeders of modern wheat could not 
avoid (Fig. 2g).

This understanding of trade-offs helped us form a strategy for the 
recovery of beneficial phenotypes that have been lost in modern breed-
ing owing to preferential selection pressure for one of the paired traits. 
For example, breeding for reduced crop height to avoid lodging, and 
increase yield via harvest index23 was a continuous process since the 
start of the twentieth century. This culminated in the development 
of the RHT1 semi-dwarfing Green Revolution wheat cultivars in the 
1960s24, characterized by low stature and high harvest index and yield 
(Fig. 3a). However, this coupling of reduced stature and increased har-
vest index was likely achieved at the expense of crop biomass, which 
is positively correlated with height25. Recognizing the importance 

of biomass as a physiological component of grain yield23, we sought 
Watkins alleles that increase height/biomass while maintaining or 
enhancing yield. Among the 291 QTLs identified for plant height, 187 
conferring reduced height were derived from the cultivar Paragon 
(Fig. 3b and Supplementary Table 17), reflecting the selection his-
tory for this trait in the modern cultivar and its multi-genic nature. 
We selected a height-increasing Watkins haplotype on chromosome 
arm 7BL that had no adverse effect on harvest index, unlike other 
height-increasing QTL alleles. The local LD block corresponding to 
the chromosome arm 7BL target region contains contiguous haplo-
types that are either absent or present at low frequency in modern 
wheat (Fig. 3c,d). Testing in NILs in multi-location trials together with 
breeding companies, we determined that these haplotypes were asso-
ciated with a height increase of 9.37 cm (P = 0.002) and a grain yield 
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increase of 0.39 t ha−1 (P < 0.002) compared with Paragon (Fig. 3e and 
Supplementary Fig. 9).

Increasing height and biomass to enhance yield may pose the 
risk of increased lodging. Thus, we leveraged Watkins resources to 
expand the accessibility of alternative non-RHT1 semi-dwarfing genes 
which reduced height, but not yield. We targeted RHT8 because our 
NIL data showed the benefits of RHT8 particularly for Mediterranean 
environments (Fig. 3f). RHT8 was introduced into Europe from the 
Japanese landrace ‘Akakomugi’26 and was genetically defined using the 
Akakomugi-derived cultivar ‘Mara’. Although RHT8 has been mapped 
at high genetic resolution27, breeders do not have access to diagnos tic 
markers for the ‘Mara’ allele. Although a closely linked gene (Traes
CSU02G024900, also known as RNHLD1) also affects plant height28, 
this gene is located outside of the genetic interval, and the proposed 
diagnostic or causative SNP is absent in ‘Mara’. We fine mapped RHT8 
to a 0.82-Mb interval containing 23 gene models (Supplementary 
Tables 27–30). We identified 36 Watkins accessions with the Mara-like 
haplotype and used haplotype-specific markers derived from novel 
Watkins SNPs, reducing the RHT8 mapping interval to a physical dis-
tance of 6.7 kb (Fig. 3g). This interval contains two annotated genes 
in IWGSC RefSeq v1.0, TraesCS2D02G057800 (unknown function) 
and TraesCS2D02G057900 (Photosystem 1 assembly 2), positioned 
in a head-to-head orientation with only 6 bp between their respec-
tive 5′ untranslated regions and 250 bp between their translational 
start codons. The expression of the two genes is tightly correlated 
(Fig. 3h): when TraesCS2D02G057800 expression is high (as it is until 
mid-stem extension), TraesCS2D02G057900 expression is low, and 
vice versa (Fig. 3h; Pearson correlation r = −0.979, P < 0.0001). These 
new molecular markers for RHT8 provide breeders with precise genetic 
tools to control plant height without negative pleiotropic effects on 
yield, particularly in Mediterranean environments.

By integrating these findings, we not only discovered modern appli-
cations for allelic effects that were left behind in the early stages of 
wheat breeding (such as chromosome arm 7BL QTLs) but also refined 
our understanding of established genetic effects such as those of RHT8.

Deployment of landrace variation in breeding
To quantify and accelerate the impact of Watkins diversity on future 
breeding endeavours, we developed new tools for breeding and sys-
tematically introduced potentially beneficial Watkins QTL alleles 
into the Paragon modern wheat genetic background. This was done 
through two backcrosses of Paragon with selected Paragon × Watkins  
RILs carrying the targeted Watkins alleles, resulting in more than 
87.5% of isogenic families in which groups of homozygous siblings 
(2–3 lines for each allele) were used to estimate the Watkins allelic 
effects. In this way, we successfully introgressed 127 prioritized QTL 
alleles, represented by a total of 738 NILs, which were used to quan-
tify the breeding value of the introgressed Watkins alleles within the 
uniform modern genetic background of Paragon. Out of these 127 
prioritized QTL targets, 107 originated from AG1, AG3, AG4, AG6 and 
AG7, which we showed to sample landrace populations that did not 
contribute to the genomes of modern wheat (Figs. 1c and 4a and Sup-
plementary Table 31). For each chromosome, the enhanced ancestral 
group diversity beyond AG2/5 is evident (Fig. 4b) and the associated 
allelic effects are promising for wheat improvement (Fig. 4c). The 
introgressed segments included 44,338 LD-based haplotypes unique 
to Watkins, bridging the gap between landrace diversity and modern 
breeding (Fig. 4d).

To assess the phenotypic value carried by these introgressions, we 
conducted extensive field-based evaluations of the isogenic families. 
This was done in at least 3 locations or years (Supplementary Table 15), 
in replicated field experiments with lines grown in sufficiently large 
plots (6 m2) for agriculturally realistic yield assessment. We col-
lected detailed phenotyping data for 11 traits from these experiments 

(encompassing the 127 QTL targets) over a total of 9 years (Fig. 4c). 
Additive main and multiplicative interactions (AMMI) analysis pro-
vided a measure of environmental stability for Watkins allelic effects, 
so that breeders using these lines as pre-breeding germplasm base 
their selection on the most environmentally robust effects (AMMI 
means for each trait are shown in Supplementary Table 26). We found 
a very high level of phenotypic variation in key traits controlled by the 
Watkins haplotypes. By comparing the allelic effects between Watkins 
and Paragon in an isogenic Paragon background, we found variation in 
heading date ranging from 6 days earlier to 2 days later, height effects 
varying from 5 cm reduction to 13 cm increase, and yield increases of 
up to 0.91 t ha−1, when considering statistically significant individual 
allelic effects (Supplementary table 26). Our allele prioritization for 
breeding included the consideration of deviation from trait antago-
nism (Fig. 2g, with detail in Supplementary Table 26). An example of 
the use of this trait prioritization is given by the five haplotypes we 
found that confer significant increases in grain protein (an important 
quality trait for bread making), three of which do so without a negative 
impact for grain yield. This knowledge hugely increases the appeal 
of these haplotypes as breeding targets, given the often-observed 
negative correlation between grain yield and protein content. Thus, 
this study provides a pivotal resource for the selection of Watkins 
alleles in breeding in which the primary target trait can be considered 
together with its pleiotropic effects (Supplementary Table 26). This 
dataset does not provide the information needed to predict the total 
genetic gains made possible by this work as the genetic additivity of 
these allelic effects has not been comprehensively tested. However, 
their arithmetic sums are helpful in conveying the breeding potential 
of this resource. Looking at the sum of significant allelic effects (see 
Supplementary Table 26) for yield components in this way reveals a 
4.5 t ha−1 increase in grain yield, an increase of 11,500 grains per m2, 
and an increase in thousand grain weight of 55.6 mg. These are valu-
able breeding targets validated in isogenic backgrounds, but realizing 
the benefits by combining these alleles within breeding pedigrees will 
be dependent on genetic interactions, which fall outside the scope of 
the current study.

Our comprehensive characterization of modern wheat as a mosaic 
collection of Watkins IBS segments, combined with the identification 
of LD haplotypes between Watkins and modern wheat, offers a unique 
framework for designing and developing new wheat varieties. To enable 
the selection of any haplotype for this purpose, we identified diagnostic 
‘tag’ SNPs along with the corresponding molecular markers for each of 
the 1.7 million haplotypes (Supplementary Table 32). To demonstrate 
the efficacy and utility of these markers, we selected tag markers for 
two QTLs: 5A awn inhibitor (B1)29 and 7A coleoptile colour (Rc) (Sup-
plementary Fig. 10). Using KASP assays, we genotyped 382 independent 
accessions from the Biotechnology and Biological Sciences Research 
Council small grain cereals collection (Supplementary Table 33). These 
markers proved to be highly effective for enriching target haplotype 
selection, resulting in correct predictions of the 2 phenotypes in 87.4% 
and 93.7% of accessions, respectively.

Discussion
It is crucial to discover (or re-discover) and characterize genetic 
resources that improve crop performance under challenging envi-
ronmental conditions. Arthur Ernest Watkins first described the bread 
wheat landraces used here in The Wheat Species: A Critique in 193030,31. 
Although nearly a century has passed, we can now use genomics to fully 
realize the potential of these invaluable genetic resources. Particularly, 
our whole-genome re-sequencing of the Watkins landrace collection 
showed that five of the seven Watkins ancestral groups are phyloge-
netically isolated from modern wheat varieties (Fig. 1b). By combining 
structured gene discovery populations, genomic data and extensive 
field experimentation with in-depth phenotyping, we confirmed that 
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many of the haplotypes restricted to phylogenetically isolated Watkins 
ancestral groups have beneficial effects on yield potential, adaptation, 
human nutrition and disease resistance.

Our development of a whole-genome sequence wheat haplotype 
map based on whole-genome sequence, coupled with a haplotype–
phenotype association allowed us to estimate frequencies of beneficial 
alleles and assess their functional significance by association with 
high-resolution NAM QTL. To introduce novel and useful landrace diver-
sity into the landscape of modern wheat breeding, we transferred 127 
prioritized QTL targets into a single modern elite wheat variety. These 
introgressed segments carry 44,338 Watkins-unique haplotypes which 
were evaluated within the modern breeding context for the first time. 

The breeding value confirmation conducted here is guiding the stack-
ing of beneficial Watkins haplotypes into new cultivars for further 
evaluation across environments.

The integrated Watkins resources described here represent a major 
step forward for cereal research and breeding. Even in species such as 
rice and maize, which have transitioned into the post-genomics era 
well ahead of wheat, there is currently no publicly accessible resource 
in a project that encompasses large-scale genomic analysis (which 
identified 261 million SNPs and 17 million indels) in primary germplasm 
resources integrated with comprehensive field-based phenotyping. 
This includes the development of extensive genetic association map-
ping populations, the construction of both the LD-based haplotypes 
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and the IBS-based long-range haplotypes, and the validation of QTL 
effects, tagged with diagnostic haplotypes.

Our companion papers give a first look at the potential application of 
the Watkins resources beyond the targets chosen by us. This includes 
the identification of novel genes for Septoria resistance32 and the first 
wheat gene conferring resistance to the devastating Bangladesh/
Zambia MoT isolate33 for which the key resistance allele Pm4f was only 
detected in Watkins. The Pm4f allele is now being deployed in breed-
ing programmes worldwide as a direct result of the Watkins resources 
presented here. With human nutrition as a target, a mineral atlas for 
wheat has been developed with new variants for the breeding of more 
nutrient-dense wheat34. In addition to these trait-centred discoveries, 
the Watkins resources have been used to develop a new generation 
of high-density wheat genotyping array35. These companion studies 
exemplify some of the ways in which the Watkins resources can be 
used by wheat researchers.

Consideration of limitations and the next steps that will facilitate 
the fullest possible utilization of the Watkins genetic resources raises 
questions of alternative sequencing or bioinformatic approaches 
and, crucially, the deployment of variation in registered varieties. 
Large-scale structural and copy number variations are an important 
component of genetic variation in wheat but they are not detected 
using the short-read sequencing technologies deployed in this study. 
Following the model of the 10+ Wheat Genomes Project10, and incorpo-
rating long-read sequencing technologies36 would provide significant 
uplift to the value of the Watkins resources. These variations will be 
elucidated by such an approach. For breeders, there are still significant 
barriers to combining novel Watkins alleles in a single variety. New 
innovations in breeding technology are still required to overcome 
linkage drag, so that new beneficial alleles can be introduced while 
maintaining optimal combinations already regionally deployed. It 
is also the case that most of the genetic gains that we have described 
have been quantified using NILs in the genetic background of the 
UK spring wheat variety Paragon which, released in 1998, expresses 
approximately 70% of the yield potential of modern UK winter wheat 
varieties. Ongoing breeding efforts will show whether Watkins alleles 
for yield increase will deliver benefits in the next generation of varieties 
growing in farmer’s fields.

To empower the whole of the global community to accelerate breed-
ing in wheat, we have adhered to the collaborative spirit of the Human 
Genome Project by making our resources, including germplasm, 
genomic and phenotypic data, publicly available through the Wat-
kins Worldwide Wheat Genomics to Breeding portal (https://wwwg2b.
com/). We aim to promote openness and collaboration that will enable 
the full potential of this work to be realized, providing resources for 
extending the use and further development of the Watkins resource.

Our analysis of this remarkable genetic resource from the 1900s 
underscores the enduring value of collecting and preserving genetic 
diversity ex situ. The Watkins collection, assembled from diverse 
regions worldwide a century ago, is now reasserting its global sig-
nificance. This is exemplified by its introduction since 2019 to China, 
where it is being cultivated across various regions with extensive 
phenotyping and crossing experiments. Within the Watkins collec-
tion are 118 landrace accessions originally collected from China and 
now repatriated thanks to long-term ex situ conservation efforts.  
A similar initiative dates back to 1932, when a Chinese colleague,  
Shen Zonghan, introduced approximately 1,700 wheat accessions 
from the John Percival Collection31, significantly contributing to wheat 
genetic improvement and breeding in China. The profound legacy 
left by Watkins has inspired our international collaboration and com-
mitment to open data sharing and knowledge exchange, recognizing  
the collective benefits to the global community37. Although recent 
policies have restricted international germplasm exchanges38,39, it is 
crucial to remember that the challenges faced by humankind transcend 
these artificial boundaries.
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Methods

Statistical analysis
Statistical analyses were conducted in R software suite (version 4.2; 
https://www.r-project.org/) unless otherwise stated. The LD and hap-
loblocks were calculated by PLINK (version 1.90 beta)40,41, the haplotype 
clustering was performed by HAPPE14. Where relevant, statistical tests 
were two-sided, randomized experimental units were used as replica-
tions, multiple measurements of single experimental units were treated 
as subsamples, and all data was tested for assumptions and corrected 
accordingly, and described. The phenotypic effects observed in the 
NILs were used to calculate best linear unbiased estimators (BLUEs) 
for each NIL from a linear model (lm in R) encompassing the whole 
trial with replication. The phenotypic estimates for each NIL over sev-
eral environments were received using AMMI by fitting additive main 
effects for the NILs and environments by an ANOVA procedure using 
BLUE and then apply PCA using singular value decomposition to the 
remaining residuals after the fitting of main effects. Statistical differ-
ences between the two different NIL alleles were tested for each NIL 
family as ANOVA using the AMMI-BLUEs.

Germplasm collection and glasshouse growing conditions
The 827 accessions from the entire A. E. Watkins Collection of landraces 
were used, alongside 208 modern wheat lines selected to represent 
worldwide diversity and to include parents of publicly available popu-
lations11. Seeds were obtained from the John Innes Centre Germplasm 
Resource Unit ( JIC GRU; http://www.jic.ac.uk/germplasm/). Single 
seeds were sown in 3.8 cm diameter pots containing peat and sand mix-
ture (85% fine grade peat, 15% washed grit, 4 kg m−3 Mag Lime (powdered 
limestone containing 90% CaCO3), 2.7 kg m−3 slow release fertilizer 
(Osmocote, 3–4 months), 1 kg m−3 PG Mix 14-16-18  +  TE 0.02% and 
wetting agent) for 3 weeks growth at 20/17.5 °C day/night temperature 
with 16 h day length, before transfer to 6 °C day and night temperature 
with 8 h day length for 8 weeks.

Following vernalization in controlled environment rooms, plants 
were transferred to glasshouse conditions with automated watering and 
following 2 weeks further growth, transplanted into 2 l pots containing 
cereals mixture (40% medium grade peat, 40% sterilized loam (soil), 
20% washed horticultural grit, 3 kg m−3 Mag Lime (powdered limestone 
containing 90% CaCO3), 1.3 kg m−3 PG mix 14%-16%-18%, N-P-K + TE 
base fertilizer, 1 kg m−3 ‘Osmocote mini’ 16%-8%-11% 2 mg + TE 0.02%, 
and wetting agent) for continued development. During plant growth, 
spikes were bagged to prevent cross pollination and plant material 
dried naturally. Seeds were deposited in JIC GRU and transferred to the 
Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy 
of Agricultural Sciences.

DNA extraction
Genomic DNA was extracted from approximately 50 mg wet weight 
young leaf tissue of 3-week stage seedlings. Extractions for the Watkins 
collection used the DNeasy 96 Plant Kit protocol (Qiagen) and extrac-
tions for remaining lines used the oKtopure automated plant-based 
system (LGC Biosearch Technology) following tissue desiccation with 
silica for 48 h. A bespoke maxi prep protocol was used with the follow-
ing volumes per sample: 250 µl lysis buffer, 170 µl binding buffer, 20 µl 
sbeadex suspension, 300 µl PN1 wash buffer, 300 µl PN2 wash buffer, 
300 µl PN2 wash buffer (x3 wash cycles) using 75 µl final elution buffer.

Whole-genome re-sequencing and quality control
DNA was used for sequencing library construction following the manu-
facturer’s protocols (Illumina). Libraries were 150 bp paired-end with 
insert size ~500 bp and were sequenced on an Illumina NovaSeq 6000 
at Berry Genomics (954 accessions), Beijing, in 2018, and also on DNB-
SEQ Platform at BGI group (90 accessions). A total of over 200 TB raw 
data was generated, producing, on average, 193 Gb raw reads for each 

accession (Supplementary Table 1). The raw data was filtered using 
the following parameters (fastp42 v0.20.0: -f 9 -F 9 -l 80 -g); adapter 
sequences were removed; reads of N number ≥5 and reads where the 
base quality ≤15 exceeds 40% were discarded; 9 bp in the front of reads 
were trimmed of and reads with a length ≥80 bp were retained; After 
removing these low-quality and adapter-containing reads, an average 
of ~185.14 Gb of clean data (~12.73× coverage) was retained for each 
accession.

Reads mapping, variant discovery, quality control and SNP 
annotation
The clean reads were mapped to IWGSC RefSeq v1.0 using BWA-MEM 
(v0.7.17)43 with default parameters. Non-unique mapped and dupli-
cated reads were excluded using SAMtools (v1.9)44 and Picard 
(v2.20.3-SNAPSHOT; http://picard.sourceforge.net), respectively. 
SNP and indel calling were performed by GATK (v4.1.2)45. A total of 
720,048,179 raw variants (SNP or indel) were identified from GATK, 
including 668,764,660 SNPs and 51,283,519 indels.

Four main steps of variant filtering and quality control for both 
SNPs and indels were contducted, corresponding to Supplemen-
tary Table 2. First, only the bi-allelic variants were retained, includ-
ing 634,873,707 SNPs and 44,525,746 indels. Second, variants were 
filtered based on the parameters recommended by GATK (QD <  
2.0||FS > 60.0||MQ < 40.0||MQRankSum < −12.5||ReadPosRankSum <  
−8.0||SOR > 3.0. Indels Filter criteria: QD < 2.0||low_QD||FS > 200.0|| 
high_FS||ReadPosRankSum < −20.0||low_ReadPosRankSum) after which 
a total of 411,400,604 SNPs and 42,415,907 indels were retained. Third, 
variants were filtered by inbreeding coefficient (F). F is computed 
as: F = 1 − (Hobs/Hexp). Hobs is the frequency of heterozygous calls, and 
Hexp = 2p(1 − p), in which p is the frequency of non-reference allele (or 
reference allele). The median value of F (Fmedian) for each chromosome 
is calculated using the SNP site of F > 0 and minor allele frequency 
(MAF) > 0.05. The maximum observed heterozygous frequency 
(Hobs_max) is computed as: Hobs_max = 10 × (1 − Fmedian) × Hexp. The sites of 
Hobs > Hobs_max were discarded. A total of 261,659,890 high-quality SNPs 
(dataset 1) and 17,279,131 high-quality indels were retained. Finally, 
the SNPs with missing rate >20% and MAF < 0.01 were discarded.  
A total of 90,750,089 common SNPs (high frequency) were retained 
as high-quality SNP dataset (dataset 2).

SnpEff (v4.3t)18 was used for annotating and predicting the genome 
structural position and functional effects of identified SNPs and indels. 
SNPs were annotated as exonic, intronic, splicing region, upstream, 
downstream, intergenic and 3′ and 5′ untranslated region variants. 
Exonic variants can be further divided into synonymous and nonsyn-
onymous variants, and the latter included missense variants, stop loss, 
stop gain, start loss, start gain and stop retained. Intron variants can be 
categorized as splicing donors, splicing acceptors and others.

Identification of gene CNVs
Considering the limitations of using short reads for CNV identification, 
only the CNVs of the wheat protein-coding genes were calculated in 
this study. Five steps were implemented for the identification of gene 
CNVs. (1) Calculation of read depth for each gene, sequenced in each 
accession, based on the properly mapped reads. This is referred to as 
the absolute read depth for each gene. (2) Optimal correction of the 
absolute value for read depth variation (RDV). To account for highly 
similar genes in the reference genome, such as paralogues arising from 
recent duplication events, we performed an all-vs-all coding sequence 
alignment using BLASTN. Genes that met specific criteria (fewer than 
five gaps and fewer than five mismatches) were classified as recently 
duplicated. For depth calculations, these highly similar genes were 
collapsed into a single representative gene in the reference genome. 
Specifically, the depth values of duplicated genes were summed up 
together. This approach aims to minimize the depth bias introduced by 
recent gene duplications in the reference genome46. (3) Normalization 
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for each accession. Considering the slight variation for the sequencing 
depth for each accession, we divided the corrected read depth for each 
gene in step (2) by the average sequencing depth for each accession. 
This is the relative RDV. (4) GC bias correction. There were GC bias in 
Illumina short-read sequencing technology despite all libraries being 
PCR-free. We analysed the read depth distribution for the GC content 
within the wheat genome (1,000-bp windows for GC content from 0% 
to 100%) and corresponded the estimated read depth for each level 
of GC content for each gene to this distribution, which was divided by 
the overall read depth of the overall GC content. This resulted in the 
GC content correction value for each gene, to avoid and correct the 
GC bias for read depth47. (5) Correction of RDV for genomic regions 
with insertions or deletions in the genome reference. To explore the 
population-unique and shared CNVs, the number of accessions with 
different copy numbers, such as [0–0.25), [0.25–0.75) or [0.75–1.25), 
was calculated for each gene in both Watkins and modern populations.

Ensuring correspondence of sequenced accessions with existing 
public genotypic data
To ensure consistency of sequenced samples, sequence data were com-
pared to publicly available genotyping data using the Wheat Breeders’ 
Array48. The probe set of the Breeders’ array (https://www.cerealsdb.
uk.net/cerealgenomics/CerealsDB/Excel/35K_array/35k_probe_set_
IWGSCv1.xlsx) was used to generate two allele-specific sets of k-mers 
(k = 31) for each SNP of the array. We also built k-mer databases from the 
sequence data of each Watkins line. The allele for each SNP in each Wat-
kins line was determined using presence or absence of allele-specific 
k-mers in the k-mer databases. This resulted in a genotype profile for 
each Watkins line. Next, the new genotype profile was compared to 
existing data generated using the Wheat Breeders’ Array. This analysis 
resulted in a 100% match between the sequenced accessions and the 
existing public genotypic data for these accessions. Scripts for the 
procedure and details on the pipeline are available at https://github.
com/JIC-CSB/WatSeqAnalysis/tree/master/qc_vs_iselect.

LD analysis and construction of the wheat haplotype map
To obtain a core SNP set from the filtered SNP set described above, a 
two-step LD pruning procedure were conducted as previously done in 
rice49. First, SNPs were removed by LD pruning with a window size of 
10 kb, window step of one SNP and r2 threshold of 0.8 using PLINK40. 
Second, another round of LD pruning with a window size of 50 SNPs, 
window step of one SNP and r2 threshold of 0.8 was performed. About 
10 Mb SNPs were retained after the two-step LD pruning (dataset 
3). The construction of the wheat haplotype map (HapMap) con-
sists of two parts, the population LD-based haplotype map, and the 
Identity-by-State in python (IBSpy) k-mer based large-scale long-range 
haplotypes segments50.

Population LD-based haplotype analysis. First, the SNP dataset 2 was 
phased by Beagle (v 21Apr21.304)51. Using this phased dataset, haplo-
type blocks were identified using PLINK40 with the parameters (--blocks 
no-pheno-req --blocks-max-kb 1000 --geno 0.1 --blocks-min-maf 0.05). 
To merge the adjacent blocks that might still maintain strong LD into 
larger ones, the D′ statistic value were calculated for all of the SNPs 
(dataset 1) of every two adjacent blocks. If the lower quartile (Q1) was 
larger than 0.98, the two adjacent blocks were merged. The program 
HAPPE14 was used to identify haplotype clusters (haplogroups) for each 
block based on SNPs from dataset 1.

k-mer based IBS long-range haplotype analysis. We devised a system-
atic approach for conducting k-mer based IBS approach for long-range 
haplotype analysis and reconstructed modern wheat genomes using 
the Watkins lines. The methodology comprised of the following steps:
(1)  Generation of k-mer matrices and variation analysis: We initiated 

the analysis by utilizing the kmerGWAS pipeline52 (https://github.

com/voichek/kmersGWAS) to produce a k-mer matrix (k = 31) for 
our dataset containing 1,051 wheat accessions. Concurrently, we 
integrated the chromosome-level genome assemblies from the 
10+ Wheat Genomes Project, including ArinaLrFor, Chinese Spring, 
Jagger, Julius, LongReach Lancer, CDC Landmark, Mace, Norin 61, 
CDC Stanley, and SY Mattis. Employing the IBSpy pipeline (https://
github.com/Uauy-Lab/IBSpy), we computed the k-mer variation 
matrix (k = 31) for each reference assembly vis-à-vis the 1,051 acces-
sions, utilizing non-overlapping 50-kb step windows.

(2)  Transformation of k-mer variations to IBSpy values and haplotype 
assignment: Next, we converted the k-mer variation matrix into 
IBSpy variation values. We then conducted haplotype assignment 
for distinct non-overlapping 1-Mb windows. We applied the affinity 
propagation clustering technique53 (with a window size of 1 Mb) 
based on IBSpy variation values computed from 20 consecutive 
50-kb windows. To enrich the IBSpy values utilized in clustering, 
we incorporated IBSpy values derived from syntenic regions across 
the 10+ Wheat Genomes Project references.

(3)  Pedigree tracking and genome reconstruction: pedigree tracking 
was employed to track the ancestry of each modern cultivar within 
the Watkins collection. Building upon the haplotype assignments 
in non-overlapping 1-Mb windows, we reconstructed each culti-
var’s genome using extended matched haplotype blocks from the 
Watkins lines, employing an in silico strategy featuring a minimum 
tiling path approach.

a. Haplotype comparison and identification of progenitor: on a 
per-chromosome basis, we began by comparing the haplotypes 
of a cultivar’s first window with the corresponding chromosome’s 
haplotypes in each Watkins line. The length of matched haplotype 
windows (MHWs) from each Watkins line was noted. The Watkins 
line with the longest MHW was identified as the potential progenitor 
contributing to that genomic region. Subsequent MHWs from other 
Watkins lines were discarded.

b. Iterative process and longest MHW recording: the comparison pro-
cess was iterated from the second window onward. At each step, we 
identified the longest MHW and its associated Watkins line. This 
iterative comparison continued window by window until covering 
the entire chromosome.

c. Refinement and minimum tiling path construction: we then aligned 
the physical positions of identified MHWs from each window. Over-
lapping MHWs were removed, retaining those forming the minimum 
tiling path for reconstructing the chromosome. The reconstructed 
path allowed observation of the mosaic composition originating 
from the Watkins lines. This strategic process delineates the closest 
Watkins relatives at a 1-Mb resolution for any given genomic region 
within a modern cultivar. The contribution percentage of each Wat-
kins line to a cultivar was quantified as the ratio of its total MHWs to 
the entire genome windows.

Population structure analysis
Phylogenetic tree and ADMIXTURE. For the Phylogenetic genetic 
analysis, neighbour-joining tree and maximum likelihood tree were 
constructed for the genome-wide 4DTv (fourfold degenerate synony-
mous site) using rapidnj (version 2.3.2)54 and iqtree (version 1.6.9)55, 
respectively. One thousand bootstrap replications were performed 
for each tree. Interactive Tree of Life (iTOL) was used to visualize and 
annotate these trees (https://itol.embl.de/)56. To explore and obtain 
the accurate population structure of the Watkins collection, a pipeline 
was developed to deal with the common introgressions in the wheat 
genome. First, the genetic distance between all pairs of accessions was 
calculated in 5-Mb sliding windows (dataset 2) using vcf2dis software 
(https://github.com/BGI-shenzhen/VCF2Dis). Moreover, the geo-
graphic distance of each pair of accessions was calculated, based on 
the longitude and latitude information, using the R package geosphere. 
Then, the correlation between the genetic and geographic distances 
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was calculated for each 5-Mb window using the R package corr. For 
88.97% of introgression blocks with known resource the correlation 
was under 0.07, indicating that this value has potential to exclude in-
trogressions. Therefore, SNPs located in windows with correlation 
value less than 0.07 were discarded to reduce background noise. The 
remaining SNPs were used to quantify the genome-wide population 
structures using ADMIXTURE9.

t-SNE and PCAs. For the haplotype matrix, we first imported the data 
into a Python environment and then transformed the matrix into a 
one-hot encoded format using the OneHotEncoder class from the 
sklearn.preprocessing module. Subsequently, we used the PCA class 
and the TSNE class from the sklearn.decomposition and sklearn.mani-
fold modules, respectively, to perform PCA and t-SNE. For the SNP 
matrix, VCF datasets were converted into a numerical matrix. In this 
conversion, a value of 0 represents a reference allele, 1 represents het-
erozygosity, 2 indicates an alternative allele, and −1 is used for missing 
data. We then applied the PCA and t-SNE methods as described above.

Genetic diversity and population differentiation
In consideration of the deviating effects of missing rate and MAF on 
genetic diversity, dataset 1 (without missing rate and MAF filtering) 
was used to calculate the number of SNPs, number of indels and π 
of accessions in different populations and countries. These calcula-
tions were performed in non-overlapping 2 Mb windows across the 
whole genome using PLINK40. For genic diversity, the number of total 
SNPs, population-unique SNPs and allele frequency among different 
populations within each gene were calculated. To further evaluate the 
populations differentiation among Watkins groups and modern variety, 
plink--cluster was used to calculate the identity by state distance for 
each pair of accessions41. The allelic diversity, haplotype clustering and 
cataloguing, and CNV diversity according to the RDVs were analysed 
and visualized with HAPPE14.

Field experiments for Watkins collection
We conducted field experiments to assess the phenotypic diversity of 
the Watkins collection (the natural population, Supplementary Fig. 8).

UK field experiments for Watkins collection. The Watkins collection 
was grown at the JIC Field Experimental Station ( JI) (Bawburgh, Norfolk; 
52.628° N, 1.171° E) in 2006 in unreplicated 1 m2 plots under low nitrogen 
input as previously reported57. Experiments were repeated at JIC in 2010 
and 2014. Phenotypes measured were: 2006: heading date, plant height 
and growth habit; 2010: presence of awns, heading date, thousand 
grain weight, grain width and grain length; 2014: heading date, kernel 
hardness and coleoptile colour. Details on phenotype measurements 
are given in crop ontology format in Supplementary Table 13.

Chinese field experiments. The Watkins collection, alongside 208 
contemporary cultivars, were grown and phenotyped in diverse ge-
ographic locations throughout China. These sites were: Shenzhen 
city (22.597° N, 114.504° E, seasons 2021, 2022 and 2023), Guangdong 
Province, southern China; Ezhou (30.386° N, 114.656° E, season 2023), 
Hubei Province, central China; Nantong (32.268° N, 120.759° E, season 
2023), Jiangsu Province, southeast China; Tai’an (35.987° N, 116.875° E, 
season 2023), Shandong Province, northern China; Quzhou (36.863° N, 
115.016° E, season 2022), Hebei Province, northern China; and Harbing 
(45.830° N, 126.853°E, season 2023), HeiLongJiang Province, northern 
China. All trials were hand planted in the autumn (mostly November), 
with the exception of Harbing, where sowing took place in March. Plants 
were grown in 1.2 m or 2 m long rows using an augmented plot design 
with 50 or 100 plants per block with three check varieties, with the 
exception to Shenzen 2020 and Ezou 2022 where a factorial split-block 
design with two nitrogen treatments and two replicates were grown. 
Plants were phenotyped for a broad range of traits spanning lodging, 

height, tillering, phenology, disease resistance, and various morpho-
logical traits, alongside yield and biomass components. Following 
harvest, yield component traits including spikelet number and grain 
morphometric traits were measured.

Egyptian field experiments for Watkins collection. A diverse sub-
set of 300 Watkins bread wheat landraces and 20 modern lines were 
grown at four agricultural research stations in Egypt: Sakha (31.0642° N, 
30.5645° E), Nubaria (30.6973° N, 30.66713° E), Gemmiza (30.867° N, 
31.028° E) and Side (29.076° N, 31.097° E). Growing season was from 
November to the end of May with harvest in 2020, 2021 and 2022. The 
wheat lines were grown in 3.5 m rows and hand harvested. Fertilizer 
applications were before sowing phosphorus (200 kgP ha−1) and potas-
sium sulfate (50 kgK ha−1); and three doses of urea (in total 300 kgN ha−1) 
at sowing, 30 days post-sowing, and at the tillering stage. Phenotypes 
recorded (as the mean of ten plants) were: growth habit, plant height, 
heading date, number of kernels per spikes, grain weight and maturity 
date. Rust scores were taken at the early dough stage as host responses 
and rust severity.

RIL population development and analysis
Construction of bi-parental populations. Bi-parental populations 
with diverse Watkins landrace parents were developed as described2. 
Initial crosses of Paragon (female) to Watkins landrace (male) plants 
were advanced to F4 using single seed descent. In total, we developed 
109 populations using 107 different Watkins accessions, resulting 
in 10,259 RILs. Of these, 73 RIL populations have been phenotyped 
to date (Supplementary Table 12 and https://www.seedstor.ac.uk/
search-browseaccessions.php?idCollection=47).

Genotyping RIL populations. Early in the project, genotyping was 
conducted with KASP and SSR markers followed by genetic map con-
struction as described. This was the case for the majority of the popula-
tions, see Supplementary Table 12, column ‘Genetic map type’. Later, 
genotyping was done with the Wheat Breeders’ Array11.

Genetic map construction. Genetic map construction was carried out 
using the R package ASMap (version 1.6) as described58. The genotype 
scores can be retrieved from CerealsDB (https://www.cerealsdb.uk.net/
cerealgenomics/CerealsDB/array_info.php).

QTL discovery. QTL mapping was conducted in R (v3.6.1) using pack-
age qtl (v1.5)59,60 as described, taking cross type (RIL) and generation 
number (F4 or F5) into account. The QTL model used a significance 
threshold calculated from the data distribution. A first QTL scan, us-
ing Haley–Knott regression, determined co-factors for the second 
scan. The second scan by composite interval mapping identified QTL 
at a significance level of 0.05 taking the co-factors into account. The 
resulting QTL with a LOD score equal or larger than 2.0 are listed in 
Supplementary Table 17.

Field experiments using RIL populations
Trials were drilled around mid-October and harvested end of July to late 
August and grown with standard farm management61,62. Seventy-three 
bi-parental RIL populations were grown in field experimentation trials 
over ten years between 2011 and 2020 at the JIC Field Experimental 
Station ( JI) (Bawburgh, Norfolk; 52.628° N, 1.171° E) in randomized 
unreplicated 1 m2 multiplication trials with low nitrogen input (approx 
50 kgN ha−1). A subset of 18 populations were grown in a randomized 
block design (3 replicates, 1 m2 plots) at Rothamsted Experimental 
Farm (RH) in southeast England (51.8100° N, −0.3764° E) at 2 different 
nitrogen levels over 7 years (2012–2018). Nitrogen supply was taken to 
be the sum of the amount of mineral Nitrogen in the top 90 cm of soil 
measured late winter each year (before the first fertilizer N application) 
and the amount of N fertilizer applied (either as ammonium nitrate or 
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ammonium sulfate). Nitrogen fertilizer applications (50 or 200 kgN ha−1) 
were made late February to May, with a split application to plots receiv-
ing 200 kgN ha−1. A set of 15 populations were grown at Bunny Farm, Uni-
versity of Nottingham, Nottinghamshire (SB) (52.8607° N, −1.1268° E) in 
randomized replicated 1 m2 plots under 2 different nitrogen conditions 
as in RH over 4 years (2012–2015). Details on which population was grown 
in which season are given in Supplementary Table 15. Seed sources for 
the JI trials were glasshouse seed, and for the other trials the JIC field 
multiplied seeds. Field experiments at RH were targeted to specifically 
assess grain yield and nitrogen use efficiency (NUE). Above-ground 
nitrogen uptake was calculated from the sum of nitrogen in straw and 
grain at final harvest. These data were calculated from grain and straw 
dry matter yield; both recorded by plot combine harvester at Rotham-
sted, grain by combine and straw from a pre-harvest grab sample at 
Nottingham. Harvest index (ratio of grain dry matter to above-ground 
dry matter) was also calculated, and grain and straw nitrogen concen-
tration, measured on samples taken at final harvest and measured by 
near Infrared spectroscopy using in-house calibrations. NUE was calcu-
lated using published methods62. Overall, phenotypes recorded were: 
JI: heading date, plant height, grain yield, grain weight, grain length, 
grain width, and grain surface area; RH and SB: anthesis date63, crop 
height, grain yield, straw yield, grain and straw nitrogen concentration. 
RH also carried out canopy maturity, grain and straw moisture content 
and grain weight measurements and on targeted populations mineral 
analysis by Inductively coupled plasma optical emission spectrometry. 
Further phenotypes were calculated from the direct measurements—for 
example, grain number, harvest index, nitrogen uptake, NUE, grain fill 
rate, grain protein concentration and grain protein deviation. Details 
on phenotype measurements are given in crop ontology format in Sup-
plementary Table 13. Four RIL populations targeted for yellow rust resist-
ance were grown in six experiments by commercial partners as winter 
drilled, unreplicated 1 m2 plots and scored for yellow rust incidence. 
Locations were: Limagrain UK (Rothwell Cherry Tree Top, 53.4882° N, 
−0.25437° E), RAGT (Ickleton 52.063481° N, 0.170783° E and Gasworks 
52.081978° N, −0.169570° E), Elsoms Wheat (Weston, 52.842426° N, 
−0.079539° E), KWS (Fowlmere, 52.0533° N, 0.03551° E). Details on sea-
sons and populations in Supplementary Table 15.

NIL development
Construction of the NIL library. QTLs for putative advantageous alleles 
from landrace parents were targeted for NIL development. For each 
QTL, a RIL was selected that carried the landrace allele at all markers 
of the QTL confidence interval and that carried a maximum number of 
Paragon alleles at the remaining loci. Selected RILs were crossed with 
cultivar ‘Paragon’, followed by two backcross steps also to Paragon (tha 
is, > 87.5% Paragon background), ensuring the heterozygous state of the 
confidence interval region in the selected parent for the next crossing 
step by marker-assisted selection. All crosses were conducted with Para-
gon as pollen donor and plants were grown under standard glasshouse 
conditions. For the final step of the NIL development, BC2F1 lines were 
self-pollinated and BC2F2 lines homozygous for the confidence interval 
region for both, either the landrace parent or Paragon, were selected 
by marker-assisted selection to be used as NIL pairs or families for the 
QTL validation (an overview over the crossing scheme is given in Sup-
plementary Fig. 11). A more complete genotype of the BC2F2 lines was 
determined using the 35k Wheat Breeders’ Array58. NIL development 
progressed in annual sets, called Toolkit (TK) sets, starting in 2012. 
We report here on sets developed up to 2017 (TK1 to TK5, details of 
selected QTL, number of NIL families and individual NILs are given in 
Supplementary Table 31). BC2F2 NIL seeds are available from https://
www.seedstor.ac.uk/search-browseaccessions.php?idCollection=40.

Field experiments for NIL families
The performance of BC2 NIL pairs (> 87.5% isogenic background), or 
families of NILs coming from a cross with opposing parental alleles 

in the targeted QTL region, were compared (Supplementary Fig. 11). 
After initial multiplication trials at JI (1 m2 plots) further field trials were 
conducted as yield trials (replicated 6 m2 plots in randomized block 
design) at JI, RH and SB under the same conditions as the RIL trials. 
The NIL families were grown in yearly TK sets between 2015 and 2022 
(see details in Supplementary Table 15). Phenotypes recorded were 
similar to the RIL trials, and raw data can be downloaded from https://
grassroots.tools/fieldtrial (Search term: “DFW Academic Toolkit Trial”). 
NIL family performance for measured phenotypes were assessed using 
simple ANOVA in individual years (Supplementary Table 26). The per-
formance over all seasons and environments was assessed using AMMI 
(Supplementary Table 26). Specific NIL field experiments to assess 
the grain yield potential were conducted for NIL lines WL0019 and 
WL0026 at 15 different locations. Of those trials, six were the general 
NIL trials reported above; another six trials were part of grain yield 
germplasm trials by commercial UK breeders, grown in triplicated 
randomized 6 m2 plots, harvested in 2017 (details and raw data can 
be downloaded from https://grassroots.tools/fieldtrial, search term: 
DFW-BTK-H2017) and three similar trials at JI with harvest in 2018, 2019  
and 2020.

In total, six trials for RHT8 NILs were conducted with a NIL carrying 
RHT8 and the recurrent NIL parent Paragon, with two seasons at each 
of the three locations: JI, the University de Lleida, Spain (41.36464° N, 
0.48197° E) and IFVC, Novi Sad, Serbia (45.20° N, 19.51° E). All trials were 
grown in a randomized block design together with other varieties with 
three replicates ( JI) or five replicates (the other sites). All trials were 
autumn drilled and harvested in July at JI (2020, 2021) and in June at the 
other sites (2021, 2022). Plot size was 6 m2 at JI and 5 m2 at the other site. 
The average temperature was recorded at all three sites.

Quantification of trait relationships
The trait–trait relationship analysis was performed using the pheno-
typic dataset of the TK trials, collected at multiple locations in multi-
ple years. For individual years and locations, the Pearson correlation 
coefficient (r) was calculated using R package corr. Then, the median 
and mean of the r values over several trials was used as the final result 
of correlation coefficient. These results were visualized using R pack-
age corrplot.

Trait trade-off plots were created for all traits together as PCA plots 
and in individual plots and for the trait pairs: grain weight (GW) × grain 
number (GN); grain yield (GY) × grain protein (GP). The individual plots 
are based on the effect direction and effect size of the introgressed 
alleles from the 127 NIL families, where the majority of introgressed 
alleles come from Watkins and are compared to the Paragon allele. 
The trait effects were calculated using the AMMI method as described. 
In the trade-off plots, the traits effects are shown as filled circles on a 
horizontal bar, which represents a sliding scale of the allele effect as 
percentage of the mean trait value. A positive allele effect will result in 
a positive value. For the trade-off plots, two traits are shown together, 
with the bar for the first trait being on top and for the second trait at 
the bottom. The circles are shown in colour if the effect was statisti-
cally significant, and in grey otherwise (Fig. 2g). The PCA bi-plots on 
the left of the individual trade-off plots are based on a PCA calculated 
using the phenotype estimators from the AMMI, employing the pack-
age princomp in R. Specific trait pairs are highlighted by bold arrows 
in the PCA plots to show their overall relationship. This contrasts the 
individual trade-off plots, which show exception to this overall trend.

GWAS from Watkins collection
The markers used for GWAS of Watkins collection were ~10 Mb core 
SNPs in dataset 3. Extreme outlier values of phenotypic data were 
removed. Based on these, we performed GWAS using GEMMA (v0.98.1)64 
with parameters (gemma-0.98.1-linux-static -miss 0.9 –gk -o kinship.txt 
and gemma-0.98.1-linux-static -miss 0.9 -lmm -k kinship.txt). In-house 
scripts programmed in R were used to visualize these results.

https://www.seedstor.ac.uk/search-browseaccessions.php?idCollection=40
https://www.seedstor.ac.uk/search-browseaccessions.php?idCollection=40
https://grassroots.tools/fieldtrial
https://grassroots.tools/fieldtrial
https://grassroots.tools/fieldtrial


Article

NAM imputation and NAM–GWAS
Pre-processing for skeleton marker. The accessions of NAM/RIL 
populations were genotypes using the 35k Wheat Breeders’ Array48. To 
obtain a high-quality SNP dataset, we used marker flanking sequences 
to align to the reference genome (IWGSC RefSeq v1.0)8. Positions and 
alleles of SNPs that were consistent with the re-sequencing data were 
considered and of those only markers with polymorphisms between 
parents were retained.

NAM Imputation. The HapMap constructed in this study was the base 
for NAM imputation. The SNPs of RIL parent were extracted from SNP 
dataset 1, since the rare alleles in the natural population will not be 
rare in the RILs. Overall, we used the genotype results of the RILs as the 
skeleton to predict the genotype of each site in each accession. For each 
RIL population, the detailed methods are as follows:

Step 1:
(1)  Go accross the sequenced SNP sites of each parent.
(2)  The SNP locus is in a haploblock: If there is one or more skeleton 

markers in the block, the RIL genotypes will be filled according to the 
nearest skeleton marker in the block; If there is no skeleton marker 
in the block, the RIL genotypes are filled according to the nearest 
skeleton marker on the chromosome.

(3)  The SNP locus is not in haploblock: the RIL genotype is filled accord-
ing to the nearest skeleton marker on the chromosome.

(4)  The method of filling RIL genotypes according to a skeleton marker: 
for example, marker genotype coding is A, B, H or ‘-’, where A repre-
sents the allele from parent 1 and B from parent 2, H represents het-
erozygosity, and ‘-’ represents a missing allele. Then, for an adjacent 
SNP site the SNP from the same parent is selected from the SNP matrix.

Step 2: Go through each RIL and follow the procedure from step 1.
Step 3: Merge all RIL groups to generate vcf files using the bcftools 

merge command.
Step 4: Carry out two rounds of LD pruning (plink --indep-pairwise 

10 kb 1 0.8; plink --indep-pairwise 50 1 0.8).

Percentage of the environmental mean. To standardize phenotypic 
values across different environments, we calculated the ‘percentage of 
the environmental mean’ for each trait. For each individual trait, the raw 
mean values were first used to calculate the environmental mean of that 
trait. Next, the individual trait values were converted into a percentage  
of this environmental mean. The formula used was: percentage of  
environmental mean = (individual trait value/environmental mean 
of the trait) × 100. By doing so, each trait’s value was expressed as a 
percentage relative to the mean trait value in that environment. Impor-
tantly, before the calculation, controls and outliers were excluded from 
the data. This approach allowed us to compare traits on a similar scale, 
effectively reducing potential bias introduced by the raw numerical 
values of different traits.

NAM–GWAS. Based on the SNP sets generated after NAM imputation, 
two-step LD filtering was performed: plink --indep-pairwise 10 kb 1 
0.8; plink --indep-pairwise 50 1 0.8. Finally, 19,253,188 SNPs were re-
tained. To perform NAM–GWAS the following data was collated for 
each phenotype:
(1)  Phenotypic value of a single year: the phenotypic values of the spe-

cific RIL populations measured in that year were combined.
(2)  Phenotypic values of years with field experiments with high  

nitrogen fertilization: the phenotypic values of all RIL popula-
tions from those experiments were integrated, using percentage  
of the environmental mean values.

(3)  Phenotypic values of years with field experiments with low nitrogen 
fertilization: the phenotypic values of all RIL populations in those 
experiments were integrated, using the percentage of the environ-
mental mean values.

(4)  The phenotypes of all years and all environments were combined, 
using the percentage of the environmental mean values.

Discovery and functional verification
RHT8 fine-mapping and gene discovery. Seventy-two recombinant 
lines (not to be confused with the 73 Paragon × Watkins RIL popula-
tions that make up the NAM used in this study) within the RHT8 locus 
(Supplementary Table 28) were used for genetic mapping27. These are 
from the cross: RIL4 (from the ‘Cappelle Desprez’ × ‘Cappelle Desprez 
(Mara 2D)’ population described65) with ‘Cappelle Desprez’. Seven new 
KASP markers were designed and used as described66 based on Watkins 
SNPs (Supplementary Table 29).

Genetic dissection for yellow rust. Seedlings of the Watkins lines 
were screened with single isolates of Puccinia striiformis under cold 
glasshouse conditions in April 2018. Two single isolates (UK 16/342 
and 19/501) belonging to the ‘Warrior’ race, were tested separately as 
described67. Field screening was conducted in 1 m2 untreated plots.  
Yellow rust scores were: 1, no infection observed; 2, stripe per tiller;  
3, two stripes per leaf; 4, most tillers infected but some top leaves un-
infected; 5, all leaves infected but leaves appear green overall; 6, leaves 
appear half infected and half green; 7, Leaves appear more infected than 
green; 8, Very little green tissue left; 9, leaves dead, no green tissue left. 
In Egypt, we evaluated a diverse set of 300 Watkins bread wheat lan-
draces and 20 additional control lines for yellow rust disease resistance 
and agronomic traits under natural field conditions at the Sids, Sakha, 
Nubaria and Gemmeiza Agricultural Research Center stations (Egypt) 
during the 2019–2020, 2020–2021 and 2021–2022 growing seasons.

Development of haplotype-based diagnostic SNPs and design of 
KASP markers
For each haploblock, we selected SNPs that were able to differenti-
ate all haplotypes within this block, defined as tagSNPs. The detailed 
process is as follows.

Step 1: Distance calculation of all the SNPs between each pairwise 
haplogroups. The genotype encoding rules used during the distance 
calculation are as follows: reference allele (homozygous): −1; alternative 
allele (homozygous): 1; missing: NA; heterogeneous: 0.

For each SNP site, we first calculated the state of this SNP within the 
haplogroups. Then the average genotype state for all accessions within 
its respective haplotype cluster was computed. The state of the SNP 
in haplotype clusters 1 and 2 were denoted as sh1 and sh2, respectively:

∑s
n
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1

j

n

ijh1
1 =1

1
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j
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Here, gij was the genotype of the jth sample in haplotype cluster i, 
and n1 and n2 were the counts of samples in haplotype clusters 1 and 
2, respectively.

Step 2: Calculation of the distance of this SNP position between hap-
lotypes. The Euclidean distance between the average genotype states 
of two haplotype clusters was then calculated:

d s s= ( − )i h1 h2
2

If the SNP fell within a coding region, its weight was quadrupled:

d d= × 4i i

Step 3: Sort of distances of all the SNPs. The SNPs were sorted based 
on distances, and the SNP with the maximum distance was chosen as the 
tagSNP. Within a haploblock, a tagSNP was selected for each pairwise 



haplogroup. The union of these selected tagSNPs formed the tagSNP 
set for the haploblock.

Step 4: This process was repeated across all 71,000 haploblocks in 
the genome to compile the complete set of tagSNPs.

In summary, for each haploblock, the haplogroups that each acces-
sion belonged to were determined in the above HapMap analysis. We 
further calculated the distances at all SNPs between each pairwise 
haplogroup. The SNPs with the maximum distance were chosen as the 
tagSNPs that distinguishes these two haplotypes.

Germplasm availability
The 827 Watkins single seed derived accessions and their 827 prede-
cessor landrace populations, 208 modern cultivars, 73 RIL mapping 
populations and 143 NIL families are all available from the John Innes 
Centre Germplasm Resources Unit (https://www.seedstor.ac.uk/) and 
the Agricultural Genomics Institute at Shenzhen, Chinese Academy of 
Agricultural Sciences (https://wwwg2b.com/).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All whole-genome sequence data has been deposited at the National 
Genomics Data Center (NGDC) Genome Sequence Archive (GSA) 
with BioProject accession number PRJCA019636 and GSA accession 
ID CRA012590. Variation matrix and annotations, wheat HapMap, 
phenotyping data, genetic maps with genotype scores, association 
genetics analyses, the developed tagSNPs and KASP markers were 
deposited in WWWG2B breeding portal (https://wwwg2b.com). IBSpy 
variations tables, haplotypes, long-range tilling paths, variant files  
(VCF) and all raw phenotypic data are available online (https://wwwg2b. 
com/dataAvailable, https://wwwg2b.com/toolIndex/academic  
and https://opendata.earlham.ac.uk/wheat/under_license/toronto/
WatSeq_2023-09-15_landrace_modern_Variation_Data/). Publicly 
available sequencing data were obtained from SRA accessions 
SRP114784, PRJNA544491, PRJEB37938, PRJNA492239, PRJNA528431, 
PRJEB39558 and PRJEB35709 and from the NGDC database project 
CRA005878.  Source data are provided with this paper.

Code availability
Code associated with this project is available at Github: https://github.
com/ShifengCHENG-Laboratory/WWWG2B, https://github.com/
Uauy-Lab/IBSpy, https://github.com/JIC-CSB/WatSeqAnalysis/ and 
https://github.com/pr0kary0te/GenomeWideSNP-development.
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Extended Data Fig. 1 | Graphical abstract and conceptual strategies. a, The 
WWWG2B strategy started with the comparison of variations between the 
Watkins landrace collection (W, a.i) and the modern wheats (M, a.ii). b, By 
developing an extensive genomics resource, we determined the extent to which 
landraces carry variants that are not present in modern wheats. c-d, Natural  
and structured populations were then combined in multi-site field-based 
experiments to identify novel and useful genetic variations not yet deployed  
in modern wheat. This required genetic dissection by a combination of 
whole-genome resequencing (b.i), construction of variant atlas and haplotype 
map (b.ii) and extensive field-based phenotyping (c) of next-generation-gene- 
discovery populations, the NAM RIL segregating populations combined with 
GWAS (d.i), bi-parental QTL mapping, and haplotype analysis enabled by the 
development of the advanced genomics and genetics resources shown in b and d. 
e, Alleles with high breeding values and their phenotypic effects (determined  
by calculating the AMMI means for their selection) were validated and delivered 

for use in breeding. f, Diagnostic SNPs and KASP markers were designed for 
assisted molecular breeding. g, The overall objective of the Watkins Worldwide 
Wheat Genomics to Breeding (WWWG2B, http://wwwg2b.com/) consortium is 
to enable the development of a new generation of modern elite wheat cultivars 
that are climate resilient. The flow of useful genes and alleles through this 
process was gated by three prioritisation criteria: 1) the alleles or haplotypes are 
novel or unique to Watkins landraces or are at very low frequency in modern 
wheat (b.iii); 2) the Watkins-unique alleles or haplotypes are associated with 
significant genetic effects (target QTL and MTA) (d.i); 3) haplotype analysis 
showed that the Watkins-unique trait associated alleles or haplotypes are 
beneficial with increasing effects based on our understanding of physiological 
trait relationships (d.ii and d.iii). These prioritisation selection criteria are used 
to choose alleles to build new modern wheat cultivars while avoiding negative 
trade-offs.

http://wwwg2b.com/
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Extended Data Fig. 2 | See next page for caption.



Extended Data Fig. 2 | Population structure and phylogenetic analysis  
of Watkins landraces and modern wheat cultivars. a, Genome-wide 
ADMIXTURE (Maximum Likelihood Estimation) results for 827 Watkins landraces 
from K = 2 to K = 9. Each colour represents an ancestral population. The length 
of each segment in each vertical bar represents the proportion contributed by 
ancestral populations. b, Estimated CV error for different K values (from K = 2 
to K = 20) in the ADMIXTURE analysis with a K of 7 designating the ancestral 
groups (AGs) identified here. c, dim1 and dim2 plots of t-SNE results using 
PLINK haplotypes, for the merged variation matrix (4 M shared SNPs) between 
the SNP matrix built in this study (the 10 M core SNPs, see Methods) and the 
published dataset (76 M SNPs) from Niu et al.13. d, Phylogenetic reconstruction 
of a set of 133,222 4DTv sites using Maximum Likelihood Estimation with 1000 

bootstrap replicates, corresponding to Fig. 2a with the ancestral groups (AG1-7)  
color-coded. It is worth noting that a subjective observation of the phylogenetic  
analysis of Watkins based on the maximum likelihood method (Extended Data 
Fig. 2d), largely places individual accessions of each ancestral group beneath 
common branchpoints of the phylogenetic tree. Instances where this is not 
observed reveal extensive admixture (Extended Data Fig. 2a, Supplementary 
Table 4). The highest level of admixture for AG2 is from AG5 (approximately 
11.2%), for AG5 it is from AG7 (approximately 7.5%). This reflects the reticulate 
relationship among these ancestral groups and further demonstrates the  
need for alternative methods, particularly sophisticated models reliant on 
haplotype-based clustering for accurate inference of ancient wheat 
populations10.



Article

Extended Data Fig. 3 | Choice of modern wheat cultivars and comparison 
with the Watkins collection. a, Principal component analysis based on 35k 
Wheat Breeders’ Array6 genotypic data for 1169 modern cultivars and Watkins 
landraces hosted by CerealsDB (https://www.cerealsdb.uk.net/cerealgenomics/ 
CerealsDB/indexNEW.php) when selections for sequencing in this project were 

made. Selected cultivars are shown in gold, Watkins in green and cultivars not 
selected for sequencing in grey. Representative cultivars from the blue circled 
group in PC1 vs. PC2 were not selected because synthetic wheat derivatives are 
highly represented in this group. b, Countries of origin of the 1169 modern 
cultivars genotyped.

https://www.cerealsdb.uk.net/cerealgenomics/CerealsDB/indexNEW.php
https://www.cerealsdb.uk.net/cerealgenomics/CerealsDB/indexNEW.php


Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Watkins collection and mapping populations, 
phenotypic resources and traits surveyed summarised in a phylogeny-
based circular diagram. a, Phylogenetic tree of the wheat accessions 
examined in this study. The phylogenetic tree was constructed using a set  
of 133,222 four-fold degenerate sites using rapidNJ with 1000 bootstrap 
replicates. The seven ancestral groups (AG1–7) and modern wheats are colour-
coded as in Fig. 1a. b, The founder parents (green stars) of 73 Watkins x Paragon 
RIL populations are marked, the 15 pan-genome lines (red stars) and Chinese 
Spring (blue star) are indicated on the phylogenetic tree. c, Traits surveyed in 
multiple environments and multiple years for each of the NAM RIL populations, 
in which the corresponding Watkins line was used as the non-common parent. 

Each track represents a year (total of 10 years: 2011, 2012, 2013, 2014, 2015, 
2016, 2017, 2018, 2019 and 2020). d, Traits surveyed in multiple environments 
and multiple years for the Watkins collection diversity panel (natural populations) 
grown in five geographic locations across China (blue circle, four years: 2020, 
2021, 2022, 2023) and the UK (orange circle, 16 years: 1990, 2005, 2006, 2007, 
2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2018, 2019, 2020 and 2021).  
e, Magnified view of data from the detailed field experiments, traits and 
phenotyping datasets as indicated in track d, including the traits surveyed in 
the Watkins collection diversity panel in multiple environments (e.i) and in 
multiple years (left) and in the RIL populations (NAM RILs) in multiple 
environments and in multiple years (e.ii).



Extended Data Fig. 5 | Information flow from novel and functional genetic 
diversity derived from Watkins landraces to the quantification of the 
beneficial increasing QTL allele associated with target traits. a, Phylogenetic 
tree of the 827 Watkins accessions, colour-coded by ancestral groups; the 
branches were roughly classified into the seven ancestral groups in panel  
b. c, Percentage of AG-unique genetic diversity for SNPs, functional SNPs 
(defined by SnpEff (v4.3t)20) and beneficial haplotypes. d, Phenotyping of the 
Watkins collection including data collected in China and the UK and data for the 

68 of 73 total RIL populations which exhibit significant QTLs in panel e. The 
Watkins parental lines in the RIL population, with colours representing their 
ancestral groups. f, distribution of the number statistic of QTLs detected from 
the biparental QTL mapping populations, comparison was made for the 
beneficial QTL with increasing effects (right) and decreasing (left) in Watkins. 
g, Prioritised QTL and the major traits selected for introgression into Paragon 
via backcrossing to test their phenotypic effects for pre-breeding.
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Software and code
Policy information about availability of computer code

Data collection No software used for data collection.

Data analysis Alignment and SNP calling: 
Alignment: BWA-MEM (v0.7.17) 
Mark duplicate: picard (v 2.20.3-SNAPSHOT) 
Sort Alignment file: SAMtools (v1.9) 
SNP/Indel Calling: GATK (v4.1.2) 
SNP/Indel filtering: (https://github.com/ShifengCHENG-Laboratory/WWWG2B/tree/main/00.SNP_calling_and_QC ) 
LD pruning: PLINK (v1.90b6.7) 
  
Population structure analysis: 
Phylogenetic tree: iqtree (v1.6.9); rapidnj(Version 2.3.2) 
Tree visualisation: iTOL (https://itol.embl.de/) 
Structure: ADMIXTURE (v1.3.0) 
Genetic diversity (π): vcftools (v0.1.13) 
Population differentiation (FST): vcftools (v0.1.13) 
identity-by-state matrix: PLINK (v1.90b6.7) 
PCA: Python-sklearn (v0.24.2) 
t-SNE: Python-sklearn (v0.24.2) 
  
Wheat HapMaP construction: 
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Block identification: PLINK (v1.90b6.7) 
Block connection: (https://github.com/ShifengCHENG-Laboratory/WWWG2B/tree/main/01.HAPMAP_pipeline ) 
Haplotype assignment: HAPPE (v0.1.4), https://github.com/fengcong3/HAPPE   
   
GWAS study: 
Calculate kinship and perform GWAS: GEMMA (v0.98.1) 
Manhattan plot and QQ plot: (https://github.com/ShifengCHENG-Laboratory/WWWG2B/tree/main/04.GWAS_pipeline ) 
Local details and LD: LDBlockShow (v1.40) 
  
NAM imputation: 
Imputation: (https://github.com/ShifengCHENG-Laboratory/WWWG2B/tree/main/03.NAM_imputation_pipeline) 
Merge VCF: bcftools (v1.9) 
  
CNV identification: 
Blastn (v 2.8.1+) 
In-house pipeline(https://github.com/ShifengCHENG-Laboratory/WWWG2B/tree/main/07.CNV_pipeline ) 
 
k-mer databases count from raw reads and genome assemblies: 
kmerGWAS pipeline https://github.com/voichek/kmersGWAS 
Jellyfish v.2.2.6  
KMC v3.0.1  
 
IBSpy variations and Long Range haplotypes: 
The implementation of the complete pipeline is in the final version of IBSpy (v.0.4.6) in https://github.com/Uauy-Lab/IBSpy 
Affinity Propagation (AP) methods and the API: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AffinityPropagation.html 
AP clusters were scored by Silhouette Coefficient (SC) score and the API: https://scikit-learn.org/stable/modules/generated/
sklearn.metrics.silhouette_score.htm 
Syntenic windows among wheat genome references were developed in (Brinton et al. Communications Biology, 3, 712) 
Minimum landrace path: https://github.com/Uauy-Lab/MLP_finding. 
 
Sequencing data quality control: 
Comparison of 35k Axiom array with sequence data: https://github.com/JIC-CSB/WatSeqAnalysis/tree/master/qc_vs_iselect 
 
Statistical analyses  
R software suite (version 4.2)  
Pearson correlation coefficient (r) was calculated using R package corr v0.4.4  and corrplot v0.92. 
ANOVA has been calculated as a linear model with the genotype as a factor, using base function lm. 
AMMI was calculated using base functions aov and svd following the code from https://journal.r-project.org/articles/RN-2007-003/
RN-2007-003.pdf  
  
Genetic map construction:  
Mapdisto (version 1.7) for KASP genotypes and R package ASMap (version 1.6) for 35k Wheat Breeders’ array genotyping.  
 
QTL analysis 
R software suite (v3.6.1) package qtl (v1.5) 
  
Triticum aestivum Next Generation array 
Scripts for the design of the TaNG genotyping array: https://github.com/pr0kary0te/GenomeWideSNP-development   
 
Standardization of phenotypic data: 
Crop Ontology Curation tool (https://cropontology.org/) 
 
Geographic distance: 
R package geosphere (v1.5-18)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All whole-genome sequence data has been deposited at the National Genomics Data Center (NGDC) Genome Sequence Archive (GSA) (https://ngdc.cncb.ac.cn/gsa/
search?searchTerm=CRA012590), with BioProject accession number PRJCA019636, and with GSA Accession ID: CRA012590. Variation matrix and annotations, 
wheat HapMap, phenotyping data, genetic maps with genotype scores, association genetics analyses, the developed tagSNPs and KASP markers were deposited in 
WWWG2B breeding portal (https://wwwg2b.com). IBSpy variations tables, haplotypes, long-range tilling paths, variant files (VCF) and all raw phenotypic data are 
available online (https://wwwg2b.com/dataAvailable, https://wwwg2b.com/toolIndex/academic and https://opendata.earlham.ac.uk/wheat/under_license/
toronto/WatSeq_2023-09-15_landrace_modern_Variation_Data/). Publicly available sequencing data were obtained from SRA accessions SRP114784, 
PRJNA544491, PRJEB37938, PRJNA492239, PRJNA528431, PRJEB39558, PRJEB35709 and from the NGDC database project CRA005878. 
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The IWGSC RefSeq is download from https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_Assemblies/v1.0/ . 
 
Variation matrix (VCF files) and annotations, wheat haplotype map, phenotyping data, association genetics analyses including the identified QTL and MTA, the 
developed tagSNPs and KASP markers were deposited in WWWG2B breeding portal (https://wwwg2b.com/).  
 
Variation matrix (VCF files) for the 1051 accessions are also available at:  
https://wwwg2b.com/dataAvailable/SNP_matrix/ and https://opendata.earlham.ac.uk/wheat/under_license/toronto/
WatSeq_2023-09-15_landrace_modern_Variation_Data/WatSeq_VCF_ChineseSpringRefSeqv1.0/ 
 
IBSpy variations tables of the 1051 accessions used in this study are available at: 
https://wwwg2b.com/dataAvailable/IBSpy_variations_10WheatGenomes/ and https://opendata.earlham.ac.uk/wheat/under_license/toronto/
WatSeq_2023-09-15_landrace_modern_Variation_Data/IBSpy_variations_10WheatGenomes/ 
 
IBSpy-based haplotypes based on the Chinese Spring reference sequence are available at: 
https://wwwg2b.com/dataAvailable/IBSpy_haplotypes_ChineseSpring/ and https://opendata.earlham.ac.uk/wheat/under_license/toronto/
WatSeq_2023-09-15_landrace_modern_Variation_Data/IBSpy_haplotypes_ChineseSpring/ 
 
Syntenic blocks between 10+ Wheat genome references used for Affinity Propagation haplotype calls are available at:  
https://wwwg2b.com/dataAvailable/Syntenic_blocks_by_chromosome/ and https://opendata.earlham.ac.uk/wheat/under_license/toronto/
WatSeq_2023-09-15_landrace_modern_Variation_Data/Syntenic_blocks_by_chromosome/ 
 
Raw phenotypic data is available at https://wwwg2b.com/dataAvailable/Watseq_phenotype_data/, https://grassroots.tools/fieldtrial/ and https://
opendata.earlham.ac.uk/wheat/under_license/toronto/WatSeq_2023-09-15_landrace_modern_Variation_Data/WatSeq_phenotypic_data/ (field and glasshouse 
data). Yellow rust resistance scores for Watkins natural populations in Ethiopia and Kenya field trials are available here: https://doi.org/10.5281/zenodo.8349020.  
 
35k Wheat Breeder’s array genotype data of RILs and NILs is available at: https://www.cerealsdb.uk.net/cerealgenomics/CerealsDB/array_info.php 
 
Additional datasets are provided in the Supplementary Tables.  
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The Watkins collection consists of 827 individuals. Unreplicated field trial data was used for GWAS. The diversity subset of the Watkins 
collection, grown in Egypt, contained 300 Watkins lines and was used for GWAS. The RIL population size was near 94 RILs for most of the 73 
populations and was used for QTL mapping. In a very few extreme cases, QTL mapping was conducted with as low as 88 RILs. We assume that 
a small population size will lead to a higher false positive rate in QTL mapping. We counteract this problem in our research strategy by either a 
repetition of the QTL experiment in another season or by checking QTL effects in NIL validation trials. Furthermore, we use several 
populations grown at the same site and the same season, for NAM-GWAS analysis. Sample size in the NAM GWAS was between several 
hundred to several thousand RILs.

Data exclusions The genotyping of three RIL populations (ParW444, ParW264, ParW313) out of 112 populations, revealed unexpected genotypes, which could 
only be explained by a mistake in the crossing programme. The populations and collected data were discarded, resulting in 109 RIL 
populations in the study. 
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NIL families Fam-013 to Fam-016 and Fam-023 lost all members with a second allele due to a drilling error in the multiplication trial. These 
families were removed from the data analysis. 
 
Data from three NIL lines of  family Fam-008 was excluded from the analysis because they showed a striking dwarf growth habit in the field  
that was very different to the rest of the germplasm. 
 
Data from two lines WL0019 and WL0026 from the SB_H18 TK trial was excluded from the analysis of the Q7B-PH grain yield effect, as the 
plant height effect for all three replicates suggested that the samples had been swapped and it was not possible to go back to the original 
records.  

Replication Field trials with the 827 Watkins accessions  were grown in a randomised, unreplicated augmented block design with 10% ‘check’ varieties. 
Similarly, glasshouse trials of the 827 Watkins acessions, to confirm specific effects like yellow rust resistance or glume colour, were 
conducted in randomised but unreplicated trials, due to the size of the collection. Two Watkins trials in China were grown in a randomised 
split-plot design with two Nitrogen fertiliser treatments and two replicates each. Initial seed multiplication exercises of the 127 RIL 
populations, each with 88-102 individuals, were unreplicated and were grown in augmented block design with 20% check varieties. TK trials at 
JIC, consisting of NIL families of two to 8 NILs with two contrasting alleles, were grown in augmented block design with 10% check varieties in 
the multiplication trial. After multiplication, TK trials were grown  in three replicates and in randomised block design at JIC, RH and SB. All RIL 
trials at RH and SB, were grown in randomised block design with three replicates. Specific NIL trials, comparing an individual NIL pair,  were 
grown in randomised block design with three replicates, or even five replicates for the RHT8 trials in Spain and Serbia. Yellow rust trials of RIL 
populations (90-94 RILs each) at commercial breeding stations were grown in randomised unreplicated trials, with two time points of disease 
scoring. 

Randomization All field trial design included randomisation of the genotypes. 

Blinding Phenotypic measurements on the Watkins, RILs, and NILs were taken independently by different scientists, across locations, and without 
knowledge of the underlying identifier of each accession. Hence all phenotypic measurements were blinded.  

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Plants
Seed stocks All the germplasm used in this study is conserved in the UKRI-BBSRC Germplasm Resources Unit (GRU) National Capability at JIC. The 

seed and passport data is available on https://www.seedstor.ac.uk/.   
 
The progenitor landrace populations (Watkins Historic Collection) are available on  https://www.seedstor.ac.uk/search-
browseaccessions.php?idCollection=4  
 
The derived 827 sequenced Watkins landraces seed stocks are available on https://www.seedstor.ac.uk/search-
browseaccessions.php?idCollection=39  
 
The 208 modern elite wheats used were sourced from various SeedStor collections and can be viewed and ordered collectively as a 
Compiled Accession List at https://www.seedstor.ac.uk/search-custom.php  
 
Pure stocks of the seed harvested from a single DNA sequenced plant (gold standard stocks) are kept for reference in the GRU and 
were shared with AGIS. Progeny of these were multiplied in greenhouse with bagged ears for preventing cross pollination and 
handled following international Genebank Standards (Rome 2014)  

Novel plant genotypes The BBSRC Designing Future Wheat - Recombinant Inbred Lines (RILs) Nested Association Mapping panel (DFW - NAM) comprising 
8,359 greenhouse grown cellophane bagged hand threshed seed stocks, deposited in the GRU as part of this work. It includes the 
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reported 73 RIL populations. Seed stocks are available on  https://www.seedstor.ac.uk/search-browseaccessions.php?idCollection=47 
 
The DFW Wheat Academic Toolkit pre breeding germplasm collection of 1,845 lines that were deposited in the GRU as part of this 
work include all the Near Isogenic Lines (NILs), reported in this study. SeedStock are available on  https://www.seedstor.ac.uk/search-
browseaccessions.php?idCollection=40  

Authentication High heritability traits (height, heading date, glume colour, seed appearance, presence of awns, length of awns) are confirmed as a 
standard procedure for all glasshouses grown stocks that were available on SeedStor collections for this study. Seed and ear 
morphology are compared by the genebank curator to the previously grown seed lot and sampled ear. Plant morphology traits are 
compared to the previous regeneration data records, dating back to the early 1970s for modern varieties and to the original century 
old grouping in case of Watkins landrace collection. The purified Watkins landrace accessions and the modern wheat panel were 
genotyped with Axiom 35K high density genotyping and SNP calls checked against the sequence generated in this study (see 
Methods). NILs were also subjected to Axiom 35K genotyping. RILs are genotypes with Axiom 35K Breeder array or KASP markers.  
 
To ensure that field plots are composed of the intended lines, they were scored for morphological and high heritability traits such as 
height, heading, glume colour, and the presence of awns. Awns were particularly useful as Paragon (common NAM and Recurrent 
backcross parent) carried the B1 awn inhibiting allele on chromosome 5A whereas the majority of Watkins accessions are awned. 
Trait values were correlated between experiments and QTL mapped (e.g., Awns to B1 on chromosome 5A, height to major QTL on 
chromosome 6A, glume colour to chromosome 1B). In the event of any doubt, small sets of diagnostic KASP markers were used to 
genotype ~8 seeds from each field plot. We estimate 2-5% cross contamination of field plots harvested by plot combine harvesters 
(This was tested and confirmed in 2021 in five breeder and academic institute sites evaluating the DFW stocks by counting off-types 
in 6-metre plots of F5 NILs). Seed was not multiplied from field plots for more than two generations; new “pure” stocks were taken 
from glasshouse regenerated plants (bags placed over spike before anthesis to prevent cross pollination, see Methods).  

ChIP-seq

Data deposition
Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

For "Initial submission" or "Revised version" documents, provide reviewer access links.  For your "Final submission" document, 
provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 
enable peer review.  Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and 
whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and 
lot number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files 
used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community 
repository, provide accession details.
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